Stanley, T.M.; Feldmann, R.M.
1998-01-01
The Cambro-Ordovician Deadwood Formation and Aladdin Sandstone represent intertidal and subtidal, nearshore deposystems that contain few well-preserved body fossils, but contain abundant trace fossils. The present study uses the much neglected trace-fossil fauna to describe the diverse paleoenvironments represented in the Deadwood-Aladdin deposystems, and to better understand the environmental conditions that controlled benthic life in the Early Paleozoic. The Deadwood-Aladdin ichnotaxa can be separated into three distinct assemblages based on the changing sedimentologic and hydrodynamic conditions that existed across the Cambro-Ordovician shelf. Trace-fossil assemblages and corresponding lithofacies characteristics indicate that the Deadwood-Aladdin deposystems formed within an intertidal-flat and subtidal-shelf environment. Based on the distribution and numbers of preserved ichnotaxa, the intertidal flat can be subdivided further into an ecologically stressful inner sand-flat environment, and a more normal marine outer sand-flat environment, both of which belong to a mixed, Skolithos-Cruziana softground ichnofacies. The inner sand flat is characterized by low diversity, low numbers, and a general lack of complexly constructed ichnotaxa. Trace fossils common to both assemblages tend to be smaller in the inner flat compared to the outer sand flat. Taphonomic effects, such as substrate type and sediment heterogeneity, also aid in differentiating between the inner and outer sand-flat assemblages. The subtidal shelf environment is categorized in the Cruziana Ichnofacies. Ichnological evidence of periodic tempestite deposition and hardground development within this subtidal regime is manifested by high diversity and low abundance of ichnogenera.
Transport processes in intertidal sand flats
NASA Astrophysics Data System (ADS)
Wu, Christy
2010-05-01
Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.
Horn, Sabine; de la Vega, Camille; Asmus, Ragnhild; Schwemmer, Philipp; Enners, Leonie; Garthe, Stefan; Binder, Kirsten; Asmus, Harald
2017-01-01
The determination of food web structures using Ecological Network Analysis (ENA) is a helpful tool to get insight into complex ecosystem processes. The intertidal area of the Wadden Sea is structured into diverse habitat types which differ in their ecological functioning. In the present study, six different intertidal habitats (i.e. cockle field, razor clam field, mud flat, mussel bank, sand flat and seagrass meadow) were analyzed using ENA to determine similarities and characteristic differences in the food web structure of the systems. All six systems were well balanced between their degree of organization and their robustness. However, they differed in their detailed features. The cockle field and the mussel bank exhibited a strong dependency on external imports. The razor clam field appeared to be a rather small system with low energy transfer. In the mud flat microphytobenthos was used as a main food source and the system appeared to be sensitive to perturbations. Bird predation was the most pronounced in the sand flat and the seagrass meadow and led to an increase in energy transfer and parallel trophic cycles in these habitats. Habitat diversity appears to be an important trait for the Wadden Sea as each subsystem seems to have a specific role in the overall functioning of the entire ecosystem.
Horn, Sabine; de la Vega, Camille; Asmus, Ragnhild; Schwemmer, Philipp; Enners, Leonie; Garthe, Stefan; Binder, Kirsten; Asmus, Harald
2017-01-01
The determination of food web structures using Ecological Network Analysis (ENA) is a helpful tool to get insight into complex ecosystem processes. The intertidal area of the Wadden Sea is structured into diverse habitat types which differ in their ecological functioning. In the present study, six different intertidal habitats (i.e. cockle field, razor clam field, mud flat, mussel bank, sand flat and seagrass meadow) were analyzed using ENA to determine similarities and characteristic differences in the food web structure of the systems. All six systems were well balanced between their degree of organization and their robustness. However, they differed in their detailed features. The cockle field and the mussel bank exhibited a strong dependency on external imports. The razor clam field appeared to be a rather small system with low energy transfer. In the mud flat microphytobenthos was used as a main food source and the system appeared to be sensitive to perturbations. Bird predation was the most pronounced in the sand flat and the seagrass meadow and led to an increase in energy transfer and parallel trophic cycles in these habitats. Habitat diversity appears to be an important trait for the Wadden Sea as each subsystem seems to have a specific role in the overall functioning of the entire ecosystem. PMID:28489869
van der Wal, Daphne; Forster, Rodney M; Rossi, Francesca; Hummel, Herman; Ysebaert, Tom; Roose, Frederik; Herman, Peter M J
2011-01-01
An experiment was performed to test an alternative dredging strategy for the Westerschelde estuary. Clean sand dredged from the navigation channel was disposed seawards of an eroding intertidal flat in order to modify morphology and hydrodynamics, improving the multi-channel system with ecologically productive shallow water habitat. Five years of intensive monitoring revealed that part of the disposed sediment moved slowly towards the flat, increasing the very shallow subtidal and intertidal area, as planned. The sand in the impact zone became gradually finer after disposal, possibly due to reduced current velocities. Nevertheless, no changes in macrobenthic biomass, density, species richness and composition were detected in the subtidal zone, also demonstrating rapid macrobenthic recovery. In the intertidal zone, no ecological effects could be revealed superimposed on trends associated with long-term sediment fining. Thus, despite morphological success and absence of detected negative ecological impacts of the experiment, new beneficial habitat was not created. Copyright © 2010 Elsevier Ltd. All rights reserved.
High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data
NASA Technical Reports Server (NTRS)
Lee, Seung-Kuk; Ryu, Joo-Hyung
2017-01-01
This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, D.L.
The Berea Sandstone is a widely recognized producer of oil and gas in the Appalachian basin. Subsurface mapping, core analysis, and production data from producing wells have been evaluated in west-central West Virginia, where the Berea Sandstone represents a wide range of nearshore and coastal environments. Fluvial system deposits are found in southern Jackson County as channel sands (Gay-Fink) and adjacent deltaic facies. Coastal sediments were deposited to the north as intertidal shoals, tidal flats, and coarse-grained tidal-creek point bars. Marine shelf sands are found to the west.
Sedimentary controls on modern sand grain coat formation
NASA Astrophysics Data System (ADS)
Dowey, Patrick J.; Worden, Richard H.; Utley, James; Hodgson, David M.
2017-05-01
Coated sand grains can influence reservoir quality evolution during sandstone diagenesis. Porosity can be reduced and fluid flow restricted where grain coats encroach into pore space. Conversely pore-lining grain coats can restrict the growth of pore-filling quartz cement in deeply buried sandstones, and thus can result in unusually high porosity in deeply buried sandstones. Being able to predict the distribution of coated sand grains within petroleum reservoirs is thus important to help find good reservoir quality. Here we report a modern analogue study of 12 sediment cores from the Anllóns Estuary, Galicia, NW Spain, collected from a range of sub-environments, to help develop an understanding of the occurrence and distribution of coated grains. The cores were described for grain size, bioturbation and sedimentary structures, and then sub-sampled for electron and light microscopy, laser granulometry, and X-ray diffraction analysis. The Anllóns Estuary is sand-dominated with intertidal sand flats and saltmarsh environments at the margins; there is a shallowing/fining-upwards trend in the estuary-fill succession. Grain coats are present in nearly every sample analysed; they are between 1 μm and 100 μm thick and typically lack internal organisation. The extent of grain coat coverage can exceed 25% in some samples with coverage highest in the top 20 cm of cores. Samples from muddy intertidal flat and the muddy saltmarsh environments, close to the margins of the estuary, have the highest coat coverage (mean coat coverage of 20.2% and 21.3%, respectively). The lowest mean coat coverage occurs in the sandy saltmarsh (10.4%), beyond the upper tidal limit and sandy intertidal flat environments (8.4%), close to the main estuary channel. Mean coat coverage correlates with the concentration of clay fraction. The primary controls on the distribution of fine-grained sediment, and therefore grain coat distribution, are primary sediment transport and deposition processes that concentrate the clay fraction in the sediment towards the margins of the estuary. Bioturbation and clay illuviation/mechanical infiltration are secondary processes that may redistribute fine-grained sediment and produce grain coats. Here we have shown that detrital grain coats are more likely in marginal environments of ancient estuary-fills, which are typically found in the fining-upward part of progradational successions.
NASA Astrophysics Data System (ADS)
Chang, Tae Soo; Hong, Seok Hwi; Chun, Seung Soo; Choi, Jeong-Heon
2017-08-01
The Dasari beach-dune system fronted by an intertidal mud flat is a typical example of numerous small beaches found both in embayments and along the open macrotidal west coast of Korea. The beach is frequently exposed to energetic wave action at high tide in winter. Although this coastal dune-sandy beach-intertidal mud flat system has previously been described, its origin and morphodynamic behavior has to date not been firmly established. To clarify these issues, elevation profiles and surficial sediment samples were collected seasonally along five monitoring transects across the tidal flat. In addition, box-cores as well as vibro- and drill-cores were acquired along the middle transect. Optically stimulated luminescence (OSL) and 14C- AMS (accelerator mass spectrometry) dating methods were applied to determine the age of the tidal flat, the beach and the dune deposits. The results show that Dasari beach is topographically composed of two distinct morphological and sedimentological sectors, comprising a high-tide sandy beach that merges seaward into an extensive low-tide tidal flat composed of mud. The transition between the two sectors is marked by a sharp break in slope and change in internal sedimentary structures. At the boundary, the subtle shoreward fining trend in mean grain size on the intertidal flat switches to a pronounced shoreward coarsening trend. Near the transition, mixing between the beach sand and the mud is observed. Another striking feature is a seasonal rotation of the beach system centered on the middle sector, with the northern sector eroding in winter and accreting in summer, and the southern sector accreting in winter and eroding in summer. The spatial grain-size pattern reveals that the beach is fed from the neighboring beach in the north by lateral headland bypassing, rather than onshore transport across the tidal flat, the intermittent lateral supply of sand explaining the seasonal rotation of the beach. Stratigraphically, the beach-dune deposits are underlain by muddy tidal flat deposits, which results in a clear upward coarsening grain-size trend and thus intimates transgressive deposition associated with sea-level rise over the past 7-8 ka. However, a time gap of 4-5 thousand years between the tidal flat and the beach-dune deposits indicates that there is no genetic link between the two depositional systems. As the modern beach-dune system is remote from the former landward limit of the tidal flat, a continuous retreat model must be rejected. Instead, a lateral headland bypassing model, in which sand supplied alongshore progressively encroached the tidal flat, is more plausible. In the light of this interpretation, many of the barrier beach-lagoon models proposed for the macrotidal west coast of Korea need to be reconsidered.
Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study
Yang, Zhaoqing; Wang, Taiping
2015-08-25
Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping
Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less
Ganges River Delta, Bangladesh, India
1994-11-14
The Ganges River Delta is the largest inter-tidal delta in the world. With its extensive mangrove mud flats, swamp vegetation and sand dunes, it is characteristic of many tropical and subtropical coasts. As seen in this photograph, the tributaries and distributaries of the Ganges and Brahmaputra Rivers deposit huge amounts of silt and clay that create a shifting maze of waterways and islands in the Bay of Bengal.
Vargas, José A; Solano, Sylvia
2011-03-01
Information on changes over time in the biodiversity and ecology of tropical systems is of increasing importance against the background of local, regional, and global dynamics. This study aimed to contribute with long-term data on the abundance fluctuations of two species of echinoderms from a tropical tidal flat. From February 1984 to December 1986, March 1985 to April 1987, and July 1994 to September 1996 (total: 76 dates), core samples (17.7 cm2, 15 cm deep) were collected at low tide at a mud-sand flat in the mid upper Gulf of Nicoya estuary, Costa Rica, as part of a survey of the benthic community. Among more than 100 taxa, the burrowing brittle star, Amphipholis geminata, and the sand dollar, Mellitella stokesii, consistently appeared in the samples over the study period. A total of 63 M. stokesii and 149 A. geminata were collected. The 43 sand dollars found during 1984-1985, give an approximate density of 35 ind./m2, which is within the range reported for this species. M. stokesii was almost absent from 1994 to 1996, while A. geminata had its peak of abundance at the end of 1995. Low abundances of the sand dollar during the rainy seasons (May-November) and slight increments in dry seasons (December-April) cores, also agrees with a report from the region. A. geminata also presented an irregular pattern of abundance, with slight increases at the end of the rainy seasons or during the dry seasons, when higher salinities are more suitable for echinoderms. The patchy spatial distribution of both species makes difficult the detection of patterns with a corer. Nevertheless, this information is unique due to its extensive time coverage and provides a baseline for future surveys designed specifically for the study of tropical intertidal estuarine echinoderms.
A history of intertidal flat area in south San Francisco Bay, California: 1858 to 2005
Jaffe, Bruce; Foxgrover, Amy C.
2006-01-01
A key question in salt pond restoration in South San Francisco Bay is whether sediment sinks created by opening ponds will result in the loss of intertidal flats. Analyses of a series of bathymetric surveys of South San Francisco Bay made from 1858 to 2005 reveal changes in intertidal flat area in both space and time that can be used to better understand the pre-restoration system. This analysis also documents baseline conditions of intertidal flats that may be altered by restoration efforts. From 1858 to 2005, intertidal flat area decreased by about 25% from 69.2 +6.4/-7.6 km2 to 51.2 +4.8/-5.8 km2. Intertidal flats in the north tended to decrease in area during the period of this study whereas those south of Dumbarton Bridge were either stable or increased in area. From 1983 to 2005, intertidal flats south of Dumbarton Bridge increased from 17.6 +1.7/-2.5 km2 to 24.2 +1.0/-1.8 km2. Intertidal flats along the east shore of the bay tended to be more erosional and decreased in area while those along the west shore of the bay did not significantly change in area. Loss of intertidal flats occurred intermittently along the eastern shore of the bay north of the Dumbarton Bridge. There was little or no loss from 1931 to 1956 and from 1983 to 2005. Predictions of future change in intertidal flat area that do not account for this spatial and temporal variability are not likely to be accurate. The causes of the spatial and temporal variability in intertidal flat area in South San Francisco Bay are not fully understood, but appear related to energy available to erode sediments, sediment redistribution from north to south in the bay, and sediment available to deposit on the flats. Improved understanding of sediment input to South San Francisco Bay, especially from Central Bay, how it is likely to change in the future, the redistribution of sediment within the bay, and ultimately its effect on intertidal flat area would aid in the management of restoration of South San Francisco Bay salt ponds.
Effects of laughing gull and shorebird predation on the intertidal fauna at Cape May, New Jersey
NASA Astrophysics Data System (ADS)
Botton, M. L.
1984-02-01
The intertidal flats of the Cape May, New Jersey shore of Delaware Bay are populated by large numbers of laughing gulls and migrating shorebirds during the spring and early summer. Exclusion of birds from a shallow slough and a sand bar had only minor effects on the infaunal benthic invertebrate assemblage at either site. The Cape May beaches provide a rich source of food in the form of horseshoe crab ( Limulus polyphemus) eggs; foraging on this item may be more profitable than probing the sediment for infauna. Gemma gemma, a small, thick-shelled bivalve, composed over 98% of the benthic infauna at both sites in 1980, and this species may be resistant to predation by certain shorebirds, as suggested by Schneider (1978).
NASA Astrophysics Data System (ADS)
Hong, Seok Hwi; Chun, Seung Soo; Chang, Tae Soo; Jang, Dae Geon
2017-08-01
Sedimentation patterns of tidal flats along the Korean west coast have long been known to be largely controlled by the monsoon climate. On the other hand, much less is known about the effect of the monsoon on sedimentation in coastal embayments with mouths of different geographic orientations. Good examples are Hampyeong and Yeoja bays along the west and south coasts, respectively. Both have narrow entrances, but their mouths open toward the northwest and the south, respectively. With mean tidal ranges of 3.46 and 3.2 m, respectively, the two bays experience similar tidal regimes and are hence excellent candidates to compare the effect of different exposure to the same regional monsoon climate on their respective sediment distribution patterns. The winter monsoon, in particular, is characterized by strong northwesterly winds that directly impact the west coast, but blow offshore along the south coast. For the purpose of this study, surficial sediment samples were collected from intertidal and subtidal flats of the two bays, both in summer and winter. Grain-size analyses were carried out by sieving (sand fraction) and Sedigraph (mud fraction). In the case of Yeoja Bay, the sediments consist mostly of mud (mean grain sizes of 5.4 to 8.8 phi). Seasonal changes are very subtle, the sediments being slightly coarser in summer when silt-dominated sediments are supplied by two streams to the northern parts of the bay in response to heavy rainfall. With the exception of the deeper tidal channels, Yeoja Bay is characterized by a thick mud blanket the year round, which is modulated by processes associated with the summer monsoon that predominantly blows from the east. Textural parameters suggest severely restricted sediment mixing on the subtidal and intertidal flats, the overall low energy situation preventing sands from reaching the tidal flats. The sediments of Hampyeong Bay, by contrast, are characterized by a distinct shoreward fining trend. Mean grain sizes average around -2.2 phi at the mouth and 8.2 phi near the shore of the inner bay. The textural relationships suggest progressive mixing between two hydraulic populations, the overall higher energy situation allowing sands to be transported onto the tidal flats in winter. In addition, a clear seasonal signal indicating deposition in summer and erosion in winter is observed, the latter probably being controlled by waves generated by strong northwesterly winds of the winter monsoon. The contrasting energy regimes controlling sediment distribution in the two bays are particularly well reflected in ternary diagrams of sand/silt/clay ratios and bivariate plots of textural parameters. The results clearly demonstrate that tidal sedimentation along the west coast of Korea is controlled by the more energetic winter monsoon, whereas along the south coast it is modulated by the less energetic summer monsoon. As a consequence, distinct seasonal changes are particularly pronounced along the west coast, whereas these are more subtle along the south coast. The orientation of bay mouths relative to the direction of wind associated with the summer and winter monsoon is thus identified as the main reason for the completely different sedimentation patterns observed on the subtidal and intertidal flats of the two bays.
Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China
NASA Astrophysics Data System (ADS)
Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian
2001-11-01
The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.
Immediate Ecological Impacts of the 2011 Tohoku Earthquake Tsunami on Intertidal Flat Communities
Urabe, Jotaro; Suzuki, Takao; Nishita, Tatsuki; Makino, Wataru
2013-01-01
Following the Great East Japan Earthquake in 2011, a large tsunami developed and struck the Pacific coast of eastern Japan. To assess the immediate impacts of the tsunami on coastal communities, changes in taxon composition and richness of macrobenthic animals before and after the tsunami were examined at nine intertidal flats in Sendai Bay and the Sanriku Ria coast. The results showed that 30–80% of taxa indigenously inhabiting intertidal flats disappeared after the tsunami. Among animal types, endobenthic and sessile epibenthic animals were more vulnerable to the tsunami than mobile epibenthic animals like shore crabs and snails. For all the intertidal flats examined, animals that were originally dwellers in lower tidal zones and not recorded before the tsunami were also found right after the tsunami, indicating that the tsunami not only took away many benthic taxa from the intertidal flats but also brought in some taxa from elsewhere. However, overall changes in taxon community composition were greater for intertidal flats that experienced larger inundation heights. These results showed that the ecological impacts of the tsunami were proportional to the physical impacts as gauged by wave height and that mobile epibenthic animals were less vulnerable to the tsunami. PMID:23650529
Immediate ecological impacts of the 2011 Tohoku earthquake tsunami on intertidal flat communities.
Urabe, Jotaro; Suzuki, Takao; Nishita, Tatsuki; Makino, Wataru
2013-01-01
Following the Great East Japan Earthquake in 2011, a large tsunami developed and struck the Pacific coast of eastern Japan. To assess the immediate impacts of the tsunami on coastal communities, changes in taxon composition and richness of macrobenthic animals before and after the tsunami were examined at nine intertidal flats in Sendai Bay and the Sanriku Ria coast. The results showed that 30-80% of taxa indigenously inhabiting intertidal flats disappeared after the tsunami. Among animal types, endobenthic and sessile epibenthic animals were more vulnerable to the tsunami than mobile epibenthic animals like shore crabs and snails. For all the intertidal flats examined, animals that were originally dwellers in lower tidal zones and not recorded before the tsunami were also found right after the tsunami, indicating that the tsunami not only took away many benthic taxa from the intertidal flats but also brought in some taxa from elsewhere. However, overall changes in taxon community composition were greater for intertidal flats that experienced larger inundation heights. These results showed that the ecological impacts of the tsunami were proportional to the physical impacts as gauged by wave height and that mobile epibenthic animals were less vulnerable to the tsunami.
NASA Astrophysics Data System (ADS)
Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen
2015-06-01
In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation of sulfide, which precipitates dissolved iron as iron sulfide. These findings are due to slower advective pore water exchange in the tidal flat sediments. This study illustrates how different energy regimes affect biogeochemical cycling in intertidal permeable sediments.
Lateral trends and vertical sequences in estuarine sediments, Willapa Bay, Washington
Clifton, H. Edward; Phillips, L.
1980-01-01
Willapa Bay is a sizable estuary on the southern coast of Washington- Relatively unmodified in a geologic sense by human activity the bay provides an excellent example of modern depositional facies in an estuarine setting. Studies of these deposits indicate that consistent lateral trends exist in sediment texture and sedimentary structures. The texture changes from sandy at the mouth of the bay to muddy in its upper parts. In any part of the bay , sediment is coarsest in the channel bottoms, where lag deposits accumulate. The sediment tends to fine in an upslope direction and is finest in supratidal flat deposits of silt and clay. The nature of sedimentary structures depends on the combination of physical and biological processes and sediment textures. Bedforms exist wherever the bed is sandy. In the main tidal channels sandwaves and dunes up to 4 meters high occur. In tributary channels and at the margins of the main channel, at shallower depths and under less intense currents , the structures are generally less than a meter high. Current ripples occur in t he sandy bed of all of the tidal channels and in runoff channels cross the tidal flat. Symmetric long-crested ripples are produced by wave action over the sandy intertidal flat. Internal structures in the bay's sediment depend not only on the nature of the bedform but also on the rate of bioturbation relative to physical processes. Under fields of large sandwaves or dunes, medium- to large-scale tabular and trough crossbedding predominates. This crossbedding generally is unidirectional, reflecting the locally dominant current (ebb or flood). Ripple bedding predominates elsewhere in sandy sediment within the channels. Where sand transport is diminished, as on the floor of the upper tributary channels, bioturbation exceeds the rate of production of physical structures and bedding is destroyed. The depositional banks in such areas tend to be sites of rapid sediment accumulation and bedding in the form of interlayered sand (commonly ripple bedded) and mud persists. On intertidal flats the sediment accumulates slowly and bioturbation erases nearly all physical structures. Bedding is preserved only where deposition is locally rapid , as in topographic depressions or on the depositional banks of runoff channels, or where faunal activity is inhibited, as beneath mounds of blue-green algae. The rate of sedimentation is slower still on the supratidal flats, but the general paucity of faunal activity allows the preservation of thin alternations of fine sand , silt or clay. The lateral migration of the tidal channels produces vertical sequences in which topographically higher facies are superposed on one another. Near the mouth of the estuary the upward sequence: lag deposit — crossbedded sand — ripple or planar-bedded sand is typical. The crossbedding shows a general upward decrease in thickness and a progression from trough to tabular units. In the main tidal channel - in the central estuary and in sandy tributary channels, the typical vertical sequence resembles that near the mouth , with the exception that the sequence is capped by bioturbated sandy or muddy tide flat deposits. In the upper estuary , where muddy sediment predominates, a typical sequence shows the progression-. bioturbated lag deposit — gently dipping interlaminated sand and mud layers of the accretionary bank — bioturbated mud flat deposits — thinly laminated fine supratidal deposits.
Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment
NASA Astrophysics Data System (ADS)
Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.
2016-02-01
Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.
Maturation, fecundity, and intertidal spawning of Pacific sand lance in the northern Gulf of Alaska
Robards, Martin D.; Piatt, John F.; Rose, G.A.
1999-01-01
Pacific sand lance Ammodytes hexapterus in Kachemak Bay, Alaska, showed no sexual dimorphism in length-to-weight (gonad-free) ratio or length-at-age relationship. Most matured in their second year, males earlier in the season than females, but females (31%) attained a higher gonadosomatic index than males (21%). Sand lance spawned intertidally once each year in late September and October on fine gravel or sandy beaches soon after the seasonal peak in water temperatures. Sand lance in Cook Inlet and Prince William Sound displayed similar maturation schedules. Schools were dominated 2: 1 by males as they approached the intertidal zone at a site where spawning has taken place for decades. Sand lance spawned vigorously in dense formations, leaving scoured pits in beach sediments. Fecundity of females (93–199 mm) was proportional to length, ranging from 1468 to 16 081 ova per female. About half of the overall spawning school fecundity was derived from age group 1 females (55% of the school by number). Spawned eggs were 1·02 mm in diameter, demersal, slightly adhesive, and deposited in the intertidal just below the waterline. Sand lance embryos developed over 67 days through periods of intertidal exposure and sub-freezing air temperatures.
Burger, Joanna; Niles, Lawrence; Jeitner, Christian; Gochfeld, Michael
2018-05-04
Shorebirds usually forage on intertidal flats that are exposed during low tide, and roost on higher areas when the tidal flats are covered with water. During spring migration on Delaware Bay (New Jersey) shorebirds mainly forage on horseshoe crab (Limulus polyphemus) eggs that are concentrated at the high tide line. However, they also use other habitats for foraging. We examined habitat use of 4 species of shorebirds (with declining populations) at five Delaware Bay beaches to determine their use of the intertidal habitat (2015, 2016). We observed birds in three sections at different distances from the mean high tideline (< 100 m, 101-200 m, and 201-300 m)ne. We examined the presence of red knots (Calidris canutus rufa), ruddy turnstones (Arenaria interpres), semipalmated sandpipers (Calidris pusilla), and sanderling (Calidris alba) as a function of date, tide cycle, section shorebirds foraged from the mean high tide line, and presence of other shorebird species. Understanding how these species use the intertidal flats is important because these habitats are at risk from coastal development, sea level rise, and decreases in intertidal space, including the possible expansion of intertidal oyster culture. Overall, knots were present in the intertidal on 67% of the surveys, turnstones were present on 86% of the surveys, semipalmated sandpipers were present on 77% of the surveys, and sanderling were present on 86% of the surveys. Use of the intertidal flats varied among beaches. Peak and mean numbers of shorebirds/ decreased in each census section, as distance to mean high tideline increased. In general, shorebirds foraged at the waters' edge during high tide, and then moved out onto the intertidal flats. The strongest interspecific associations were between red knots and ruddy turnstones, and the lowest associations were between sanderling and semipalmated sandpipers. Variations in numbers of each species in 2016 were mainly explained by the number of other species, section (distance from the mean high tide line), location (one of 5 beaches), and date for all species (and minutes to low tide for sanderling). These data indicate that these 4 species use intertidal flats as they become available, and that the mean number in each newly exposed census section of the flats may be lower than in the previous one, partly as a result of some birds remaining in each previously-exposed section. We discuss the management and regulatory implications of shorebird use of the intertidal flats, which include protection of high quality intertidal for foraging by shorebirds. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin
2014-03-01
A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer demonstrates that long-term sediment accumulation captures only a small fraction of sediment deposited at any one time. Model results also suggest that our magnetite tracer method may slightly underestimate short-term shallow mixing rates (demonstrated by 7Be profiles), and slightly overestimate longer-term, deeper bioturbation rates (demonstrated by 210Pb profiles).
Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.
2015-12-01
Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.
NASA Astrophysics Data System (ADS)
Noldt, U.; Reise, K.
1987-06-01
Typhlopolycystis rubra, a new species of the taxon Polycystididae (Plathelminthes, Kalyptorhynchia), is described. The red species is characterized by copulatory hard structures which consist of a proximal girdle and 2 similar sized stylets. T. rubra occurs in intertidal sand near the island of Sylt in the North Sea. Here, it is virtually confined to the lowest parts of lugworm ( Arenicola marina) burrows, where it aggregates in the coarse grained sand around the feeding pocket areas. This is an extremely narrow spatial niche within the sulfide layer of sediment. Population size over a period of 7 years is the most constant one among all species of Plathelminthes living on the tidal flat. The ability of T. rubra to endure unsuitable conditions inside a cyst may contribute to this remarkably low population variability.
Mussel beds are biological power stations on intertidal flats
NASA Astrophysics Data System (ADS)
Engel, Friederike G.; Alegria, Javier; Andriana, Rosyta; Donadi, Serena; Gusmao, Joao B.; van Leeuwe, Maria A.; Matthiessen, Birte; Eriksson, Britas Klemens
2017-05-01
Intertidal flats are highly productive areas that support large numbers of invertebrates, fish, and birds. Benthic diatoms are essential for the function of tidal flats. They fuel the benthic food web by forming a thin photosynthesizing compartment in the top-layer of the sediment that stretches over the vast sediment flats during low tide. However, the abundance and function of the diatom film is not homogenously distributed. Recently, we have realized the importance of bivalve reefs for structuring intertidal ecosystems; by creating structures on the intertidal flats they provide habitat, reduce hydrodynamic stress and modify the surrounding sediment conditions, which promote the abundance of associated organisms. Accordingly, field studies show that high chlorophyll a concentration in the sediment co-vary with the presence of mussel beds. Here we present conclusive evidence by a manipulative experiment that mussels increase the local biomass of benthic microalgae; and relate this to increasing biomass of microalgae as well as productivity of the biofilm across a nearby mussel bed. Our results show that the ecosystem engineering properties of mussel beds transform them into hot spots for primary production on tidal flats, highlighting the importance of biological control of sedimentary systems.
NASA Astrophysics Data System (ADS)
Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.
2017-11-01
Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known effects of tidal prism decrease upstream and tidal prism increase downstream of additional storage areas, our model results indicate a reduction in tidal prism far downstream of intertidal storage areas as a result of a decreasing tidal range. This study may assist estuarine managers in assessing the impact of marsh restoration and managed shoreline realignment projects, as well as with the morphological management of estuaries through dredging and disposal of sediment on intertidal areas.
VanDusen, Beth M.; Fegley, Stephen R.; Peterson, Charles H.
2012-01-01
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats. PMID:23285153
Li, Meng; Bi, Chun-Juan; Zhang, Jing-Jing; Lü, Jin-Gang; Chen, Zhen-Lou
2011-11-01
Using a Particle Environment Simulator, laboratory simulation experiment on the influence of resuspension on the release of mercury from sediments collected from medium tidal flat and low tidal flat in Chongming Dongtan was conducted. Results indicated that the conditions of overlying water changed significantly during resuspension. The concentrations of HgD and HgP were mainly in the rang of 0.152-2.657 microg x L(-1), 0.080-2.722 microg x L(-1) separately. In the resuspension processes, mercury was released from the medium intertidal sediments under the salinity condition of 4.1 per thousand, 8.0 per thousand, 10.0 per thousand, 13.0 per thousand, and from the low intertidal sediments under the salinity condition of 13.0 per thousand. However, the release of mercury from the medium intertidal sediments is not significant under the salinity condition of 4.1 per thousand, 8.0 per thousand, 10.0 per thousand. The salinity of overlying water had an important effect on resuspension. In different salinity condition, the release of mercury was different. And the release of mercury from medium tidal flat and low tidal flat was different during the resuspension periods, the release of mercury from the medium intertidal sediment was significantly higher than the release from the low intertidal sediment. When the rotate speed was (210 +/- 5) r x min(-1), the desorption of mercury significantly increased, thereby the rotate speed had an effect on the release of mercury.
NASA Astrophysics Data System (ADS)
Du, Guo Ying; Chung, Ik Kyo
2009-12-01
In situ Microphytobenthic community dynamics were combined with laboratory measurement of predominant species by fluorescence methods to estimate the areal primary production. Field investigation of community dynamics of microphytobenthos (MPB) was conducted from August 2006 to August 2007 in intertidal flats of the Nakdong River estuary, Korea. MPB Biomass varied between 0.47 and 16.58 μg cm-3 in the surface 1 cm sediment, with two dominant diatom species, Amphora coffeaeformis and Navicula sp., occupying average 77.2 ± 14.9% of total number of MPB cells. The biomass was higher in the slightly muddy sand sites than that in the sand site, and showed different pattern of seasonal variation. The profile of vertical distribution of biomass was an exponential decrease trend with depth in sediments. The biomass proportions in the uppermost 3 mm were 57.6% and 37.8% with and without the presence of biofilm, respectively. The two dominant species were cultured in laboratory, and their photosynthetic parameters, rETRmax (relative maximum electron transport rate), α (light utilization coefficient) and E k (light saturation parameter) were derived from rETR (relative ETR)-irradiance curves by Imaging- PAM (pulse amplitude modulated) fluorometry. The rETR-irradiance curves showed no significant difference of photosynthetic activities between the two species. The areal potential production ranged from 0.74 to 2.22 g C m-2 d-1.
Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method
NASA Astrophysics Data System (ADS)
Kang, Yanyan; Ding, Xianrong; Xu, Fan; Zhang, Changkuan; Ge, Xiaoping
2017-05-01
Tidal flats, which are both a natural ecosystem and a type of landscape, are of significant importance to ecosystem function and land resource potential. Morphologic monitoring of tidal flats has become increasingly important with respect to achieving sustainable development targets. Remote sensing is an established technique for the measurement of topography over tidal flats; of the available methods, the waterline method is particularly effective for constructing a digital elevation model (DEM) of intertidal areas. However, application of the waterline method is more limited in large-scale, shifting tidal flats areas, where the tides are not synchronized and the waterline is not a quasi-contour line. For this study, a topographical map of the intertidal regions within the Radial Sand Ridges (RSR) along the Jiangsu Coast, China, was generated using an iterative approach on the waterline method. A series of 21 multi-temporal satellite images (18 HJ-1A/B CCD and three Landsat TM/OLI) of the RSR area collected at different water levels within a five month period (31 December 2013-28 May 2014) was used to extract waterlines based on feature extraction techniques and artificial further modification. These 'remotely-sensed waterlines' were combined with the corresponding water levels from the 'model waterlines' simulated by a hydrodynamic model with an initial generalized DEM of exposed tidal flats. Based on the 21 heighted 'remotely-sensed waterlines', a DEM was constructed using the ANUDEM interpolation method. Using this new DEM as the input data, it was re-entered into the hydrodynamic model, and a new round of water level assignment of waterlines was performed. A third and final output DEM was generated covering an area of approximately 1900 km2 of tidal flats in the RSR. The water level simulation accuracy of the hydrodynamic model was within 0.15 m based on five real-time tide stations, and the height accuracy (root mean square error) of the final DEM was 0.182 m based on six transects of measured data. This study aimed at construction of an accurate DEM for a large-scale, high-variable zone within a short timespan based on an iterative way of the waterline method.
Populations of burrowing shrimp (Neotrypaea californiensis and Upogebia p;ugettensis) are the dominant invertebrate fauna on Pacific estuarine tide flats, occupying >80% of intertidal area in some estuaries. Burrowing shrimp are renowned for their bioturbation of intertidal sedi...
Aeolian sand transport over complex intertidal bar-trough beach topography
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane
2009-04-01
Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.
NASA Astrophysics Data System (ADS)
Piersma, Theunis; de Goeij, Petra; Tulp, Ingrid
Macrozoobenthic communities of intertidal soft sediments are reviewed worldwide from the perspective of a mollusc-eating shorebird species. Based on 19 sites, total biomass figures varied between 5 and 80 g AFDM per m 2 (average 24 g AFDM per m 2); no latitudinal trends are apparent. The contribution made by bivalves and gastropods varies between 1% and 99%, north-temperate intertidal flats having relatively more molluscs than tropical flats. Intertidal flats in the tropics contain a greater variety of taxa, with brachiopods in Indonesia and echinoderms in northwest Australia contributing significantly to biomass only there. Limits to the occurrence of avian predators of intertidal benthos are set by the harvestable fraction of the biomass on offer and the costs of living at a particular site. No systematic differences in the harvestable fraction of the total mollusc-biomass for a worldwide occurring shorebird species specializing on molluscs (knots Calidris canutus) were apparent between temperate and tropical intertidal areas, in spite of large differences in maintenance metabolism incurred by these birds. The harvestable fractions of bivalves in the two West African areas (Banc d'Arguin, Mauritania and Guinea-Bissau) tended to be high (23-84% of total biomass in six species), they were relatively low (2-52% in five species) in the temperate Wadden Sea and the tropical northwest Australian site. Harvestable biomass determines the intake rate of shorebirds, as illustrated by functional-response curves of knots feeding on two bivalves species. We argue that the collection of information on size-depth relationships along with faunal and biomass surveys at a range of sites is bound to greatly increase our understanding of both the biology of tidal-flat invertebrates and the resource base underpinning the spectacular seasonal migrations of shorebirds.
NASA Astrophysics Data System (ADS)
van Egmond, E. M.; van Bodegom, P. M.; Berg, M. P.; Wijsman, J. W. M.; Leewis, L.; Janssen, G. M.; Aerts, R.
2018-07-01
Globally, sandy beaches are subject to coastal squeeze due to erosion. Soft-sediment strategies, such as sand nourishment, are increasingly applied to mitigate effects of erosion, but have long-term negative impacts on beach flora and fauna. As a more ecologically and sustainable alternative to regular beach nourishments, a mega-nourishment has been constructed along the Dutch coast by depositing 21.5 Mm3 of sand, from which sand is gradually redistributed along the coast by natural physical processes. The 'Sand Motor' mega-nourishment was constructed as a long-term management alternative for coastal protection and is the first large-scale experiment of its kind. We evaluated the development of intertidal macroinvertebrate communities in relation to this mega-nourishment, and compared it to species composition of beaches subject to regular beach or no nourishment. We found that a mega-nourishment resulted initially in a higher macroinvertebrate richness, but a lower macroinvertebrate abundance, compared to regular beach nourishment. As there was no effect of year after nourishment, this finding suggests that colonization and/or local extinction were not limiting macroinvertebrate richness at the mega-nourishment. In addition, a mega-nourishment does not converge to an intertidal macroinvertebrate community similar to those on unnourished beaches within a time scale of four years. Beach areas at the mega-nourishment sheltered from waves harbored a distinct macroinvertebrate community compared to typical wave-exposed sandy beach communities. Thus, a mega-nourishment temporally creates new habitat for intertidal macroinvertebrates by enhancing habitat relief of the sandy beach. We conclude that a mega-nourishment may be a promising coastal defense strategy for sandy shores in terms of the macroinvertebrate community of the intertidal beach.
NASA Astrophysics Data System (ADS)
Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.
2003-04-01
We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.
NASA Astrophysics Data System (ADS)
Hu, Zhan; van der Wal, Daphne; Cai, Huayang; van Belzen, Jim; Bouma, Tjeerd J.
2018-06-01
Dynamic equilibrium theory (DET) has been applied to tidal flats to systematically explain intertidal morphological responses to various distributions of bed shear stress (BSS). However, it is difficult to verify this theory with field observations because of the discrepancy between the idealized conceptions of theory and the complex reality of intertidal dynamics. The core relation between intertidal morphodynamics and BSS distribution can be easily masked by noise in complex datasets, leading to conclusions of insufficient field evidence to support DET. In the current study, hydrodynamic and morphodynamic data were monitored daily for one year on two tidal flats with contrasting wave exposures. BSS distribution was obtained by validated numerical models. Tidal flat dynamic equilibrium behaviour and BSS were linked via Empirical Orthogonal Function (EOF) analysis. We show that the principal morphodynamic modes corresponded well with the respective modes of BSS found at both sites. Tide-induced BSS was the dominant force at both sites, regardless of the level of wave exposure. The overall erosional and steepening trend found at the two flats can be attributed to the prevailing action of tidal forcing and reduced sediment supply. Hence, EOF analysis confirmed that tidal flat morphodynamics are consistent with DET, providing both field and model evidence to support this theory.
NASA Astrophysics Data System (ADS)
Van Colen, C.; Vincx, M.; Degraer, S.
2006-06-01
As a result of the Tricolor oil pollution in the Southern Bight of the North Sea (winter 2003) the Zwin nature reserve, consisting of tidal flats and salt marshes, was blocked from the North Sea by use of a sand barrier. Hence, macrobenthic tidal flat organisms, by nature strongly dependent on the cyclic incoming seawater, were emersed during a period of 27 days. Because the effect of medium-term emersion on the ecologically important benthic life could not be assessed beforehand, the damming was taken as an opportunity to examine these effects. This study demonstrated that: (1) no species vanished due to emersion, (2) although the emersion might have caused some mortality, a mass mortality within the macrobenthos did not occur, and (3) the supra-littoral amphipods Talitrus saltator and Orchestia gammarellus performed a strong, though ephemeral immigration into the intertidal zone during the period of emersion. In view of both its minor impacts on the macrobenthos and its effectiveness in preventing oil pollution in the Zwin nature reserve, damming as a measure against oil pollution may be considered effective protection, especially during winter.
Numerical study on inter-tidal transports in coastal seas
NASA Astrophysics Data System (ADS)
Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo
2016-06-01
Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.
Modern Estuarine Sedimentation in Suisun Bay, California
NASA Astrophysics Data System (ADS)
Chin, J. L.; Orzech, K.; Anima, R. J.; Jaffe, B.
2002-12-01
Suisun Bay is the northeasternmost part of San Francisco Bay (California), the largest estuary on the Pacific Coast of the United States. Suisun Bay's geographic and morphologic position are unique in that it occupies the head of the estuary and is subject to the maximum freshwater inflow and sediment input of the Sacramento-San Joaquin Rivers, whose drainage basin covers 40% of the land area of California. Suisun Bay consists of two smaller subembayments, Grizzly and Honker Bays. Gravity cores obtained in 1990-1991 and 1999 were analyzed to delineate depositional environments and sedimentation patterns in Suisun Bay. Major depositional environments include: tidal channel (subtidal), tidal channel banks (subtidal), tidal flat (intertidal to subtidal), and bay mouth (subtidal). The tidal channel environment includes both large and small channels in Suisun Bay as well as the tidal sloughs Suisun and Montezuma Sloughs. The coarsest sediment, usually sand or muddy sand, characterize this environment and water depths range from 2 to 11 m. Thin (1-2 mm) and discontinuous silt and clay laminae are common. Suisun and Montezuma Sloughs are the exception to this pattern in that they consist of massive, intensely bioturbated muds. Tidal channel banks (both "cut" and "accretionary" channel margins), particularly accretionary banks, are characterized by low-to-moderate bioturbation and sandy mud to muddy sand lithology. Typically alternating sand and mud beds (1-6 cm thick) are present; both types of beds consist of 1mm to 1cm thick subhorizontal to inclined laminae. Laminae composed of organic detritus are also present. Where this environment is transitional with the tidal flat environment water depths range from 2-8 m. Tidal flat environments include the "sand" shoals present on bathymetry charts, and are typically a bioturbated muddy sand to sandy mud. Sand and mud beds, 1-3 cm thick, are often characterized by very fine 1-2 mm thick silt and mud laminae. Water depths range from 2 to 4.5 m where these laminated tidal flat sediments occur. Bay mouth environments occur only in the distal portions of Grizzly and Honker Bays, subembayments of Suisun Bay proper. This environment is transitional with both tidal channel bank and tidal flat environments and shares characteristics with each. Massive to interbedded mud is the most common lithology, although sandy mud to muddy sand also occurs. Centimeters thick sand and mud beds typically alternate vertically. Bioturbation is low to moderate. Water depths over this environment range from 2 to 3 m. Depositional environments present in Suisun Bay are the result of a full range of tidal and fluvial processes as shown by the lithologies and alternating sediment stratigraphic patterns observed in cores. Very thin beds and intense bioturbation evidence intervals of very slow to negligible sedimentation. Rapid deposition and/or resuspension are evidenced by thick sediment intervals and by laminae that are continuous and apparently unbioturbated. Very fine scale sedimentation that may represent individual ebb and flood events as well as longer term seasonal sedimentation patterns are also present. An additional observation is that almost a quarter of the gravity cores reveal that modern estuarine deposits overlie an erosional surface that separate them from an organic-rich mud. This organic-rich mud, in one core to date, has been radiocarbon dated at roughly 4500 yrs. B.P. (J.Chin and K. Orzech, 2002, unpublished data). The organic-rich mud is interpreted as a tidal marsh deposit that pre-dates the present tidal marshes occurring in Suisun Bay.
Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal
Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick
2013-01-01
Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927
The influence of groundwater depth on coastal dune development at sand flats close to inlets
NASA Astrophysics Data System (ADS)
Silva, Filipe Galiforni; Wijnberg, Kathelijne M.; de Groot, Alma V.; Hulscher, Suzanne J. M. H.
2018-05-01
A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.
Burrowing inhibition by fine textured beach fill: Implications for recovery of beach ecosystems
NASA Astrophysics Data System (ADS)
Viola, Sloane M.; Hubbard, David M.; Dugan, Jenifer E.; Schooler, Nicholas K.
2014-10-01
Beach nourishment is often considered the most environmentally sound method of maintaining eroding shorelines. However, the ecological consequences are poorly understood. Fill activities cause intense disturbance and high mortality and have the potential to alter the diversity, abundance, and distribution of intertidal macroinvertebrates for months to years. Ecological recovery following fill activities depends on successful recolonization and recruitment of the entire sandy intertidal community. The use of incompatible sediments as fill material can strongly affect ecosystem recovery. We hypothesized that burrowing inhibition of intertidal animals by incompatible fine fill sediments contributes to ecological impacts and limits recovery in beach ecosystems. We experimentally investigated the influence of intertidal zone and burrowing mode on responses of beach invertebrates to altered sediment texture (28-38% fines), and ultimately the potential for colonization and recovery of beaches disturbed by beach filling. Using experimental trials in fill material and natural beach sand, we found that the mismatched fine fill sediments significantly inhibited burrowing of characteristic species from all intertidal zones, including sand crabs, clams, polychaetes, isopods, and talitrid amphipods. Burrowing performance of all five species we tested was consistently reduced in the fill material and burrowing was completely inhibited for several species. The threshold for burrowing inhibition by fine sediment content in middle and lower beach macroinvertebrates varied by species, with highest sensitivity for the polychaete (4% fines, below the USA regulatory limit of 10% fines), followed by sand crabs and clams (20% fines). These results suggest broader investigation of thresholds for burrowing inhibition in fine fill material is needed for beach animals. Burrowing inhibition caused by mismatched fill sediments exposes beach macroinvertebrates to stresses, which could depress recruitment and survival at all intertidal zones. Our results suggest use of incompatible fine fill sediments from dredging projects creates unsuitable intertidal habitat that excludes burrowing macroinvertebrates and could delay beach ecosystem recovery. Through effects on beach invertebrates that are prey for shorebirds and fish, the ecological impacts of filling with mismatched fine sediments could influence higher trophic levels and extend beyond the beach itself.
The relation of sediment texture to macro- and microplastic abundance in intertidal zone
NASA Astrophysics Data System (ADS)
Wahyuningsih, H.; Bangun, A. P.; Muhtadi, A.
2018-02-01
The intertidal zone is a waters area directly affected by the contamination of plastic debris from land and sea. The aim of this research were to analyze the relation of sediment texture to macro- and micro plastic abundance and also to determine appropriate management strategy. This research was conducted in intertidal zone Jaring Halus Village Langkat Regency North Sumatera Province on February-April 2017. Plastic debris was collected using quadrat transect. Sediment was collected with correct, up to a depth of least 30 cm. Abundance of micro plastic in Station 1 were positively tolerated with clay (0.509), and silt (0.787) and negatively correlations with sand (0.709) Station 2 were positively correlations with sand (0.645) and negatively correlations with clay (0.575), and silt (0.626) Station 3 were positively correlations with clay (0.435), and silt (0.466) and negatively correlations with sand (0.599). The abundance of microplastic was positively correlations with the abundance of microplastic (0.765). Microplastic density is directly proportional to the content of clay and dust. The higher the clay and dust content the higher the micro plastic density.
Organic carbon burial in a mangrove forest, margin and intertidal mud flat
NASA Astrophysics Data System (ADS)
Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.
2010-12-01
The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.
Erftemeijer, Paul L A; Herman, Peter M J
1994-09-01
Seasonal dynamics were studied by monthly monitoring of biological and environmental variables in permanent quadrats in two contrasting intertidal seagrass beds in South Sulawesi, Indonesia, from February 1991 to January 1992. Datasets were analysed with canonical correlation analysis for correlations between environmental and biological variables. Considerable variation in biomass, production and plant tissue nutrient contents in a monospecific seagrass bed of Enhalus acoroides, growing on a coastal terrigenous mudbank (Gusung Tallang), was assumed to be related to riverine influences of the nearby Tallo River. The variation in seagrass variables at this site could, however, not be significantly correlated to seasonal patterns in rainfall, salinity, tides, nutrient availability, water motion or turbidity. A seasonal cycle in biomass, production and nutrient contents in a mixed seagrass bed of Thalassia hemprichii and E. acoroides, growing on carbonate sand on the reef flat of an offshore coral island (Barang Lompo), was found to be largely determined by tidal exposure and water motion. Exposure of the intertidal seagrass bed during hours of low water during spring tides showed a gradual shift from exposure during the night (January-June) to exposure during daylight (July-December). Daylight exposure resulted in a significant loss of above-ground plant biomass through desiccation and 'burning' of leaves. The observed seasonal dynamics of the seagrass bed on reef sediment contrast with reports from the Caribbean, where the effect of tidal exposure on comparable shallow-water seagrass communities is relatively insignificant due to a small tidal amplitude.
Shellfish dredging pushes a flexible avian top predator out of a marine protected area.
van Gils, Jan A; Piersma, Theunis; Dekinga, Anne; Spaans, Bernard; Kraan, Casper
2006-11-01
There is a widespread concern about the direct and indirect effects of industrial fisheries; this concern is particularly pertinent for so-called "marine protected areas" (MPAs), which should be safeguarded by national and international law. The intertidal flats of the Dutch Wadden Sea are a State Nature Monument and are protected under the Ramsar convention and the European Union's Habitat and Birds Directives. Until 2004, the Dutch government granted permission for ~75% of the intertidal flats to be exploited by mechanical dredgers for edible cockles (Cerastoderma edule). Here we show that dredged areas belonged to the limited area of intertidal flats that were of sufficient quality for red knots (Calidris canutus islandica), a long-distance migrant molluscivore specialist, to feed. Dredging led to relatively lower settlement rates of cockles and also reduced their quality (ratio of flesh to shell). From 1998 to 2002, red knots increased gizzard mass to compensate for a gradual loss in shellfish quality, but this compensation was not sufficient and led to decreases in local survival. Therefore, the gradual destruction of the necessary intertidal resources explains both the loss of red knots from the Dutch Wadden Sea and the decline of the European wintering population. This study shows that MPAs that do not provide adequate protection from fishing may fail in their conservation objectives.
Shellfish Dredging Pushes a Flexible Avian Top Predator out of a Marine Protected Area
van Gils, Jan A; Piersma, Theunis; Dekinga, Anne; Spaans, Bernard; Kraan, Casper
2006-01-01
There is a widespread concern about the direct and indirect effects of industrial fisheries; this concern is particularly pertinent for so-called “marine protected areas” (MPAs), which should be safeguarded by national and international law. The intertidal flats of the Dutch Wadden Sea are a State Nature Monument and are protected under the Ramsar convention and the European Union's Habitat and Birds Directives. Until 2004, the Dutch government granted permission for ~75% of the intertidal flats to be exploited by mechanical dredgers for edible cockles (Cerastoderma edule). Here we show that dredged areas belonged to the limited area of intertidal flats that were of sufficient quality for red knots (Calidris canutus islandica), a long-distance migrant molluscivore specialist, to feed. Dredging led to relatively lower settlement rates of cockles and also reduced their quality (ratio of flesh to shell). From 1998 to 2002, red knots increased gizzard mass to compensate for a gradual loss in shellfish quality, but this compensation was not sufficient and led to decreases in local survival. Therefore, the gradual destruction of the necessary intertidal resources explains both the loss of red knots from the Dutch Wadden Sea and the decline of the European wintering population. This study shows that MPAs that do not provide adequate protection from fishing may fail in their conservation objectives. PMID:17105350
Three sites were selected across the intertidal zone of the lower Yaquina Bay to investigate the role of benthic microalgae in benthic nutrient fluxes. Study sites were selected where microalage were present but without seagrass or mud shrimp. Sediment columns were collected th...
Zhang, Yong; Gao, Xuelu; Arthur Chen, Chen-Tung
2014-07-01
Surface sediments from intertidal Bohai Bay were assessed using a four-step sequential extraction procedure to determine their concentrations of rare earth elements (REEs) and the chemical forms in which those elements were present. The normalized ratios La/Gd and La/Yb showed that LREE contents were not significantly higher than the middle REEs or HREE contents. A negative Ce anomaly and positive Eu were observed in sand and silty sand sediments, whereas no significant Ce or Eu anomaly was found in clayey silt sediments. Residual fraction of REEs accounted for the majority of their total concentrations. Middle REEs were more easily leached than other REEs, especially in clayey silt sediment. REEs contents in the surface sediment from the intertidal Bohai Sea were consistent with data from the upper continental crust and China shallow sea sediments, indicating that they were generally unaffected by heavily anthropogenic effects from adjacent areas. Copyright © 2014 Elsevier Inc. All rights reserved.
Gao, Lei; Fan, Daidu; Li, Daoji; Cai, Jingong
2010-04-01
Twenty-eight surface water samples from rivers, muddy intertidal flats, sand shores, and bedrock coasts were collected along the Zhejiang coastline in southeast China. In addition, three samples from the Changjiang (Yangtze River) were collected for comparison. CDOM (chromophoric dissolved organic matter) absorption and fluorescence excitation-emission matrix (EEM) spectroscopy, as well as nutrients and DOC were measured in these samples. According to salinity, nutrient, and DOC constituents, the 28 Zhejiang samples were categorized into four groups, i.e. highly-polluted, river derived, muddy-flat derived, and saltwater dominated ones. Among the six parameters (two humic-like and two protein-like peak intensities in fluorescence EEM contours, absorption at 300 nm, and DOC concentration) for the Zhejiang samples, any two of them were positively correlated. The submarine groundwater discharge, rather than local rivers, might have provided most of the freshwater that interacted with the saltwater during the mixing process. The high protein-like EEM peaks in samples from muddy salt marshes and rivers were probably caused by terrestrial inputs, land-based pollution, and local biological activities in combination. Copyright 2009. Published by Elsevier Ltd.
Robards, Martin D.; Piatt, John F.
2000-01-01
Distinct sand lance populations occur within the relatively small geographic area of Lower Cook Inlet, Alaska. Marked meso-scale differences in abundance, growth, and mortality exist as a consequence of differing oceanographic regimes. Growth rate within populations (between years) was positively correlated with temperature. However, this did not extend to inter-population comparisons where differing growth rates were better correlated to marine productivity. Most sand lance reached maturity in their second year. Field observations and indices of maturity, gonad development, and ova-size distribution all indicated that sand lance spawn once each year. Sand lance spawned intertidally in late September and October on fine gravel/sandy beaches. Embryos developed over 67 days through periods of intertidal exposure and sub-freezing air temperatures. Mean dry-weight energy value of sand lance cycles seasonally, peaking in spring and early summer (20.91 kJg-1 for males, 21.08 kJg-1 for females), and subsequently declining by about 25% during late summer and fall (15.91 kJg-1 for males, 15.74 kJg-1 for females). Sand lance enter the winter with close to their minimum whole body energy content. Dry weight energy densities of juveniles increased from a minimum 16.67 kJg-1 to a maximum of 19.68 kJg-1 and are higher than adults in late summer.
Sedimentary Environments Mapping in the Yellow Sea Using TanDEM-X and Optic Satellites
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Lee, Y. K.; Kim, S. W.
2017-12-01
Due to land reclamation and dredging, 57% of China's coastal wetlands have disappeared since the 1950s, and the total area of tidal flats in South Korea decreased from approximately 2,800km2 in 1990 to 2392km2 in 2005(Qiu, 2011 and MLTM, 2010). Intertidal DEM and sedimentary facies are useful for understanding intertidal functions and monitoring their response to natural and anthropogenic actions. Highly accurate intertidal DEMs with 5-m resolution were generated based on the TanDEM-X interferometric SAR (InSAR) technique because TanDEM-X allows the acquisition of the coherent InSAR pairs with no time lag or approximately 10-second temporal baseline between master and slave SAR image. We successfully generated intertidal zone DEMs with 5-7-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula and one site of chinese coastal region in the Yellow Sea. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures. The earlier studies have some limitation that the classification map is not considered to analysis various environmental conditions. Therefore, the purpose of this study was minutely to mapping the surface sedimentary facies by analyzing the tidal channel, topography with multi-sensor remotely sensed data and in-situ data.
First account of apochlorotic diatoms from intertidal sand of a south Florida beach
NASA Astrophysics Data System (ADS)
Blackburn, Michele V.; Hannah, Fiona; Rogerson, Andrew
2009-10-01
During the period January to December 2004, monthly intertidal sand samples were collected from John U. Lloyd State Park beach, Florida. This study is the first to report on spatial and temporal distributions of heterotrophic (apochlorotic) diatoms in a sub-tropical beach, or indeed any sandy beach. Two non-pigmented, apochlorotic diatom morphotypes (strains III and IV) were consistently isolated from two intertidal beach sites and neither conformed to the morphologies of described species. Apochlorotic diatoms were found throughout the year and formed significant peaks in April, attaining total diatom counts of 71.1 and 94.9 cells g -1 wet sand, for the upper tidal zone and lower tidal zone, respectively. Valve morphology is described in detail for the two diatom morphotypes isolated from the beach sites (strains III and IV). Growth responses to changes in salinity (reflecting those of the intertidal zone) were examined in the laboratory for these diatoms. Both morphotypes were euryhaline, tolerating salinities between 10 and 50, and maximum growth rates were achieved at salinities between 20 and 40. Diatoms grew equally well whether grown in the light or the dark and showed no evidence of pigments when viewed by epifluorescence microscopy. The ability of diatoms to burrow into agar and carrageenan at different concentrations was tested. Both morphotypes were observed to develop burrows through non-nutrient agar up to twice the standard concentration (30 g agar l -1). The ease with which these heterotrophic diatoms formed burrows suggests that they were digesting these complex carbohydrates (i.e. phycocolloids) as a nutrient source. Strain IV, however, failed to burrow in a different phycocolloid, carrageenan. Similar degradative actions in the field might have implications for the breakdown of recalcitrant materials or allow diatoms to effectively compete with bacteria for carbon and nutrients.
Invasive Marine and Estuarine Animals of the Pacific Northwest and Alaska
2005-09-01
or never be realized at all depending on the characteristics of the individual species and the conditions into which it is introduced. Figure 1...including rocky intertidal, unvegetated intertidal and subtidal mud and sand, salt marsh, and seagrass. Capable of tolerating a wide range of salinity ...and temperature, it prefers mesohaline to polyhaline salinities (10-30 ppt) and temperatures between 3 and 26 °C (Grosholz and Ruiz 2002). The green
Punniyakotti, J; Ponnusamy, V
2018-02-01
Natural radioactivity content and heavy metal concentration in the intertidal zone sand samples from the southern region of Tamil Nadu coast, India, have been analyzed using gamma ray spectrometer and ICP-OES, respectively. From gamma spectral analysis, the average radioactivity contents of 238 U, 232 Th, and 40 K in the intertidal zone sand samples are 12.13±4.21, 59.03±4.26, and 197.03±26.24Bq/kg, respectively. The average radioactivity content of 232 Th alone is higher than the world average value. From the heavy metal analysis, the average Cd, Cr, Cu, Ni, Pb, and Zn concentrations are 3.1, 80.24, 82.84, 23.66, 91.67, and 137.07ppm, respectively. The average Cr and Ni concentrations are lower, whereas other four metal (Cd, Cu, Pb, and Zn) concentrations are higher than world surface rock average values. From pollution assessment parameter values, the pollution level is "uncontaminated to moderately contaminated" in the study area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sediment transport and deposition on a river-dominated tidal flat: An idealized model study
Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.
2010-01-01
A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.
Mixed-sediment transport modelling in Scheldt estuary with a physics-based bottom friction law
NASA Astrophysics Data System (ADS)
Bi, Qilong; Toorman, Erik A.
2015-04-01
In this study, the main object is to investigate the performance of a few new physics-based process models by implementation into a numerical model for the simulation of the flow and morphodynamics in the Western Scheldt estuary. In order to deal with the complexity within the research domain, and improve the prediction accuracy, a 2D depth-averaged model has been set up as realistic as possible, i.e. including two-way hydrodynamic-sediment transport coupling, mixed sand-mud sediment transport (bedload transport as well as suspended load in the water column) and a dynamic non-uniform bed composition. A newly developed bottom friction law, based on a generalised mixing-length (GML) theory, is implemented, with which the new bed shear stress closure is constructed as the superposition of the turbulent and the laminar contribution. It allows the simulation of all turbulence conditions (fully developed turbulence, from hydraulic rough to hydraulic smooth, transient and laminar), and the drying and wetting of intertidal flats can now be modelled without specifying an inundation threshold. The benefit is that intertidal morphodynamics can now be modelled with great detail for the first time. Erosion and deposition in these areas can now be estimated with much higher accuracy, as well as their contribution to the overall net fluxes. Furthermore, Krone's deposition law has been adapted to sand-mud mixtures, and the critical stresses for deposition are computed from suspension capacity theory, instead of being tuned. The model has been calibrated and results show considerable differences in sediment fluxes, compared to a traditional approach and the analysis also reveals that the concentration effects play a very important role. The new bottom friction law with concentration effects can considerably alter the total sediment flux in the estuary not only in terms of magnitude but also in terms of erosion and deposition patterns.
Das, Shagnika; Tseng, Li-Chun; Wang, Lan; Hwang, Jiang-Shiou
2017-01-01
The mud shrimp Austinogebia edulis, being abundant in the intertidal zone of western Taiwan, constructs deep burrows (>1 m). This study highlights the potential of mud shrimps to modify sediment characteristics of the tidal flat by its burrowing behavior. We studied the structure of the burrow wall, compared the difference in the sediment composition of the burrow and the background sediment, and compared the organic content inside the burrow wall. This study was carried out from September 2015 to November 2016 in three areas of the western coast of Taiwan, namely Shengang, Hanbow, and Wangong. The present study found significant differences between burrow wall and the burrow lumen. The diameter of the burrow wall was double as wide as the inner burrow lumen at the opening and gradually increased to 10 times of the burrow lumen at 30 cm depth. The burrow wall of A. edulis showed low permeability and increased the sheer strength. Statistically, a significant difference was noticed in the comparison between the sediment composition of the burrow wall and the background (p < 0.05, Student's t-test). An accumulation of 3.63 for fine sand (t = -5.22, p < 0.001, fine sand) and 9 for clay (t = -25.01, p < 0.001, clay) was found in the upper burrow wall of A. edulis. This indicated that they somehow chose finer particles to build burrows. This will gradually change the sediment distribution-vertically and horizontally. The burrow wall consisted of a 24 times higher organic matter content than one individual of mud shrimp. The burrow may provide organic material as a potential food source. The mud shrimp thus transforms the sediment characteristics as an ecological engineer, which is expected to have a significant ecological impact on the ecosystem.
We investigated the effect of the thalassinid mud shrimp Upogebia pugettensis on organic matter and nutrient cycling on Idaho Flat, an intertidal flat in the Yaquina River estuary, Oregon. Field studies were conducted to measure carbon and nitrogen remineralization rates and bent...
Intertidal sand body migration along a megatidal coast, Kachemak Bay, Alaska
Adams, P.N.; Ruggiero, P.; Schoch, G.C.; Gelfenbaum, G.
2007-01-01
Using a digital video-based Argus Beach Monitoring System (ABMS) on the north shore of Kachemak Bay in south central Alaska, we document the timing and magnitude of alongshore migration of intertidal sand bed forms over a cobble substrate during a 22-month observation period. Two separate sediment packages (sand bodies) of 1-2 m amplitude and ???200 m wavelength, consisting of well-sorted sand, were observed to travel along shore at annually averaged rates of 278 m/yr (0.76 m/d) and 250 m/ yr (0.68 m/d), respectively. Strong seasonality in migration rates was shown by the contrast of rapid winter and slow summer transport. Though set in a megatidal environment, data indicate that sand body migration is driven by eastward propagating wind waves as opposed to net westward directed tidal currents. Greatest weekly averaged rates of movement, exceeding 6 m/d, coincided with wave heights exceeding 2 m suggesting a correlation of wave height and sand body migration. Because Kachemak Bay is partially enclosed, waves responsible for sediment entrainment and transport are locally generated by winds that blow across lower Cook Inlet from the southwest, the direction of greatest fetch. Our estimates of sand body migration translate to a littoral transport rate between 4,400-6,300 m3/yr. Assuming an enclosed littoral cell, minimal riverine sediment contributions, and a sea cliff sedimentary fraction of 0.05, we estimate long-term local sea cliff retreat rates of 9-14 cm/yr. Applying a numerical model of wave energy dissipation to the temporally variable beach morphology suggests that sand bodies are responsible for enhancing wave energy dissipation by ???13% offering protection from sea cliff retreat. Copyright 2007 by the American Geophysical Union.
Capacity estimation of soil organic carbon pools in the intertidal zone of the Bohai Bay
NASA Astrophysics Data System (ADS)
Tian-Yu, Mao; Ting-Ting, Shi; Ya-Juan, Li
2018-03-01
Based on the data obtained from the field survey in the intertidal zone of the Binhai New Area of Tianjin Bay in October 2014, the distribution characteristics of soil organic carbon pool in intertidal zone were studied. The results showed that the highest organic carbon content of soil is 22.913g/kg; the average is 16.304g/kg. The soil organic carbon pool in the intertidal zone is in the 6.58-30.40kg/m3, almost close the level of forest soil in the Binhai New Area. Moreover, close to the surrounding wetland such as Yellow River Estuary or Liaohe River Estuary. In conclusion, the soil carbon storage of the beach tidal flats is higher in the coastal zone, and the carbon storage will be significantly reduced after artificial backfilling.
Gill, Robert E.; Handel, Colleen M.
1990-01-01
A 6-year study of shorebird use of intertidal habitats of the Yukon-Kuskokwim Delta revealed this area to be one of the premiere sites for shorebirds throughout the Holarctic and worthy of designation as a Hemispheric Shorebird Reserve in the Western Hemisphere Shorebird Reserve Network. The study area, which covered 10% (300 km2) of the delta's intertidal flats, regularly hosted 17 species of shorebirds between late April and mid-October. The greatest use was during the postbreeding period (late June-October), when Dunlins (Calidris alpina), Western Sandpipers (C. mauri), and Rock Sandpipers (C. ptilocnemis), each with large local nesting populations, accounted for 95% of the shorebirds recorded. Peak counts during autumn approached 300,000 birds. Considering the seasonal occurrence and turnover of populations, we estimate 1-2 million shorebirds use the central delta each year. The delta supports large fractions of the Pacific Rim or world populations of Bar-tailed Godwits (Limosa lapponica), Black Turnstones (Arenaria melanocephala), Red Knots (C. canutus), Western Sandpipers, Dunlins, and Rock Sandpipers. Densities of shorebirds using the central delta's four major bays and connecting coastal areas peaked at 950 shorebirds/km2 in early September. Hazen Bay frequently hosted more than 1,200 shorebirds/km2. Postbreeding shorebirds used intertidal habitats in three distinct patterns according to age class. For most species (n = 7), there was a period when adults appeared first, followed by a brief interval when adults and juveniles mixed, then by a prolonged period when only juveniles remained. In the second pattern (n = 3 species), adults moved onto the intertidal flats first, were later joined by juveniles for a prolonged staging period, then migrated with them. In the third pattern (n = 3 species), only juveniles used the delta's intertidal habitat. Temporal segregation among species and age groups may minimize competition for food and thereby allow the delta to support high diversity and numbers of shorebirds.
Abed, Raeid M M; Kohls, Katharina; de Beer, Dirk
2007-06-01
The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.
Seventeenth-century uplift in eastern Hokkaido, Japan
Atwater, B.F.; Furakawa, R.; Hemphill-Haley, E.; Ikeda, Y.; Kashima, K.; Kawase, K.; Kelsey, H.M.; Moore, A.L.; Nanayama, F.; Nishimura, Y.; Odagiri, S.; Ota, Y.; Park, S.-C.; Satake, K.; Sawai, Y.; Shimokawa, K.
2004-01-01
Shores of eastern Hokkaido rose by perhaps 1 m a few centuries ago. The uplifted area extended at least 50 km along the southern Kuril Trench. It included the estuaries Akkeshi-ko and Hichirippu, on the Pacific coast, and Fu??ren-ko and Onneto??, which open to the Okhotsk Sea. At each estuary, intertidal and subtidal flats rose with respect to tide level; wetland plants colonized the emerging land; and peaty wetland deposits thereby covered mud and sand of the former flats. Previous work at Akkeshi-ko and Onneto?? showed that such emergence occurred at least three times in the past 3000 years. Volcanic-ash layers date the youngest emergence to the seventeenth century AD. New evidence from Akkeshi-ko, Hichirippu and Fu??ren-ko clarifies the age and amount of this youngest emergence. Much of it probably dates from the century's middle decades. Some of the newly emerged land remained above high tides into the middle of the eighteenth century or later. The emergence in the last half of the seventeenth century probably exceeded 0.5 m (inferred from stratigraphy and diatom palaeoecology) without far exceeding 1 m (estimated by comparing seventeenth- and eighteenth-century descriptions of Akkeshi-ko). The stratigraphy and palaeoecology of the emergence are better explained by tectonic uplift than by bay-mouth blockage, tidal-flat accretion or sea-level fall. Eastern Hokkaido needs occasional uplift, moreover, to help reconcile its raised marine terraces with its chronic twentieth-century subsidence. Because it took place above forearc mantle, eastern Hokkaido's seventeenth-century uplift probably lacks analogy with coseismic uplift that occurs above typical plate-boundary ruptures at subduction zones.
Sustainability of future coasts and estuaries: A synthesis
NASA Astrophysics Data System (ADS)
Newton, Alice; Harff, Jan; You, Zai-Jin; Zhang, Hua; Wolanski, Eric
2016-12-01
Coasts are at the nexus of the Anthropocene, where land, marginal seas and atmosphere meet along a thin strip that is inhabited by nearly half the human population (Wolanski and Elliott, 2015). Coasts are often fringed by rich habitats such as mangroves, salt-marshes, inter-tidal mud and sand flats, seagrass meadows, kelp forests and coral reefs that provide a valuable range of ecosystem services to humans and to the adjacent marginal seas (Van den Belt and Costanza, 2011). It is the highly dynamic system that is constantly being reshaped by changing natural forces and anthropogenic activities. Coastal systems and human societies form coastal social-ecological systems that increasingly face multiple pressures, which threaten their ecological and economical sustainability. Common pressures include changes to land use and hydrology, land reclamation, coastal sand mining, harbour dredging, pollution and eutrophication, overexploitation such as overfishing, all in the context of climate change. During the 20th Century, coastal scientists studied the problems and issues arising along the coasts (Ramesh et al., 2015). Now, in the 21st Century, their focus must increasingly be about how to solve these problems and issues through better management and innovative approaches. To study these matters, two workshops were held in Yantai, P.R. China, in September 2015, hosted by the Yantai Institute of Coastal Zone Research, CAS. The outcome of these workshops is this special issue of Estuarine, Coastal and Shelf Science.
NASA Astrophysics Data System (ADS)
van de Koppel, J.; Weerman, E.; Herman, P.
