Solving the interval type-2 fuzzy polynomial equation using the ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
An Efficient Interval Type-2 Fuzzy CMAC for Chaos Time-Series Prediction and Synchronization.
Lee, Ching-Hung; Chang, Feng-Yu; Lin, Chih-Min
2014-03-01
This paper aims to propose a more efficient control algorithm for chaos time-series prediction and synchronization. A novel type-2 fuzzy cerebellar model articulation controller (T2FCMAC) is proposed. In some special cases, this T2FCMAC can be reduced to an interval type-2 fuzzy neural network, a fuzzy neural network, and a fuzzy cerebellar model articulation controller (CMAC). So, this T2FCMAC is a more generalized network with better learning ability, thus, it is used for the chaos time-series prediction and synchronization. Moreover, this T2FCMAC realizes the un-normalized interval type-2 fuzzy logic system based on the structure of the CMAC. It can provide better capabilities for handling uncertainty and more design degree of freedom than traditional type-1 fuzzy CMAC. Unlike most of the interval type-2 fuzzy system, the type-reduction of T2FCMAC is bypassed due to the property of un-normalized interval type-2 fuzzy logic system. This causes T2FCMAC to have lower computational complexity and is more practical. For chaos time-series prediction and synchronization applications, the training architectures with corresponding convergence analyses and optimal learning rates based on Lyapunov stability approach are introduced. Finally, two illustrated examples are presented to demonstrate the performance of the proposed T2FCMAC.
Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator.
Hwang, Ji-Hwan; Kang, Young-Chang; Park, Jong-Wook; Kim, Dong W
2017-01-01
In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC) for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL) control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.
Solutions of interval type-2 fuzzy polynomials using a new ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
An Interval Type-2 Fuzzy Multiple Echelon Supply Chain Model
NASA Astrophysics Data System (ADS)
Miller, Simon; John, Robert
Planning resources for a supply chain is a major factor determining its success or failure. In this paper we build on previous work introducing an Interval Type-2 Fuzzy Logic model of a multiple echelon supply chain. It is believed that the additional degree of uncertainty provided by Interval Type-2 Fuzzy Logic will allow for better representation of the uncertainty and vagueness present in resource planning models. First, the subject of Supply Chain Management is introduced, then some background is given on related work using Type-1 Fuzzy Logic. A description of the Interval Type-2 Fuzzy model is given, and a test scenario detailed. A Genetic Algorithm uses the model to search for a near-optimal plan for the scenario. A discussion of the results follows, along with conclusions and details of intended further work.
Fuzzy feature selection based on interval type-2 fuzzy sets
NASA Astrophysics Data System (ADS)
Cherif, Sahar; Baklouti, Nesrine; Alimi, Adel; Snasel, Vaclav
2017-03-01
When dealing with real world data; noise, complexity, dimensionality, uncertainty and irrelevance can lead to low performance and insignificant judgment. Fuzzy logic is a powerful tool for controlling conflicting attributes which can have similar effects and close meanings. In this paper, an interval type-2 fuzzy feature selection is presented as a new approach for removing irrelevant features and reducing complexity. We demonstrate how can Feature Selection be joined with Interval Type-2 Fuzzy Logic for keeping significant features and hence reducing time complexity. The proposed method is compared with some other approaches. The results show that the number of attributes is proportionally small.
NASA Astrophysics Data System (ADS)
Pan, Yongping; Huang, Daoping
2011-03-01
In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.
Juang, Chia-Feng; Hsu, Chia-Hung
2009-12-01
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.
An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.
Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin
2015-07-01
We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.
Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.
El-Bardini, Mohammad; El-Nagar, Ahmad M
2014-05-01
In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Kumar, Anupam; Kumar, Vijay
2017-05-01
In this paper, a novel concept of an interval type-2 fractional order fuzzy PID (IT2FO-FPID) controller, which requires fractional order integrator and fractional order differentiator, is proposed. The incorporation of Takagi-Sugeno-Kang (TSK) type interval type-2 fuzzy logic controller (IT2FLC) with fractional controller of PID-type is investigated for time response measure due to both unit step response and unit load disturbance. The resulting IT2FO-FPID controller is examined on different delayed linear and nonlinear benchmark plants followed by robustness analysis. In order to design this controller, fractional order integrator-differentiator operators are considered as design variables including input-output scaling factors. A new hybridized algorithm named as artificial bee colony-genetic algorithm (ABC-GA) is used to optimize the parameters of the controller while minimizing weighted sum of integral of time absolute error (ITAE) and integral of square of control output (ISCO). To assess the comparative performance of the IT2FO-FPID, authors compared it against existing controllers, i.e., interval type-2 fuzzy PID (IT2-FPID), type-1 fractional order fuzzy PID (T1FO-FPID), type-1 fuzzy PID (T1-FPID), and conventional PID controllers. Furthermore, to show the effectiveness of the proposed controller, the perturbed processes along with the larger dead time are tested. Moreover, the proposed controllers are also implemented on multi input multi output (MIMO), coupled, and highly complex nonlinear two-link robot manipulator system in presence of un-modeled dynamics. Finally, the simulation results explicitly indicate that the performance of the proposed IT2FO-FPID controller is superior to its conventional counterparts in most of the cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.
Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun
2016-10-01
This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.
Zeghlache, Samir; Benslimane, Tarak; Bouguerra, Abderrahmen
2017-11-01
In this paper, a robust controller for a three degree of freedom (3 DOF) helicopter control is proposed in presence of actuator and sensor faults. For this purpose, Interval type-2 fuzzy logic control approach (IT2FLC) and sliding mode control (SMC) technique are used to design a controller, named active fault tolerant interval type-2 Fuzzy Sliding mode controller (AFTIT2FSMC) based on non-linear adaptive observer to estimate and detect the system faults for each subsystem of the 3-DOF helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy controller. Exponential stability of the closed loop is guaranteed by using the Lyapunov method. The simulation results show that the AFTIT2FSMC can greatly alleviate the chattering effect, providing good tracking performance, even in presence of actuator and sensor faults. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Li, Zhao-Liang
2018-01-01
Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548
NASA Astrophysics Data System (ADS)
Altin, Necmi
2018-05-01
An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.
A generic method for the evaluation of interval type-2 fuzzy linguistic summaries.
Boran, Fatih Emre; Akay, Diyar
2014-09-01
Linguistic summarization has turned out to be an important knowledge discovery technique by providing the most relevant natural language-based sentences in a human consistent manner. While many studies on linguistic summarization have handled ordinary fuzzy sets [type-1 fuzzy set (T1FS)] for modeling words, only few of them have dealt with interval type-2 fuzzy sets (IT2FS) even though IT2FS is better capable of handling uncertainties associated with words. Furthermore, the existent studies work with the scalar cardinality based degree of truth which might lead to inconsistency in the evaluation of interval type-2 fuzzy (IT2F) linguistic summaries. In this paper, to overcome this shortcoming, we propose a novel probabilistic degree of truth for evaluating IT2F linguistic summaries in the forms of type-I and type-II quantified sentences. We also extend the properties that should be fulfilled by any degree of truth on linguistic summarization with T1FS to IT2F environment. We not only prove that our probabilistic degree of truth satisfies the given properties, but also illustrate by examples that it provides more consistent results when compared to the existing degree of truth in the literature. Furthermore, we carry out an application on linguistic summarization of time series data of Europe Brent Spot Price, along with a comparison of the results achieved with our approach and that of the existing degree of truth in the literature.
NASA Astrophysics Data System (ADS)
Zamri, Nurnadiah; Abdullah, Lazim
2014-06-01
Flood control project is a complex issue which takes economic, social, environment and technical attributes into account. Selection of the best flood control project requires the consideration of conflicting quantitative and qualitative evaluation criteria. When decision-makers' judgment are under uncertainty, it is relatively difficult for them to provide exact numerical values. The interval type-2 fuzzy set (IT2FS) is a strong tool which can deal with the uncertainty case of subjective, incomplete, and vague information. Besides, it helps to solve for some situations where the information about criteria weights for alternatives is completely unknown. Therefore, this paper is adopted the information interval type-2 entropy concept into the weighting process of interval type-2 fuzzy TOPSIS. This entropy weight is believed can effectively balance the influence of uncertainty factors in evaluating attribute. Then, a modified ranking value is proposed in line with the interval type-2 entropy weight. Quantitative and qualitative factors that normally linked with flood control project are considered for ranking. Data in form of interval type-2 linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. Study is considered for the whole of Malaysia. From the analysis, it shows that diversion scheme yielded the highest closeness coefficient at 0.4807. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the diversion scheme recorded the first rank among five causes.
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2015-11-01
In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964
On some nonclassical algebraic properties of interval-valued fuzzy soft sets.
Liu, Xiaoyan; Feng, Feng; Zhang, Hui
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar
2016-01-01
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062
A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear.
Zarandi, M H Fazel; Khadangi, A; Karimi, F; Turksen, I B
2016-12-01
Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. λ-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of "η" value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.
NASA Astrophysics Data System (ADS)
Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie
2017-09-01
Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.
Fuzzy based finger vein recognition with rotation invariant feature matching
NASA Astrophysics Data System (ADS)
Ezhilmaran, D.; Joseph, Rose Bindu
2017-11-01
Finger vein recognition is a promising biometric with commercial applications which is explored widely in the recent years. In this paper, a finger vein recognition system is proposed using rotation invariant feature descriptors for matching after enhancing the finger vein images with an interval type-2 fuzzy method. SIFT features are extracted and matched using a matching score based on Euclidian distance. Rotation invariance of the proposed method is verified in the experiment and the results are compared with SURF matching and minutiae matching. It is seen that rotation invariance is verified and the poor quality issues are solved efficiently with the designed system of finger vein recognition during the analysis. The experiments underlines the robustness and reliability of the interval type-2 fuzzy enhancement and SIFT feature matching.
Khanesar, Mojtaba Ahmadieh; Kayacan, Erdal; Reyhanoglu, Mahmut; Kaynak, Okyay
2015-04-01
A novel type-2 fuzzy membership function (MF) in the form of an ellipse has recently been proposed in literature, the parameters of which that represent uncertainties are de-coupled from its parameters that determine the center and the support. This property has enabled the proposers to make an analytical comparison of the noise rejection capabilities of type-1 fuzzy logic systems with its type-2 counterparts. In this paper, a sliding mode control theory-based learning algorithm is proposed for an interval type-2 fuzzy logic system which benefits from elliptic type-2 fuzzy MFs. The learning is based on the feedback error learning method and not only the stability of the learning is proved but also the stability of the overall system is shown by adding an additional component to the control scheme to ensure robustness. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulations results show that the proposed control algorithm gives better performance results in terms of a smaller steady state error and a faster transient response as compared to conventional control algorithms.
Zhou, Haibo; Ying, Hao
2017-09-01
A conventional controller's explicit input-output mathematical relationship, also known as its analytical structure, is always available for analysis and design of a control system. In contrast, virtually all type-2 (T2) fuzzy controllers are treated as black-box controllers in the literature in that their analytical structures are unknown, which inhibits precise and comprehensive understanding and analysis. In this regard, a long-standing fundamental issue remains unresolved: how a T2 fuzzy set's footprint of uncertainty, a key element differentiating a T2 controller from a type-1 (T1) controller, affects a controller's analytical structure. In this paper, we describe an innovative technique for deriving analytical structures of a class of typical interval T2 (IT2) TS fuzzy controllers. This technique makes it possible to analyze the analytical structures of the controllers to reveal the role of footprints of uncertainty in shaping the structures. Specifically, we have mathematically proven that under certain conditions, the larger the footprints, the more the IT2 controllers resemble linear or piecewise linear controllers. When the footprints are at their maximum, the IT2 controllers actually become linear or piecewise linear controllers. That is to say the smaller the footprints, the more nonlinear the controllers. The most nonlinear IT2 controllers are attained at zero footprints, at which point they become T1 controllers. This finding implies that sometimes if strong nonlinearity is most important and desired, one should consider using a smaller footprint or even just a T1 fuzzy controller. This paper exemplifies the importance and value of the analytical structure approach for comprehensive analysis of T2 fuzzy controllers.
NASA Astrophysics Data System (ADS)
Lin, Tsung-Chih
2010-12-01
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.
NASA Astrophysics Data System (ADS)
Tian, Wenli; Cao, Chengxuan
2017-03-01
A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.
A robust adaptive load frequency control for micro-grids.
Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav
2016-11-01
The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Type-2 fuzzy set extension of DEMATEL method combined with perceptual computing for decision making
NASA Astrophysics Data System (ADS)
Hosseini, Mitra Bokaei; Tarokh, Mohammad Jafar
2013-05-01
Most decision making methods used to evaluate a system or demonstrate the weak and strength points are based on fuzzy sets and evaluate the criteria with words that are modeled with fuzzy sets. The ambiguity and vagueness of the words and different perceptions of a word are not considered in these methods. For this reason, the decision making methods that consider the perceptions of decision makers are desirable. Perceptual computing is a subjective judgment method that considers that words mean different things to different people. This method models words with interval type-2 fuzzy sets that consider the uncertainty of the words. Also, there are interrelations and dependency between the decision making criteria in the real world; therefore, using decision making methods that cannot consider these relations is not feasible in some situations. The Decision-Making Trail and Evaluation Laboratory (DEMATEL) method considers the interrelations between decision making criteria. The current study used the combination of DEMATEL and perceptual computing in order to improve the decision making methods. For this reason, the fuzzy DEMATEL method was extended into type-2 fuzzy sets in order to obtain the weights of dependent criteria based on the words. The application of the proposed method is presented for knowledge management evaluation criteria.
NASA Astrophysics Data System (ADS)
Ramli, Nazirah; Mutalib, Siti Musleha Ab; Mohamad, Daud
2017-08-01
Fuzzy time series forecasting model has been proposed since 1993 to cater for data in linguistic values. Many improvement and modification have been made to the model such as enhancement on the length of interval and types of fuzzy logical relation. However, most of the improvement models represent the linguistic term in the form of discrete fuzzy sets. In this paper, fuzzy time series model with data in the form of trapezoidal fuzzy numbers and natural partitioning length approach is introduced for predicting the unemployment rate. Two types of fuzzy relations are used in this study which are first order and second order fuzzy relation. This proposed model can produce the forecasted values under different degree of confidence.
A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic
NASA Astrophysics Data System (ADS)
Purnomo, Muhammad Ridwan Andi; Helmi Shintya Dewi, Intan
2016-01-01
This paper presents the development of an assessment models for manufacturing quality using Interval Type-2 Fuzzy Logic (IT2-FL). The proposed model is developed based on one of building block in sustainable supply chain management (SSCM), which is benefit of SCM, and focuses more on quality. The proposed model can be used to predict the quality level of production chain in a company. The quality of production will affect to the quality of product. Practically, quality of production is unique for every type of production system. Hence, experts opinion will play major role in developing the assessment model. The model will become more complicated when the data contains ambiguity and uncertainty. In this study, IT2-FL is used to model the ambiguity and uncertainty. A case study taken from a company in Yogyakarta shows that the proposed manufacturing quality assessment model can work well in determining the quality level of production.