2010-12-01
During spring, intertidal flats can exhibit strikingly regular spatial patterns of diatom-covered hummocks alternating with almost bare, water-filled hollows. We hypothesize that 1) the formation of this geomorphic landscape is caused by a strong interaction between benthic diatoms and sediment dynamics, inducing spatial self-organization, and 2) that self-organization affects ecosystem functioning by increasing the net average sedimentation on the tidal flat. We present a combined empirical and mathematical study to test the first hypothesis. We determined how the sediment erosion threshold varied with diatom cover and elevation. Our results were incorporated into a mathematical model to investigate whether the proposed mechanism could explain the formation of the observed patterns. Our mathematical model confirmed that the interaction between sedimentation, diatom growth and water redistribution could induce the formation of regular patterns on the intertidal mudflat. The model predicts that areas exhibiting spatially-self-organized patterns have increased sediment accretion and diatom biomass compared with areas lacking spatial patterns. We tested this prediction by following the sediment elevation during the season on both patterned and unpatterned parts of the mudflat. The results of our study confirmed our model prediction, as more sediment was found to accumulate in patterned parts of the mudflat, revealing how self-organization affected the functioning of mudflat ecosystems. Our study on intertidal mudflats provides a simple but clear-cut example of how the interaction between biological and geomorphological processes, through the process of self-organization, induces a self-organized geomorphic landscape.
Estuary-wide benthic macrofauna─habitat associations were determined for 9 habitats (intertidal eelgrass [Zostera marina], dwarf eelgrass [Zostera japonica], oyster [Crassostrea gigas], mud shrimp [Upogebia pugettensis], ghost shrimp [Neotrypaea californiensis], shell, sand, mud,...
Nekton-habitat associations in Yaquina Bay, Oregon - March 2008
We conducted a 3-year field study to determine the relative nekton usage of 4 intertidal habitats (eelgrass [Zostera marina], mud shrimp [Upogebia pugettensis], ghost shrimp [Neotrypaea californiensis], and unvegetated sand) in Yaquina Bay, Oregon. Nekton samples were collected u...
NASA Astrophysics Data System (ADS)
Jiménez, Ariam; Elner, Robert W.; Favaro, Corinna; Rickards, Karen; Ydenberg, Ronald C.
2015-03-01
The discovery that some shorebird species graze heavily on biofilm adds importance to elucidating coastal processes controlling biofilm, as well as impetus to better understand patterns of shorebird use of intertidal flats. Western sandpipers (Calidris mauri) and dunlin (Calidris alpina) stopover in the hundreds of thousands on the Fraser River estuary, British Columbia, Canada, during northward migration to breeding areas. Western sandpipers show greater modification of tongue and bill morphology for biofilm feeding than dunlin, and their diet includes more biofilm. Therefore, we hypothesized that these congeners differentially use the intertidal area. A tide following index (TFI) was used to describe their distributions in the upper intertidal during ebbing tides. Also, we assessed sediment grain size, biofilm (= microphytobenthic or MPB) biomass and invertebrate abundance. Foraging dunlin closely followed the ebbing tide line, exploiting the upper intertidal only as the tide retreated through this area. In contrast, western sandpipers were less prone to follow the tide, and spent more time in the upper intertidal. Microphytobenthic biomass and sediment water content were highest in the upper intertidal, indicating greater biofilm availability for shorebirds in the first 350 m from shore. Invertebrate density did not differ between sections of the upper intertidal. Overall, western sandpiper behaviour and distribution more closely matched MPB biofilm availability than invertebrate availability. Conservation of sandpipers should consider physical processes, such as tides and currents, which maintain the availability of biofilm, a critical food source during global migration.
NASA Astrophysics Data System (ADS)
Nyland, Kelsey E.; Schaetzl, Randall J.; Ignatov, Anthony; Miller, Bradley A.
2018-04-01
Loess was first studied in Michigan on the Buckley Flats, where outwash, overlain by ≈70 cm of loamy sediment, was originally interpreted as loess mixed with underlying sands. This paper re-evaluates this landscape through a spatial analysis of data from auger samples and soil pits. To better estimate the loamy sediment's initial textures, we utilized "filtered" laser diffraction data, which remove much of the coarser sand data. Textures of filtered silt data for the loamy sediment are similar to loess. The siltiest soils are found in the low-relief, central part of the Flats. Spatial analyses revealed that many silt fractions are nearly uniformly distributed, suggesting that the loess was not derived from a single source. The previous depositional model for the loamy mantle relied on loessfall followed by pedoturbation, but does not explain (1) the variation in sand contents across the Flats, or (2) the abrupt contact below the loamy mantle. This contact suggests that the outwash was frozen when the sediments above were deposited. Deep gullies at the western margins of the Flats were likely cut as permafrost facilitated runoff. Our new model for the origin of the loamy mantle suggests that the sands on the uplands were generated from eroding gullies and saltated onto the uplands along with loess that fell more widely. Sands saltating to the west of the Flats may have entrained some silts, facilitating loessfall downwind. At most sites, the loamy mantle gets increasingly silty near the surface, suggesting that saltation ended before loess deposition.
Lv, Weiwei; Ma, Chang-An; Huang, Youhui; Yang, Yang; Yu, Ji; Zhang, Mingqing; Zhao, Yunlong
2014-12-15
In this study, intertidal macrobenthic diversity in protected, disturbed, and newly formed wetlands of Yangtze estuary was assessed using PRIMER 5.2 based on species diversity and species relatedness. We observed high diversity in nature reserves and low diversity in adjacent disturbed and newly formed wetlands. These diversity data were then integrated with historical data to detect the variation in macrobenthic diversity over the past two decades. The integrated data indicated that the intertidal macrobenthic diversity sharply decreased in heavy reclamation tidal flats whereas markedly increased in non-disturbed nature reserve and newly formed wetland. Benthic health was observed with the departure degree of average taxonomic distinctness (Δ(+)) and variation in taxonomic distinctness (Λ(+)) from the simulated 95% confidence funnel. All the habitats were subjected to different levels of human interference, except Jiuduansha and Beigangbeisha. The degradation of intertidal wetland in Yangtze estuary was mainly attributed to land reclamation, overgrazing, and overfishing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Xiaoshou; Wang, Lu; Li, Shuai; Huo, Yuanzi; He, Peimin; Zhang, Zhinan
2015-10-15
To evaluate spatial distribution pattern of intertidal macrofauna, quantitative investigation was performed in January to February, 2013 around Fildes Peninsula, King George Island, South Shetland Islands. A total of 34 species were identified, which were dominated by Mollusca, Annelida and Arthropoda. CLUSTER analysis showed that macrofaunal assemblages at sand-bottom sites belonged to one group, which was dominated by Lumbricillus sp. and Kidderia subquadrata. Macrofaunal assemblages at gravel-bottom sites were divided into three groups while Nacella concinna was the dominant species at most sites. The highest values of biomass and Shannon-Wiener diversity index were found in gravel sediment and the highest value of abundance was in sand sediment of eastern coast. In terms of functional group, detritivorous and planktophagous groups had the highest values of abundance and biomass, respectively. Correlation analysis showed that macrofaunal abundance and biomass had significant positive correlations with contents of sediment chlorophyll a, phaeophorbide and organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biodiversity of gastropod in the Sombu Beach, Wakatobi, Indonesia
NASA Astrophysics Data System (ADS)
Rahmayanti, F.; Nazira, F. K.; Dewi, A. K.; Oktaviani, D. F.; Millaty, I. N. K.; Prasetya, T. A.; Sasmita, H. B.; Nashrurrokhman, M.; Roshitafandi, D. A.; Febiansi, D.; Sartika, H. W.; Zulfikar, W. G.; Kurnia, R. N.; Islami, D. A.; Tranggono, Y. A.
2018-03-01
The Sombu Beach is located in Wangi-wangi Island, Southeast Sulawesi, Indonesia. The beach is still natural and the substrates are dominated by fine sand and coral reef flat which is suitable for the habitats of gastropods. The aim of this research was to understand the diversity of gastropod in the intertidal zone of the Sombu Beach, Wangi-wangi Island. The research was conducted in January 2017 in the Sombu Beach, Wangi-wangi Island, Indonesia. The collection of the samples was conducted using quadrant plot method. Ten transects along the beach were made with four plots on every transect. So that, there were 40 plots data which were analyzed using Shannon-Wiener index of diversity (H’), evenness index (E), and dominancy index (D). The result of this research shows 13 species of classes Gastropods. The most abundant species in this study were Mitra sp. (86 individuals), Columbella sp. (40 individuals) and Conus sp. (35 individuals). The diversity index (H’) was 1.8729, the evenness index was 0.7302, and the dominance index was 0.2071.
Yuan, Linxi; Sun, Liguang; Fortin, Danielle; Wang, Yuhong; Yin, Xuebin
2015-01-01
An ancient wood layer dated at about 5600 yr BP by accelerator mass spectrometry (AMS) 14C was discovered in an intertidal zone of the East China Sea. Extensive and horizontally stratified sediments with black color on the top and yellowish-red at the bottom, and some nodule-cemented concretions with brown surface and black inclusions occurred in this intertidal zone. Microscale analysis methods were employed to study the microscale characterization and trace element distribution in the stratified sediments and concretions. Light microscopy, scanning electron microscopy (SEM) and backscattered electron imaging (BSE) revealed the presence of different coatings on the sand grains. The main mineral compositions of the coatings were ferrihydrite and goethite in the yellowish-red parts, and birnessite in the black parts using X-ray powder diffraction (XRD). SEM observations showed that bacteriogenic products and bacterial remnants extensively occurred in the coatings, indicating that bacteria likely played an important role in the formation of ferromanganese coatings. Post-Archean Australian Shale (PAAS)-normalized middle rare earth element (MREE) enrichment patterns of the coatings indicated that they were caused by two sub-sequential processes: (1) preferentially release of Fe-Mn from the beach rocks by fermentation of ancient woods and colloidal flocculation in the mixing water zone and (2) preferential adsorption of MREE by Fe-Mn oxyhydroxides from the seawater. The chemical results indicated that the coatings were enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Ba, especially with respect to Co, Ni. The findings of the present study provide an insight in the microscale features of ferromanganese coatings and the Fe-Mn biogeochemical cycling during the degradation of buried organic matter in intertidal zones or shallow coasts. PMID:25786213
Sassa, Shinji; Watabe, Yoichi; Yang, Soonbo; Kuwae, Tomohiro
2011-01-01
The response of bivalves to their abiotic environment has been widely studied in relation to hydroenvironmental conditions, sediment types and sediment grain sizes. However, the possible role of varying geoenvironmental conditions in their habitats remains poorly understood. Here, we show that the hardness of the surficial intertidal sediments varies by a factor of 20–50 due to suction development and suction-induced void state changes in the essentially saturated states of intertidal flats and beaches. We investigated the response of two species of bivalves, Ruditapes philippinarum and Donax semigranosus, in the laboratory by simulating such prevailing geoenvironmental conditions in the field. The experimental results demonstrate that the bivalve responses depended strongly on the varying geoenvironmental conditions. Notably, both bivalves consistently shifted their burrowing modes, reducing the burrowing angle and burial depth, in response to increasing hardness, to compensate for the excessive energy required for burrowing, as explained by a proposed conceptual model. This burrowing mode adjustment was accompanied by two burrowing criteria below or above which the bivalves accomplished vertical burrowing or failed to burrow, respectively. The suitable and fatal conditions differed markedly with species and shell lengths. The acute sensitivities of the observed bivalve responses to geoenvironmental changes revealed two distinctive mechanisms accounting for the adult–juvenile spatial distributions of Ruditapes philippinarum and the behavioral adaptation to a rapidly changing geoenvironment of Donax semigranosus. The present results may provide a rational basis by which to understand the ensuing, and to predict future, bivalve responses to geoenvironmental changes in intertidal zones. PMID:21957474
Effect of Mudflat Trampling on Activity of Intertidal Crabs
NASA Astrophysics Data System (ADS)
Kim, Tae Won; Kim, Sanha; Lee, Jung-Ah
2018-03-01
Many people visit intertidal mudflats to collect bait and seafood, or for eco-tourism and recreation, and as a consequence trample on the mudflats frequently. Trampling would not be life threatening to most animals in the intertidal flats as they have evolved hiding behavior to escape predation. However, what is the effect of trampling on the behavior of intertidal animals? In this study, the effect of mudflat trampling on the activity of crabs (e.g. fiddler crabs, sentinel crabs) living on the mudflat was explored. The number of crabs active on the mudflat surface in experimental plots (1.5 × 1.5 m2) before and after (10 min. and 30 min.) trampling of three different intensities (Heavy trampling = 60 steps; Moderate trampling = 20 steps; and No trampling) was compared in two different mudflat systems. After trampling, the number of crabs active on the surface decreased and was significantly lower than that of control plots. The more intensively trampled the mudflat was, the fewer crabs were active on the mudflat surface. Surprisingly, the number of active crabs did not recover even 30 min. after trampling. The results clearly support the hypothesis that trampling can severely interfere with the behavior of crabs living on intertidal mudflats.
Das, Shagnika; Tseng, Li-Chun; Wang, Lan
2017-01-01
The mud shrimp Austinogebia edulis, being abundant in the intertidal zone of western Taiwan, constructs deep burrows (>1 m). This study highlights the potential of mud shrimps to modify sediment characteristics of the tidal flat by its burrowing behavior. We studied the structure of the burrow wall, compared the difference in the sediment composition of the burrow and the background sediment, and compared the organic content inside the burrow wall. This study was carried out from September 2015 to November 2016 in three areas of the western coast of Taiwan, namely Shengang, Hanbow, and Wangong. The present study found significant differences between burrow wall and the burrow lumen. The diameter of the burrow wall was double as wide as the inner burrow lumen at the opening and gradually increased to 10 times of the burrow lumen at 30 cm depth. The burrow wall of A. edulis showed low permeability and increased the sheer strength. Statistically, a significant difference was noticed in the comparison between the sediment composition of the burrow wall and the background (p < 0.05, Student’s t-test). An accumulation of 3.63 for fine sand (t = -5.22, p < 0.001, fine sand) and 9 for clay (t = -25.01, p < 0.001, clay) was found in the upper burrow wall of A. edulis. This indicated that they somehow chose finer particles to build burrows. This will gradually change the sediment distribution—vertically and horizontally. The burrow wall consisted of a 24 times higher organic matter content than one individual of mud shrimp. The burrow may provide organic material as a potential food source. The mud shrimp thus transforms the sediment characteristics as an ecological engineer, which is expected to have a significant ecological impact on the ecosystem. PMID:29236717
2008-09-01
2 X Components: 1 Y Components: 1 Product MBR Geographic Coordinates Number of Coordinates: 4 Coordinate: 1 Latitude...bottom (other than live coral) bldgs., docks, etc.) 4. linear reef- B. SHORELINE -INTERTIDAL modifiers 5. pinnacle reef- c. submerged vegetation- sand
Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes
Fagherazzi, Sergio; Carniello, Luca; D'Alpaos, Luigi; Defina, Andrea
2006-01-01
Shallow tidal basins are characterized by extensive tidal flats and salt marshes that lie within specific ranges of elevation, whereas intermediate elevations are less frequent in intertidal landscapes. Here we show that this bimodal distribution of elevations stems from the characteristics of wave-induced sediment resuspension and, in particular, from the reduction of maximum wave height caused by dissipative processes in shallow waters. The conceptual model presented herein is applied to the Venice Lagoon, Italy, and demonstrates that areas at intermediate elevations are inherently unstable and tend to become either tidal flats or salt marshes. PMID:16707583
Life Between the Grains of Sand: An Introductory Activity for Beginning Marine Education Students.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document presents the outline of a marine biology science unit designed to introduce students to the study and collection of organisms living in the intertidal zone. Details pertaining to the collection of interstitial organisms and a six-item quiz are included. (SL)
This page contains documents relevant to the synthetic minor NSR permi for the Anadarko Uintah Midstream, LLC, Antelope Flats & Sand Wash Compressor Stations with South Central Tank Battery, located on the Uintah and Ouray Indian Reservation.
Incubation of Chile's 1960 Earthquake
NASA Astrophysics Data System (ADS)
Atwater, B. F.; Cisternas, M.; Salgado, I.; Machuca, G.; Lagos, M.; Eipert, A.; Shishikura, M.
2003-12-01
Infrequent occurrence of giant events may help explain how the 1960 Chile earthquake attained M 9.5. Although old documents imply that this earthquake followed great earthquakes of 1575, 1737 and 1837, only three earthquakes of the past 1000 years produced geologic records like those for 1960. These earlier earthquakes include the 1575 event but not 1737 or 1837. Because the 1960 earthquake had nearly twice the seismic slip expected from plate convergence since 1837, much of the strain released in 1960 may have been accumulating since 1575. Geologic evidence for such incubation comes from new paleoseismic findings at the R¡o Maullin estuary, which indents the Pacific coast at 41.5§ S midway along the 1960 rupture. The 1960 earthquake lowered the area by 1.5 m, and the ensuing tsunami spread sand across lowland soils. The subsidence killed forests and changed pastures into sandy tidal flats. Guided by these 1960 analogs, we inferred tsunami and earthquake history from sand sheets, tree rings, and old maps. At Chuyaquen, 10 km upriver from the sea, we studied sand sheets in 31 backhoe pits on a geologic transect 1 km long. Each sheet overlies the buried soil of a former marsh or meadow. The sand sheet from 1960 extends the entire length of the transect. Three earlier sheets can be correlated at least half that far. The oldest one, probably a tsunami deposit, surrounds herbaceous plants that date to AD 990-1160. Next comes a sandy tidal-flat deposit dated by stratigraphic position to about 1000-1500. The penultimate sheet is a tsunami deposit younger than twigs from 1410-1630. It probably represents the 1575 earthquake, whose accounts of shaking, tsunami, and landslides rival those of 1960. In that case, the record excludes the 1737 and 1837 events. The 1737 and 1837 events also appear missing in tree-ring evidence from islands of Misquihue, 30 km upriver from the sea. Here the subsidence in 1960 admitted brackish tidal water that defoliated tens of thousands of trees. We sampled 45 such trees, some of them completely dead and the rest surviving only from shoots near the ground. One-third of these trees lived through the 1837 earthquake; they contain over 180 annual rings. Five of the trees also contain rings earlier than 1737. From this evidence, we tentatively infer that the islands underwent more subsidence in 1960 than they did in 1737 or 1837. Comparisons with old Chilean documents for the estuary further suggest that subsidence in 1837 did not approach that of 1960. In their depiction and description of the Misquihue islands in 1874, surveyor Francisco Vidal and botanist Carlos Juliet show nothing like the ghost forests seen today. Twice in the first 37 years after the 1837 earthquake, surveyors mapped as emergent several islands that the 1960 earthquake would lower into tidal water. Today, 43 years after they subsided in 1960, these islands remain submerged as barren intertidal flats. Research supported by Fondecyt 1020224.
NASA Astrophysics Data System (ADS)
Han, Xiumei; Zheng, Rong; Zhao, Jiale; Ma, Chao; Gao, Xiaojiang
2014-09-01
Sixteen surface sediment samples were collected and analysed to evaluate the residues of organochlorine pesticides (OCPs) from intertidal flat in Jiangsu Province. Overall, 22 OCPs were detected with total concentrations of OCPs ranging widely from 0.96 to 12.14 ng/g (dry wt). Total hexachlorocyclohexane (HCH) and total dichlorodiphenyltrichloroethane (DDT) levels varied from <0.01 to 0.67 ng/g and from 0.23 to 4.85 ng/g, respectively. DDTs were the predominant compounds. The dominance of β-HCH indicated a history of HCH pollution. According to the ratios of ( p, p'-DDD+ p, p'-DDE)/ p, p'-DDT and o,p'-DDT/ p, p'-DDT, new input of DDTs did not occur in most sites, and the main sources were historical usage of technical DDTs. OCPs such as dieldrin, endrin, p, p'-DDD, and p, p'-DDT exceeded the effects range low, showing adverse biological effects that would occasionally occur at some sites of the study area.
Nishijima, Wataru; Nakano, Yoichi; Nakai, Satoshi; Okuda, Tetsuji; Imai, Tsuyoshi; Okada, Mitsumasa
2013-09-15
We investigated the effects of river floods on the macrobenthic community of the intertidal flat in the Ohta River Estuary, Japan, from 2005 to 2010. Sediment erosion by flood events ranged from about 2-3 cm to 12 cm, and the salinity dropped to 0‰ even during low-intensity flood events. Cluster analysis of the macrobenthic population showed that the community structure was controlled by the physical disturbance, decreased salinity, or both. The opportunistic polychaete Capitella sp. was the most dominant species in all clusters, and populations of the long-lived polychaete Ceratonereis erythraeensis increased in years with stable flow and almost disappeared in years with intense flooding. The bivalve Musculista senhousia was also an important opportunistic species that formed mats in summer of the stable years and influenced the structure of the macrobenthic community. Our results demonstrate the substantial effects of flood events on the macrobenthic community structure. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Negri, Mauro Pietro; Sanfilippo, Rossana; Basso, Daniela; Rosso, Antonietta
2015-12-01
Dead and live molluscan assemblages from the coastal area of Phetchaburi (NW Gulf of Thailand) were compared by means of multivariate analysis. Seven thanatofacies were recognized, thriving in the area after the 1960s. Five of them, scattered along the tidal flat, represent oligotypic intertidal biotopes linked to a variety of environmental factors; the remaining two mirror high-diversity infralittoral associations. Conversely, only two poor, ill-defined biofacies thrive at present between the intertidal and the shallow infralittoral zones, somewhat resembling two of the thanatofacies. Diversity indexes reveal a dramatic biodiversity decline occurred from the 1960s onwards, far beyond the effects of time-averaging and accumulation. The responsibility for this reduction is largely attributable to the high impact of human activities, such as the intensive sea bottom trawling, the wastewaters from aquaculture (shrimp and fish ponds) and dense coastal villages, and, at a minor extent, the digging of edible molluscs from the tidal flat.
NASA Astrophysics Data System (ADS)
Handler, Sabine M.; Albano, Paolo G.; Bentlage, Rudolf; Drummond, Hannah; García-Ramos, Diego A.; Zuschin, Martin
2016-04-01
Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf Sabine Maria Handler1, Paolo G. Albano1, Rudolf Bentlage2, Hannah Drummond2, D.A. García-Ramos1, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Austria 2 St. Lawrence University, Canton, New York 13617, USA Trace fossils left by predators in the skeleton of their prey are arguably one of the most powerful sources of direct data on predator-prey interactions available in the fossil record. Drill holes, especially those attributed to naticid and muricid gastropods, are unambiguous marks of predation and allow discriminating between successful and unsuccessful predation attempts (complete and incomplete holes, respectively). Latitude and water depth influence drilling frequency. We inspected death assemblages of an intertidal flat and of two subtidal (water depth between 6 and 20 m) sandy sites in the Persian (Arabian) Gulf, off the coast of the United Arab Emirates, to determine the patterns of predation on shelled molluscs along the depth gradient. The study is based on ~7,000 and ~60,000 shells from the intertidal and subtidal, respectively. Drilling Frequency (DF, the number of drilled individuals), Incomplete Drilling Frequency (IDF, number of incomplete drill holes), and Prey Effectiveness (ratio between the number of incomplete drill holes and the total number of drilling attempts) were used as metrics of drilling intensity. We observed major differences between the intertidal and subtidal study areas. Drilling frequencies were generally remarkably low and intertidal flats showed a much lower drilling frequency than the subtidal (1.4% and 6.7%, respectively). In the subtidal, we observed significant differences of drilling intensity among bivalve species and between the two sites. However, predation metrics did not correlate with environmental factors such as substrate type and depth, nor with species life habits such as infaunal vs. epifaunal and death assemblage indices such as diversity, abundance and evenness. The abundance of naticid and muricid predators in the living and death assemblage also did not correlate with predation intensities, with the single exception of muricid abundance in the LA at one of the two subtidal sites. The study shows that bivalve predation intensity in the studied area is highly variable among prey species and depth zones (intertidal vs subtidal), but poorly dependant upon other environmental and community structure factors. Results for gastropods are currently being analysed.
NASA Astrophysics Data System (ADS)
Lichtman, Ian; Thorne, Peter; Baas, Jacobus; O'Boyle, Louise; Cooke, Richard; Amoudry, Laurent; Bell, Paul; Aspden, Rebecca; Bass, Sarah; Davies, Alan; Hope, Julie; Malarkey, Jonathan; Manning, Andrew; Parsons, Daniel; Paterson, David; Peakall, Jeffrey; Schindler, Robert; Ye, Leiping
2014-05-01
There is a need to better understand the effects of cohesive and mixed sediments on coastal processes, to improve sediment transport models for the management of coastal erosion, siltation of navigation channels and habitat change. Although reasonable sediment transport predictors are available for pure sands, it still is not the case for mixed cohesive and non-cohesive sediments. Existing predictors mostly relate ripple dimensions to hydrodynamic conditions and median sediment grain diameter, assuming a narrow unimodal particle size distribution. Properties typical of mixed conditions, such as composition and cohesion for example, are not usually taken into account. This presents severe shortcomings to predictors' abilities. Indeed, laboratory experiments using mixed cohesive sediments have shown that bedform dimensions decrease with increasing bed mud content. In the field, one may expect current predictors to match data for well-sorted sands closely, but poorly for mixed sediments. Our work is part of the COHBED project and aims to: (1) examine, in field conditions, if ripple dimensions are significantly different for mixed cohesive sediment beds compared to beds with pure sand; (2) compare the field data with laboratory results that showed reduced ripple length due to cohesive mud content; and (3) assess the performance of a selection of ripple predictors for mixed sediment data. The COHBED project was set up to undertake laboratory experiments and fieldwork to study how physical and biological processes influence bedform development in a mixed cohesive-cohesionless sediment environment. As part of COHBED, a suite of instruments was deployed on tidal flats in the Dee Estuary (on the NW coast of England), collecting co-located measurements of the hydrodynamics, suspended sediment properties and bed morphology. The instruments occupied three sites collecting data over different bed compositions during a two week period (21 May to 4 June 2013). One site was located above a sandy bed, and the two others were above mixed beds of different mud content. The tide covered a full cycle from neaps to neaps and the weather provided onshore and offshore winds of varying strength. Bedform measurements were taken every half an hour using an Acoustic Ripple Profiler (ARP) that covered an area of about two square metres. Dynamic measurements of tides and waves were made using an Acoustic Doppler Velocimeter (ADV) at 8 Hz. Bed samples were taken when the tidal flats dried out at low tide and a sediment trap collected suspended load near the bed. In the presentation, comparisons of the sites will be made from measurements of the proportion of mud and biological sediment binders at each site and the ripple dimensions for different hydrodynamic conditions. Key words: bed morphology, current ripple, mixed sediment, cohesion, hydrodynamics, observations, tidal flat, estuary, Dee
Li, Ruili; Xu, Hualin; Chai, Minwei; Qiu, Guo Yu
2016-02-01
To investigate the influence of mangrove forest on heavy metal accumulation and storage in intertidal sediments, core sediments from natural mangrove, restored mangrove, and adjacent mud flat spanning the intertidal zone along the south coastline of the most heavily urbanized Deep bay, Guangdong province, China were analyzed. The average concentrations of mercury (Hg) in surface sediments of natural mangrove and restored mangrove were 172 and 151 ng g(-1), whereas those of copper (Cu) were 75 and 50 μg g(-1), respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Shenzhen were at median to high levels, which is consistent with the fact that Shenzhen is in high exploitation and its mangrove suffer intensive impact from human activities. Hg and Cu concentration profiles indicated a higher metal accumulation in surface layers of sediments, in agreement with enrichment of organic matter contents. Maximum concentration, enrichment factors, and excess (background-deducted) concentration inventories of metals (Hg and Cu) were substantially different between environments, decreasing from natural mangrove sediments to restored mangrove sediments to mud flat. Furthermore, metal inputs to Futian mangrove decreased in the order natural mangrove > restored mangrove > mud flat, indicating that mangrove facilitated the accumulation and storage of Hg and Cu in sediment layers.
Tidal Boundary Conditions in SEAWAT
Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.
2011-01-01
SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.
Ha, Ho Kyung; Ha, Hun Jun; Seo, Jun Young; Choi, Sun Min
2018-06-04
Although the Korean tidal flats in the Yellow Sea have been highlighted as a typical macrotidal system, so far, there have been no measurements of the sediment erodibility and critical shear stress for erosion (τ ce ). Using the Gust erosion microcosm system, a series of field experiments has been conducted in the Ganghwa tidal flat to investigate quantitatively the effects of biogenic materials on the erodibility of intertidal cohesive sediments. Four representative sediment cores with different surficial conditions were analyzed to estimate the τ ce and eroded mass. Results show that τ ce of the "free" sediment bed not covered by any biogenic material on the Ganghwa tidal flat was in the range of 0.1-0.2 Pa, whereas the sediment bed partially covered by vegetation (Phragmites communis) or fecal pellets had enhanced τ ce up to 0.45-0.6 Pa. The physical presence of vegetation or fecal pellets contributed to protection of the sediment bed by blocking the turbulent energy. An inverse relationship between the organic matter included in the eroded mass and the applied shear stress was observed. This suggests that the organic matter enriched in a near-bed fluff layer is highly erodible, and the organic matter within the underlying sediment layer becomes depleted and less erodible with depth. Our study underlines the role of biogenic material in stabilizing the benthic sediment bed in the intertidal zone. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lovely, Christina M.; Judge, Michael L.
2015-01-01
Marine habitats containing complex physical structure (e.g., crevices) can provide shelter from predation for benthic invertebrates. To examine effects of natural and artificial structure on the abundance of intertidal juvenile crabs, 2 experiments were conducted in Kingston Bay, Massachusetts, USA, from July to September, 2012. In the first experiment, structure was manipulated in a two-factor design that was placed in the high intertidal for 3 one-week periods to test for both substrate type (sand vs. rock) and the presence or absence of artificial structure (mesh grow-out bags used in aquaculture, ∼0.5 m2 with 62 mm2 mesh openings). The Asian shore crab, Hemigrapsus sanguineus, and small individuals of the green crab, Carcinus maenas, were observed only in the treatments of rocks and mesh bag plus rocks. Most green crabs were small (<6 mm in carapace width) whereas H. sanguineus occurred in a wide range of sizes. In the second experiment, 3 levels of oyster-shell treatments were established using grow-out bags placed on a muddy sand substrate in the low intertidal zone: mesh grow-out bags without shells, grow-out bags with oyster shells, and grow-out bags containing live oysters. Replicate bags were deployed weekly for 7 weeks in a randomized complete block design. All crabs collected in the bags were juvenile C. maenas (1–15 mm carapace width), and numbers of crabs differed 6-fold among treatments, with most crabs present in bags with live oysters (29.5 ± 10.6 m−2 [mean ± S.D.]) and fewest in bags without shells (4.9 ± 3.7 m−2). Both C. maenas and H. sanguineus occurred in habitats with natural structure (cobble rocks). The attraction of juvenile C. maenas to artificial structure consisting of plastic mesh bags containing both oyster shells and living oysters could potentially impact oyster aquaculture operations. PMID:26401456
Lovely, Christina M; O'Connor, Nancy J; Judge, Michael L
2015-01-01
Marine habitats containing complex physical structure (e.g., crevices) can provide shelter from predation for benthic invertebrates. To examine effects of natural and artificial structure on the abundance of intertidal juvenile crabs, 2 experiments were conducted in Kingston Bay, Massachusetts, USA, from July to September, 2012. In the first experiment, structure was manipulated in a two-factor design that was placed in the high intertidal for 3 one-week periods to test for both substrate type (sand vs. rock) and the presence or absence of artificial structure (mesh grow-out bags used in aquaculture, ∼0.5 m(2) with 62 mm(2) mesh openings). The Asian shore crab, Hemigrapsus sanguineus, and small individuals of the green crab, Carcinus maenas, were observed only in the treatments of rocks and mesh bag plus rocks. Most green crabs were small (<6 mm in carapace width) whereas H. sanguineus occurred in a wide range of sizes. In the second experiment, 3 levels of oyster-shell treatments were established using grow-out bags placed on a muddy sand substrate in the low intertidal zone: mesh grow-out bags without shells, grow-out bags with oyster shells, and grow-out bags containing live oysters. Replicate bags were deployed weekly for 7 weeks in a randomized complete block design. All crabs collected in the bags were juvenile C. maenas (1-15 mm carapace width), and numbers of crabs differed 6-fold among treatments, with most crabs present in bags with live oysters (29.5 ± 10.6 m(-2) [mean ± S.D.]) and fewest in bags without shells (4.9 ± 3.7 m(-2)). Both C. maenas and H. sanguineus occurred in habitats with natural structure (cobble rocks). The attraction of juvenile C. maenas to artificial structure consisting of plastic mesh bags containing both oyster shells and living oysters could potentially impact oyster aquaculture operations.
NASA Astrophysics Data System (ADS)
Noernberg, Mauricio Almeida; Fournier, Jérôme; Dubois, Stanislas; Populus, Jacques
2010-12-01
This study has exploited aerial photographs and LiDAR digital elevation model to quantify intertidal complex landforms volume. A first volume estimation of the main sabellariid polychaete reef complex of the Bay of Mont-Saint-Michel - France is presented. The Sabellaria alveolata is an engineering species that heavily modifies its environment. This gregarious tube-building annelid forms dense and solid reefs of bioclastic coarse sand which can reach several km 2. Since 1970 a very strong decline of reefs has been observed. The authorities have curbed fishing activities without any noticeable changes in reef health status. The S. alveolata reef volume is estimated to be 132 048 m 3 (96 301 m 3 for Sainte-Anne reef and 35 747 m 3 for Champeaux reef). Further LiDAR data surveys will be needed to be able to understand and quantify the accretion/erosion processes in play in the reef dynamic. Because of the internal variability of topographic complexity of the reef, characterized by crevices, cracks, and holes rather than whole blocks, further studies are needed to calculate more accurately the volume of the reef.
NASA Astrophysics Data System (ADS)
Hafid Bouougri, El; Porada, Hubertus
2010-05-01
In terms of optimal light utilization, mat surfaces ideally are flat. In nature, however, flat mat surfaces are observed rarely or in restricted patches only. Rather they are shaped by a variety of linear and subcircular to irregular protrusions at various scales, including overgrown upturned crack margins, bulges (‘petees'), domes (‘blisters' and ‘pustules'), reticulate networks with tufts and pinnacles etc. These features are so characteristic that ‘mat types' have been established according to their prevalence, e.g., film, flat, smooth, crinkle, blister, tufted, cinder, mammilate, pustular and polygonal mats (Kendall and Skipwith, 1969; Logan et al., 1974). Responsible for the development of such mat surface features are environmental (physical and chemical) factors and, in reaction, the opportunistic growth behaviour of the participating bacterial taxa. Theoretically, a ‘juvenile' mat may be assumed as being flat, evolving into various forms with typical surface morphologies according to environmental impacts and respective bacterial reactions. Observations in the Abu Dhabi evaporitic carbonate tidal flats and Tunisian evaporitic siliciclastic tidal flats demonstrate that topography plays a fundamental role, both on the large scale of the tidal flat and on the small scale of mat surface morphology. It controls, together with related factors like, e.g., frequency of tidal flooding; duration of water cover; frequency and duration of subaerial exposure, the spatial distribution and the temporal evolution of mat surface structures. On the tidal flat scale, topographic differences result a priori from its seaward gradient and may arise additionally from physical processes which may modify the substrate surface and produce in the intertidal and lower supratidal zones narrow creeks and shallow depressions meandering perpendicular to the slope. Within a wide tidal flat without local topographic changes in the tidal zones, mat surface structures display a typical shore-parallel zonality. In contrast, in tidal flats with slight changes in topography, the typical shore-parallel zonality appears disturbed mainly along the intertidal and lower supratidal zones. The mat surface structures within each tidal zone show local and lateral transitions but all evolve from an incipient flat or polygonal mat. On the mat scale, microtopographic differences are created by the mats themselves, e.g., in the form of upturned crack margins, bulges and domes. All these are small-scale topographic highs that influence the distribution of microbial activity and mat growth dynamics. In the Abu Dhabi area it is observed that smooth or polygonal mats may grade temporally into mammilate, cinder or pustular and tufted mats along an evolutionary path controlled by preferred growth along bulges and upturned crack margins. A similar temporal evolution appears in the intertidal and supratidal zones in Tunisia where local changes on mat-surface induce a variety of mat-growth struc¬tures on and along upturned crack margins, gas domes and isolated to polygonal bulges and petee ridges. References Kendall C.G.St.C, Skipwith, P.A.d'E. (1968) Recent algal mats of a Persian gulf lagoon. J. Sedim. Res., 38, 1040-1058. Logan B.W. Hoffman P. Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Mem., 22, 140-194.
Detecting and Applying Thermal Signals in a Tidal Flats Environment
2010-05-19
Guarini et al., 1997]. In addition, the biology can affect the heat content, as in the ventilation of mud flats by manicure crabs [Kim et al., 2009...the values of lf and cf resulting from changes in salinity are negligible. Values of ls = 8.6 W m −1 K−1 and cs = 0.8 kJ kg−1 K−1, based on the...intertidal mudflats of the forth estuary , Scotland, J. Climatol., 5, 472–485. Jackson, D. R., and M. D. Richardson (2002), Seasonal temperature gradi- ents
Remotely sensed evidence of the rapid loss of tidal flats in the Yellow Sea
NASA Astrophysics Data System (ADS)
Murray, N. J.; Phinn, S. R.; Clemens, R. S.; Possingham, H.; Fuller, R. A.
2013-12-01
In East Asia's Yellow Sea, intertidal wetlands are the frontline ecosystem protecting a coastal population of more than 150 million people from storms and sea-level rise. Despite widespread coastal change and severe modification of the region's major river systems, the magnitude and distribution of coastal wetland loss remains unquantified. We developed a novel remote sensing method to solve the difficult problem of mapping intertidal wetlands over large areas and mapped the extent of tidal flats, the region's primary coastal ecosystem, over 4000kms of coastline at two time periods: the 1980s and late 2000s. We used a regionally validated tide model to identify Landsat images acquired at high and low tides, allowing the area between the high and low tide waterlines to be mapped by differencing classified land-water images between the two tidal stages. Our analysis of the change in areal extent of tidal flats in the Yellow Sea indicates that of the 545,000 ha present in the 1980s, only 389,000 ha remained three decades later, equating to a net loss of 28% at a mean rate of 1.2 % yr-1. ). Comparing the three countries in our analysis, China lost more tidal flat and at a faster rate (39.8%, 1.8% yr-1) than South Korea (32.2%, 1.6% yr-1), and in North Korea minor gains of tidal flat were recorded at (8.5%, 0.3 yr-1). For the same mapped area, historical maps suggest that tidal flats occupied up to 1.14 million ha in the mid-1950s, equating to a potential net loss of up to 65% over ~50 years. Coastal land reclamation for agriculture, aquaculture and urban development is a major driver of tidal flat loss, particularly in China and South Korea, although region-wide declines in sediment replenishment from rivers is also occurring. To conserve the ecosystem services provided by tidal flats and ensure protection of the region's coastal biodiversity, conservation actions should target protection of tidal flats and encourage collaborative and properly planned development strategies. Tidal flat conversion to agricultural land in Chungcheongnam-do Province, South Korea (1982, 2010). The Landsat MSS and TM images show widespread conversion of tidal flats (left) to agricultural land (right) over two decades.
Microalgal mediation of ripple mobility.
Friend, P L; Lucas, C H; Holligan, P M; Collins, M B
2008-01-01
The interaction between physical and biological factors responsible for the cessation of ripple migration on a sandy intertidal flat was examined during a microalgal bloom period in late winter/early spring, as part of a wider study into the biostabilisation of intertidal sediments. Ripple positions and ripple geometry were monitored, and surface sediment was sampled, at weekly intervals over a 5-week period. Ripples remained in the same position for at least 4 weeks, during which time there was a progressive reduction in bedform height (smoothing) and deposition of some 1.5 cm sediment, mainly in the ripple troughs (surface levelling). The mean chlorophyll a (chl a) sediment content was 6.0 microg gDW(-1) (DW: dry weight) (0-1 mm depth fraction), with a maximum value of 7.4 microg gDW(-1) half way through the bloom. Mean colloidal-S carbohydrate (S: saline extraction) content was 131 microg GE gDW(-1) (GE: glucose equivalent) (0-1 mm), with a maximum of 261 microg GE gDW(-1 )towards the end of the bloom. Important accessory pigments were peridinin (indicative of dinophytes) and fucoxanthin (diatoms). Stepwise multiple regression showed that peridinin was the best predictor of chl a. For the first time, in situ evidence for the mediation of (wave) ripple migration by microalgae is provided. Results indicate that diatoms, and quite possibly dinophytes, can have a significant effect on intertidal flat ripple mobility on a temporal scale of weeks. In addition, microalgal effects appear capable of effecting a reduction in bed roughness on a spatial scale of up to 10(-2 )m, with a subsequent reduction in bottom stress and bed erodability. It is suggested that a unique combination of environmental conditions, in conjunction with the microalgal bloom(s), promoted the initial cessation of ripple movement, and that stationary-phase, diatom-derived extracellular polymeric substances (EPS) (and possibly dinophyte-derived EPS) may have prolonged the condition. It is reasonable to suppose that ripple stabilisation by similar processes may have contributed to ripple mark preservation in the geological record. A conceptual model of sandy intertidal flat processes is presented, illustrating two conditions: (i) a low EPS/microalgae sediment content with low ripple stabilisation and preservation potential; and (ii) a high EPS/microalgae content with higher preservation potential.
NASA Astrophysics Data System (ADS)
Brey, Thomas
1991-10-01
The effects of biological disturbance caused by the lugworm Arenicola marina (L.) on the abundance of the macrobenthic fauna were investigated at three subtidal stations (0·5 m, 12 m and 19 m water depth) in Kiel Bay (western Baltic) and on an intertidal flat in the German Wadden Sea. Different effects of biological disturbance were observed (1) between funnel and cast of the lugworm burrow, (2) among stations, (3) between seasons, and (4) among taxa and groups of different living mode of the macrofauna. The strength of the impact of A. marina on the abundance of a certain macrobenthic species depends on three factors: (1) species behaviour and living mode, (2) A. marina activity, and (3) hydrodynamic conditions. In general, the most distinct effects were observed at the intertidal station during summer, followed by the two deeper subtidal stations. At the very shallow station, only weak effects were detected.
Leal, Miguel C; Rocha, Rui J M; Anaya-Rojas, Jaime M; Cruz, Igor C S; Ferrier-Pagès, Christine
2017-06-15
Zoanthids are conspicuous and abundant members of intertidal environments, where they are exposed to large environmental fluctuations and subject to increasing loads of anthropogenic nutrients. Here we assess the trophic ecology and stoichiometric consequences of nutrient loading for symbiotic zoanthids inhabiting different intertidal habitats. More specifically, we analysed the stable isotope signature (δ 13 C and δ 15 N), elemental composition (C, N and P) and stoichiometry (C:N, C:P, N:P) of Zoanthus sociatus differently exposed to nutrification. Results suggest that autotrophy is the main feeding mode of zoanthids and that the effect water nutrient content differently affects the elemental phenotype of zoanthids depending on tidal habitat. Additionally, habitat effects on Z. sociatus P-related stoichiometric traits highlight functional differences likely associated with variation in Symbiodinium density. These findings provide an innovative approach to assess how cnidarian-dinoflagellate symbioses response to ecosystem changes in environmentally dynamic reef flats, particularly nutrient loading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trophic niche partitioning of littoral fish species from the rocky intertidal of Helgoland, Germany
NASA Astrophysics Data System (ADS)
Hielscher, N. N.; Malzahn, A. M.; Diekmann, R.; Aberle, N.
2015-12-01
During a 3-year field study, interspecific and interannual differences in the trophic ecology of littoral fish species were investigated in the rocky intertidal of Helgoland island (North Sea). We investigated trophic niche partitioning of common coexisting littoral fish species based on a multi-tracer approach using stable isotope and fatty acids in order to show differences and similarities in resource use and feeding modes. The results of the dual-tracer approach showed clear trophic niche partitioning of the five target fish species, the goldsinny wrasse Ctenolabrus rupestris, the sand goby Pomatoschistus minutus, the painted goby Pomatoschistus pictus, the short-spined sea scorpion Myoxocephalus scorpius and the long-spined sea scorpion Taurulus bubalis. Both stable isotopes and fatty acids showed distinct differences in the trophic ecology of the studied fish species. However, the combined use of the two techniques added an additional resolution on the interannual scale. The sand goby P. minutus showed the largest trophic plasticity with a pronounced variability between years. The present data analysis provides valuable information on trophic niche partitioning of fish species in the littoral zones of Helgoland and on complex benthic food webs in general.
NASA Astrophysics Data System (ADS)
Wang, P.; Roberts, T.
2012-12-01
Tropical Storm Debby generated sustained high waves and elevated water levels for nearly three days from June 24th to 26th, 2012, inducing substantial changes in beach and nearshore morphology. In addition, the storm winds and high waves approached the coast from a highly oblique angle from the south, driving substantial northward longshore sand transport, opposite to the regional net annual southward transport. A total of 145 beach and nearshore profiles along 3 adjacent barrier islands were surveyed 2 weeks before and one week after the storm impact. Overall, dune, beach, intertidal, and immediate subtidal areas suffered erosion, while deposition was measured over the nearshore bar. Beach recovery in the form of ridge and runnel development occurred as the storm energy subsided. Substantial longshore variations of storm-induced beach changes were measured, including both severe dune/beach/berm erosion and storm berm accretion, and both onshore and offshore migration of nearshore bar. Factors controlling these longshore variations include: 1) the oblique approaching of the storm forcing, 2) pre-storm beach morphology and chronic erosional or accretional trends, 3) sediment supply, and 4) tidal inlet and beach interactions. Wide spreading dune scarping occurred along the 30-km studied coast. Based on the pre- and post-storm survey data, a balanced sediment budget is obtained accounting for sand volume loss from dune, beach, intertidal, and subtidal zones, and sand gains over the nearshore bar and along the northern sections of the beach.
Organisms as cooperative ecosystem engineers in intertidal flats
NASA Astrophysics Data System (ADS)
Passarelli, Claire; Olivier, Frédéric; Paterson, David M.; Meziane, Tarik; Hubas, Cédric
2014-09-01
The importance of facilitative interactions and organismal ecosystem engineering for establishing the structure of communities is increasingly being recognised for many different ecosystems. For example, soft-bottom tidal flats host a wide range of ecosystem engineers, probably because the harsh physico-chemical environmental conditions render these species of particular importance for community structure and function. These environments are therefore interesting when focusing on how ecosystem engineers interact and the consequences of these interactions on community dynamics. In this review, we initially detail the influence on benthic systems of two kinds of ecosystem engineers that are particularly common in tidal flats. Firstly, we examine species providing biogenic structures, which are often the only source of habitat complexity in these environments. Secondly, we focus on species whose activities alter sediment stability, which is a crucial feature structuring the dynamics of communities in tidal flats. The impacts of these engineers on both environment and communities were assessed but in addition the interaction between ecosystem engineers was examined. Habitat cascades occur when one engineer favours the development of another, which in turn creates or modifies and improves habitat for other species. Non-hierarchical interactions have often been shown to display non-additive effects, so that the effects of the association cannot be predicted from the effects of individual organisms. Here we propose the term of “cooperative ecosystem engineering” when two species interact in a way which enhances habitat suitability as a result of a combined engineering effect. Finally, we conclude by describing the potential threats for ecosystem engineers in intertidal areas, potential effects on their interactions and their influence on communities and ecosystem function.
The Habitat of Yellow Mouth Turban Turbo Chrysostomus, Linnaeus, 1758
NASA Astrophysics Data System (ADS)
Soekendarsi, E.
2018-03-01
In general, yellow mouth turban snail Turbo chrysostomus L. 1758 was found in intertidal and coral reef area. This animal is active at night (nocturnal) and settles the coral reef-flats area to do its activity as substrate. In doing its activity, yellow mouth turban snail can be found in the depth of 50 cm until 4 m of tidal area. The adult yellow mouth turban snails are found in great number at intertidal area’s border and at coastal area of coral reef-flats. Methodology that was used in this study is visual analysis (descriptive method), and divided into two parameters which were observed, i.e. abiotic and biotic. Abiotic components that were measured are; Oxygen (ppm), pH, Water Temperature (°C), Salinity (ppm), Ammonia (mg/L), Nitrate (mg/L), Nitrite (mg/L), and Calsium Carbonat (mg/L).Whereas, biotic components that were measured are; substrates, seaweeds, other organisms, and epilithon. The observation’s result of yellow mouth turban snail’s environmental condition showed: abiotic condition of the waters consists of oxygen 3-5 ppm, seawater pH 7-8, seawater temperature 23-26°C, and the salinity of 32-33 ppm. The Habitat of yellow mouth turban snail settled the reef-flats area that is overgrown covered by seaweed Sargassum sp. as the place to do its activity.
Rossiter, Wayne; Sukhdeo, Michael V K
2012-04-01
Several studies have suggested that the fitness of a parasite can be directly impacted by the quality of its host. In such cases, selective pressures could act to funnel parasites towards the highest-quality hosts in a population. The results of this study demonstrate that snail host quality is strongly correlated with spatial patterning in trematode infections and that habitat type is the underlying driver for both of these variables. Two trematodes (Himasthla quissetensis and Zoogonus rubellus) with very different life cycles assume the same spatial infection pattern in populations of the first intermediate host (Ilyanassa obsoleta) in coastal marsh habitats. Infected snails are disproportionately recovered from intertidal panne habitats, which offer more hospitable environs for snails than do adjacent habitats (intertidal creeks, coastal flats, and subtidal creeks), in terms of protection from turbulence and wave action, as well as the availability of food stuffs. Snails in intertidal panne habitats are of higher quality when assessed in terms of average size-specific mass, growth rate, and fecundity. In mark-recapture experiments, snails frequently dispersed into intertidal pannes but were never observed leaving them. In addition, field experiments demonstrate that snails confined to intertidal panne habitats are disproportionately infected by both trematode species, relative to conspecifics confined to adjacent habitats. Laboratory experiments show that infected snails suffer significant energetic losses and consume more than uninfected conspecifics, suggesting that infected snails in intertidal pannes may survive better than in adjacent habitats. We speculate that 1 possible mechanism for the observed patterns is that the life cycles of both trematode species allows them to contact the highest-quality snails in this marsh ecosystem.
A new species of the genus Paracypria (Crustacea: Ostracoda: Cypridoidea) from the Fiji Islands.
Chand, Prerna; Kamiya, Takahiro
2016-08-30
A new marine species of the genus Paracypria (Paracypria fijiensis n. sp.) is reported from the Fiji Islands, a small island archipelago in the South Pacific Ocean. This is the first report of a Paracypria species from the Fiji Islands. Descriptions of soft parts and valves of Paracypria fijiensis n. sp. are presented herein, and morphological comparisons are made with existing Paracypria species from Australia, Japan and New Caledonia. Although eight coastal sites were sampled across the Fiji Islands, the new Paracypria species was found at only three sites. Large numbers of P. fijiensis n. sp. were recorded from intertidal flats, indicating it to be highly tolerant of the dynamic intertidal zone conditions.
Multi-scale Modeling of the Evolution of a Large-Scale Nourishment
NASA Astrophysics Data System (ADS)
Luijendijk, A.; Hoonhout, B.
2016-12-01
Morphological predictions are often computed using a single morphological model commonly forced with schematized boundary conditions representing the time scale of the prediction. Recent model developments are now allowing us to think and act differently. This study presents some recent developments in coastal morphological modeling focusing on flexible meshes, flexible coupling between models operating at different time scales, and a recently developed morphodynamic model for the intertidal and dry beach. This integrated modeling approach is applied to the Sand Engine mega nourishment in The Netherlands to illustrate the added-values of this integrated approach both in accuracy and computational efficiency. The state-of-the-art Delft3D Flexible Mesh (FM) model is applied at the study site under moderate wave conditions. One of the advantages is that the flexibility of the mesh structure allows a better representation of the water exchange with the lagoon and corresponding morphological behavior than with the curvilinear grid used in the previous version of Delft3D. The XBeach model is applied to compute the morphodynamic response to storm events in detail incorporating the long wave effects on bed level changes. The recently developed aeolian transport and bed change model AeoLiS is used to compute the bed changes in the intertidal and dry beach area. In order to enable flexible couplings between the three abovementioned models, a component-based environment has been developed using the BMI method. This allows a serial coupling of Delft3D FM and XBeach steered by a control module that uses a hydrodynamic time series as input (see figure). In addition, a parallel online coupling, with information exchange in each timestep will be made with the AeoLiS model that predicts the bed level changes at the intertidal and dry beach area. This study presents the first years of evolution of the Sand Engine computed with the integrated modelling approach. Detailed comparisons are made between the observed and computed morphological behaviour for the Sand Engine on an aggregated as well as sub-system level.
Bottom sediments and nutrients in the tidal Potomac system, Maryland and Virginia
Glenn, Jerry L.
1988-01-01
The characteristics and distributions of near-surface bottom sediments and of nutrients in the sediments provide information on modern sediment and nutrient sources, sedimentation environments, and geochemical reactions in the tidal Potomac system, Maryland and Virginia. This information is fundamental to an improved understanding of sedimentation and eutrophication problems in the tidal Potomac system. The tidal Potomac system consists of 1,230 square kilometers of intertidal to subtidal Potomac mainstem and tributary streambed from the heads-of-tides to Chesapeake Bay. Tidal Potomac sediments are dominantly silt and clay except in local areas. An average sediment sample is about two-thirds silt and clay (fine) particles and one-third sand (coarse) particles. The mean of the median size of all samples is 6.60 phi, or 0.010 millimeters. Sorting generally is poor and the average sediment is skewed toward the fine tail of the size-distribution curve. Mean particle-size measures have large standard deviations. Among geomorphic units, two distinctly different size populations are found; fine (median phi about 9), and poorly sorted (sorting about 3) sediments in the channel and the smooth flat, and coarse (median phi about 2), and well sorted (sorting about 1) sediments in the shoreline flat and the irregular slope. Among mainstem hydrologic divisions, an average sediment from the river and the estuary division is coarser and more variable than an average sediment from the transition division. Substantial concentrations of total carbon, total nitrogen, and total phosphorus, and limited amounts of inorganic carbon, ammonia nitrogen and nitrite plus nitrate nitrogen occur in tidal Potomac sediments. An average tidal Potomac sediment sample weighing 1 kilogram contains about 21,000 milligrams of total carbon, 2,400 milligrams of total nitrogen, 1,200 milligrams of total phosphorus, 600 milligrams of inorganic carbon, 170 milligrams of ammonia nitrogen, and 2 milligrams of nitrite plus nitrate nitrogen. Total carbon, nitrogen, and phosphorus have an average ratio by weight of 18:2:1 and an average ratio by atoms of 94:8:1. Nutrient concentrations and nutrient ratios have large ranges and standard deviations. Nutrient concentrations usually are closely related to particle size; large concentrations are characteristic of fine sediments in the channel and the smooth flat, and small concentrations are typical of coarse sediments in the shoreline flat and the irregular slope. Concentrations typically decrease from the river division to the estuary division. Mainstem and tributaries show no statistically significant difference in mean particle-size measures or mean nutrient concentrations. Tributaries do not contribute large quantities of sediment with diverse texture or nutrient content to the Potomac mainstem. Particle-size measures and nutrient concentrations in the mainstem are significantly related to hydrologic divisions and geomorphic units; that is, particle size and nutrients vary significantly along and across the Potomac mainstem. Lateral variations in particle size and nutrient content are more pronounced and contribute more to significant relations than longitudinal variations contribute. The mean values for the median particle size and for the percentage of sand indicate significant variations among hydrologic divisions for samples from a geomorphic unit, and among geomorphic units, for samples from a hydrologic division. Sediments of channels and smooth flats in the river division commonly are coarser than sediments of channels and smooth flats in the transition and the estuary divisions. Shoreline flats in the estuary division are coarser than shoreline flats in the river division. Shoreline flats and irregular slopes in each hydrologic division generally are significantly coarser than channels and smooth flats. Relations between particle-size measures and geomorphic units show progressively larger cor
Experimental study on flat plate air solar collector using a thin sand layer
NASA Astrophysics Data System (ADS)
Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel
2016-07-01
A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.
Novel foraging in the swash zone on Pacific sand crabs (Emerita analoga, Hippidae) by mallards
Lafferty, Kevin D.; McLaughlin, John P.; Dugan, Jenifer E.
2013-01-01
Mallards (Anas platyrhynchos) have been observed foraging on intertidal Pacific sand crabs (Hippidae, Emerita analoga) in the swash zone of sandy beaches around Coal Oil Point Reserve, California, and several other beaches on the west coast since at least November 2010. Unlike foraging shorebirds, Mallards do not avoid incoming swashes. Instead, the incoming swash lifts and deposits them down the beach. Shorebirds and diving ducks commonly feed on sand crabs, but sand crabs appear to be a novel behavior and food source for Mallards. Previous surveys of beaches did not report foraging Mallards on regional beaches, whereas foraging Mallards were common in contemporary (recent) surveys and anecdotal reports. Observations of this potentially new behavior were separated by as much as 1,300 km, indicating that this was not a local phenomenon. Mallards foraged singly, in pairs, and in flocks. An expansion of diet to sand crabs carries risks of exposure to surf, human disturbance, high salt intake, and transmission of acanthocephalan and trematode parasites for Mallards but has the benefit of providing a dependable source of animal protein.
Bahia Adair and vicinity, Sonora: modern siliciclastic-dominated arid macrotidal coastline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lock, B.E.; Sinitiere, S.M.; Williams, L.J.
1989-03-01
The northwestern Sonoran coastline, in the vicinity of Bahia Adair, combines several important geologic features. The arid landward environments are dominated by the dunes of the Gran Desierto and the surrounding alluvial fans and ephemeral streams. The Colorado River, whose delta lies to the northwest, has been an important source of sediment until very recently. The high tidal energy of the region has profoundly influenced the distribution and geometries of coastal and shallow-marine sand bodies, and the active tectonic setting has also played a role. The Cerro Prieto splay of the San Andreas fault system has been responsible for localmore » uplift and downwarp and resulting transgression and regression. The intertidal and supratidal zones are dominated by sand and constitute a sand-body type that has been seldom considered by petroleum explorationists or other students of ancient sand bodies, and the associated evaporites are rather different from those described from the superficially analogous Persian Gulf sabkhas.« less
Jewett, S.C.; Drew, Gary S.
2014-01-01
The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.
NASA Astrophysics Data System (ADS)
Jewett, S. C.; Drew, G. S.
2014-03-01
The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.
NASA Astrophysics Data System (ADS)
Migné, Aline; Trigui, Rima Jihane; Davoult, Dominique; Desroy, Nicolas
2018-01-01
The effect of an invasive infaunal suspension-feeding bivalve, the Manila clam Ruditapes philippinarum, on benthic inorganic carbon and nutrient fluxes was examined through in situ incubations. Measurements were performed in spring and summer on a tidal sandflat of the Rance estuary (south part of the Western English Channel) colonized by the Manila clam after its deliberate introduction in the 1990's. Benthic inorganic carbon fluxes were measured using light and dark benthic chambers both at emersion and immersion. Benthic nutrient fluxes were measured using dark benthic chambers at immersion. Inorganic carbon (IC) and ammonium sediment release under darkness at immersion reached 5.60 mmol m-2 h-1 and 441 μmol m-2 h-1 respectively for a clam density of 291 ind m-2. The sediment IC-release under darkness was lower during emersion than during immersion, probably due to the reduced activity of infauna at low tide. Under ambient light, a sediment IC-uptake was systematically measured at emersion, indicating a net autotrophy under the condition of measurements (125 < surface PAR < 1670 μmol m-2 s-1), while either sediment IC-uptake or release was measured at immersion according to light variation (20 < underwater PAR < 990 μmol m-2 s-1). The highest gross community primary production, calculated from highest IC-fluxes at light (i.e. net community production) and highest IC-fluxes at dark (i.e. community respiration), was similar at emersion and immersion and reached 6.2 mmolC m-2 h-1. These results suggest that the metabolic activity of the invasive Manila clam Ruditapes philippinarum contributes to increase inorganic C and ammonium sediment release. These regenerated nutrients may support microphytobenthic production which appeared particularly high on this intertidal sand flat.
Tidal pulsing alters nitrous oxide fluxes in a temperate intertidal mudflat.
Vieillard, A M; Fulweiler, R W
2014-07-01
Environmental pulses, or sudden, marked changes to the conditions within an ecosystem, can be important drivers of resource availability in many systems. In this study, we investigated the effect of tidal pulsing on the fluxes of nitrous oxide (N2O), a powerful greenhouse gas, from a marine intertidal mudflat on the north shore of Massachusetts, USA. We found these tidal flat sediments to be a sink of N2O at low tide with an average uptake rate of -6.7 +/- 2 micromol x m(-2) x h(-1). Further, this N20 sink increased the longer sediments were tidally exposed. These field measurements, in conjunction with laboratory nutrient additions, revealed that this flux appears to be driven primarily by sediment denitrification. Additionally, N2O uptake was most responsive to dissolved inorganic nitrogen with phosphorus (DIN + DIP) addition, suggesting that the N2O consumption process may be P limited. Furthermore, nutrient addition experiments suggest that dissimilatory nitrate reduction to ammonium (DNRA) releases N20 at the highest levels of nitrate fertilization. Our findings indicate that tidal flats are important sinks of N2O, potentially capable of offsetting the release of this potent greenhouse gas by other, nearby ecosystems.
Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments
NASA Astrophysics Data System (ADS)
Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.
2003-04-01
The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows of an increase flux of metals, nutrients and hydrogen sulfide. Acknowledgements: The study was supported by German Science Foundation within the DFG-research group "BioGeoChemistry of the Waddensea" and Max Planck Society.
NASA Astrophysics Data System (ADS)
Arcos, Maria Elizabeth Martin
2012-12-01
At the Skokomish River delta in Washington State's Puget Lowland, coseismic uplift and tilting trapped the river against a valley wall, resulting in little to no channel migration for the last 1000 years. The most recent earthquake occurred before AD 780-990, based on stratigraphic evidence such as sand blows and abrupt facies changes. Since the hypothesized tilting a 5-km-long section of the river has not migrated laterally or avulsed, resulting in reduced migration and a muddy intertidal flat that is 2 km wider in the east than on the west side of Annas Bay. A ridge running perpendicular to the river may also have restricted channel mobility. The ridge may be either the surface expression of a blind thrust fault or a relict, uplifted and tilted shoreline. The uplift and tilting of the delta can be ascribed to any of three nearby active fault zones, of which the most likely, based on the orientation of deformation, is the Saddle Mountain fault zone, which produced a surface rupture 1000-1300 years ago. The delta has experienced submergence since the earthquake. A forest that colonized an uplifted part of the delta about 800-1200 years ago was later submerged by at least 1.6 m and is now a brackish-water marsh.
NASA Astrophysics Data System (ADS)
Kim, Y.; Park, B.; Seo, H.; Roh, Y.
2009-12-01
Dissimilatory metal-reducing bacteria utilize diverse metal oxides as electron acceptors and couple this microbial metal reduciton to growth. However, the microbe-metal interactions playing important roles in the metal geochemistry and organic matter degradation in the tidal flat sediments have not been uncovered enough to employ in various environmental and industrial applications. The objective of this study was to examine biomineralization and bioremediation by the facultative metal-reducing bacteria isolated from the inter-tidal flat sediments in southwestern of Korea. 16S-rRNA analysis showed bacterial consortium mainly consists of genus of Clostridium sp. The enriched bacteria were capable of reducing diverse metals such as iron oxide, maganese oxide, Cr(VI) and Se(VI) during glucose fermentation process at room temperature. The bacteria reduced highly toxic and reactive elements such as Cr(VI) and Se(VI) to Cr(III) and Se(0). The results showed that microbial processes induced transformation from toxic states of heavy metals to less toxic and mobile states in natural environments. Andthe bacteria also reduced iron oxyhydroxide such as ferrihydrite and akaganeite (β-FeOOH) and formed nanometer-sized magnetite (Fe3O4). This study indicates microbial processes not only can be used for bioremediation of inorganic contaminants existing in the marine environments, but also form the magnetite nanoparticles which are exhibit superparamagnetic properties that can be useful for relevant medical and industrial applications.
Prey versus substrate as determinants of habitat choice in a feeding shorebird
NASA Astrophysics Data System (ADS)
Finn, Paul G.; Catterall, Carla P.; Driscoll, Peter V.
2008-11-01
Many shorebirds on their non-breeding grounds feed on macrobenthic fauna which become available at low tide in coastal intertidal flats. The Eastern Curlew Numenius madagascariensis in Moreton Bay Australia, varies greatly in density among different tidal flats. This study asks: how important is the abundance of intertidal prey as a predictor of this variation? We quantified feeding curlews' diet across 12 sites (different tidal flats, each re-visited at least eight times), through 970 focal observations. We also estimated the abundance of total macrobenthic fauna, potential prey taxa and crustacean prey on each tidal flat; measured as the number of individuals and a relative biomass index per unit substrate surface area obtained from substrate core samples. We estimated curlew density at each site using low-tide surveys from every site visit. Curlew density showed a strong positive association with both the density and biomass of fauna and of potential prey ( r values all around 0.70) across the 12 flats. Associations with crustacean density and biomass were also statistically significant (r values both 0.60). However, these variables also showed a strong negative correlation with a measure of substrate resistance (based on the amount of hard material in the substrate core), which was the best predictor of curlew density ( r = -0.82). Curlews were most abundant at sites with the least resistant substrate, and these sites also generally had the highest faunal density and biomass. When the effect of substrate resistance was statistically removed, curlew density was no longer significantly correlated with fauna density and biomass. This suggests that macro-scale habitat choice by Eastern Curlew on their non-breeding grounds is more strongly influenced by prey availability (which is higher when substrate resistance is lower) than by prey density or biomass, although in Moreton Bay a positive correlation across sites meant that these factors were synergistic.
Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK.
Spencer, Kate L
2002-09-01
Concentrations of major and trace metals were determined in eight sediment cores collected from the inter-tidal zone of the Medway Estuary, Kent, UK. Metal associations and potential sources have been investigated using principal component analysis. These data provide the first detailed geochemical survey of recent sediments in the Medway Estuary. Metal concentrations in surface sediments lie in the mid to lower range for UK estuarine sediments indicating that the Medway receives low but appreciable contaminant inputs. Vertical metal distributions reveal variable redox zonation across the estuary and historically elevated anthropogenic inputs. Peak concentrations of Cu, Pb and Zn can be traced laterally across the estuary and their positions indicate periods of past erosion and/or non-deposition. However, low rates of sediment accumulation do not allow these sub surface maxima to be used as accurate geochemical marker horizons. The salt marshes and inter-tidal mud flats in the Medway Estuary are experiencing erosion, however the erosion of historically contaminated sediments is unlikely to re-release significant amounts of heavy metals to the estuarine system.
Jaramillo, Eduardo; Dugan, Jenifer E; Hubbard, David M; Melnick, Daniel; Manzano, Mario; Duarte, Cristian; Campos, Cesar; Sanchez, Roland
2012-01-01
Deciphering ecological effects of major catastrophic events such as earthquakes, tsunamis, volcanic eruptions, storms and fires, requires rapid interdisciplinary efforts often hampered by a lack of pre-event data. Using results of intertidal surveys conducted shortly before and immediately after Chile's 2010 M(w) 8.8 earthquake along the entire rupture zone (ca. 34-38°S), we provide the first quantification of earthquake and tsunami effects on sandy beach ecosystems. Our study incorporated anthropogenic coastal development as a key design factor. Ecological responses of beach ecosystems were strongly affected by the magnitude of land-level change. Subsidence along the northern rupture segment combined with tsunami-associated disturbance and drowned beaches. In contrast, along the co-seismically uplifted southern rupture, beaches widened and flattened increasing habitat availability. Post-event changes in abundance and distribution of mobile intertidal invertebrates were not uniform, varying with land-level change, tsunami height and coastal development. On beaches where subsidence occurred, intertidal zones and their associated species disappeared. On some beaches, uplift of rocky sub-tidal substrate eliminated low intertidal sand beach habitat for ecologically important species. On others, unexpected interactions of uplift with man-made coastal armouring included restoration of upper and mid-intertidal habitat seaward of armouring followed by rapid colonization of mobile crustaceans typical of these zones formerly excluded by constraints imposed by the armouring structures. Responses of coastal ecosystems to major earthquakes appear to vary strongly with land-level change, the mobility of the biota and shore type. Our results show that interactions of extreme events with human-altered shorelines can produce surprising ecological outcomes, and suggest these complex responses to landscape alteration can leave lasting footprints in coastal ecosystems.
Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007
NASA Astrophysics Data System (ADS)
Mason, D. C.; Scott, T. R.; Dance, S. L.
2010-04-01
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991-2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991-1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.
NASA Astrophysics Data System (ADS)
Lackschewitz, D.; Reise, K.
1998-06-01
Living conditions for macrofauna on flood delta shoals are determined by surf, strong currents and sediment mobility. Thus, a unique assemblage of invertebrate species colonize these far off-shore, low intertidal flats. We here describe the macrobenthic fauna of emerging shoals in the Wadden Sea between the islands of Römö and Sylt. Besides ubiquitous macroinvertebrates of the intertidal zone and species which attain their main distribution in the subtidal zone, the flood delta shoals are characterized by organisms adapted to live in these highly unstable sediments, like the polychaetes Spio martinensis, Streptosyllis websteri, Magelona mirabilis, Psammodrilus balanoglossoides, the pericarid crustaceans Cumopsis goodsiri, Tanaissus lilljeborgi, Bathyporeia sarsi and a few others. Average abundance (1440 m-2 of ind >1 mm) and biomass (12.9 g AFDW m-2) were low compared to other intertidal habitats in the Wadden Sea. Biomass was dominated by largesized individuals of the lugworm Arenicola marina. The U-shaped burrows of these polychaetes were inhabited by high numbers of Urothoe poseidonis. Maximum densities of these amphipods occurred in the deepest parts of the burrows. Sampling at approximately montly intervals revealed no apparent seasonality of U. poseidonis abundance. Together with small Capitella capitata, these amphipods constitute a deep-dwelling component of the macrofauna associated with lugworms, which is separated from all other macrofauna living at the sediment surface. As a response to rising sea level and increasing tidal ranges, we expect the unstable sandy shoals, inhabited by numerous Spio martinensis and Urothoe poseidonis, to expand within the Wadden Sea at the cost of stable sandy flats with abundant macrofauna.
NASA Astrophysics Data System (ADS)
Yang, Byong Cheon; Chang, Tae Soo
2018-04-01
Generalized coastal facies models invariably assume that tidal flats and intertidally exposed shorefaces along macrotidal coasts are tide-dominated. Recent advances in coastal sedimentology, however, have revealed that wave-dominated macrotidal flats also occur in a wide range of coastal settings, in particular where tidal modulation forces the lateral translation of the wave-affected zone across the tidally exposed shoreface with the rising tide. Despite tidal modulation, the depositional character in the latter case (abundant storm deposits) exhibits a high degree of similarity with conventional subtidal shorefaces, implying that it is inherently difficult to distinguish between the two coastal systems in the rock record. In the present study, integrated sedimentological and ichnological data from the Dongho coast, which is located along the southwest coast of Korea, provide valuable information for the establishment of facies criteria that can assist in the recognition of such coastal deposits. In fact, the sedimentary character of the study area, which is dominated by an abundance of wave-formed structures, resembles that generally associated with subtidal shorefaces. In addition, the depositional processes responsible for sediment accumulation are, in the present case, also strongly influenced by pronounced seasonal variations in wave energy. In this context, the study has revealed a number of major features that appear to be characteristic of wave-dominated intertidal flats and shorefaces: (1) firmground muds may be encountered on the beach face, where intense swash-backwash motions are dominant; (2) the thickness of storm deposits decreases landward, reflecting the progressive decrease in wave energy; (3) ichnologically, there is an offshore shift in the dominance of trace fossils from the Skolithos ichnofacies, including Ophiomorpha, Thalassinoides and Psilonichnus, to a proximal expression of the Cruziana ichnofacies, which includes Siphonichnus and Asterosoma; (4) compared with subtidal shorefaces, the overall ichnological suite is represented by a substantial reduction in diversity and less uniformly distributed burrows. Although these findings have not yet been applied to the rock record, they should nevertheless assist in the distinction between corresponding coastal deposits.