NASA Astrophysics Data System (ADS)
Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei
This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Su, Zhi-xin; Xia, Guo-ping; Chen, Ming-yuan
2011-11-01
In this paper, we define various induced intuitionistic fuzzy aggregation operators, including induced intuitionistic fuzzy ordered weighted averaging (OWA) operator, induced intuitionistic fuzzy hybrid averaging (I-IFHA) operator, induced interval-valued intuitionistic fuzzy OWA operator, and induced interval-valued intuitionistic fuzzy hybrid averaging (I-IIFHA) operator. We also establish various properties of these operators. And then, an approach based on I-IFHA operator and intuitionistic fuzzy weighted averaging (WA) operator is developed to solve multi-attribute group decision-making (MAGDM) problems. In such problems, attribute weights and the decision makers' (DMs') weights are real numbers and attribute values provided by the DMs are intuitionistic fuzzy numbers (IFNs), and an approach based on I-IIFHA operator and interval-valued intuitionistic fuzzy WA operator is developed to solve MAGDM problems where the attribute values provided by the DMs are interval-valued IFNs. Furthermore, induced intuitionistic fuzzy hybrid geometric operator and induced interval-valued intuitionistic fuzzy hybrid geometric operator are proposed. Finally, a numerical example is presented to illustrate the developed approaches.
Ou, Guoliang; Tan, Shukui; Zhou, Min; Lu, Shasha; Tao, Yinghui; Zhang, Zuo; Zhang, Lu; Yan, Danping; Guan, Xingliang; Wu, Gang
2017-12-15
An interval chance-constrained fuzzy land-use allocation (ICCF-LUA) model is proposed in this study to support solving land resource management problem associated with various environmental and ecological constraints at a watershed level. The ICCF-LUA model is based on the ICCF (interval chance-constrained fuzzy) model which is coupled with interval mathematical model, chance-constrained programming model and fuzzy linear programming model and can be used to deal with uncertainties expressed as intervals, probabilities and fuzzy sets. Therefore, the ICCF-LUA model can reflect the tradeoff between decision makers and land stakeholders, the tradeoff between the economical benefits and eco-environmental demands. The ICCF-LUA model has been applied to the land-use allocation of Wujiang watershed, Guizhou Province, China. The results indicate that under highly land suitable conditions, optimized area of cultivated land, forest land, grass land, construction land, water land, unused land and landfill in Wujiang watershed will be [5015, 5648] hm 2 , [7841, 7965] hm 2 , [1980, 2056] hm 2 , [914, 1423] hm 2 , [70, 90] hm 2 , [50, 70] hm 2 and [3.2, 4.3] hm 2 , the corresponding system economic benefit will be between 6831 and 7219 billion yuan. Consequently, the ICCF-LUA model can effectively support optimized land-use allocation problem in various complicated conditions which include uncertainties, risks, economic objective and eco-environmental constraints. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multicriteria Decision-Making Approach with Hesitant Interval-Valued Intuitionistic Fuzzy Sets
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Chen, Xiao-hong
2014-01-01
The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs). Then, some operations on HIVIFSs are introduced in detail, and their properties are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based on t-conorms and t-norms are proposed, which can be used to aggregate decision-makers' information in multicriteria decision-making (MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einstein t-conorms and t-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and a comparison analysis. PMID:24983009
Evaluation about the performance of E-government based on interval-valued intuitionistic fuzzy set.
Zhang, Shuai; Yu, Dejian; Wang, Yan; Zhang, Wenyu
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China.
FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.
Li, Pu; Chen, Bing
2011-04-01
Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fan, Yurui; Huang, Guohe; Veawab, Amornvadee
2012-01-01
In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.
Liu, Fang; Zhang, Wei-Guo
2014-08-01
Due to the vagueness of real-world environments and the subjective nature of human judgments, it is natural for experts to estimate their judgements by using incomplete interval fuzzy preference relations. In this paper, based on the technique for order preference by similarity to ideal solution method, we present a consensus model for group decision-making (GDM) with incomplete interval fuzzy preference relations. To do this, we first define a new consistency measure for incomplete interval fuzzy preference relations. Second, a goal programming model is proposed to estimate the missing interval preference values and it is guided by the consistency property. Third, an ideal interval fuzzy preference relation is constructed by using the induced ordered weighted averaging operator, where the associated weights of characterizing the operator are based on the defined consistency measure. Fourth, a similarity degree between complete interval fuzzy preference relations and the ideal one is defined. The similarity degree is related to the associated weights, and used to aggregate the experts' preference relations in such a way that more importance is given to ones with the higher similarity degree. Finally, a new algorithm is given to solve the GDM problem with incomplete interval fuzzy preference relations, which is further applied to partnership selection in formation of virtual enterprises.
Wang, Yan; Xi, Chengyu; Zhang, Shuai; Yu, Dejian; Zhang, Wenyu; Li, Yong
2014-01-01
The recent government tendering process being conducted in an electronic way is becoming an inevitable affair for numerous governmental agencies to further exploit the superiorities of conventional tendering. Thus, developing an effective web-based bid evaluation methodology so as to realize an efficient and effective government E-tendering (GeT) system is imperative. This paper firstly investigates the potentiality of employing fuzzy analytic hierarchy process (AHP) along with fuzzy gray relational analysis (GRA) for optimal selection of candidate tenderers in GeT process with consideration of a hybrid fuzzy environment with incomplete weight information. We proposed a novel hybrid fuzzy AHP-GRA (HFAHP-GRA) method that combines an extended fuzzy AHP with a modified fuzzy GRA. The extended fuzzy AHP which combines typical AHP with interval AHP is proposed to obtain the exact weight information, and the modified fuzzy GRA is applied to aggregate different types of evaluation information so as to identify the optimal candidate tenderers. Finally, a prototype system is built and validated with an illustrative example for GeT to confirm the feasibility of our approach. PMID:25057506
Wang, Yan; Xi, Chengyu; Zhang, Shuai; Yu, Dejian; Zhang, Wenyu; Li, Yong
2014-01-01
The recent government tendering process being conducted in an electronic way is becoming an inevitable affair for numerous governmental agencies to further exploit the superiorities of conventional tendering. Thus, developing an effective web-based bid evaluation methodology so as to realize an efficient and effective government E-tendering (GeT) system is imperative. This paper firstly investigates the potentiality of employing fuzzy analytic hierarchy process (AHP) along with fuzzy gray relational analysis (GRA) for optimal selection of candidate tenderers in GeT process with consideration of a hybrid fuzzy environment with incomplete weight information. We proposed a novel hybrid fuzzy AHP-GRA (HFAHP-GRA) method that combines an extended fuzzy AHP with a modified fuzzy GRA. The extended fuzzy AHP which combines typical AHP with interval AHP is proposed to obtain the exact weight information, and the modified fuzzy GRA is applied to aggregate different types of evaluation information so as to identify the optimal candidate tenderers. Finally, a prototype system is built and validated with an illustrative example for GeT to confirm the feasibility of our approach.
Evaluation about the Performance of E-Government Based on Interval-Valued Intuitionistic Fuzzy Set
Zhang, Shuai; Wang, Yan
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China. PMID:24707196
A fast algorithm to compute precise type-2 centroids for real-time control applications.
Chakraborty, Sumantra; Konar, Amit; Ralescu, Anca; Pal, Nikhil R
2015-02-01
An interval type-2 fuzzy set (IT2 FS) is characterized by its upper and lower membership functions containing all possible embedded fuzzy sets, which together is referred to as the footprint of uncertainty (FOU). The FOU results in a span of uncertainty measured in the defuzzified space and is determined by the positional difference of the centroids of all the embedded fuzzy sets taken together. This paper provides a closed-form formula to evaluate the span of uncertainty of an IT2 FS. The closed-form formula offers a precise measurement of the degree of uncertainty in an IT2 FS with a runtime complexity less than that of the classical iterative Karnik-Mendel algorithm and other formulations employing the iterative Newton-Raphson algorithm. This paper also demonstrates a real-time control application using the proposed closed-form formula of centroids with reduced root mean square error and computational overhead than those of the existing methods. Computer simulations for this real-time control application indicate that parallel realization of the IT2 defuzzification outperforms its competitors with respect to maximum overshoot even at high sampling rates. Furthermore, in the presence of measurement noise in system (plant) states, the proposed IT2 FS based scheme outperforms its type-1 counterpart with respect to peak overshoot and root mean square error in plant response.
High-efficiency induction motor drives using type-2 fuzzy logic
NASA Astrophysics Data System (ADS)
Khemis, A.; Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Khamari, D.; Menacer, A.
2018-03-01
In this work we propose to develop an algorithm for improving the efficiency of an induction motor using type-2 fuzzy logic. Vector control is used to control this motor due to the high performances of this strategy. The type-2 fuzzy logic regulators are developed to obtain the optimal rotor flux for each torque load by minimizing the copper losses. We have compared the performances of our fuzzy type-2 algorithm with the type-1 fuzzy one proposed in the literature. The proposed algorithm is tested with success on the dSPACE DS1104 system even if there is parameters variance.
NASA Astrophysics Data System (ADS)
Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei
2017-06-01
Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
NASA Astrophysics Data System (ADS)
Liu, Bingsheng; Fu, Meiqing; Zhang, Shuibo; Xue, Bin; Zhou, Qi; Zhang, Shiruo
2018-01-01
The Choquet integral (IL) operator is an effective approach for handling interdependence among decision attributes in complex decision-making problems. However, the fuzzy measures of attributes and attribute sets required by IL are difficult to achieve directly, which limits the application of IL. This paper proposes a new method for determining fuzzy measures of attributes by extending Marichal's concept of entropy for fuzzy measure. To well represent the assessment information, interval-valued 2-tuple linguistic context is utilised to represent information. Then, we propose a Choquet integral operator in an interval-valued 2-tuple linguistic environment, which can effectively handle the correlation between attributes. In addition, we apply these methods to solve multi-attribute group decision-making problems. The feasibility and validity of the proposed operator is demonstrated by comparisons with other models in illustrative example part.
Ratio-based lengths of intervals to improve fuzzy time series forecasting.
Huarng, Kunhuang; Yu, Tiffany Hui-Kuang
2006-04-01
The objective of this study is to explore ways of determining the useful lengths of intervals in fuzzy time series. It is suggested that ratios, instead of equal lengths of intervals, can more properly represent the intervals among observations. Ratio-based lengths of intervals are, therefore, proposed to improve fuzzy time series forecasting. Algebraic growth data, such as enrollments and the stock index, and exponential growth data, such as inventory demand, are chosen as the forecasting targets, before forecasting based on the various lengths of intervals is performed. Furthermore, sensitivity analyses are also carried out for various percentiles. The ratio-based lengths of intervals are found to outperform the effective lengths of intervals, as well as the arbitrary ones in regard to the different statistical measures. The empirical analysis suggests that the ratio-based lengths of intervals can also be used to improve fuzzy time series forecasting.
Peng, Ding-Hong; Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches.
Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches. PMID:24987747
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
NASA Astrophysics Data System (ADS)
Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.
2018-03-01
This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.
Xu, Zeshui
2007-12-01
Interval utility values, interval fuzzy preference relations, and interval multiplicative preference relations are three common uncertain-preference formats used by decision-makers to provide their preference information in the process of decision making under fuzziness. This paper is devoted in investigating multiple-attribute group-decision-making problems where the attribute values are not precisely known but the value ranges can be obtained, and the decision-makers provide their preference information over attributes by three different uncertain-preference formats i.e., 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first utilize some functions to normalize the uncertain decision matrix and then transform it into an expected decision matrix. We establish a goal-programming model to integrate the expected decision matrix and all three different uncertain-preference formats from which the attribute weights and the overall attribute values of alternatives can be obtained. Then, we use the derived overall attribute values to get the ranking of the given alternatives and to select the best one(s). The model not only can reflect both the subjective considerations of all decision-makers and the objective information but also can avoid losing and distorting the given objective and subjective decision information in the process of information integration. Furthermore, we establish some models to solve the multiple-attribute group-decision-making problems with three different preference formats: 1) utility values; 2) fuzzy preference relations; and 3) multiplicative preference relations. Finally, we illustrate the applicability and effectiveness of the developed models with two practical examples.
The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.
Kumar, Mohit; Yadav, Shiv Prasad
2012-07-01
In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Simic, Vladimir
2015-01-01
End-of-life vehicles (ELVs) are vehicles that have reached the end of their useful lives and are no longer registered or licensed for use. The ELV recycling problem has become very serious in the last decade and more and more efforts are made in order to reduce the impact of ELVs on the environment. This paper proposes the fuzzy risk explicit interval linear programming model for ELV recycling planning in the EU. It has advantages in reflecting uncertainties presented in terms of intervals in the ELV recycling systems and fuzziness in decision makers' preferences. The formulated model has been applied to a numerical study in which different decision maker types and several ELV types under two EU ELV Directive legislative cases were examined. This study is conducted in order to examine the influences of the decision maker type, the α-cut level, the EU ELV Directive and the ELV type on decisions about vehicle hulks procuring, storing unprocessed hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Decision maker type can influence quantity of vehicle hulks kept in storages. The EU ELV Directive and decision maker type have no influence on which vehicle hulk type is kept in the storage. Vehicle hulk type, the EU ELV Directive and decision maker type do not influence the creation of metal allocation plans, since each isolated metal has its regular destination. The valid EU ELV Directive eco-efficiency quotas can be reached even when advanced thermal treatment plants are excluded from the ELV recycling process. The introduction of the stringent eco-efficiency quotas will significantly reduce the quantities of land-filled waste fractions regardless of the type of decision makers who will manage vehicle recycling system. In order to reach these stringent quotas, significant quantities of sorted waste need to be processed in advanced thermal treatment plants. Proposed model can serve as the support for the European vehicle recycling managers in creating more successful ELV recycling plans. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas
2004-08-01
Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.
NASA Astrophysics Data System (ADS)
Luo, Bin; Lin, Lin; Zhong, ShiSheng
2018-02-01
In this research, we propose a preference-guided optimisation algorithm for multi-criteria decision-making (MCDM) problems with interval-valued fuzzy preferences. The interval-valued fuzzy preferences are decomposed into a series of precise and evenly distributed preference-vectors (reference directions) regarding the objectives to be optimised on the basis of uniform design strategy firstly. Then the preference information is further incorporated into the preference-vectors based on the boundary intersection approach, meanwhile, the MCDM problem with interval-valued fuzzy preferences is reformulated into a series of single-objective optimisation sub-problems (each sub-problem corresponds to a decomposed preference-vector). Finally, a preference-guided optimisation algorithm based on MOEA/D (multi-objective evolutionary algorithm based on decomposition) is proposed to solve the sub-problems in a single run. The proposed algorithm incorporates the preference-vectors within the optimisation process for guiding the search procedure towards a more promising subset of the efficient solutions matching the interval-valued fuzzy preferences. In particular, lots of test instances and an engineering application are employed to validate the performance of the proposed algorithm, and the results demonstrate the effectiveness and feasibility of the algorithm.
Guo, P; Huang, G H
2010-03-01
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.
A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.
Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip
2014-11-01
This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint
2008-10-01
This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.
Takagi-Sugeno-Kang fuzzy models of the rainfall-runoff transformation
NASA Astrophysics Data System (ADS)
Jacquin, A. P.; Shamseldin, A. Y.
2009-04-01
Fuzzy inference systems, or fuzzy models, are non-linear models that describe the relation between the inputs and the output of a real system using a set of fuzzy IF-THEN rules. This study deals with the application of Takagi-Sugeno-Kang type fuzzy models to the development of rainfall-runoff models operating on a daily basis, using a system based approach. The models proposed are classified in two types, each intended to account for different kinds of dominant non-linear effects in the rainfall-runoff relationship. Fuzzy models type 1 are intended to incorporate the effect of changes in the prevailing soil moisture content, while fuzzy models type 2 address the phenomenon of seasonality. Each model type consists of five fuzzy models of increasing complexity; the most complex fuzzy model of each model type includes all the model components found in the remaining fuzzy models of the respective type. The models developed are applied to data of six catchments from different geographical locations and sizes. Model performance is evaluated in terms of two measures of goodness of fit, namely the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the fuzzy models are compared with those of the Simple Linear Model, the Linear Perturbation Model and the Nearest Neighbour Linear Perturbation Model, which use similar input information. Overall, the results of this study indicate that Takagi-Sugeno-Kang fuzzy models are a suitable alternative for modelling the rainfall-runoff relationship. However, it is also observed that increasing the complexity of the model structure does not necessarily produce an improvement in the performance of the fuzzy models. The relative importance of the different model components in determining the model performance is evaluated through sensitivity analysis of the model parameters in the accompanying study presented in this meeting. Acknowledgements: We would like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.
NASA Astrophysics Data System (ADS)
Sun, Y.; Li, Y. P.; Huang, G. H.
2012-06-01
In this study, a queuing-theory-based interval-fuzzy robust two-stage programming (QB-IRTP) model is developed through introducing queuing theory into an interval-fuzzy robust two-stage (IRTP) optimization framework. The developed QB-IRTP model can not only address highly uncertain information for the lower and upper bounds of interval parameters but also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. Moreover, it can reflect uncertainties in queuing theory problems. The developed method has been applied to a case of long-term municipal solid waste (MSW) management planning. Interval solutions associated with different waste-generation rates, different waiting costs and different arriving rates have been obtained. They can be used for generating decision alternatives and thus help managers to identify desired MSW management policies under various economic objectives and system reliability constraints.
Interval Neutrosophic Sets and Their Application in Multicriteria Decision Making Problems
Zhang, Hong-yu; Wang, Jian-qiang; Chen, Xiao-hong
2014-01-01
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method. PMID:24695916
Interval neutrosophic sets and their application in multicriteria decision making problems.
Zhang, Hong-yu; Wang, Jian-qiang; Chen, Xiao-hong
2014-01-01
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method.
Fuzzy rationality and parameter elicitation in decision analysis
NASA Astrophysics Data System (ADS)
Nikolova, Natalia D.; Tenekedjiev, Kiril I.
2010-07-01
It is widely recognised by decision analysts that real decision-makers always make estimates in an interval form. An overview of techniques to find an optimal alternative among such with imprecise and interval probabilities is presented. Scalarisation methods are outlined as most appropriate. A proper continuation of such techniques is fuzzy rational (FR) decision analysis. A detailed representation of the elicitation process influenced by fuzzy rationality is given. The interval character of probabilities leads to the introduction of ribbon functions, whose general form and special cases are compared with the p-boxes. As demonstrated, approximation of utilities in FR decision analysis does not depend on the probabilities, but the approximation of probabilities is dependent on preferences.
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Huang, Guo H.
2011-12-01
Groundwater pollution has gathered more and more attention in the past decades. Conducting an assessment of groundwater contamination risk is desired to provide sound bases for supporting risk-based management decisions. Therefore, the objective of this study is to develop an integrated fuzzy stochastic approach to evaluate risks of BTEX-contaminated groundwater under multiple uncertainties. It consists of an integrated interval fuzzy subsurface modeling system (IIFMS) and an integrated fuzzy second-order stochastic risk assessment (IFSOSRA) model. The IIFMS is developed based on factorial design, interval analysis, and fuzzy sets approach to predict contaminant concentrations under hybrid uncertainties. Two input parameters (longitudinal dispersivity and porosity) are considered to be uncertain with known fuzzy membership functions, and intrinsic permeability is considered to be an interval number with unknown distribution information. A factorial design is conducted to evaluate interactive effects of the three uncertain factors on the modeling outputs through the developed IIFMS. The IFSOSRA model can systematically quantify variability and uncertainty, as well as their hybrids, presented as fuzzy, stochastic and second-order stochastic parameters in health risk assessment. The developed approach haw been applied to the management of a real-world petroleum-contaminated site within a western Canada context. The results indicate that multiple uncertainties, under a combination of information with various data-quality levels, can be effectively addressed to provide supports in identifying proper remedial efforts. A unique contribution of this research is the development of an integrated fuzzy stochastic approach for handling various forms of uncertainties associated with simulation and risk assessment efforts.
NASA Astrophysics Data System (ADS)
Niakan, F.; Vahdani, B.; Mohammadi, M.
2015-12-01
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.
Computer Modelling and Simulation of Solar PV Array Characteristics
NASA Astrophysics Data System (ADS)
Gautam, Nalin Kumar
2003-02-01
The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the lifetime of a solar cell had lack of memory or aging property, which meant that no matter how long (say, t) the cell had been operational, the probability that it would last an additional time ?t was independent of t. The operational life of the solar cell above a lowest admissible efficiency was considered as the upper bound of its expected lifetime. The value of the upper bound on the expected life of solar cell was evaluated using the information provided by the manufacturers of the single-crystalline silicon solar cells. Then on the basis of these lifetimes, the expected operational lifetimes of the array systems were obtained. Since the investigations of the effects of collector orientation on the performance of an array require the continuous values of global solar radiation on a surface, a method to estimate the global solar radiation on a surface (horizontal or tilted) was also proposed. The cloudiness index was defined as the fraction of extraterrestrial radiation that reached the earth's surface when the sky above the location of interest was obscured by the cloud cover. The cloud cover at the location of interest during any time interval of a day was assumed to follow the fuzzy random phenomenon. The cloudiness index, therefore, was considered as a fuzzy random variable that accounted for the cloud cover at the location of interest during any time interval of a day. This variable was assumed to depend on four other fuzzy random variables that, respectively, accounted for the cloud cover corresponding to the 1) type of cloud group, 2) climatic region, 3) season with most of the precipitation, and 4) type of precipitation at the location of interest during any time interval. All possible types of cloud covers were categorized into five types of cloud groups. Each cloud group was considered to be a fuzzy subset. In this model, the cloud cover at the location of interest during a time interval was considered to be the clouds that obscure the sky above the location. The cloud covers, with all possible types of clouds having transmissivities corresponding to values in the membership range of a fuzzy subset (i.e., a type of cloud group), were considered to be the membership elements of that fuzzy subset. The transmissivities of different types of cloud covers in a cloud group corresponded to the values in the membership range of that cloud group. Predicate logic (i.e., if---then---, else---, conditions) was used to set the relationship between all the fuzzy random variables. The values of the above-mentioned fuzzy random variables were evaluated to provide the value of cloudiness index for each time interval at the location of interest. For each case of the fuzzy random variable, heuristic approach was used to identify subjectively the range ([a, b], where a and b were real numbers with in [0, 1] such that a
Wang, S; Huang, G H
2013-03-15
Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network
NASA Astrophysics Data System (ADS)
Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.