Narrowband Angular Reflectance Properties of the Alkali Flats at White Sands, New Mexico
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; LeCroy, Stuart R.; Wheeler, Robert J.
1994-01-01
Results from helicopter measurements of the angular properties of surface reflectance for the alkali flats regions of the White Sands Missile Range are presented for the wavelength interval of 0.4 to 0.85 microns. This work was performed to allow accurate radiative transfer calculations over the region. Detailed tables and interpolation equations are given that permit other investigators to perform satellite calibrations over the alkali flats site. The effects of wavelength and soil moisture on narrowband angular reflectance are also investigated. Although there is a spectral variation in surface albedo, there is little spectral effect in Anisotropic Factor except in the forward scattering peak at solar zenith angles greater than 60 deg. The magnitude of the forward-scattering peak is also sensitive to soil moisture, with wet conditions causing a larger peak. The significance of this result is that angular reflectance properties at the center of the alkali flats usually will be different than those at the flats edge because moisture differences typically exist.
Nonlinear dynamics of Aeolian sand ripples.
Prigozhin, L
1999-07-01
We study the initial instability of flat sand surface and further nonlinear dynamics of wind ripples. The proposed continuous model of ripple formation allowed us to simulate the development of a typical asymmetric ripple shape and the evolution of a sand ripple pattern. We suggest that this evolution occurs via ripple merger preceded by several soliton-like interaction of ripples.
Relationships Between Sand and Water Quality at Recreational Beaches
Phillips, Matthew C.; Solo-Gabriele, Helena M.; Piggot, Alan M.; Klaus, James S.; Zhang, Yifan
2011-01-01
Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p<0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (rs= 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (rs=0.64) as well as the average water enterococci levels for the month after sand samplings (rs=0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida’s beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. PMID:22071324
Relationships between sand and water quality at recreational beaches.
Phillips, Matthew C; Solo-Gabriele, Helena M; Piggot, Alan M; Klaus, James S; Zhang, Yifan
2011-12-15
Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p < 0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (r(s) = 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (r(s) = 0.64) as well as the average water enterococci levels for the month after sand samplings (r(s) = 0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida's beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X.; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing
2016-01-01
Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems. PMID:27824160
Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing
2016-11-08
Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems.
Sediment Trapping Pathways and Mechanisms through the Mekong Tidal River and Subaqueous Delta
2013-09-30
strive to understand how the delicate balance of ebb and flood sediment fluxes is maintained to create tidal flat and mangrove complexes, and...subaqueous delta on the inner continental shelf, and sediment sinks within vegetated/ mangrove shoreline complexes. Our overall hypothesis is that sediment... Mangrove /Vegetated Intertidal Areas. Along the main stem tidal river and coastal banks may be shorelines lined with vegetation ( mangroves at the
Roberts Bank: Ecological crucible of the Fraser River estuary
NASA Astrophysics Data System (ADS)
Sutherland, Terri F.; Elner, Robert W.; O'Neill, Jennifer D.
2013-08-01
Roberts Bank, part of the Fraser River delta system on Canada's Pacific coast, is a dynamic estuarine environment supporting important fisheries as well as internationally significant populations of migratory shorebirds. The 8000 ha bank environment comprises a complex of riparian boundaries, intertidal marshes, mud and sand flats, eelgrass meadows, macroalgae and biofilms. Anthropogenic developments (a ferry causeway in 1961 and a port causeway in 1969) have been responsible for changes in tidal flow patterns, tidal elevation, sediment transport and the net expansion of eelgrass beds. The goals of the present study were to (1) directly compare geotechnical properties spanning each side of the coalport causeway, and (2) enhance our understanding of the intercauseway ecosystem under a high-resolution sampling design. Sediment properties (grain size, porosity, organic content, and chlorophyll) and biological communities (eelgrass, macrofauna (0.5-1.0 mm) and meiofauna (0.063-0.5 mm)) were surveyed in 1997 at three stations outside the intercauseway area and three lateral transects spanning the intercauseway tidal flat at tidal heights representing three different habitats: biofilm, Zostera japonica, and Zostera marina. A fine-silt organic-rich porous deposit was observed on the shoreward north side of the coalport causeway relative to the south counterpart, suggesting that consolidation and erosion processes could likely not keep pace with the deposition of Fraser River silt. High chlorophyll levels were found in the protected shoreward northern border of the ferry causeway where fine sands dominate and higher water transparency exists, owing to the redirection of the silt-laden river plume by the coalport causeway. Principle Components Analysis revealed a positive relationship between these porous, organic-rich sediments and cumacean abundance in all regions where eelgrass was absent, including the north side of the coalport causeway. Further, a positive relationship was found between biofilm components (chlorophyll and silt), polydora, and harpacticoid copepod abundance, which, together with cumaceans, are food for Western Sandpipers, Calidris mauri. Finally, 52% of the intercauseway variation was explained by direct correlations between eelgrass attributes and fauna consisting of bivalves, caprellids, and harpacticoid copepods (root biomass, leaf area index), the latter being prey for juvenile salmon which depend on eelgrass beds as rearing habitat. These habitats are vulnerable to changes in tidal flow patterns, tidal elevation, sediment transport, and water clarity that could be caused by future port development and/or sea level rise in response to climate change.
NASA Astrophysics Data System (ADS)
Drolet, David; Barbeau, Myriam A.
2012-05-01
Spatial variation in biotic and abiotic conditions, and differences in dispersive behavior of different life history stages can result in the formation of zones with different demography for infaunal and epifaunal species within vast intertidal flats. In this study, we evaluated within-mudflat homogeneity of the infaunal amphipod Corophium volutator found in the mud (residents), colonizing artificially disturbed areas (immigrants), and caught in the water column (swimmers) on a large mudflat in the upper Bay of Fundy, Canada. Densities of residents, immigrants, and swimmers were well structured in space (both along and across shore). Occasionally, significant differences in size structure, sex ratio, and proportion of ovigerous females were found at different intertidal levels, but these were short-lived. Comparisons of size and sex structure of residents, immigrants, and swimmers revealed occasional marked differences, with small juveniles and large adult males moving most. However, this size-bias in movement did not translate into zones with different population dynamics, suggesting that ample dispersal, through swimming and drifting in the water column, homogenized the population and masked potential effects of variation in environmental conditions. We therefore conclude that the mudflat represents one homogeneous population.
Jones, J L; Kinsey, T P; Johnson, L W; Porso, R; Friedman, B; Curtis, M; Wesighan, P; Schuster, R; Bowers, J C
2016-08-01
Vibrio parahaemolyticus and Vibrio vulnificus can grow rapidly in shellfish subjected to ambient air conditions, such as during intertidal exposure. In this study, levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and total V. vulnificus were determined in oysters collected from two study locations where intertidal harvest practices are common. Samples were collected directly off intertidal flats, after exposure (ambient air [Washington State] or refrigerated [New Jersey]), and after reimmersion by natural tidal cycles. Samples were processed using a most-probable-number (MPN) real-time PCR method for total and pathogenic V. parahaemolyticus or V. vulnificus In Washington State, the mean levels of V. parahaemolyticus increased 1.38 log MPN/g following intertidal exposure and dropped 1.41 log MPN/g after reimmersion for 1 day, but the levels were dependent upon the container type utilized. Pathogenic V. parahaemolyticus levels followed a similar trend. However, V. vulnificus levels increased 0.10 log MPN/g during intertidal exposure in Washington but decreased by >1 log MPN/g after reimmersion. In New Jersey, initial levels of all vibrios studied were not significantly altered during the refrigerated sorting and containerizing process. However, there was an increase in levels after the first day of reimmersion by 0.79, 0.72, 0.92, and 0.71 log MPN/g for total, tdh(+) and trh(+) V. parahaemolyticus, and V. vulnificus, respectively. The levels of all targets decreased to those similar to background after a second day of reimmersion. These data indicate that the intertidal harvest and handling practices for oysters that were studied in Washington and New Jersey do not increase the risk of illness from V. parahaemolyticus or V. vulnificus Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood-associated infectious morbidity and mortality in the United States. Vibrio spp. can grow rapidly in shellfish subjected to ambient air conditions, such as during periods of intertidal exposure. When oysters are submersed with the incoming tide, the vibrios can be purged. However, data on the rates of increase and purging during intertidal harvest are scarce, which limits the accuracy of risk assessments. The objective of this study was to help fill these data gaps by determining the levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and V. vulnificus in oysters from two locations where intertidal harvest practices are common, using the current industry practices. The data generated provide insight into the responses of Vibrio spp. to relevant practices of the industry and public health, which can be incorporated into risk management decisions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.
Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E
2017-10-01
Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across intertidal wetland systems. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lourenço, Pedro M.; Alves, José A.; Catry, Teresa; Granadeiro, José P.
2015-10-01
Outside the breeding season, most shorebirds use either estuarine or non-estuarine intertidal areas as foraging grounds. The sanderling Calidris alba is mostly associated with coastal sandy beaches, a habitat which is currently at risk worldwide due to increasing coastal erosion, but may also use estuarine sites as alternative foraging areas. We aimed to compare the trophic conditions for sanderlings wintering in estuarine and non-estuarine sites within and around the Tejo estuary, Portugal, where these two alternative wintering options are available within a relatively small spatial scale. To achieve this, we analysed sanderling diet, prey availability, foraging behaviour, and time and energy budgets in the different substrates available in estuarine and non-estuarine sites. In terms of biomass, the most important sanderling prey in the estuarine sites were siphons of the bivalve Scrobicularia plana, polychaetes, staphylinids and the gastropod Hydrobia ulvae. In non-estuarine sites the main prey were polychaetes, the bivalve Donax trunculus and chironomid larvae. Both food availability and energetic intake rates were higher on estuarine sites, and sanderlings spent a higher proportion of time foraging on non-estuarine sites. In the estuary, sanderlings foraged in muddy-sand substrate whenever it was available, achieving higher intake rates than in sandy substrates. In the non-estuarine sites they used both sandy and rocky substrates throughout the tidal cycle but had higher intakes rates in sandy substrate. Estuarine sites seem to offer better foraging conditions for wintering sanderlings than non-estuarine sites. However, sanderlings only use muddy-sand and sandy substrates, which represent a small proportion of the intertidal area of the estuary. The extent of these substrates and the current sanderling density in the estuary suggest it is unlikely that the estuary could provide alternative wintering habitat for sanderlings if they face habitat loss and degradation in coastal sites.
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Takahashi, T.; Harada, K.; Nojima, K.
2016-12-01
A huge earthquake occurred off the Tohoku district in Japan on March 11th, 2011. A massive tsunami generated by the earthquake attacked coastal areas and caused serious damage. The tsunami disaster requires to reconsider tsunami measures in the Nankai Trough. Many of the measures are based on histories of large earthquakes and tsunamis. Because they are low frequency disasters and their historical documents are limited, tsunami sand deposits have been expected to analyze paleotsunamis. Tsunami sand deposits, however, are only used to confirm the fact of tsunamis and to determine the relative magnitudes. The thickness of sand layer and the grain size may be clues to estimate the tsunami force. Further, it could reveal the tsunami source. These results are also useful to improve the present tsunami measures. The objective of this study is to investigate the formation mechanism of tsunami sand deposits by hydraulic experiment. A two-dimensional water channel consisted of a wave maker, a flat section and a slope section. A movable bed section with various grain sizes and distribution of sand was set at the end of flat section. Bore waves of several heights transported the sand to the slope section by run-up. Water surface elevation and velocity were measured at several points. Tsunami sand deposit distribution was also measured along the slope section. The experimental result showed that the amount of tsunami sand deposit was relating with the grain size distribution and the magnitude of incident waves. Further, the number of incident waves affected the profile of tsunami sand deposits.
2012-09-30
understand how the delicate balance of ebb and flood sediment fluxes is maintained to create tidal flat and mangrove complexes, and distributary shoals and...and the subaqueous delta on the inner continental shelf, and sediment sinks within vegetated/ mangrove shoreline complexes. Our overall hypothesis...on Mangrove /Vegetated Intertidal Areas. Along the main stem tidal river and in the offshore banks may be shorelines lined with vegetation ( mangroves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjerstedt, T.W.; Erickson, J.M.
The Cambrian-Ordovician Potsdam Sandstone, Theresa Formation, and Canadian correlatives in the St. Lawrence Lowlands preserve tide-dominated facies during the basal Cambrian transgression. Low intertidal sand flats in the upper Potsdam contain a Skolithos Ichnofacies dominated by Diplocraterion parallelum in clean, herringbone cross-bedded sandstones indicative of high tidal current energy. Wind-wave-driven longshore and tidal currents along a macrotidal coastline were funneled northeast-southwest by Precambrian topographic relief of up to 65 m. This relief is now expressed as the Thousand Islands of New York and Canada. The conformably overlying Theresa Formation preserves a shoaling-upward sequence of mixed clastic-carbonate facies. Shallow subtidal andmore » peritidal facies contain a mixed Skolithos-Cruziana Ichnofacies in sharply alternating lithofacies consisting of gray, intensely bioturbated, poorly sorted calcareous sandstone, and meter-thick, white cross-bedded sandstone. The parallelism between ichnofacies and lithofacies indicates that environmental energy level and persistence rather than water depth controlled trace fossil distribution. Bioturbated sandstones contain a Cruziana ichnofacies of abundant deposit feeders including: Fustiglyphus , Gyrochorte , Neonereites uniserialis , Phycodes flabellum, Planolites beverlyensis, Rosselia socialis, and Teichichnus. Suspension feeders are represented by D. habichi, D. parallelum, Skolithos, Monocraterion, and possibly Palaeophycus tubularis. Scavenging or deposit-feeding arthropods are represented by rare Cruziana furrows. Cross-bedded sandstones contain a Skolithos Ichnofacies of shallow Skolithos and Monocraterion burrows, and an undescribed large epistratal eurypterid( ) trail.« less
Evidence of tidal processes from the lower part of the Witwatersrand Supergroup, South Africa
NASA Astrophysics Data System (ADS)
Eriksson, Kenneth A.; Turner, Brian R.; Vos, Richard G.
1981-08-01
A 1600-m succession of quartz arenites and associated shaley deposits comprising the Hospital Hill Subgroup at the base of the Witwatersrand Supergroup is considered to have been deposited largely under the influence of tidal processes. Facies analysis indicates that deposition occurred in the following environments: (1) marine shalf; (2) shallow subtidal to intertidal; (3) intertidal flat; and (4) tidal inlet. The presence of strong tidal currents implies that the Witwatersrand Basin was open to an ocean basin, at least during the early stages of its evolution. Palaeocurrent trends and isopach data suggest that this probably lay to the southwest, an area now occupied by the high grade Natal—Namaqua metamorphic belt. The contrast between the supermature quartz arenites of the Hospital Hill Subgroup and the overlying gold-bearing immature subgreywackes, feldspathic quartzites and conglomerates of fluvial origin is believed to be a function of tidal reworking of sediments.
Morphodynamics of intertidal bars near a seawall on a macrotidal beach, Wissant Bay, northern France
NASA Astrophysics Data System (ADS)
Sedrati, M.; Anthony, E.
2009-04-01
Several studies on beaches with intertidal bar-trough (ridge-and-runnel) systems in settings with relatively large tidal ranges (> 3 m) have focused on cross-shore bar mobility; however a few recent studies have drawn attention to the potential role of longshore transport induced by a mix of wave-tide and wind-forced longshore currents in the morphodynamics of the bars and troughs. The aim of this paper is to briefly highlight the relationship between wind-forced currents on the shallow intertidal zone and rapid intertidal bar-trough morphological response on a macrotidal beach. Fieldwork was conduced on Wissant beach, Wissant Bay, northern France, from 7 to 23 March, 2006. During the experiment, the beach (oriented NE-SW) exhibited three intertidal bar-trough systems and the upper bar was directly attached to a seawall. Seven digital elevation models (DEMs) were generated from high-resolution topographic surveys. Hydrodynamic measurements were obtained from five currentmeters (2 S4 and 3 ADCP) deployed on the bars crests and on the upper beach trough. Wave characteristics were obtained from the measured time series by spectral analysis using Fast Fourier Transforms. Wind speed and direction on the beach were measured using a portable weather station. The mean wind speed and directions averaged every three hours highlight closely-spaced high-energy events during the experiment, with long phases of significant lateral wind stress (NE to ENE). The measured waves and currents showed rapid and strong response to both the changes in wind speed and direction. Longshore currents measured during the experiment on the upper intertidal bar-trough system showed a clear SW flow pattern in response to NE to ENE wind approach directions while the currents in the lower intertidal zone flowed northeastward during the flood, following the coastline, and southwestward during the ebb in response to the tidal current modulation. Strong longshore migration of the upper intertidal bar to the SW was observed during the course of this fieldwork. This longshore migration was attended by erosion of the upper beach in the northeast and accretion in the southwest. Bars in the lower intertidal zone were relatively stable. The SW migration process of the upper intertidal bar during the experiment occurred at rates that fluctuated with the intensity of the longshore current. The net beach volume over the experiment was quite stable, thus showing that morphological change, notably bar migration, simply reflected adjustments to hydrodynamic forcing without new sand inputs into the system. The findings of the present study suggest that cross-shore currents are subordinate to, and may even be mitigated by, wind-forced longshore flows on this beach. The importance of longshore transport on the upper beach is due to hydrodynamic forcing over the shallow depth, with the seawall playing a probable additional longshore canalization effect. Longshore transport should be considered as an essential element of the morphodynamics of bar-trough beaches subject to large tidal ranges and significant lateral wind stress.
Osawa, Yoko; Fujita, Kazuhiko; Umezawa, Yu; Kayanne, Hajime; Ide, Yoichi; Nagaoka, Tatsutoshi; Miyajima, Toshihiro; Yamano, Hiroya
2010-08-01
Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rönnbäck, P.; Macia, A.; Almqvist, G.; Schultz, L.; Troell, M.
2002-09-01
Scientific information on how penaeid shrimps are distributed within mangrove ecosystems is scarce, which presents an obstacle for fisheries as well as mangrove management. This study investigated the prime nursery microhabitats for the two major commercial species in Mozambique-Penaeus indicus and Metapenaeus monoceros. Stake net enclosures were used to sample shrimps living among unvegetated shallows and mangroves at Inhaca Island, Mozambique, during three consecutive spring tide periods. Four microhabitats were sampled: (1) sand flat; (2) fringe Avicennia marina on sandy substrate; (3) fringe A. marina on muddy substrate; and (4) interior A. marina adjacent to the supratidal terrestrial margin. P. indicus had a significant preference for fringe mangroves over the adjacent sand flat (P<0·001 and P=0·05). Postlarval shrimps only occupied the sand flat, whereas the mangrove was utilized by postlarval, juvenile and sub-adult life stages. Within the fringe mangrove, there was no correlation between shrimp abundance and organic content of sediment (5·7-11·6 shrimps m-2). Shrimps utilized the most interior margin of the mangroves (0·35 shrimps m-2), although catch rates were significantly lower than in the mangrove fringe (P<0·001). M. monoceros was significantly (P<0·01), more abundant in the sand flat (0·44-2·1 shrimps m-2) than in the mangrove fringe (0·04-0·61 shrimps m-2), although this habitat preference was not evident for juvenile and sub-adult life stages. The results demonstrate the extensive use of mangrove habitats by penaeid shrimps. The confinement to mangroves for P. indicus, but not for M. monoceros, is discussed in the context of habitat characteristics and predation avoidance behaviour. Methodological considerations of the stake net technique are also outlined.
Papastamatiou, Yannis P; Lowe, Christopher G; Caselle, Jennifer E; Friedlander, Alan M
2009-04-01
The effects of habitat on the ecology, movements, and foraging strategies of marine apex predators are largely unknown. We used acoustic telemetry to quantify the movement patterns of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll National Wildlife Refuge, in the Pacific Ocean. Sharks had relatively small home ranges over a timescale of days to weeks (0.55 +/- 0.24 km2) and showed strong site fidelity to sand-flat ledges within the west lagoon over a three-year period. Sharks showed evidence of diel and tidal movements, and they utilized certain regions of the west lagoon disproportionately. There were ontogenetic shifts in habitat selection, with smaller sharks showing greater selection for sand-flat habitats, and pups (total length 35-61 cm) utilizing very shallow waters on sand-flats, potentially as nursery areas. Adult sharks selected ledge habitats and had lower rates of movement when over sand-flats and ledges than they did over lagoon waters. Fractal analysis of movements showed that over periods of days, sharks used patches that were 3-17% of the scale of their home range. Repeat horizontal movements along ledge habitats consisted of relatively straight movements, which theoretical models consider the most efficient search strategy when forage patches may be spatially and temporally unpredictable. Although sharks moved using a direct walk while in patches, they appeared to move randomly between patches. Microhabitat quantity and quality had large effects on blacktip reef shark movements, which have consequences for the life-history characteristics of the species and potentially the spatial distribution of behaviorally mediated effects on lower trophic levels throughout the Palmyra ecosystem.
NASA Astrophysics Data System (ADS)
de Abreu, Daniela C.; Paula, José; Macia, Adriano
2017-11-01
The feeding grounds for four of the most commercially important penaeid shrimp species (Metapenaeus monoceros, M. stebbingi, Penaeus japonicus and Penaeus indicus) within the mangrove and its adjacent coastal habitats (sand flat, mud flat and seagrass meadows) were investigated at Saco and Sangala bays (Inhaca Island, Mozambique, southern-East Africa). The study used carbon and nitrogen stable isotope ratios to identify the potential food sources for the different shrimp species within each habitat. Significant differences (p < 0.05) in terms of stable isotopes were observed among potential food sources in each habitat in both Saco and Sangala bays (isotopic ratios discriminating habitats), as well as between shrimp species among the different habitats. No ontogenetic dietary shifts were found for the studied penaeid shrimp species. The mangrove habitat did not provide a direct food source for most of the species at Saco and Sangala Bays. The seagrass habitat appeared to be a primary feeding area, mainly through seagrass, sediment, polychaetes and seston. The mud and sand flat habitats contributed with less food items for the shrimp species at Saco Bay, as well as the sand flat habitat at Sangala Bay. The possibility to identify feeding grounds is a fundamental tool to assist conservation of the resources and their habitat and for applying an ecosystem approach to fishery management.
Piggot, Alan M.; Johnson, Sara; Phillips, Matthew C.; Solo-Gabriele, Helena M.
2012-01-01
Enterococci, recommended at the U.S. federal level for monitoring water quality at marine recreational beaches, have been found to reside and grow within beach sands. However, the environmental and ecological factors affecting enterococcal persistence remain poorly understood, making it difficult to determine levels of fecal pollution and assess human health risks. Here we document the presence of enterococci associated with beach sediment biofilms at eight south Florida recreational beaches. Enterococcal levels were highest in supratidal sands, where they displayed a nonlinear, unimodal relationship with extracellular polymeric secretions (EPS), the primary component of biofilms. Enterococcal levels peaked at intermediate levels of EPS, suggesting that biofilms may promote the survival of enterococci but also inhibit enterococci as the biofilm develops within beach sands. Analysis of bacterial community profiles determined by terminal restriction fragment length polymorphisms showed the bacterial communities of supratidal sediments to be significantly different from intertidal and subtidal communities; however, no differences were observed in bacterial community compositions associated with different EPS concentrations. Our results suggest that supratidal sands are a microbiologically unique environment favorable for the incorporation and persistence of enterococci within beach sediment biofilms. PMID:22706061
Mulet, Magdalena; Sánchez, David; Rodríguez, Ana C; Nogales, Balbina; Bosch, Rafael; Busquets, Antonio; Gomila, Margarita; Lalucat, Jorge; García-Valdés, Elena
2018-04-11
Strains V113 T , V92 and V120 have been isolated from sand samples taken at the Atlantic intertidal shore in Galicia, Spain, after the Prestige oil spill. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus, but they were distinct from any known Pseudomonas species. They were extensively characterized by a polyphasic taxonomic approach and phylogenetic data that confirmed that these strains belonged to the Pseudomonas pertucinogena group. Phylogenetic analysis of 16S rRNA, gyrB and rpoD gene sequences showed that the three strains were 99% similar and were closely related to members of the P. pertucinogena group, with less than 94% similarity to strains of established species; Pseudomonas pachastrellae was the closest relative. The Average Nucleotide Index based on blast values was 89.0% between V113 T and the P. pachastrellae type strain, below the accepted species level (95%). The predominant cellular fatty acid contents and whole cell protein profiles determined by MALDI-TOF mass spectrometry also differentiated the studied strains from known Pseudomonas species. We therefore conclude that strains V113 T , V92 and V120 represent a novel species of Pseudomonas, for which the name Pseudomonas gallaeciensis is proposed; the type strain is V113 T (=CCUG 67583 T =LMG 29038 T ). Copyright © 2018 Elsevier GmbH. All rights reserved.
Is there an endogenous tidal foraging rhythm in marine iguanas?
Wikelski, M; Hau, M
1995-12-01
As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related stimuli may be used as tidal zeitgebers in synchronizing the foraging rhythms of these reptiles under natural conditions.
Microbial shaping of wrinkle structures in siliciclastic deposits
NASA Astrophysics Data System (ADS)
Bosak, T.; Mariotti, G.; Pruss, S. B.; Perron, J.; O'Grady, M.
2013-12-01
Wrinkle structures are millimeter- to centimeter-scale elongated or reticulate sedimentary structures that resemble symmetric ripples. Sharp-crested and flat-topped wrinkle structures up to 1 cm wide occur on numerous bedding planes in the Neoproterozoic and Cambrian, as well as in some Archean and Phanerozoic siliciclastic deposits. Because similar, but unlithified structures occur in some modern, microbially-colonized sands, wrinkle structures are typically interpreted as microbially induced sedimentary structures. However, it is unclear if physical processes, such as the motion of suspended sand grains, can produce similar features in sand even before microbial colonization. We introduced mat fragments to the surface of silica sand in wave tanks and generated sharp-crested, flat-topped and pitted wrinkle structures. The abrasion of the sandy surface by rolling, low density, millimeter-size fragments of microbial mats produces wrinkle structures at extremely weak orbital velocities that cannot move sand grains in the absence of light particles. Wrinkle structures form in a few hours and can become colonized by microbial mats within weeks. Thus, wrinkle structures are patterns formed by microbially mediated sand motion at low orbital velocities in the absence of bioturbation. Once formed, wrinkle structures can be colonized and stabilized by microbial mats, but the shape of these mats does not dictate the shape of wrinkle structures. These experiments bolster the interpretation of wrinkle structures as morphological signatures of organic particles and early life in Archean and Proterozoic siliciclastic deposits.
Analysis of wind-blown sand movement over transverse dunes.
Jiang, Hong; Huang, Ning; Zhu, Yuanjian
2014-12-01
Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.
Analysis of Wind-blown Sand Movement over Transverse Dunes
Jiang, Hong; Huang, Ning; Zhu, Yuanjian
2014-01-01
Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification. PMID:25434372
NASA Astrophysics Data System (ADS)
Kim, K. H.; Michael, H. A.; Ullman, W. J.; Cai, W. J.
2017-12-01
Beach aquifers host biogeochemically dynamic mixing zones between fresh and saline groundwaters of contrasting origins, histories, and compositions. Seawater, driven up the beachface by waves and tides, infiltrates into the sand and meets the seaward-discharging fresh groundwater, creating and maintaining a highly reactive intertidal circulation cell well-defined by salinity. Seawater supplies oxygen and reactive carbon to the circulation cell, supporting biogeochemical reactions within the cell that transform and attenuate dissolved nutrient fluxes from terrestrial sources. We investigated the spatial distribution of chemical reaction zones within the intertidal circulation cell at Cape Shores, Lewes, Delaware. Porewater samples were collected from multi-level wells along a beach-perpendicular transect. Samples were analyzed for particulate carbon and reactive solutes, and incubated to obtain rates of oxic respiration and denitrification. High rates of oxic respiration were observed higher on the beach, in the landward freshwater-saline water mixing zone, where dissolved oxygen availability was high. Denitrification was dominant in lower areas of the beach, below the intertidal discharge point. High respiration rates did not correlate with particulate carbon concentrations entrained within porewater, suggesting that dissolved organic carbon or immobile particulate carbon trapped within the sediment can contribute to and alter bulk reactivity. A better understanding of the sources and sinks of carbon within the beach will improve our ability to predict nutrient fluxes to estuaries and oceans, aiding the management of coastal environments and ecosystems.
Spatial distribution patterns and movements of Holothuria arguinensis in the Ria Formosa (Portugal)
NASA Astrophysics Data System (ADS)
Siegenthaler, Andjin; Cánovas, Fernando; González-Wangüemert, Mercedes
2015-08-01
Holothurian populations are under pressure worldwide because of increasing demand for beche-de-mer, mainly for Asian consumption. Importations to this area from new temperate fishing grounds provide economic opportunities but also raise concerns regarding future over-exploitation. Studies on the habitat preferences and movements of sea cucumbers are important for the management of sea cucumber stocks and sizing of no-take zones, but information on the ecology and behavior of temperate sea cucumbers is scarce. This study describes the small-scale distribution and movement patterns of Holothuria arguinensis in the intertidal zone of the Ria Formosa national park (Portugal). Mark/recapture studies were performed to record their movements over time on different habitats (sand and seagrass). H. arguinensis preferred seagrass habitats and did not show a size or life stage-related spatial segregation. Its density was 563 ind. ha- 1 and mean movement speed was 10 m per day. Movement speed did not differ between habitats and the direction of movement was offshore during the day and shoreward during the night. Median home range size was 35 m2 and overlap among home ranges was 84%. H. arguinensis' high abundance, close association with seagrass and easy catchability in the intertidal zone, indicate the importance of including intertidal lagoons in future studies on temperate sea cucumber ecology since those systems might require different management strategies than fully submerged habitats.
NASA Astrophysics Data System (ADS)
Pardue, J.; Elango, V.; Urbano, M.; Lemelle, K.
2012-12-01
The research described below was conducted on Fourchon Beach, a coastal headland consisting of nine miles of fairly pristine sandy beaches and dunes, backed by wetlands and tidal channels, located between Belle Pass tidal inlet on the west and Elmer's Island on the east in Lafourche Parish, Louisiana. MC252 oil first arrived in large quantities on Fourchon Beach on or around May 20, 2010. A unique oil form created under these conditions was an aggregate of sand and emulsified oil, typically 0.1-10 cm in diameter, termed small surface residue balls (SSRBs). The work from this project made critical measurements on the factors controlling biodegradability of these SSRB aggregates. SSRB aggregates were sampled across transects perpendicular to the beach from the intertidal to the supratidal. Areas in the supratidal that were sampled initially were set aside for research purposes and not altered by any clean-up activities. Chemical composition of SSRBs was measured including concentrations of n-alkanes, PAHs, hopanes, nutrients (nitrate, nitrite, ammonium and orthophosphate measured on water extracts of SSRBs), and electron acceptor concentrations (O2 microprofiles measured on intact SSRBs and sulfate). Physical characterization of the SSRBs including length and area dimensions, mass, density, porosity, moisture content, and salinity using standard methods. Microbial characterization of SSRBs was also conducted using denaturing gradient gel electrophoresis and sequencing of dominant bands. SSRBs were sampled from various locations across the beach profile deposited by 2 significant tropical events in 2010; Hurricane Alex and TS Bonnie, and one event in 2011, TS Lee. Sampling focused on comparing and contrasting impacts of biogeochemistry on weathering of oil stranded in three beach microenvironments; supratidal surface; subtidal subsurface which is permanently inundated and intertidal subsurface samples which are intermittently inundated. The three types of oil are dramatically different in appearance and have a distinctive chemical signature indicative of different rates of weathering. Supratidal surface samples were depleted in n-alkanes and lower-molecular weight PAHs. Geochemically, aggregates located in these environments had low salinities (1.3-1.5 ppt), O2 at near saturation throughout the aggregates and nutrient concentrations (N and P) significantly lower than SSRBs deposited in the intertidal and subtidal. Intertidal and subtidal subsurface oil samples were characterized by elevated nutrient concentrations and salinities consistent with regular seawater inundation. Complete inundation leads to O2 consumption in the aggregates after several days. Despite the presence of elevated nutrients, PAHs and n-alkanes were comparatively unweathered in the subtidal subsurface samples consistent with O2 limitations. Sequences of known PAH degraders were isolated from the supratidal and intertidal aggregates. The results to be presented support the hypothesis that SSRBs deposited at different locations on the beach have different biogeochemical characteristics . These characteristics are due, in part, to their location on the landscape.
Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment
Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R.; Pardue, John H.
2014-01-01
Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratidal beach environment with reasonable control over and knowledge of the residence time of the aggregates on the beach surface. Polycyclic aromatic hydrocarbons (PAHs) and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat samples from the intertidal did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and nutrient-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents <2% and molar C:N ratios from 131–323, well outside of optimal values for biodegradation in the literature. Despite these limitations, biodegradation of PAHs and alkanes proceeded at relevant rates (2–8 year−1) due in part to the presence of degrading populations, i.e., Mycobacterium sp., adapted to these conditions. For submerged oil mat samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e.g., moisture, salinity, terminal electron acceptors, nutrient, and oil composition) due, in part, to their location on the landscape. PMID:24782849
Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment.
Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R; Pardue, John H
2014-01-01
Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratidal beach environment with reasonable control over and knowledge of the residence time of the aggregates on the beach surface. Polycyclic aromatic hydrocarbons (PAHs) and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat samples from the intertidal did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and nutrient-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents <2% and molar C:N ratios from 131-323, well outside of optimal values for biodegradation in the literature. Despite these limitations, biodegradation of PAHs and alkanes proceeded at relevant rates (2-8 year(-1)) due in part to the presence of degrading populations, i.e., Mycobacterium sp., adapted to these conditions. For submerged oil mat samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e.g., moisture, salinity, terminal electron acceptors, nutrient, and oil composition) due, in part, to their location on the landscape.
Shah, A H; Abdelzaher, A M; Phillips, M; Hernandez, R; Solo-Gabriele, H M; Kish, J; Scorzetti, G; Fell, J W; Diaz, M R; Scott, T M; Lukasik, J; Harwood, V J; McQuaig, S; Sinigalliano, C D; Gidley, M L; Wanless, D; Ager, A; Lui, J; Stewart, J R; Plano, L R W; Fleming, L E
2011-06-01
Research into the relationship between pathogens, faecal indicator microbes and environmental factors in beach sand has been limited, yet vital to the understanding of the microbial relationship between sand and the water column and to the improvement of criteria for better human health protection at beaches. The objectives of this study were to evaluate the presence and distribution of pathogens in various zones of beach sand (subtidal, intertidal and supratidal) and to assess their relationship with environmental parameters and indicator microbes at a non-point source subtropical marine beach. In this exploratory study in subtropical Miami (Florida, USA), beach sand samples were collected and analysed over the course of 6 days for several pathogens, microbial source tracking markers and indicator microbes. An inverse correlation between moisture content and most indicator microbes was found. Significant associations were identified between some indicator microbes and pathogens (such as nematode larvae and yeasts in the genus Candida), which are from classes of microbes that are rarely evaluated in the context of recreational beach use. Results indicate that indicator microbes may predict the presence of some of the pathogens, in particular helminthes, yeasts and the bacterial pathogen Staphylococcus aureus including methicillin-resistant forms. Indicator microbes may thus be useful for monitoring beach sand and water quality at non-point source beaches. The presence of both indicator microbes and pathogens in beach sand provides one possible explanation for human health effects reported at non-point sources beaches. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
Ichnological evidence of Megalosaurid Dinosaurs Crossing Middle Jurassic Tidal Flats
NASA Astrophysics Data System (ADS)
Razzolini, Novella L.; Oms, Oriol; Castanera, Diego; Vila, Bernat; Santos, Vanda Faria Dos; Galobart, Àngel
2016-08-01
A new dinosaur tracksite in the Vale de Meios quarry (Serra de Aire Formation, Bathonian, Portugal)preserves more than 700 theropod tracks. They are organized in at least 80 unidirectional trackways arranged in a bimodal orientation pattern (W/NW and E/SE). Quantitative and qualitative comparisons reveal that the large tridactyl, elongated and asymmetric tracks resemble the typical Late Jurassic-Early Cretaceous Megalosauripus ichnogenus in all morphometric parameters. Few of the numerous tracks are preserved as elite tracks while the rest are preserved as different gradients of modified true tracks according to water content, erosive factors, radial fractures and internal overtrack formations. Taphonomical determinations are consistent with paleoenvironmental observations that indicate an inter-tidal flat located at the margin of a coastal barrier. The Megalosauripus tracks represent the oldest occurrence of this ichnotaxon and are attributed to large megalosaurid dinosaurs. Their occurrence in Vale de Meios tidal flat represents the unique paleoethological evidence of megalosaurids moving towards the lagoon, most likley during the low tide periods with feeding purposes.
Ichnological evidence of Megalosaurid Dinosaurs Crossing Middle Jurassic Tidal Flats.
Razzolini, Novella L; Oms, Oriol; Castanera, Diego; Vila, Bernat; Santos, Vanda Faria Dos; Galobart, Àngel
2016-08-19
A new dinosaur tracksite in the Vale de Meios quarry (Serra de Aire Formation, Bathonian, Portugal)preserves more than 700 theropod tracks. They are organized in at least 80 unidirectional trackways arranged in a bimodal orientation pattern (W/NW and E/SE). Quantitative and qualitative comparisons reveal that the large tridactyl, elongated and asymmetric tracks resemble the typical Late Jurassic-Early Cretaceous Megalosauripus ichnogenus in all morphometric parameters. Few of the numerous tracks are preserved as elite tracks while the rest are preserved as different gradients of modified true tracks according to water content, erosive factors, radial fractures and internal overtrack formations. Taphonomical determinations are consistent with paleoenvironmental observations that indicate an inter-tidal flat located at the margin of a coastal barrier. The Megalosauripus tracks represent the oldest occurrence of this ichnotaxon and are attributed to large megalosaurid dinosaurs. Their occurrence in Vale de Meios tidal flat represents the unique paleoethological evidence of megalosaurids moving towards the lagoon, most likley during the low tide periods with feeding purposes.
NASA Astrophysics Data System (ADS)
Palma, Ricardo M.; Kietzmann, Diego A.; Bressan, Graciela S.; Martín-Chivelet, Javier; López-Gómez, José; Farias, María E.; Iglesias Llanos, María P.
2013-11-01
The La Manga Formation consists of marine carbonates and represents most of the sedimentary record of the Callovian-Oxfordian in the Neuquén Basin. Three localities in the southern Mendoza province were studied and their cyclicity was determined by means of facies analysis and their vertical arrangement. Facies of inner ramp, that were deposited in extremely shallow-water environments with intermittent subaerial exposures have been broken down into shallow subtidal, and intertidal-supratidal environments. Shallow subtidal facies are arranged into decimetre scale upward-shallowing cycles composed of marls, laminated or massive mudstones or bioclastic wackestones and intraclastic wackestone-packstones. Intertidal-supratidal centimetre-scale cycles consist of an upward-shallowing succession of restricted facies, overlaid by horizontal or crinkle microbial laminites, flat pebble conglomerates or breccias beds. The defined cycles show a shallowing upward trend in which the evidence of relative sea-level lowering is accepted. The interpretation of Fischer plots allowed the recognition of changes in accommodation space.
Müller, Gabriele; Stelzer, Kerstin; Smollich, Susan; Gade, Martin; Adolph, Winny; Melchionna, Sabrina; Kemme, Linnea; Geißler, Jasmin; Millat, Gerald; Reimers, Hans-Christian; Kohlus, Jörn; Eskildsen, Kai
2016-10-01
The Wadden Sea along the North Sea coasts of Denmark, Germany, and the Netherlands is the largest unbroken system of intertidal sand and mud flats in the world. Its habitats are highly productive and harbour high standing stocks and densities of benthic species, well adapted to the demanding environmental conditions. Therefore, the Wadden Sea is one of the most important areas for migratory birds in the world and thus protected by national and international legislation, which amongst others requires extensive monitoring. Due to the inaccessibility of major areas of the Wadden Sea, a classification approach based on optical and radar remote sensing has been developed to support environmental monitoring programmes. In this study, the general classification framework as well as two specific monitoring cases, mussel beds and seagrass meadows, are presented. The classification of mussel beds profits highly from inclusion of radar data due to their rough surface and achieves agreements of up to 79 % with areal data from the regular monitoring programme. Classification of seagrass meadows reaches even higher agreements with monitoring data (up to 100 %) and furthermore captures seagrass densities as low as 10 %. The main classification results are information on area and location of individual habitats. These are needed to fulfil environmental legislation requirements. One of the major advantages of this approach is the large areal coverage with individual satellite images, allowing simultaneous assessment of both accessible and inaccessible areas and thus providing a more complete overall picture.
World's highest tides: Hypertidal coastal systems in North America, South America and Europe
NASA Astrophysics Data System (ADS)
Archer, Allen W.
2013-02-01
Hypertidal systems can be defined as areas where spring tides have ranges greater than 6 m. These very high tidal ranges results in unique patterns of sedimentation within hypertidal estuaries. Such systems are not common but they do occur on a number of continents. This report will discuss six areas that have the highest tides in the world. North America hypertidal systems occur within Cook Inlet in Alaska, USA, Leaf Basin in Ungava Bay, Quebec Province, Canada, and the Bay of Fundy, Nova Scotia and New Brunswick, Canada. In South America, the Straits of Magellan and associated Atlantic coastal settings exhibit hypertidal conditions. European hypertidal systems include Bristol Channel and Severn estuary in southwest England and the Gulf of St. Malo in Normandy, France. These six areas have the highest tides in the world and spring tidal ranges that regularly exceed 10 m. All the six areas can be divided into intertidal sedimentological zones. Zone 1 is the outermost zone and contains longitudinal bars. Zone 2 exhibits laterally extensive sand flats. Zone 3 includes the innermost extent of tides and estuarine point bars. Annual and neap-spring cycles have been documented in Zone 3 and are probably the most indicative features of hypertidal systems. The North American systems occur in high-latitude cold climates where winter ice can have a minor or major impact on the development of sedimentary facies. Conversely, the European and Patagonia systems have climates minimal ice formation.
Oil spills and their impacts on sand beach invertebrate communities: A literature review.
Bejarano, Adriana C; Michel, Jacqueline
2016-11-01
Sand beaches are highly dynamic habitats that can experience considerable impacts from oil spills. This review provides a synthesis of the scientific literature on major oil spills and their impacts on sand beaches, with emphasis on studies documenting effects and recoveries of intertidal invertebrate communities. One of the key observations arising from this review is that more attention has generally been given to studying the impacts of oil spills on invertebrates (mostly macrobenthos), and not to documenting their biological recovery. Biological recovery of sand beach invertebrates is highly dynamic, depending on several factors including site-specific physical properties and processes (e.g., sand grain size, beach exposure), the degree of oiling, depth of oil burial, and biological factors (e.g., species-specific life-history traits). Recovery of affected communities ranges from several weeks to several years, with longer recoveries generally associated with physical factors that facilitate oil persistence, or when cleanup activities are absent on heavily oiled beaches. There are considerable challenges in quantifying impacts from spills on sand beach invertebrates because of insufficient baseline information (e.g., distribution, abundance and composition), knowledge gaps in their natural variability (spatial and temporal), and inadequate sampling and replication during and after oil spills. Thus, environment assessments of impacts and recovery require a rigorous experimental design that controls for confounding sources of variability. General recommendations on sampling strategies and toxicity testing, and a preliminary framework for incorporating species-specific life history traits into future assessments are also provided. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
Quang, Ngo Xuan; Chau, Nguyen Ngoc; Smol, Nic; Prozorova, Larisa; Vanreusel, Ann
2016-02-01
Nematode communities in eight Mekong estuaries were investigated during the dry season. The aim of the study was to identify the structure and the diversity of the communities in relation to the main environmental characteristics. In each estuary, three to four intertidal sampling stations were identified at regular distances from the mouth to up to 45 km land inward. The nematode communities showed a strong correlation with sediment composition and to a lesser degree with chlorophyll a concentrations. Multivariate analysis resulted in the identification of four types of communities. We identified two types of Desmodora communities in the sandy mouth stations and two types of Parodontophora communities in the silty sand stations. One of the silt associated communities showed a preference for higher chlorophyll a concentrations, resulting in higher densities and higher diversity, mainly of monhysterid species. Because of the strong association between community structure and sediment composition, nematodes are a meaningful tool for monitoring changes in their environment. In case their community deviates from what is expected based on sediment, it may serve as an early warning for disturbance.
NASA Astrophysics Data System (ADS)
Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge
2017-11-01
The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.
NASA Astrophysics Data System (ADS)
Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge
2018-06-01
The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.
Disappointment Reach, Australia as seen from STS-67 Endeavour
NASA Technical Reports Server (NTRS)
1995-01-01
A nearly vertical view of Disappointment Reach and surroundings. Ripple-like patterns extending at right angles to the tidal flow can be discerned on shoals. Relict sand dune patterns, crests unvegetated, are evident on the western side of the estuary. Red mud brought down the Mooramel River on the east side of the estuary does extend into the shallow water of the inter-tidal lagoons. Most of the light-colored water along the coast, represents shoals of lime sediment. Patterns of sediment distribution by tides, waves, streams, and wind combine to create a complex and colorful scene.
Disappointment Reach, Australia as seen from STS-67 Endeavour
1995-03-14
A nearly vertical view of Disappointment Reach and surroundings. Ripple-like patterns extending at right angles to the tidal flow can be discerned on shoals. Relict sand dune patterns, crests unvegetated, are evident on the western side of the estuary. Red mud brought down the Mooramel River on the east side of the estuary does extend into the shallow water of the inter-tidal lagoons. Most of the light-colored water along the coast, represents shoals of lime sediment. Patterns of sediment distribution by tides, waves, streams, and wind combine to create a complex and colorful scene.
Validating Experimental Bedform Dynamics on Cohesive Sand-Mud Beds in the Dee Estuary
NASA Astrophysics Data System (ADS)
Baas, Jaco H.; Baker, Megan; Hope, Julie; Malarkey, Jonathan; Rocha, Renata
2014-05-01
Recent laboratory experiments and field measurements have shown that small quantities of cohesive clay, and in particular 'sticky' biological polymers, within a sandy substrate dramatically reduce the development rate of sedimentary bedforms, with major implications for sediment transport rate calculations and process interpretations from the sedimentary record. FURTHER INFORMATION Flow and sediment transport predictions from sedimentary structures found in modern estuaries and within estuarine geological systems are impeded by an almost complete lack of process-based knowledge of the behaviour of natural sediments that consist of mixtures of cohesionless sand and biologically-active cohesive mud. Indeed, existing predictive models are largely based on non-organic cohesionless sands, despite the fact that mud, in pure form or mixed with sand, is the most common sediment on Earth and also the most biologically active interface across a range of Earth-surface environments, including rivers and shallow seas. The multidisciplinary COHBED project uses state-of-the-art laboratory and field technologies to measure the erosional properties of mixed cohesive sediment beds and the formation and stability of sedimentary bedforms on these beds, integrating the key physical and biological processes that govern bed evolution. The development of current ripples on cohesive mixed sediment beds was investigated as a function of physical control on bed cohesion versus biological control on bed cohesion. These investigations included laboratory flume experiments in the Hydrodynamics Laboratory (Bangor University) and field experiments in the Dee estuary (at West Kirby near Liverpool). The flume experiments showed that winnowing of fine-grained cohesive sediment, including biological stabilisers, is an important process affecting the development rate, size and shape of the cohesive bedforms. The ripples developed progressively slower as the kaolin clay fraction in the sandy substrate bed was increased. The same result was obtained for xanthan gum, which is a proxy for biological polymers produced by microphytobenthos. Yet, the xanthan gum was several orders more effective in slowing down ripple development than kaolin clay, suggesting that the cohesive forces for biological polymers are much higher than for clay minerals, and that sedimentological process models should refocus on biostabilisation processes. The first results of the field experiments show that the winnowing of fines from developing ripples and the slowing down of current ripple development in mixed cohesive sediment is mimicked on intertidal flats in the Dee estuary. In particular, these field data revealed that current ripples in cohesive sediment are smaller with more two-dimensional crestlines than in non-cohesive sand. The wider implications of these findings will be discussed. COHBED Project Team (NERC): Alan Davies (Bangor University); Daniel Parsons, Leiping Ye (University of Hull); Jeffrey Peakall (University of Leeds); Dougal Lichtman, Louise O'Boyle, Peter Thorne (NOC Liverpool); Sarah Bass, Andrew Manning, Robert Schindler (University of Plymouth); Rebecca Aspden, Emma Defew, Julie Hope, David Paterson (University of St Andrews)
Churchwell, Roy T.; Kendall, Steve J.; Blanchard, Amy L.; Dunton, Kenneth H.; Powell, Abby N.
2016-01-01
Unlike lower latitude coastlines, the estuarine nearshore zones of the Alaskan Beaufort Sea are icebound and frozen up to 9 months annually. This annual freezing event represents a dramatic physical disturbance to fauna living within intertidal sediments. The main objectives of this study were to describe the benthic communities of Beaufort Sea deltas, including temporal changes and trophic structure. Understanding benthic invertebrate communities provided a baseline for concurrent research on shorebird foraging ecology at these sites. We found that despite continuous year-to-year episodes of annual freezing, these estuarine deltas are populated by a range of invertebrates that represent both marine and freshwater assemblages. Freshwater organisms like Diptera and Oligochaeta not only survive this extreme event, but a marine invasion of infaunal organisms such as Amphipoda and Polychaeta rapidly recolonizes the delta mudflats following ice ablation. These delta sediments of sand, silt, and clay are fine in structure compared to sediments of other Beaufort Sea coastal intertidal habitats. The relatively depauperate invertebrate community that ultimately develops is composed of marine and freshwater benthic invertebrates. The composition of the infauna also reflects two strategies that make life on Beaufort Sea deltas possible: a migration of marine organisms from deeper lagoons to the intertidal and freshwater biota that survive the 9-month ice-covered period in frozen sediments. Stable isotopic analyses reveal that both infaunal assemblages assimilate marine and terrestrial sources of organic carbon. These results provide some of the first quantitative information on the infaunal food resources of shallow arctic estuarine systems and the long-term persistence of these invertebrate assemblages. Our data help explain the presence of large numbers of shorebirds in these habitats during the brief summer open-water period and their trophic importance to migrating waterfowl and nearshore populations of estuarine fishes that are the basis of subsistence lifestyles by native inhabitants of the Beaufort Sea coast.
NASA Astrophysics Data System (ADS)
Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei
2017-02-01
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, E.W.
Study of late Pleistocene-age sediments near the mouth of the Mad River revealed a sequence of nearshore marine and shallow bay deposits. This sequence, bounded by unconformities, is informally named the Mouth of Mad unit. The Mouth of mad unit can be divided into four distinct depositional facies at the study site. The lowest facies are the Nearshore Sand and Estuarine Mud, which lie unconformably on a paleosol. The sand facies grades upward into a high-energy, interbedded Nearshore Sand and Gravel facies containing storm and rip-channel deposits. Above the sand and gravel is a Strand-Plain Sand facies. This sand ismore » overlain by a laterally variable sequence of shell-rich Bay facies. The bay deposits can be further divided into five subfacies: (1) a Bioturbated Sand; (2) a Lower Tidal Flat Mud; (3) a Mixed Sand and Mud; (4) an oyster-rich Bay Mud; and (5) an Upper Tidal Flat Mud. The bay sequence is overlain unconformably by younger late Pleistocene-age marine terrace deposits. The depositional environments represented by these facies progress from a shoreline estuary to nearshore deposits, above storm wave base, and slowly back to shoreline and finally shallow bay conditions. The Mouth of Mad unit represents a transgressive-regressive sequence, involving the development of a protective spit. The uppermost mud within the Mouth of Mad unit has been dated, using thermoluminescence age estimation, at 176 [+-] 33 ka, placing it in the late Pleistocene. The Mouth of Mad unit appears to be younger than the fossiliferous deposits at Elk Head, Crannell Junction, Trinidad Head, Moonstone Beach, and the Falor Formation near Maple Creek, and possibly time equivalent with gravel deposits exposed at the western end of School Road in McKinleyville.« less
NASA Astrophysics Data System (ADS)
Ferraro, Steven P.; Cole, Faith A.
2012-05-01
This study validates the ecological relevance of estuarine habitat types to the benthic macrofaunal community and, together with previous similar studies, suggests they can serve as elements in ecological periodic tables of benthic macrofaunal usage in the bioregion. We compared benthic macrofaunal Bray-Curtis similarity and the means of eight benthic macrofaunal community measures across seven habitat types in Tillamook Bay, Oregon, USA: intertidal eelgrass (Zostera marina), dwarf eelgrass (Zostera japonica), oyster (Crassostrea gigas) ground culture, burrowing mud shrimp (Upogebia pugettensis), burrowing ghost shrimp (Neotrypaea californiensis), sand and subtidal. Benthic macrofaunal Bray-Curtis similarity differed among all the habitats except ghost shrimp and sand. The habitat rank order on mean benthic macrofaunal species richness, abundance and biomass was dwarf eelgrass ≈ oyster ≥ mud shrimp ≈ eelgrass > sand ≈ ghost shrimp ≈ subtidal. The benthic macrofaunal habitat usage pattern in Tillamook Bay was, with a few exceptions, similar to that in two other US Pacific Northwest estuaries. The exceptions indicate variants of eelgrass and ghost shrimp habitat that differ in benthic macrofaunal usage perhaps due to differences in the coarseness of the sand fraction of the sediments in which they live. The similarities indicate periodic benthic macrofaunal usage patterns across the other habitat types extend over a wider geographic scale and range of environmental conditions than previously known.
Critical bed shear stress and threshold of motion of maerl biogenic gravel
NASA Astrophysics Data System (ADS)
Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin
2017-07-01
A determination of the critical bed shear stress of maerl is a prerequisite for quantifying its mobility, rate of erosion and deposition in conservation management. The critical bed shear stress for incipient motion has been determined for the first time for samples from biogenic free-living maerl beds in three contrasting environments (open marine, intertidal and beach) in Galway Bay, west of Ireland. The bed shear stress was determined using two methods, Law of the Wall and Turbulent Kinetic Energy, in a rotating annular flume and in a linear flume. The velocity profile of flowing water above a bed of natural maerl grains was measured in four runs of progressively increasing flow velocity until the flow exceeded the critical shear stress of grains on the bed. The critical Shields parameter and the mobility number are estimated and compared with the equivalent curves for natural quartz sand. The critical Shields parameters for the maerl particles from all three environments fall below the Shields curve. Along with a previously reported correlation between maerl grain shape and settling velocity, these results suggest that the highly irregular shapes also allow maerl grains to be mobilised more easily than quartz grains with the same sieve diameter. The intertidal beds with the roughest particles exhibit the greatest critical shear stress because the particle thalli interlock and resist entrainment. In samples with a high percentage of maerl and low percentage of siliciclastic sand, the lower density, lower settling velocity and lower critical bed shear stress of maerl results in its preferential transport over the siliciclastic sediment. At velocities ∼10 cm s-1 higher than the threshold velocity of grain motion, rarely-documented subaqueous maerl dunes formed in the annular flume.
NASA Astrophysics Data System (ADS)
Lunardi, Vitor O.; Macedo, Regina H.; Granadeiro, José P.; Palmeirim, Jorge M.
2012-01-01
Large numbers of Nearctic shorebirds migrate and winter along the coast of northeastern Brazil, but there is little information on their migratory flows, foraging ecology, and on the structure of the species assemblages that they form with resident shorebirds. We studied these issues on intertidal flats of Baía de Todos os Santos (Bahia), the second largest bay in Brazil. During a full year cycle we carried out weekly bird counts in an intertidal area of 280 ha divided in sectors, where we also measured environmental parameters. The analyses of weekly counts resulted in a detailed phenology of use of the area by shorebirds. Five species were resident and ten were Nearctic migrants. Several of the latter had clear peaks in numbers in March and October, revealing the use of the bay as a stopover during both the north-bound and south-bound migration flows. A canonical correspondence analysis of the relationship between environmental parameters and bird numbers indicated that the foraging bird assemblage could be divided into five main groups, occupying distinct ecological gradients in the study area. The most important factors driving this structure were invertebrate prey abundance, percentage of fine sediments, area of mangrove cover and distance to channels. Our findings imply that maintenance of the diversity of intertidal habitats in this bay is crucial to satisfy the particular habitat requirements of resident and migrant shorebirds using the northeastern coastal regions of Brazil.
Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores
Grossman, Eric E.; George, Douglas A.; Lam, Angela
2011-01-01
Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment inputs. These results also provide important quantitative data on the amount of sediment delivered to the nearshore from the Skagit River for use in calculating sediment budgets for application to watershed planning and wetland and coastal-ecosystem restoration.
Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.
Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J
2017-08-02
Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.
Earth Observations taken by the Expedition 27 Crew
2011-05-16
ISS027-E-034290 (16 May 2011) --- Ar Rub al Khali Sand Sea, Arabian Peninsula is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The Ar Rub al Khali, also known as the “Empty Quarter”, is a large region of sand dunes and interdune flats known as a sand sea (or erg). This photograph highlights a part of the Ar Rub al Khali located close to its southeastern margin in the Sultanate of Oman. Reddish-brown, large linear sand dunes alternate with blue-gray interdune salt flats known as sabkhas at left. The major trend of the linear dunes is transverse to northwesterly trade winds that originate in Iraq (known as the Shamal winds). Formation of secondary barchan (crescent-shaped) and star dunes (dune crests in several directions originating from a single point, looking somewhat like a starfish from above) on the linear dunes is supported by southwesterly winds that occur during the monsoon season (Kharif winds). The long linear dunes begin to break up into isolated large star dunes to the northeast and east (right). This is likely a result of both wind pattern interactions and changes in the sand supply to the dunes. The Empty Quarter covers much of the south-central portion of the Arabian Peninsula, and with an area of approximately 660,000 square kilometers it is the largest continuous sand desert on Earth. The Empty Quarter is so called as the dominantly hyperarid climate and difficulty of travel through the dunes has not encouraged permanent settlement within the region. There is geological and archeological evidence to support cooler and wetter past climates in the region together with human settlement. This evidence includes exposed lakebed sediments, scattered stone tools, and the fossils of hippopotamus, water buffalo, and long-horned cattle.
Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong
2015-10-01
This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AREAS FOR AIR QUALITY PLANNING PURPOSES Identification of Mandatory Class I Federal Areas Where... Flat Tops Wild 235,230 94-146 USDA-FS Great Sand Dunes Wild 33,450 94-567 USDI-NPS La Garita Wild 48...
Burrow-generated false facies and phantom sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanless, H.R.; Tagett, M.
Callianassa (=Ophiomorpha) and other burrowers deeply rework shallow marine sequences. Through in-situ reworking, they create false sedimentary facies and stratigraphic sequences. Callianassa's key to effectiveness is that it expels sand and mud from burrow excavations but concentrates coarse material at the base of the burrow complex. Coarse material can be derived by falling into the burrow entrance, by reworking the existing sediment sequence, or by a combination of both. Examples come from shallow marine carbonate environments of south Florida and the Turks and Caicos Islands, British West Indies. Many mudbanks in south Florida are formed as stacks of layered mudstonemore » units 20-100 cm thick. Between events, seagrasses may recolonize, and a burrowing benthic community may repopulate the substrate. The layered mudstone beneath older areas of mudbank flats can gradually be converted to a bioturbated skeletal wackestone by the deep burrowing community. Burrowing also causes mixing of faunal assemblages. On Caicos Bank, an extensive carbonate tidal flat (3-4 m thick) is slowly being transgressed. About 1 m of tidal-flat sequence is eroded at the shoreline. The remaining 2-3 m could be preserved as part of the transgressive sequence. Callianassa burrowing, however, quickly reworks the sequence, replacing tidal-flat sands and muds with marine peloidal and skeletal sediment. Within 100 m of the shoreline, the only evidence of the tidal-flat sequence is a concentration of high-spired gastropods in Calliannassa burrows at the base of the Holocene sequence and a few patches of tidal-flat sediment that burrowers missed. What looks like a basal transgressive lag is in fact a biogenic concentrate from in-situ reworking of a now phantom sequence.« less
Barnhardt, W.A.; Sherrod, B.L.
2006-01-01
Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.
Reconstruction of time-varying tidal flat topography using optical remote sensing imageries
NASA Astrophysics Data System (ADS)
Tseng, Kuo-Hsin; Kuo, Chung-Yen; Lin, Tang-Huang; Huang, Zhi-Cheng; Lin, Yu-Ching; Liao, Wen-Hung; Chen, Chi-Farn
2017-09-01
Tidal flats (TFs) occupy approximately 7% of the total coastal shelf areas worldwide. However, TFs are unavailable in most global digital elevation models (DEMs) due to water-impermeable nature of existing remote sensing approaches (e.g., radar used for WorldDEM™ and Shuttle Radar Topography Mission DEM and optical stereo-pairs used for ASTER Global Digital Elevation Map Version 2). However, this problem can be circumvented using remote sensing imageries to observe land exposure at different tidal heights during each revisit. This work exploits Landsat-4/-5/-7/-8 Thematic Mapper (TM)/Enhanced TM Plus/Operational Land Imager imageries to reconstruct topography of a TF, namely, Hsiang-Shan Wetland in Taiwan, to unveil its formation and temporal changes since the 1980s. We first classify water areas by applying modified normalized difference water index to each Landsat image and normalize chances of water exposure to create an inundation probability map. This map is then scaled by tidal amplitudes extracted from DTU10 tide model to convert the probabilities into actual elevations. After building DEM at intertidal zone, a water level-area curve is established, and accuracy of DEM is validated by sea level (SL) at the timing of each Landsat snapshot. A 22-year (1992-2013) dataset composed of 227 Landsat scenes are analyzed and compared with tide gauge data. Root-mean-square differences of SL reaches 48 cm with a correlation coefficient of 0.93, indicating that the present technique is useful for constructing accurate coastal DEMs, and that products can be utilized for estimating instant SL. This study shows the possibility of exploring evolution of intertidal zones using an archive of optical remote sensing imageries. The technique developed in the present study potentially helps in quantifying SL from the start of optical remote sensing era.
NASA Astrophysics Data System (ADS)
Adolph, Winny; Jung, Richard; Schmidt, Alena; Ehlers, Manfred; Heipke, Christian; Bartholomä, Alexander; Farke, Hubert
2017-04-01
The Wadden Sea is a large coastal transition area adjoining the southern North Sea uniting ecological key functions with an important role in coastal protection. The region is strictly protected by EU directives and national law and is a UNESCO World Heritage Site, requiring frequent quality assessments and regular monitoring. In 2014 an intertidal bedform area characterised by alternating crests and water-covered troughs on the tidal flats of the island of Norderney (German Wadden Sea sector) was chosen to test different remote sensing methods for habitat mapping: airborne lidar, satellite-based radar (TerraSAR-X) and electro-optical sensors (RapidEye). The results revealed that, although sensitive to different surface qualities, all sensors were able to image the bedforms. A digital terrain model generated from the lidar data shows crests and slopes of the bedforms with high geometric accuracy in the centimetre range, but high costs limit the operation area. TerraSAR-X data enabled identifying the positions of the bedforms reflecting the residual water in the troughs also with a high resolution of up to 1.1 m, but with larger footprints and much higher temporal availability. RapidEye data are sensitive to differences in sediment moisture employed to identify crest areas, slopes and troughs, with high spatial coverage but the lowest resolution (6.5 m). Monitoring concepts may differ in their remote sensing requirements regarding areal coverage, spatial and temporal resolution, sensitivity and geometric accuracy. Also financial budgets limit the selection of sensors. Thus, combining differing assets into an integrated concept of remote sensing contributes to solving these issues.
Channel-shoal morphodynamics in response to distinct hydrodynamic drivers at the outer Weser estuary
NASA Astrophysics Data System (ADS)
Herrling, Gerald; Benninghoff, Markus; Zorndt, Anna; Winter, Christian
2017-04-01
The interaction of tidal, wave and wind forces primarily governs the morphodynamics of intertidal channel-shoal systems. Typical morphological changes comprise tidal channel meandering and/or migration with related shoal erosion or accretion. These intertidal flat systems are likely to response to accelerated sea level rise and to potential changes in storm frequency and direction. The aim of the ongoing research project is an evaluation of outer estuarine channel-shoal dynamics by combining the analysis of morphological monitoring data with high-resolution morphodynamic modelling. A focus is set on their evolution in reaction to different hydrodynamic forcings like tides, wind driven currents, waves under fair-weather and high energy conditions, and variable upstream discharges. As an example the Outer Weser region was chosen, and a tidal channel system serves as a reference site: Availability of almost annual bathymetrical observations of an approx. 10 km long tidal channel (Fedderwarder Priel) and its morphological development largely independent from maintenance dredging of the main Weser navigational channel make this tributary an ideal study area. The numerical modelling system Delft3D (Deltares) is applied to run real-time annual scenario simulations aiming to evaluate and to differentiate the morphological responses to distinct hydrodynamic drivers. A comprehensive morphological analysis of available observations at the FWP showed that the channel migration trends and directions are persistent at particular channel bends and meanders for the considered period of 14 years. Migration trends and directions are well reproduced by one-year model simulations. Morphodynamic modelling is applied to interpolate between observations and relate sediment dynamics to different forcing scenarios in the outer Weser estuary as a whole and at the scale of local tributary channels and flats.
Identification of bedforms in lower cook inlet, Alaska
Bouma, A.H.; Rappeport, M.L.; Orlando, R.C.; Hampton, M.A.
1980-01-01
The seafloor of the central part of lower Cook Inlet, Alaska, is characterized by the presence of different sizes and types of bedforms. The bedforms in the sandy sediments include straight-crested to sinuous to lunate ripples, small, medium, and large sand waves, sand ridges, sand ribbons, and sand patches. In addition, rocky and pebbly seafloor has been identified. The water depth ranges from 25 to 120 m, and surface currents average 3.8 kt (2 m/s). Bottom currents have been measured at as much as 42 cm/s at 1 m above bottom. Underwater television observations have shown that the rate of sand transport is lower than expected because small amounts of clay and organic matter appear to inhibit remobilization. Only during the last 1 to 2 h of ebb and flood stages of spring tides, and during storms, does significant transport occur. Comparison of data from high-resolution seismic profiling systems, side-scan sonar, bottom television and camera, and bottom sampling shows that bottom and bedform interpretations based solely on sonographs can be in error. Measuring the length of 'acoustic shadows' on sonographs to obtain bedform heights gives dimensions that are too large by factors of 3-7. Bottom television investigations revealed that the troughs between small sand waves are flat and carpeted by shell fragments. Such coarse material has a high acoustic reflectance that is not related to slope or height and can lead to false interpretations on bedform dimensions. Our observations have shown that small sand waves commonly superimposed on larger ones are slightly higher than those present on flat hard bottom but are still less than calculated from acoustic shadows. Where the bottom is rather smooth or contains elevations small enough to be masked by bathymetric 'noise' caused by the pitching of the vessel, sonographs typically show either small sand waves, sand ribbons, sand patches, rocks, or smooth bottom. The smooth-bottom category can vary widely from ripples to gravelly or shelly or to small rocks with biological overgrowth as verified by television observations. Our observations have clearly demonstrated the need for an integrated multi-scale observation and sampling program in order to classify the bottom characteristics and to provide quantitative data for transport calculations. ?? 1980.
NASA Astrophysics Data System (ADS)
van der Meer, Jaap; Beukema, Jan; Dekker, Rob
2002-12-01
The extent to which it pays settling larvae of marine benthic organisms to actively select the habitat where they will spend the rest of their life can only be fully appreciated if the fitness consequences of such habitat selection processes are known. We estimated the lifetime egg production of the tellinid bivalve Macoma balthica at 11 sites over a tidal gradient in the western Wadden Sea, using a 30-year data series. The difference in individual lifetime egg production between the best sites in the lower tidal zone and the poorest sites on the high tidal flats was about a factor 10. The differences in lifetime egg production were related to differences in growth and, more importantly, survival. We argue that the large observed differences in reproductive output do not necessarily imply a lack of active habitat selection. As most animals start their last migration before final settlement from the high tidal flats, the choice may be one between a long and risky migration with a low chance of reaching the good habitat versus a more certain but poor existence on the high tidal flats.
NASA Astrophysics Data System (ADS)
van der Meer, Jaap; Beukema, Jan J.; Dekker, Rob
2003-01-01
The extent to which it pays settling larvae of marine benthic organisms to actively select the habitat where they will spend the rest of their life can only be fully appreciated if the fitness consequences of such habitat selection processes are known. We estimated the lifetime egg production of the tellinid bivalve Macoma balthica at 11 sites over a tidal gradient in the western Wadden Sea, using a 30-year data series. The difference in individual lifetime egg production between the best sites in the lower tidal zone and the poorest sites on the high tidal flats was about a factor 10. The differences in lifetime egg production were related to differences in growth and, more importantly, survival. We argue that the large observed differences in reproductive output do not necessarily imply a lack of active habitat selection. As most animals start their last migration before final settlement from the high tidal flats, the choice may be one between a long and risky migration with a low chance of reaching the good habitat versus a more certain but poor existence on the high tidal flats.
Barnard, P.L.; Hubbard, D.M.; Dugan, J.E.
2012-01-01
A 17-year time series of near-daily sand thickness measurements at a single intertidal location was compared with 5. years of semi-annual 3-dimensional beach surveys at the same beach, and at two other beaches within the same littoral cell. The daily single point measurements correlated extremely well with the mean beach elevation and shoreline position of ten high-spatial resolution beach surveys. Correlations were statistically significant at all spatial scales, even for beach surveys 10s of kilometers downcoast, and therefore variability at the single point monitoring site was representative of regional coastal behavior, allowing us to examine nearly two decades of continuous coastal evolution. The annual cycle of beach oscillations dominated the signal, typical of this region, with additional, less intense spectral peaks associated with seasonal wave energy fluctuations (~. 45 to 90. days), as well as full lunar (~. 29. days) and semi-lunar (~. 13. days; spring-neap cycle) tidal cycles. Sand thickness variability was statistically linked to wave energy with a 2. month peak lag, as well as the average of the previous 7-8. months of wave energy. Longer term anomalies in sand thickness were also apparent on time scales up to 15. months. Our analyses suggest that spatially-limited morphological data sets can be extremely valuable (with robust validation) for understanding the details of beach response to wave energy over timescales that are not resolved by typical survey intervals, as well as the regional behavior of coastal systems. ?? 2011.
NASA Astrophysics Data System (ADS)
van der Wal, Daphne; van Dalen, Jeroen; Wielemaker-van den Dool, Annette; Dijkstra, Jasper T.; Ysebaert, Tom
2014-07-01
Intertidal benthic macroalgae are a biological quality indicator in estuaries and coasts. While remote sensing has been applied to quantify the spatial distribution of such macroalgae, it is generally not used for their monitoring. We examined the day-to-day and seasonal dynamics of macroalgal cover on a sandy intertidal flat using visible and near-infrared images from a time-lapse camera mounted on a tower. Benthic algae were identified using supervised, semi-supervised and unsupervised classification techniques, validated with monthly ground-truthing over one year. A supervised classification (based on maximum likelihood, using training areas identified in the field) performed best in discriminating between sediment, benthic diatom films and macroalgae, with highest spectral separability between macroalgae and diatoms in spring/summer. An automated unsupervised classification (based on the Normalised Differential Vegetation Index NDVI) allowed detection of daily changes in macroalgal coverage without the need for calibration. This method showed a bloom of macroalgae (filamentous green algae, Ulva sp.) in summer with > 60% cover, but with pronounced superimposed day-to-day variation in cover. Waves were a major factor in regulating macroalgal cover, but regrowth of the thalli after a summer storm was fast (2 weeks). Images and in situ data demonstrated that the protruding tubes of the polychaete Lanice conchilega facilitated both settlement (anchorage) and survival (resistance to waves) of the macroalgae. Thus, high-frequency, high resolution images revealed the mechanisms for regulating the dynamics in cover of the macroalgae and for their spatial structuring. Ramifications for the mode, timing, frequency and evaluation of monitoring macroalgae by field and remote sensing surveys are discussed.