2017-05-01
The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.
NASA Astrophysics Data System (ADS)
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Jim Alves-Foss
2011-08-01
Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL providesmore » a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.« less
Optimal solution of full fuzzy transportation problems using total integral ranking
NASA Astrophysics Data System (ADS)
Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.
2018-03-01
Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.
Stability analysis of fuzzy parametric uncertain systems.
Bhiwani, R J; Patre, B M
2011-10-01
In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Kumar, Mohit; Yadav, Shiv Prasad
2012-03-01
This paper addresses the fuzzy system reliability analysis using different types of intuitionistic fuzzy numbers. Till now, in the literature, to analyze the fuzzy system reliability, it is assumed that the failure rates of all components of a system follow the same type of fuzzy set or intuitionistic fuzzy set. However, in practical problems, such type of situation rarely occurs. Therefore, in the present paper, a new algorithm has been introduced to construct the membership function and non-membership function of fuzzy reliability of a system having components following different types of intuitionistic fuzzy failure rates. Functions of intuitionistic fuzzy numbers are calculated to construct the membership function and non-membership function of fuzzy reliability via non-linear programming techniques. Using the proposed algorithm, membership functions and non-membership functions of fuzzy reliability of a series system and a parallel systems are constructed. Our study generalizes the various works of the literature. Numerical examples are given to illustrate the proposed algorithm. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Grey fuzzy optimization model for water quality management of a river system
NASA Astrophysics Data System (ADS)
Karmakar, Subhankar; Mujumdar, P. P.
2006-07-01
A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping
2018-01-01
An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.
Tan, Q; Huang, G H; Cai, Y P
2010-09-01
The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. 2010 Elsevier Ltd. All rights reserved.
Systems of fuzzy equations in structural mechanics
NASA Astrophysics Data System (ADS)
Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej
2008-08-01
Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series,
Uncertainty representation of grey numbers and grey sets.
Yang, Yingjie; Liu, Sifeng; John, Robert
2014-09-01
In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.
An Incremental Type-2 Meta-Cognitive Extreme Learning Machine.
Pratama, Mahardhika; Zhang, Guangquan; Er, Meng Joo; Anavatti, Sreenatha
2017-02-01
Existing extreme learning algorithm have not taken into account four issues: 1) complexity; 2) uncertainty; 3) concept drift; and 4) high dimensionality. A novel incremental type-2 meta-cognitive extreme learning machine (ELM) called evolving type-2 ELM (eT2ELM) is proposed to cope with the four issues in this paper. The eT2ELM presents three main pillars of human meta-cognition: 1) what-to-learn; 2) how-to-learn; and 3) when-to-learn. The what-to-learn component selects important training samples for model updates by virtue of the online certainty-based active learning method, which renders eT2ELM as a semi-supervised classifier. The how-to-learn element develops a synergy between extreme learning theory and the evolving concept, whereby the hidden nodes can be generated and pruned automatically from data streams with no tuning of hidden nodes. The when-to-learn constituent makes use of the standard sample reserved strategy. A generalized interval type-2 fuzzy neural network is also put forward as a cognitive component, in which a hidden node is built upon the interval type-2 multivariate Gaussian function while exploiting a subset of Chebyshev series in the output node. The efficacy of the proposed eT2ELM is numerically validated in 12 data streams containing various concept drifts. The numerical results are confirmed by thorough statistical tests, where the eT2ELM demonstrates the most encouraging numerical results in delivering reliable prediction, while sustaining low complexity.
Solving a Multi Objective Transportation Problem(MOTP) Under Fuzziness on Using Interval Numbers
NASA Astrophysics Data System (ADS)
Saraj, Mansour; Mashkoorzadeh, Feryal
2010-09-01
In this paper we present a solution procedure of the Multi Objective Transportation Problem(MOTP) where the coefficients of the objective functions, the source and destination parameters which determined by the decision maker(DM) are symmetric triangular fuzzy numbers. The constraints with interval source and destination parameters have been converted in to deterministic ones. A numerical example is provided to illustrate the approach.
McNabb, Jaimie; Hutchison, Keith A.
2016-01-01
In two experiments, we examined veridical and false memory for lists of associates from two meanings (e.g., stumble, trip, harvest, pumpkin, etc.) that converged upon a single, lexically ambiguous critical lure (e.g., fall), in order to compare the activation-monitoring and fuzzy-trace false memory accounts. In Experiment 1, we presented study lists that were blocked or alternated by meaning (within subjects), followed by a free recall test completed immediately or after a 2.5-min delay. Correct recall was greater for blocked than for alternated lists. Critical-lure false recall was greater for blocked lists on an immediate test, whereas both list types produced equivalent false recall on a delayed test. In Experiment 2, lists blocked and alternated by meaning were presented via a between-subjects design, in order to eliminate possible list-type carryover effects. Correct recall replicated the result from Experiment 1; however, blocking lists increased false recall on delayed, but not on immediate, tests. Across the experiments, clustering correct recall by meaning increased across the delay selectively for the alternated lists. Our results suggest that thematic (i.e., gist) processes are influential for false recall, especially following a delay, a pattern consistent with fuzzy-trace theory. PMID:26105976
Garg, Harish
2013-03-01
The main objective of the present paper is to propose a methodology for analyzing the behavior of the complex repairable industrial systems. In real-life situations, it is difficult to find the most optimal design policies for MTBF (mean time between failures), MTTR (mean time to repair) and related costs by utilizing available resources and uncertain data. For this, the availability-cost optimization model has been constructed for determining the optimal design parameters for improving the system design efficiency. The uncertainties in the data related to each component of the system are estimated with the help of fuzzy and statistical methodology in the form of the triangular fuzzy numbers. Using these data, the various reliability parameters, which affects the system performance, are obtained in the form of the fuzzy membership function by the proposed confidence interval based fuzzy Lambda-Tau (CIBFLT) methodology. The computed results by CIBFLT are compared with the existing fuzzy Lambda-Tau methodology. Sensitivity analysis on the system MTBF has also been addressed. The methodology has been illustrated through a case study of washing unit, the main part of the paper industry. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy crane control with sensorless payload deflection feedback for vibration reduction
NASA Astrophysics Data System (ADS)
Smoczek, Jaroslaw
2014-05-01
Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.
Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.
Ahmadieh, Hajar; Asl, Babak Mohammadzadeh
2017-04-01
We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its capability to capture the nonlinearities of the model better. Copyright © 2017 Elsevier B.V. All rights reserved.
Epistemic uncertainty propagation in energy flows between structural vibrating systems
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong
2016-03-01
A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.
Using a fuzzy comprehensive evaluation method to determine product usability: A test case
Zhou, Ronggang; Chan, Alan H. S.
2016-01-01
BACKGROUND: In order to take into account the inherent uncertainties during product usability evaluation, Zhou and Chan [1] proposed a comprehensive method of usability evaluation for products by combining the analytic hierarchy process (AHP) and fuzzy evaluation methods for synthesizing performance data and subjective response data. This method was designed to provide an integrated framework combining the inevitable vague judgments from the multiple stages of the product evaluation process. OBJECTIVE AND METHODS: In order to illustrate the effectiveness of the model, this study used a summative usability test case to assess the application and strength of the general fuzzy usability framework. To test the proposed fuzzy usability evaluation framework [1], a standard summative usability test was conducted to benchmark the overall usability of a specific network management software. Based on the test data, the fuzzy method was applied to incorporate both the usability scores and uncertainties involved in the multiple components of the evaluation. Then, with Monte Carlo simulation procedures, confidence intervals were used to compare the reliabilities among the fuzzy approach and two typical conventional methods combining metrics based on percentages. RESULTS AND CONCLUSIONS: This case study showed that the fuzzy evaluation technique can be applied successfully for combining summative usability testing data to achieve an overall usability quality for the network software evaluated. Greater differences of confidence interval widths between the method of averaging equally percentage and weighted evaluation method, including the method of weighted percentage averages, verified the strength of the fuzzy method. PMID:28035942
Using a fuzzy comprehensive evaluation method to determine product usability: A test case.