NASA Astrophysics Data System (ADS)
Fiorini, Flavia; Odeh, Weaam A. S. Al; Lokier, Stephen W.; Paul, Andreas
2016-04-01
Zonation of Recent mangrove environments can be defined using benthic foraminifera, however, little is known about foraminifera from mangrove environments of the Arabian Gulf. The objective of this study is to produce a detailed micropaleontological and sedimentological analysis to identify foraminiferal associations in several coastline environments (mangrove swamps and channels) located on the eastern side of Abu Dhabi Island (UAE). Detailed sediment sampling collection in mangal environments of Eastern Abu Dhabi was carried out to assess the distribution of living and dead benthic foraminifera in different sedimentary facies in the mangal and in the surrounding area comprising natural environments of the upper and lower intertidal area (mud flats and channels) and areas modified by anthropogenic activities (dredged channels). The fine-grain sediments collected near mangrove (Avicenna marina) roots presented a high abundance of living and dead foraminifera tests. The assemblages in these samples show very low diversity and are almost entirely constituted of small-sized opportunistic species belonging to the genera Ammonia and Elphidium. In particular: • Samples collected on the mud flat and in ponds at the margin of the channel show a foraminiferal assemblage characterised by abundant foraminifera belonging to the genera Ammonia, Elphidium, Triloculina, Quinqueloculina, Peneroplis and Spirolina. • Samples collected in the lower (wet) intertidal area close to Avicenna marina roots, presented a low-diversity assemblage mostly comprising opportunistic foraminifera of the genera Ammonia and Elphidium along with rare miliolidae. • Samples from the upper intertidal area (dry) close to Avicenna marina roots, produced an assemblage exclusively composed of small-sized opportunistic Ammonia and Elphidium, together with abundant specimens belonging to the genera Trochammina. Throchammina specimens have not been previously recorded from Recent sedimentary samples of the coastline environments of the Arabian Gulf. The samples collected in the higher energy settings (channels) were characterised by a very low abundance of foraminiferal tests, no or rare living forms were found in the coarser grained facies. Most of the samples collected in the dredged channels were barren. The distribution of Recent benthic foraminifera from mangrove environment of the Abu Dhabi region present a powerful tool for constructing zonation of marine coastline environments and can be employed as a modern analogue for interpreting the depositional environment of ancient coastline sediments.
1979-08-15
well industry with the use of the plant derivative, Guar Gum . Solutions of the product were used to suspend sand in the high-pressure, sand-water...Polymer Concentration (WPP.) Gum Karaya 850 Guar 400 Polyacrylamide, Polyhall-250 20 Polyox WSR-301 10 Hoyt and Fabula (1964) and Virk (1971) present data...achieved by Elata, Lehner, and Kahanovity (1966) for Guar Gum solutions and Meyer (1966) and Wells (1965) for Polyox. Many authors have described drag
Lake Michigan Bluff Dewatering and Stabilization Study - Allegan County, Michigan
2012-09-01
laminated to cross- bedded sand interbedded with reddish brown, often laminated clay; and reddish-brown to gray to blue-gray diamicton (till) containing...Till also is extremely variable in thickness and may be a thin gravel lens, or up to 44 ft of graded sand beds , planar and trough cross- beds , thin...lies lacustrine clay to below lake level. The in-place layers are nominally flat , behind the slumped bluff face. ERDC TR-12-11 12 Figure 8
'Endurance Crater's' Dazzling Dunes (false-color)
NASA Technical Reports Server (NTRS)
2004-01-01
As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces. Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere. Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.Spirit Studies Rock Outcrop at Home Plate
2006-03-06
This image shows two flat-topped, layered rocks with angular edges almost side by side, except they are separated by a smaller rock and two thin channels of reddish-brown sand. The bare rock surfaces are a light blue-gray
Evaluation of the effect on aggregate properties of samples extracted using the ignition furnace.
DOT National Transportation Integrated Search
2000-04-01
The Superpave mix design system includes four consensus aggregate properties to ensure aggregate quality: coarse aggregate angularity, flat and elongated particles, fine aggregate angularity, and sand equivalent. In addition to determining these cons...
A Review of distribution and quantity of lingering subsurface oil from the Exxon Valdez Oil Spill
NASA Astrophysics Data System (ADS)
Nixon, Zachary; Michel, Jacqueline
2018-01-01
Remaining lingering subsurface oil residues from the Exxon Valdez oil spill (EVOS) are, at present, patchily distributed across the geologically complex and spatially extensive shorelines of Prince William Sound and the Gulf of Alaska. We review and synthesize previous literature describing the causal geomorphic and physical mechanisms for persistence of oil in the intertidal subsurface sediments of these areas. We also summarize previous sampling and modeling efforts, and refine previously presented models with additional data to characterize the present-day linear and areal spatial extent, and quantity of lingering subsurface oil. In the weeks after the spill in March of 1989, approximately 17,750 t of oil were stranded along impacted shorelines, and by October of 1992, only 2% of the mass of spilled oil was estimated to remain in intertidal areas. We estimate that lingering subsurface residues, generally between 5 and 20 cm thick and sequestered below 10-20 cm of clean sediment, are present over 30 ha of intertidal area, along 11.4 km of shoreline, and represent approximately 227 t or 0.6% of the total mass of spilled oil. These residues are typically located in finer-grained sand and gravel sediments, often under an armor of cobble- or boulder-sized clasts, in areas with limited groundwater flow and porosity. Persistence of these residues is correlated with heavy initial oil loading together with localized sheltering from physical disturbance such as wave energy within the beach face. While no longer generally bioavailable and increasingly chemically weathered, present removal rates for these remaining subsurface oil residues have slowed to nearly zero. The only remaining plausible removal mechanisms will operate over time scales of decades.
Tidal River Elbe - a sediment budget for the grain size fraction of medium sand
NASA Astrophysics Data System (ADS)
Winterscheid, Axel
2016-04-01
Human interventions have a historic and ongoing impact on estuarine sediment budgets across many estuaries worldwide. An early inference was the construction of embankments resulting in a constant loss of intertidal flats. Additionally, settlement activities and large scale land use changes in the upstream catchment areas had also an effect on sediment inflow rates. Today, the navigation channels in estuaries have been deepened for larger and more efficient vessels to reach a well-developed infrastructure of harbors and industrial areas often located far inland. In the past few years and just within the North-East Atlantic, the total annual amount of dredged sediments dumped at sea varied from 80 to 130 million tons (OSPAR Commission). In most estuaries across Europe the resulting human impact on the sediment fluxes and morphodynamics is significant. A good understanding of estuarine processes is essential for determining useful and meaningful measures to mitigate negative effects and to improve the current situation. Maintenance dredging and its environmental effects are therefore in the focus of public attention. Against this background, it is the aim of the presentation to identify and therefore to separate the particular effect that maintenance dredging has on sediment fluxes and budgets in the estuarine environment. Case study is the Tidal River Elbe in Germany, and here we set the focus on the grain size fraction of medium sand. In the past, river engineering measures forced the natural dynamics to form a concentrated stream flow along a fixed channel, except at a number of locations where side channels still exist. In addition to that, the main channel was deepened several times. The last deepening was in 1999/2000. The most significant deepening, however, took place from 1957 to 1962. Until then, an erosion-stable layer of marine clay (in German called "Klei") formed a flat bottom along most sections of the main channel. After removal of this layer of marine clay by capital dredging, Weichselion sandy deposits, which formed the geological layer underneath, now became part of the sediment transport regime. Nowadays, most sections of the main channel are morphologically characterized by a medium sandy river bed and subaquatic dunes of several meters height followed by sections of a poorly structured river bed caused by the sedimentation of silty sediments. By setting up the sediment balance for medium sand, the fluxes entering the estuary from the inland Elbe is one source term in the equation. The average annual load for the medium sand is estimated to be 110,000 m³/year (1996 - 2008, measurement station Neu Darchau). Further downstream in the tidal part of the river there are no further measurement stations located, but the analysis of a time series of multibeam sonar data (2000 to 2014) shows that large amounts of medium sand episodically pass the tidal weir at Geesthacht only in the event of extreme flood. This is due to a significant increase in bed volume between Geesthacht and the Port of Hamburg in the aftermath of a singular extreme event. Until the next extreme event the bed volume (functions as temporary storage for medium sand) is eroding again, which is the second source term. By comparing the information on bed load fluxes, the evolution of bed volumes over time and the dredging statistics we can conclude for the longer term that the total amount of medium sand that has been dredged and taken out of the system for constructional purposes is the same order of magnitude compared to the sum of both source terms. Hence, there is no or very limited net transport of medium sand passing the port area and entering the downstream river section. From the subsequent analysis of multibeam sonar data (2008 - 2014) we know for the river section from Hamburg to Brunsbuettel (total distance of 40 km) that there has been a continuous loss of about 1 Mio. m³/a in bed volumes, which means a deficit situation for medium sand. Currently, the Weichselion deposit is the active source for medium sand, but due to the lack of medium sand fluxes from upstream this at the cost of having an ongoing deepening of the main channel. The presumed cause for this deficit situation is the current management of the sandy dredged material. First of all, dredging and subsequent extraction of the dredged material is strongly affecting the longitudinal transport of medium sandy sediments from upstream through the Port of Hamburg in seaward direction. Further downstream in the river section in deficit, all dredged material, which is about 1 Mio m³/a solely for the fraction of medium sand, is transported by hopper dredgers over a long distance up to 40 km in seaward direction and disposed on a single site near Brunsbuettel. This 1 Mio m³/a is a similar volume in comparison to the loss in bed volume. From an analysis of the geometry of the subaquatic dunes we know for sandy sediments a seaward net transport that exists for large parts of this river section. All in one, there is an irretrievable and ongoing loss of medium sandy sediments. Vice versa for the river section next to Brunsbuettel, which is the location of the disposal site, the data show an increase of bed volumes and dredging amounts at the same time. For the Elbe case study we could demonstrate that maintenance dredging (and the subsequent disposal) could have a significant impact on the large scale sediment budget. Appropriate measures to stabilize the sediment budget in the inner part of the Tidal River Elbe for medium sand is (a) to dispose all medium sandy dredged material as close as possible to the location of dredging and (b) to reduce the extraction of medium sand in the Hamburg Port area.
2015-12-16
Topography of the area varies from rugged rocky mountaintops, surrounded by gravel-laden alluvial fans and aprons, to sand and clay deposits in flat valley...disposal practices resulted in releases or disposal of organic solvents that have affected groundwater. A sanitary landfill is also located in this...Great Basin scrub, Sonoran Desert scrub and desert dunes with sandy flats, dunes and sandy areas around clay slicks with Sarcobatus (greasewood
Daily activity of four tropical intertidal hermit crabs from southeastern Brazil.
Turra, A; Denadai, M R
2003-08-01
This study describes the daily activity in a simulated high tide situation of four species of hermit crabs (Pagurus criniticornis, Clibanarius antillensis, C. sclopetarius, and C. vittatus) that coexist in an intertidal flat in southeastern Brazil. Observations were done in two-hour intervals during two subsequent days (48 h) in three replicate pools with thirty crabs each. Among species (between and within genera) there was an evident variation in activity patterns, of which three could be distinguished. The circadian activity patterns of C. antillensis and C. vittatus could be characterized as evening and nocturnal, with resting peaks during the morning and afternoon. The circadian activity pattern of C. sclopetarius was characterized by two marked peaks of inactivity, corresponding to dawn and evening, which could represent an intrinsic association with the semi-lunar tidal cycles of the study area. Pagurus criniticornis showed high activity not influenced by day/night conditions during the entire observed period. These activity pattern variations of the studied hermit crabs should be taken into account in designing further experiments. More precise and accurate interspecific behavioral comparisons among species could be achieved in nocturnal experiments, the high activity period of all species.
Self-organization of intertidal snails facilitates evolution of aggregation behavior.
Stafford, Richard; Davies, Mark S; Williams, Gray A
2008-01-01
Many intertidal snails form aggregations during emersion to minimize desiccation stress. Here we investigate possible mechanisms for the evolution of such behavior. Two behavioral traits (following of mucus trails, and crevice occupation), which both provide selective advantages to individuals that possess the traits over individuals that do not, result in self-organization of aggregations in crevices in the rock surface. We suggest that the existence of self-organizing aggregations provides a mechanism by which aggregation behavior can evolve. The inclusion of an explicitly coded third behavior, aggregation, in a simulated population produces patterns statistically similar to those found on real rocky shores. Allowing these three behaviors to evolve using an evolutionary algorithm, however, results in aggregation behavior being selected against on shores with high crevice density. The inclusion of broadcast spawning dispersal mechanisms in the simulation, however, results in aggregation behavior evolving as predicted on shores with both high crevice density and low crevice density (evolving in crevices first, and then both in crevices and on flat rock), indicating the importance of environmental interactions in understanding evolutionary processes. We propose that self-organization can be an important factor in the evolution of group behaviors.
Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta
2018-01-01
surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
Dune growth under multidirectional wind regimes
NASA Astrophysics Data System (ADS)
Gadal, C.; Rozier, O.; Claudin, P.; Courrech Du Pont, S.; Narteau, C.
2017-12-01
Under unidirectional wind regimes, flat sand beds become unstable to produce periodic linear dunes, commonly called transverse dunes because their main ridges are oriented perpendicular to the air flow. In areas of low sediment availability, the same interactions between flow, transport and topography produce barchan dunes, isolated sand-pile migrating over long distances with a characteristic crescentic shape. For the last fifteen years, barchan dunes and the instability at the origin of transverse dunes have been the subject of numerous studies that have identified a set of characteristic length and time scales with respect to the physical properties of both grains and fluid. This is not the case for dunes developing under multidirectional wind regimes. Under these conditions, dune orientation is measured with respect to the direction of the resultant sand flux. Depending on the wind regime, dunes do not always line up perpendicularly to the resultant sand flux, but can also be at an oblique angle or even parallel to it. These oblique and longitudinal dunes are ubiquitous in all deserts on Earth and planetary bodies because of the seasonal variability of wind orientation. They are however poorly constrained by observations and there is still no complete theoretical framework providing a description of their orientation and initial wavelength. Here, we extend the linear stability analysis of a flat sand of bed done in two dimensions for a unidirectional flow to three dimensions and multidirectional flow regimes. We are able to recover transitions from transverse to oblique or longitudinal dune patterns according to changes in wind regimes. We besides give a prediction for the initial dune wavelength. Our results compare well to previous theory of dune orientation and to field, experimental and numerical data.
Chenier Development within a Prograding Strandplain Complex
NASA Astrophysics Data System (ADS)
FitzGerald, D.; Hein, C. J.; Georgiou, I. Y.
2017-12-01
Strandplains dominate the southern coast of Brazil due to abundant shelf and local sediment and falling sea-level (2-4 m) during the past 6 ka. These plains are composed chiefly of swash-aligned sandy beach and dune ridges deposited in bedrock-framed embayments 2-5 km wide and 3-10 km long. The Tijucas Strandplain developed in a more sheltered and deeply embayed setting fronted by long peninsulas and bedrock islands, which reduce ocean wave energy. The Tijucas River bisects the plain and has provided the primary source of sediment to produce a Holocene basinal fill composed of a seaward-thickening bay mud sequence (10-16 m thick). Long-term gradual shoaling of the basin and attendant lessening wave energy produced upper strandplain foreshore and beach units that transition from landward 8-m thick sand sections to a 3-4-m thick mud unit along the present-day shoreline. The gradual lateral change of the morpho-sedimentary character of the plain is likely a product of climate-induced changes in sediment composition and supply and/or wave regime. For example, the mid-plain is defined by a series of abrupt alterations between sand-dominated beach ridges and mixed sand-and-mud cheniers. This area contains at least four chenier complexes consisting of closely spaced (25-40 m apart) 50-75 m wide ridges composed of 3-4 m thick shelly sand underlain and separated by a cohesive basin-fill clay. The seaward portion of the plain has two sandy chenier ridges each 1 m high and <3 m thick, separated by 100 m of consolidated mud with rare sand beds. Ground-penetrating radar sections show ridges contain numerous seaward-sloping beds having variable dips and multiple truncations, resulting from repeated erosional and depositional events. Expansive, thin (<50 cm) sand sheets composed of flat-lying to shallowly landward-dipping internal radar reflections extend landward from most chenier ridges that overtop inter-ridge mud. The present beach comprises the most current developing chenier. Recent storm-induced landward transport of a thin, sandy overwash fan mimics the proposed mechanism for earlier ridge-swale development. Finally, a future chenier is forming 1 km offshore where breaking waves concentrate sand. Between these two sand deposits is a shallow (< 3 m) muddy region where cores and surface samples indicate an absence of sand.
Life history of Lineus viridis (Müller, 1774) (Heteronemertea, Nemertea)
NASA Astrophysics Data System (ADS)
von Döhren, Jörn; Beckers, Patrick; Bartolomaeus, Thomas
2012-09-01
Lineus viridis is a common nemertean species of North-Atlantic intertidal sand flats. Its mating behaviour is peculiar insofar as this species is reported to be polyandric. However, detailed information on this topic is lacking. In order to get more data on the reproduction, oogenesis and life history of this species, a population in the Wadden Sea on the Isle of Sylt (North Sea) was studied between 2005 and 2011. We conducted regular surveys, during which we sampled, measured and recorded the sex status of 25-100 individuals at each sampling event; at least three individuals were fixed for histological studies at each sampling date. In addition, animals were kept in the laboratory for 3 years to complement field data on sexual identity. Lineus viridis was found to reproduce annually in several successive year; the females are significantly larger than the males. Oogenesis starts in spring, shortly after the preceding reproductive period, and continues until the end of December. Spermiogenesis starts in late autumn and also ends late in December. During mating, several males are generally found crawling on a single female, which forms a cocoon that encloses both the female and the associated males. Fertilization is internal. While females discharge all of their eggs during a single mating event and lose more than 40% of their wet weight, males only empty a few of their gonads, and are thus able to fertilize more than one female. Our study clearly shows that Lineus viridis is a perennial, iteroparous species with a pronounced sexual size dimorphism. During this long-term study, no evidence for sequential hermaphroditism has been found. The observed polyandric mating system in this species raises further questions regarding mate and sperm competition that deserve additional research.
Trajectories of saltating sand particles behind a porous fence
NASA Astrophysics Data System (ADS)
Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo
2015-01-01
Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.
How bioavailable is highly weathered Deepwater Horizon oil?
NASA Astrophysics Data System (ADS)
Bostic, J.; Ziolkowski, L. A.; Reddy, C. M.; Aeppli, C.; Swarthout, B.
2016-02-01
Oiled sand patties continue to be deposited on northern Gulf of Mexico beaches five years after the Deepwater Horizon (DwH) oil spill. It is known that during the first 18 months post-spill, sand patties from DwH were chemically transformed, both biotically and abiotically, from wellhead release to beach deposition. However, the chemically transformed oil, which appears to become more polar over time, is not well understood in regards to its biodegradation potential. Biodegradation exerts a large control on the fate of spilled oil, representing a major conduit for its removal from the environment. To assess the bioavailability of this weathered oil, sand patties were collected from intertidal and supratidal zones of beaches in Florida, Alabama, and Mississippi in July 2015. Microbial biomarkers of the viable community, phospholipid fatty acids (PLFA), were detected on all samples collected. The PLFA distributions (mostly saturated and branched structures) and abundances (2 - 9 x 1013 cells/g sand patty) were similar across sampling locations. The positive correlation between PLFA abundance and surface area to volume ratios of sand patties indicates that microbes are preferentially inhabiting outside surfaces of the patties. We will present data on the radiocarbon (14C) content of PLFA to assess carbon (C) sources assimilated by microbes. 14C of PLFA is a powerful tool for assessing C sources assimilated in this setting. Oil has no 14C (Δ14C= -1000‰) while modern organic matter has relatively abundant 14C (Δ14C= 0‰). Fingerprinting analysis of biomarker ratios using comprehensive two-dimensional gas chromatography will be presented to ascertain if oil originated from DwH. The extent of the chemical transformation of the oil into more polar compounds will also be measured using thin layer chromatography. Results of this investigation aim to determine the bioavailability and ultimate fate of oiled sand patties that continue to wash ashore on Gulf of Mexico beaches.
NASA Astrophysics Data System (ADS)
Morio, Olivier; Sedrati, Mouncef; Goubert, Evelyne
2014-05-01
As well as marine submersion or erosive phenomena, clay-silted sediment in-filling on estuarial and bay beaches are a main issue in these human-attractive areas. Coupled sandy/gravely and clay/silty intertidal areas can be observed in these particular coastal areas, depending of rivers characteristic (discharge of particle, water flow), ocean dynamics (wave exposure, current) and sediments sources. All around the world, sandy/gravely beaches are exposed to punctual or continuous input clay sediments. Vilaine estuary, Bay of Arcachon and Bay of Seine in France, Plymouth Bay in UK and also Wadden Sea in Deutschland are few examples of muddy/sandy coupled or mixed system. The beach of Bétahon (Ambon town, Brittany - France) is located on the external Vilaine estuary and is an example of this issue. This meso-macrotidal intermediate (low tide terrace) beach presents heterogeneous sediments. The upper intertidal zone is composed by sand and gravel and characterized by a steep slope. A very gentle slope characterized the lower part of the beach and is constituted by silt and clay. Clay/sand limit is characterized by a decimetric erosion cliff of mudflat along the beach. In order to understand bed variations and sediment transport of this complex heterogeneous beach, a well understanding of wave dynamic across the beach is necessary. This study focus on wave dynamics over the beach, using field observations and MIKE 21 3D wave numerical model. This paper is a preliminary approach of an upcoming global understanding of this estuarial beach behavior. Swell from deep-sea to near-shore area is modeled over a 100 km² area and real wind, deep sea wave characteristic, river water flow and tidal level are defined as open boundary conditions for the regional model. This last one is based on multiple bathymetric surveys over the last 50 years. Local model, triangular mesh gridded to 5 meters, covering Bétahon beach , is based on topographic and photographic survey of the mudflat since 2005 (an amplitude above 1.4 meters has been observed over a start reference state). Modeling significant wave height, wave direction and period are compared to a cross-shore wave dynamics survey over the beach, during one week. Surf zone positions over the beach, wave characteristics at local and regional scales, impacts of mudflat altitude on waves are analyzed and discussed.
Does bedding promote pine survival and growth on ditched wet sands?
Ralph A. Klawitter
1970-01-01
Results from a study of prepared beds for planting slash pine on a wet sandy flat in Florida were inconclusive. Early growth was improved, but survival was not; and differences between a bedded site and an unbedded site were slight.
Documents related to Request for Coverage under Stone Quarrying, Crushing and Screening Facilities General Permit, for the Unimin Corporation Silica Sand Rail Transloading Facility on the Fort Berhold Indian Reservation, North Dakota.
Giant subtidal stromatolites forming in normal salinity waters
Dill, R.F.; Shinn, E.A.; Jones, A.T.; Kelly, K.; Steinen, R.P.
1986-01-01
We report here the discovery of giant lithified subtidal columnar stromatolites (>2 m high) growing in 7-8 m of clear oceanic water in current-swept channels between the Exuma Islands on the eastern Bahama Bank. They grow by trapping ooid and pelletal carbonate sand and synsedimentary precipitation of carbonate cement within a field of giant megaripples. The discovery is important to geologists and biologists because similar organo-sedimentary structures built by a combination of cementation and the trapping of sediment by microbes were the dominant fossil types during the Precambrian. Stromatolites are thought to have been responsible for the production of free oxygen and thus the evolution of animal life1,2. Until the discovery of small lithified subtidal columnar stromatolites in the Bahamas3, the only subtidal marine examples known to be living while undergoing lithification were in the hypersaline waters of Hamelin Pool at Shark Bay, Western Australia4-7. Shark Bay stromatolites range from intertidal to the shallow subtidal with the larger columns reaching 1 m in height. The Shark Bay stromatolites have strongly influenced geological interpretation; by analogy, many ancient stromatolites have been considered to have grown in intertidal and/or hypersaline conditions8, although hypersalinity was not a necessity for growth during the Precambrian because grazing metazoan life had not then evolved. ?? 1986 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Casariego, Agustina Mendez; Alberti, Juan; Luppi, Tomás; Daleo, Pedro; Iribarne, Oscar
2011-08-01
Intertidal zones of estuaries and embayments of the SW Atlantic are dominated by the semiterrestrial burrowing grapsid crab, Neohelice ( Chasmagnathus) granulata, and characterized by extensive mud flats surrounded by salt marshes. In this work we examined spatial patterns of distribution of N. granulata during two years to explain their movement patterns. The results of the population sampling showed segregation by sex and size throughout the intertidal, with seasonal variations in densities and different condition indices for adults and juveniles at the different zones. The comparison of seasonal activity (ambulatory activity outside burrows) between marshes and mudflats shows that short term (e.g. daily) variations in activity were controlled by tides. Crabs were active at high tides but increased their activity on days with higher tidal amplitude. Seasonal activity showed that at both areas, females remain with low activity except for a peak in winter, while males showed the highest activity during summer in the mudflat zone, but not so in the marsh. This pattern can be the response to differences in stress tolerance, suggesting that high temperatures are limiting the performance of adult crabs during summer, especially at the marsh where physical conditions can be more critical. The spatial size segregation can be explained by differential mortality in each zone (estimated with tethered crabs), and by the juvenile movement between these zones (estimated with movement traps). Juvenile mortality is higher at the mudflat, while adult mortality is higher in the marsh. Smaller juveniles moved to the marsh, where the mortality is lower, and the larger juveniles moved towards the mudflat. This mortality is due almost exclusively to cannibalism, so our results suggest that this movement of different size classes between zones is controlled, at least in part, by intraspecific predation.
NASA Astrophysics Data System (ADS)
Leslie, Timothy; James, Nicola C.; Potts, Warren M.; Rajkaran, Anusha
2017-11-01
Estuarine-dependent marine fish species rely on shallow, sheltered and food rich habitats for protection from predators, growth and ultimately recruitment to adult populations. Hence, habitats within estuaries function as critical nursery areas for an abundance of fish species. However, these habitats vary in the degree of nursery function they provide and few studies have quantitatively assessed the relative nursery value of different habitat types within estuaries, particularly in the context of habitat complexity. This study aimed to assess the nursery value of the dominant vegetated habitats, namely the submergent Zostera capensis (Setch.) (seagrass) beds and emergent Spartina maritima (Curtis) Fernald (salt marsh) beds in the Bushmans Estuary, South Africa. Biomass and stem density were sampled seasonally in order to gain insight into the vegetation dynamics of seagrass and salt marsh beds. Aerial cover, canopy height and underwater camera imagery were used to develop multiple complexity indices for prioritizing habitat complexity. The relatively consistent results of the dimensionless indices (interstitial space indices and fractal geometry) suggest that Z. capensis exhibits an overall greater degree of complexity than S. maritima, and hence it can be expected that fish abundance is likely to be higher in Z. capensis beds than in S. maritima habitats. Underwater video cameras were deployed in seagrass, salt marsh and sand flat habitats to assess the relative abundance and behaviour of the estuarine-dependent sparid Rhabosargus holubi (Steindachner 1881) in different habitats. The relative abundance of R. holubi was significantly higher in Z. capensis seagrass than S. maritima salt marsh and sand flats, whilst the behaviour of R. holubi indicated a high degree of habitat use in structured habitats (both Z. capensis and S. martima) and a low degree of habitat use in unstructured sand flat habitats.
Foraminiferal assemblages along the intertidal zone of Itapanhaú River, Bertioga (Brazil)
NASA Astrophysics Data System (ADS)
Passos, Camila Cunha; Kukimodo, Isabela; Semensatto, Décio
2017-11-01
Foraminifera found in intertidal zones have been successfully used in studies examining relative sea level monitoring around the world. For this purpose, it is necessary to establish the typical foraminiferal assemblages of different salinity regimes and sediment sub aerial exposition. In the present work we collected 27 sediment samples from 5 transversal transects in the mangroves of the Itapanhaú River (Bertioga, SP, Brazil). Transects were distributed along salinity and altitudinal gradients in order to study the community structure of recent foraminifera in terms of diversity and species composition. We identified 35 species and described 5 groups of species in different environmental settings, from downstream to upstream and from margin to landward in the mangrove forest, associated with salinity regime and sediment proportional exposure time. These variables seem to primarily control species distribution and community structure in the intertidal zone, although dissolution of calcareous taxa cannot be ruled out. The first group is dominated by Ammonia spp. and Elphidium spp., colonizes the mouth of the river on an unvegetated tidal flat in the lowest portion of the intertidal zone, under a polyhaline regime. This group exhibits the smallest sub aerial exposition (19,3%) as well as comparatively high species diversity. The second group is formed by a sample dominated by Trochammina inflata and Arenoparrella mexicana, obtained in a polyhaline area on the margin of the mangrove. The third group is dominated by Miliammina fusca and Ammotium spp., and colonizes mesohaline mangrove forests, with proportional exposure time of between 50 and 75%, and high species diversity. The fourth group comprises communities dominated by M. fusca and T. inflata, and colonizes the intermediate level in the interior of the mangrove forest, exhibiting high species diversity. The fifth group comprises communities broadly dominated by M. fusca, colonizing oligohaline margins and the highest level of polyhaline mangrove forests. This group exhibits the greatest sub aerial exposition and lowest species diversity of all five groups. Hence, these foraminifera groups may serve as a reference with which to interpret drilling core layers and reconstruct relative sea levels in other similar estuarine systems.
NASA Astrophysics Data System (ADS)
Endo, Noritaka
2016-12-01
A simple stochastic cellular automaton model is proposed for simulating bedload transport, especially for cases with a low transport rate and where available sediments are very sparse on substrates in a subaqueous system. Numerical simulations show that the bed type changes from sheet flow through sand patches to ripples as the amount of sand increases; this is consistent with observations in flume experiments and in the field. Without changes in external conditions, the sand flux calculated for a given amount of sand decreases over time as bedforms develop from a flat bed. This appears to be inconsistent with the general understanding that sand flux remains unchanged under the constant-fluid condition, but it is consistent with the previous experimental data. For areas of low sand abundance, the sand flux versus sand amount (flux-density relation) in the simulation shows a single peak with an abrupt decrease, followed by a long tail; this is very similar to the flux-density relation seen in automobile traffic flow. This pattern (the relation between segments of the curve and the corresponding bed states) suggests that sand sheets, sand patches, and sand ripples correspond respectively to the free-flow phase, congested phase, and jam phase of traffic flows. This implies that sand topographic features on starved beds are determined by the degree of interference between sand particles. Although the present study deals with simple cases only, this can provide a simplified but effective modeling of the more complicated sediment transport processes controlled by interference due to contact between grains, such as the pulsatory migration of grain-size bimodal mixtures with repetition of clustering and scattering.
Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport
NASA Astrophysics Data System (ADS)
Weaver, C. M.; Wiggs, G.
2007-12-01
Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.
NASA Astrophysics Data System (ADS)
Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.
2016-09-01
Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.
Erwin, Terry L.
2011-01-01
Abstract Information on the three previously described species of Halocoryza Alluaud is updated and a new species for the genus from Isla Carmen, Sea of Cortés, Baja California Sur, México is described. Halocoryza whiteheadiana sp. n. was found at UV light on a beach of that island. This species does not fit the profile of the other three species, i.e., living on coralline beach sands, or in the Mangrove intertidal zone. Two alternative possibilities as to why this is so are suggested and a study plan for testing these possibilities is proposed. PMID:21998544
Condition assessment of tidal wetlands of Washington, Oregon and California
EPA and State partners conducted an assessment of the condition of estuarine tidal wetlands of Washington, Oregon and California at 217 sites during the summer of 2002. Dominant habitat types varied, although unvegetated sand or mud flats were the dominant habitat types for all...
Tidal-cycle changes in oscillation ripples on the inner part of an estuarine sand flat
Dingler, J.R.; Clifton, H.E.
1984-01-01
Oscillation ripples form on subaqueous sand beds when wave-generated, near-bottom water motions are strong enough to move sand grains. The threshold of grain motion is the lower bound of the regime of oscillation ripples and the onset of sheet flow is the upper bound. Based on the relation between ripple spacing and orbital diameter, three types of symmetrical ripples occur within the ripple regime. In the lower part of the ripple regime (orbital ripples), spacing is proportional to orbital diameter; in the upper part (anorbital ripples) spacing is independent of orbital diameter. Between these regions occurs a transitional region (suborbital ripples). Oscillation ripples develop on a sandy tidal flat in Willapa Bay, Washington, as a result of waves traversing the area when it is submerged. Because wave energy is usually low within the bay, the ripples are primarily orbital in type. This means that their spacing should respond in a systematic way to changes in wave conditions. During the high-water parts of some tidal cycles, ripples near the beach decrease in spacing during the latter stage of the ebb tide while ripples farther offshore do not change. Observations made over several tidal cycles show that the zone of active ripples shifts on- or offshore in response to different wave conditions. Detailed bed profiles and current measurements taken during the high-water part of spring tides show the manner in which the oscillation ripples change with changes in orbital diameter. Changes in ripple spacing at the study site could be correlated with changes in orbital diameter in the manner suggested by the criterion for orbital ripples. However, there appeared to be a lag time between a decrease in orbital diameter and the corresponding decrease in ripple spacing. Absence of change during a tidal cycle could be attributed to orbital velocities below the threshold for grain motion that negated the effects of changes in orbital diameter. Because changes in sand-flat ripples depend both upon changes in orbital diameter and upon the magnitude of the orbital velocity, exposed ripples were not necessarily produced during the preceding high tide. In fact, some ripples may have been just produced, while others, farther offshore, may have been produced an unknown number of tides earlier. Therefore, when interpreting past wave conditions over tidal flats from low-tide ripples, one must remember that wave periods have to be short enough to produce velocities greater than the threshold velocity for the orbital diameters calculated from the observed ripple spacings. ?? 1984.
Recent benthic foraminifera assemblages from mangrove swamp and channels of Abu Dhabi (UAE)
NASA Astrophysics Data System (ADS)
Fiorini, Flavia; Lokier, Stephen W.; Odeh, Weaam A. S. Al; Paul, Andreas; Song, Jianfeng; Freeman, Mark; Michel, Françoise
2017-04-01
Zonation of Recent mangrove environments can be defined using benthic foraminifera, however, little is known about foraminifera from mangrove environments of the Persian/Arabian Gulf. The objective of this study is to produce a detailed micropaleontological and sedimentological analysis to identify foraminiferal associations from mangrove swamps and channels located on the eastern side of Abu Dhabi Island (UAE). Detailed sediment sampling collection in mangal environments of Eastern Abu Dhabi was carried out to assess the distribution of benthic foraminifera in different sedimentary facies in the mangal and in the surrounding natural environments of the upper and lower intertidal area (mud flats and channels). A 100 m transect across a natural channel in a mangal on the eastern side of Abu Dhabi Island was sampled in detail for sedimentological and foraminiferal analysis. Forty-seven samples were collected at 2 meter intervals along the transect in a number of different sedimentary facies including; fine sediment in areas exposed during low tide and close to mangrove trees (Avicennia marina), fine sediment rich in leaf material, coarse sediment in channels, and coarse sediments with a shell lag. At each sampling location environmental parameters were recorded, including water depth, salinity, temperature and pH. Samples collected for foraminiferal analysis were stained in rose Bengal in order to identify living specimens. Samples collected on the mud flat at the margin of the channel show a living foraminiferal assemblage characterised by abundant foraminifera belonging to the genera Ammonia, Elphidium, Cribroelphidium, Triloculina, Quinqueloculina, Sigmoilinita, Spiroloculina, Peneroplis and Spirolina. Samples collected in the lower (wet) intertidal area close to Avicennia marina roots, presented a low-diversity assemblage mostly comprising small-sized opportunistic foraminifera of the genera Ammonia and Cribroelphidium along with rare Triloculina and Quinqueloculina. Samples from the upper intertidal areas (often dry) close to Avicennia marina roots and leaf material, produced an assemblage exclusively composed of small-sized opportunistic Ammonia and Cribroelphidium, together with abundant specimensof agglutinated foraminifera belonging to the genera Trochammina. The samples collected in the higher energy settings (channels) were rich in foraminiferal tests, rare living forms were found in the coarser grained facies. The more abundant genera of foraminifera in these facies were miliolids belonging to the genera Triloculina, Quinqueloculina, Sigmoilina and epiphytic larger benthic foraminifera belonging to the genera Peneroplis, Spirolina and Sorites. The distribution of Recent benthic foraminifera from the mangrove environments of the Abu Dhabi region present a powerful tool for constructing a zonation of marine coastline environments and can be employed as a modern analogue for interpreting the depositional environment of ancient coastline sediments.
NASA Astrophysics Data System (ADS)
Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.
2014-10-01
Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.
NASA Astrophysics Data System (ADS)
Meziane, Tarik; Tsuchiya, Makoto
2002-02-01
Total lipid amounts, fatty acid signature analysis, and C:N measurements were used to investigate the sources of organic matter in an Okinawan estuary (Okukubi, Japan) during the 1999 rainy season. This estuary has a mangrove forest and receives agricultural wastewater. Highest concentrations of total lipids and lowest C:N values were simultaneously found near the pipe where the agricultural water is discharged. Fatty acid profiles in the sediments varied among the stations, indicating differences in the contributing organic sources. Small amounts of lipids and low relative contributions of long-chain fatty acids, markers of vascular plants, were found at stations within and adjacent to the mangrove. These results indicate that the export of organic matter from the mangrove litter to the intertidal flat was limited and spatially restricted. The wastewater seems to induce high amounts of bacteria, macroalgae and benthic diatoms, as indicated by their respective fatty acid markers. The fatty acid profiles of the tissues of two dominant intertidal invertebrates, the crab Uca vocans and the gastropod Terebralia sulcata, indicated that their diet was largely comprised of bacteria. Green macroalgae were important food sources for the gastropods; diatoms and mangrove biomass contributed to the nutrition of the crabs, although their contributions were smaller.
Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments
Visscher, P.T.; Kiene, R.P.; Taylor, B.F.
1994-01-01
Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.
Dong, Yun-Wei; Li, Xiao-Xu; Choi, Francis M P; Williams, Gray A; Somero, George N; Helmuth, Brian
2017-05-17
Biogeographic distributions are driven by cumulative effects of smaller scale processes. Thus, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature ( T b ), microclimatic conditions, and behavioural thermoregulation. To understand interactions among these variables, we analysed the thermal tolerances of three species of intertidal snails from different latitudes along the Chinese coast, and estimated potential T b in different microhabitats at each site. We then empirically determined the temperatures at which heart rate decreased sharply with rising temperature (Arrhenius breakpoint temperature, ABT) and at which it fell to zero (flat line temperature, FLT) to calculate thermal safety margins (TSM). Regular exceedance of FLT in sun-exposed microhabitats, a lethal effect, was predicted for only one mid-latitude site. However, ABTs of some individuals were exceeded at sun-exposed microhabitats in most sites, suggesting physiological impairment for snails with poor behavioural thermoregulation and revealing inter-individual variations (physiological polymorphism) of thermal limits. An autocorrelation analysis of T b showed that predictability of extreme temperatures was lowest at the hottest sites, indicating that the effectiveness of behavioural thermoregulation is potentially lowest at these sites. These results illustrate the critical roles of mechanistic studies at small spatial scales when predicting effects of climate change. © 2017 The Author(s).
Bell, R.G.; Hume, T.M.; Dolphin, T.J.; Green, M.O.; Walters, R.A.
1997-01-01
Physical environmental factors, including sediment characteristics, inundation time, tidal currents and wind waves, likely to influence the structure of the benthic community at meso-scales (1-100 m) were characterised for a sandflat off Wiroa Island (Manukau Harbour, New Zealand). In a 500 x 250 m study site, sediment characteristics and bed topography were mostly homogenous apart from patches of low-relief ridges and runnels. Field measurements and hydrodynamic modelling portray a complex picture of sediment or particulate transport on the intertidal flat, involving interactions between the larger scale tidal processes and the smaller scale wave dynamics (1-4 s; 1-15 m). Peak tidal currents in isolation are incapable of eroding bottom sediments, but in combination with near-bed orbital currents generated by only very small wind waves, sediment transport can be initiated. Work done on the bed integrated over an entire tidal cycle by prevailing wind waves is greatest on the elevated and flatter slopes of the study site, where waves shoal over a wider surf zone and water depths remain shallow e enough for wave-orbital currents to disturb the bed. The study also provided physical descriptors quantifying static and hydrodynamic (tidal and wave) factors which were used in companion studies on ecological spatial modelling of bivalve distributions and micro-scale sediment reworking and transport.
Li, Xiao-xu; Choi, Francis M. P.; Williams, Gray A.; Somero, George N.; Helmuth, Brian
2017-01-01
Biogeographic distributions are driven by cumulative effects of smaller scale processes. Thus, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (Tb), microclimatic conditions, and behavioural thermoregulation. To understand interactions among these variables, we analysed the thermal tolerances of three species of intertidal snails from different latitudes along the Chinese coast, and estimated potential Tb in different microhabitats at each site. We then empirically determined the temperatures at which heart rate decreased sharply with rising temperature (Arrhenius breakpoint temperature, ABT) and at which it fell to zero (flat line temperature, FLT) to calculate thermal safety margins (TSM). Regular exceedance of FLT in sun-exposed microhabitats, a lethal effect, was predicted for only one mid-latitude site. However, ABTs of some individuals were exceeded at sun-exposed microhabitats in most sites, suggesting physiological impairment for snails with poor behavioural thermoregulation and revealing inter-individual variations (physiological polymorphism) of thermal limits. An autocorrelation analysis of Tb showed that predictability of extreme temperatures was lowest at the hottest sites, indicating that the effectiveness of behavioural thermoregulation is potentially lowest at these sites. These results illustrate the critical roles of mechanistic studies at small spatial scales when predicting effects of climate change. PMID:28469014
Velocity and sediment surge: What do we see at times of very shallow water on intertidal mudflats?
NASA Astrophysics Data System (ADS)
Zhang, Qian; Gong, Zheng; Zhang, Changkuan; Townend, Ian; Jin, Chuang; Li, Huan
2016-02-01
A self-designed "bottom boundary layer hydrodynamic and suspended sediment concentration (SSC) measuring system" was built to observe the hydrodynamic and the SSC processes over the intertidal mudflats at the middle part of the Jiangsu coast during August 8-10, 2013. Velocity profiles within 10 cm of the mudflat surface were obtained with a vertical resolution as fine as 1 mm. An ADCP was used to extend the profile over the full water depth with a resolution of 10 cm and the vertical SSC profile was measured at intervals using Optical Backscatter Sensors (OBS). At the same time, water levels and wave conditions were measured with a Tide and Wave Recorder. Measured data suggested that the vertical structure of velocity profiles within 10 cm above the bed maintains a logarithmic distribution during the whole tidal cycle except the slack-water periods. Shallow flows during both the early-flood period and the later-ebb period are characterized by a relatively large vertical velocity gradient and a "surge" feature. We conclude that the very shallow water stages are transient and may not contribute much to the whole water and sediment transport, while they can play a significant role in the formation and evolution of micro-topographies on tidal flats.
Observation and numerical modeling of tidal dune dynamics
NASA Astrophysics Data System (ADS)
Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry
2018-05-01
Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.
Storm-generated bedforms and relict dissolution pits and channels on the Yucatan carbonate platform
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Goff, J. A.; Stewart, H. A.; Perez-Cruz, L. L.; Davis, M. B.; Duncan, D.; Saustrup, S.; Sanford, J. C.; Fucugauchi, J. U.
2013-12-01
The Yucatan 2013 (cruise number 2013/4_ECORD) geophysical and geotechnical hazard site survey took place aboard the R/V Justo Sierra in April 2013. Our study was conducted within the Chicxulub impact crater, encompassing three potential IODP drilling sites. The survey was located ~32 km northwest of Progreso, Mexico; data acquired included ~15.6 km2 of complete multibeam bathymetry coverage, ~435 line km of side scan sonar and CHIRP data, 204 line kilometers of magnetometer data, and 194 line kilometers of surface tow boomer profiles. Based on these data, this portion of the Yucatan Shelf consists of flat-lying, hard limestone rock overlain by isolated ribbons of carbonate sand <1.0 m thick. These ribbons are oriented along NE-SW trends and have smaller scale orthogonal sand-waves (~20-100 m wavelengths and relief of ~0.2-0.6 m) on them. The sand waves are anisotropic with steeper slopes facing the NE. The larger scale morphology can be classified as longitudinal bedforms (ribbons), and the smaller scale transverse bedforms formed in response to a NE-directed flow. This flow direction is inconsistent with the ambient west-directed current conditions, and may therefore be indicative of storm-driven currents. Numerous dissolution pits, ~5-50m in diameter, ~0.2-0.5 m deep with steep (0.1-0.5 gradient) walls, are present in the bare rock regions of most of the study area. These occasionally are floored by rippled, highly reflective (coarse) sediments. We interpret these pits as representing karstic morphology formed during the last sub-aerial exposure of the study area interpreted to have occurred during Holocene times given the present day ~17 m average water depth. A sub-surface reflector imaged on the surface tow boomer data lies 1-3 m below the hard seafloor reflection (sand ribbons are below the vertical resolution of the surface tow boomer), which we interpret as a layer within the limestone bedrock. This reflector is flat-lying and undisturbed throughout the survey area. Therefore, none of these dissolution pits appear to be underlain by a cenote or sink hole. The NW sector of the survey area exhibits a more complex morphology than the alternating ribbon/bare rock morphology elsewhere, including linear scarps (up to ~1 m relief), deeper pitting (up to ~1 m relief), and sinuous, dendritic channeling (up to ~2 m relief). The geologic origin of these features will require further investigation. Sand drifts are present in this region, but are thinner and cover less area. These observations show the dominant modern sediment formation and transport processes on this starved platform are from large storms and hurricanes that place large regions of the platform at wave base. Remaining observed features were generated during times of lower sea level.
WIND CHARACTERISTICS OF MESQUITE STREETS IN THE NORTHERN CHIHUAHUAN DESERT, NEW MEXICO, USA
The most active areas for sand movement in the mesquite-dominated ecosystems in the northern part of the Chihuahuan Desert are elongated bare soil patches referred to as "streets." Wind properties were measured at two flat mesquite sites having highly similar sandy textures but...
NASA Astrophysics Data System (ADS)
Baird, Dan; Asmus, Harald; Asmus, Ragnhild
2011-01-01
Flow networks of nine sub-systems consisting of 59 components each of the Sylt-Rømø Bight, German Wadden Sea, were constructed depicting the standing stocks and flows of material and energy within and between the sub-systems. Carbon, nitrogen and phosphorous were used as currencies for each sub-system, thus resulting in 27 network models, which were analyzed by ecological network analytical protocols. Results show substantial variability in the dynamics of these elements within and between the nine sub-systems, which differ in habitat structure, species diversity and in the standing stocks of their constituent living and non-living components. The relationship between the biodiversity and selected information indices and ratios, derived from ecological network analysis, of individual sub-systems is variable and differ substantially between them. Ecosystem properties such as the structure and magnitude of the recycling of these elements, number of cycles, and total sub-system activity were calculated and discussed, highlighting the differences between and complexity of the flow of C, N and P in a coastal marine ecosystem. The average number of cycles increase from 179 for C, to 16,923 and 20,580 for N and P respectively, while the average amount of recycled material, as measured by the Finn Cycling Index (FCI), increase from 17% for C, to 52% for P and to 61% for N. The number of cycles and the FCI vary considerably between the sub-systems for the different elements. The largest number of cycles of all three elements was observed in the muddy sand flat sub-system, but the highest FCIs were computed for both C (32%) and N (85%) in the Arenicola Flats, and in sparse Zostera noltii sea grass beds for P (67%). Indices reflecting on the growth, organization and resilience of the sub-systems also showed considerable variability between and within the inter-tidal ecosystems in the Bight. Indices such as, for example, the relative ascendency ratios increase on average from C to N to P, whereas others, such as the Average Mutual Information and Flow Diversity indices, were found to be higher in the N models than in the C or P ones.
NASA Astrophysics Data System (ADS)
Mader, Detlef
The Permian and Triassic of South Devon (England) are a continental red bed sequence of very diversified lithogenetical composition. Within the thick series, the distribution of the main depositional environments being fluvial braidplain, fluvial floodplain and playa lake, alluvial fan, aeolian dune and calcrete palaeosol changes repeatedly in both horizontal and vertical direction. Significant sedimentary milieus such as aeolian dunes and calcrete palaeosols occur repeatedly within the succession, but are also lacking in several parts of the sequence. Fluvial braidplain deposits comprise conglomerates, sandstones, intraformational reworking horizons and mudstones and originate in channels and overbank plains of a braided river system. Conglomerates and sandstones are formed by migration of bars and spreading out of sheets during infilling of streams and aggradation of flats. Gravel is often enriched as lag pockets or veneers within steeper scour holes and kolk pots or on the plane floor of the watercourse. Finer-grained sandstones and mudstones are laid down by suspension settling in stagnant water bodies such as small lakes in the overbank area and residual pools in interbar depressions during low-stage or waning-flow in active channels or in abandoned streams. Spectacular bioturbation features in some sandstones with both horizontal tubes and vertical burrows testify to the colonization of the sediments at the bottom of the rivers with declining discharge and transport capacity. Intraformational reworking horizons with ghost-like remnants of degraded sandstones, mudstones and pedogenic carbonates document partially severe condensation of the sequence by removal of some facies elements from the depositional record. The occasionally occurring gravel-bearing mudstones or silty-clayey sandstones represent products of high-energy water surges overspilling the channel banks and transporting sandy and gravelly bed-load in limited amounts beyond the levee wall. The interbedded sand layers within the mudstone sequences are often subjected to various types of deformation, depending on the state of dewatering and thus consolidation of the mudstones. Loading of partially dewatered mudstones with thinner sandstone beds results in division of the sand into isolated balls and pillows which frequently sink down into the mud. Burial of still plastic mudstones by thicker sandstones gives rise to intrusion of the mobile clay into the loose sand as domes and pillars. Infilling of mud cracks by sand at the contacts of both lithologies reflects total stabilization of silty-clayey sediments by desiccation during subaerial exposure. The cohesion of the mud in an advanced stage of dewatering is also underlined by the downcutting of bizarre erosional reliefs with steep walls and overhanging, undercut flanks in some negative features and steep residual pillars as positive remnants of degradation. Fluvial floodplain and playa lake sediments comprising mudstones and sandstones originate in lakes, ponds and puddles in overbank plains intersected by alluvial channels and in extensive flood flats of playa type lacking intervening watercourses, with the delimitation between floodplain and plays a lake being arbitrary and fluent. Mudstones are laid down during partially prolonged periods of quiet water which are only occasionally interrupted by invasion of channelized or sheet-type flood surges that result in spreading out of sand blankets at the floor of the lake. The rarity of bioturbation in many parts of the mudstone sequences gives evidence of high rates of suspension fallout over longer periods of time thereby inhibiting the colonization of the ground of the water bodies. Alluvial-fan deposits comprising breccias, sandstones and mudstones originate by stream-flood, sheet-flood and stream-flow in channels and on flats of an alluvial-fan complex. Blankets and drapes of breccias are spread out on the slope of alluvial-fan cones and are spilled onto the sand flat seaming the toes of the fan chain. Sedimentation is characterized by flashy discharge with many episodic flood pulses of short periodicity and mainly rapid waning of high-water phases with quick underrunning of the threshold velocity for keeping the large clasts rolling. Pronounced slack water episodes allow occasionally the draping of gravel sheets with thin veneers of waning-flow and stagnant-water fines. Spectacular invertebrate burrows in finer breccias underline the flashy nature of most of the flood and flow events, allowing the colonization of the sediments with ground-living invertebrates during interruptions of transport and accumulation. Some peculiar dewatering structures being infilling of crack systems in breccias with wash-load sand are probably induced by earthquake shocks thus pointing to the active tectonic setting of the depositional area. Aeolian sands originate as transverse dune ridges in restricted dune fields and extensive sand seas and as sheet sands in interdune playa depressions. Associated mudstones and ventifact gravel form in wet interdunes or in playa lakes and in deflationary interdunes, respectively. Accumulation of aeolian dunes and interdune sheet sands takes place by both spreading out of drapes on flats and infilling of abandoned fluvial channels which enhance the trapping of sand by topographical effects. The dunes and wind ripple trains migrate across dry interdune floors under predominantly unidirectional winds. Sedimentary processes are grainfall and grainflow on the lee slope of dunes and subcritical climbing of wind ripples. Episodical wetting and dampening of dry interdune flats by intermittent rainfall, periodical dew and even ephemeral fluvial or alluvial-fan incursions allow formation of adhesion-rippled sands on damp surfaces and origin of sandy and silty-clayey lacustrine sediments in shallow water veneers of the flooded playa. Aquatic modification of aeolian sands by invading flood surges of atmospheric or alluvial provenance is highlighted by downcutting of steep scour holes and kolk pots with overhanging, undercut walls and by reworking of large blocks of sand which are mainly released gravitationally by collapse of undermined channel banks, with considerable stabilization of the aeolian sand by humidhesion permitting the formation of bizarre erosional morphologies and the reworking as clasts (apart from dispersing loose aeolian sand within the fluvial bed-load which is also of particular significance). Inundations from surrounding alluvial fans and adjoining fluvial channels results also in spreading out of aquatic bed-load veneers across the interdune flats which bury the aeolian dunes and wind ripple trains and thus interrupt deflation and wind-borne accumulation. Ventifact gravel testifies to grinding of facets by sand-blasting activity of strong winds and degradation of pebbly fluvial sediments by winnowing of the sandy matrix. Ventifacts which are concentrated as residual gravel lag veneers at the floor of the serir erg are of considerable importance in testifying to limited aeolian influence on fluvial deposition when reworked and dispersed within alluvial rudites. Calcrete palaeosol features comprise autochthonous carbonate precipitations and violet colour streaks as well as allochthonous Bröckelbank carbonate breccias. In situ carbonate precipitations from by crystallization of carbonate minerals in the soil as isometrical nodules, flat discs and vertical tubes. Progressive maturing gives rise to coalescence of isolated nodules to aggregates and amalgamation to dense crusts. In terms of time and space of origin of carbonate concretions, distinction has to be made between early formation during subaerial exposure and early to late subaqueous growth under a cover of water or precipitation within the ground after burial by younger sediments. The development of calcrete palaeosols is often limited to the origin of nodules and tubes within the sandy substrates, with infiltration and neoformation of mud during illuviation, conversion of colour to blue-violet by significant hematite growth and pedoturbation being frequently restricted to the initial stages or even being totally suppressed. Root tubes testify to the colonization of soils by vegetation. Crystallization of syngenetic carbonates in aeolian sands forming dikaka horizons is of considerable importance for enhancing their preservation potential by stabilization against both fluvial erosion and aeolian deflation. The coexistence of aeolian sands and calcrete palaeosols (in contrast to their mutually exclusive occurrence in the Upper Buntsandstein of the German Basin) is the result of the limited maturity of the pedogenic horizons with preservation of sandy matrix thus still permitting reasonable winnowing at least in parts of the depositional area, and restriction of atmospheric precipitation to shorter phases alternating with longer dry periods that allow desiccation of the surface and migration of aeolian bedforms. Bröckelbank carbonate breccias representing reworking horizons of calcrete palaeosols are indirect indicators of pedogenesis in the alluvial plain even in case of subsequently complete removal of in situ pedogenic features from the depositional record. Calcrete palaeosol formation overprints almost all the sedimentary units in the alluvial plain regardless of their composition, but is particularly frequent and well-developed in fluvial and aeolian substrates. The sequence of alluvial fans and fluvial braidplains with associated aeolian dune fields and intertonguing with fluvial floodplains to playa lakes in time and space, interrupted by various palaeotectonical and palaeoclimatological events, results in a very diversified depositional history in the Permian and Triassic part of the New Red Sandstone in South Devon.
NASA Astrophysics Data System (ADS)
Choy, Eun Jung; An, Soonmo; Kang, Chang-Keun
2008-06-01
The benthic macroinvertebrates of the Nakdong River estuary were sampled at three different habitats: two salt marsh ( Scirpus triqueter and Phragmites australis) beds and a bare intertidal flat. Fishes were sampled in the main channel. The trophic importance of marsh vascular plants, microphytobenthos, and riverine and channel particulate organic matter to macroinvertebrate and fish production was studied using stable carbon and nitrogen isotope tracers. There was a dramatic change in coverage of macrophytes (salt marshes and seagrass) after the construction of an estuarine barrage in 1987 in the Nakdong River estuary, with the S. triqueter bed increasing, the P. australis bed decreasing, and Zostera marina habitats being nearly lost. Although the invertebrate δ 13C were within a narrower range than those of the primary producers, the values varied considerably among consumers in these habitats. However, the isotope signatures of consumers showed similarities among different habitats. Cluster analysis based on their isotopic similarity suggested that the isotope variability among species was related more to functional feeding groups than to habitats or taxonomic groups. While δ 13C values of suspension feeders were close to that of the channel POM (mainly phytoplankton), other benthic feeders and predators had δ 13C similar to that of microphytobenthos. Isotopic mixing model estimates suggest that algal sources, including microphytobenthos and phytoplankton, play an important role in supporting the benthic food web. Despite the huge productivity of emergent salt marshes, the contribution of the marsh-derived organic matter to the estuarine food webs appears to be limited to some nutrition for some invertebrates just within marsh habitats, with little on the bare intertidal flats or in the channel fish communities. Isotope signatures of the channel fishes also confirm that algal sources are important in supporting fish nutrition. Our findings suggest that benthic and pelagic microalgae made a large contribution to consumer diets, while marsh plants may not have a large role in supporting food webs in this estuarine system.
NASA Astrophysics Data System (ADS)
Ford, Murray R.
2014-06-01
Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.
NASA Astrophysics Data System (ADS)
Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta
2018-05-01
Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
Study of the marine environment of the northern Gulf of California
NASA Technical Reports Server (NTRS)
Hendrickson, J. R. (Principal Investigator)
1972-01-01
The author has identified the following significant results. Preliminary analysis of the first three months of ERTS-1 imagery have revealed that the MSS images have particular utility for study of turbidity patterns, current phenomena, and bathymetry throughout the test area. Early indications are that well defined spatial distributions of turbidity exist in the northern Gulf of California, and that for any one point in time, these distributions vary with depth. From a single set of images, as many as 3 turbidity maps may be generated, each indicating a vertical spatial relationship of the turbidity masses. The spatial distribution of turbidity masses depend partially upon the coincident currents. In the band of deepest penetration, a map can be gathered which roughly corresponds to the bathymetry of the area. The extreme tides in the northern Gulf of California result in vast areas which can be classified as intertidal mud flats. Information on the amount of exposure at the varying tidal states is important in analysis of these mud flat areas as nursery ground for Mexican commercial fisheries.
NASA Astrophysics Data System (ADS)
Brill, Dominik; May, Simon Matthias; Engel, Max; Reyes, Michelle; Pint, Anna; Opitz, Stephan; Dierick, Manuel; Gonzalo, Lia Anne; Esser, Sascha; Brückner, Helmut
2016-12-01
On 8 November 2013, category 5 Supertyphoon Haiyan made landfall on the Philippines. During a post-typhoon survey in February 2014, Haiyan-related sand deposition and morphological changes were documented at four severely affected sites with different exposure to the typhoon track and different geological and geomorphological settings. Onshore sand sheets reaching 100-250 m inland are restricted to coastal areas with significant inundation due to amplification of surge levels in embayments or due to accompanying long-wave phenomena at the most exposed coastlines of Leyte and Samar. However, localized washover fans with a storm-typical laminated stratigraphy occurred even along coasts with limited inundation due to waves overtopping or breaching coastal barriers. On a recent reef platform off Negros in the Visayan Sea, storm waves entrained coral rubble from the reef slope and formed an intertidal coral ridge several hundreds of metres long when breaking at the reef edge. As these sediments and landforms were generated by one of the strongest storms ever recorded, they not only provide a recent reference for typhoon signatures that can be used for palaeotempestological and palaeotsunami studies in the region but might also increase the general spectrum of possible cyclone deposits. Although a rather atypical example for storm deposition due to the influence of infra-gravity waves, it nevertheless provides a valuable reference for an extreme case that should be considered when discriminating between storm and tsunami deposits in general. Even for sites with low topography and high inundation levels during Supertyphoon Haiyan, the landward extent of the documented sand sheets seems significantly smaller than typical sand sheets of large tsunamis. This criterion may potentially be used to distinguish both types of events.
Investigating Mars: Rabe Crater
2017-12-18
The majority of the dune field in Rabe Crater consists of a sand sheet with dune forms on the surface. The sand sheet is where a thick layer of sand has been concentrated. As continued winds blow across the sand surface it creates dune forms. The depth of the sand sheet prevents excavation to the crater floor and the dune forms all appear connected. Rabe Crater is 108 km (67 miles) across. Craters of similar size often have flat floors. Rabe Crater has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the crater is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the crater forming a large sand sheet with surface dune forms as well as individual dunes where the crater floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 58024 Latitude: -43.6954 Longitude: 34.8236 Instrument: VIS Captured: 2015-01-12 09:48 https://photojournal.jpl.nasa.gov/catalog/PIA22144
NASA Astrophysics Data System (ADS)
Cuvilliez, A.; Le Bot, S.; Michel, C.; Cuvilliez, C.
2017-12-01
The economical roles and the ecological importance of the intertidal zones of mouth the Seine estuary (25 Km²) and of the Bay of Somme (70 Km²), both located on the East coast of the English Channel (Fig. 1A and Fig. 1B), have led to numerous studies on sediment dynamics since the beginning of the 19th century. Since 1995, the high resolution remote sensing (8 cm per side of pixel) allowed an exhaustive study of these intertidal surfaces. Altimetric surveys using radials, notably with ALTUS altimeters, then with LiDAR, were carried out in order to estimate more accurately the volumes and the nature of the sediments that infill these areas. The study of sedimentary facies further improved our understanding of the roles of the environmental forcing which controls sedimentation dynamics. Indeed, it allows foreseeing hydraulic circulation issues which damage these coastal ecosystems, and which can thus be prevented. Subsequently, for more than a decade, these two macrotidal zones, which have a tidal range equal to or greater than 8.5 m, show a decrease in their settling surface size which fosters mud deposition, and an acceleration of their sand infilling. Since 2005, year that marks the completion of the work of the so-called "Port 2000" harbour, the Seine estuary has increased its intertidal areas by almost 45% (<+7.5 m) (Fig.1C), of which 69% are occupied by sandy or silty sediments brought by the flood tides. In the Bay of Somme, only the low-lying intertidal areas (<+ 3.5m) are infilled with sandy sediments, representing 88% of the total deposits (Fig. 1D). In this case, the study of the sedimentary facies reveals that the littoral drift and the action of the waves linked to the tide are mainly responsible of the infill. If sedimentary infilling is a widespread characteristic of estuaries and bays which started with the Holocene transgression, this phenomenon is accentuated with the sea level rise and is greatly amplified with port developments that tend to limit the action of the river flow.
Standing crop and sediment production of reef-dwelling foraminifera on O'ahu, Hawai'i
Harney, J.N.; Hallock, P.; Fletcher, C. H.; Richmond, B.M.
1999-01-01
Most of O'ahu's nearshore and beach sands are highly calcareous and of biogenic origin. The pale-colored constituent grains are the eroded remains of carbonate shells and skeletons produced by marine organisms living atop the island's fringing reefs and in the shallow waters near shore. Previous studies have shown that the tests of symbiont-bearing benthic foraminifera compose a substantial portion (up to one-fourth) of these organically produced sands. We sampled a variety of reef flat and slope habitats to obtain standing-crop data and production estimates for several sand-producing genera of reef-dwelling foraminifera. We found that modern communities of these shelled protists occur in dense numbers islandwide, reaching densities up to 105 individuals per square meter of suitable substrate in the more productive habitats. Further research on the contribution of foraminifera to beach, nearshore, and offshore sands is planned for O'ahu and neighboring islands to describe their roles in the sediment budget more completely.
Photoacclimatory Responses of Zostera marina in the Intertidal and Subtidal Zones.
Park, Sang Rul; Kim, Sangil; Kim, Young Kyun; Kang, Chang-Keun; Lee, Kun-Seop
2016-01-01
Photoacclimatory responses of the seagrass Zostera marina in the intertidal and subtidal zones were investigated by measuring chlorophyll a fluorescence parameters, photosynthetic pigments, leaf δ13C values, and shoot morphology in two bay systems. Intertidal plants had higher carotenoid concentrations than subtidal plants to avoid photodamage under excess light conditions during the day. The maximum relative electron transport rate (rETRmax) and minimum saturation irradiance (Ek) of the intertidal plants were higher than those of the subtidal plants, whereas photosynthetic efficiency (α) and maximum quantum yield (Fv/Fm) were higher in subtidal plants. The intertidal plants also had significantly greater Stern-Volmer non-photochemical quenching (NPQ) than that of the subtidal plants. These results suggest that the subtidal plants photoacclimated to use limited light more efficiently, and the intertidal plants exhibited photosynthetic responses to minimize photodamage at excess irradiance. The δ13C values of leaf tissues were more negative in the intertidal plants than those in the subtidal plants, suggesting that the intertidal plants used atmospheric or dissolved CO2 for photosynthesis during emersion. Effective quantum yield (ΔF/Fm´) in the intertidal plants decreased more slowly after emersion than that in the subtidal plants, indicating higher desiccation tolerance of the intertidal plants. The intertidal plants also recovered more rapidly from desiccation damage than the subtidal plants, suggesting photosynthetic adaptation to desiccation stress. The photosynthetic plasticity of Z. marina in response to variable environmental conditions most likely allows this species to occur in the intertidal and subtidal zones.
Sánchez, David; Mulet, Magdalena; Rodríguez, Ana C; David, Zoyla; Lalucat, Jorge; García-Valdés, Elena
2014-03-01
Strains VGXO14(T) and Vi1 were isolated from the Atlantic intertidal shore from Galicia, Spain, after the Prestige oil spill. Both strains were Gram-negative rod-shaped bacteria with one polar inserted flagellum, strictly aerobic, and able to grow at 18-37°C, pH 6-10 and 2-10% NaCl. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus but were distinct from any known Pseudomonas species. A polyphasic taxonomic approach including phylogenetic, chemotaxonomic, phenotypic and genotypic data confirmed that the strains belonged to the Pseudomonas pertucinogena group. In a multilocus sequence analysis, the similarity of VGXO14(T) and Vi1 to the closest type strain of the group, Pseudomonas pachastrellae, was 90.4%, which was lower than the threshold of 97% established to discriminate species in the Pseudomonas genus. The DNA-DNA hybridisation similarity between strains VGXO14(T) and Vi1 was 79.6%, but below 70% with the type strains in the P. pertucinogena group. Therefore, the strains should be classified within the genus Pseudomonas as a novel species, for which the name Pseudomonas aestusnigri is proposed. The type strain is VGXO14(T) (=CCUG 64165(T)=CECT 8317(T)). Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Rolet, Céline; Spilmont, Nicolas; Dewarumez, Jean-Marie; Luczak, Christophe
2015-05-01
In a context of intensifying anthropogenic pressures on sandy shores, the mapping of benthic habitat appears as an essential first step and a fundamental baseline for marine spatial planning, ecosystem-based management and conservation efforts of soft-sediment intertidal areas. Mapping allows representing intertidal habitats that are basically characterised by abiotic (e.g sediments, exposure to waves…) and biotic factors such as macrobenthic communities. Macrobenthic communities are known to show zonation patterns across sandy beaches and many studies highlighted the existence of three biological zones. We tested this general model of a tripartite biological division of the shore at a geographical scale of policy, conservation and management decisions (i.e. Northern France coastline), using multivariate analyses combined with the Direct Field Observation (DFO) method. From the upper to the lower shores, the majority of the beaches exhibited three macrobenthic communities confirming the existence of the tripartite biological division of the shore. Nevertheless, in some cases, two or four zones were found: (1) two zones when the drying zone located on the upper shore was replaced by littoral rock or engineering constructions and (2) four zones on beaches and estuaries where a muddy-sand community occurred from the drift line to the mid shore. The correspondence between this zonation pattern of macrobenthic communities and the EUNIS habitat classification was investigated and the results were mapped to provide a reference state of intertidal soft-sediment beaches and estuaries. Our results showed evidence of the applicability of this EUNIS typology for the beaches and estuaries at a regional scale (Northern France coastline) with a macroecological approach. In order to fulfil the requirements of the European Directives (WFD and MFSD), this mapping appears as a practical tool for any functional study on these coastal ecosystems, for the monitoring of anthropogenic activities and for the implementation of management plans concerning effective conservation strategies.
Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar
McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R.
1982-01-01
The shuttle imaging radar (SIR-A) carried on the space shuttle Columbia in November 1981 penetrated the extremely dry Selima Sand Sheet, dunes, and drift sand of the eastern Sahara, revealing previously unknown buried valleys, geologic structures, and possible Stone Age occupation sites. Radar responses from bedrock and gravel surfaces beneath windblown sand several centimeters to possibly meters thick delineate sand- and alluvium-filled valleys, some nearly as wide as the Nile Valley and perhaps as old as middle Tertiary. The nov-vanished maijor river systems that carved these large valleys probably accomplished most of the erosional stripping of this extraordinarily flat, hyperarid region. Underfit and incised dry wadis, many superimposed on the large valleys, represent erosion by intermittent running water, probably during Quaternary pluvials. Stone Age artifacts associated with soils in the alluvium suggest that areas near the wadis may have been sites of early human occupation. The presence of old drainage networks beneath the sand sheet provides a geologic explanation for the locations of many playas and present-day oases which have been centers of episodic human habitation. Radar penetration of dry sand and soils varies with the wavelength of the incident signals (24 centimeters for the SIR-A system), incidence angle, and the electrical properties of the materials, which are largely determined by moisture content. The calculated depth of radar penetration of dry sand and granules, based on laboratory measurements of the electrical properties of samples from the Selima Sand Sheet, is at least 5 meters. Recent (September 1982) field studies in Egypt verified SIR-A signal penetration depths of at least 1 meter in the Selima Sand Sheet and in drift sand and 2 or more meters in sand dunes. Copyright ?? 1982 AAAS.
Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater
2006-08-24
This true-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of dust. The rock has a moderately cracked the surface. Around it is a layer of sand and pebbles. The view is reddish brown
Chladni Patterns on Drumheads: A "Physics of Music" Experiment
ERIC Educational Resources Information Center
Worland, Randy
2011-01-01
In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…
THE MAJOR COASTAL COMMUNITIES OF NORTH CAROLINA.
ERIC Educational Resources Information Center
Marine Science Project, Beaufort, NC.
IDENTIFIED IN THIS MARINE SCIENCE HANDBOOK ARE 5 MAJOR TYPES OF NATURAL HABITATS--(1) OPEN BEACH AND ANY OTHER SEAWARD-FACING, UNPROTECTED STRAND, (2) GROINS, JETTIES, PILINGS, AND ROCK BULKHEADS, (3) SAND AND/OR MUD FLAT, (4) SALT MARSH, AND (5) UPLAND COMMUNITIES. EACH HABITAT IS DESCRIBED IN TERMS OF TYPICAL PLANTS AND ANIMALS, ADAPTATIONS, AND…
Microphthalmus mahensis sp.n. (Annelida, Phyllodocida) together with an annotated key of the genus
NASA Astrophysics Data System (ADS)
Westheide, Wilfried
2013-09-01
An interstitial polychaete, Microphthalmus mahensis, new species (Phyllodocida), is described from sand sediments of a coral reef flat of the Seychelles island Mahé. A comprehensive discussion includes a complete list of all 38 valid Microphthalmus species, and a key together with critical remarks on problematic species and subspecies.
Coatal salt marshes and mangrove swamps in China
NASA Astrophysics Data System (ADS)
Yang, Shi-Lun; Chen, Ji-Yu
1995-12-01
Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.
Photoacclimatory Responses of Zostera marina in the Intertidal and Subtidal Zones
Park, Sang Rul; Kim, Sangil; Kim, Young Kyun; Kang, Chang-Keun; Lee, Kun-Seop
2016-01-01
Photoacclimatory responses of the seagrass Zostera marina in the intertidal and subtidal zones were investigated by measuring chlorophyll a fluorescence parameters, photosynthetic pigments, leaf δ13C values, and shoot morphology in two bay systems. Intertidal plants had higher carotenoid concentrations than subtidal plants to avoid photodamage under excess light conditions during the day. The maximum relative electron transport rate (rETRmax) and minimum saturation irradiance (Ek) of the intertidal plants were higher than those of the subtidal plants, whereas photosynthetic efficiency (α) and maximum quantum yield (Fv/Fm) were higher in subtidal plants. The intertidal plants also had significantly greater Stern–Volmer non-photochemical quenching (NPQ) than that of the subtidal plants. These results suggest that the subtidal plants photoacclimated to use limited light more efficiently, and the intertidal plants exhibited photosynthetic responses to minimize photodamage at excess irradiance. The δ13C values of leaf tissues were more negative in the intertidal plants than those in the subtidal plants, suggesting that the intertidal plants used atmospheric or dissolved CO2 for photosynthesis during emersion. Effective quantum yield (ΔF/Fm´) in the intertidal plants decreased more slowly after emersion than that in the subtidal plants, indicating higher desiccation tolerance of the intertidal plants. The intertidal plants also recovered more rapidly from desiccation damage than the subtidal plants, suggesting photosynthetic adaptation to desiccation stress. The photosynthetic plasticity of Z. marina in response to variable environmental conditions most likely allows this species to occur in the intertidal and subtidal zones. PMID:27227327
NASA Astrophysics Data System (ADS)
Diedrich, Cajus G.
2010-05-01
Nine Middle Triassic paleogeographical maps comprising the uppermost Upper Bunter, Lower to Middle Muschelkalk and Upper Muschelkalk to Lower Keuper time frame (Diedrich 2008b) show the marine ingression and regression cycle of the Middle Triassic Germanic Basin (Diedrich 2010c). For bathymetrical and palaeoenvironmental interpretations especially reptiles and their footprints are used. This Germanic Basin as analogon for the Arabian Gulf (Knaust 1997), north of the Tethys, was under marine and finally terrestrial influenced sediments in a time frame (after Kozur and Bachmann 2008) between 247.2 My (Myophoria Fm, Aegean, Lower Anisian) to 237.9 My (Grabfeld Fm, Longobardian, Lower Ladinian). In a duration of 9.3 My the Germanic Basin was filled up mainly with marine carbonates and at the end by siliciclastics influenced by the northern Tethys through the Silesian, Carpathian and later the Burgundian Gates which connected the Germanic Basin to the Northern Tethys. With the marine ingression from the East via the Silesian Gate (Poland) a ten to hundred kilometers extended intertidal flat to sabkha facies belt surrounded first only the central and then the Western Germanic Basin (Winterswijk, Netherlands). Those intertidal zones were used mainly by two different small reptiles as their primary habitat. Hereby they left Millions of the small tom medium sized footprints of the ichnogenera Rhynchosauroides and Procolophonichnium (Diedrich 2005, 2008a). Larger terrestrial and beach and sabkha adapted reptiles were Tanystrophaeus antiquus and unknown archosaurs, which are recorded only by their footprints. At the beginning of the ingression at the uppermost Bunter a shallow marine invertebrate fauna and coastal reptiles appeared in the Germanic Basin which must have originated mainly from the Northern Tethys. Especially all marine reptiles immigrated from the Tethys which is proven not only by assamblaged Tethyan cephalopod Ceratite species (cf. Diedrich 2008a). The coastal intertidal zones appeared with mud cracked biolaminate and sabkha dolomites ("Biolaminate and Sabkha facies") and expanded further west and south within the Lower Muschelkalk Winterswijk Fm (Aegean/Bithynian boundary), Osnabrück Fm, and Jena Fm (Bithynian to Pelsonian) (Diedrich and Trostheide 2007, Diedrich 2008a). The intertidal zones changed their extensions several times in the Lower Muschalkalk due to the less eustatically and more tectonically controlled very shallow relief cratonic basin morphology and were more stable in the western part of the flat carbonate ramp basin (Winterswijk, Netherlands) and in coastal zones in general. In the Germanic Basin centre (Rüdersdorf to Gogolin, Germany/Poland) the conditions were all that time under very shallow carbonate sand barr (Oolithtic, Terebratula or Shell bioclastic facies) or shallow subtidal ("Wellenkalk facies") conditions, whereas even extended seagrass meadows in shallow carbonate facies types are indirectly proven by invertebrate communities, especially snails. Those algae attracted especially placodontids which were the "Triassic seacows" feeding on such algae (Diedrich, 2010a), which immigrated with Paraplacodus, Placodus and Cyamodus already with the first Lower Muschelkalk ingression sequence. Also other reptiles such as nothosaurs Nothosaurus (small species), Cymatosaurus, the pachypleurosaurids Dactylosaurus, Neusticosaurus or Serpianosaurus must have originated from the tethys and were shallow marine and even lagoonary adapted paraxial swimming smaller marine reptiles. This "Lower Muschelkalk" time was highly tectonically active represented by several seismic layers (slumps, sigmoidal shocked layers, etc.) (cf. Schwarz 1975, Rüffer 1996, Knaust 2000, Diedrich 2008a), which were also reaching the intertidal beach zones, possibly even with tsunamite hazard events (Diedrich 2008b, 2009b). Such tsunamis or quick floodings due to storm events must have had hazardous impacts on marine reptiles or fishes, and the beach inhabiting terrestrial reptiles, which could have been killed by high amounts which explains the presence of many skeletons, bonebeds, and footprint preservations in the Germanic Basin biolaminate and lagoonal facies. With a high seismic peak during the Middle Muschelkalk Karlstadt Fm (Pelsonian/Illyrian boundary) in the intertidal zones up to 19 tectonically shocked biolaminate layers (locality Bernburg, Central Germany, Diedrich 2009b) prove the beginning of the Alpine tectonics and its raise (fold belt structure: Müller et al. 1964), but also the opening of the Carpathian Gate (graben structure: Szulc 1998), from which the epicenters were estimated by two main slickenside directions. Those can be found all over the Germanic Basin "Lower Muschelkalk" sediments (Szulc 1998, Föhlisch 2007, Diedrich 2009b). This time period of the Pelsonian/Illyrian boundary gave even such extended intertidal zones, that reptiles left Millions of tracks all over those biolaminate facies types, allowing those to migrate and distribute East (Bohemian Island) - West (Rhenisch Massif, London-Brabant Massif) due to "intertidal flat bridges". Therefore chirotherid archosaur trackmakers left Chirotherium, Isochirotherium and Brachychirotherium trackways quite abundantly not anymore in the typical Bunter red sandstone facies; now they appeared in the new environments, the intertidal biolaminates such as well documented at Bernburg (Central Germany, Diedrich 2009b), but also on other Middle Triassic coast east of the Massif Central (Demathieu 1985) or the Alps (e.g. Avanzini 2002). The only surviving marine reptiles were smaller lagoonal adapted pachypleurosaurs such as the common Anarosaurus and smaller sized Nothosaurus. Placodontids disappeared with the loss of the palaeoenvironment of the macroalgae meadows and seem to have migrated to the Carpathian gate and northern Tethys, where those habitats were still present. The dramatical habitat change with terrestrial territory loss, and marginal marine beach zone extensions seem to be also the reason for the beginning of the dinosaur raise in the world. Within the Middle Muschelkalk Heilbronn and Diemel Formations a massive sea level fall caused a new extension of intertidal zones and sabkhas, but also halite and gypsum evaporates ("Domolite-evaporate facies") in the basin center including the southern Germanic Basin branch (region Tübingen/Stuttgart, Southwestern Germany). The "Middle Muschelkalk" shallow relief and lagoon to intertidal dominated period changed again drastically within a new tectonic active "Upper Muschelkalk" time and strong "ingression" of the northern Tethys into the Germanic Basin within the Illyrian time (Bad Sulza Fm, Trochitenkalk Fm). A shallow marine, with shallow water carbonates filled Germanic Basin developed again, but this time with different consequences onto the former coastal zones, in which intertidal biolaminated and sabkhas disappeared as a result of steeper coastal morphologies. Whereas in the first ingression a shallow marine reptile fauna was present (Nothosaur-Pachypleurosaur taphocoenosis, Lower Bad Sulza Fm, Diedrich in prep.). The fauna changed with the main transgression within the Upper Bad Sulza Fm to a Placodontid-Pistosaur taphocoenosis with more open marine adapted forms (Diedrich in prep.). At those time also crinoid bioherms developed massively all over the central and southern Germanic Basin in front of the costs at the "steeper coast margins" (which were still hot high angled), as a "crinoid belt" (e.g. Aigner and Bachmann 1991), which was responsible for massive crinoidal limestones (= "Trochitenkalk facies"). In this period again "Triassic seacows" seem to have populated well the entire Germanic Basin, and here again seagrass meadow areas documented by benthic invertebrate palaeocommunities (Diedrich 2009a, 2010a). The marine macroplants must have built extended meadows on the shallow marine and oxygen-rich seafloor conditions of the "Tonplatten facies" on which many different invertebrates settled in- or epifaunistic. This tectonical deepening controlled situation continued with the Meißner Fm and aequivalent Formations and its cephalopod Ceratite rich "Tonplatten facies", whereas the "maximum flooding" (if the term can be used here in a cratonic and tectonically controlled basin: cf. definition of marine cycles in: Aigner and Bachmann 1991) was in the compressus biozone (ceratite biozone, middle Meißner Fm, Anisian/Ladinian boundary, cf. Diedrich 2009a). The high stand is underlined by now full adapted marine reptiles such as nothosaurs (Nothosaurus mirabilis, Simosaurus gaillardodti), pistosaurs (Pistosaurus longaevus) and especially the open marine ichtyosaurs (Shastasaurus, Mixosaurus, Omphtalmosaurus) support the full marine and highest water level conditions. The "regression" or better suggested here "basin uplifting" started in the upper Meißner Fm with a reducing carbonate sedimentation which was overtaken slowly by terrestrial sediments already within the Warburg/Erfurt Formations (Fassanian/Longobardian boundary, Lower Ladinian). The fresh water and clay mineral influence caused a reduction of the marine benthic community biodiversity and the development of brackish lagoons, in which some invertebrate faunas and dominantly small marine reptiles pachypleurosaurs lived. At that time all placodontid reptiles disappeared, which must have been the chain reaction of the macroalgae loss and environmental changes. A change of terrestrial influence and periodic marine influence is documented in repeating intercalated massive dolomites (Alberti-Bed, Anthraconit-Bed and others) and clay layers of the Lower Keuper Erfurt and especially Grabfeld Fm (Longobardian). In this final period the Lower Keuper Germanic Basin was less and less marine influenced, finally dominated at that time on the limnic influenced costs by large amphibians such as Mastodonsaurus, Gerrhothorax or Plagiosuchus, which were found especially at southern German and Central german sites (Schoch and Wild 1999, Diedrich 2010b), including the famous southern German "Grenzbonebed" (Fassanian/Longobardian boundary) (Reif 1982, Hagdorn 1990). This bonebed already contains a strongly reduced marine reptile fauna with pachypleurosaurs and giant lagoon-adapted nothosaurs (N. giganteus, S. gaillardoti) and few marine hypersaline adapted shells such as Costatoria costata (cf. Hagdorn et al. 2009). The absence of cephalopod ceratites and rare nautilid presence are the last proves for the periodic restricted lagoon situations- being comparable in its facies and reptile fauna to the lagoon of the Northern Tethys Monte San Giorgio, Switzerland/Italy (e.g. De Zanche and Farabegoli 1988, Furrer 1995) to which the Germanic Basin was connected through the Burgundian Gate, France. The marine influence and marine sediment fill of the Germanic Basin stopped finally at the beginning of the Middle Keuper (lower Upper Triassic), diachronously more earlier in northern Germany (Warburg/Erfurt Fm, cf.: Kozur and Bachmann 2008, Diedrich 2010b) as in southern Germany (cf. Hagdorn et al. 2009) indicating a periodic marine influence from the Northern Tethys through the Burgundian Gate. At the final tectonical stage (last seismits in the Grabfeld Fm, Longobardian: cf. Bachmann and Aref 2005) no intertidal flats nor biolamnintes developed anymore in a low relief Germanic Basin morphology, which reason can be explained be the carbonate reduction, strong terrigenous clay input, and brakish-lagoonary conditions, in which cyanobacterial mats of the low-relief intertidal zones could not develop. References Aigner, T. and Bachmann, G.H. 1991. Sequence Stratigraphy of the German Muschelkalk. In: Hagdorn, H. and Seilacher, A. (Eds.): Muschelkalk. Schöntaler Symposium. 15-18. Goldschneck-Verlag, Stuttgart. Avanzini, M. 2002. Dinosauromorph tracks from the Middle Triassic (Anisian) of the Southern Alps (Valle di Non-Italy). Bolletino della Società Paleontologica Italiana, 41 (1), 37-40. Bachmann, G.H. and Aref, M.A.M., 2005. A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), Southwest Germany. Sedimentary Geology 180, 75-89. De Zanche, V. and Farabegoli, E. 1988. Anisian paleogeographic evolution in the Central-Western Southern Alps. Memoirs Scientifique Geologique 40, 399-411. Demathieu, G.R. 1985. Trace fossil assemblages in Middle Triassic marginal marine deposits, eastern border of the Massif Central, France. Societe Economie Paléontologie et Mineralogie, Special Publications, 35, 53-66. Diedrich, C. 2005. Actuopalaeontological trackway experiments with Iguana on intertidal flat carbonates of the Arabian Gulf - a comparison to fossil Rhynchosauroides tracks of Triassic carbonate tidal flat megatracksites in the European Germanic Basin. Senckenbergiana maritime, 35 (2), 203-220. Diedrich, C. 2008a. Millions of reptile tracks - Early to Middle Triassic carbonate tidal flat migration bridges of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 410-423. Diedrich, C. 2008b. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - with emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Global and Planetary Change, 65 (2009), 27-55. Diedrich, C. 2009a. The vertebrates of the Anisian/Ladinian boundary (Middle Triassic) from Bissendorf (NW Germany) and their contribution to the anatomy, palaeoecology, and palaeobiogeography of the Germanic Basin reptiles. Palaeogeography, Palaeoclimatology, Palaeoecology, 273 (2009), 1-16. Diedrich, C. 2009b. Die Saurierspuren-Grabung im basalen Mittleren Muschelkalk (Anis, Mitteltrias) von Bernburg (Sachsen-Anhalt). Archäologie in Sachsen-Anhalt, Sonderband 2009, 1-62. Diedrich, 2010a. Palaeoecology of Placodus gigas (Reptilia) and other placodontids - macroalgae feeder of the Middle Triassic in the Germanic Basin of Central Europe and comparison to convergent developed sirenia. Palaeogeography, Palaeoclimatology, Palaeoecology, (in review). Diedrich, 2010b. The vertebrate fauna of the Lower Ladinian (Middle Triassic) from Lamerden (Germany) and contribution to the palaeoecology, anatomy and palaeogeography of the Germanic Basin reptiles. Palaeogeography, Palaeoclimatology, Palaeoecology, (in review). Diedrich, 2010c. The palaeogeographic reconstructions of the Middle Triassic tectonical controlled carbonatic Germanic Basin of Central Europe - a northern Tethys connected cratonic marine Basin - coastal basin margin mappings by the use of reptile footprint rich intertidal and sabkha environments. Abstract, Fifth International Conference on the Geology of the Tethys Realm, Quena-Luxor,Egypt), 3-5. Diedrich, in prep. The shallow marine fish and sauropterygian reptile vertebrate fauna of the Germanic Basin from the atavus/pulcher Bonebeds in the Bad Sulza Fm (Illyrian, Middle Triassic) of Bad Sulza (Central Germany). Diedrich, C. and Trostheide, F. 2007. Auf den Spuren der terresten Muschelkalksaurier und aquatischen Sauropterygier vom obersten Röt bis zum Mittleren Muschelkalk (Unter-/Mitteltrias) von Sachsen-Anhalt. Abhandlungen und Berichte für Naturkunde, 30, 5-56. Föhlisch, K. 2007. Überlieferungen seismischer Aktivität im Unteren Muschelkalk. Beiträge zur Geologie Thüringens, N.F. 14, 55-83. Furrer, H. 1995. The Kalkschieferzone (Upper Meride estone Ladinian) near Meride (Canton Ticino, Southern Switzerland) and the evolution of a Middle Triassic intraplatform basin. Eclogae geolicae Helvetiae, 88(3), 827-852. Hagdorn, H. 1990. Das Muschelkalk/Keuper-Bonebed von Crailsheim. In: Weidert, W. K. (Ed.), Klassische Fundstellen der Paläontologie, Band 2. 78-88. Goldschneck-Verlag, Stuttgart. Hagdorn, H., E. Nitsch, Aigner, T. and Simon, T. 2009. Field guide 6th international Triassic field workshop (Pan-European Correlation of the Triassic) Triassic of Southwest Germany. September 7-11, 2009, www.stratigraphie.de/perm-trias_workshops.html, 1-72. Knaust, D. 1997. Die Karbonatrampe am SE-Rand des Persischen Golfes (Vereinigte Arabische Emirate) - rezentes Analogon für den Unteren Muschelkalk der Germanischen Trias? Greifswalder Geowissenschaftliche Beiträge, 5, 101-123. Knaust, D. 2000. Signatures of tectonically controlled sedimentation in Lower Muschelkalk carbonates (Middle Triassic) of the Germanic Basin. Zentralblatt für Geologie und Paläontologie, I, 1998 (9-10), 893-924. Kozur, H.W. and Bachmann, G.H. 2008. Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. Berichte der Geologischen Bundesanstalt Wien, 76, 53-58. Reif, W.E. 1982. Muschelkal/Keuper bone-beds (Middle Triassic, SW-Germany) - storm condensation in a regressive cycle. In: Einsele, G. and Seilacher, A. (Eds.), Cyclic and Event Stratification. 299-325. Springer-Verlag, Berlin-Heidelberg-New York. Müller, W. et al., 1964. Vulkanogene Lagen aus der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio in den Tessiner Kalkalpen. Eclogae geolicae Helvetiae, 57(2), 431-450. Rüffer, T. 1996. Seismite im Unteren Muschelkalk westlich von Halle (Saale). Hallesches Jahrbuch für Geowissenschaften, B 18, 119-130. Schoch, R. and Wild, R. 1999. Die Wirbeltiere des Muschelkalks unter besonderer Berücksichtigung Süddeutschlands. In: Hauschke, N. and Wilde, V. (Eds.), Trias eine ganz andere Welt. Europa im frühen Erdmittelalter. 331-342. Pfeil-Verlag, München. Schwarz, U. 1975. Sedimentary structures and facies analysis of shallow marine carbonates (Lower Muschelkalk, Middle Triassic, SW-Germany). Contributions to Sedimentology, 3, 1-100. Szulc, J. 1998. Anisian-Carnian evolution of the Germanic Basin and its eustatic, tectonic and climate controls. Zentralblatt für Geologie und Paläontologie, I, 7-8, 813-852.
Bookstrom, Arthur A.; Box, Stephen E.; Jackson, Berne L.; Brandt, Theodore R.; Derkey, Pamela D.; Munts, Steven R.
1999-01-01
The Coeur d'Alene (CdA) River channel and its floodplain in north Idaho are mostly covered by metal-enriched sediments, partially derived from upstream mining, milling and smelting wastes. Relative to uncontaminated sediments of the region, metal-enriched sediments are highly enriched in silver, lead, zinc, arsenic, antimony and mercury, copper, cadmium, manganese, and iron. Widespread distribution of metal-enriched sediments has resulted from over a century of mining in the CdA mining district (upstream), poor mine-waste containment practices during the first 80 years of mining, and an ongoing series of over-bank floods. Previously deposited metal-enriched sediments continue to be eroded and transported down-valley and onto the floodplain during floods. The centerpiece of this report is a Digital Map Surficial Geology, Wetlands and Deepwater Habitats of the Coeur d'Alene (CdA) River valley (sheets 1 and 2). The map covers the river, its floodplain, and adjacent hills, from the confluence of the North and South Forks of the CdA River to its mouth and delta front on CdA Lake, 43 linear km (26 mi) to the southwest (river distance 58 km or 36 mi). Also included are the following derivative theme maps: 1. Wetland System Map; 2. Wetland Class Map; 3. Wetland Subclass Map; 4. Floodplain Map; 5. Water Regime Map; 6. Sediment-Type Map; 7. Redox Map; 8. pH Map; and 9. Agricultural Land Map. The CdA River is braided and has a cobble-gravel bottom from the confluence to Cataldo Flats, 8 linear km (5 mi) down-valley. Erosional remnants of up to four alluvial terraces are present locally, and all are within the floodplain, as defined by the area flooded in February of 1996. High-water (overflow) channels and partly filled channel scars braid across some alluvial terraces, toward down-valley marshes and (or) oxbow ponds, which drain back to the river. Near Cataldo Flats, the river gradient flattens, and the river coalesces into a single channel with a large friction-dominated central sand bar at Cataldo Landing. Metal-enriched sediments that were dredged from the central sand bar were deposited on Cataldo Flats, to form extensive dredge-spoil deposits. From the central sand bar to CdA Lake, thick deposits of metal-enriched sand partially fill the middle of the pre-mining-era channel along straight reaches, and form point-bars along the inside margins of meander bends. Metal-enriched sand and silt form oxidized bank-wedge deposits along riverside margins of pre-mining-era levees of gray silty mud. Metal-enriched levee sand deposits extend across bank wedges and natural levees, generally thinning and fining away from the river, toward lateral marshes and lakes, where dark gray metal-enriched silt and mud overlie silty peat, deposited before the mining era. Distributary streams and man-made canals locally diverge from the river, connecting it to lateral marshes and lakes, and metal-enriched sand splays locally fan out across the floodplain. At the mouth of the river, a bouyancy-dominated river-mouth bar crests beyond the ends of the emergent levees. Thick delta-front deposits of metal-enriched sand slope from the river-mouth bar to the bottom of CdA Lake.
Chladni Patterns on Drumheads: A ``Physics of Music'' Experiment
NASA Astrophysics Data System (ADS)
Worland, Randy
2011-01-01
In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional systems, such as string and wind instruments, to the two-dimensional membranes and plates of the percussion family. Although the sand patterns attributed to Ernst Florens Friedrich Chladni (1756-1827) are often demonstrated for this purpose using metal plates,2-4 the use of drumheads offers several pedagogical and practical advantages in the lab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.J.; Johnson, C.A.; Gilreath, J.A.
Depositional systems in the Medina Group (Lower Silurian) of western New York have been studied using stratigraphic dipmeter data. Results of this study indicate a nearshore-deltaic-interdeltaic depositional environment. Only minor deltaic episodes are preserved in the study area. This fits the generally arid climate with seasonal wet periods suggested by C.D. Laughrey. Facies recognized include: longshore-current sand waves in a shoreface environment, distributary mouth bars, distributary channels, tidal inlets, flood deltas, beaches, sandy tidal flats on which beach ridges were formed, and possible upper delta-plain sediments. Once the depositional sequences are recognized, paleocurrents within key sand units can be interpretedmore » to determine favorable directions for successfully locating offset wells.« less
Soils of eagle crater and Meridiani Planum at the opportunity Rover landing site
Soderblom, L.A.; Anderson, R.C.; Arvidson, R. E.; Bell, J.F.; Cabrol, N.A.; Calvin, W.; Christensen, P.R.; Clark, B. C.; Economou, T.; Ehlmann, B.L.; Farrand, W. H.; Fike, D.; Gellert, Ralf; Glotch, T.D.; Golombek, M.P.; Greeley, R.; Grotzinger, J.P.; Herkenhoff, K. E.; Jerolmack, D.J.; Johnson, J. R.; Jolliff, B.; Klingelhofer, C.; Knoll, A.H.; Learner, Z.A.; Li, R.; Malin, M.C.; McLennan, S.M.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Rice, J. W.; Richter, L.; Rieder, R.; Rodionov, D.; Schroder, C.; Seelos, F.P.; Soderblom, J.M.; Squyres, S. W.; Sullivan, R.; Watters, W.A.; Weitz, C.M.; Wyatt, M.B.; Yen, A.; Zipfel, J.
2004-01-01
The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farshori, M.Z.; Jantan, A.
1994-07-01
A detailed study of the Pahang River Delta was undertaken in order to understand the development, architecture, geometrical characteristics, and structural sequential organization of the sand bodies on the east coast of the Malay Peninsula. The present delta indicates that although marine wave regimes are dominant, as exhibited by the cuspate-shaped delta, fluvial and tidal influences are substantial, as evident from the bedforms and sand bars morphology. The Pahang Delta system provides a unique case study for a tropical fluvio-marine windwave-dominated delta, which was profoundly influenced by seasonal storms. The deltaic sand is coarse and moderately sorted, and contains abundantmore » clay clasts. The southern coastline of the Pahang Delta is continuously modified by the erosive attack of the storm waves. The delta is subjected to extremely high-energy storm waves and fluvially formed sand bodies, such as channel mouth bars, dominant in other types of deltas that have been replaced by strand plains, sand bars and sand flats. The combination of high wave energy and strong littoral drift along the east coast of the Malay Peninsula results in changing the orientation of the sand bodies in the Pahang Delta. No modern wind-dominated delta is comparable to the Pahang Delta system. However, some modern deltas show many similarities in general morphology and sand distribution. The authors have developed a comprehensive sedimentological model of fluvio-marine sand-body variability in tropical wind-dominated deltas. The results of the studies will enlarge the applicability of geometrical studies to subsurface exploration of hydrocarbons.« less
Bender, Adrian M.; Witter, Robert C.; Rogers, Matthew
2015-01-01
During the Mw 9.2 1964 great Alaska earthquake, Turnagain Arm near Girdwood, Alaska subsided 1.7 ± 0.1 m based on pre- and postearthquake leveling. The coseismic subsidence in 1964 caused equivalent sudden relative sea-level (RSL) rise that is stratigraphically preserved as mud-over-peat contacts where intertidal silt buried peaty marsh surfaces. Changes in intertidal microfossil assemblages across these contacts have been used to estimate subsidence in 1964 by applying quantitative microfossil transfer functions to reconstruct corresponding RSL rise. Here, we review the use of organic stable C and N isotope values and Corg:Ntot ratios as alternative proxies for reconstructing coseismic RSL changes, and report independent estimates of subsidence in 1964 by using δ13C values from intertidal sediment to assess RSL change caused by the earthquake. We observe that surface sediment δ13C values systematically decrease by ∼4‰ over the ∼2.5 m increase in elevation along three 60- to 100-m-long transects extending from intertidal mud flat to upland environments. We use a straightforward linear regression to quantify the relationship between modern sediment δ13C values and elevation (n = 84, R2 = 0.56). The linear regression provides a slope–intercept equation used to reconstruct the paleoelevation of the site before and after the earthquake based on δ13C values in sandy silt above and herbaceous peat below the 1964 contact. The regression standard error (average = ±0.59‰) reflects the modern isotopic variability at sites of similar surface elevation, and is equivalent to an uncertainty of ±0.4 m elevation with respect to Mean Higher High Water. To reduce potential errors in paleoelevation and subsidence estimates, we analyzed multiple sediment δ13C values in nine cores on a shore-perpendicular transect at Bird Point. Our method estimates 1.3 ± 0.4 m of coseismic RSL rise across the 1964 contact by taking the arithmetic mean of the differences (n = 9) between reconstructed elevations for sediment above and below the 1964 earthquake subsidence contact. This estimate compares well with independent subsidence estimates derived from post-earthquake leveling in Turnagain Arm, and from microfossil transfer functions at Girdwood (1.50 ± 0.32 m). While our results support the use of bulk organic δ13C for reconstructing RSL change in southern Alaska, the variability of stable isotope values in modern and buried intertidal sediment required the analysis of multiple samples to reduce error.
Restoration in Sand-slugged Streams and Drought---the Granite Creeks Project.
NASA Astrophysics Data System (ADS)
Lake, P. S.; Bond, N.; Glaister, A.; Downes, B.
2005-05-01
European settlement, with accompanying land clearance and heavy grazing, of the Strathbogie Ranges in central Victoria, Australia, resulted in the massive export of sediment to lowland streams. These streams, originally configured as "chains of ponds", were filled with "sand slugs" that generated a raised flat streambed depleted in habitat heterogeneity. The invertebrate fauna of the sand slugs is similar to that of sandbed streams elsewhere, but lacks an abundant hyporheos. The fish fauna was reduced in diversity and abundance. In 2001 habitat restoration in the sand slugs commenced after pre-restoration samples were taken.Timber structures, made from railway sleepers, were installed and subsequently created scour pools. Fish responded positively to restoration measure, but no significant effect was apparent for the invertebrates. In 2001-2004 a very severe drought occurred causing the streams to cease to flow and in the sand-slugged sections faunal abundance declined greatly due to the loss of residential habitat and the lack of refugia. Thus, the large-scale effects of severe drought thwarted the effects of localized habitat restoration, stressing the point that in restoring habitat it is also imperative to generate resilience to the prevailing disturbance regime-a regime that may be exacerbated by human activities.
The importance of littoral elevation to the distribution of intertidal species has long been a cornerstone of estuarine ecology and its historical importance to navigation cannot be understated. However, historically, intertidal elevation measurements have been sparse likely due ...
Hay, Mark E
1984-11-01
Between-habitat differences in macrophyte consumption by herbivorous fishes were examined on three Caribbean and two Indian Ocean coral reefs. Transplanted sections of seagrasses were used as a bioassay to compare removal rates in reef-slope, reef-flat, sand-plain, and lagoon habitats. Herbivore susceptibility of fifty-two species of seaweeds from these habitats was also measured in the field. Seagrass consumption on shallow reef slopes was always significantly greater than on shallow reef flats, deep sand plains, or sandy lagoons. Reef-slope seaweeds were consistently resistant to herbivory while reef-flat seaweeds were consistently very susceptible to herbivory. This pattern supports the hypothesis that defenses against herbivores are costly in terms of fitness and are selected against in habitats with predictably low rates of herbivory.Sand-plain and lagoon seaweeds showed a mixed response when placed in habitats with high herbivore pressure; most fleshy red seaweeds were eaten rapidly, most fleshy green seaweeds were eaten at intermediate rates, and most calcified green seaweeds were avoided or eaten at very low rates. Differences in susceptibility between red and green seaweeds from sand-plain or lagoon habitats may result from differential competitive pressures experienced by these seaweed groups or from the differential probability of being encountered by herbivores. The susceptibility of a species to removal by herbivorous fishes was relatively consistent between reefs. Preferences of the sea urchin Diadema antillarum were also similar to those of the fish guilds.Unique secondary metabolites were characteristic of almost all of the most herbivore resistant seaweeds. However, some of the herbivore susceptible species also contain chemicals that have been proposed as defensive compounds. Genera such as Sargassum, Turbinaria, Thalassia, Halodule, and Thalassodendron, which produce polyphenolics or phenolic acids, were consumed at high to intermediate rates, suggesting that these compounds are not effective deterrents for some herbivorous fishes. Additionally, potential for the production of the compounds caulerpin, caulerpicin and caulerpenyne in various species of Caulerpa did not assure low susceptibility to herbivory.Heavily calcified seaweeds were very resistant to herbivory, but all of these species also produce toxic secondary metabolites which makes it difficult to distinguish between the effects of morphological and chemical defenses. Predictions of susceptibility to herbivory based on algal toughness and external morphology were of limited value in explaining differing resistances to herbivory.
Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea
NASA Astrophysics Data System (ADS)
Brooks, S. M.; Spencer, T.; Christie, E. K.
2017-04-01
Storm impacts play a significant role in shoreline dynamics on barrier coastlines. Furthermore, inter-storm recovery is a key parameter determining long-term coastal resilience to climate change, storminess variability and sea level rise. Over the last decade, four extreme storms, with strong energetic waves and high still water levels resulting from high spring tides and large skew surge residuals, have impacted the shoreline of the southern North Sea. The 5th December 2013 storm, with the highest run-up levels recorded in the last 60 years, resulted in large sections of the frontline of the North Norfolk coast being translated inland by over 10 m. Storms in March and November 2007 also generated barrier scarping and shoreline retreat, although not on the scale of 2013. Between 2008 and 2013, a calm period, recovery dominated barrier position and elevation but was spatially differentiated alongshore. For one study area, Scolt Head Island, no recovery was seen; this section of the coast is being reset episodically landwards during storms. By contrast, the study area at Holkham Bay showed considerable recovery between 2008 and 2013, with barrier sections developing seaward through foredune recovery. The third study area, Brancaster Bay, showed partial recovery in barrier location and elevation. Results suggest that recovery is promoted by high sediment supply and onshore intertidal bar migration, at rates of 40 m a- 1. These processes bring sand to elevations where substrate drying enables aeolian processes to entrain and transport sand from upper foreshores to foredunes. We identify three potential sediment transport pathways that create a region of positive diffusivity at Holkham Bay. During calm periods, a general westward movement of sediment from the drift divide at Sheringham sources the intertidal bar and foredune development at Holkham Bay. However, during and following storms the drift switches to eastward, not only on the beach itself but also below the - 7 m isobath. Sediment from the eroding barrier at Brancaster Bay, and especially Scolt Head Island, also sources the sediment sink of Holkham Bay. Knowledge of foredune growth and barrier recovery in natural systems are vital aspects of future coastal management planning with accelerated sea-level rise and storminess variability.
NASA Astrophysics Data System (ADS)
Monge-Ganuzas, M.; Gainza, J.; Liria, P.; Epelde, I.; Uriarte, A.; Garnier, R.; González, M.; Nuñez, P.; Jaramillo, C.; Medina, R.
2017-12-01
Laida beach, located at the Oka estuary mouth (Urdaibai Biosphere Reserve) in the southeastern region of the Bay of Biscay, suffered the impact of a severe succession of storms during the first months of 2014. As a result of the erosion induced by these events, the beach lost its supratidal zone almost completely. The absence of a supratidal beach generated an impact on the recreational use of the beach during the summer 2014, and represented a potential impact for the coming summer 2015. Furthermore, it resulted in an overexposure and damage of adjacent infrastructures due to impinging strong waves. Therefore, the competent authorities, in coordination, decided to take action in order to nourish the supratidal zone of this beach. The solution adopted combined two different actions. The first one accomplished in spring of 2015, consisted in the mobilization of 44,800 m3 of sand from an area of 35,200 m2 equal to the 7% of the intertidal zone of Laida beach interpreted as the existing surface between the average low and high tidal limits, to the zone next to the eastern rocky beach contour. This action successfully resulted in an increase of the supratidal beach for the entire summer 2015 without negatively perturbing the morphological system. The second action was somewhat experimental and consisted in the mechanical plough of the previously existing intertidal low-amplitude ridges with the aim of increasing the sand transport toward the supratidal beach. Although this action did not lead to the increase of the supratidal beach, it seems to have resulted in an acceleration of the natural onshore migration of the bars. The objective of this contribution is to describe the morphodynamical response of the estuarine mouth after the performed actions with special emphasis on the evolution of extracted sites and the supratidal Laida beach area. The information here presented represents an innovative step in the understanding of the complex mechanisms driving the supratidal beach formation at the mouth of Oka estuary and by extension of the majority of the estuaries of the southeastern Bay of Biscay.
Variability of intertidal foraminferal assemblages in a salt marsh, Oregon, USA
Milker, Yvonne; Horton, Benjamin P.; Nelson, Alan R.; Engelhart, Simon E.; Witter, Robert C.
2015-01-01
We studied 18 sampling stations along a transect to investigate the similarity between live (rose Bengal stained) foraminiferal populations and dead assemblages, their small-scale spatial variations and the distribution of infaunal foraminifera in a salt marsh (Toms Creek marsh) at the upper end of the South Slough arm of the Coos Bay estuary, Oregon, USA. We aimed to test to what extent taphonomic processes, small-scale variability and infaunal distribution influence the accuracy of sea-level reconstructions based on intertidal foraminifera. Cluster analyses have shown that dead assemblages occur in distinct zones with respect to elevation, a prerequisite for using foraminifera as sea-level indicators. Our nonparametric multivariate analysis of variance showed that small-scale spatial variability has only a small influence on live (rose Bengal stained) populations and dead assemblages. The dissimilarity was higher, however, between live (rose Bengal stained) populations in the middle marsh. We observed early diagenetic dissolution of calcareous tests in the dead assemblages. If comparable post-depositional processes and similar minor spatial variability also characterize fossil assemblages, then dead assemblage are the best modern analogs for paleoenvironmental reconstructions. The Toms Creek tidal flat and low marsh vascular plant zones are dominated by Miliammina fusca, the middle marsh is dominated by Balticammina pseudomacrescens and Trochammina inflata, and the high marsh and upland–marsh transition zone are dominated by Trochamminita irregularis. Analysis of infaunal foraminifera showed that most living specimens are found in the surface sediments and the majority of live (rose Bengal stained) infaunal specimens are restricted to the upper 10 cm, but living individuals are found to depths of 50 cm. The dominant infaunal specimens are similar to those in the corresponding surface samples and no species have been found living solely infaunally. The total numbers of infaunal foraminifera are small compared to the total numbers of dead specimens in the surface samples. This suggests that surface samples adequately represent the modern intertidal environment in Toms Creek.
Recent saltmarsh foraminiferal assemblages from Iceland
NASA Astrophysics Data System (ADS)
Lübbers, Julia; Schönfeld, Joachim
2018-01-01
This study reports for the first time boreal to subarctic intertidal foraminiferal assemblages from saltmarshes at Borgarnes and Faskrudsfjördur on Iceland. The composition of living and dead foraminiferal assemblages was investigated along transects from the tidal flat to the highest reach of halophytic plants. The foraminiferal assemblages from Borgarnes showed 18 species in the total foraminiferal assemblage of which only 7 species were recorded in the living fauna. The assemblages were dominated by agglutinated taxa, whereas 3 calcareous species were recorded, of which only Haynesina orbicularis was found in the living fauna. The distribution limit of calcifying species corresponds to the lower boundary of the lower saltmarsh vegetation zone. Furthermore, calcareous tests showed many features of dissolution, which is an indication of a carbonate corrosive environment. The species forming the dead assemblages were mainly derived from the ambient intertidal areas and were displaced by tidal currents into the saltmarsh. The foraminiferal assemblages from Faskrudsfjördur showed two species, of which only one species was recorded in the living fauna. The assemblage was dominated by the agglutinated foraminifer Trochaminita irregularis. The foraminiferal species recorded on Iceland were the same as commonly found elsewhere in Europa. Since no species was found which is endemic to North America, Iceland is considered part of the European bio province. The foraminiferal could have been immigrated to Iceland from Europe through warm water currents, migratory birds or marine traffic since the last Ice Age.
Opportunity Takes a Last Look at Rock Exposure Before Heading to Victoria Crater False Color
2006-08-24
This false-color image shows a circular indentation in a flat-topped rock surface. Around the edge of the hole is a fine layer of reddish dust. The rock is light tan and has a moderately cracked the surface. Around it is a layer of bluish sand and pebbles
Geologic evidence of earthquakes at the Snohomish Delta, Washington, in the past 1200 yr
Bourgeois, Joanne; Johnson, Samuel Y.
2001-01-01
Exposed channel banks along distributaries of the lower Snohomish delta in the Puget Lowland of Washingtonreveal evidence of at least three episodes of liquefaction, at least one event of abrupt subsidence, and at least one tsunami since ca. A.D. 800. The 45 measured stratigraphic sections consist mostly of 2-4 m of olive- gray, intertidal mud containing abundant marsh plant rhizomes. The most distinctive stratigraphic unit is a couplet comprising a 0.5-3-cm-thick, laminated, fining-upward, tsunami-laid sand bed overlain by 2-10 cm of gray clay. We correlated the couplet, which is generally approximately 2 m below the modern marsh surface, across an approximately 20 km (super 2) area. Sand dikes and sand-filled cracks to 1 m wide, which terminate upward at the couplet, and sand volcanoes preserved at the level of the sand bed record liquefaction at the same time as couplet deposition. Differences in the type and abundance of marsh plant rhizomes across the couplet horizon, as well as the gray clay layer, suggest that compaction during this liquefaction led to abrupt, local lowering of the marsh surface by as much as 50-75 cm. Radiocarbon ages show that the tsunami and liquefaction date from ca. A.D. 800 to 980, similar to the age of a large earthquake on the Seattle fault, 50 km to the south. We have found evidence for at least two, and possibly as many as five, other earthquakes in the measured sections. At two or more stratigraphic levels above the couplet, sand dikes locally feed sand volcanoes. Radiocarbon ages and stratigraphic position suggest that one set of these dikes formed ca. A.D. 910-990; radiocarbon ages on a younger set indicate a limiting maximum age of A.D. 1400-1640. We also interpret a sharp lithologic change, from olive-gray, rhizome-rich mud to grayer, rhizome-poor mud, approximately 1 m above the couplet, to indicate a second abrupt lowering of the marsh surface during an earthquake ca. A.D. 1040-1400, but no conclusive liquefaction structures have been identified at this horizon. Two distinctive coarse-sand laminae, 30-80 cm below the couplet, may record tsunamis older than A.D. 800. Thus, study shows that in the past approximately 1200 yr, this part of Washington's Puget Lowland has been subjected to stronger ground shaking than in historic times, since ca. 1870.
NASA Astrophysics Data System (ADS)
Bragov, A. M.; Balandin, Vl. V.; Kotov, V. L.; Balandin, Vl. Vl.
2018-04-01
We present new experimental results on the investigation of the dynamic properties of sand soil on the basis of the inverse experiment technique using a measuring rod with a flat front-end face. A limited applicability has been shown of the method using the procedure for correcting the shape of the deformation pulse due to dispersion during its propagation in the measuring rod. Estimates of the pulse maximum have been obtained and the results of comparison of numerical calculations with experimental data are given. The sufficient accuracy in determining the drag force during the quasi-stationary stage of penetration has been established. The parameters of dynamic compressibility and resistance to shear of water-saturated sand have been determined in the course of the experimental-theoretical analysis of the maximum values of the drag force and its values at the quasi-stationary stage of penetration. It has been shown that with almost complete water saturation of sand its shear properties are reduced but remain significant in the practically important range of penetration rates.
Do Large Carnivores and Mesocarnivores Have Redundant Impacts on Intertidal Prey?
Clinchy, Michael; Zanette, Liana Y.
2017-01-01
The presence of large carnivores can affect lower trophic levels by suppressing mesocarnivores and reducing their impacts on prey. The mesopredator release hypothesis therefore predicts prey abundance will be higher where large carnivores are present, but this prediction assumes limited dietary overlap between large and mesocarnivores. Where dietary overlap is high, e.g., among omnivorous carnivore species, or where prey are relatively easily accessible, the potential exists for large and mesocarnivores to have redundant impacts on prey, though this possibility has not been explored. The intertidal community represents a potentially important but poorly studied resource for coastal carnivore populations, and one for which dietary overlap between carnivores may be high. To evaluate usage of the intertidal community by coastal carnivores and the potential for redundancy between large and mesocarnivores, we surveyed (i) intertidal prey abundance (crabs and fish) and (ii) the abundance and activity of large carnivores (predominantly black bears) and mesocarnivores (raccoons and mink) in an area with an intact carnivore community in coastal British Columbia, Canada. Overall carnivore activity was strongly related to intertidal prey availability. Notably, this relationship was not contingent on carnivore species identity, suggestive of redundancy–high intertidal prey availability was associated with either greater large carnivore activity or greater mesocarnivore activity. We then compared intertidal prey abundances in this intact system, in which bears dominate, with those in a nearby system where bears and other large carnivores have been extirpated, and raccoons are the primary intertidal predator. We found significant similarities in intertidal species abundances, providing additional evidence for redundancy between large (bear) and mesocarnivore (raccoon) impacts on intertidal prey. Taken together, our results indicate that intertidal prey shape habitat use and competition among coastal carnivores, and raise the interesting possibility of redundancy between mesocarnivores and large carnivores in their role as intertidal top predators. PMID:28085962
NASA Astrophysics Data System (ADS)
Li, Xiaorong; Leonardi, Nicoletta; Brown, Jennifer; Plater, Andy
2017-04-01
The coastline of Eastern England is home to about one quarter of the UK's coastal habitats, including intertidal salt marshes, tidal flats and sand dunes. These geomorphic features are of great importance to the local wildlife, global biodiversity, marine environment and human society and economy. Due to sea-level rise and the occurrence of extreme weather conditions, the coastline of Eastern England is under high risk of erosion and recession, which could lead to tidal inundation of sites such as the RSPB Minsmere Reserve and power generation infrastructure at Sizewell. This research responds to the need for sustainable shoreline management plans of the UK east coast through sensitivity studies at the Dunwich-Sizewell area, Suffolk, UK. Particular interest is on the long-term morphodynamic response of the study area to possible environmental variations associated with global climate change. Key coastal processes, i.e. current, waves and sediment transport, and morphological evolution are studied using a process-based numerical model under the following scenarios: current mean sea level + calm wave conditions, current mean sea level + storms, sea level rise + calm wave conditions, and sea level rise + storms, all with a 'do nothing' management plan which allows the coastal environment to exist and respond dynamically. As a further aspect of this research, rules will be generalized for reduced-complexity, system-based modelling. Alternative management plans, including 'managed realignment' and 'advance the line', are also investigated in this research under the same environmental forcing scenarios, for the purposes of protection of infrastructure of national importance and conservation of wetland habitats. Both 'hard' and 'soft' engineering options, such as groynes and beach nourishment respectively, are considered. A more ecohydrological option which utilizes aquatic plant communities for wave energy dissipation and sediment trapping is also studied. The last option requires the numerical models to be modified based on understandings obtained through analysis of on-site observations and laboratory measurements.
Sanders, James P; Andrade, Natasha A; Menzie, Charles A; Amos, C Bennett; Gilmour, Cynthia C; Henry, Elizabeth A; Brown, Steven S; Ghosh, Upal
2018-06-05
In situ amendment of sediments with highly sorbent materials like activated carbon (AC) is an increasingly viable strategy to reduce the bioavailability of persistent, sediment-associated contaminants to benthic communities. Because in situ sediment remediation is an emerging strategy, much remains to be learned about the field conditions under which amendments can be effective, the resilience of amendment materials toward extreme weather conditions, and the optimal design of engineered applications. Here we report the results of a multi-year, pilot-scale field investigation designed to measure the persistence and efficacy of AC amendments to reduce the bioavailability of polychlorinated biphenyls (PCBs) in an intertidal Phragmites marsh. The amendments tested were granular AC (GAC), GAC with a layer of sand, and a pelletized fine AC. Key metrics presented include vertically-resolved black carbon concentrations in sediment and PCB concentrations in sediment, porewater, and several invertebrate species. The results demonstrate that all three amendments withstood Hurricane Sandy and remained in place for the duration of the study, successfully reducing porewater PCB concentrations by 34-97%. Reductions in invertebrate bioaccumulation were observed in all amendment scenarios, with pelletized fine AC producing the most pronounced effect. Our findings support the use of engineered AC amendments in intertidal marshes, and can be used to inform amendment design, delivery, and monitoring at other contaminated sediment sites. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Cha, Jae-Hoon; Kim, Kwang-Bae; Song, Ji-Na; Kim, In-Soo; Seo, Jeong-Bin; Kwoun, Chul-Hwi
2013-12-01
This study was carried out to learn about differences in the sessile macrobenthic fauna communities between the artificial and natural habitats. There were some differences in terms of species composition and dominant species and community structure between two habitat types. The dominant species include Pollicipes mitella and Granuilittorina exigua in natural rocky intertidal zones; Monodonta labio confusa, Ligia exotica, Tetraclita japonica in the artificial rocky intertidal zones. Among all the species, L. exotica and T. japonica occurred only in the artificial rocky intertidal zone. The results of cluster analysis and nMDS analysis showed a distinct difference in community structure between artificial and natural rocky intertidal zones. The fauna in the natural rocky intertidal zones were similar to each other and the fauna in the artificial rocky intertidal zones were divided depending on the slope of the substratum. In the case of a sloping tetrapod, M. labio confusa and P. mitella were dominant, but at the vertical artificial seawall, Cellana nigrolineata, L. exotica T. japonica were dominant. The analysis of the species presented in natural and artificial rocky intertidal areas showed the exclusive presence of 10 species on natural rocks and 12 species on artificial rocks. The species in the natural rocky intertidal area included mobile gastropods and cnidarians (i.e. rock anemones), and the species in the artificial rocky intertidal area mostly included non-mobile attached animals. The artificial novel structure seems to contribute to increasing the heterogeneity of habitats for marine invertebrate species and an increase the species diversity in rocky coastal areas.
1957-02-01
this report is acknowledged: Northeastern Forest Experiment Station, Southeastern Forest and Range Experiment Station, and California Forest Sand Range...Washington ........... ................. .... A7 Tanbark Flat, California ....... ................. .... A8 Madera County, California ...Mississippi, Pennsylvania, California , South Carolina, South Dakota, Nebraska, and Indiana were ob- tained and analyzed. 8. The method developed for prediction
NASA Astrophysics Data System (ADS)
Flach, E. C.
On the tidal flats of the Wadden Sea, a zonation pattern can be found with Corophium volutator and Nereis diversicolor as the dominating species of the upper intertidal zone and Arenicola marina and Cerastoderma edule as the dominating species of the lower zone. As C. volutator can live under a great variety of physical conditions, its restriction to higher areas might result from biotic interactions. This was investigated by field experiments on a tidal flat in the westernmost part of the Wadden Sea. Within large depopulated areas, small plots were recolonized with different densities of N. diversicolor, A. marina, C. edule and Macoma balthica and the subsequent settlement and dynamics of C. volutator were studied. In addition, A. marina and/or C. edule were added to or removed from small plots within a natural benthic community. Neither the presence of M. balthica not that of N. diversicolor significantly affected the abundance of C. volutator. A strongly negative effect was found of C. edule when present in high densities, whereas A. marina negatively affected C. volutator abundance already at relatively low densities. Local removals of A. marina and C. edule from their own zone resulted in increases of Corophium numbers at these locations and local additions of these species within the Corophium zone resulted in decreases of Corophium numbers at these locations. It is suggested that the major species to restrict C. volutator effectively to the upper tidal zone is A. marina.
Sand transportation and reverse patterns over leeward face of sand dune
NASA Astrophysics Data System (ADS)
Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning
2017-04-01
Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux decreases with height in the reversed direction. The height of 0.5 H is the height of vortex core in the reversed flow region. The vortex core is a critical point in the flow region where few particles are transited. In the reversed region, the reversed mass flux of sand particles is 25% of the mass flux in the flow direction. This research may contribute to scientific understanding of the mechanisms of sand motion and wind flow over leeward of dune and it is likely to be significant in desertification control.
NASA Astrophysics Data System (ADS)
Le Bot, Sophie; Forey, Estelle; Lafite, Robert; Langlois, Estelle
2015-04-01
As many estuaries in the English Channel, the Baie de Somme is currently filling with a mean seabed elevation between 1.3 and 1.8 cm/yr. Embankments and polders, as well as sea level rise, increase this natural accretion process, which leads to important modifications of environment uses. Interactions between vegetation and sediment dynamics constitute a key-point to consider, in order to better understand the infilling processes in estuaries. To estimate the effect of vegetation on these processes, two particular environments have been studied in the bay: (i) the mid salt marsh covered with Halimione portulacoides, associated with a silty sedimentation, and (ii) the shingle spit, that closes the bay from the South, on which the sea kale (Crambe maritime), a protected pioneer species, develops. Salt marshes progress with a rate of 5-10 m/yr (mean value calculated on the 1947-2011 period). Sedimentological analysis have been conducted on 9 cores (50cm long) collected in three Halimione communities of the bay. They are associated with a silty-dominated (38-84 micrometer) sedimentation under the influence of decantation processes. Rhythmicity is observed in the sedimentation, due to the repetition of a two-layer pattern, that includes a dark layer composed of vegetal rests and that would represent annual sedimentation. Annual sedimentation rates (0.7 to 5.8 cm/yr) are consistent with mean values previously recorded. The shingle spit progresses to the North under the influence of the littoral drift at a rate of 7 m/yr (mean value calculated on the 1947-2011 period). Sea kales are observed on parts formed since several years, above the level of the highest astronomical tides. TLS surveys and sedimentation bars have allowed to measure erosion/sedimentation volumes at the scale of the spit and of sea kale individuals, during spring 2013. Individuals of this species facilitate the trapping of sand, transported by winds from the intertidal flats. Sea kale thus contributes to the maintenance of sand at the surface of the spit during spring (development period of sea kales) and, probably to the progressive silting up of the spit on a longer-term. Thus, sea kale indirectly favours the filling of the bay through the building up and consolidation of the spit that, in turn, enhances sheltered conditions increasing the part of decantation processes in the sedimentation in the bay. (financial support by Région Haute-Normandie and Réseau d'Observation du Littoral Normand et Picard, ROLNP)
A Module Experimental Process System Development Unit (MEPSDU). [flat plate solar arrays
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which meet the price goal in 1986 of 70 cents or less per Watt peak is described. The major accomplishments include (1) an improved AR coating technique; (2) the use of sand blast back clean-up to reduce clean up costs and to allow much of the Al paste to serve as a back conductor; and (3) the development of wave soldering for use with solar cells. Cells were processed to evaluate different process steps, a cell and minimodule test plan was prepared and data were collected for preliminary Samics cost analysis.
NASA Technical Reports Server (NTRS)
2006-01-01
As NASA's Mars Exploration Rover Opportunity continues a southward trek from 'Erebus Crater' toward 'Victoria Crater,' the terrain consists of large sand ripples and patches of flat-lying rock outcrops, as shown in this image. Whenever possible, rover planners keep Opportunity on the 'pavement' for best mobility. This false-color image mosaic was assembled using images acquired by the panoramic camera on Opportunity's 784th sol (April 8, 2006) at about 11:45 a.m. local solar time. The camera used its 753-nanometer, 535-nanometer and 432-nanometer filters. This view shows a portion of the outcrop named 'Bosque,' including rover wheel tracks, fractured and finely-layered outcrop rocks and smaller, dark cobbles littered across the surface.NASA Astrophysics Data System (ADS)
Woo, K. S.; Chun, S. S.; Moon, K. O.
2017-12-01
The `Korean Archipelago Getbol (KAG; Getbol means tidal flat deposits in Korean)' has developed due to the decreasing accommodation space during the Holocene sea-level rise on the broad epicontinental shelf of the southeastern part of the Yellow Sea. Sedimentation and evolution show a variety of quite distinctive tidal flat patterns with intertidal and subtidal drainage systems depending upon the location and orientation of rocky shores. The following KAG`s Outstanding Universal Values are suggested to support the WH: 1) It is the unique coastal sedimentary environment formed by special geological and oceanographic setting in the world. It is the only place in the world where tide-controlled sedimentation processes have produced special tidal flats surrounding numerous rocky islands on a broad epicontinental shelf near convergent tectonic boundary. Macrotidal currents combined with waves and typhoons in this semi-closed oceanographic setting have provided unique geological and oceanographic conditions for their formation. 2) It diplays the most dynamic and complicated, but stable coastal depositional system in the world. Even though the property has been constantly influenced by strong microtidal currents combined with East Asian Monsoon climate (winter erosion and summer deposition) with occasional typhoons during summer, Getbol has maintained its stable depositional system and tidal flat sediments have been accumulated for the past 9,000 years. Sufficient supply of suspended load through Geumgang River provides sustainable depositional system within the property. Complicated island-topography also produced the most complicated and divese depositional systems as well as the deepest tidal channels in the world. (3) The KAG shows the thickest tidal flat sediments protected by numerous islands. Aggradation of tidal sediments has caught up with the rapid Holocene sealevel rise and produced the thickest tidal flat sediments in the world. As a results, numerous former islands of relatively elevated areas have been vanished and hidden. In addition, the KAG shows a complete story of geological, ecological and conservational integrity (the wholeness and intactness). Thus, we strongly believe that the KAG has great potential to be inscribed on a World Heritage List for the criterion (viii).
Evidence of Active Ooid Growth from Little Ambergris Cay, Turks and Caicos Islands, B.W.I.
NASA Astrophysics Data System (ADS)
Trower, L.; Cantine, M.; O'Reilly, S. S.; Strauss, J. V.; Gomes, M. L.; Grotzinger, H. M.; Grotzinger, J. P.; Knoll, A. H.; Lamb, M. P.; Lingappa, U.; Metcalfe, K.; Orzechowski, E. A.; Quinn, D. P.; Riedman, L. A.; Stein, N.; Fischer, W. W.
2016-12-01
A major challenge in understanding ooid formation lies in untangling the effects of sediment transport and abrasion on ooid size, shape, and texture from those of chemical and microbial processes. Little Ambergris Cay—situated near the southern margin of the Caicos Platform in the Turks and Caicos Islands—is surrounded by expansive modern ooid shoals and provides a natural laboratory to examine the effects of transport on ooid size and texture. Currents driven by sustained easterly winds transport ooids westward along the 7 km shoreline of Little Ambergris Cay (E-W elongation) and the 20 km long ooid shoal extending westward from the western tip of the island. The shoal is defined by a chevron pattern of asymmetric sand waves with wavelengths of 40 m and amplitudes of 35 cm, superimposed with cm- to dm-scale combined-flow ripples. High tide water depth at sand wave crests varies from 50 cm near the island to 2 m at the western tip of the shoal. On sand waves, ooids are actively transported near the threshold of suspension, while incipiently-cemented hardgrounds occur in barform troughs and off the edges of the active shoal, indicating rapid and early cementation outside the zone of active transport, as well as substantial sediment bypass. We collected 54 samples of ooid sand, including 13 samples from ripple tops in the intertidal zone along the northern edge of the island and 21 from ripple tops on sand wave crests along the length of the shoal. Ooids steadily increase in size and sphericity along the shoal, from 468 µm (D50) near the island to 566 µm at the western end of the shoal, indicating active growth during transport, even as abrasion modifies grain shape. We present an analysis of ooid size, shape, texture, polish, and composition to provide novel insights into the dynamic influence of current transport on ooid evolution and the constraints this provides on the chemical and biological processes associated with ooid formation and alteration.
Buser, Thaddaeus J; Burns, Michael D; López, J Andrés
2017-01-01
While intertidal habitats are often productive, species-rich environments, they are also harsh and highly dynamic. Organisms that live in these habitats must possess morphological and physiological adaptations that enable them to do so. Intertidal fishes are generally small, often lack scales, and the diverse families represented in intertidal habitats often show convergence into a few general body shapes. However, few studies have quantified the relationship between phenotypes and intertidal living. Likewise, the diversity of reproductive traits and parental care in intertidal fishes has yet to be compared quantitatively with habitat. We examine the relationship of these characters in the sculpin subfamily Oligocottinae using a phylogenetic hypothesis, geometric morphometrics, and phylogenetic comparative methods to provide the first formal test of associations between fish phenotypes and reproductive characters with intertidal habitats. We show that the ability to live in intertidal habitats, particularly in tide pools, is likely a primitive state for Oligocottinae, with a single species that has secondarily come to occupy only subtidal habitats. Contrary to previous hypotheses, maximum size and presence of scales do not show a statistically significant correlation with depth. However, the maximum size for all species is generally small (250 mm or less) and all show a reduction in scales, as would be expected for an intertidal group. Also contrary to previous hypotheses, we show that copulation and associated characters are the ancestral condition in Oligocottinae, with copulation most likely being lost in a single lineage within the genus Artedius . Lastly, we show that body shape appears to be constrained among species with broader depth ranges, but lineages that occupy only a narrow range of intertidal habitats display novel body shapes, and this may be associated with habitat partitioning, particularly as it relates to the degree of wave exposure.
Climate change and intertidal wetlands.
Ross, Pauline M; Adam, Paul
2013-03-19
Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.
Climate Change and Intertidal Wetlands
Ross, Pauline M.; Adam, Paul
2013-01-01
Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670
Kang, Chang-Keun; Park, Hyun Je; Choy, Eun Jung; Choi, Kwang-Sik; Hwang, Kangseok; Kim, Jong-Bin
2015-01-01
We examined stable carbon and nitrogen isotope ratios for a large variety of consumers in intertidal and subtidal habitats, and their potential primary food sources [i.e., microphytobenthos (MPB), phytoplankton, and Phragmites australis] in a coastal bay system, Yeoja Bay of Korea, to test the hypothesis that the transfer of intertidal MPB-derived organic carbon to the subtidal food web can be mediated by motile consumers. Compared to a narrow δ13C range (−18 to −16‰) of offshore consumers, a broad δ13C range (−18 to −12‰) of both intertidal and subtidal consumers indicated that 13C-enriched sources of organic matter are an important trophic source to coastal consumers. In the intertidal areas, δ13C of most consumers overlapped with or was 13C-enriched relative to MPB. Despite the scarcity of MPB in the subtidal, highly motile consumers in subtidal habitat had nearly identical δ13C range with many intertidal foragers (including crustaceans and fish), overlapping with the range of MPB. In contrast, δ13C values of many sedentary benthic invertebrates in the subtidal areas were similar to those of offshore consumers and more 13C-depleted than motile foragers, indicating high dependence on phytoplankton-derived carbon. The isotopic mixing model calculation confirms that the majority of motile consumers and also some of subtidal sedentary ones depend on intertidal MPB for more than a half of their tissue carbon. Finally, although further quantitative estimates are needed, these results suggest that direct foraging by motile consumers on intertidal areas, and thereby biological transport of MPB-derived organic carbon to the subtidal areas, may provide important trophic connection between intertidal production and the nearshore shallow subtidal food webs. PMID:26448137
Origin of the Nubian and similar sandstones
McKee, E.D.
1963-01-01
The Nubian Sandstone and similar sandstone bodies exposed across much of northern Africa and adjoining parts of Asia are characteristically formed of clean sand that is conspicuously cross stratified throughout. Such sandstone, here called Nubian-type sandstone, ranges from Cambrian through Cretaceous in age and its genesis has been interpreted in many ways. Studies of its primary structures, and of the direction of sand transport, based on statistical measurements of foreset dip directions, have contributed new data on its genesis. By far the most common structure in Nubian-type sandstone is a medium-scale planar-type cross stratification in which sets of evenly dipping cross beds are bounded by essentially flat-lying top and bottom surfaces to form tabular bodies. Other less numerous but typical structures are large-scale, truncated-wedge cross strata, trough-type cross strata, intraformational recumbent folds, small-scale ripple laminae, and dipping sets of tabular-planar cross beds. An analysis of these structures suggests that in the typical Nubian Sandstone of Cretaceous age eolian deposits are not represented and normal marine types probably also are lacking; flood plain, pond or lagoon, and other continental and marginal environments are indicated. In the Carboniferous rocks of Sinai Peninsula some beach sandstone and possibly some eolian, in addition to the types described, form part of the sequence. Direction of sand transport, as determined from cross-bed dips, was northerly in the Cretaceous Nubian of Libya, Sudan, and Egypt; easterly in the Jurassic Adigrat of Ethiopia; westerly in the Carboniferous of Sinai; northwesterly in the early Paleozoic of Jordan. ?? 1963 Ferdinand Enke Verlag Stuttgart.
Predation of intertidal infauna on juveniles of the bivalve Macoma balthica
NASA Astrophysics Data System (ADS)
Hiddink, J. G.; ter Hofstede, R.; Wolff, W. J.
2002-03-01
Juveniles of the bivalve Macoma balthica live on tidal flats in the Wadden Sea. This study examined the interaction of Macoma with the infaunal polychaetes Arenicola marina and Nereis diversicolor and the gastropod Retusa obtusa. The distribution of M. balthica spat on the flats, shortly after settlement in April, showed a positive correlation with the Arenicola distribution and a negative correlation with Nereis distribution. There were no locations where Macoma spat and Retusa occurred together. In August, Macoma spat had grown too large for predation by intertidal infauna. Small individuals of Macoma spat were found in stomachs of Arenicola (0.14 worm -1) and Nereis (0.05 worm -1). Laboratory experiments showed that Nereis and Retusa could reduce Macoma spat abundance, both in the absence and presence of sediment and alternative prey. Arenicola reduced the abundance of small Macoma (<1 mm) in sediment without, but not with, alternative prey. In field experiments, we manipulated the density of Arenicola in 0.25-1 m 2 plots and of Nereis in 0.03 m 2 cages and examined the effect on Macoma density several weeks later. We found a significant negative relation between densities of polychaetes and Macoma spat for both polychaete species in these experimental plots. Peculiarly, we found a significant positive relation between manipulated Nereis density and adult Macoma density in the cages; we cannot explain this. Consumption rates, calculated both from stomach contents and from field experiments, were 45 to 102 Macoma m -2 d -1 for Arenicola and 5 to 116 Macoma m -2 d -1 for Nereis. These values are higher than recorded consumption rates by epibenthic predators in the same area. Nevertheless, between-year differences in year-class strength could not be explained by differential abundance of these polychaetes. In conclusion, Arenicola and Nereis had a negative effect on the abundance of Macoma <1.5 mm, which was at least partly caused by direct consumption. Retusa obtusa can eat juvenile Macoma, but probably did not so in the study area, because there were no locations where Retusa and Macoma spat occurred together in the period that Macoma was <2 mm.
NASA Astrophysics Data System (ADS)
Ebersbach, F.; Böttcher, M. E.; Al-Raei, A. M.; Segl, M.
2009-04-01
Top intertidal sediments show a pronounced zone of activities of sulphate-reducing bacteria. Iron sulfides may be formed, but a substantial part is reoxidized to sulfate. Microbial or chemical reoxidation can be further enhanced by a resuspension of surface sediments by tidal currents or storms. The rates of the different processes depend on the site-secific sedimentological properties (e.g., grain size, iron and sulphur contents etc.). In the present study 3 different areas of the German Wadden Sea were studied: a mud flat in the Jade Bay, and sandy sediments in the intertidals of Spiekeroog and Sylt islands. The latter site is part of an in-situ lugworm-exclusion experiment. The goal was the experimental and field investigation of the fate of iron sulfides and the formation of sulphate upon resuspension of intertidal surface sediments in oxygenated seawater. All sites were geochemically analyzed for dissolved and solid phase iron, manganese, sulphur and carbon phases/species, and sulphate reduction rates were measured using radiotracers. Dissolved chloride and grain sizes analysis where additionally carried out. TOC, S and metal phase contents were higher in mud compared to sandy sediments. Field results demonstrate gross but only minor net sulphide production and a downcore increases in FeS contents, due to intense sulphide oxidation at the surface. Pyrite, on the other hand, was abundant through the sediments due to continuous sediment reworking. The fate of iron-sulphides and accumulation of sulphate as a function of time was followed in batch experiments using dark suspensions of surface sediments in site-bottom waters at room temperature. During the experiments, each sample was shaken continuously under exposition to oxygen, and sub-samples were taken at the beginning and after discrete time intervalls. A very fast oxidation rate of AVS led to a complete exhaustion within a day, whereas Cr(II)-reducible sulfur was inititially built up and then decreased. This observation can be explained by a formation of S° and FeOOH, followed by the oxidation of pyrite. The dissolved species (SO4/Cl ratios) reflected the continuous accumulation of sulphate as an oxidation product. Dissolved inorganic carbonate (DIC) concentrations decreased upon reaction progress, due to the liberation of protons upon iron sulphide oxidation and degassing of carbon dioxide. The 13C/12C ratio of the residual DIC increased due to the preferential desorption of 12CO2. 34S and 18O contents of dissolved sulphate further show process specific isotope discrimination. The experiments demonstrate the importance of oxidation on the fate of FeS , but less pyrite and the formation of sulphate from resuspended intertidal surface sediments. Acknowledgements: The authors gratefully acknowledge discussions and field advice by N. Volkenborn, and financial support from Deutsche Forschungsgemeinschaft during DFG-SPP ‚BioGeoChemistry of the Wadden Sea' (JO 307/4, BO 1584/4), Max Planck Society, and Leibniz-IO Warnemünde.
NASA Astrophysics Data System (ADS)
Otvos, Ervin G.; Carter, Gregory A.
2013-09-01
Basic differences between non-deltaic regressive and deltaic transgressive barrier islands reflect major contrasts in geological settings and sediment sources. Two island groups on the N. Gulf of Mexico provide unique perspectives of genetic and geomorphic contrasts applicable in a worldwide context. The near-extinction of the deltaic transgressive Chandeleur barriers and reduction of the sturdier prograded Mississippi-Alabama (MS-AL) chain are related to differences in sediment sources, storm, and anthropogenic impact. 160 years of documentary evidence points to contrasting geological settings, development history, sediment sources, and island morphology as responsible for different island erodibility and life spans. The non-deltaic chain received larger volumes of coarser, less erodible medium sand from the NE Gulf coast. Onshore sand flux from reworked delta deposits received from the retreating delta shoreface initiated the fragile, thin, and isolated transgressive Chandeleur islands. Fine-grained sand from unconsolidated muds of abandoned Mississippi-St. Bernard delta lobes maintained two distinct transgressive barrier island categories. In the absence of quantitative data on cross-shore transport, discrepancies between estimated littoral drift volumes and sand reserves for nourishment remain unexplained. Medium-sandy MS-AL barriers have resisted storm events far better than delta barriers. However, even the former chain did undergo 26 to 53% area reduction since 1848. Anthropogenic intervention stymied island growth. Emerging intertidal berm-basins formed on sandy shoal platforms in storm-eliminated sectors have contributed to partial island recovery. Delta attrition by wave erosion, tectonic, and compactional subsidence had accelerated delta lobe and barrier island decay. Intensive storm erosion culminating in and following Hurricane Katrina came close to eradicate the highly vulnerable Chandeleur barrier chain. Lacking adequate nourishment, after devastating cyclones only small islands reemerge and persist temporarily from the shoal belt. A four-stage barrier evolution model, globally applicable to transgressive deltaic barriers, is based on documented changes in late Holocene Mississippi sub-deltas.
Dispersion in tidally averaged transport equation
Cheng, R.T.; Casulli, V.
1992-01-01
A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature
Crustaceans from a tropical estuarine sand-mud flat, Pacific, Costa Rica, (1984-1988) revisited.
Vargas-Zamora, José A; Sibaja-Cordero, Jeffrey A; Vargas-Castillo, Rita
2012-12-01
The availability of data sets for time periods of more than a year is scarce for tropical environments. Advances in hardware and software speed-up the re-analysis of old data sets and facilitates the description of population oscillations. Using recent taxonomic literature and software we have updated and re-analized the information on crustacean diversity and population fluctuations from a set of cores collected at a mud-sand flat in the mid upper Gulf of Nicoya estuary, Pacific coast of Costa Rica (1984-1988). A total of 112 morphological species of macroinvertebrates was found, of which 29 were crustaceans. Taxonomic problems, maily with the peracarids, prevented the identification of a group of species. The abundance patterns of the crab Pinnixa valerii, the ostracod Cyprideis pacifica, and the cumacean Coricuma nicoyensis were analized with the Generalized Additive Models of the free software R. The models evidenced a variety of population oscillations during the sampling period. These oscillations probably included perturbations induced by external factors, like the strong red tide events of 1985. In additon, early on 1984 the populations might have been at an altered state due to the inpact of El Niño 1982-83. Thus, the oscillations observed during the study period departed from the expected seasonality (dry vs rainy) pattern and are thus considered atypical for this tropical estuarine tidal-flat. Crustacean diversity and population peaks were within the range of examples found in worldwide literature. However, abundances of the cumacean C. nicoyensis, an endemic species, are the highest reported for a tropical estuary. Comparative data from tropical tidal flat crustaceans continues to be scarce. Crustaceans (total vs groups) had population changes in response to the deployment of predator exclusion cages during the dry and rainy seasons of 1985. Temporal and spatial patchiness characterized the abundances of P. valeri, C. pacifica and C. nicoyenis.