Zhou, Ronggang; Chan, Alan H S
2017-01-01
In order to take into account the inherent uncertainties during product usability evaluation, Zhou and Chan [1] proposed a comprehensive method of usability evaluation for products by combining the analytic hierarchy process (AHP) and fuzzy evaluation methods for synthesizing performance data and subjective response data. This method was designed to provide an integrated framework combining the inevitable vague judgments from the multiple stages of the product evaluation process. In order to illustrate the effectiveness of the model, this study used a summative usability test case to assess the application and strength of the general fuzzy usability framework. To test the proposed fuzzy usability evaluation framework [1], a standard summative usability test was conducted to benchmark the overall usability of a specific network management software. Based on the test data, the fuzzy method was applied to incorporate both the usability scores and uncertainties involved in the multiple components of the evaluation. Then, with Monte Carlo simulation procedures, confidence intervals were used to compare the reliabilities among the fuzzy approach and two typical conventional methods combining metrics based on percentages. This case study showed that the fuzzy evaluation technique can be applied successfully for combining summative usability testing data to achieve an overall usability quality for the network software evaluated. Greater differences of confidence interval widths between the method of averaging equally percentage and weighted evaluation method, including the method of weighted percentage averages, verified the strength of the fuzzy method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peche, Roberto, E-mail: roberto.peche@ehu.es; Rodriguez, Esther, E-mail: esther.rodriguez@ehu.e
This study shows the practical application of the EIA method based on fuzzy logic proposed by the authors (Peche and Rodriguez, 2009) to a simplified case of study-the activity of a petrol station throughout its exploitation. The intensity (p{sub 1}), the extent (p{sub 2}) and the persistence (p{sub 3}) were the properties selected to describe the impacts and their respective assessment functions v-bar{sub i}=f(p-bar{sub i}) were determined. The main actions (A) and potentially affected environmental factors (F) were selected. Every impact was identified by a pair A-F and the values of the three impact properties were estimated for each ofmore » them by means of triangular fuzzy numbers. Subsequently, the fuzzy estimation of every impact was carried out, the estimation of the impact A{sub 1}-F{sub 2} (V-bar{sub 1}) being explained in detail. Every impact was simultaneously represented by its corresponding generalised confidence interval and membership function. Since the membership functions of all impacts were similar to triangular fuzzy numbers, a triangular approach (TA) was used to describe every impact. A triangular approach coefficient (TAC) was introduced to quantify the similarity of each fuzzy number and its corresponding triangular approach, where TAC (V-bar) element of (0, 1] and TAC being 1 when the fuzzy number is triangular. The TACs-ranging from 0.96 to 0.99-proved that TAs were valid in all cases. Next, the total positive and negative impacts-TV-bar{sup +} and TV-bar{sup -} were calculated and later, the fuzzy value of the total environmental impact TV-bar was determined from them. Finally, the defuzzification of TV-bar led to the punctual impact estimator TV{sup (1)} = -88.50 and its corresponding uncertainty interval [{delta}{sub l}(TV-bar),{delta}{sub r}(TV-bar)]=[6.52,6.96], which represent the total value of the EI. In conclusion, the EIA method enabled the integration of heterogeneous impacts, which exerted influence on environmental factors of a very diverse nature in very different ways, into a global impact indicator.« less
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Zanella, Gloria; Pullini, Serena; Como, Giuseppe; Bazzocchi, Massimo
2014-01-01
Purpose. To quantify the impact of diagnostic confidence on radiological diagnosis with a fuzzy logic-based method. Materials and Methods. Twenty-two oncologic patients with 20 cysts and 30 metastases ≤1 cm in size found at 64-row computed tomography were included. Two readers (R1/R2) expressed diagnoses as a subjective level of confidence P(d) in malignancy within the interval [0,1] rather than on a “crisp” basis (malignant/benign); confidence in benignancy was 1 − p(d). When cross-tabulating data according to the standard of reference, 2 × 2 table cells resulted from the aggregation between p(d)/1 − p(d) and final diagnosis. We then assessed (i) readers diagnostic performance on a fuzzy and crisp basis; (ii) the “divergence” δ(F, C) (%) as a measure of how confidence impacted on crisp diagnosis. Results. Diagnoses expressed with lower confidence increased fuzzy false positives compared to crisp ones (from 0 to 0.2 for R1; from 1 to 2.4 for R2). Crisp/fuzzy accuracy was 94.0%/93.6% (R1) and 94.0/91.6% (R2). δ(F, C) (%) was larger in the case of the less experienced reader (R2) (up to +7.95% for specificity). According to simulations, δ(F, C) (%) was negative/positive depending on the level of confidence in incorrect diagnoses. Conclusion. Fuzzy evaluation shows a measurable effect of uncertainty on radiological diagnoses. PMID:24587815
Incomplete fuzzy data processing systems using artificial neural network
NASA Technical Reports Server (NTRS)
Patyra, Marek J.
1992-01-01
In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.
Bidirectional active control of structures with type-2 fuzzy PD and PID
NASA Astrophysics Data System (ADS)
Paul, Satyam; Yu, Wen; Li, Xiaoou
2018-03-01
Proportional-derivative and proportional-integral-derivative (PD/PID) controllers are popular algorithms in structure vibration control. In order to maintain minimum regulation error, the PD/PID control require big proportional and derivative gains. The control performances are not satisfied because of the big uncertainties in the buildings. In this paper, type-2 fuzzy system is applied to compensate the unknown uncertainties, and is combined with the PD/PID control. We prove the stability of these fuzzy PD and PID controllers. The sufficient conditions can be used for choosing the gains of PD/PID. The theory results are verified by a two-storey building prototype. The experimental results validate our analysis.
Qi, Xiao-Wen; Zhang, Jun-Ling; Zhao, Shu-Ping; Liang, Chang-Yong
2017-10-02
In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE) as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager's prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches.
Qi, Xiao-Wen; Zhang, Jun-Ling; Zhao, Shu-Ping; Liang, Chang-Yong
2017-01-01
In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE) as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager’s prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches. PMID:28974045
Real coded genetic algorithm for fuzzy time series prediction
NASA Astrophysics Data System (ADS)
Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.
2017-10-01
Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.
Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan
2017-09-01
Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals
Castañón–Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo
2015-01-01
The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information. PMID:26633417
A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.
Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo
2015-12-02
The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.
Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction
Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-01-01
We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu’s segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images. PMID:28515636
Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction.
Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-01-01
We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu's segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images.
Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems
NASA Astrophysics Data System (ADS)
Dai, Xiao-Lin
2014-04-01
This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.
Decomposition of Fuzzy Soft Sets with Finite Value Spaces
Jun, Young Bae
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342
Decomposition of fuzzy soft sets with finite value spaces.
Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.
An optimal general type-2 fuzzy controller for Urban Traffic Network.
Khooban, Mohammad Hassan; Vafamand, Navid; Liaghat, Alireza; Dragicevic, Tomislav
2017-01-01
Urban traffic network model is illustrated by state-charts and object-diagram. However, they have limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space model is used to calculate the half-value waiting time of vehicles. In this study, a combination of the general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth flow of traffic with the least wait times and average queue length. The parameters of input and output membership functions are optimized simultaneously by the novel heuristic algorithm MBSA. A comparison is made between the achieved results with those of optimal and conventional type-1 fuzzy logic controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Polynomial chaos expansion with random and fuzzy variables
NASA Astrophysics Data System (ADS)
Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.