NASA Astrophysics Data System (ADS)
Nentwig, Vanessa; Bahlburg, Heinrich; Monthy, Devis
2015-03-01
The Seychelles, an archipelago in the Indian Ocean at a distance of 4,500-5,000 km from the west coast of Sumatra, were severely affected by the December 26, 2004 tsunami with wave heights up to 4 m. Since the tsunami history of small islands often remains unclear due to a young historical record, it is important to study the geological traces of high energy events preserved along their coasts. We conducted a survey of the impact of the 2004 Indian Ocean tsunami on the inner Seychelles islands. In detail we studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond in the Curieuse Marine National Park on the east coast of Curieuse Island. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami in 2004 by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap and assuring a low energetic hydrodynamic environment for the protection of the mangroves. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The tsunami caused a change of habitat by the sedimentation of sand lobes in the mangrove forest. The dark organic rich mangrove soil (1.9 Φ) was covered by bimodal fine to medium carbonate sand (1.7-2.2 Φ) containing coarser carbonate shell fragments and debris. Intertidal sediments and the mangrove soil acted as sources of the lobe deposits. The sand sheet deposited by the tsunami is organized into different lobes. They extend landwards to different inundation distances as a function of the morphology of the onshore area. The maximum extent of 180 m from the shoreline indicates the minimum inundation distance to the tsunami. The top parts of the sand lobes cover the pneumatophores of the mangroves. There is no landward fining trend along the sand lobes and normal grading of the deposits is rare, occurring only in 1 of 7 sites. The sand lobe deposits also lack sedimentary structures. On the surface of the sand lobes numerous mostly fragmented shells of bivalves and molluscs were distributed up to 150 m from the coastline. Intact bivalve shells were mostly found positioned with the convex side upwards. On small ledges of a granitic body at 130-150 m from the shore mostly fragmented and gravel sized shells were deposited at different elevations up to 4 m above sea level. This implies a run up height of at least 4 m above sea level up to 150 m from the present shoreline.
Southeast Florida Sediment Assessment and Needs Determination (SAND) Study
2014-09-01
of previous studies, geophysical, geotechnical, and geomorphic data sets in their analysis, primarily deviating from one another in controlling... geomorphic features of the continental shelf north of latitude N26º 40’ (geographically around the upland location of Lake Worth Inlet, Florida) by cross...2012 NOAA bathymetry, recent borings, and historical seismic data to delineate shoal, flat, rock exposure, and other geomorphic boundaries. The
Depleted uranium investigation at missile impact sites in White Sands Missile Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Etten, D.M.; Purtymun, W.D.
1994-01-01
An investigation for residual depleted uranium was conducted at Pershing missile impact sites on the White Sands Missile Range. Subsurface core soil samples were taken at Chess, Salt Target, and Mine Impact Sites. A sampling pump was installed in a monitoring well at Site 65 where a Pershing earth penetrator was not recovered. Pumping tests and water samples were taken at this site. Chess Site, located in a gypsum flat, was the only location showing elevated levels of depleted uranium in the subsurface soil or perched groundwater. Small fragments can still be found on the surface of the impact sites.more » The seasonal flooding and near surface water has aided in the movement of surface fragments.« less
NASA Astrophysics Data System (ADS)
Tonyes, S. G.; Wasson, R. J.; Munksgaard, N. C.; Evans, K. G.; Brinkman, R.; Williams, D. K.
2017-02-01
Sand transport pathways in Darwin Harbour, Northern Territory, Australia, are being investigated to assist with coastal management. Coastal erosion, which threatens public and private infrastructure, is one of the major problems along the harbour beaches. A study of sediment transport is essential to identify the challenges encountered by the stakeholders in coastal management. Darwin Harbour, located in the tropical, cyclone prone area of Australia, was, until recently, considered a near pristine estuary. A semi-diurnal macro-tidal embayment, the tidal variation in the harbour reaches up to 8 m with a mean tidal range of 3.7 m. The beach morphology consists of sandy pocket beaches between coastal cliffs, sandbars, rocky shore platforms, tidal flats and mangrove fringes. A two-dimensional depth averaged finite-element hydrodynamic model (RMA-2), coupled with a sediment transport model (RMA-11) from Resource Modelling Associates, has been used to infer the sources and the depositional areas of sand in the harbour. Grain size distributions and geochemical analysis are also used to characterize the sand and its source(s). Initial results show that the beach sand is mostly of offshore origin with small sand input from the rivers. Potential supplementary sand sources are the eroded materials from the shore platforms and the rocky cliffs. Due to the rapid development in Darwin Harbour, this study is fundamental in understanding coastal processes to support decision making in coastal management, particularly in a macro-tidal, tropical estuary.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Soave, K.; Dean, A.; Yang, G.; Solli, E.; Dattels, C.; Wallace, K.; Boesel, A.; Steiger, C.; Buie, A.
2010-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects (A and B) and using randomly determined points within a permanent 100 m2 area, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high intertidal zone which experiences the greatest amount of human impacts.
Flight test of MMW radar for brown-out helicopter landing
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Kolinko, Vladimir; Otto, Gregory P.; Lovberg, John A.
2012-06-01
Trex Enterprises and US Army RDECOM CERDEC Night Vision Electronic Sensors Directorate developed and tested helicopter radar to aid in brown-out landing situations. A brown-out occurs when sand and dust kicked up by the helicopter rotors impair the pilot's vision. Millimeter-wave (MMW) radiation penetrates sand and dust with little loss or scattering, and radar at this frequency can provide a pilot with an image of the intended landing zone. The Brown-out Situational Awareness System (BSAS) is a frequency-modulated, continuous-wave radar that measures range to the ground across a conical field-of-view and uses that range information to create an image for the pilot. The BSAS collected imagery from a helicopter in a blowing sand environment with obstacles including ditches, hills, posts, poles, wires, buildings and vehicles. The BSAS proved the capability to form images of the ground through heavy blowing sand and resolve images of some obstacles. The BSAS also attempted to differentiate flat ground from bumpy ground with limited success at some viewing angles. The BSAS test imagery includes some artifacts formed by high radar cross-section targets in the field-of-view or sidelobes. The paper discusses future improvements that could limit these artifacts.
A Predictive Model for Microbial Counts on Beaches where Intertidal Sand is the Primary Source
Feng, Zhixuan; Reniers, Ad; Haus, Brian K.; Solo-Gabriele, Helena M.; Wang, John D.; Fleming, Lora E.
2015-01-01
Human health protection at recreational beaches requires accurate and timely information on microbiological conditions to issue advisories. The objective of this study was to develop a new numerical mass balance model for enterococci levels on nonpoint source beaches. The significant advantage of this model is its easy implementation, and it provides a detailed description of the cross-shore distribution of enterococci that is useful for beach management purposes. The performance of the balance model was evaluated by comparing predicted exceedances of a beach advisory threshold value to field data, and to a traditional regression model. Both the balance model and regression equation predicted approximately 70% the advisories correctly at the knee depth and over 90% at the waist depth. The balance model has the advantage over the regression equation in its ability to simulate spatiotemporal variations of microbial levels, and it is recommended for making more informed management decisions. PMID:25840869
Felder, Darryl L
2015-07-13
A new species of Lepidophthalmus lacking a ventral median sclerite on the second abdominal somite is described from coastal waters of the southwestern Gulf of Mexico. Lepidophthalmus statoni sp. nov., originally recognized only as a unique population in allozyme studies, is sympatric with the ventrally plated species Lepidophthalmus manningi Felder & Staton, 2000, but more closely resembles Lepidophthalmus louisianensis (Schmitt, 1935) from the northern and northwestern Gulf of Mexico. Apparently restricted to intertidal and shallow subtidal tropical waters, the new species is known to range from western Campeche to middle-upper reaches of Veracruz, Mexico. As many members of the genus, it commonly inhabits euryhaline inlets, estuaries, and protected shorelines, including richly organic muddy to clayey sands and sandy muds adjacent to shoreline vegetation. Coloration is documented and discussed as a tool to facilitate field identifications, as are morphological characters.
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-01-01
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413
Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.
DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William
2015-11-01
Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.
Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.
Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael
2015-09-30
Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.
Bodkin, James L.; Ballachey, Brenda E.; Coletti, Heather A.; Esslinger, George G.; Kloecker, Kimberly A.; Rice, Stanley D.; Reed, John; Monson, Daniel H.
2012-01-01
The protracted recovery of some bird and mammal populations in western Prince William Sound (WPWS), Alaska, and the persistence of spilled 'Exxon Valdez' oil in intertidal sediments, suggests a pathway of exposure to consumers that occupy nearshore habitats. To evaluate the hypothesis that sea otter (Enhydra lutris) foraging allows access to lingering oil, we contrast spatial relations between foraging behavior and documented oil distribution. We recovered archival time-depth recorders implanted in 19 sea otters in WPWS, where lingering oil and delayed ecosystem recovery are well documented. Sea otter foraging dives ranged from +2.7 to -92 m below sea level (MLLW), with intertidal accounting for 5 to 38% of all foraging. On average, female sea otters made 16050 intertidal dives per year and 18% of these dives were at depths above the +0.80 m tidal elevation. Males made 4100 intertidal dives per year and 26% of intertidal foraging took place at depths above the +0.80 m tidal elevation. Estimated annual oil encounter rates ranged from 2 to 24 times yr-1 for females, and 2 to 4 times yr-1 for males. Exposure rates increased in spring when intertidal foraging doubled and females were with small pups. In summer 2008, we found sea otter foraging pits on 13.5 of 24.8 km of intertidal shoreline surveyed. Most pits (82%) were within 0.5 m of the zero tidal elevation and 15% were above 0.5 m, the level above which most (65%) lingering oil remains. In August 2008, we detected oil above background concentrations in 18 of 41 (44%) pits excavated by sea otters on beaches with prior evidence of oiling, with total PAH concentrations up to 56000 ng g−1 dry weight. Our estimates of intertidal foraging, the widespread presence of foraging pits in the intertidal, and the presence of oil in and near sea otter foraging pits documents a pathway of exposure from lingering intertidal oil to sea otters foraging in WPWS.
NASA Astrophysics Data System (ADS)
Nentwig, V.; Bahlburg, H.; Monthy, D.
2012-12-01
The Seychelles were severely affected by the December 26, 2004 tsunami in the Indian Ocean. Since the tsunami history of small islands often remains unclear due to a young historiography we conducted a study of onshore tsunami deposits on the Seychelles in order to understand the scale of impact of the 2004 Indian Ocean tsunami and potential predecessors. As part of this project we found and studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond bay on the east coast of Curieuse Island. The 2004 Indian Ocean tsunami caused a change of habitat due to sedimentation of an extended sand sheet in the mangrove forest. We present results of the first detailed sedimentological study of onshore tsunami deposits of the 2004 Indian Ocean tsunami conducted on the Seychelles. The Curieuse mangrove forest at Old Turtle Pond bay is part of the Curieuse Marine National Park. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The silt to fine sand sized and organic rich mangrove soil was subsequently covered by carbonate fine to medium sand (1.5 to 2.1 Φ) containing coarser carbonate shell debris which had been trapped outside the mangrove bay before the tsunami. The tsunami deposited a sand sheet which is organized into different lobes. They extend landwards to different inundation distances as a function of morphology. Maximum inundation distance is 200 m. The sediments often cover the pneumatophores of the mangroves. No landward fining trend of the sand sheet has been observed. On the different sand lobes carbonate-cemented sandstone debris ranging in size from 0.5 up to 12 cm occurs. Also numerous mostly fragmented shells of bivalves and molluscs were distributed on top of the sand lobes. Intact bivalve shells were mostly positioned with the convex side upwards. On small ledges of a granitic body at 120 m from the shore fragmented and complete shells were deposited at different elevations of up to 4 m. This implies a run up height of at least 4 m above sea level at this distance from the shore. Our study presents the mapping of the tsunamigenic sand lobes, their grain size distribution and petrographic variations of their components compared to the mangrove soil. The difference in the grain size and amount of organic material of the mangrove soil compared to the sand lobes indicate that the coarser material was entrained from outside of the mangrove forest by the tsunami. The similarity of the grain size distributions of the sediment of the sand lobes and of a reference beach/intertidal sample suggests the lagoon between the mangrove forest and the causeway as the probable sediment source area. The fact that the mangrove forest is surrounded by granitic hills and the appearance of the carbonate sandstone debris mostly on the surface of the sand sheets supports this assumption.
Burns, Michael D.; López, J. Andrés
2017-01-01
While intertidal habitats are often productive, species-rich environments, they are also harsh and highly dynamic. Organisms that live in these habitats must possess morphological and physiological adaptations that enable them to do so. Intertidal fishes are generally small, often lack scales, and the diverse families represented in intertidal habitats often show convergence into a few general body shapes. However, few studies have quantified the relationship between phenotypes and intertidal living. Likewise, the diversity of reproductive traits and parental care in intertidal fishes has yet to be compared quantitatively with habitat. We examine the relationship of these characters in the sculpin subfamily Oligocottinae using a phylogenetic hypothesis, geometric morphometrics, and phylogenetic comparative methods to provide the first formal test of associations between fish phenotypes and reproductive characters with intertidal habitats. We show that the ability to live in intertidal habitats, particularly in tide pools, is likely a primitive state for Oligocottinae, with a single species that has secondarily come to occupy only subtidal habitats. Contrary to previous hypotheses, maximum size and presence of scales do not show a statistically significant correlation with depth. However, the maximum size for all species is generally small (250 mm or less) and all show a reduction in scales, as would be expected for an intertidal group. Also contrary to previous hypotheses, we show that copulation and associated characters are the ancestral condition in Oligocottinae, with copulation most likely being lost in a single lineage within the genus Artedius. Lastly, we show that body shape appears to be constrained among species with broader depth ranges, but lineages that occupy only a narrow range of intertidal habitats display novel body shapes, and this may be associated with habitat partitioning, particularly as it relates to the degree of wave exposure. PMID:28828246
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Broad, C.; Soave, K.; Ericson, W.; Raabe, B.; Glazer, R.; Ahuatzi, A.; Pereira, M.; Rainsford, A.
2013-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 100 m2 areas, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will once again compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, Anthopluera elegantissima and Fucus spp. We will continue to closely monitor algal population densities in within our site in light of the November 2007 San Francisco Bay oil spill that leaked heavy bunker fuel into intertidal habitats around the SF Bay. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
Recolonization of intertidal Zostera marina L. (eelgrass) following experimental shoot removal
The recovery of eelgrass (Zostera marina) from physical disturbances is understudied and no attention has been given to the likely differences in damage recovery rates between the continuous lower intertidal perennial meadows and higher intertidal eelgrass patches. In the present...
2013-12-10
intertidal vegetation . Comments from resource managers requested products incor- porating bathymetry and sediment data. To further build on the...and availability of intertidal vegetation are other key factors in successful movement into the estuary for brown shrimp, both of these data were...distribution of intertidal vegetation . The NWI classes EEM1 and EEM2 are the two classes into which intertidal vegeta- tion falls in Galveston. On the ground
Theme and variations: amphibious air-breathing intertidal fishes.
Martin, K L
2014-03-01
Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.
Differential in surface elevation change across mangrove forests in the intertidal zone
NASA Astrophysics Data System (ADS)
Fu, Haifeng; Wang, Wenqing; Ma, Wei; Wang, Mao
2018-07-01
A better understanding of surface elevation changes in different mangrove forests would improve our predictions of sea-level rise impacts, not only upon mangrove species distributions in the intertidal zone, but also on the functioning of these wetlands. Here, a two-year (2015-2017) dataset derived from 18 RSET-MH (rod surface elevation table-marker horizon) stations at Dongzhaigang Bay, Hainan, China, was analyzed to investigate how surface elevation changes differed across mangrove species zones. The current SET data indicated a rather high rate (9.6 mm y-1, on average) of surface elevation gain that was mostly consistent with that (8.1 mm y-1, on average) inferred from either the 137Cs or 210Pb dating of sediment cores. In addition, these surface elevation changes were sensitive to elevation in the intertidal zone and differed significantly between the two study sites (Sanjiang and Houpai). Mangrove species inhabiting the lower intertidal zone tended to experience greater surface elevation change at Sanjiang, which agrees with the general view that sedimentation and elevation gains are driven by elevation in the intertidal zone (i.e., greater when positioned lower in the intertidal profile). However, at Houpai, both surface elevation change and surface accretion showed the opposite trend (i.e., greater when positioned higher in the intertidal profile). This study's results indicate that the pattern of surface elevation changes across the intertidal profile maybe inconsistent due to intricate biophysical controls. Therefore, instead of using a constant rate, models should presume a topography that evolves at differing rates of surface elevation change in different species zones across the intertidal profile when predicting the impacts of sea-level rise on mangrove distributions.
Seasonal sedimentary processes of the macrotidal flat in Gomso Bay, west coast of Korea
NASA Astrophysics Data System (ADS)
Woo, H.; Kang, J.; Choi, J.
2012-12-01
The tidal flats on the west coast of Korea have broad zones with gentle slopes and a macrotidal setting with 4 to 10 meters of tidal ranges. They are directly influenced by monsoons and heavily affected by waves in winter and tidal currents in summer. As a result, most western tidal flats show the seasonal changes of sedimentary features comprising sedimentation and/or erosion of sediments. Gomso bay in the mid-west of Korea is a funnel-shaped embayment with a wide entrance to the west. Tides are semidiurnal and macrotidal, with a mean tidal range of 433.8 cm. Digital elevation model (DEM) showed that the landward inner bay had mainly high elevations and the seaward outer bay had relatively low elevations. In particular, there are considerable gradients in the outer bay from area of high-water line to area of low-water line. The sedimentary analysis and monitoring short-term sedimentation rates were investigated to understand seasonal sedimentary processes of tidal flats in Gomso bay. The surface sediments in the bay were classified into five sedimentary facies in spring 2011. Generally, sandy sediments were dominated in the outer bay, whereas sandy mud sediments were distributed on the inner bay. The middle bay mainly consisted of muddy sand sediments. The percentages of sand decreased from outer to inner bay. The short-term sedimentation rates were obtained from three lines by burying a plate at sub-bottom depth and periodically measuring the changing sediment depth from February 2011 to February 2012. In the tidal flat at inner bay (KB- Line), the annual sedimentation rates were ranged -8.87 to 74.69 mm/year with the net deposition rate of 40.90 mm/year. The deposition occurred on KB-Line in spring, autumn and winter. The erosion was dominated on the tidal flats at middle (KH-Line) and outer bay (KM-Line) during autumn and winter with an annual erosion rate of -29.86 mm/year and -9.92 mm/year, respectively. The seasonal variations of sedimentation on these tidal flats showed that the deposition occurred with an inflow of muddy sediments in summer, whereas the erosion was dominated in autumn and winter. In August 2011, the distribution patterns of rare earth elements (REEs) relative to the upper continental crust (UCC) showed the enrichment of light REEs (LREEs: La-Nd), together with an apparent depletion of Eu in the KH- and KM-Lines. This pattern was more pronounced in the middle bay sediments (KH-Line) due to influence of muddy sediment transport from Jujin Stream during the rainy period (July and August). On the other hand, the outer bay sediments in the KM-Line were reflected more inflow of second sediment source, the Geum River. The major control factors for seasonal variations of sediments on the tidal flat could be heavy rainfall and tidal currents during summer and strong waves during winter. The net sedimentation showed that the deposition occurred in the inner tidal flat and erosion occurred in the middle and outer tidal flat of the bay.
The lithostratigraphy of a marine kame delta-outwash fan complex at Pease AFB, Newington, NH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dineen, R.J.; Manning, S.; McGeehan, K.
The overburden stratigraphy at Pease AFB is based on over 1,200 wells, borings, piezometers, and test pits, and includes five lithologic units: Fill, Upper Sand (US), Marine Clay and Silt (MCS), Lower Sand (LS), and Till (GT). The US is a yellow brown, poorly sorted sand to silty sand and is massive to laminated, and locally has hummocky bedding. The MCS (the Presumpscot Formation) is a dark gray, massive to laminated sandy to silty clay, and is locally interbedded with silty sand. The MCS contains a trace of organic matter, primarily as fine particles of peat. The LS is amore » gray to brown, poorly sorted, silty sand to gravelly sand that is massive to planar bedded and locally grades down into GT and/or upward into MCS. The GT consists of a massive to crudely bedded dark gray to dark brown, very poorly sorted, sandy silt to gravelly, silty sand. The US, MCS, LS and upper part of the GT were deposited in a marine environment at or near the ice margin. Pease AFB is built on two large fans of gravelly sand (LS plus US) that are bordered to the east by NW-SE till ridges (drumlins ). The northern-most fan is flat-topped with a surface elevation of 30 m ASL. The southern fan is more hummocky, with a surface elevation of 18.5 m ASL. Both fans coarsen towards the NW, and are interbedded with MCS towards the SE. The apices of the fans overlie deeply-scoured troughs in the rock surface. The fans are interpreted to be kame deltas or submarine outwash fans that are deposited along the retreating Wisconsinan ice margin by concentrated meltwater flow. Later, the US may have been deposited by marine shoreface erosion of the emergent fans as the ice front retreated and sea level fell.« less
NASA Astrophysics Data System (ADS)
Caird, R. A.; Pufahl, P. K.; Hiatt, E. E.; Abram, M. B.; Rocha, A. J. D.; Kyser, T. K.
2017-04-01
The Ediacaran Nova America and Gabriel members of the Salitre Formation are composed of limestone and economic phosphorite that accumulated on an unrimmed epeiric ramp along the margins of the Irecê Basin, Brazil. Deposition occurred during a marine transgression punctuated by higher-order fluctuations in relative sea-level that produced m-scale, shallowing-upward peritidal cycles. Cycles consist of six lithofacies rich in microbial sedimentary structures including subtidal, cross-stratified grainstones and hemispheroidal columnar stromatolite reefs overlain by intertidal flat sediments indicative of decreasing accommodation. Phosphorite is restricted to the paleocoast where digitate stromatolite biostromes colonized tidal flats. Phosphorite accumulation is interpreted to have been associated with biostromes because photosynthetic oxygen production created a redox gradient beneath the seafloor that phosphogenic chemosynthetic bacteria exploited. The concentration of francolite or sedimentary apatite in microbial laminae suggests these bacteria actively stored, released, and concentrated phosphate to promote in situ precipitation. The sealing effect of interbedded, fine-grained tidal deposits was also critical for maintaining the high levels of pore water phosphate required. The absence of francolite in subtidal columnar stromatolite reefs implies phosphogenesis was prevented in deeper, more energetic environments because wave pumping of oxygenated seawater through reefs surrounded by constantly moving grainy sediment promoted the recycling of P directly back to the water column. The Salitre Formation has a complex paragenesis, including hydrothermal alteration that produced Mississippi Valley-type Pb-Zn mineralization. δ18O values of Nova America member dolomites range from - 10.2‰ to - 0.5‰ (mean = - 3.9‰) and δ13C ranges from - 9.2‰ to + 10.0‰ (mean = + 2.8‰). Samples contain varying proportions of low-Mg calcite and saddle dolomite. δ18O values of hydrothermal veins range from - 4.7‰ to - 3.0‰ (mean = - 4.2‰) reflecting equilibration with temperatures > 80 °C. δ13C values are between - 7.0‰ and + 5.6‰ (mean = - 1.8‰,). Late lateritic weathering produced calcretes with δ18O values between - 3.3‰ and - 1.3‰, and δ13C values from - 9.2‰ to - 8.0‰ (mean values are - 1.8‰ and - 8.7‰, respectively). Petrographic analysis, generally low δ18O, and high δ13C values suggest hydrothermal dolomitization and remobilization of P led to secondary phosphate mineralization of intertidal stromatolite biostromes to produce economic phosphorite. Collectively, these results suggest that the benthic P-cycle in the Neoproterozoic was more complex than previously surmised and emphasize the multifaceted significance of microbial, paleoenvironmental, and diagenetic processes that allowed phosphorite to accumulate on the São Franciscan craton. Such information further elucidates attributes of the onset of Earth's second major phosphogenic episode, which is roughly coincident with the Neoproterozoic Oxygenation Event (NOE) and the evolution of multicellular animals.
Wave energy and intertidal productivity
Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.
1987-01-01
In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813
2005-01-01
PA Ozone (full scale) Silty sand underlain by fractured schist and shale Petroleum hydrocarbons Former Wood Treatment Site, Sonoma County , CA...Wood Treatment Site, Sonoma County , California Contaminant: Pentachlorophenol and creosote (i.e., PAHs) Oxidant: Ozone Regulatory Agency Contact...topography is essentially flat and paved, and the facility is located on northern Sonoma County , California. The site subsurface consists of very
ERIC Educational Resources Information Center
Christie, Toni; Christie, Robin
2011-01-01
Across the mouth of the Tauranga Harbour lies a piece of paradise, Te Moutere o Matakana--Matakana Island. It is blessed with an ocean beach with white sand and a mean surf break, tidal flats, wetlands, fertile pasture, and a native and exotic forest. It is home to a maori language nest for the local children--Te Kohanga Reo o te Moutere o…
Lightweight Exoatmospheric Projectile (LEAP) Test Program. Environment Assessment
1991-07-01
and Man-Made Environment Kwajalein Atoll is a coral reef containing approximately 100 islands surrounding the largest lagoon in the Nlorld. The Atoll is...entirely from the remains of marine organisms such as reef corals , coralline algae, foramnifera, and others. Soils are coarse, grain size, alkaline...Kwajalein Atoll include ocean reefs , lagoon reefs , lagoon floor and sand flats, harbors, piers, quarries, and sea grass beds. Several reef species are
Ground sounds: Seismic detection in the golden mole
NASA Astrophysics Data System (ADS)
Narins, Peter M.; Lewis, Edwin R.
2004-05-01
The Namib Desert golden mole is a nocturnal, surface-foraging mammal, possessing a massively hypertrophied malleus which presumably confers low-frequency, substrate-vibration sensitivity through inertial bone conduction. Foraging trails are punctuated with characteristic sand disturbances in which the animal's head dips under the sand. The function of this behavior is not known but it is thought that it may be used to obtain a seismic fix on the next mound to be visited. To test this, we measured the local seismic vibrations both on the top of a mound and on the flats. The spectrum recorded on the flats shows a relatively low-amplitude peak at about 120 Hz, whereas the spectral peak recorded from the mound is nearly 17 dB greater in amplitude and centered at 310 Hz. This suggests that mounds act as seismic beacons for the golden moles that would be detectable from distances corresponding to typical intermound distances of 20-25 m. In addition, out of the 117 species for which data are available, these golden moles have the greatest ossicular mass relative to body size (Mason, personal communication). Functionally, they appear to be low-frequency specialists, and it is likely that golden moles hear through substrate conduction. [Work supported by NIH.
Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong delta, Vietnam
NASA Astrophysics Data System (ADS)
Fagherazzi, S.; Nardin, W.; Woodcock, C. E.; Locatelli, S.; Rulli, M. C.; Pasquarella, V. J.
2016-02-01
Mangrove forests dominate many tropical coastlines and are one of the most bio-diverse and productive environments on Earth. However, little is known of the large scale dynamics of mangrove canopies and how they colonize intertidal areas. Here we focus on a fringe mangrove forest located in the Mekong delta, Vietnam, a fast prograding shoreline where mangroves are encroaching tidal flats. The spatial and temporal evolution of the mangrove canopy is studied using a time series of Landsat images spanning two decades as well as Shuttle Radar Topography Mission (SRTM) elevation data. Our results show that fast mangrove expansion is followed by an increase in Normalized Difference Vegetation Index (NDVI) in the newly established canopy. We observe two different dynamics of the mangrove fringe: near the mouth of the rivers where the fringe boundary is linear the canopy expands uniformly on the tidal flats with a high colonization rate and high NDVI values. Far from the river mouths the fringe boundary is highly irregular and mangroves expansion in characterized by sparse vegetated patches displaying low NDVI values. We conclude that high NDVI values and a regular vegetation-water interface are indicative of stable mangrove canopies undergoing expansion, and therefore of resilient coastlines. In the Mekong delta these area are more likely located near a river mouth.
A geomorphological approach to sustainable planning and management of the coastal zone of Kuwait
NASA Astrophysics Data System (ADS)
Al Bakri, Dhia
1996-10-01
The coastal zone in Kuwait has been under a considerable pressure from conflicting land uses since the early 1960s, as well as from the destruction and oil pollution caused by the Gulf War. To avoid further damage and to protect the coastal heritage it is essential to adopt an environmentally sustainable management process. This paper shows how the study of coastal geomorphology can provide a sound basis for sustainable planning and management. Based on coastal landforms, sediments and processes, the coastline of Kuwait was divided into nine geomorphic zones. These zones were grouped into two main geomorphic provinces. The northern province is marked by extensive muddy intertidal flats and dominated by a depositional and low-energy environment. The southern geomorphic province is characterised by relatively steep beach profiles, rocky/sandy tidal flats and a moderate to high-energy environment. The study has demonstrated that pollution, benthic ecology and other environmental conditions of the coast are a function of coastline geomorphology, sedimentology and related processes. The geomorphological information was used to determine the coastal vulnerability and to assess the environmental impacts of development projects and other human activities. Several strategies were outlined to integrate the geomorphic approach into the management of the coastal resources.
Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)
NASA Astrophysics Data System (ADS)
Pomoni-Papaioannou, F.
The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating a sea-level drop, reflect allocyclic control via high-frequency eustatic sea-level oscillation (orbital forcing). Sediment deposition occurred during low-stand system tract (LST), that probably continued also in the transgressive system tract (TST) and reflects an overall sea-level fall. Under these conditions dissolution and cement precipitation episodes, as well development of paleosols and karsts, were triggered, during a relatively less arid interval.
Seasonal shorebird use of intertidal habitats in Cook Inlet, Alaska
Gill, Robert E.; Tibbitts, T. Lee
1999-01-01
Seasonal shorebird use of intertidal habitats of Cook Inlet, Alaska, was studied from February 1997 to February 1999 using aerial surveys as the principal method of assessment. On-ground studies were conducted to validate aerial survey results and to assess shorebird use of vegetated habitats, especially during the breeding season. Twenty-eight species of shorebirds were recorded using the area, ranging from all being present during spring to a single species present during winter. The annual pattern of use was characterized by the sudden occurrence and rapid increase in numbers of birds during early May and their abrupt departure in mid- to late-May. During this period, survey totals frequently exceeded 150,000 birds per day. Comparatively little use occurred during summer and autumn, but use was significant from late autumn to early spring when Rock Sandpipers (Calidris ptilocnemis) resided in the Inlet. A single species, the Western Sandpiper (C. maun), was by far the numerically dominant shorebird, accounting for three-fourths of all birds recorded. The Pacific flyway population of this species numbers 2-3 million birds of which we estimated 20-47% used Cook Inlet embayments, especially southern Redoubt Bay. Cook .Inlet also supported between 11 and 21% of the Pacific flyway population of Dunlin (C. alpina pacifica) and what may be the entire population (ca. 20,000 birds) of the nominate race of the Rock Sandpiper (C. p. ptilocnemis). Several areas along the west side of Cook Inlet proved to be extremely important to shorebirds. Southern Redoubt Bay supported 73% of all shorebirds during spring (average 32,000 per day) while Susitna Flats accounted for 82% of use during winter (8,400 per day). International criteria used to assess the conservation importance of particular wetland sites to shorebirds not only place Cook Inlet at the highest level of recognition but afford similar recognition to several individual embayments therein. The large human population and the extent of oil and natural gas production facilities occurring in the Cook Inlet region potentially pose serious risks to shorebirds and intertidal habitats.
The formation of low-angle eolian stratification through the migration of protodunes
NASA Astrophysics Data System (ADS)
Ewing, R. C.; Phillips, J. D.; Weymer, B. A.; Barrineaux, P.; Bowling, R.; Nittrouer, J. A.
2017-12-01
Protodunes are low-relief, slipfaceless migrating bed forms that represent the emergent form of eolian sand dunes. Protodunes develop as cm-scale topography out of a flat bed of sand and evolve spatially and temporally into dunes with angle-of-repose slipfaces. Protodunes at White Sands Dune Field in New Mexico form at the upwind, trailing margin of the field, on dune stoss slopes, and in interdune areas. Here we analyze protodunes at the upwind margin of White Sands by coupling 200 mHz ground penetrating radar (GPR) with time-series high-resolution topography to characterize the origin and evolution of protodune stratification and the stratigraphic transition into fully developed dunes. We surveyed a 780m transect in the resultant transport direction of the dune field from SW to NE from sand patches through protodunes and into the first dune. We used airborne lidar surveys and structure-from-motion photogrammetry from 2007, 2008, 2009, 2010, 2015, and 2016. We find that protodune stratification forms at angles between 0-10 degrees by protodune migration. Dip angles increase as protodune amplitude increases along the transect. Accumulation of low-angle stratification increases across the first 650m and ranges from none to subcritical. Nearly aggradational accumulation of low-angle stratification occurs over the last 100m and is a precursor to angle-of-repose slipface formation. The origins of the aggradation and slipface development appear to be linked to protodune merging, dune interactions, and possibly to the development of a dune field-scale boundary layer. Protodunes and the formation of low-angle stratification at the upwind margin of White Sands are a good analog to the initiation of dune field development from sand sheets and the formation of low-angle stratification found at the base of eolian successions in the stratigraphic record.
OCCURRENCE AND ORIENTATION OF PARALICHTHID FLOUNDERS (BOTHIDAE: PARALICHTYS) ON AN INTERTIDAL BEACH
Middaugh, Douglas P. and Charles L. McKenney, Jr. 2003. Occurrence and Orientation of Flounders (Bothidae: Paralichthys) on an Intertidal Beach. J. North Carol. Acad. Sci. 119(4):157-171. (ERL,GB 1172).
The intertidal movement and burying pattern of paralichthid flounders...
Eelgrass (Zostera marina) in open-coast northeastern Pacific estuaries is primarily intertidal, yet little research has been done on the natural factors controlling its upper intertidal growth limits. This two-year study in the Yaquina Estuary (Newport, Oregon, USA) evaluated the...
NATURAL FACTORS CONTROLLING INTERTIDAL EELGRASS: IS T17THHIS AS HIGH AS WE CAN GET?
Eelgrass (Zostera marina) in many open-coast Pacific Northwest estuaries is primarily intertidal, yet little research has been done on the natural factors which control its upper intertidal growth boundary. In Dec. 2002 a two year study was completed in Yaquina Bay (Newport, OR)...
This document provides technical guidance for planning and implementing the production of aerial photomaps of intertidal vegetative habitats in coastal estuaries of the Pacific Northwest USA (PNW). The focus is on methods of documenting the intertidal distribution of the seagras...
NASA Astrophysics Data System (ADS)
Gad, Gunnar
2004-02-01
A new genus and species of Nanaloricidae (Loricifera), Phoeniciloricus simplidigitatus, is described inhabiting fine sand covered by a layer of volcanic ash at a water depth of 1,813 m in the New Ireland Basin near the Kilinailau Trench (north of Papua New Guinea). The described specimen is a postlarva enclosed in a larval exuvium. This is the first report of a species belonging to the Nanaloricidae from the deep sea. This occurrence is surprising, because Nanaloricidae are typical inhabitants of coarse sands in the intertidal or littoral zone. Preference for these shallow water habitats is reflected in many morphological features which characterize the Nanaloricidae, and are not normally found in Loricifera inhabiting fine-grained, clayish, deep-sea bottoms. The postlarva of the new species is characterized by a long narrow mouth tube, an urn-shaped lorica divided into ten plates, and 13 small lorica spikes. Distinguishing features of the Higgins-larva include short spinose toes lacking mucros but having small and slightly enlarged bases, short scalids on the introvert, many thoracic plates arranged in 6-8 rows, numerous small papillate flosculi in the collar and caudal regions, and three pairs of filiform, short locomotory appendages on the ventral side. Some features of the new species, especially of the Higgins-larva, are discussed as adaptations to the deep-sea environment.
Pancam multispectral imaging results from the opportunity Rover at Meridiani Planum
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; Grotzinger, J.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Noe Dobrea, E.Z.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.M.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Weitz, C.M.; Wolff, M.J.
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Hunter, R.E.
1980-01-01
These deposits comprise a basal gravelly unit and 3 overlying sandy units, each with mud beds, a paleosol, or the modern soil in its uppermost part. The gravelly unit is interpreted as a progradational deposit. The main parts of the sandy units are made up of 1) a crossbedded sand facies, the dominant structure in which is medium-scale crossbedding (interpreted as the product of small eolian dunes), and 2) an irregularly bedded sand facies, which is locally pebbly and is dominated by scour-and-fill structures, interpreted as deposits of interdune ephemeral streams, ephemeral ponds, and wet to dry subaerial flats. The mud beds and paleosols represent times of temporary stabilization of the dune field.- from Author
Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Calvin, W; Farrand, W H; Goetz, W; Golombek, M; Greeley, R; Grotzinger, J; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J M; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Weitz, C M; Wolff, M J
2004-12-03
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.;
2004-01-01
Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
Harborne, A R
2013-09-01
Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA (Invited)
NASA Astrophysics Data System (ADS)
Soave, K.; Dean, A.; Darakananda, K.; Ball, O.; Butti, C.; Yang, G.; Vetter, M.; Grimaldi, Z.
2009-12-01
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA Kathy Soave, Amy Dean, Olivia Ball, Karin Darakananda, Matt Vetter, Grant Yang, Charlotte Butti, Zoe Grimaldi The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects (A and B) and using randomly determined points within a permanent 100 m2 area, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will analyze the population densities, seasonal abundance and long-term population trends of key algal and invertebrate species. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high intertidal zone which experiences the greatest amount of human impacts. Kathy Soave The Branson School 39 Fernhill Rd. Ross, CA 94957 (415) 454-3612 x 323 Amy Dean Farallones Marine Sanctuary Association, PO Box 29386 San Francisco, CA 94129, 415-561-6625 x 303 AGU Sponsor, Ines Cifuentes, AGU membership number 10189667
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Rainsford, A.; Soave, K.; Gerraty, F.; Jung, G.; Quirke-Shattuck, M.; Kudler, J.; Hatfield, J.; Emunah, M.; Dean, A. F.
2014-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Each fall student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 200 m2 areas, in fall, winter, and late spring. Using data from the previous years, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, Anthopluera elegantissima, Cladophora sp. and Fucus sp.. Future analyses and investigations will include intertidal abiotic factors (including water temperature, pH and human foot-traffic) to enhance insights into the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
NASA Astrophysics Data System (ADS)
Miller, H. R.; Jurcic, B.; Indrick, R.; LaVigne, M.
2016-12-01
Maine's softshell clam (Mya arenaria) industry brings $20 million to the state annually. Reduced clam flat sediments aragonite saturation state (Ω), a predicted effect of ocean acidification, has been shown to negatively impact shell development in M. arenaria's early life stages. Seagrass restoration has been proposed to benefit Maine clam flats. However, the Gulf of Maine experiences seasonal changes in temperature and freshwater input, and the impacts on the carbonate chemistry of intertidal ecosystems have yet to be quantified. We measured overlying water and surface ( upper 1cm) porewater temperature (T), salinity (S), pH, and alkalinity (TA) biweekly from March to August, 2016 to quantify spatial and seasonal sediment Ω variability in a Kennebec Estuary clam flat (Wyman Bay, Maine). Reduced freshwater flow from spring into summer caused an increase in overlying water S (5-25ppt), TA (400-1800ueq/L), and W (0.09-1.20). Surface sediment pore water S (15-29ppt) and TA (1100-2100ueq/L) also increased in summer; however, Ω was variable and remained well below saturation (<0.40). Overlying water pH (7.38-7.96) and sediment pore water pH (6.85-7.47) showed no seasonal trend. Contrary to the predicted impact of seagrass on clam flat carbonate chemistry, preliminary data show sediment Ω is significantly lower in a site located within S. alterniflora (0.150.05) compared to sites lacking alterniflora (0.210.1) within Wyman Bay. Elevated sediment organic matter concentrations found with grasses (4.6%0.5) vs. without (2.9%0.4) may be produced by the grasses and organisms attracted to the ecosystem, and may result in greater respiration driving pH and Ω down rather than up. The strong correlation between TA and S (R2=0.78-0.99) suggests freshwater flow with spring melt during M. arenaria's planktonic larval stage and rain events (predicted to increase with climate change) can reduce Ω, with potentially negative implications for early M. arenaria life stages.
Eelgrass (Zostera marina) in Pacific Northwest is primarily intertidal, yet little research has been done on what factors control its upper intertidal growth boundary. In July 2000 a two year study was initiated in Yaquina Bay (Newport, OR) to evaluate the effects of four factor...
Intertidal irradiance, temperature, and aerial exposure were measured for two years in intertidal Zostera marina beds located in Yaquina Bay (Newport, OR, USA). These physical data were correlated with plant growth and other metrics measured at intervals during the study. Pho...
Eelgrass (Zostera marina) blade necrosis resulting from intertidal aerial exposure is describe. A desiccation index was developed to quantitatively assess this damage. This index was then used to evaluate the extent of desiccation damage across intertidal bathymetric slopes (st...
Romanuk, Tamara N; Levings, Colin D
2010-04-08
Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and 12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean 30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore food webs.
NASA Astrophysics Data System (ADS)
Hu, Zhan; Lenting, Walther; van der Wal, Daphne; Bouma, Tjeerd
2015-04-01
Tidal flat morphology is continuously shaped by hydrodynamic force, resulting in highly dynamic bed elevations. The knowledge of short-term bed-level changes is important both for understanding sediment transport processes as well as for assessing critical ecological processes such as e.g. vegetation recruitment chances on tidal flats. Due to the labour involved, manual discontinuous measurements lack the ability to continuously monitor bed-elevation changes. Existing methods for automated continuous monitoring of bed-level changes lack vertical accuracy (e.g., Photo-Electronic Erosion Pin sensor and resistive rod) or limited in spatial application by using expensive technology (e.g., acoustic bed level sensors). A method provides sufficient accuracy with a reasonable cost is needed. In light of this, a high-accuracy sensor (2 mm) for continuously measuring short-term Surface-Elevation Dynamics (SED-sensor) was developed. This SED-sensor makes use of photovoltaic cells and operates stand-alone using internal power supply and data logging system. The unit cost and the labour in deployments is therefore reduced, which facilitates monitoring with a number of units. In this study, the performance of a group of SED-sensors is tested against data obtained with precise manual measurements using traditional Sediment Erosion Bars (SEB). An excellent agreement between the two methods was obtained, indicating the accuracy and precision of the SED-sensors. Furthermore, to demonstrate how the SED-sensors can be used for measuring short-term bed-level dynamics, two SED-sensors were deployed for 1 month at two sites with contrasting wave exposure conditions. Daily bed-level changes were obtained including a severe storm erosion event. The difference in observed bed-level dynamics at both sites was statistically explained by their different hydrodynamic conditions. Thus, the stand-alone SED-sensor can be applied to monitor sediment surface dynamics with high vertical and temporal resolutions, which provides opportunities to pinpoint morphological responses to various forces in a number of environments (e.g. tidal flats, beaches, rivers and dunes).
NASA Astrophysics Data System (ADS)
Kleinhans, M. G.; Braat, L.; Leuven, J.; Baar, A. W.; van der Vegt, M.; Van Maarseveen, M. C. G.; Markies, H.; Roosendaal, C.; van Eijk, A.
2015-12-01
Estuaries exhibit correlations between inlet dimensions, tidal prism and intertidal area, but to what extent estuary planform shape and shoal patterns resulted from biomorphological processes or from inherited conditions such as coastal plain and drowned valley dimensions remains unclear. We explore the hypothesis that mud flats and vegetation as a self-formed lateral confinement have effects analogous to that of river floodplain on braided versus meandering river patterns. Here we use the Delft3D numerical model and a novel tidal flume setup, the Metronome, to create estuaries from idealized initial conditions, with and without mud supply at the fluvial boundary. Experimental mud was simulated by crushed nutshell. Both the numerical and experimental estuaries were narrower with increasing mud, and had a lower degree of channel braiding. The experimental estuaries developed meanders at the river boundary with floodplain developing on the pointbar whereas cohesionless cases were more dynamic.
Chand, Prerna; Kamiya, Takahiro
2016-12-18
The genus Xestoleberis has a global distribution, and although they are predominant in shallow marine environments adapted to both sediment and algal habitats, only two species of this genus, Xestoleberis curta (Brady, 1866) and Xestoleberis variegata Brady, 1880, have previously been reported from the Fiji archipelago. Herein we report seven new species of the genus Xestoleberis from intertidal environments of fringing reef flats of the Fiji Islands: Xestoleberis becca n. sp., Xestoleberis concava n. sp., Xestoleberis gracilariaii n. sp., Xestoleberis marcula n. sp., Xestoleberis natuvuensis n. sp., Xestoleberis penna n. sp. and Xestoleberis petrosa n. sp. With the exception of X. becca n. sp., Xestoleberis species show restricted distribution within Fijian waters. The possible causes for their distribution patterns are suggested to be physical barriers imposed by the fast flowing Bligh Water currents, and islands separated by deep ocean waters.
Earth observations during STS-58
1993-10-22
STS058-88-017 (18 Oct-1 Nov 1993) --- The eye-catching "bullseye" of the Richat Structure adds interest to the barren Gres de Chinguetti Plateau in central Mauretania, northwest Africa. It represents domally uplifted, layered (sedimentary) rocks that have been eroded by water and wind into the present shape. Desert sands have invaded the feature from the south. The origin of the structure is unknown. It is not an impact structure, because field work showed that strata are undisturbed and flat-lying in the middle of the feature, and no shock-altered rock could be found. There is no evidence for a salt dome or shale diapir, nor is there any geophysical evidence for an underlying dome of dense igneous rock having about the same density as the sedimentary layers.
Earth observation taken during STS-102
2001-04-03
STS102-331-012 (8-21 March 2001) --- The STS-102 crew members used a 35mm camera on the flight deck of the Space Shuttle Discovery to record this image of several meandering distributary channels of the Orinoco River draining northward into the south side of the Gulf of Paria in eastern Venezuela. According to NASA scientists studying the STS-102 collection, these sediment-laden channels carry a tremendous quantity of fluvial material that constantly changes the size and shapes of the shoreline and adjacent islands. An assortment of mud flats and sand bars, seen here as lighter colored features in the water, are affected both by stream flow and tidal forces. The extensive dark landscape identifies the flat, swampy coastal plains of northeast Venezuela that is covered by dense stands of vegetation.
Jin, Zhengzhong; Lei, Jiaqiang; Li, Shengyu; Xu, Xinwen
2013-10-01
Soil microbes in forest land are crucial to soil development in extreme areas. In this study, methods of conventional culture, PLFA and PCR-DGGE were utilized to analyze soil microbial quantity, fatty acids and microbial DNA segments of soils subjected to different site conditions in the Tarim Desert Highway forest land. The main results were as follows: the soil microbial amount, diversity indexes of fatty acid and DNA segment differed significantly among sites with different conditions (F < F0.05 ). Specifically, the values were higher in the middle and base of dunes than the top part of dunes and hardened flat sand, but all values for dunes were higher than for drift sand. Bacteria was dominant in the soil microbial community (>84%), followed by actinomycetes and then fungi (<0.05%). Vertical differences in the soil microbial diversity were insignificant at 0-35 cm. Correlation analysis indicated that the forest trees grew better as the soil microbial diversity index increased. Therefore, construction of the Tarim Desert Highway shelter-forest promoted soil biological development; however, for enhancing sand control efficiency and promoting sand development, we should consider the effects of site condition in the construction and regeneration of shelter-forest ecological projects. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.
1997-01-01
High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.
Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf
Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.
1990-01-01
Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.
NASA Astrophysics Data System (ADS)
Dong, Y.; Li, X.; Choi, F.; Willams, G.; Somero, G. N.; Helmuth, B.
2016-12-01
Changing patterns of species' biogeographic distributions are driven by cumulative effects of much smaller scale processes. Specifically, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (Tb), local microclimatic conditions, and abilities to anticipate extreme conditions and move to cooler refugia. These variables have rarely been quantified simultaneously over large geographic scales. We analyzed the thermal tolerances of three species of rocky intertidal snails from eight sites spanning 11.5 degrees of latitude along the Chinese coast. Using a biophysical model, we estimated potential Tb in sun-exposed and shaded microhabitats for all species at these sites for 30 years. We then compared maximum predicted Tb against the temperatures at which cardiac function was impaired (Arrhenius Break Temperatures, ABT) and lethal limits were reached (cardiac Flat Line Temperatures, FLT) to calculate thermal Safety Margins (TSM) for normal physiological function (TSMABT) and heat death (TSMFLT). Regular exceedance of FLT in sun-exposed microhabitats was predicted for only one site in the middle of the geographic gradient. However, ABT was exceeded at sun-exposed microhabitats in most sites, suggesting significant physiological impairment for snails that fail to move into the shade. An autocorrelation analysis of snail Tb showed that predictability of extreme temperatures was lowest at the hottest sites, an indication that reliance on behavioral thermoregulation may be a risky strategy. Observed large differences in ABT and FLT among conspecifics emphasize the critical role of physiological polymorphisms in governing the vulnerability of populations to heat stress.
Wang, Jiaqi; Shen, Lidong; He, Zhanfei; Hu, Jiajie; Cai, Zhaoyang; Zheng, Ping; Hu, Baolan
2017-11-01
Nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples anaerobic methane oxidation and nitrite reduction, is a recently discovered bioprocess coupling microbial nitrogen and carbon cycles. The discovery of this microbial process challenges the traditional knowledge of global methane sinks and nitrogen losses. In this study, the abundance and activity of N-DAMO bacteria were investigated and their contributions to methane sink and nitrogen loss were estimated in different seasons and different partitions of an intertidal zone of the East China Sea. The results showed that N-DAMO bacteria were extensively and continuously present in the intertidal zone, with the number of cells ranging from 5.5 × 10 4 to 2.8 × 10 5 copy g -1 soil and the potential activity ranging from 0.52 to 5.7 nmol CO 2 g -1 soil day -1 , contributing 5.0-36.6% of nitrite- and sulfate-dependent anaerobic methane oxidation in the intertidal zone. The N-DAMO activity and its contribution to the methane consumption were highest in the spring and in the low intertidal zone. These findings showed that the N-DAMO process is an important methane and nitrogen sink in the intertidal zone and varies with the seasons and the partitions of the intertidal zone.
Leung, Jonathan Y S; Connell, Sean D; Nagelkerken, Ivan; Russell, Bayden D
2017-11-07
Many marine organisms produce calcareous shells as the key structure for defense, but the functionality of shells may be compromised by ocean acidification and warming. Nevertheless, calcifying organisms may adaptively modify their shell properties in response to these impacts. Here, we examined how reduced pH and elevated temperature affect shell mechanical and geochemical properties of common grazing gastropods from intertidal to subtidal zones. Given the greater environmental fluctuations in the intertidal zone, we hypothesized that intertidal gastropods would exhibit more plastic responses in shell properties than subtidal gastropods. Overall, three out of five subtidal gastropods produced softer shells at elevated temperature, while intertidal gastropods maintained their shell hardness at both elevated pCO 2 (i.e., reduced pH) and temperature. Regardless of pH and temperature, degree of crystallization was maintained (except one subtidal gastropod) and carbonate polymorph remained unchanged in all tested species. One intertidal gastropod produced less soluble shells (e.g., higher calcite/aragonite) in response to reduced pH. In contrast, subtidal gastropods produced only aragonite which has higher solubility than calcite. Overall, subtidal gastropods are expected to be more susceptible than intertidal gastropods to shell dissolution and physical damage under future seawater conditions. The increased vulnerability to shell dissolution and predation could have serious repercussions for their survival and ecological contributions in the future subtidal environment.
Radar-visible wind streaks in the Altiplano of Bolivia
NASA Technical Reports Server (NTRS)
Greeley, R.; Christensen, P.
1984-01-01
Isolated knobs that are erosional remnants of central volcanoes or of folded rocks occur in several areas of the Altiplano are visible on both optical and images. The optically visible streaks occur in the immediate lee of the knobs, whereas the radar visible streaks occur in the zone downwind between the knobs. Aerial reconnaissance and field studies showed that the optically visible streaks consist of a series of small ( 100 m wide) barchan and barchanoid dunes, intradune sand sheets, and sand hummocks (large shrub coppice dunes) up to 15 m across and 5 m high. On LANDSAT images these features are poorly resolved but combine to form a bright streak. On the radar image, this area also appears brighter than the zone of the radar dark streak; evidently, the dunes and hummocks serve as radar reflectors. The radar dark streak consists of a relatively flat, smooth sand sheet which lacks organized aerolian bedforms, other than occasional ripples. Wind velocity profiles show a greater U value in the optically bright streak zone than in the radar dark streak.
STS-65 Earth observation of dust plumes from Rio Grande in Southern Bolivia
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of dust plumes from the Rio Grande in Southern Bolivia. A series of dust plumes can be seen rising from sand banks in the Rio Grande of southern Bolivia, bottom right of this northeast-looking view. The Rio Grande brings sediment from the Andes (foothills visible in the foreground, bottom left) and flows across the flat country of the northern Chaco plain. During the low-flow season, sand banks of this sediment are exposed to northerly winds which often blow dust into the surrounding forest. One of the significances of the dust plumes is that dust acts as a source of nutrient for the local soils. This is the most impressive example of dust ever recorded on Shuttle photography from this river. Such plumes have been seen on photographs from four previous missions (STS-31, STS-47, STS-48, STS-51I) emanating from the Rio Grande. The plumes are regularly space because the sand is blown only from those reaches of th
Craters and Granular Jets Generated by Underground Cavity Collapse
NASA Astrophysics Data System (ADS)
Loranca-Ramos, F. E.; Carrillo-Estrada, J. L.; Pacheco-Vázquez, F.
2015-07-01
We study experimentally the cratering process due to the explosion and collapse of a pressurized air cavity inside a sand bed. The process starts when the cavity breaks and the liberated air then rises through the overlying granular layer and produces a violent eruption; it depressurizes the cavity and, as the gas is released, the sand sinks under gravity, generating a crater. We find that the crater dimensions are totally determined by the cavity volume; the pressure does not affect the morphology because the air is expelled vertically during the eruption. In contrast with impact craters, the rim is flat and, regardless of the cavity shape, it evolves into a circle as the cavity depth increases or if the chamber is located deep enough inside the bed, which could explain why most of the subsidence craters observed in nature are circular. Moreover, for shallow spherical cavities, a collimated jet emerges from the collision of sand avalanches that converge concentrically at the bottom of the depression, revealing that collapse under gravity is the main mechanism driving the jet formation.
Spatial and temporal patterns of subtidal and intertidal crabs excursions
NASA Astrophysics Data System (ADS)
Silva, A. C. F.; Boaventura, D. M.; Thompson, R. C.; Hawkins, S. J.
2014-01-01
Highly mobile predators such as fish and crabs are known to migrate from the subtidal zone to forage in the intertidal zone at high-tide. The extent and variation of these habitat linking movements along the vertical shore gradient have not been examined before for several species simultaneously, hence not accounting for species interactions. Here, the foraging excursions of Carcinus maenas (L.), Necora puber (Linnaeus, 1767) and Cancer pagurus (Linnaeus, 1758) were assessed in a one-year mark-recapture study on two replicated rocky shores in southwest U.K. A comparison between the abundance of individuals present on the shore at high-tide with those present in refuges exposed at low-tide indicated considerable intertidal migration by all species, showing strong linkage between subtidal and intertidal habitats. Estimates of population size based on recapture of marked individuals indicated that an average of ~ 4000 individuals combined for the three crab species, can be present on the shore during one tidal cycle. There was also a high fidelity of individuals and species to particular shore levels. Underlying mechanisms for these spatial patterns such as prey availability and agonistic interactions are discussed. Survival rates were estimated using the Cormack-Jolly-Seber model from multi-recapture analysis and found to be considerably high with a minimum of 30% for all species. Growth rates were found to vary intraspecifically with size and between seasons. Understanding the temporal and spatial variations in predation pressure by crabs on rocky shores is dependent on knowing who, when and how many of these commercially important crab species depend on intertidal foraging. Previous studies have shown that the diet of these species is strongly based on intertidal prey including key species such as limpets; hence intertidal crab migration could be associated with considerable impacts on intertidal assemblages.
Intertidal oysters reach their physiological limit in a future high-CO2 world.
Scanes, Elliot; Parker, Laura M; O'Connor, Wayne A; Stapp, Laura S; Ross, Pauline M
2017-03-01
Sessile marine molluscs living in the intertidal zone experience periods of internal acidosis when exposed to air (emersion) during low tide. Relative to other marine organisms, molluscs have been identified as vulnerable to future ocean acidification; however, paradoxically it has also been shown that molluscs exposed to high CO 2 environments are more resilient compared with those molluscs naive to CO 2 exposure. Two competing hypotheses were tested using a novel experimental design incorporating tidal simulations to predict the future intertidal limit of oysters in a high-CO 2 world; either high-shore oysters will be more tolerant of elevated P CO 2 because of their regular acidosis, or elevated P CO 2 will cause high-shore oysters to reach their limit. Sydney rock oysters, Saccostrea glomerata , were collected from the high-intertidal and subtidal areas of the shore and exposed in an orthogonal design to either an intertidal or a subtidal treatment at ambient or elevated P CO 2 , and physiological variables were measured. The combined treatment of tidal emersion and elevated P CO 2 interacted synergistically to reduce the haemolymph pH (pH e ) of oysters, and increase the P CO 2 in the haemolymph ( P e,CO 2 ) and standard metabolic rate. Oysters in the intertidal treatment also had lower condition and growth. Oysters showed a high degree of plasticity, and little evidence was found that intertidal oysters were more resilient than subtidal oysters. It is concluded that in a high-CO 2 world the upper vertical limit of oyster distribution on the shore may be reduced. These results suggest that previous studies on intertidal organisms that lacked tidal simulations may have underestimated the effects of elevated P CO 2 . © 2017. Published by The Company of Biologists Ltd.
Lemke, Richard W.
1967-01-01
Seward, in south-central Alaska, was one of the towns most devastated by the Alaska earthquake of March 27, 1964. The greater part of Seward is built on an alluvial fan-delta near the head of Resurrection Bay on the southeast coast of the Kenai Peninsula. It is one of the few ports in south-central Alaska that is ice free all year, and the town’s economy is almost entirely dependent upon its port facilities. The Alaska earthquake of March 27, 1964, magnitude approximately 8.3–8.4, began at 6:36 p.m. Its epicenter was in the northern part of the Prince William Sound area; focal depth was 20–50 km. Strong ground motion at Seward lasted 3–4 minutes. During the shaking, a strip of land 50–400 feet wide along the Seward waterfront, together with docks and other harbor facilities, slid into Resurrection Bay as a result of large-scale submarine landsliding. Fractures ruptured the ground for'severa1 hundred feet back from the landslide scarps. Additional ground was fractured in the Forest Acres subdivision and on the alluvial floor of the Resurrection River valley; fountaining and sand boils accompanied the ground fracturing. Slide-generated wares, possibly seiche waves, and seismic sea waves crashed onto shore; ware runup was as much as 30 feet above mean lower low water and caused tremendous damage; fire from burning oil tanks added to the destruction. Damage from strong ground motion itself was comparatively minor. Tectonic subsidence of about 3.6 feet resulted in low areas being inundated at high tide. Thirteen people were killed and five were injured as a result of the earthquake. Eighty-six houses were totally destroyed and 260 were heavily damaged. The harbor facilities were almost completely destroyed, and the entire economic base of the town was wiped out. The total cost to replace the destroyed public and private facilities was estimated at $22 million. Seward lies on the axis of the Chugach Mountains geosyncline. The main structural trend in the mapped area, where the rocks consist almost entirely of graywacke and phyllite, is from near north to N. 20° E. Beds and cleavage of the rocks commonly dip 70° W. or NW. to near vertical. Locally, the rocks are complexly folded or contorted. So major faults were found in the mapped area, but small faults, shear zones, and joints are common. Surficial deposits of the area hare been divided for mapping into the following units: drift deposits, alluvial fan deposits, valley alluvium, intertidal deposits, landslide deposits, and artificial fill. Most of these units intergrade and were deposited more or less contemporaneously. The drift deposits consist chiefly of till that forms moraines along the lower flanks of the Resurrection River valley and up tributary valleys. The till is predominantly silt and sand and lesser amounts of clay-size particles, gravel, cobbles, and boulders. Glacial outwash and stratified ice-contact deposits constitute the remainder of the drift deposits. Fans and fan-deltas have been deposited at the valley mouths of tributary streams. Some, including the one upon which Seward built, project into Resurrection Bay, and deltaic-type deposits form their distal edges. The larger fans—composed chiefly of loosely compacted and poorly sorted silt, sand, and gravel—form broad aprons having low gradients. The fan deposits range in thickness from about 100 feet to possibly several hundred feet and, at least in some places, lie on a platform of compact drift. Smaller fans at the mouths of several canyons have steep gradients and considerable local relief. Valley alluvium, deposited chiefly by the Resurrection River, consists mostly of coarse sand and fine to medium gravel. In the axial part of the valley it is probably more than 100 feet thick. Near the head of Resurrection Bay, the alluvium is underlain by at least 75 feet of marine deltaic sediments, which are in turn underlain by 600 or more feet of drift in the deepest part of the bedrock valley. Beach, deltaic, and estuarine sediments, deposited on intertidal flats at the head of the bay and along far1 margins that extend into the bay, arc mapped as intertidal deposits. They consist mostly of silt, sand, and fine gravel, and lesser amounts of clay-size particles. The earthquake reactivated old slides and trigged new ones in the mountains. Rock and snow avalanches, debris flows, and creep of talus deposits characterized slide activity on the steeper slops. The Seward waterfront had been extended before the earthquake by adding artificial fill consisting of loose sand and gravel; part of the lagoon area had been filled with refuse. After the earth- quake, fill, consisting of silt and sand dredged from the head of the bay, was pumped onto part of the lagoon area and also on land at the northwest corner of the bay. Response to the disaster was immediate and decisive. City, State, and Federal agencies, as well as other organizations and individuals, gave unstintingly of their time and facilities. Within a few days, there was temporary restoration of water, sewerage, and electrical facilities. The U.S. Army Corps of Engineers was authorized to select sites and construct a new dock for the Alaska Railroad, a new small-boat basin, and related facilities. The firm of Shannon and Wilson, Inc., under contract to the Corps of Engineers, investigated subsurface soils extensively to determine the factors responsible for the sliding along the Seward waterfront and to assist in site selection for reconstruction of the destroyed harbor facilities. Borings also made along the Seward waterfront and at the head of the bay, and laboratory tests were conducted on pertinent samples. These studies were augmented by geophysical studies both on land and in the bay. In addition, the Corps of Engineers made shallow borings on the intertidal flats at the head of the bay and performed pile-driving and load tests. Borings also were drilled and test pits were dug in the subdivision of Forest Acres. Sliding along the Seward waterfront markedly deepened the water along the former shoreline. Post-earthquake slopes of the bay floor immediately offshore also are steeper in places than before the earthquake. The strong ground motion of the earthquake triggered the landsliding, but several factors may have contributed to the magnitude and characteristics of the slides. These factors are: (1) the long duration of strong ground motion, (2) the grain size and texture of the material involved in the sliding, (3) the probability that the finer grained materials liquefied and flowed seaward, and (4) the added load of manmade facilities built on the edge of the shore, Secondary effects of the slides themselves—sudden drawdown of water, followed by the weight of returning waves—also may have contributed to the destruction. Submarine sliding at the northwest corner of the bay occurred in fine-grained deltaic deposits whose frontal slopes probably were in metastable equilibrium under static conditions. Uplift pressures from aquifers under hydrostatic head, combined with the probable liquefaction characteristics of the sediments when vibrated by strong ground motion, probably caused the material to slide and flow seaward as a heavy slurry. Under static conditions, no major shoreline or submarine landsliding is expected in the Seward area; in the event of another severe earthquake, however, additional sliding is likely along the Seward waterfront and also in the deltaic deposits at the northwest corner of the bay. Fractured ground in back of the present shoreline along the Seward waterfront is an area of incipient landslides that would be unstable under strong shaking. For this reason the Scientific and Engineering Task Force placed the area in a high-risk classification and recommended no repair, rehabilitation, or new construction in this area involving use of Federal funds; it was further recommended that the area should be reserved for park or other uses that do not involve large congregations of people. The deltaic deposits at the head of the bay probably also would be susceptible to sliding during another large earthquake. This sliding would result in further landward retreat of the present shoreline toward the new railroad dock. Specifications for the new dock, whose seaward end is now approximately 1,100 feet from the back scarp of the subaqueous landslide, require design pro- visions to withstand seismic shock up to certain limits. Earthquake-induced fracturing of the ground in the subdivision of Forest Acres was confined to the lower part of a broad alluvial fan. There, sewer and water lines were ruptured and the foundations of some homes were heavily damaged. Landsliding, such as occurred along the shoreline of the bay, was not a contributing cause of the fracturing. Two hypotheses are offered to explain the fracturing: 1. Seismic energy was transformed into visible surface waves of such amplitude that the strength of surface layer was exceeded and rupturing occurred; tensional and compressional stresses alternately opened and closed the fractures and forced out water and mud. 2. Compaction by vibration of the fine-grained deposits of the fan caused ground settlement and fracturing; ground water under temporary hydrostatic head was forced to the surface as fountains and carried the finer material with it. Water waves that crashed onto shore, while shaking was still continuing, were generated chiefly by onshore and offshore landsliding. Waves that overran the shores about 25 minutes after shaking stopped and that continued to arrive for the next several hours are believed to be seismic sea waves (tsunamis) that originated in an uplifted area in the Gulf of Alaska. During the time of seismic sea-wave activity and perhaps preceding it, seiche wares also may have been generated within Resurrection Bay and complicated the wave effects along the shoreline.
Recolonization of experimentally defaunated tidepools by northeast Pacific intertidal fishes.
K.M. Polivka; M.A. Chotkowski
1998-01-01
Site fidelity and maintenance of home ranges are common in fishes (e.g., Stephens et al., 1970; Robertson and Sheldon, 1979; Hixon, 1981), especially for intertidal species for which the ability to navigate to a safe region of an environment that periodically drains of water may be adaptive (e.g., Gibson 1967, 1969, 1982). For intertidal fishes in the northeast Pacific...
Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kützing
NASA Astrophysics Data System (ADS)
Kim, Jang K.; Kraemer, George P.; Yarish, Charles
2012-12-01
The physical stresses associated with emersion have long been considered major factors determining the vertical zonation of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kützing thalli from the vertical extremes in elevation of an intertidal population ( i.e. upper and lower intertidal zones) to determine whether Porphyra thalli acclimate to different vertical elevations on the shore with different patterns of nitrate uptake and nitrate reductase (NR) and glutamine synthetase (GS) activities in response to different degrees of emersion stress. We found that the nitrate uptake and NR recovery in the emersed tissues took longer in lower intertidal sub-population than in upper intertidal sub-population; and GS activity was also significantly affected by emersion and, interestingly, such an activity was enhanced by emersion of thalli from both upper and lower intertidal zones. These results suggested that intra-population variability in post-emersion recovery of physiological functions such as nutrient uptake and NR activity enables local adaptation and contributes to the wide vertical distribution of P. umbilicalis. The high GS activity during periodic emersion stress may be a protective mechanism enabling P. umbilicalis to assimilate nitrogen quickly when it again becomes available, and may also be an evidence of photorespiration during emersion.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Buie, A.; Soave, K.; Dean, A.; Salmi, I.; Tillapaugh, J.; Broad, C.; Raabe, B.; Ericson, W.
2012-12-01
Kathy Soave, Amy Dean, Andrew Buie, Isabella Salmi, Joey Tillapaugh, Cory Broad, Brooke Raabe, Whitney Ericson The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 100 m2 areas, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will once again compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, Anthopluera elegantissima and Fucus spp.. We will continue to closely monitor algal population densities in within our site in light of the November 2007 San Francisco Bay oil spill that leaked heavy bunker fuel into intertidal habitats around the SF Bay. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts. Kathy Soave The Branson School 39 Fernhill Rd. Ross, CA 94957 (415) 454-3612 x 323 Amy Dean Farallones Marine Sanctuary Association, PO Box 29386 San Francisco, CA 94129, 415-561-6625 x 303 AGU Sponsor, Jennifer Saltzman, AGU membership number 10579665
NASA Astrophysics Data System (ADS)
Rochette, Rémy; Dunmall, Karen; Dill, Lawrence M.
2003-03-01
On wave-sheltered shores of the northeastern Pacific, the population size structure of Littorina sitkana varies with intertidal height, as larger snails are mostly found only in the upper intertidal. This pattern has been attributed to high predation rates by crabs (and perhaps fish) on large snails inhabiting low-intertidal areas; i.e., large snails are presumed to be rare there simply because predators kill them. In this study we investigate the hypothesis that predation contributes to the shore-level size gradient displayed by L. sitkana by selecting for (or inducing) earlier sexual maturation and reduced somatic growth in low-shore snails relative to high-shore individuals. In the first part of our study, we carried out laboratory dissections, field experiments (mark-release-recapture and caging), and field surveys on a wave-protected shore in Bamfield Inlet, Barkley Sound (British Columbia, Canada). The principal results were: (1) adult survivorship was greater at higher, than at lower, intertidal level, (2) snails displayed a preference for their shore level of origin, (3) immature adults from the high intertidal displayed greater rates of somatic growth relative to immature adults from the low intertidal, and (4) low-shore snails matured at a smaller size than high-shore individuals. In the second part of the study, a large-scale survey showed intra-specific variation in size at sexual maturity (point 4 above) to be relatively consistent over time (winter of 1999 and 2001 for snails from our main study site) and space (13 different sites in winter 2001), although the magnitude of these differences varied greatly from shore to shore. Our results indicate that L. sitkana individuals inhabiting upper and lower parts of their intertidal range allocate resources differently to somatic and gonadal growth, an intra-specific difference that is best interpreted as a response to spatial and size-dependent variation in predation pressure. Taken together, results of this and other recent studies indicate that phenotypic responses to contrasting selection pressures operating in upper- and lower-intertidal areas contribute to the intertidal size gradient of L. sitkana. We believe that greater consideration of evolutionary processes in ecological studies will lead to a more complete understanding of the mechanisms responsible for structuring marine coastal communities.
Alkalinity production in intertidal sands intensified by lugworm bioirrigation.
Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R
2014-07-05
Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.
NASA Astrophysics Data System (ADS)
Domínguez, Rula; Domínguez Godino, Jorge; Freitas, Cristiano; Machado, Inês; Bertocci, Iacopo
2015-03-01
Spatial and temporal patterns of abundance and distribution of sea urchins (Paracentrotus lividus) from intertidal rockpools of the north Portuguese coast were examined in relation to physical (surface, altitude, depth, topographic complexity and exposure) and biological (substrate cover by dominant organisms) habitat traits. The methodology was based on a multi-factorial design where the total number and the abundance of urchins in each of six size classes were sampled over a range of spatial scales, from 10s of cm to kms, and a temporal scale of five months. The results highlighted three main features of the studied system: (1) the largest proportion of variability of sea urchins occurred at the smallest scale examined; (2) urchins from different size classes showed different patterns of abundance in relation to habitat traits; (3) variables normally invoked as potential drivers of distribution of urchins at a range of scales, such as hydrodynamics and shore height, were relatively less important than other abiotic (i.e. pool area, pool mean depth calculated over five replicate measures and sand cover) and biological (i.e. space occupancy by the reef-forming polychaete Sabellaria alveolata and mussels vs. availability of bare rock) variables to provide a considerable contribution to the variability of sea urchins. Intertidal populations of sea urchins are abundant on many rocky shores, where they are socially and economically important as food resource and ecologically key as habitat modelers. This study provides new clues on relatively unstudied populations, with relevant implications for possible management decisions, including the implementation of protection schemes able to preserve the main recruitment, settlement and development areas of P. lividus.
NASA Astrophysics Data System (ADS)
Murtaza, Muhammad; Rahman, Abdul Hadi Abdul; Sum, Chow Weng; Konjing, Zainey
2018-02-01
Thirty-five stratigraphic section exposed along the Mukah-Selangau road in the Mukah-Balingian area have been studied. Sedimentological and palynological data have been integrated to gain a better insight into the depositional architecture of the area. Broadly, the Mukah-Balingian area is dominated by fluvial, floodplain and estuarine related coal-bearing deposits. The Balingian, Begrih and Liang formations have been described and interpreted in terms of seven facies association. These are: FA1 - Fluvial-dominated channel facies association; FA2 - Tide-influenced channel facies association; FA3 - Tide-dominated channel facies association; FA4 - Floodplain facies association; FA5 - Estuarine central basin-mud flats facies association; FA6 - Tidal flat facies association and FA7 - Coastal swamps and marshes facies association. The Balingian Formation is characterised by the transgressive phase in the base, followed by a regressive phase in the upper part. On the basis of the occurrence of Florscheutzia trilobata with Florscheutzia levipoli, the Early to Middle Miocene age has been assigned to the Balingian Formation. The distinct facies pattern and foraminifera species found from the samples taken from the Begrih outcrop imply deposition in the intertidal flats having pronounced fluvio-tidal interactions along the paleo-margin. Foraminiferal data combined with the pronounced occurrence of Stenochlaena laurifolia suggest at least the Late Miocene age for the Begrih Formation. The internal stratigraphic architecture of the Liang Formation is a function of a combination of sea level, stable tectonic and autogenic control. Based on stratigraphic position, the Middle Pliocene to Pleistocene age for the Liang Formation is probable. The Balingian, Begrih and Liang formations display deposits of multiple regressive-transgressive cycles while the sediments were derived from the uplifted Penian high and Rajang group.
Full-Field Strain Behavior of Friction Stir-Welded Titanium Alloy
2008-01-01
and slag formed on the upper weld surface by the FSW process and the remnant laser weld bead on the underside of the FSW surface were removed from...using 3M brand ‘Super 77’ spray adhesive and then hand sanding against a mechanically flat ceramic backing surface using silicon 32 carbide...weld surface using Loctite brand “5-minute Epoxy” and allowing to cure. Following the required cure period, the aluminum grating glass backing was
Incipient Motion of Sand and Oil Agglomerates
NASA Astrophysics Data System (ADS)
Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.
2016-12-01
Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.
NASA Astrophysics Data System (ADS)
Choi, Kyungsik; Kim, Do Hyeong
2016-06-01
Tidal dunes with well-defined rhythmic tidal bundles are documented from the lower intertidal zone of an open-coast macrotidal environment in Gyeonggi Bay, Korea. Based on combined morphologic, sedimentologic and hydrodynamic datasets, this study aims to characterize the factors that govern the temporal and spatial variability of tidal bundles in a non-barred, unconfined macrotidal environment. The tidal dunes are flood-asymmetric and of longer wavelength (10-20 m) with small ebb caps on the upper bank, and symmetric to slightly ebb-asymmetric and of shorter wavelength (5-10 m) with larger ebb caps on the lower bank. The upper-bank dunes are characterized by more steeply dipping flood-directed planar cross-beds and thinner mud drapes than the lower-bank dunes. Each tidal bundle consists of a single mud drape that is stratified to cross-stratified, rich in silt and very fine sand. It overlies ebb-directed ripples and represents dynamic mud deposition during the ebb tidal phase. The presence of strong rotary currents (up to 0.25 m/s) and low suspended-sediment concentration of flood currents prevent deposition of mud drapes during the high-tide slack-water period. The distinct asymmetry in the water elevation at which the velocity peaks during the ebb and flood phases results in the preferential preservation of flood-directed cross-beds in the lower intertidal zone, where the ebb current - although stronger than the flood currents - is of shorter duration and hence unable to reverse the dune profile. The pronounced time-velocity asymmetry at the higher elevation combined with the distinct velocity peak asymmetry leads to a better preservation of hierarchical tidal cycles in the upper-bank dunes. The present study suggests that the persistent occurrence of single, stratified to cross-stratified mud drapes, which reflect dynamic mud deposition during the ebb phase, and the dominance of flood-directed cross-beds are diagnostic features of tidal bundles in the intertidal zone of unbarred, open-coast macrotidal environments. A proposed model for mud drape deposition provides a new perspective on the origin of tidal bundles together with useful criteria for reconstructing the paleo-depositional setting.
The Martian, Part 3: Meridiani Planum
2015-10-14
All this week, the THEMIS Image of the Day is following on the real Mars the path taken by fictional astronaut Mark Watney, stranded on the Red Planet in the book and movie, The Martian. Today's image shows a part of the flat terrain of northern Meridiani Planum. This area lies about 300 kilometers (190 miles) north of where Mars rover Opportunity is currently exploring the rim rocks of Endeavour Crater. Meridiani is a large expanse of sedimentary rock, mostly flat-lying basalt sandstone with hematite nodules ("blueberries") embedded in it. Farther south from this scene, Opportunity has examined several craters like these that expose deeper rock layers. They show that the Meridiani sandstone is made of dune sands that were soaked in sulfur-rich water. Flat terrain may make for dull scenery, but the driving is easy. This area is where astronaut Mark Watney turns his vehicle east toward Schiaparelli Crater. Before arriving here, he was driving south to get out from under a dust storm that threatened to shut off power to the vehicle's solar cells. At this point he has journeyed about 2,300 kilometers (1,400 miles) from Acidalia. Orbit Number: 6304 Latitude: 2.51711 Longitude: 355.154 Instrument: VIS Captured: 2003-05-17 13:18 http://photojournal.jpl.nasa.gov/catalog/PIA19798
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Boesel, A.; Soave, K.; Dean, A.; Grimaldi, Z.; Buie, A.; Dattels, C.; Steiger, C.; Wallace, K.; Salmi, I.; Tillapaugh, J.
2011-12-01
Kathy Soave, Amy Dean, Alexa Boesel, Andrew Buie, Celia Dattels, Zoe Grimaldi, Isabella Salmi, Cameryn Steiger, Joey Tillapaugh, Kathleen Wallace The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and the requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within a permanent 100 m2 area, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will once again compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis and Anthopluera elegantissima. Future analyses and investigations will include intertidal abiotic factors (including water temperature and human foot-traffic) to enhance insights into the workings of the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts. Kathy Soave The Branson School 39 Fernhill Rd. Ross, CA 94957 (415) 454-3612 x 323 Amy Dean Farallones Marine Sanctuary Association, PO Box 29386 San Francisco, CA 94129, 415-561-6625 x 303 AGU Sponsor, Jennifer Saltzman, AGU membership number 10579665
Sustainable Seas Student Intertidal Monitoring Project, Duxbury Reef, Bolinas, CA
NASA Astrophysics Data System (ADS)
Soave, K.; Dean, A.; Prescutti, K.; Ball, O.; Chang, E.; Darakananda, K.; Jessup, K.; Poutian, J.; Schwalbe, H.; Storm, E.
2008-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program and Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal ecology, interpretation and monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects (A and B), and using randomly determined points within a permanent 100 m2 area, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will analyze the population densities of aggregating anemones, Anthopleura elegantissima, for seasonal abundance variations as well as long-term population trends. We will also follow the seasonal and long-term population fluctuations of red algal turf, Endocladia muricata and Gelidium coulteri, and black turban snails, Tegula funebralis. Comparing populations of turf algae and the herbivorous black turban snails gathered before and after the November 7, 2007 San Francisco Bay oil spill shows very little impact on the Duxbury Reef intertidal inhabitants. Future analyses will include intertidal abiotic factors to enhance insights into the workings of the Duxbury Reef ecosystem. Kathy Soave The Branson School 39 Fernhill Rd. Ross, CA 94957 (415) 454-3612 x 323 Amy Dean Farallones Marine Sanctuary Association, PO Box 29386 San Francisco, CA 94129, 415-561-6625 x 303 AGU Sponsor, Ines Cifuentes, AGU membership number 10189667
Integrated Modeling for the Assessment of Ecological Impacts of Sea Level Rise
NASA Astrophysics Data System (ADS)
Hagen, S. C.; Lewis, G.; Bartel, R.; Batten, B.; Huang, W.; Morris, J.; Slinn, D. N.; Sparks, J.; Walters, L.; Wang, D.; Weishampel, J.; Yeh, G.
2010-12-01
Sea level rise (SLR) has the potential to affect a variety of coastal habitats with a myriad of deleterious ecological effects and to overwhelm human settlements along the coast. SLR should be given serious consideration when more than half of the U.S. population lives within 50 miles of the coast. SLR effects will be felt along coastal beaches and in estuarine waters, with consequences to barrier islands, submerged aquatic vegetation beds, sand and mud flats, oyster reefs, and tidal and freshwater wetlands. Managers of these coastal resources must be aware of potential consequences of SLR and adjust their plans accordingly to protect and preserve the resources under their care. The Gulf Coast provides critical habitats for a majority of the commercially important species in the Gulf of Mexico, which depend on inshore waters for either permanent residence or nursery area. The ecosystem services provided by these coastal habitats are at risk from rising sea level. Our team will assess the risk to coasts and coastal habitats from SLR in a 5-year project. We will apply existing models of circulation and transport from the watershed to the sea. The ultimate prediction will be of sediment loadings to the estuary as a result of overland flow, shoreline and barrier island erosion, and salinity transport, all of which will be used to model the evolution of intertidal marshes (MEM II). Over the five-year course of our research we will be simulating hydrodynamics and transport for all three NERRS reserves, including: Apalachicola, Weeks Bay and Grand Bay. The project will result in products whereby managers will be able to assess marshes, oyster reefs, submerged aquatic vegetation, predict wetland stability and indentify restoration locations for marsh and oyster habitats. In addition, we will produce Decision Support tools that will enable managers to predict future coastal erosion rates for management-specified shorelines. Project outcomes will enable the management community to prioritize risk management strategies, reformulate set back requirements, improve guidelines for construction of breakwaters and other coastal infrastructure, and assess water resources impacts and protection needs.
Upper Miocene reef complex of Mallorca, Balearic Islands, Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomar, L.
1988-02-01
The late Tortonian-Messinian coral reef platform of south Mallorca onlaps a folded middle late Miocene carbonate platform on which progradation of up to 20 km occurs. Vertical sea cliffs (up to 100 m high) superbly show the last 5 km of this progradation and complement the numerous water-well cores from the island interior. The Mallorca reef presents the most complete facies zonation of the Miocene reefs of the western Mediterranean. The reef wall framework is up to 20 m thick and shows (1) erosional reef flat with reef breccia and small corals; (2) spur-and-grove zone with large, massive corals; (3)more » deep buttresses and pinnacles with terraces of branching corals; and (4) deep reef wall with flat, laminar coral colonies, branching red algae, and Halimeda sands.« less
Can upwelling signals be detected in intertidal fishes of different trophic levels?
Pulgar, J; Poblete, E; Alvarez, M; Morales, J P; Aranda, B; Aldana, M; Pulgar, V M
2013-11-01
For intertidal fishes belonging to three species, the herbivore Scartichthys viridis (Blenniidae), the omnivore Girella laevifrons (Kyphosidae) and the carnivore Graus nigra (Kyphosidae), mass and body size relationships were higher in individuals from an upwelling zone compared with those from a non-upwelling zone. RNA:DNA were higher in the herbivores and omnivores from the upwelling zone. Higher biomass and RNA:DNA in the upwelling intertidal fishes may be a consequence of an increased exposure to higher nutrient availability, suggesting that increased physiological conditioning in vertebrates from upwelling areas can be detected and measured using intertidal fishes of different trophic levels. © 2013 The Fisheries Society of the British Isles.
Continuous resistivity profiling data from Northport Harbor and Manhasset Bay, Long Island, New York
Cross, V.A.; Bratton, J.F.; Crusius, John; Kroeger, K.D.; Worley, C.R.
2012-01-01
An investigation of coastal groundwater systems was performed along the North Shore of Long Island, New York, during May 2008 to constrain nutrient delivery to Northport Harbor and Manhasset Bay by delineating locations of likely groundwater discharge. The embayments are bounded by steep moraines and are underlain by thick, fine-grained sediments deposited in proglacial lakes during the last ice age. Beach sand and gravel overlie the glacial deposits along the coast. The continuous resistivity profiling (CRP) surveys that were conducted indicate the existence of low-salinity groundwater in shore-parallel bands, typically 25 to 50 meters wide, along the shorelines of both bays. Piezometer sampling and seepage meter deployments in intertidal and subtidal areas of the two bays confirmed the presence and discharge of brackish and low-salinity groundwater. The large tidal ranges (up to 3 meters) and the steep onshore topography and hydraulic gradients are important variables controlling coastal groundwater discharge in these areas.
Aloy, Alexander B; Vallejo, Benjamin M; Juinio-Meñez, Marie Antonette
2011-08-01
This study analyzed the foraging behavior of the gastropod Nassarius pullus on garbage-impacted sandy shores of Talim Bay, Batangas, Philippines. The effect of different levels of plastic garbage cover on foraging efficiency was investigated. Controlled in situ baiting experiments were conducted to quantify aspects of foraging behavior as affected by the levels of plastic litter cover in the foraging area. The results of the study indicated that the gastropod's efficiency in locating and in moving towards a food item generally decreased as the level of plastic cover increased. Prolonged food searching time and increased self-burial in sand were highly correlated with increased plastic cover. The accuracy of orientation towards the actual position of the bait decreased significantly when the amount of plastic cover increased to 50%. These results are consistent with the significant decreases in the abundance of the gastropod observed during periods of deposition of large amounts of plastic and other debris on the shore. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Research of Correlation of Water Surface Spectral and Sediment Parameters
NASA Astrophysics Data System (ADS)
Li, J.; Gong, G.; Fang, W.; Sun, W.
2018-04-01
In the method of survey underwater topography using remote sensing, and the water surface spectral reflectance R, which remote sensing inversion results were closely related to affects by the water and underwater sediment and other aspects, especially in shallow nearshore coastal waters, different sediment types significantly affected the reflectance changes. Therefore, it was of great significance of improving retrieval accuracy to explore the relation of sediment and water surface spectral reflectance. In this study, in order to explore relationship, we used intertidal sediment sand samples in Sheyang estuary, and in the laboratory measured and calculated the chroma indicators, and the water surface spectral reflectance. We found that water surface spectral reflectance had a high correlation with the chroma indicators; research result stated that the color of the sediment had an very important impact on the water surface spectral, especially in Red-Green chroma a*. Also, the research determined the sensitive spectrum bands of the Red-Green chroma a*, which were 636-617 nm, 716-747 nm and 770-792 nm.
Terminal Pleistocene epoch human footprints from the Pacific coast of Canada
Fedje, Daryl; Dyck, Angela; Mackie, Quentin; Gauvreau, Alisha; Cohen, Jenny
2018-01-01
Little is known about the ice age human occupation of the Pacific Coast of Canada. Here we present the results of a targeted investigation of a late Pleistocene shoreline on Calvert Island, British Columbia. Drawing upon existing geomorphic information that sea level in the area was 2–3 m lower than present between 14,000 and 11,000 years ago, we began a systematic search for archaeological remains dating to this time period beneath intertidal beach sediments. During subsurface testing, we uncovered human footprints impressed into a 13,000-year-old paleosol beneath beach sands at archaeological site EjTa-4. To date, our investigations at this site have revealed a total of 29 footprints of at least three different sizes. The results presented here add to the growing body of information pertaining to the early deglaciation and associated human presence on the west coast of Canada at the end of the Last Glacial Maximum. PMID:29590165
Rais, Amber; Miller, Nathan; Stillman, Jonathon H
2010-01-01
Many eurythermal organisms alter composition of their membranes to counter perturbing effects of environmental temperature variation on membrane fluidity, a process known as homeoviscous adaptation. Marine intertidal gastropods experience uniquely large thermal excursions that challenge the functional integrity of their membranes on tidal and seasonal timescales. This study measured and compared membrane fluidity in marine intertidal snail species under three scenarios: (1) laboratory thermal acclimation, (2) thermal acclimatization during a hot midday low tide, and (3) thermal acclimatization across the vertical intertidal zone gradient in temperature. For each scenario, we used fluorescence polarization of the membrane probe DPH to measure membrane fluidity in individual samples of gill and mantle tissue. A four-week thermal acclimation of Tegula funebralis to 5, 15, and 25°C did not induce differences in membrane fluidity. Littorina keenae sampled from two thermal microhabitats at the beginning and end of a hot midday low tide exhibited no significant differences in membrane fluidity, either as a function of time of day or as a function of thermal microhabitat, despite changes in body temperature up to 24°C within 8 h. Membrane fluidities of a diverse group of snails collected from high, middle, and low vertical regions of the intertidal zone varied among species but did not correlate with thermal microhabitat. Our data suggest intertidal gastropod snails do not exhibit homeoviscous adaptation of gill and mantle membranes. We discuss possible alternatives for how these organisms counter thermal excursions characteristic of the marine intertidal zone.
NASA Astrophysics Data System (ADS)
Kim, Jong-Hyeob; Kim, Seung Hyeon; Kim, Young Kyun; Lee, Kun-Seop
2016-12-01
Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.
Sustainable Seas Student Monitoring Project
NASA Astrophysics Data System (ADS)
Soave, K.; Emunah, M.; Hatfield, J.; Kiyasu, J.; Packard, E.; Ching, L.; Zhao, K.; Sanderson, L.; Turmon, M.
2016-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 2000, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Each fall student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 200 m2 areas, in fall, winter, and late spring. Using data from the previous years, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, three separate Anthopluera sea anemone species, and two rockweed species. Future analyses and investigations will include intertidal abiotic factors (including water temperature, pH and human foot-traffic) to enhance insights into the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
NASA Astrophysics Data System (ADS)
Zou, L.; Yu, W.; Gao, H.; Sun, M.
2017-12-01
The highest input of suspended particles from the Yellow River, accumulated and formed one of the largest intertidal mudflats, the Yellow River Delta in the world. The higher nutrients originated from ambient drainage areas supported a higher primary productivity, as well as a higher secondary productivity in the estuarine and intertidal mudflats of Yellow River Delta (YRD). However, the preservation and accumulation of organic carbon were quite low in the intertidal sediments, indicated by the standing stock of organic carbon. Molecular of lignin and long chain lipid were applied to explore the degradation and preservation of organic carbon in the southern intertidal mudflats of YRD, especially the behavior of terrestrial organic molecular. Lignin Σ8 ranged at 0.13-0.54 mg/10 g dw (0.23 mg/10 gdw at avg.) in the surface sediments of estuarine and intertidal mudflats, which were about 50 % higher than those in the river sediments. LVPI suggested that, lignin was primarily originated from woody tissues of angiosperms in riverine sediments, and then was dominated by herbaceous tissues of angiosperms in the estuarine and intertidal mudflats. (Ad/Al)V and P/(S+V) indicated that, demethylation/ demethoxyhaleniaside contributed more than oxidation in lignin degradation in the estuarine and intertidal mudflats, while oxidation contributed more in the riverine sediments. Long chain fatty acids accounted for <10 % of total fatty acids in both the estuarine and riverine sediments. The input of long chain fatty acids from terrestrial higher plants varied seasonally, and followed in the turn of autumn, winter, summer and spring from river to estuary. The comparable percentages of free and bound long chain fatty acids suggested that, organic carbon from terrestrial higher plants degraded rapidly from river to estuary, and kept at a middle stage of mineralization.
NASA Astrophysics Data System (ADS)
Márquez, Federico; Nieto Vilela, Rocío Aimé; Lozada, Mariana; Bigatti, Gregorio
2015-01-01
The gastropod Trophon geversianus exhibits shell polymorphisms along its distribution in subtidal and intertidal habitats. Our hypothesis is that morphological and behavioral patterns of T. geversianus represent habitat-specific constrains; subsequently we expect an association between shell morphology, attachment behavior, and habitat. In order to test this hypothesis we compared individuals from intertidal and subtidal habitats, at three sites in Golfo Nuevo (Argentina). We analyzed shell morphology using classic morphometric variables, 3D geometric morphometrics and computing tomography scan. The results were complemented with field observations of attachment to substrate and turning time behavior, as well as of the number of shell scars produced by crab predation. Our results showed differences in shell size and shape between intertidal and subtidal-collected individuals. Centroid size, total weight and shell weight, as well as shell density and thickness were significantly lower in intertidal individuals than in subtidal ones. Gastropods from intertidal habitats presented a low-spired shell and an expanded aperture which might allow better attachment to the bottom substrate, while subtidal individuals presented a slender and narrower shell shape. The number of crab scars was significantly higher in shells from subtidal individuals. Observations of the behavior of gastropods placed at the intertidal splash zone showed 100% of attachment to the bottom in the intertidal individuals, while subtidal specimens only attached in average in 32% of the cases. These latter took 12 times longer to re-attach to the bottom when faced up. Phylogenetic analysis of COI gene fragments showed no consistent differences among individuals sampled in both habitats. All these results suggest that T. geversianus has developed two ecomorphs with distinct morphological and behavioral responses to physically stressful conditions registered in north Patagonian intertidals, as opposed to lower physical stress but higher predation pressure in the subtidal habitats. The findings of this work constitute a starting point in the study of ecological adaptation processes in gastropods from Patagonian coastal environments.
A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico
NASA Astrophysics Data System (ADS)
Wagner, P. F.; Reece, R.; Ewing, R. C.
2014-12-01
The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.
A Community-based Education Project: Intertidal Surveys With Student and Adult Volunteers
NASA Astrophysics Data System (ADS)
Muller-Parker, G.; Bingham, B. L.
2004-12-01
The Fidalgo Learning about the Intertidal Project (FLIP) brought together scientists, educators, students and adult volunteers (20-30 total individuals) to conduct studies of the intertidal zone of a section of Fidalgo Island, Wa. in 2003 and 2004. The project goals were to: 1) obtain basic data on diversity and abundance of intertidal species in different habitats, 2) promote public awareness and appreciation of the intertidal zone, and 3) develop a model program for volunteer participation in scientific surveys. The 2-week program began with 2 days of workshops on local intertidal organisms to teach the FLIP participants how to classify and identify the different organisms and substrates they were likely to encounter in the surveys. We provided general lectures on intertidal habitats and on the importance of the intertidal zone to coastal resources. The FLIP participants worked together on identifying organisms, practicing the use of quadrats and data collection before the surveys began. Following 4 days of field surveys, the participants signed up for workshops that included compilation and analysis of the data, photography, nature writing and algae pressing. The final activity was a public tour of the intertidal day held at a local park. 50-60 people of all ages participated. The goal was to educate the public in plant and animal identification and habitat variability as well as "beach etiquette." Successful model program elements included self-selected volunteers and attention to the composition of each survey team, with one scientist/leader per team and one adult and two students or two adults and one student per team (4-5 teams, each completing one transect per site). Program flexibility was also crucial; FLIP volunteers were not required to attend every single day and post-survey workshops were optional. Volunteers participated to different extents and for different lengths of time depending on their abilities and interests. Project ownership was important to the success. Volunteers participated in all aspects - data collection, data analysis, and review of the final scientific report. The capstone event was having FLIP volunteers serve as the leaders in a public intertidal tour. The volunteers shared their newfound knowledge and taught public participants proper beach etiquette. The main benefit gained from the FLIP project was the forging of new partnerships in the local community among students, adult citizens, educators, and scientists. Remaining tasks include developing outreach public display materials with the help of the student volunteers and developing some of the elements for class use, with input from local teachers.
Earthshots: Satellite images of environmental change – Inland Delta of the Niger River, Mali
Adamson, Thomas
2016-01-01
This delta floods seasonally from September to December, as rainfall from the river’s headwaters in the Guinea Highlands reaches the delta’s vast flat floodplain. The southern part of the delta is low-lying floodplain with expanses of wetland grasses and reeds. The northern part has sand ridges that emerge from the water during the flood season. The seasonal flooding supports fisheries, pasture, and rice farming. Over 1 million people depend on resources in the delta.
2005-12-01
than seagrass , Seitz et al. (2005) has recently shown that growth of juvenile blue crabs was greater in unvegetated mud and sand flats of the upper...York River than the same habitats or seagrass beds in the lower river. In a companion study Lipcius et al. (2005) report that survival and overall...that decapod fauna of oyster shell habitats are distinct from that of either seagrass or marsh-edge habitats. Posey et al. (1999) have experimentally
NASA Astrophysics Data System (ADS)
Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae
2013-07-01
We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.
Sand Waves in Environmental Flows: Insights gained by LES
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis
2014-11-01
In fluvial and coastal environments, sediment transport processes induced by near-bed coherent structures in the turbulent boundary layer developing over a mobile sediment bed result in the formation of dynamically rich sand waves, or bed forms, which grow and migrate continuously. Bed form migration alters streambed roughness and provides the primary mechanism for transporting large amounts of sediment through riverine systems impacting the morphology, streambank stability, and ecology of waterways. I will present recent computational advances, which have enabled coupled, hydro-morphodynamic large-eddy simulation (LES) of turbulent flow in mobile-bed open channels. Numerical simulations: 1) elucidate the role of near-bed sweeps in the turbulent boundary layer as the mechanism for initiating the instability of the initially flat sand bed; 2) show how near-bed processes give rise to aperiodic eruptions of suspended sediment at the free surface; and 3) clarify the mechanism via which sand waves migrate. Furthermore, in agreement with recent experimental observations, the computed spectra of the resolved velocity fluctuations above the bed exhibit a distinct spectral gap whose width increases with distance from the bed. The spectral gap delineates the spectrum of turbulence from that of slowly evolving coherent structures associated with sand wave migration. The talk will also present computational results demonstrating the feasibility of carrying out coupled, hydro-morphodynamic LES of large dunes migrating in meandering streams and rivers with embedded hydraulic structures and discuss future challenges and opportunities. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33.
Finescale turbulence and seabed scouring around pneumatophores in a wave-exposed mangrove forest
NASA Astrophysics Data System (ADS)
Mullarney, J. C.; Norris, B. K.; Henderson, S. M.; Bryan, K. R.
2015-12-01
Coastal mangroves provide a barrier between the coast and lower energy intertidal environments. The presence of mangrove roots (pneumatophores) alters local hydrodynamics by slowing currents, dissipating waves, enhancing within-canopy turbulence, and introducing significant spatial variability to the flow, particularly on the stem scale. To date, limited measurements exist within pneumatophore regions owing to the difficulties of measuring on sufficiently small scales. Hence, little is known about the turbulence controlling sediment transport within these regions. We report unique field observations near the seaward edge of a mangrove forest in the Mekong Delta, Vietnam. This forest is exposed to moderate wave energy (maximum heights of around 1 m), with waves observed to propagate and break up to 100 m inside the forest. Our measurements focus on a rapidly prograding area with a relatively sandy substrate and a gentle topographic slope. We resolved millimeter-scale turbulent flows within and above the pneumatophore canopy. Precise measurements of vegetation densities as a function of height were obtained using photogrammetry techniques. The dissipation rate of turbulent kinetic energy was enhanced at the canopy edge (ɛ ~ 10-4 W/kg), and decreased with distance into the forest (ɛ ~ 10-5 W/kg), although rates remained elevated above values measured on the tidal flat immediately offshore of the mangroves (ɛ ~ 10-6 W/kg). The dependence of turbulence on vegetation characteristics and on the stage of the tidal cycle is explored. The hydrodynamic measurements are then linked with changes in bathymetric features noted after a large wave event. Finer mud sediments were deposited outside the forest on the intertidal mudflat, whereas sandy sediments in the fringe region were significant scoured around regions of dense pneumatophores, and sediment mounds developed in the gaps between pneumatophores.
Milker, Yvonne; Horton, Benjamin; Vane, Christopher; Engelhart, Simon; Nelson, Alan R.; Witter, Robert C.; Khan, Nicole S.; Bridgeland, William
2014-01-01
We investigated the influence of inter-annual and seasonal differences on the distribution of live and dead foraminifera, and the inter-annual variability of stable carbon isotopes (d13C), total organic carbon (TOC) values and carbon to nitrogen (C/N) ratios in bulk sediments from intertidal environments of Bandon Marsh (Oregon, USA). Living and dead foraminiferal species from 10 stations were analyzed over two successive years in the summer (dry) and fall (wet) seasons. There were insignificant inter-annual and seasonal variations in the distribution of live and dead species. But there was a noticeable decrease in calcareous assemblages (Haynesina sp.) between live populations and dead assemblages, indicating that most of the calcareous tests were dissolved after burial; the agglutinated assemblages were comparable between constituents. The live populations and dead assemblages were dominated by Miliammina fusca in the tidal flat and low marsh, Jadammina macrescens, Trochammina inflata and M. fusca in the high marsh, and Trochamminita irregularis and Balticammina pseudomacrescens in the highest marsh to upland. Geochemical analyses (d13C, TOC and C/N of bulk sedimentary organic matter) show no significant influence of inter-annual variations but a significant correlation of d13C values (R = 20.820, p , 0.001), TOC values (R = 0.849, p , 0.001) and C/N ratios (R = 0.885, p , 0.001) to elevation with respect to the tidal frame. Our results suggest that foraminiferal assemblages and d13C and TOC values, as well as C/N ratios, in Bandon Marsh are useful in reconstructing paleosea-levels on the North American Pacific coast.
NASA Astrophysics Data System (ADS)
Mirlean, Nicolai; Costa, Cesar S. B.
2017-04-01
Circular (RP) and ring-shape (RP) patches of vegetation in intertidal flats have been associated with the radial expansion of tussock growth forms and die-back gap in older central stands, respectively. RP formation has not yet been sufficiently explained. We accomplished a comparative geochemical study of CP and RP structures of Spartina densiflora within a single saltmarsh in a microtidal estuary (<0.5 m). The pore water under these structures demonstrated distinctive physical-chemical properties by marked seasonal changing in water level and salinity. During high-water period dissolved H2S was frequently low in pore waters of S. densiflora structures due to reactive-Fe, which scavenge the sulfide from solution and form solid sulfides. During less flooded-brackish water period, pore water pH goes down below 4 inside the vegetated bordering areas of RP. In these locations the concentration of soluble sulfides dramatically increases up to 140 μM L-1. The high concentration of protons in pore water is the result of solid sulfides atmospheric oxidation to sulfuric acid. High dissolution of H2S, along with the low pH, creates a toxic environment for S. densiflora and die-back central gap formation in RP. CP structure was 5 cm higher in the intertidal than RP but shows frequent presence of a water layer, less severe oxidation of sulfides and limited building-up of toxic condition to plants. Development of S. densiflora RP probably indicates the uplift of sediment by this bioengineer grass and/or periodic lowering of the water surface below a certain critical level.
NASA Astrophysics Data System (ADS)
Carling, P. A.; Radecki-Pawlik, A.; Williams, J. J.; Rumble, B.; Meshkova, L.; Bell, P.; Breakspear, R.
2006-01-01
In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m - 2 , sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m - 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s - 1 . Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary 'caps' overlie a more stable dune 'core'. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.
Zwerschke, Nadescha; Hollyman, Philip R; Wild, Romy; Strigner, Robin; Turner, John R; King, Jonathan W
2018-01-01
Impacts of invasive species are context dependent and linked to the ecosystem they occur within. To broaden the understanding of the impact of a globally widespread invasive oyster, Crassostrea ( Magallana ) gigas, intertidal surveys were carried out at 15 different sites in Europe. The impact of C. gigas on macro- (taxa surrounding oyster > 1 cm) and epifaunal (taxa on oyster < 1 cm) benthic communities and α and β-diversity was assessed and compared to those associated with native ecosystem engineers, including the flat oyster Ostrea edulis . Whilst the effect of C. gigas on benthic community structures was dependent on habitat type, epifaunal communities associated with low densities of O. edulis and C. gigas did not differ and changes in benthic assemblage structure owing to the abundance of C. gigas were therefore attributed to the presence of oyster shells. Macrofaunal α-diversity increased with C. gigas cover in muddy habitats, while epifaunal α-diversity decreased at greater oyster densities. Macrofaunal β-diversity was greatest at low densities of C. gigas ; however, it did not differ between samples without and increased densities of oysters. In contrast, epifaunal β-diversity decreased with increasing oyster cover. Different environmental contexts enabled more independent predictions of the effect of C. gigas on native communities. These were found to be low and more importantly not differing from O. edulis . This indicates that, at low densities, C. gigas may be functionally equivalent to the declining native oyster in terms of biodiversity facilitation and aid in re-establishing benthic communities on shores where O. edulis has become extinct.
NASA Astrophysics Data System (ADS)
Solak, Cemile; Taslı, Kemal; Koç, Hayati
2016-10-01
The study area comprises southern non-metamorphic part of the Bolkar Mountains which are situated in southern Turkey, eastern part of the Central Taurides. The studied five outcrops form geologically parts of the tectonostratigraphic units called as allochthonous Aladag Unit and autochthonous Geyikdagi Unit. The aim of this study is to describe microfacies and depositional environments of the Bolkar Mountains Early Cretaceous shallow- water platform carbonates. The Lower Cretaceous is represented by continuous thick- bedded to massive dolomite sequence ranging from 100 to 150 meters thick, which only contains locally laminated limestone intercalations in the Yüğlük section and thick to very thick-bedded uniform limestones ranging from approximately 50 to 120 meters, consist of mainly laminated- fenestral mudstone, peloidal-intraclastic grainstone-packstone, bioclastic packstone- wackestone, benthic foraminiferal-intraclastic grainstone-packstone, ostracod-fenestral wackestone-mudstone, dasycladacean algal packstone-wackestone and ooidal grainstone microfacies. Based on a combination sedimantological data, facies/microfacies and micropaleontological (predominantly dasycladacean algae and diverse benthic foraminifera) analysis, it is concluded that Early Cretaceous platform carbonates of the Bolkar Mountains reflect a tidally affected tidal-flat and restricted lagoon settings. During the Berriasian- Valanginian unfavourable facies for benthic foraminifera and dolomitization were predominate. In the Hauterivian-early Aptian, the effect of dolomitization largely disappeared and inner platform conditions still prevailed showing alternations of peritidal and lagoon facies, going from peritidal plains (representing various sub-environments including supratidal, intertidal area, tidal-intertidal ponds and ooid bars) dominated by ostracod and miliolids, to dasycladacean algae-rich restricted lagoons-subtidal. These environments show a transition in the vertical and lateral directions in all studied stratigraphic sections.
Hyperspectral remote sensing of wild oyster reefs
NASA Astrophysics Data System (ADS)
Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent
2016-04-01
The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal areas.
Taylor, Elliott; Reimer, Doug
2008-03-01
In 2002, 13 years after the Exxon Valdez oil spill (EVOS), 39 selected sites in Prince William Sound (PWS) were re-surveyed following established shoreline cleanup assessment team (SCAT) field observation procedures to document surface and sub-surface oiling conditions in shoreline sediments and to compare results with those from previous Shoreline Cleanup Assessment Team (SCAT) surveys and other surveys in PWS. The selected sites are locations where EVOS oil persisted in 1992, at the time the Federal and State On-Scene Coordinators determined that the cleanup was complete and that further cleanup activities would provide no net environmental benefit. These sites had been included in a 2001 NOAA survey of shoreline oiling conditions and account for 88% of the sub-surface oil residues (SSO) oil documented by that study. The 2002 field survey found isolated occurrences of residual EVOS surface oil residues (SO) in the form of weathered asphalt pavement at 15 of the 39 sites. This residual SO typically consisted of asphalt in mixed sand/gravel substrate, located within a wave shadow effect created by boulders or bedrock in the upper intertidal to supratidal zone. Residual SO, expressed as a continuous oil cover, was less than 200 m(2) within the approximately 111,120 m(2) surveyed. A total of 1182 pits were dug at locations where SSO residues were present in 1992. Six of the 39 sites and 815 (68%) of the pits contained no residual SSO. Eighty-three percent of pits with SSO residues were found primarily in middle to upper intertidal locations. SSO residues commonly occurred in a discontinuous approximately 3 cm thick band 5-10 cm below the boulder/cobble or pebble/gravel veneer. The SO and SSO occurrences in the 2002 survey closely match the locations where they were found in 1992 and earlier surveys; however, in 2002 residual SSO patches are more discontinuous and thinner than they were in the earlier surveys. These sites are biased toward SSO persistence; those that have SSO residues represent less than 0.5% of the originally oiled shorelines in PWS. Despite evidence of continued oil weathering, both at the surface and in the sub-surface, it is clear that the natural cleaning processes at these particular locations are slow. The slow weathering rates are a consequence of the oil residue being incorporated in finer sediments (fine sand, silt, mix) and isolated from active weathering processes as boulders and outcrops, shallow bedrock asperities, or boulder-armoring create wave shadows and limit effective physical action on shorelines.
NASA Astrophysics Data System (ADS)
Niwa, Y.; Sugai, T.; Matsushima, Y.; Toda, S.
2017-12-01
For clarification of megathrust earthquake cycle with recurrence interval of several hundreds to about a thousand years, crustal movement trend on a timescale of 103-104 years can be basic and important data. Well-dated Holocene sedimentary succession provides useful information for estimation of crustal movement trend on a timescale of 103 - 104 years. Here we collected three sediment cores, TGI1, TGI2, and TGI3, from the Tsugaruishi delta plain on the central Sanriku coast, which is near the source region of the 2011 Tohoku-oki earthquake and where discrepancies in crustal movement have been reported between uplift on a timescale of 105 years inferred from marine terrace versus subsidence on a timescale of 101-102 years from geodetic measurement. We recognized a Holocene deltaic succession in all three cores; basal gravel of alluvium, floodplain sand and mud, inner bay mud, prodelta delta front sand and mud, and fluvial sand and gravel, from lower to upper. In core TGI3, from the farthest inland site, the intertidal sediment facies, deposited from 7500 to 7000 cal BP, and the overlying 6-m-thick delta to floodplain facies, deposited from 7000 to 5000 cal BP, are both below the present sea level. Because a sea-level highstand due to hydroisostatic uplift around Japan occurred in the mid-Holocene, we inferred that the Tsugaruishi plain subsided during the Holocene, and the estimated subsidence rate, 1.1-1.9 mm/yr at maximum, is consistent with the recently reported subsidence rate along the southern Sanriku coast. The results of this study confirm that the central to southern Sanriku coast is subsiding, in contrast to an interpretation based on the study of marine terraces that this part of the coast is uplifting. The Holocene deltaic succession presented here will be useful for constructing an earthquake cycle model related to plate subduction.
Sustainable Seas Student Intertidal Monitoring Project at Duxbury Reef in Bolinas, CA
NASA Astrophysics Data System (ADS)
Soave, K.; Dean, A.; Weigel, S.; Redman, K.; Darakananda, D.; Fuller, C.; Gusman, V.; Hirschfeld, Z.; Kornfeld, H.; Picchi, K.
2006-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal ecology, interpretation and monitoring techniques, and history of the sanctuary. Students conduct two baseline-monitoring surveys three times per year (fall, winter, and late spring) to identify and count key invertebrate and algae species. During six seasons of monitoring (2000-2006), the density of black turban snails, Tegula funebralis, showed seasonal abundance variation with respect to tidal zonation. Most algae species had consistently lower densities in the more accessible northern (A) transects than the southern (B) transects. To test the reliability of the student counts, replicate counts of all species are always performed. Replicate counts for invertebrate and algae species within the same quadrat along the permanent transects revealed a very small amount of variability, giving us confidence that our monitoring program is providing reliable data.
Climate change, parasitism and the structure of intertidal ecosystems.
Poulin, R; Mouritsen, K N
2006-06-01
Evidence is accumulating rapidly showing that temperature and other climatic variables are driving many ecological processes. At the same time, recent research has highlighted the role of parasitism in the dynamics of animal populations and the structure of animal communities. Here, the likely interactions between climate change and parasitism are discussed in the context of intertidal ecosystems. Firstly, using the soft-sediment intertidal communities of Otago Harbour, New Zealand, as a case study, parasites are shown to be ubiquitous components of intertidal communities, found in practically all major animal species in the system. With the help of specific examples from Otago Harbour, it is demonstrated that parasites can regulate host population density, influence the diversity of the entire benthic community, and affect the structure of the intertidal food web. Secondly, we document the extreme sensitivity of cercarial production in parasitic trematodes to increases in temperature, and discuss how global warming could lead to enhanced trematode infections. Thirdly, the results of a simulation model are used to argue that parasite-mediated local extinctions of intertidal animals are a likely outcome of global warming. Specifically, the model predicts that following a temperature increase of less than 4 degrees C, populations of the amphipod Corophium volutator, a hugely abundant tube-building amphipod on the mudflats of the Danish Wadden Sea, are likely to crash repeatedly due to mortality induced by microphallid trematodes. The available evidence indicates that climate-mediated changes in local parasite abundance will have significant repercussions for intertidal ecosystems. On the bright side, the marked effects of even slight increases in temperature on cercarial production in trematodes could form the basis for monitoring programmes, with these sensitive parasites providing early warning signals of the environmental impacts of global warming.
Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA
NASA Astrophysics Data System (ADS)
Rainsford, A.; Soave, K.; Costolo, R.; Kudler, J.; Emunah, M.; Hatfield, J.; Kiyasu, J.
2015-12-01
Alina Rainsford, Kathy Soave, Julia Kudler, Jane Hatfield, Melea Emunah, Rose Costelo, Jenna Kiyasu, Amy Dean and Sustainable Seas Monitoring Project, Branson School, Ross, CA, United States, Farallones Marine Sanctuary Association, San Francisco, CA, United StatesAbstract:The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of this student-run project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Each fall student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects and, using randomly determined points, within two permanent 200 m2 areas, in fall, winter, and late spring. Using data from the previous years, we will compare population densities, seasonal abundance and long-term population trends of key algal and invertebrate species, including Tegula funebralis, Anthopluera elegantissima, Cladophora sp. and Fucus sp.. Future analyses and investigations will include intertidal abiotic factors (including water temperature, pH and human foot-traffic) to enhance insights into the Duxbury Reef ecosystem, in particular, the high and mid-intertidal zones experiencing the greatest amount of human impacts.
Tomanek, Lars; Sanford, Eric
2003-12-01
Although previous studies have demonstrated that heat-shock protein 70 (Hsp70) can be induced by environmental stress, little is known about natural variation in this response over short time scales. We examined how Hsp70 levels varied over days to weeks in two intertidal snail species of the genus Tegula: Sampling was conducted both under naturally changing environmental conditions and in different vertical zones on a rocky shore. The subtidal to low-intertidal T. brunnea was transplanted into shaded and unshaded mid-intertidal cages to assess temporal variation in Hsps under conditions of increased stress. For comparison, the low to mid-intertidal T. funebralis was transplanted into mid-intertidal cages, within this species' natural zone of occurrence. Snails were sampled every 3 to 4 days for one month, and endogenous levels of two Hsp70-kDa family members (Hsp72 and Hsp74) were quantified using solid-phase immunochemistry. Following periods of midday low tides, levels of Hsps increased greatly in transplanted T. brunnea but not in T. funebralis. Levels of Hsps increased less in T. brunnea transplanted to shaded cages than to unshaded cages, suggesting that prolonged emersion and reduction in feeding time per se are factors that are only mildly stressful. Upregulated levels of Hsps returned to base levels within days. In unmanipulated snails collected from their natural zones, Hsp levels showed little change with thermal variation, indicating that these species did not experience thermally stressful conditions during this study. However, under common conditions in the mid-intertidal zone, Hsp70 levels reflected the different thermal sensitivities of the physiological systems of these two species.
On the formation and pattern coarsening of subaqueous ripples and dunes
NASA Astrophysics Data System (ADS)
Jarvis, P.; Vriend, N. M.
2017-12-01
The physical mechanisms governing formation, evolution and co-interaction of sand ripples and dunes are an active topic of investigation. Previous studies employed a variety of experimental and field observations and numerical and theoretical modelling, but a unified description of the physical mechanisms governing bedform morphology remains elusive. Specifically, the interactions between bedforms are poorly understood and experimental data for validation is scarce. We present results from a novel experimental setup where we study both (1) the early stage of subaqueous ripple formation from a flat, erodible bed, and (2) the later-time evolution of the system. Experiments are carried out in a periodic 2 m diameter circular channel of width 9 cm, containing a flat bed of sand overlain by water. Counter-rotation between the channel and a submerged paddle assembly drives a shear flow eroding and transporting sediment, thereby creating bed instabilities that evolve over time. By measuring the bed profile under varying grain size and flow velocity, we calculate the initial distribution of wavelengths in the bed disturbance, the growth rate of perturbations and the temporal evolution of the wavelength spectrum. We compare the early-time results with predictions from linear stability models as well as statistically quantifying the later-time coarsening behaviour. During the coarsening stage, we observe different modes of bedform interaction: coalescence and ejection. A further set of experiments are performed to investigate this in detail, whereby we study the interaction between a pair of dunes migrating on a non-erodible surface. By varying the sizes of the two dunes, we produce a phase-diagram for the coalescence and ejection modes. Combining the results of these binary collisions with the coarsening statistics from the flat-bed experiments we can develop a more complete understanding of the physics of dune interactions, as well as how interactions govern the development of entire dune fields.
Wrinkle structures—a critical review
NASA Astrophysics Data System (ADS)
Porada, Hubertus; Bouougri, El Hafid
2007-04-01
In this paper, a variety of so-called 'wrinkle structures' is reviewed in an attempt to help distinguish between crinkly decorations arising from physical processes that acted on siliciclastic bedding surfaces, and true microbially induced 'wrinkle structures'. Two types of small-scale, microbially induced sedimentary structures are prominent due to their distinct geometry and mode of occurrence: (1) 'elephant skin' textures, characterized by reticulate patterns of sharp-crested ridges forming mm- to cm-scale polygons, occurring on argillite or argillaceous veneers above fine-grained sandstone and likely reflecting growth structures of microbial, mats (2) 'Kinneyia' structures, characterized by mm-scale flat-topped, winding ridges and intervening troughs and pits, sometimes resembling small-scale interference ripples. 'Kinneyia' structures usually occur on upper surfaces of siltstone/sandstone beds, themselves frequently event deposits, and are thought to have formed beneath microbial mats. Additionally, more linear variations of mat growth structures, partly resembling small-scale 'α-petees' may be developed. Finally, some wrinkly structures resulting from tractional mat deformation or mat slumping are occasionally preserved. These may appear as arcuate belts of non-penetrative, small-scale folds or as wrinkled bulges on otherwise flat surfaces. 'Wrinkle structures' as indicators for the former presence of mats gain in importance if other mat-related structures are additionally observed in the same clastic succession, e.g. 'sand chips' (sandy intraclasts) or spindle-shaped or sinuously curved to circular sand cracks, frequently combined in networks. Furthermore, appropriate lithologies and facies are required. For instance, if compared with the distribution of modern cohesive microbial mats, laminated siltstone/argillite with intercalated siltstone/sandstone beds representing event deposits in tidal flat successions would be compatible with microbial mat development. Within a variety of physically induced small-scale wrinkly structures, miniature load structures may, above all, be misinterpreted as microbially induced 'wrinkle structures', due to their similar size and appearance, and their comparatively frequent occurrence.
Rog, Stefanie M; Cook, Carly N
2017-07-15
The protection of intertidal ecosystems is complex because they straddle both marine and terrestrial realms. This leads to inconsistent characterisation as marine and/or terrestrial systems, or neither. Vegetated intertidal ecosystems are especially complex to classify because they can have an unclear border with terrestrial vegetation, causing confusion around taxonomy (e.g., mangrove-like plants). This confusion and inconsistency in classification can impact these systems through poor governance and incomplete protection. Using Australian mangrove ecosystems as a case study, we explore the complexity of how land and sea boundaries are defined among jurisdictions and different types of legislation, and how these correspond to ecosystem boundaries. We demonstrate that capturing vegetated intertidal ecosystems under native vegetation laws and prioritizing the mitigation of threats with a terrestrial origin offers the greatest protection to these systems. We also show the impact of inconsistent boundaries on the inclusion of intertidal ecosystems within protected areas. The evidence presented here highlights problems within the Australian context, but most of these issues are also challenges for the management of intertidal ecosystems around the world. Our study demonstrates the urgent need for a global review of legislation governing the boundaries of land and sea to determine whether the suggestions we offer may provide global solutions to ensuring these critical systems do not fall through the cracks in ecosystem protection and management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dong, Yunwei; Miller, Luke P; Sanders, Jon G; Somero, George N
2008-10-01
Limpets of the genus Lottia occupy a broad vertical distribution on wave-exposed rocky shores, a range that encompasses gradients in the frequency and severity of thermal and desiccation stress brought on by aerial emersion. Using western blot analysis of levels of heat-shock protein 70 (Hsp70), we examined the heat-shock responses of four Lottia congeners: Lottia scabra and L. austrodigitalis, which occur in the high-intertidal zone, and L. pelta and L. scutum, which are restricted to the low- and mid-intertidal zones. Our results suggest distinct strategies of Hsp70 expression in limpets occupying different heights and orientations in the rocky intertidal zone. In freshly field-collected animals and in specimens acclimated at ambient temperature ( approximately 14 degrees C) for 14 days, the two high-intertidal species had higher constitutive levels of Hsp70 than the low- and mid-intertidal species. During aerial exposure to high temperatures, the two low-shore species and L. austrodigitalis exhibited an onset of Hsp70 expression at 28 degrees C; no induction of Hsp70 occurred in L. scabra. Our findings suggest that high-intertidal congeners of Lottia employ a "preparative defense" strategy involving maintenance of high constitutive levels of Hsp70 in their cells as a mechanism for protection against periods of extreme and unpredictable heat stress.
NASA Astrophysics Data System (ADS)
Carannante, G.; Ruberti, D.; Sirna, M.
2000-04-01
The Upper Cretaceous limestones of the Sorrento Peninsula are primarily characterized by wackestone/packstone with benthic foraminifers, thaumatoporellaceans and Aeolisaccus sp. and by rudist floatstones. Rudists in growth position are rare; most of them appear toppled and locally oriented but not reworked. In some cases they form small bouquets no more than 30 cm thick. The successions analyzed in the Sorrento Peninsula encompass a variety of facies representative of inner shelf environments in a ramp-like depositional setting. On the basis of lithologic and sedimentologic characteristics and on a qualitative analysis of the biofacies, three major facies associations have been recognized corresponding to: (a) intertidal silty-sand flats and shallow lagoons; (b) subtidal mobile foraminiferal sand sheets; (c) subtidal rudist dwelt sand plain. In the lower part of the successions periodic (more or less prolonged) emersions (subaqueous with fresh/brackish waters or subaerial exposure) are documented. The upper part of each succession lacks any emersion evidence; submarine exposure surfaces are testified by firmground-related features. The periodic influence of high-energy regimes (some storm-related events) is documented by wave- and cross-laminations, HCS and the lack of fine sediments. Lithofacies are arranged in depositional cycles that may correspond to individual beds. The boundaries of the depositional cycles show evidence of subaerial or submarine exposures. The nature and position of these discontinuity surfaces in the successions provide an important clue to interpretation in terms of both depositional environment and vertical evolution. The increase in thickness of the depositional cycles and the gradual change from peritidal/shallow-subtidal cycles to dominantly subtidal cycles, document an increase in the amount of accommodation space which resulted from a long-term rise in relative sea-level. A detailed study of benthic associations (micro- and macrofauna) has been carried out in order to identify accurately further signs of periodicity contained within the successions as a whole. These Upper Cretaceous limestones are abundantly fossiliferous with only a moderately diverse fauna. There are no significant differences in terms of species, the assemblages simply reflecting differences in abundance of the same species. Taphonomic studies of rudist-rich beds permit seven major shell-bed types to be distinguished. Six main foraminiferal assemblages have been detected, and the distribution and relative abundance of the species have been examined within the environments inferred through facies analysis. The taphonomic data and the foraminiferal assemblage abundance and diversity, have been compared with lithologic and sedimentologic data in order to elucidate their distribution within depositional cycles and throughout the successions. The successions show little up-section changes in lithology and in taxonomic composition of the foraminiferal assemblages. It is therefore difficult to establish a paleoenvironmental trend independent of the rudist shell concentrations, which do change up-section. We noticed an overall increase in thickness and abundance of the shell beds and a shift in types of shell concentration and in taxonomic composition. These characteristics, associated with the upward disappearance of emersion surfaces, the higher frequency of storm and/or wave intercalations, the increase in thickness of the depositional sequences and the gradual change from peritidal/shallow-subtidal cycles to dominantly subtidal cycles, document a general deepening-upward trend. More open water conditions with a depth between fairweather and storm wave-base became established as a result of relative sea-level rise and to a consequent increase in the available accommodation space.
A comparative study on intertidal faunal biodiversity of selected beaches of Mumbai coast.
Datta, S N; Chakraborty, S K; Jaiswar, A K; Ziauddin, G
2010-11-01
Comparative study has been done to examine the biodiversity and ecological status of the intertidal region of Tata Institute of Fundamental Research (TIFR), Bandstand and National Centre for Performing Arts (NCPA) rocky beaches in Mumbai, West coast of India. A total of 50 species of intertidal organisms were recorded from these shores. Shannon and Simpson's diversity index, Margalefs richness index and Pielou's evenness index indicated different level of ecological state of the shore in different months. Dendrograms and 2-D non metric MDS ordination from Bray-Curtis similarity matrix of occurrence of intertidal organisms from these sites showed highest similarity and combination pattern of occurrence between Nerita oryzarum and Planaxis sulcatus in TIFR and Bandstand shore. Nerita oryzarum and Tactarius malaccanus at NCPA shore. Abundance/biomass comparison (ABC) method of determining level of disturbance also pointed towards the polluted status of these shores. Study concludes that though these beaches are highly disturbed due to anthropogenic activities, they still support a rich intertidal biodiversity which need immediate attention for protection and conservation.
The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Bruckner, J.; Cabrol, N. A.; Calvin, W.; Carr, M. H.; Christensen, P. R.; Clark, B. C.; Crumpler, L.;
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
The opportunity Rover's athena science investigation at Meridiani Planum, Mars
Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Brückner, J.; Cabrol, N.A.; Calvin, W.; Carr, M.H.; Christensen, P.R.; Clark, B. C.; Crumpler, L.; Des Marais, D.J.; D'Uston, C.; Economou, T.; Farmer, J.; Farrand, W.; Folkner, W.; Golombek, M.; Gorevan, S.; Grant, J. A.; Greeley, R.; Grotzinger, J.; Haskin, L.; Herkenhoff, K. E.; Hviid, S.; Johnson, J.; Klingelhofer, G.; Knoll, A.H.; Landis, G.; Lemmon, M.; Li, R.; Madsen, M.B.; Malin, M.C.; McLennan, S.M.; McSween, H.Y.; Ming, D. W.; Moersch, J.; Morris, R.V.; Parker, T.; Rice, J. W.; Richter, L.; Rieder, R.; Sims, M.; Smith, M.; Smith, P.; Soderblom, L.A.; Sullivan, R.; Wanke, H.; Wdowiak, T.; Wolff, M.; Yen, A.
2004-01-01
The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
1984-06-01
species were not commonly observed, and oligochaetes and nematodes were abundant in the area. Rany of these differences were attributed to normal...1977-78 (Table 3). Subtidally, amphipods and pelecypods were most abundant in 1982, while oligochaetes and nematodes largely dominated the intertidal...generally restricted to that level and the highest intertidal level (Table 10). Nematodes were also abundant in the upper intertidal zone, with greatest
1988-10-01
sites tend to be colonized by aquatic organisms adapted to an intertidal existence and by typical wetland plants. These plants may or may not be the...the upland site and within the intertidal range for the wetland site. Site Selection and Design Site selection 15. Acceptable sites for upland and... intertidal range. Along one side of the site, a sandbag dike was constructed that could be removed after filling to provide easy tidal interchange
Tidally driven water column hydro-geochemistry in a remediating acidic wetland
NASA Astrophysics Data System (ADS)
Johnston, Scott G.; Keene, Annabelle F.; Bush, Richard T.; Sullivan, Leigh A.; Wong, Vanessa N. L.
2011-10-01
SummaryManaged tidal inundation is a newly evolved technique for remediating coastal acid sulphate soil (CASS) wetlands. However, there remains considerable uncertainty regarding the hydro-geochemical pathways and spatiotemporal dynamics of residual H + and metal(loid) mobilisation into the tidal fringe surface waters of these uniquely iron-rich landscapes. Here, we examine the hydrology and water column chemistry across the intertidal slope of a remediating CASS wetland during several tide cycles. There was extreme spatial and temporal dynamism in water column chemistry, with pH fluctuating by ˜3 units (˜3.5-6.5) during a single tide cycle. Acute acidity was spatially confined to the upper intertidal slope, reflecting surface sediment properties, and tidal overtopping is an important pathway for mobilisation of residual H + and Al 3+ to the water column. Marine derived HCO3- was depleted from surface waters migrating across the intertidal slope and a strong gradient in HCO3- was observed from the tidal fringe to the adjacent tributary channel and nearby estuary. Tidal forcing generated oscillating hydraulic gradients in the shallow fringing aquifer, favouring ebb-tide seepage and driving rapid, heterogeneous advection of groundwater on the lower intertidal slope via surface connected macropores. A combination of diffusive and advective flux across the sediment-water interface led to persistent, elevated surface water Fe 2+ (˜10-1000 μM). The geochemical processes associated with Fe 2+ mobilisation displayed distinct spatial zonation, with low pH, proton-promoted desorption occurring on the upper intertidal slope, whilst circum-neutral pH, Fe(III)-reducing processes dominated the lower intertidal slope. Arsenic was also mobilised into surface waters on the lower intertidal slope under moderate pH (˜6.0) conditions and was strongly positively correlated with Fe 2+. Saturation index values for aragonite were substantially depressed (-1 to -5) and significantly negatively correlated with elevation, thereby presenting a barrier to re-colonisation of the upper intertidal slope by calcifying benthic organisms. These findings highlight the spatially complex hydrological and geochemical controls on surface water quality that can occur in tidally inundated acid sulphate soil environments.
NASA Astrophysics Data System (ADS)
Marcías, María Laura; Deregibus, Dolores; Saravia, Leonardo Ariel; Campana, Gabriela Laura; Quartino, María Liliana
2017-03-01
Intertidal zones are one of the most studied habitats in the world. However, in Antarctica, further studies are needed for a more complete understanding of these systems. When conspicuous Antarctic intertidal communities occur, macroalgae are a key component. Given that intertidal communities have a fast response to variations in environmental conditions and could reflect climate fluctuations, we conducted a non-destructive study with photographic transects in an intertidal zone at Potter Peninsula, Isla 25 de Mayo/King George Island, over four years and during five months of the warm season. We tested the general hypothesis that macroalgal intertidal communities are mainly structured by the vertical stress gradient and that changes in temperature between seasons and between years have a great influence in the macroalgal community structure. Spatial, seasonal and inter-annual variations were studied using GLM, quantile regression and NMDS ordinations. The vertical stress gradient was the main factor that explained macroalgal cover. The Low and the Middle level shared similarities, but the latter was more variable. The High level had the lowest cover, richness and diversity. The dominant species here was the endemic red alga Pyropia endiviifolia, which is strongly adapted to extreme conditions. At the Middle level, there was a significant increase in macroalgal cover during spring months, and it stabilized in summer. Inter-annual variations showed that there is a strong variation in the total macroalgal cover and community structure over the studied years. Environmental conditions have a significant effect in shaping the studied intertidal community, which is very sensitive to climate oscillations. An increase in temperature produced a decrease of annual ice foot cover, number of snow days and - as a result - an increase in macroalgal cover. In a global climate-change scenario, a shift in species composition could also occur. Species with wide physiological tolerance that grow in warmer conditions, like Palmaria decipiens, could benefit, while other species will be discriminated. More detailed studies are necessary to predict future changes in Antarctic intertidal communities.
Acronema sippewissettensis Gen. Nov. Sp. Nov., microbial mat bicosoecid (Bicosoecales = Bicosoecida)
NASA Technical Reports Server (NTRS)
Teal, T. H.; Guillemette, T.; Chapman, M.; Margulis, L.
1998-01-01
A heterotrophic mastigote from the flat laminated Microcoleus-dominated intertidal microbial mat at the Sippewissett salt marsh, Cape Cod, Massachusetts, was isolated into monoprotist culture in the same anoxic medium that led to spirochete and other anaerobic bacterial enrichments. The protist grew vigorously and was transferred indefinitely in oxic marine medium. Videomicroscopy as well as scanning and transmission electron microscopy were used to document its features. The swimming and perching behavior, nutritional mode (bactivory) and morphology including ultra-structure identify it as an aloricate bicosoecid. The presence of heteromorphic acronematic undulipodia, bilateral bipartite tubular mastigonemes, absence of a cytostome, absence of extrusomes, and presence of "Dauerstadien" (duration stages) distinguish this from other Cafeteriaceae bicosoecids. Cell division involves a closed intranuclear spindle. The unspecialized bicosoecid morphology and behavior juxtaposed with oomycete-like vesicles and mastigonemes suggest that this protist may be an extant descendant of a common ancestor of bicosoecids and other stramenopiles (e.g. labyrinthulids, thraustochytrids and oomycetes). A new genus and species, Acronema sippewissettensis, are proposed.
Ewa-Oboho, I O; Abby-Kalio, N J
1994-08-01
The impacts of simulated Nigerian light crude oil on mud flat periwinkles, Tympanotonus fuscata (L.), and fiddler crabs, Uca tangeri (Eydoux, 1935) was examined through field experiments conducted in the Bonny estuary of the Niger Delta (southern Nigeria). The purpose was to assess the fate and effects of a known quantity of the Nigerian light crude oil on this environment. Drastic changes in the densities of T. fuscata and U. tangeri observed immediately after spills was attributed to the effects of the oil. A large increase in Uca biomass occurred in the affected area. Salinity and temperature in the study area showed little fluctuations throughout the survey. Sediment characteristics were similar for all sites (stations). Grain-size analysis revealed that sediments at the study area were 70% silt. Migration of oil via tidal percolation was observed as much as 11 cm beneath the sediment surface.
Song, Sung Joon; Park, Jinsoon; Ryu, Jongseong; Rho, Hyun Soo; Kim, Won; Khim, Jong Seong
2017-06-30
We extensively reviewed the macrozoobenthos around Dokdo, Korea, by analyzing metadata collected over the past 50years. The Dokdo macrozoobenthos was represented by 578 species belonging to 243 families from 12 phyla, where four major phyla (or classes) collectively accounted for 86% to total. Mollusks, arthropods, and cnidarians were semi-equally occurred in intertidal and subtidal areas, while polychetes dominated the subtidal zone. The northern most region of Dokdo had the greatest biodiversity (173 species). The taxonomic distinctness analysis (delta+) indicated a close association between species by region, although the number of species varied greatly. About half of the species did not occur cross the locations (n=20), indicating strong habitat preferences of Dokdo macrofaunal assemblages. Overall, the diversity of Dokdo was greater than that of Ulleung Island (east coast), but comparable to that of the well-developed tidal flats in the western Korean waters, highlighting its status as a biodiversity hotspot. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gu, Dongqi; Zhang, Yuanzhi; Fu, Jun; Zhang, Xuliang
2007-01-01
In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.
Avulsion at a drift-dominated mesotidal estuary: The Chubut River outlet, Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Isla, Federico; Espinosa, Marcela; Rubio, Belén; Escandell, Alejandra; Gerpe, Marcela; Miglioranza, Karina; Rey, Daniel; Vilas, Federico
2015-10-01
The Chubut River flows from the Andes to the Atlantic Ocean, and is interrupted by a single dam built at the middle valley. The lower valley is dominated by the aggradation of an alluvial plain induced by a complex of spits that enclosed the inlet in the last 5000 years. The river has reduced its flow because the blocking of the upper basin by terminal moraines during the Upper Pleistocene. At least the last two marine transgressions have flooded this estuary, and contributed to the aggradation during regressions. The area is of particular interest in regard to irrigation channels practiced since the XIX century. Today, the mean monthly flow is less than 10 m3/s although peaks of 95 m3/s have been recorded in Gaiman in July 2001. The dynamics of the estuary is dominated by waves (wave-dominated estuary) as tidal effects attenuate in less than 5 km. Three vibracores were collected within this floodplain: (a) at Gaiman, an area without any effect of the sea (35 km from the coast); (b) at Trelew, at the former avulsion plain of the river (18 km from the coast); and (c) at Playa Magagna, a saltmarsh located 0.4 km from the beach. At the Gaiman core (1.54 m long) fresh-water epiphytic diatoms dominate (Epithemia sorex, Cocconeis placentula, Ulnaria ulna) suggesting the aggradation of an alluvial plain. The Trelew core (2.19 m long) was collected from a deltaic plain. It was composed by fine sand with organic matter at the base that evolved into silty layers to the top. Several unconformities and laminae with heavy minerals were detected by their geochemical composition analysed by micro X-ray fluorescence (Itrax XRF core scanner). Fine-sand laminated layers were perfectly detected by their high content in S and Cl. On the other hand, mud layers presented lower content in Mg and Al with increments in Ca and V. The core from the marsh area (1.67 m long) was analysed in terms of the diatom evolution in order to detect Holocene sea-level and salinity effects. The sand flats from the bottom of the core were dominated by Nitzchia navicularis (mesohalobous and benthic taxa) and evolved into mixed flats, mudflats and marshes to the top. Sharp contacts have been detected between these facies, with wavy and lenticular bedding characterising the mixed flat deposits. The middle of the sequence is dominated by a coastal marine diatom (Paralia sulcata) while the top was dominated by Pinnularia borealis, an aerophilous and brackish/freshwater taxa.
Microplastic-associated Bacterial Assemblages in the Intertidal Zone
NASA Astrophysics Data System (ADS)
Jiang, P.; Zhao, S.; Zhu, L.; Li, D.
2017-12-01
Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.
Refuge quality to cope with UV radiation affects energy allocation in an intertidal fish.
Vargas, Juan; Duarte, Cristian; Galban-Malagón, Cristóbal; Roberto García-Huidobro, M; Aldana, Marcela; Pulgar, José
2018-05-01
Ultraviolet (UV) radiation is a primary environmental stressor for marine species inhabiting intertidal pools. Thus, the use of microhabitats as refuges is key to protect organisms against this stressor. In this study, we compared the quality of rocky and algae as refuges for the intertidal fish Girella laevifrons exposed to UV radiation. Refuge quality was studied by evaluating oxygen consumption and weight gain in control and UV-exposed fish. Rocky-refuge fish consumed less oxygen and gained significantly more weight than algal-refuge fish. The obtained results support the importance of refuge quality on energetic balance of intertidal organisms, where energy can be differentially allocated towards key life processes such as protection/repair or growth. Energy trade-offs need to be considered in research concerning animals inhabiting stressful habitats. Copyright © 2018. Published by Elsevier Ltd.
Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel
2013-01-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.
Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J.; Bongiorno, Daniel
2013-01-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales. PMID:24069206
NASA Astrophysics Data System (ADS)
Goff, John A.; Gulick, Sean P. S.; Cruz, Ligia Perez; Stewart, Heather A.; Davis, Marcy; Duncan, Dan; Saustrup, Steffen; Sanford, Jason; Fucugauchi, Jaime Urrutia
2016-04-01
A high-resolution, near-surface geophysical survey was conducted in 2013 on the Campeche Bank, a carbonate platform offshore of Yucatán, Mexico, to provide a hazard assessment for future scientific drilling into the Chicxulub impact crater. It also provided an opportunity to obtain detailed information on the seafloor morphology and shallow stratigraphy of this understudied region. The seafloor exhibited two morphologies: (1) small-scale (<2 m) bare-rock karstic features, and (2) thin (<1 m) linear sand accumulations overlying the bedrock. Solution pans, circular to oblong depressions featured flat bottoms and steep sides, were the dominant karstic features; they are known to form subaerially by the pooling of rainwater and dissolution of carbonate. Observed pans were 10-50 cm deep and generally 1-8 m wide, but occasionally reach 15 m, significantly larger than any solution pan observed on land (maximum 6 m). These features likely grew over the course of many 10's of thousands of years in an arid environment while subaerially exposed during lowered sea levels. Surface sands are organized into linear bedforms oriented NE-SW, 10's to 100's meters wide, and kilometers long. These features are identified as sand ribbons (longitudinal bedforms), and contained asymmetric secondary transverse bedforms that indicate NE-directed flow. This orientation is incompatible with the prevalent westward current direction; we hypothesize that these features are storm-generated.
Xu, J. P.
2005-01-01
Concurrent video images of sand ripples and current meter measurements of directional wave spectra are analyzed to study the relations between waves and wave-generated sand ripples. The data were collected on the inner shelf off Huntington Beach, California, at 15 m water depth, where the sea floor is comprised of well-sorted very fine sands (D50=92 ??m), during the winter of 2002. The wave climate, which was controlled by southerly swells (12-18 s period) and westerly wind waves (5-10 s period), included three wave types: (A) uni-modal, swells only; (B) bi-modal, swells dominant; and (C) bi-modal, wind-wave dominant. Each wave type has distinct relations with the plan-view shapes of ripples that are classified into five types: (1) sharp-crested, two-dimensional (2-D) ripples; (2) sharp-crested, brick-pattern, 3-D ripples; (3) bifurcated, 3-D ripples; (4) round-crested, shallow, 3-D ripples; and (5) flat bed. The ripple spacing is very small and varies between 4.5 and 7.5 cm. These ripples are anorbital as ripples in many field studies. Ripple orientation is only correlated with wave directions during strong storms (wave type C). In a poly-modal, multi-directional spectral wave environment, the use of the peak parameters (frequency, direction), a common practice when spectral wave measurements are unavailable, may lead to significant errors in boundary layer and sediment transport calculations. ?? 2004 Elsevier Ltd. All rights reserved.
Sand deposition in shoreline eddies along five Wild and Scenic Rivers, Idaho
Andrews, E.D.; Vincent, K.R.
2007-01-01
Sand bars deposited along the lateral margin of a river channel are frequently a focus of recreational activities. Sand bars are appealing sites on which to camp, picnic, fish and relax because they are relatively flat, soft, non-cohesive sand, free of vegetation and near the water's edge. The lack of vegetation and cohesion make sand bars easily erodible. Without appreciable deposition of new material, number and size of bars through a given reach of river will decline substantially over a period of years. We studied 63 beaches and their associated eddies located throughout 10 selected reaches within the designated Wild and Scenic River sections of the Lochsa, Selway, Middle Fork Clearwater, Middle Fork Salmon and Salmon Rivers in Idaho to determine the relation of beaches to the frequency and magnitude of streamflows that deposit appreciable quantities of sand. At present, these rivers have been altered little, if at all, by flow regulation, and only the Salmon River has substantial diversion upstream of a study reach. The river reaches studied have an abundance of sand bar beaches of appreciable size, in spite of suspended sand concentrations that rarely exceeded a few hundred milligrams per litre even during the largest floods. Calculated mean annual rates of deposition in an eddy vary from 5.8 to more than 100 cm depending primarily on: (1) the duration of streamflows that inundate the eddy sand bar depositions; (2) the rate of the flow exchange between the channel and an eddy and (3) the concentrations of suspended sand in the primary channel. The annual thickness of sand deposition in an eddy varies greatly from year to year depending on the duration of relatively large streamflows. Maximum annual sand depositions in an eddy are three to nine times the estimated long-term mean values. Relatively large, sustained floods deposit an appreciable portion of total deposition over a period of years. For the period of record, 1930-2002, the seven largest annual depositions, which represent more than 40% of all material deposited over the Lochsa River 21.9 km eddy, occurred in the years with the seven largest instantaneous annual peak floods. Beach area and volume for most beaches, however, are less variable year-to-year than the variation in annual deposition would indicate. Accumulative 10-year weighed deposition rate was computed to estimate the effective variability of beach deposition. Although less variable than the annual deposition, the cumulative 10-year deposition calculated for the longest hydrologic records, 71 years, existing on the Idaho Wild and Scenic Rivers varied by more than an order of magnitude from less than 20 cm to more than 220 cm.
Earth Observations taken by the Expedition 22 Crew
2009-12-01
ISS022-E-005258 (1 Dec. 2009) --- This detailed hand-held digital camera?s image recorded from the International Space Station highlights sand dunes in the Fachi-Bilma erg, or sand sea, which is part of the central eastern Tenere Desert. The Tenere occupies much of southeastern Niger and is considered to be part of the larger Sahara Desert that stretches across northern Africa. Much of the Sahara is comprised of ergs ? with an area of approximately 150,000 square kilometers, the Fachi-Bilma is one of the larger sand seas. Two major types of dunes are visible in the image. Large, roughly north-south oriented transverse dunes fill the image frame. This type of dune tends to form at roughly right angles to the dominant northeasterly winds. The dune crests are marked in this image by darker, steeper sand accumulations that cast shadows. The lighter-toned zones between are lower interdune ?flats?. The large dunes appear to be highly symmetrical with regard to their crests. This suggests that the crest sediments are coarser, preventing the formation of a steeper slip face on the downwind side of the dune by wind-driven motion of similarly-sized sand grains. According to NASA scientists, this particular form of transverse dune is known as a zibar, and is thought to form by winnowing of smaller sand grains by the wind, leaving the coarser grains to form dune crests. A second set of thin linear dunes oriented at roughly right angles to the zibar dunes appears to be formed on the larger landforms and is therefore a younger landscape feature. These dunes appear to be forming from finer grains in the same wind field as the larger zibars. The image was taken with digital still camera fitted with a 400 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center.
NASA Astrophysics Data System (ADS)
Hidalgo, Fernando J.; Firstater, Fausto N.; Fanjul, Eugenia; Bazterrica, M. Cielo; Lomovasky, Betina J.; Tarazona, Juan; Iribarne, Oscar O.
2008-03-01
Echinolittorina peruviana is the most common gastropod in the high intertidal zone of Peru, representing more than 80% of the individuals present at that zone. Experimental removal of snails was used to evaluate their effects on (a) abundance of epilithic biofilm, (b) barnacle recruitment, and (c) abundance of macroalgae under “normal” conditions of the El Niño Southern Oscillation (ENSO). Experiments were carried out from October 2005 to April 2007 at two intertidal levels of a semi-protected rocky shore of central Peru. Results demonstrated that E. peruviana is able to control biofilm abundance and barnacle recruitment at both heights investigated, with marked effects in the lower zone. Erect macroalgae ( Ulva spp. and Gelidium spp.) were less affected by grazing; but negative effects were observed on macroalgal crusts. Season and physical stress seem to play a more important role in the abundance of macroalgae in the high intertidal. Our results are similar to those reported elsewhere for high shore littorinids and represent baseline data to understand how the role of intertidal consumers will vary under the cold (La Niña) and warm (El Niño) phases of ENSO on these shores.
NASA Astrophysics Data System (ADS)
Horiguchi, Toshihiro; Yoshii, Hiroshi; Mizuno, Satoshi; Shiraishi, Hiroaki
2016-02-01
In 2011, 2012, and 2013, in the intertidal zones of eastern Japan, we investigated the ecological effects of the severe accident at the Fukushima Daiichi Nuclear Power Plant that accompanied the 2011 Great East Japan Earthquake and Tsunami. The number of intertidal species decreased significantly with decreasing distance from the power plant, and no rock shell (Thais clavigera) specimens were collected near the plant, from Hirono to Futaba Beach (a distance of approximately 30 km) in 2012. The collection of rock shell specimens at many other sites hit by the tsunami suggests that the absence of rock shells around the plant in 2012 might have been caused by the nuclear accident in 2011. Quantitative surveys in 2013 showed that the number of species and population densities in the intertidal zones were much lower at sites near, or within several kilometers south of, the plant than at other sites and lower than in 1995, especially in the case of Arthropoda. There is no clear explanation for these findings, but it is evident that the intertidal biota around the power plant has been affected since the nuclear accident.
Horiguchi, Toshihiro; Yoshii, Hiroshi; Mizuno, Satoshi; Shiraishi, Hiroaki
2016-02-04
In 2011, 2012, and 2013, in the intertidal zones of eastern Japan, we investigated the ecological effects of the severe accident at the Fukushima Daiichi Nuclear Power Plant that accompanied the 2011 Great East Japan Earthquake and Tsunami. The number of intertidal species decreased significantly with decreasing distance from the power plant, and no rock shell (Thais clavigera) specimens were collected near the plant, from Hirono to Futaba Beach (a distance of approximately 30 km) in 2012. The collection of rock shell specimens at many other sites hit by the tsunami suggests that the absence of rock shells around the plant in 2012 might have been caused by the nuclear accident in 2011. Quantitative surveys in 2013 showed that the number of species and population densities in the intertidal zones were much lower at sites near, or within several kilometers south of, the plant than at other sites and lower than in 1995, especially in the case of Arthropoda. There is no clear explanation for these findings, but it is evident that the intertidal biota around the power plant has been affected since the nuclear accident.
Meng, Jie; Wang, Ting; Li, Li; Zhang, Guofan
2018-07-01
Pacific oyster (Crassostrea gigas) distribute a steep gradient of environmental stress between intertidal and subtidal habits and provide insight into population-scale patterns and underlying processes of variation in physiological tolerance. In this study, 1-year-old-F 1 oysters, collected from subtidal and intertidal habitats, were obtained after common garden experiment. Genetic differentiation and physiological responses under air exposure were examined to determine whether they had evolved into local adapted subpopulations. Mortality rate, anaerobic glycolysis metabolism, and energy status indicated that oyster had initiated metabolism depression and anaerobic glycolysis metabolism in both intertidal and subtidal oysters under air exposure. However, the subtidal oysters displayed the larger energy metabolism depressions and the earlier anaerobic glycolysis responses. This may indicate that subtidal oysters were more sensitives to hypoxia stress, which may lead the higher mortality rate under long term of air exposure. Based on a common garden experimental design, we propose that this diversification may have a genetic background. Overall, the clear differences between intertidal and subtidal oysters under air exposure have provided an important reference for their aquaculture and transportation used in commercial production. Copyright © 2018. Published by Elsevier Ltd.
Al-Thukair, A A; Abed, R M M; Mohamed, L
2007-02-01
Cyanobacterial mats are found at various locations along the coast of the Eastern Province of Saudi Arabia. Those mats were affected by severe oil pollution following 1991 oil spill. In this study, samples from Abu Ali Island were collected at three selected sampling sites across the intertidal zone (Lower, Middle, and Upper) in order to understand the effect of extreme environmental conditions of high salinity, temperature and desiccation on distribution of cyanobacteria along the oil polluted intertidal zone. Our investigation of composition of cyanobacteria and diatoms was carried out using light microscopy, and Denaturant Gradient Gel Electrophoresis (DGGE) technique. Light microscopy identification revealed dominant cyanobacteria to be affiliated with genera Phormidium, Microcoleus, and Schizothrix, and to a lesser extent with Oscillatoria, Halothece, and various diatom species. The analysis of DGGE of PCR-amplified 16S rRNA fragments showed that the diversity of cyanobacteria decreases as we proceed from the lower to the upper intertidal zone. Accordingly, the tidal regime, salinity, elevated ambient air temperature, and desiccation periods have a great influence on the distribution of cyanobacterial community in the oil polluted intertidal zone of Abu Ali Island.
Horiguchi, Toshihiro; Yoshii, Hiroshi; Mizuno, Satoshi; Shiraishi, Hiroaki
2016-01-01
In 2011, 2012, and 2013, in the intertidal zones of eastern Japan, we investigated the ecological effects of the severe accident at the Fukushima Daiichi Nuclear Power Plant that accompanied the 2011 Great East Japan Earthquake and Tsunami. The number of intertidal species decreased significantly with decreasing distance from the power plant, and no rock shell (Thais clavigera) specimens were collected near the plant, from Hirono to Futaba Beach (a distance of approximately 30 km) in 2012. The collection of rock shell specimens at many other sites hit by the tsunami suggests that the absence of rock shells around the plant in 2012 might have been caused by the nuclear accident in 2011. Quantitative surveys in 2013 showed that the number of species and population densities in the intertidal zones were much lower at sites near, or within several kilometers south of, the plant than at other sites and lower than in 1995, especially in the case of Arthropoda. There is no clear explanation for these findings, but it is evident that the intertidal biota around the power plant has been affected since the nuclear accident. PMID:26842814
Carbonate-evaporite sequences of the late Jurassic, southern and southwestern Arabian Gulf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsharhan, A.S.; Whittle, G.L.
1995-11-01
The carbonate-evaporite sequences of the Upper Jurassic Arab and overlying Hith formations in the southern and southwestern Arabian Gulf form many supergiant and giant fields that produce from the Arab Formation and are excellent examples of a classic reservoir/seal relationship. The present-day sabkha depositional setting that extends along most of the southern and southwestern coasts of the Arabian Gulf provides an analog to these Upper Jurassic sedimentary rocks. In fact, sabkha-related diagenesis of original grain-supported sediments in the Arab and Hith formations has resulted in five distinct lithofacies that characterize the reservoir/seal relationship: (1) oolitic/peloidal grainstone, (2) dolomitic grainstone, (3)more » dolomitic mudstone, (4) dolomitized grainstone, and (5) massive anhydrite. Interparticle porosity in grainstones and dolomitic grainstones and intercrystalline porosity in dolomitized rocks provide the highest porosity in the study area. These sediments accumulated in four types of depositional settings: (1) supratidal sabkhas, (2) intertidal mud flats and stromatolitic flats, (3) shallow subtidal lagoons, and (4) shallow open-marine shelves. The diagenetic history of the Arab and Hith formations in the southern and southwestern Arabian Gulf suggests that the anhydrite and much of the dolomitization are a result of penecontemporaneous sabkha diagenesis. The character and timing of the paragenetic events are responsible for the excellent porosity of the Arab Formation and the lack of porosity in the massive anhydrites of the Hith, which together result in the prolific hydrocarbon sequences of these formations.« less
2007-09-01
results in his 2003 North Atlantic Treaty Organisation (NATO) presentation (Banff, Canada) (3). 1.2.2 WSMR 2005 Urban Study (W05US) In 2005 March...used in the W03US and W05US urban field studies at WSMR, NM (section 1). This building was concrete cinder-block with a nearly flat roof. To the...prior to the field study execution, the two 2-story- tall trees on the northeast and southeast corners of the building were unexpectedly removed
NASA Technical Reports Server (NTRS)
Greer, Lawrence (Inventor); Krasowski, Michael (Inventor)
2017-01-01
A robust ground traction (drive) assembly for remotely controlled vehicles, which not only operates smoothly on surfaces that are flat, but also upon surfaces that include rugged terrain, snow, mud, and sand, is provided. The assembly includes a sun gear and a braking gear. The sun gear is configured to cause rotational force to be applied to second planetary gears through a coupling of first planetary gears. The braking gear is configured to cause the assembly (or the second planetary gears) to rotate around the braking gear when an obstacle or braking force is applied.
2010-04-01
centennial -to millennial scale typhoon reconstructions from the western North Pacific are far more limited. Historical government documents of typhoon... Centennial scale swings from humid to drought conditions have been documented in some tropical locations (Hodell et al., 2001). By looking to the past... depressions with a maximum depth of roughly 12 meters. The lagoon hollows are bounded by sand flats and coral reefs (Fig. 2). Core VC9 was located in the
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Astrophysics Data System (ADS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1989-04-01
This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests.
Plante, Craig J; Fleer, Virginia; Jones, Martin L
2016-10-01
Benthic microalgae (BMA) provide vital food resources for heterotrophs and stabilize sediments with their extracellular secretions. A central goal in ecology is to understand how processes such as species interactions and dispersal, contribute to observed patterns of species abundance and distribution. Our objectives were to assess the effects of sediment resuspension on microalgal community structure. We tested whether taxa-abundance distributions could be predicted using neutral community models (NCMs) and also specific hypotheses about passive migration: (i) As migration decreases in sediment patches, BMA α-diversity will decrease, and (ii) As migration decreases, BMA community dissimilarity (β-diversity) will increase. Co-occurrence indices (checkerboard score and variance ratio) were also computed to test for deterministic factors, such as competition and niche differentiation, in shaping communities. Two intertidal sites (mudflat and sand bar) differing in resuspension regime were sampled throughout the tidal cycle. Fluorometry and denaturing gradient gel electrophoresis were utilized to investigate diatom community structure. Observed taxa-abundances fit those predicted from NCMs reasonably well (R 2 of 0.68-0.93), although comparisons of observed local communities to artificial randomly assembled communities rejected the null hypothesis that diatom communities were assembled solely by stochastic processes. No co-occurrence tests indicated a significant role for competitive exclusion or niche partitioning in microalgal community assembly. In general, predictions about relationships between migration and species diversity were supported for local community dynamics. BMA at low tide (lowest migration) exhibited reduced α-diversity as compared to periods of immersion at both mudflat and sand bar sites. β-diversity was higher during low tide emersion on the mudflat, but did not differ temporally at the sand bar site. In between-site metacommunity comparisons, low- and high-resuspension sites exhibited distinct community compositions while the low-energy mudflats contained higher microalgal biomass and greater α-diversity. To our knowledge this is the first study to test the relevance of neutral processes in structuring marine microalgal communities. Our results demonstrate a prominent role for stochastic factors in structuring local BMA community assembly, although unidentified nonrandom processes also appear to play some role. High passive migration, in particular, appears to help maintain species diversity and structure communities in both sand and muddy habitats. © 2016 Phycological Society of America.
Latest Pleistocene glaciomarine and marine deposition in the northern Puget lowland, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dethier, D.P.
Latest Pleistocene (Fraser) continental ice deposited thick, narrow zones of ice-marginal debris and widespread pebbly silt into marine water as it retreated from the northern Puget lowland of Washington at about 14,000 B.P. Exposed deposits include several collapsed terrestrial ice-contact complexes. Most sediment accumulated in marine water during or after ice retreat, but before glacioisostatic rebound lifted the area about sea level. Gravelly sand, pebbly silt, gravelly diamicton, cross bedded silty sand, and massive to laminated silt were deposited in glaciomarine, marine, estuarine, and shoreline environments now exposed at elevations as high as 150 m. Ice-proximal facies formed from sediment-richmore » fresh-water plumes and mass movements at the margins of grounded ice lobes; transitional and distal deposits incorporated sediment from dispersed meltwater, turbidity flows and icebergs hundreds of m to tens of km from the grounding line. Macrofossils assemblages in the glaciomarine deposits formed in water < 40 meters deep whereas the marine deposits represent intertidal depths to over 80 meters. [sup 14]C shell ages demonstrate that ice retreated 125 km from the E. Strait of Juan de Fuca between about 14.0 ka and 13.5 ka, and that a fluctuating ice margin persisted near the international Border until sometime after 11.5 ka. More than 10 km[sup 3] of ice-marginal sediment, now bands of submerged banks, outline grounding-line positions in the 50 km between the E. Strait of Juan de Fuca and the San Juan Islands.« less
Sustainable Seas Intertidal Monitoring Project at Duxbury Reef
NASA Astrophysics Data System (ADS)
Soave, K. S.; Dean, A.; Gusman, V.; McCracken, K.; Solli, S.; Storm, E.; Placeholder, P.
2007-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program & Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal ecology, interpretation and monitoring techniques, and history of the sanctuary. Students conduct two baseline-monitoring surveys three times per year (fall, winter, and late spring) to identify and count key invertebrate and algae species. Seasonal abundance of the algae species Mastocarpus and Fucus revealed lower populations in the spring monitoring events. Turban snails, Tegula funebralis, also showed dramatic population variation with respect to tidal zone. One of our project goals is to monitor this area long enough to obtain trends and to begin to connect these patterns to contributing factors (specific weather events, anthropogenic impacts, etc). Replicate counts of all species are regularly performed. Replicate counts for invertebrate and algae species within the same quadrat along the permanent transects revealed a very small amount of variability, giving us confidence that our monitoring program is providing reliable data. The Branson School 39 Fernhill Rd. Ross, CA 94957 (415) 454-3612 x 323 Farallones Marine Sanctuary Association, PO Box 29386 San Francisco, CA 94129, 415-561-6625 x 303
Rocky intertidal zonation pattern in Antofagasta, chile: invasive species and shellfish gathering.
Castilla, Juan Carlos; Manríquez, Patricio H; Delgado, Alejandro; Ortiz, Verónica; Jara, María Elisa; Varas, Manuel
2014-01-01
Biological invasions affecting rocky intertidal zonation patterns, yield information on species interactions. In the Bay of Antofagasta, northern Chile, the non-indigenous tunicate Pyura praeputialis, originally from Australia, has invaded (in the past century or so) and monopolized a major portion of the mid-intertidal rocky shore, displacing upshore the native mussel Perumytilus purpuratus. In Antofagasta the tunicate is subjected to intensive exploitation. Monitoring protocols show that in the past 10 years Antofagasta's tunicate population has experienced a drastic decline, affecting the intertidal zonation pattern. A 12.5 km of coastline, on the southern eastern shore of the Bay of Antofagasta, was studied. Eight sites were systematically (1993-1994) or sporadically (2003-2014) monitored for the seaward-shoreward expansion or reduction of the tunicate Pyura praeputialis, and native mussel and barnacle bands. A notable reduction in the mid-intertidal band of P. praeputialis and a seaward expansion of the mussel, Perumytilus purpuratus, and barnacle bands was observed. We suggest that the major cause for the decline in the tunicate is due to its intensive exploitation by rocky shore Pyura-gathers. The rate of extraction of tunicates by professional Pyura-gathers ranged between 256-740 tunicates hour-(1). Between 2009-2014 the density of professional Pyura-gather ranged between 0.5-4.5 km(-1) per low tide. Hence, 10 professional Pyura-gathers working 1 h for 10 low tides per month, during 6 months, will remove between 307-888 m(2) of tunicates. A drastic decline in tunicate recruitment was observed and several P. praeputialis ecosystems services have been lost. In Antofagasta, the continuous and intensive intertidal gathering of the invasive tunicate Pyura praeputialis, has caused a drastic reduction of its population modifying the zonation pattern. Thereby, native mussel Perumytilus purpuratus has regained its ecological center in the intertidal zone. We recorded a Pyura recruitment failure and loss of ecosystem services.
Rocky Intertidal Zonation Pattern in Antofagasta, Chile: Invasive Species and Shellfish Gathering
Castilla, Juan Carlos; Manríquez, Patricio H.; Delgado, Alejandro; Ortiz, Verónica; Jara, María Elisa; Varas, Manuel
2014-01-01
Background Biological invasions affecting rocky intertidal zonation patterns, yield information on species interactions. In the Bay of Antofagasta, northern Chile, the non-indigenous tunicate Pyura praeputialis, originally from Australia, has invaded (in the past century or so) and monopolized a major portion of the mid-intertidal rocky shore, displacing upshore the native mussel Perumytilus purpuratus. In Antofagasta the tunicate is subjected to intensive exploitation. Monitoring protocols show that in the past 10 years Antofagasta's tunicate population has experienced a drastic decline, affecting the intertidal zonation pattern. Methodology/Principal Findings A 12.5 km of coastline, on the southern eastern shore of the Bay of Antofagasta, was studied. Eight sites were systematically (1993–1994) or sporadically (2003–2014) monitored for the seaward-shoreward expansion or reduction of the tunicate Pyura praeputialis, and native mussel and barnacle bands. A notable reduction in the mid-intertidal band of P. praeputialis and a seaward expansion of the mussel, Perumytilus purpuratus, and barnacle bands was observed. We suggest that the major cause for the decline in the tunicate is due to its intensive exploitation by rocky shore Pyura-gathers. The rate of extraction of tunicates by professional Pyura-gathers ranged between 256–740 tunicates hour−1. Between 2009–2014 the density of professional Pyura-gather ranged between 0.5–4.5 km−1 per low tide. Hence, 10 professional Pyura-gathers working 1 h for 10 low tides per month, during 6 months, will remove between 307–888 m2 of tunicates. A drastic decline in tunicate recruitment was observed and several P. praeputialis ecosystems services have been lost. Conclusion and Significance In Antofagasta, the continuous and intensive intertidal gathering of the invasive tunicate Pyura praeputialis, has caused a drastic reduction of its population modifying the zonation pattern. Thereby, native mussel Perumytilus purpuratus has regained its ecological center in the intertidal zone. We recorded a Pyura recruitment failure and loss of ecosystem services. PMID:25338112
Petzold, Willy; Scrosati, Ricardo A
2014-01-01
In the spring of 2014, abundant sea ice that drifted out of the Gulf of St. Lawrence caused extensive disturbance in rocky intertidal habitats on the northern Atlantic coast of mainland Nova Scotia, Canada. To monitor recovery of intertidal communities, we surveyed two wave-exposed locations in the early summer of 2014. Barnacle recruitment and the abundance of predatory dogwhelks were low at one location (Tor Bay Provincial Park) but more than 20 times higher at the other location (Whitehead). Satellite data indicated that the abundance of coastal phytoplankton (the main food source for barnacle larvae) was consistently higher at Whitehead just before the barnacle recruitment season, when barnacle larvae were in the water column. These observations suggest bottom-up forcing of intertidal communities. The underlying mechanisms and their intensity along the NW Atlantic coast could be investigated through studies done at local and regional scales.
NASA Astrophysics Data System (ADS)
Bryan, K. R.; Nardin, W.; Fagherazzi, S.; Mullarney, J. C.; Norris, B. K.; Henderson, S. M.
2016-12-01
Mangroves are a common intertidal species in tropical and sub-tropical environments, with growth forms that vary substantially between species such as the pencil roots in Avicennia, the prop or stilt roots of Rhizophora and the knee roots in Bruguiera. Here we investigate the role root and tree structures may play on the longterm development of intertidal morphology in mangrove-dominated environments. We use a one-dimensional Delft3D numerical simulation in conjunction with a simple model to determine that the dominant controls on the tidally-driven momentum balance are the frictional characteristics of the forest, which delay the propagation of the tide into the forest. Details of the vegetation at the seaward fringe along with sediment grain size determine the shape of the ensuing profile, with sparser vegetation and coarser grainsizes creating more linear profiles whereas denser vegetation and finer grainsizes generating convex intertidal profiles. Examples showing these different profile developments are provided from the Mekong Delta in Vietnam, which tends to a linear profile, and the Firth of Thames in New Zealand, which has a distinctive convex profile. Preliminary validation using current meter measurements from the Mekong Delta show that the currents diminish quickly between the mudflat seaward of the forest and the fringe, then remain fairly constant several hundred meters into the forest indicating that this linear profile has probably developed into an equilibrium shape. Understanding the forces that shape the development of the intertidal profile shape is critical to predicting the resilience of these sensitive intertidal areas to changes in inundation caused by sea level rise.
Investigation of water seepage through porous media using X-ray imaging technique
NASA Astrophysics Data System (ADS)
Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon
2012-07-01
SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.
Methods for processing and imaging marsh foraminifera
Dreher, Chandra A.; Flocks, James G.
2011-01-01
This study is part of a larger U.S. Geological Survey (USGS) project to characterize the physical conditions of wetlands in southwestern Louisiana. Within these wetlands, groups of benthic foraminifera-shelled amoeboid protists living near or on the sea floor-can be used as agents to measure land subsidence, relative sea-level rise, and storm impact. In the Mississippi River Delta region, intertidal-marsh foraminiferal assemblages and biofacies were established in studies that pre-date the 1970s, with a very limited number of more recent studies. This fact sheet outlines this project's improved methods, handling, and modified preparations for the use of Scanning Electron Microscope (SEM) imaging of these foraminifera. The objective is to identify marsh foraminifera to the taxonomic species level by using improved processing methods and SEM imaging for morphological characterization in order to evaluate changes in distribution and frequency relative to other environmental variables. The majority of benthic marsh foraminifera consists of agglutinated forms, which can be more delicate than porcelaneous forms. Agglutinated tests (shells) are made of particles such as sand grains or silt and clay material, whereas porcelaneous tests consist of calcite.
Dune Transition in the High Southern Latitudes
2017-04-19
Sand dune populations on Mars can vary widely with respect to morphology, relief, and activity. One of the most striking examples occurs with the many dune fields of the high Southern latitudes. When we venture south of -60 degrees latitude, we see increasing signs of dune degradation, with subdued dune brinks and broad sandy aprons, rather than sharp, dune crests and distinct boundaries. Dunes this far south are also very modest in height, often consisting solely of flat sand sheets. Additionally, global monitoring campaigns are revealing a noticeable lack of changes in these bedform positions, whereas many dunes and ripples to the north are migrating across the surface. This image shows a moderate sized dune field (-72 degrees latitude) that displays most of these morphologic features and a noticeable absence of dune crests. This transition is likely related to polar processes, ground ice, and changes in regional climate relative to the rest of the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21595
STS-56 Earth observation of a sun-glinted ocean along the coast of Somalia
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of a sun-glinted ocean along the northeastern coast of Somalia. The small island of Xaafuun is connected to the mainland by a well-developed double tombolo-two sand bars. Between the two toombolos a lagoon is formed which gradually fills with sediment and becomes a flat sand bar. Better known double tombolos include those of Gibraltar, the now-partially submerged giant tombolos forming Adam's Bridge (Palk Strait) connecting Sri Lanka to India, Monte Argentario in Italy, and Long Island, New York. Such tombolos usually indicate a constant sediment source and a strong unidirectional or bi-directional (monsoonal) long shore current. In this case, sediment is provided by the plumes of the major African rivers debauching into the Mozambique Channel. The sediment is carried predominately to the northeast along the coast by the swiftly moving monsoonal Agulhas Current. Visible in this scene are internal waves, shear
NASA Astrophysics Data System (ADS)
Haghighi, Erfan; Or, Dani
2015-11-01
Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.
Complex carbonate and clastic stratigraphy of the inner shelf off west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locker, S.D.; Doyle, L.J.; Hine, A.C.
1990-05-01
The near surface stratigraphy (< 30 m) of the inner shelf off the west coast of Florida was investigated using high-resolution seismic, side-scan sonar, and continuous underwater video camera coverage. The simultaneous operation of all three systems provided a unique opportunity to calibrate acoustic data with actual video images of the sea floor in a geologically complex area characterized by limestone dissolution structures, hard-bottom exposures, and overlain by a limited supply of terrigenous clastics. Three principle bottom types, grass, sand, and hard-bottom mapped using video and side-scan sonographs, show a correlation with two subsurface stratigraphic zones. The nearshore subsurface zonemore » extending to 6-7 m water depth is characterized by flat or rolling strata and sinkholes that increase in size (200-1,200 m in diameter) and become more numerous further offshore. This zone is truncated by a major erosional unconformity overlain by a thin (<3 m) sequence of Holocene sediment, which together form a terrace upon which the Anclote Key barrier island formed. The offshore subsurface zone (7-11 m water depth) exhibits irregular and discontinuous high-amplitude flat or inclined reflections and few sinkholes. Offshore, extensive hard-bottom exposures are common with discontinuous sediment that occur as lenses or sand waves. The complex stratigraphy of the west Florida shelf includes outcropping Neogene limestones that have undergone dissolution during sea level lowstands. Carbonates and clastics dispersed during multiple sea level changes overlie the Neogene limestones. Dissolution styles and erosional unconformities produced bedrock topography and now control modern geological and biological processes.« less
Yaquina Bay, Oregon, Intertidal Sediment Temperature Database, 1998 - 2006.
Detailed, long term sediment temperature records were obtained and compiled in a database to determine the influence of daily, monthly, seasonal and annual temperature variation on eelgrass distribution across the intertidal habitat in Yaquina Bay, Oregon. Both currently and hi...
NASA Astrophysics Data System (ADS)
Lomovasky, Betina J.; Alvarez, Graciela; Addino, Mariana; Montemayor, Diana I.; Iribarne, Oscar
2014-07-01
Biological invasions in marine and coastal systems may produce new trophic and nontrophic interactions influencing the structure of the invaded community. In the intertidal salt marshes of Samborombón Bay (36°19‧20″S, 56°46‧26″W; mouth of La Plata River; Argentina), there is a new non-indigenous oyster species, Crassostrea sp., which settles on the dominant smooth cordgrass Spartina alterniflora. Here, we analyzed if the oyster affects S. alterniflora. Sampling showed that density of live plant was similar across intertidal levels, but there were higher density of dead plant stems at low intertidal levels. This pattern coincides with higher density and larger shell size of Crassostrea sp. at the low intertidal where oysters are attached to the basal part of the plant stems. An experiment manipulating oysters attached to S. alterniflora stems and oyster mimics shows that Crassostrea sp. can indeed increase mortality of S. alterniflora. The negative effect of bivalves on plant could be because several oysters settle around the Spartina stem, and by growing during the year, strangle the plants increasing their mortality rate. Together, all these evidences strongly suggest that these non-indigenous oysters can control the lower intertidal level of plant distribution in this system.
Muñoz, G; Cortés, Y
2009-09-01
The different species of a fish assemblage can, to some extent, be similar in terms of their parasite communities, which can be associated with certain ecological host traits. This study compared the parasite community descriptors between temporal and resident fish species composing an intertidal assemblage from central Chile. Host specificity and similarity indices of parasite communities among the fish species were also considered. A total of 1097 fish representing 14 species were collected during spring and summer of 2 consecutive years. A total spectrum of 40 parasite species was found, of which copepods and trematodes were the commonest. Congeneric fish species had the highest similarities in their parasite communities. Based on a cluster analysis, using only some fish species, no group was distinguished using abundance or prevalence of parasites, because 50% of parasite species had high host specificity and only few of them were shared among fish species. Adult parasites showed high host specificity and were found mainly in resident intertidal fish, whereas the temporal fish had parasites with different degrees of specificity. Consequently, resident intertidal fish were characterized by their own parasite species, meaning that their transmissions might be restricted to the intertidal zone.
Microbial biofilms in intertidal systems: an overview
NASA Astrophysics Data System (ADS)
Decho, Alan W.
2000-07-01
Intertidal marine systems are highly dynamic systems which are characterized by periodic fluctuations in environmental parameters. Microbial processes play critical roles in the remineralization of nutrients and primary production in intertidal systems. Many of the geochemical and biological processes which are mediated by microorganisms occur within microenvironments which can be measured over micrometer spatial scales. These processes are localized by cells within a matrix of extracellular polymeric secretions (EPS), collectively called a "microbial biofilm". Recent examinations of intertidal systems by a range of investigators using new approaches show an abundance of biofilm communities. The purpose of this overview is to examine recent information concerning the roles of microbial biofilms in intertidal systems. The microbial biofilm is a common adaptation of natural bacteria and other microorganisms. In the fluctuating environments of intertidal systems, biofilms form protective microenvironments and may structure a range of microbial processes. The EPS matrix of biofilm forms sticky coatings on individual sediment particles and detrital surfaces, which act as a stabilizing anchor to buffer cells and their extracellular processes during the frequent physical stresses (e.g., changes in salinity and temperature, UV irradiation, dessication). EPS is an operational definition designed to encompass a range of large microbially-secreted molecules having widely varying physical and chemical properties, and a range of biological roles. Examinations of EPS using Raman and Fourier-transform infared spectroscopy, and atomic-force microscopy suggest that some EPS gels possess physical and chemical properties which may hasten the development of sharp geochemical gradients, and contribute a protective effect to cells. Biofilm polymers act as a sorptive sponge which binds and concentrates organic molecules and ions close to cells. Concurrently, the EPS appear to localize extracellular enzyme activities of bacteria, and hence contribute to the efficient biomineralization of organics. At larger spatial scales, the copious secretion of specific types of EPS by diatoms on the surfaces of intertidal mudflats may stabilize sediments against resuspension. Biofilms exert important roles in environmental- and public health processes occurring within intertidal systems. The sorptive properties of EPS effectively chelate toxic metals and other contaminants, which then act as an efficient trophic-transfer vehicle for the entry of contaminants into food webs. In the water column, biofilm microenvironments in suspended flocs may form a stabilizing refugia that enhances the survival and propagation of pathogenic (i.e., disease-causing) bacteria entering coastal waters from terrestrial and freshwater sources. The EPS matrix affords microbial cells a tremendous potential for resiliency during periods of stress, and may enhance the overall physiological activities of bacteria. It is emphasized here that the influences of small-scale microbial biofilms must be addressed in understanding larger-scale processes within intertidal systems.
NASA Astrophysics Data System (ADS)
Price, J.; Liff, H.; Lakshmi, V.
2012-12-01
Temperature is considered to be one of the most important physical factors in determining organismal distribution and physiological performance of species in rocky intertidal ecosystems, especially the growth and survival of mussels. However, little is known about the spatial and temporal patterns of temperature in intertidal ecosystems or how those patterns affect intertidal mussel species because of limitations in data collection. We collected in situ temperature at Strawberry Hill, Oregon USA using mussel loggers embedded among the intertidal mussel species, Mytilus californianus. Remotely sensed surface temperatures were used in conjunction with in situ weather and ocean data to determine if remotely sensed surface temperatures can be used as a predictor for changes in the body temperature of a rocky intertidal mussel species. The data used in this study was collected between January 2003 and December 2010. The mussel logger temperatures were compared to in situ weather data collected from a local weather station, ocean data collected from a NOAA buoy, and remotely sensed surface temperatures collected from NASA's sun-synchronous Moderate Resolution Imaging Spectroradiometer aboard the Earth Observing System Aqua and EOS Terra satellites. Daily surface temperatures were collected from four pixel locations which included two sea surface temperature (SST) locations and two land surface temperature (LST) locations. One of the land pixels was chosen to represent the intertidal surface temperature (IST) because it was located within the intertidal zone. As expected, all surface temperatures collected via satellite were significantly correlated to each other and the associated in situ temperatures. Examination of temperatures from the off-shore NOAA buoy and the weather station provide evidence that remotely sensed temperatures were similar to in situ temperature data and explain more variability in mussel logger temperatures than the in situ temperatures. Our results suggest that temperatures (surface temperature and air temperature) are similar across larger spatial scales even when the type of data collection is different. Mussel logger temperatures were strongly correlated to SSTs and were not significantly different than SSTs. Sea surface temperature collected during the Aqua overpass explained 67.1% of the variation in mean monthly mussel logger temperature. When SST, LST, and IST were taken into consideration, nearly 73% of the variation in mussel logger temperature was explained. While in situ monthly air temperature and water temperature explained only 28-33% of the variation in mussel logger temperature. Our results suggests that remotely sensed surface temperatures are reliable and important measurements that can be used to better understand the effects temperature may have on intertidal mussel species in Strawberry Hill, Oregon. Remotely sensed surface temperature could act as a relative indicator of change and may be used to predict general habitat trends and drivers that could directly affect organism body temperature.
Modelling reactive transport in a phosphogypsum dump, Venezia, Italia
NASA Astrophysics Data System (ADS)
Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena
2013-04-01
We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of contaminants.
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Boufadel, Michel C.; Lee, Kenneth; Abrams, Stewart; Suidan, Makram
2015-05-01
The aerobic biodegradation of oil in tidally influenced beaches was investigated numerically in this work using realistic beach and tide conditions. A numerical model BIOMARUN, coupling a multiple-Monod kinetic model BIOB to a density-dependent variably saturated groundwater flow model 2-D MARUN, was used to simulate the biodegradation of low-solubility hydrocarbon and transport processes of associated solute species (i.e., oxygen and nitrogen) in a tidally influenced beach environment. It was found that different limiting factors affect different portions of the beach. In the upper intertidal zone, where the inland incoming nutrient concentration was large (1.2 mg N/L), oil biodegradation occurred deeper in the beach (i.e., 0.3 m below the surface). In the midintertidal zone, a reversal was noted where the biodegradation was fast at shallow locations (i.e., 0.1 m below the surface), and it was due to the decrease of oxygen with depth due to consumption, which made oxygen the limiting factor for biodegradation. Oxygen concentration in the midintertidal zone exhibited two peaks as a function of time. One peak was associated with the high tide, when dissolved oxygen laden seawater filled the beach and a second oxygen peak was observed during low tides, and it was due to pore oxygen replenishment from the atmosphere. The effect of the capillary fringe (CF) height was investigated, and it was found that there is an optimal CF for the maximum biodegradation of oil in the beach. Too large a CF (i.e., very fine material) would attenuate oxygen replenishment (either from seawater or the atmosphere), while too small a CF (i.e., very coarse material) would reduce the interaction between microorganisms and oil in the upper intertidal zone due to rapid reduction in the soil moisture at low tide. This article was corrected on 22 JUN 2015. See the end of the full text for details.
Intertidal habitat utilization patterns of birds in a Northeast Pacific estuary
A habitat-based framework is a practical method for developing models (or, ecological production functions, EPFs) to describe the spatial distribution of ecosystem services. To generate EPFs for Yaquina estuary, Oregon, USA, we compared bird use patterns among intertidal habitats...
Earth Observations taken by the Expedition 31 Crew
2012-05-11
ISS031-E-030783 (11 May 2012) --- Linear dunes in the Great Sand Sea in southwest Egypt are featured in this image photographed by an Expedition 31 crew member on the International Space Station. In southwestern Egypt, deep in the Sahara Desert, the action of wind dominates landscapes today much as it has done for the past several thousand years. Winds blowing from the north have fashioned sands into large dunes, aligned parallel with these winds. The so-called linear dunes?shown here in the Great Sand Sea?are easily seen from space and local maps show that they rise 20?30 meters above the surrounding flat plains. The distance between individual linear dunes is interestingly regular, at 1.5?2.5 kilometers, suggesting some equilibrium exists between the formative wind strength and the sand supply. It is possible that linear dunes may relate to earlier times when winds were stronger than they are today, or sand more plentiful. The dark patch of rock outcrop at upper right sticks up above the surface on which the dunes lie by as much as 150 meters. The north winds have been deflected around this high zone, and smaller secondary linear dunes can be seen along the right side of the image, aligned with local winds that become ever more northeasterly with nearness to the outcrops. A dune-free zone on the protected downwind (south-southeast) side of the outcrop gives a sense of the sand movement (generally from the bottom of the image towards the top). At first glance, the large linear dunes appear to be the major landform in the image; however a complex pattern of even smaller dunes can be seen perched on top of the largest dunes (inset). The sand that comprises many dune fields usually, according to scientists, derives from some larger river not very distant upwind, supplied from the dry river bed (exposed to the wind during dry seasons of low river flow, or regional change to a more arid climate). Inland dune fields thus lie downwind of the source river. A large, unnamed river once flowed to the Mediterranean Sea situated west of the dunes shown in this picture, dumping its sand load 300 kilometers northwest of the area shown. It is likely that this river, the evidence of which is now almost completely obliterated, was the source of the sand in the linear dunes, the scientists say.
Groesbeck, Amy S.; Rowell, Kirsten; Lepofsky, Dana; Salomon, Anne K.
2014-01-01
Maintaining food production while sustaining productive ecosystems is among the central challenges of our time, yet, it has been for millennia. Ancient clam gardens, intertidal rock-walled terraces constructed by humans during the late Holocene, are thought to have improved the growing conditions for clams. We tested this hypothesis by comparing the beach slope, intertidal height, and biomass and density of bivalves at replicate clam garden and non-walled clam beaches in British Columbia, Canada. We also quantified the variation in growth and survival rates of littleneck clams (Leukoma staminea) we experimentally transplanted across these two beach types. We found that clam gardens had significantly shallower slopes than non-walled beaches and greater densities of L. staminea and Saxidomus giganteus, particularly at smaller size classes. Overall, clam gardens contained 4 times as many butter clams and over twice as many littleneck clams relative to non-walled beaches. As predicted, this relationship varied as a function of intertidal height, whereby clam density and biomass tended to be greater in clam gardens compared to non-walled beaches at relatively higher intertidal heights. Transplanted juvenile L. staminea grew 1.7 times faster and smaller size classes were more likely to survive in clam gardens than non-walled beaches, specifically at the top and bottom of beaches. Consequently, we provide strong evidence that ancient clam gardens likely increased clam productivity by altering the slope of soft-sediment beaches, expanding optimal intertidal clam habitat, thereby enhancing growing conditions for clams. These results reveal how ancient shellfish aquaculture practices may have supported food security strategies in the past and provide insight into tools for the conservation, management, and governance of intertidal seascapes today. PMID:24618748
Krauss, K.W.; Allen, J.A.
2003-01-01
Mangrove swamps occupy approximately two-thirds of the shoreline on Kosrae, Federated States of Micronesia (FSM), and also border the island's most populated areas. Kosraeans depend on mangrove swamps for a supply of wood to support a growing handicraft industry, for a dependable source of fuelwood, and for habitat to support the harvest of fish and mangrove crabs. One of the more prominent mangrove species on Kosrae is Bruguiera gymnorrhiza, yet it is not the most preferred species for carving or cooking. To evaluate B. gymnorrhiza's persistence in the intertidal and to develop a better understanding of factors influencing its regeneration, we investigated predispersal insect colonization of propagules, postdispersal propagule predation by crabs, and the relative effects of natural and artificial shade, salinity, and tidal flooding on early tree seedling survival and growth. Predispersal insect colonization of propagules by boring insects was very high (93%), but the damage did not seem to influence seedling survival. Postdispersal predation of B. gymnorrhiza propagules by crabs was low (17%) and did not change in gap versus understory plots. Predation did vary by intertidal location (lower intertidal > middle intertidal = upper intertidal), with lower predation occurring in an intertidal location with a B. gymnorrhiza-dominated overstory. Shade and tidal inundation reduced seedling growth more than salinity in greenhouse investigations, but sunlight had less positive influence on seedling growth in the field. In general, regeneration and growth occurred successfully under a variety of conditions, indicating that none of the factors investigated serve as strong regulators to B. gymnorrhiza regeneration and early growth on Kosrae. ?? 2002 Elsevier Science B.V. All rights reserved.
Sea-floor geology in northwestern Block Island Sound, Rhode Island
McMullen, Katherine Y.; Poppe, Lawrence J.; Ackerman, Seth D.; Blackwood, Dann S.; Woods, D.A.
2014-01-01
Multibeam-echosounder and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 69-square-kilometer area of northwestern Block Island Sound, are used with sediment samples, and still and video photography of the sea floor, collected by the U.S. Geological Survey at 43 stations within this area, to interpret the sea-floor features and sedimentary environments. Features on the sea floor include boulders, sand waves, scour depressions, modern marine sediments, and trawl marks. Boulders, which are often several meters wide, are found in patches in the shallower depths and tend to be overgrown with sessile flora and fauna. They are lag deposits of winnowed glacial drift, and reflect high-energy environments characterized by processes associated with erosion and nondeposition. Sand waves and megaripples tend to have crests that either trend parallel to shore with 20- to 50-meter (m) wavelengths or trend perpendicular to shore with several-hundred-meter wavelengths. The sand waves reflect sediment transport directions perpendicular to shore by waves, and parallel to shore by tidal or wind-driven currents, respectively. Scour depressions, which are about 0.5 m lower than the surrounding sea floor, have floors of gravel and coarser sand than bounding modern marine sediments. These scour depressions, which are conspicuous in the sidescan-sonar data because of their more highly reflective coarser sediment floors, are likely formed by storm-generated, seaward-flowing currents and maintained by the turbulence in bottom currents caused by their coarse sediments. Areas of the sea floor with modern marine sediments tend to be relatively flat to current-rippled and sandy.
Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction
NASA Astrophysics Data System (ADS)
Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.
2016-04-01
Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.
Nutrient and dust enrichment in Danish wind erosion sediments for different tillage directions
NASA Astrophysics Data System (ADS)
Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.
2015-04-01
More than 80% of the soil types in Denmark have a sandy texture. Denmark is also subject to strong offshore and onshore winds, therefore, Danish soils are considered especially vulnerable to wind erosion. Where conventional tillage operations are applied on poorly aggregated soils, tillage ridges are more or less the only roughness element that can be used to protect soils against wind erosion until crop plants are large enough to provide sufficient breaks. Since wind erosion is a selective process, it can be assumed that increasing erosion rates are associated with increasing loss of dust sized particles and nutrients. However, selective erosion is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. The main objective of this study, therefore, was to determine the effect of tillage direction on nutrient mobilization by wind erosion from agricultural land in Denmark. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios (flat surface, parallel tillage, perpendicular tillage) in a wind tunnel simulation. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 µm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.
Quartz sand as "blank" compound in rehabilitation experience of industrial barren
NASA Astrophysics Data System (ADS)
Gorbacheva, T. T.; Ivanova, L. A.; Kikuchi, R.; Gerardo, R.
2010-05-01
During 2008 the field test was performed near the smelter complex Monchegorsk (67°51'N, 32°48'E) to estimate suitability of innovate method for site remediation in severe conditions such as in industrial barren. The method is based on cultivation of perennial grasses using hydroponics with thermally inflated vermiculite from local deposit (Kovdor) followed by rolled lawn placement on very contaminated sites near Monchegorsk. Growing in very contaminated ground resulted in 50% rolled lawn surface loss during first year but with biodiversity maintenance. Field experiment was carried out in three variants (1- mineral ground - flat site; 2- mineral ground- slope sites; 3- organogenic ground - flat site in depression in five replicates. More comprehensive results were received for mineral ground due to better natural washing compared to organogenic ground. In all variants we observed secondary roots formation. It seems obvious that plant roots choose the best zones of soils to grow, and that they avoided toxic zones. Observations continued during 2009 to follow freezing influence and nutrient loss rate. We observed grass survival of about 20-30% during second year of field test but grass roots proliferated very slowly in contaminated ground. Affinity to the ground is one of most important estimate of rolled lawn efficiency for grass cover creation. One of possible measure to improve rolled lawn affinity is to establish additional permeable barrier for grass roots isolation from toxic ground. Simultaneously with rolled lawn placement litterbag experiment was carried out with quartz sand as filling. Quartz was chosen as blank compound and as possible material for permeable barrier creation. Original quartz have some initial nutritional status: pH 6.87, available forms of K 1.9 mg g-1, Ca 9.5 mg g-1, Mg 2.8 mg g-1, P 0.4 mg g-1. There was both increasing and decreasing of quartz nutritional status during 2008-2009 period. Besides quartz is recognized to be some barrier for pollution load due to organic matter and related heavy metals and Al sorption onto a quartz sand surface. Laboratory pot experiment are planed to be carry out to estimate quartz barrier function efficiency for grass survival.
Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdoch, L.; Slack, B.
1996-08-01
Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminantsmore » in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.« less
Spaceborne radar interferometry for coastal DEM construction
Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Z.
2005-01-01
Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.
Physical characterization of intertidal estuarine plant habitats over time may reveal distribution-limiting thresholds. Temperature data from loggers embedded in sediment in transects crossing Zostera marina and Z. japonica habitats in lower Yaquina Bay, Oregon display signific...
Utilization Patterns of Intertidal Habitats by Birds in Yaquina Estuary, Oregon
Bird utilization patterns were assessed in five types of intertidal soft sediment and low marsh habitat in the Yaquina estuary, Oregon. Censuses were designed to determine the spatial and seasonal utilization patterns of birds in Zostera marina (eelgrass), Upogebia (mud shrimp)/...
Distributions of native intertidal eelgrass (Zostera marina L.) and non-vegetated substrates in three coastal estuaries of the Pacific Northwest (PNW) were determined using color infrared (CIR) aerial orthophotography during daylight low tides. Comparison of the digital classif...
Distributions of native eelgrass Zostera marina L. within the intertidal and shallow subtidal zones of three Oregon coastal estuaries (Tillamook, Yaquina, and Alsea) were determined by digital classification of aerial color infrared (CIR) orthophotographs. Stratified random surv...
Planktonic Subsidies to Surf-Zone and Intertidal Communities
NASA Astrophysics Data System (ADS)
Morgan, Steven G.; Shanks, Alan L.; MacMahan, Jamie H.; Reniers, Ad J. H. M.; Feddersen, Falk
2018-01-01
Plankton are transported onshore, providing subsidies of food and new recruits to surf-zone and intertidal communities. The transport of plankton to the surf zone is influenced by wind, wave, and tidal forcing, and whether they enter the surf zone depends on alongshore variation in surf-zone hydrodynamics caused by the interaction of breaking waves with coastal morphology. Areas with gently sloping shores and wide surf zones typically have orders-of-magnitude-higher concentrations of plankton in the surf zone and dense larval settlement in intertidal communities because of the presence of bathymetric rip currents, which are absent in areas with steep shores and narrow surf zones. These striking differences in subsidies have profound consequences; areas with greater subsidies support more productive surf-zone communities and possibly more productive rocky intertidal communities. Recognition of the importance of spatial subsidies for rocky community dynamics has recently advanced ecological theory, and incorporating surf-zone hydrodynamics would be an especially fruitful line of investigation.
Friess, Daniel A.; Krauss, Ken W.; Horstman, Erik M.; Balke, Thorsten; Bouma, Tjeerd J.; Galli, Demis; Webb, Edward L.
2011-01-01
Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long-term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species-specific life-history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long-term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.
Bacterial diversity patterns of the intertidal biofilm in urban beaches of Río de la Plata.
Piccini, C; García-Alonso, J
2015-02-28
Intertidal benthic ecosystems in estuaries are productive sites where microbial processes play critical roles in nutrients mineralization, primary production and trophic web. In this groundwork study we analyzed the bacterial community of intertidal biofilms from Río de la Plata beaches with different anthropogenic impacts. Several environmental parameters were measured and bacterial assemblages were analyzed by 16S-rDNA pyrosequencing. The average OTU found per sample was 527.3±122.5, showing similar richness and diversity among them. However, sites having the highest and lowest salinity displayed higher bacterial diversity. Assemblages from a site nearby an oil refinery, showing the lowest salinity and oxygen concentration, were clearly distinct from the rest. The weight of this splitting relied on OTUs belonging to Thauera, known by its ability to metabolize aromatic compounds. Our results suggest that intertidal bacterial assemblages would be structured by major estuarine variables such as salinity, and that anthropogenic-induced environmental parameters might also be relevant. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc
2014-01-01
Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.
Ding, Meng-Wen; Wang, Zhao-Kai; Dong, Yun-Wei
2018-05-01
Research on the interaction of primary producers and consumers is crucial for understanding trophic transfer in intertidal food webs. This study explores the association between epilithic and planktonic microalgae, and gut contents of two targeted intertidal gastropods, the periwinkle Echinolittorina radiata (splash zone) and the limpet Cellana toreuma (mid-intertidal zone). With the application of gut fluorescence technique and metabarcoding, this study investigates the quantity and composition of two different sources of microalgae (epilithic and planktonic) and the food ingested by the gastropods. The results suggest the following findings: 1) The planktonic microalgae have higher compositional similarity to the gut contents of grazing gastropods. 2) Increased gut pigment content in C. toreuma is observed with increasing abundance of epilithic and planktonic microalgae. However, there was no such pattern observed for E. radiata. This difference could be attributed to potentially divergent foraging behaviours of the two species that inhabit different shore heights. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pfingstl, Tobias
2013-10-01
The population dynamics of the three intertidal oribatid species, Alismobates inexpectatus, Fortuynia atlantica and Carinozetes bermudensis, have been studied on the archipelago of Bermuda over the course of a year. All three species are univoltine, showing a clear seasonal demographic pattern, with reproduction from spring to late autumn and a complete standstill of egg production in winter. A seasonal shift in sex ratio could also be observed in all three species and is supposed to be based on sex-dependent mortality. The subtropical climate of Bermuda allows longer reproductive periods than shown in other intertidal or edaphic temperate species and temperature is supposed to be the main factor influencing the demography of these intertidal dwelling mites. Although all three Bermudian species exhibit the same basic seasonal demographic pattern, there are slight temporal shifts in population dynamics, presumably caused by local microclimatic differences among the populations. Larviparity, shown in other littoral oribatid mites, is clearly absent in the present species.
NASA Astrophysics Data System (ADS)
Taylor, C. B.
1994-06-01
With the exception of water-bearing remnants of earlier fluvial gravels overlying basement, the sediments of the Poverty Bay flats have accumulated during the postglacial period of the past 14 000 years, and have been tilted and deformed by recent tectonism. A sequence of gravel aquifers, separated by poorly permeable silt layers, lies between surface and basement, which is at depths varying between 50 and 200 m. A shallow sand/silt aquifer is situated near the coast. This study applies evidence of chemical and isotopic properties of river and ground water to clarify the recharge mechanisms, chemical evolution and age of the ground water in the aquifers. Particular attention is paid to the evolution of dissolved inorganic carbon content, applying carbon-14 data measured by accelerator mass spectrometry. Most of the ground water is recharged from the Waipaoa River, which flows across the flats and discharges into Poverty Bay. The two deepest aquifers (Matokitoki and Makauri) are both tritium-free; the deeper Matokitoki Gravels yield water of age about 4300 years since recharge (possibly up to 1300 years greater), but the Makauri water is no older than 100-200 years, discharging slowly through overlying aquitards near the limit of closest approach to the present coast.
NASA Astrophysics Data System (ADS)
Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.
2015-12-01
Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions and services, prohibits quantification of absolute and relative magnitudes of ecological impacts due to coastal structures or effectiveness of mitigation interventions. This knowledge deficit restricts evaluation of the potential of ecological engineering to contribute to conservation policies for intertidal habitats. To improve mitigation design and effectiveness, a greater focus on in-situ research is needed, requiring stronger and timely collaboration between government agencies, construction partners and research scientists.
NASA Astrophysics Data System (ADS)
María Díaz-Díaz, Luis; Flor-Blanco, Germán; López-Fernández, Carlos; Luis, Pando
2016-04-01
This study presents the geographical distribution and topographical features analysis of several marine/continental terraces located in a sector between Nalón estuary and Cape Peñas region (central coast of Asturias, N Spain). Significant flat raised surfaces appear as outstanding landscape features of the Cantabrian coast. They exhibit north facing low gradient slopes (< 5°) until the cliff shoreline and the borders are defined by the pre-littoral mountains to the south. These surfaces have a width of no more than 5 km and occasionally may be thinly mantled by many alluvial clastic deposits, very scarce aeolian sands and gravel and/or sand beach deposits. Several studies have shown the importance of these terraces, which are recognized by the preservation of a variable number of levels of flat raised and staggered irregularly surfaces. These surfaces have been used to quantify rates of rock uplift processes. GIS and quantitative analysis of the relief are applied to the recognition and delineation of terraces. Altimetry information comes from the Digital Elevation Model (DEM) Digital (cell size 5 m). The use of slope Digital Slopes Model (DSM) combined with digital lithology layers and hypsometric method allowed us to identify two main new surfaces at altitudes ranging from 75 to 135 m and 85 to 180 m respectively. Levels of surfaces recognized in previous studies may be correlated with this elevations. They are separated by a huge geologic structure (Ventaniella Fault). Thus, two NW-SE direction landward edge of terrace (shoreline angle) was identified. This feature enables correlate these surface or the old knickpoint (foot of the slope) if the terrace has a continental origin. Initial morphology of these terraces has been modified by landscape erosion much more those developed on limestones. Therefore, just a few areas are preserved where flat surfaces are developed in Paleozoic materials (NO) better in siliciclastic rocks. The remaining areas are modelled in the lowest resistance lithology like Permo-triassic rocks. Therefore, using classic techniques as fieldwork and phointerpretation is not discriminatory.
Spilled oil and infaunal activity - Modification of burrowing behavior and redistribution of oil
Clifton, H.E.; Kvenvolden, K.A.; Rapp, J.B.
1984-01-01
A series of experiments in Willapa Bay, Washington, indicates the degree to which the presence of spilled oil modifies the burrowing behavior of infauna and the extent to which the animals redistribute oil into intertidal sediment. Small amounts of North Slope crude oil introduced at low tide directly into burrow openings (mostly made by the crustacean Callianassa) resulted in a limited and temporary reduction in the number of burrow openings. In contrast, a layer of oil-saturated sand 1 cm thick buried about 5 cm below the sediment surface sharply reduced the number of burrow openings. After a year, the few new burrows penetrated only the margins of the experimental plot, and bioturbation below the buried oil-saturated sand layer declined dramatically. The experiments suggest that small amounts of oil temporarily stranded by tides in themselves have no long-range effect on burrowing behavior. The fauna, however, are capable of introducing measurable amounts of oil into the subsurface, where it is retained long after the rest of the stranded oil had washed away. A buried layer of oil-saturated sand greatly reduces infaunal activity; the oil presents an effective barrier that can persist for years. The oil incorporated into the sediment from burrow openings showed evidence of degradation after 7 months. In contrast the layer of buried oil remained essentially undergraded after a period of two years, even though oil in lower concentrations above the layer was degraded after a period of one year. This variation in degree of degradation of the buried oil, as well as the heterogeneity of oil distribution wherever the oil has been incorporated from the surface, emphasises the importance of careful sampling in any attempt to locate or monitor the presence of spilled oil in the substrate.In a series of experiments in Willapa Bay, Washington, small amounts of North Slope crude oil introduced at low tide directly into burrow openings resulted in a limited and temporary reduction in the number of burrow openings. In contrast, a layer of oil-saturated sand 1 cm thick buried about 5 cm below the sediment surface sharply reduced the number of burrow openings. After a year, the few new burrows penetrated only the margins of the experimental plot, and bioturbation below the buried oil-saturated sand layer declined dramatically. The experiments suggest that small amounts of oil temporarily stranded by tides in themselves have no long-range effect on burrowing behavior. The oil incorporated into the sediment from burrow openings showed evidence of degradation after 17 months. In contrast, the layer of buried oil remained essentially undegraded after a period of two years. Refs.
Relationships between topographic roughness and aeolian processes
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Lancaster, N.; Gaddis, L.; Rasmussen, K. R.; White, B. R.; Saunders, R. S.; Wall, S.; Dobrovolskis, Anthony R.; Iversen, J. D.
1991-01-01
The interaction between winds and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationships between radar backscatter and aerodynamic roughness as part of the NASA Shuttle Imaging radar (SIR-C) Mission. Here, researchers report results from measurements of boundary layer wind profiles and surface roughness at sites in Death Valley and discuss their implications. The sites included a flat to undulating gravel and sand reg, alluvial fans, and a playa. Estimates of average particle size composition of Death Valley sites and arithmetic mean values of aerodynamic roughness are given in tabular form.
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1988-01-01
Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared.
Advanced Composite Cost Estimating Manual. Volume I
1976-08-01
0012T)L ( F6 ) MERE: H Standard runtime hour per part T = Thickness of material, in inches 1. =lngth to be sauded, in inches Setup Time = 0.02 Hour 55 4i...hole is beveled to acca -cdate the conical seat of a flat head screw in order to have the head of the screw flush with the s~urface. A carbide tool held...POTBETOOL SANDING 0.02 (O.OO12T)L ( F6 ) MCIESNIG0.25 (0.00046L)P (F7) HOLE OPERATIONS DRILLING 0.05 (0.01693D0 3 0 z +.52 0.0006)Q (F8) COUNTERBORING
NASA Astrophysics Data System (ADS)
Yamashita, S.; Nakajo, T.; Naruse, H.
2009-12-01
In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.
Onshore Wind Stress and Buoyancy Flux Observed on a Dissipative Mediterranean Beach
2015-12-01
a climatologically Mediterranean coastline to explore the wind stress and buoyancy flux. An eddy covariance system was deployed in the intertidal... climatologically Mediterranean coastline to explore the wind stress and buoyancy flux. An eddy covariance system was deployed in the intertidal zone
Patterns of intertidal habitat use by birds in an Oregon Coastal Estuary
To explore approaches for habitat based ecosystem services, birds in Yaquina Estuary, Oregon were censused in five intertidal habitats at five tide levels. The overall most important habitats (MIHs) in terms of total number of birds were mudflat (colonized by mudshrimp Upogebia ...
Computing Risk to West Coast Intertidal Rocky Habitat due to ...
Compared to marshes, little information is available on the potential for rocky intertidal habitats to migrate upward in response to sea level rise (SLR). To address this gap, we utilized topobathy LiDAR digital elevation models (DEMs) downloaded from NOAA’s Digital Coast GIS data repository to estimate percent change in the area of rocky intertidal habitat in 10 cm increments with eustatic sea level rise. The analysis was conducted at the scale of the four Marine Ecoregions of the World (MEOW) ecoregions located along the continental west coast of the United States (CONUS). Environmental Sensitivity Index (ESI) map data were used to identify rocky shoreline. Such stretches of shoreline were extracted for each of the four ecoregions and buffered by 100 m to include the intertidal and evaluate the potential area for upland habitat migration. All available LiDAR topobathy DEMs from Digital Coast were extracted using the resulting polygons and two rasters were synthesized from the results, a 10 cm increment zone raster and a non-planimetric surface area raster for zonal summation. Current rocky intertidal non-planimetric surface areas for each ecoregion were computed between Mean Higher High Water (MHHW) and Mean Lower Low Water (MLLW) levels established from published datum sheets for tidal stations central to each MEOW ecoregion. Percent change in non-planimetric surface area for the same relative ranges were calculated in 10 cm incremental steps of eustatic S
Fernández-Reiriz, María José; Irisarri, Jade; Labarta, Uxio
2016-01-01
Mussel seed (Mytilusgalloprovincialis) gathered from the intertidal and subtidal environments of a Galician embayment (NW, Spain) were maintained in the laboratory during five months to select fast (F) and slow (S) growing mussels. The physiological basis underlying inter-individual growth variations were compared for F and S mussels from both origins. Fast growing seemed to be a consequence of greater energy intake (20% higher clearance and ingestion rate) and higher food absorption rate coupled with low metabolic costs. The enhanced energy absorption (around 65% higher) resulted in 3 times higher Scope for Growth in F mussels (20.5±4.9 J h−1) than S individuals (7.3±1.1 J h−1). The higher clearance rate of F mussels appears to be linked with larger gill filtration surface compared to S mussels. Intertidal mussels showed higher food acquisition and absorption per mg of organic weight (i.e. mass-specific standardization) than subtidal mussels under the optimal feeding conditions of the laboratory. However, the enhanced feeding and digestive rates were not enough to compensate for the initial differences in tissue weight between mussels of similar shell length collected from the intertidal and subtidal environments. At the end of the experiment, subtidal individuals had higher gill efficiency, which probably lead to higher total feeding and absorption rates relative to intertidal individuals. PMID:26849372
Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms
NASA Astrophysics Data System (ADS)
Bryson, M.; Johnson-Roberson, M.; Murphy, R.
2012-07-01
Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.
NASA Astrophysics Data System (ADS)
Zwerschke, Nadescha; Bollen, Merle; Molis, Markus; Scrosati, Ricardo A.
2013-12-01
Environmental stress is a major factor structuring communities. An environmental stress model (ESM) predicts that overall species richness and diversity should follow a unimodal trend along the full stress gradient along which assemblages from a regional biota can occur (not to be confused with the intermediate disturbance hypothesis, which makes predictions only for basal species along an intermediate-to-high stress range). Past studies could only provide partial support for ESM predictions because of the limited stress range surveyed or a low sampling resolution. In this study, we measured overall species richness and diversity (considering all seaweeds and invertebrates) along the intertidal elevation gradient on two wave-sheltered rocky shores from Helgoland Island, on the NE Atlantic coast. In intertidal habitats, tides cause a pronounced gradient of increasing stress from low to high elevations. We surveyed up to nine contiguous elevation zones between the lowest intertidal elevation (low stress) and the high intertidal boundary (high stress). Nonlinear regression analyses revealed that overall species richness and diversity followed unimodal trends across elevations on the two studied shores. Therefore, our study suggests that the ESM might constitute a useful tool to predict local richness and diversity as a function of environmental stress. Performing tests on other systems (marine as well as terrestrial) should help to refine the model.
Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change
Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily
2015-01-01
Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological responses.
NASA Astrophysics Data System (ADS)
Ghosh, Subhajit; Das, Animesh; Bose, Santanu; Mandal, Nibir
2017-04-01
A moment magnitude (Mw) 7.8 earthquake associated with a Mw 7.3 aftershock hit the Gorkha region near Kathmandu, Nepal on April 25, 2015. The rupture propagated eastward for about 140 km and caused thousands of deaths. The focal mechanism of the Gorkha earthquake shows thrust sense over the mid-crustal steeply dipping ramp on the basal décollement known as the Main Himalayan Thrust (MHT). The MHT is the largest and fastest slipping continental megathrust over which the southward tapering Himalayan thrust wedge similar to the accretionary wedges is moving. The MHT ramps up to the surface beneath the Siwalik group of rocks as the Main Frontal Thrust (MFT). Below the MFT the basal décollement is flat until it reaches the mid-crustal ramp ( 20°) below the Himalayan klippen and then again it becomes flat. This geometry of the décollement is consistent with the balanced cross sections, microseismic data, magnetotelluric images, INDEPTH seismic reflection profile, present day stress distribution and fits well with the prominent topographic break (physiographic transition) in the Lesser Himalaya. Lithologically stratified sedimentary sequences in the upper crust are mechanically heterogeneous. It has been long known that the mechanical properties of the stratigraphic succession influence the resultant structural architecture of the fold and thrust belts. The rheologically weak stratigraphic horizon generally contains the basal décollement due to its relatively low frictional strength. Hence, any vertical or lateral change in frictional property may control the effective strength and the positions of the décollement in space. In the present study, we used non-cohesive sand and mica dust layers as analogue materials for simulating the strong and weak layers respectively in the sandbox apparatus. Experimental results with relatively high basal friction (μ=0.46) show that such a weak horizon at a shallow depth perturbs the sequential thrust progression, and forces a thrust to localize in the close vicinity of the weak zone, splaying from the basal décollement. Eventually, the weak horizon starts to deform by accumulating shear strain along it, leading to a new detachment at a shallow depth. At this stage, entire shallow part of the sandpack lying over the weak layer is deformed by closely-spaced imbricate thrusts. Extrapolating the model results to the natural prototype, we propose that the unmetamorphosed coal-shale-sand stone-black shale horizons below the Siwaliks as a key mechanical attribute to the basal décollement shift and the consequent flat-ramp-flat geometry of the MHT.
Characteristics of depositional environments in the Nakdong River Estuary, South Korea
NASA Astrophysics Data System (ADS)
Woo, Han Jun; Lee, Jun-Ho; Kang, Jeongwon; Choi, Jae Ung
2017-04-01
Most of the major Korean estuaries, under high pressure from development, have dams with environmental problems, including restricted water circulation, low water quality, decreased biodiversity and wetland destruction. The Nakdong estuary on the southeastern coast of Korean Peninsula is an enclosed type with two large estuarine dams that were constructed in 1934 and between 1983 and 1987. The construction of dams has led to geomorphologic evolution of the barrier islands within Nakdong estuary. The estuary has been characterized as barrier-lagoon system with various subenvironments and microtidal with a 1.5 m tidal range. The sedimentary analyses and monitoring short-term sedimentation rates were investigated to understand characteristics of depositional environments in barrier-lagoon system of the Nakdong River Estuary. The surface sediments in the system were classified into three sedimentary facies in summer 2015. Generally, sand sediment was dominated in the seaward side of barrier islands and muddy sand sediment was dominated on the lagoon. Sandy mud and mud sediments were distributed in the tidal flat near Noksan industrial district and channels near dams. Fourteen a priori subenvironments were distinguished based on differences in landscape characterization (sediment texture, salinity, total organic carbon, pH and C/N ratios). The dendrogram resulting from cluster analysis of environmental variables from 14 a priori subenvironments could be clustered into 4 groups that were characterized by different sediment texture and hydrodynamic energy. The short-term sedimentation rates were obtained seasonally from three lines by burying a plate at sub-bottom depth from May 2015 to May 2016. The deposition was dominated on the tidal flat between mainland and Jinudo (JW- Line) and Sinjado (SJ-Line) with the net deposition rate of 10.09 mm/year and 12.38 mm/year, respectively. The erosion was dominated on the tidal flats at Eulsukdo (ES-Line) on the east side of the system with an annual erosion rate of -13.15 mm/year. Two 12.5-hours anchoring surveys at inlets were revealed that net suspended sediments were transported to the open sea during a tidal cycle in summer 2015 and 2016. The sedimentary processes of the anthropogenically altered barrier-lagoon system in Nakdong estuary showed that sediments transported into the lagoon through inlets during flood condition and moved to westward and deposited sediments on the tidal flat and channels near dams in low energy environments. In the east side of the system, sediments flowed out the sea with discharge from Nakdong Dam during ebb condition. These data will provide an important baseline for future assessments of environmental quality on dam open.
NASA Astrophysics Data System (ADS)
Jen, C.-H.; Chyi, S.-J.; Hsiao, L.-L.; Wu, M.-S.; Lei, H.-F.
2012-04-01
The coast of southwestern Taiwan is mainly made of barriers and lagoons, which are prone to erosional and depositional processes. By using a serial maps, historical survey data, and RTK-GPS survey data, the changes of coast landforms are depicted. The maps being used in this study include (1) 1904 map(1:50000 scale), (2) 1920 map (1:50000 scale), (3) 1921 map (1:25000 scale), (4) 1924 map (1:25000 scale), (5) 1956 map (1:25000 scale), (6) 1975 map with ortho-rectified image (1:5000 scale), (7) 1983 map with ortho-rectified image (1:5000 scale), (8) 1989 map with ortho-rectified image (1:5000 scale), (9) 1992 map with ortho-rectified image (1:5000 scale), (10) 2001 map with ortho-rectified image (1:5000 scale). All maps are scanned and georeferenced to build a GIS archive for digitizing and further analysis. The results show that this coast was made of continuous sand barriers and lagoons. While lagoons were gradually shrinking, the sand barriers had remained stable from 1904 to 1924. After that, lagoons substantially deposited in the southern part and sand barriers became landward. In 1975 map, lagoons vanished and replaced with a tidal flat and tidal creeks. The following maps show that lagoons start to form again and sand barriers moving landward continuously. It is a significant sign of serious erosion in the coast. The RTK-GPS survey data in recent years show more detail of coast erosion and landform changes. The post-typhoon investigation results show that the seaward side of barrier island is eroded largely, especially for the two segments of the central part of the barrier island. Some depositions were found on the top of northern and central part of barrier dune, as well as washovers. In the southern barrier island, the depositions were carried to backshore and were obstructed in front of the bamboo piles and marine solid bags. The survey indicated the areas eroded by storm surge were gradually accumulating except for the beaches separate with plastic sheet piles and marine solid bags, especially the northern section-north, after the Typhoon Megi happened two month. In late February of 2011, there are some deposition on the top of primary dune, backdune and tidal flat. But the parts of seaward beach which wave can reach are continuously eroded, especially the central segment of the barrier island is mostly vulnerable. In particular, the latter part of southern beach was accumulated, concerning with alongshore current transport. In the late winter monsoon season, elevation changes are smaller than in the medium, corresponding with the wave condition. The latter part of south section begin to be eroded, the sediments may be taken away by the southward current. Area A, located the central of barrier island, attacked by wave continuously, elevation of dune decrease constantly, and then overwashed frequently. Keywords: sand barrier and lagoon coast, archive map analysis, RTK-GPS survey, overwash
Estuarine intertidal habitat use by birds in a Pacific Northwest coastal estuary
Results of a year long study of the distribution of birds across five intertidal estuarine habitats reveal that tide level largely controls use of the habitats by birds. A total census of all birds observed from shoreline observation locations was made at five tide levels over s...
The effects of benthic microalgae on sediment nutrient fluxes were investigated at three sites across the intertidal zone of lower Yaquina Bay. Study sites were selected where microalgae were present but where seagrass and mud shrimp were absent. Sediment columns were collected...