2016-06-01
A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.
Directed Laplacians For Fuzzy Autocatalytic Set Of Fuzzy Graph Type-3 Of An Incineration Process
NASA Astrophysics Data System (ADS)
Ahmad, Tahir; Baharun, Sabariah; Bakar, Sumarni Abu
2010-11-01
Fuzzy Autocatalytic Set (FACS) of Fuzzy Graph Type-3 was used in the modeling of a clinical waste incineration process in Malacca. FACS provided more accurate explanations of the incineration process than using crisp graph. In this paper we explore further FACS. Directed and combinatorial Laplacian of FACS are developed and their basic properties are presented.
Type-2 fuzzy logic control of a 2-DOF helicopter (TRMS system)
NASA Astrophysics Data System (ADS)
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2014-09-01
The helicopter dynamic includes nonlinearities, parametric uncertainties and is subject to unknown external disturbances. Such complicated dynamics involve designing sophisticated control algorithms that can deal with these difficulties. In this paper, a type 2 fuzzy logic PID controller is proposed for TRMS (twin rotor mimo system) control problem. Using triangular membership functions and based on a human operator experience, two controllers are designed to control the position of the yaw and the pitch angles of the TRMS. Simulation results are given to illustrate the effectiveness of the proposed control scheme.
Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.
Mohan, B M; Sinha, Arpita
2008-07-01
This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.
Intuitionistic fuzzy n-fold KU-ideal of KU-algebra
NASA Astrophysics Data System (ADS)
Mostafa, Samy M.; Kareem, Fatema F.
2018-05-01
In this paper, we apply the notion of intuitionistic fuzzy n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionistic fuzzy closed ideal and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, a few results of intuitionistic fuzzy n-fold KU-ideals of a KU-algebra under homomorphism are discussed.
Environmental impact assessment procedure: A new approach based on fuzzy logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peche, Roberto, E-mail: roberto.peche@ehu.e; Rodriguez, Esther, E-mail: esther.rodriguez@ehu.e
2009-09-15
The information related to the different environmental impacts produced by the execution of activities and projects is often limited, described by semantic variables and, affected by a high degree of inaccuracy and uncertainty, thereby making fuzzy logic a suitable tool with which to express and treat this information. The present study proposes a new approach based on fuzzy logic to carry out the environmental impact assessment (EIA) of these activities and projects. Firstly, a set of impact properties is stated and two nondimensional parameters - ranging from 0 to 100 -are assigned, (p{sub i}) to assess the value of themore » property and (v{sub i}) to assess its contribution to each environmental impact. Next, the impact properties are described by means of fuzzy numbers p{sub i}{sup -} using generalised confidence intervals. Then, a procedure based on fuzzy arithmetic is developed to define the assessment functions v-bar = f(p-bar) - conventional mathematical functions, which incorporate the knowledge of these impact properties and give the fuzzy values v{sub i}{sup -} corresponding to each p{sub i}{sup -}. Subsequently, the fuzzy value of each environmental impact V-bar is estimated by aggregation of the values v{sub i}{sup -}, in order to obtain the total positive and negative environmental impacts V{sup +-} and V{sup --} and, later - from them - the total environmental impact of the activity or project TV{sup -}. Finally, the defuzzyfication of TV{sup -} leads to a punctual impact estimator TV{sup (1)} - a conventional EI estimation - and its corresponding uncertainty interval estimator left brace(delta{sub l}(TV{sup -}),delta{sub r}(TV{sup -})right brace, which represent the total value of the environmental impact caused by the execution of the considered activity or project.« less
Quantization of spacetime based on a spacetime interval operator
NASA Astrophysics Data System (ADS)
Chiang, Hsu-Wen; Hu, Yao-Chieh; Chen, Pisin
2016-04-01
Motivated by both concepts of Adler's recent work on utilizing Clifford algebra as the linear line element d s =⟨γμ⟩ d Xμ and the fermionization of the cylindrical worldsheet Polyakov action, we introduce a new type of spacetime quantization that is fully covariant. The theory is based on the reinterpretation of Adler's linear line element as d s =γμ⟨λ γμ⟩ , where λ is the characteristic length of the theory. We name this new operator the "spacetime interval operator" and argue that it can be regarded as a natural extension to the one-forms in the U (s u (2 )) noncommutative geometry. By treating Fourier momentum as the particle momentum, the generalized uncertainty principle of the U (s u (2 )) noncommutative geometry, as an approximation to the generalized uncertainty principle of our theory, is derived and is shown to have a lowest order correction term of the order p2 similar to that of Snyder's. The holography nature of the theory is demonstrated and the predicted fuzziness of the geodesic is shown to be much smaller than conceivable astrophysical bounds.
A dynamic access control method based on QoS requirement
NASA Astrophysics Data System (ADS)
Li, Chunquan; Wang, Yanwei; Yang, Baoye; Hu, Chunyang
2013-03-01
A dynamic access control method is put forward to ensure the security of the sharing service in Cloud Manufacturing, according to the application characteristics of cloud manufacturing collaborative task. The role-based access control (RBAC) model is extended according to the characteristics of cloud manufacturing in this method. The constraints are considered, which are from QoS requirement of the task context to access control, based on the traditional static authorization. The fuzzy policy rules are established about the weighted interval value of permissions. The access control authorities of executable service by users are dynamically adjusted through the fuzzy reasoning based on the QoS requirement of task. The main elements of the model are described. The fuzzy reasoning algorithm of weighted interval value based QoS requirement is studied. An effective method is provided to resolve the access control of cloud manufacturing.
Characterizations of Some Fuzzy Prefilters (Filters) in EQ-Algebras
Xin, Xiao Long; Yang, Yong Wei
2014-01-01
We introduce and study some types of fuzzy prefilters (filters) in EQ-algebras. First, we present several characterizations of fuzzy positive implicative prefilters (filters), fuzzy implicative prefilters (filters), and fuzzy fantastic prefilters (filters). Next, using their characterizations, we mainly consider the relationships among these special fuzzy filters. Particularly, we find some conditions under which a fuzzy implicative prefilter (filter) is equivalent to a fuzzy positive implicative prefilter (filter). As applications, we obtain some new results about classical filters in EQ-algebras and some related results about fuzzy filters in residuated lattices. PMID:24892096
Scheduling of flow shop problems on 3 machines in fuzzy environment with double transport facility
NASA Astrophysics Data System (ADS)
Sathish, Shakeela; Ganesan, K.
2016-06-01
Flow shop scheduling is a decision making problem in production and manufacturing field which has a significant impact on the performance of an organization. When the machines on which jobs are to be processed are placed at different places, the transportation time plays a significant role in production. Further two different transport agents where 1st takes the job from 1st machine to 2nd machine and then returns back to the first machine and the 2nd takes the job from 2nd machine to 3rd machine and then returns back to the 2nd machine are also considered. We propose a method to minimize the total make span; without converting the fuzzy processing time to classical numbers by using a new type of fuzzy arithmetic and a fuzzy ranking method. A numerical example is provided to explain the proposed method.
Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering
NASA Astrophysics Data System (ADS)
Habbi, Ahcène; Zelmat, Mimoun
2008-10-01
This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.
Moshtagh-Khorasani, Majid; Akbarzadeh-T, Mohammad-R; Jahangiri, Nader; Khoobdel, Mehdi
2009-01-01
BACKGROUND: Aphasia diagnosis is particularly challenging due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. METHODS: Fuzzy probability is proposed here as the basic framework for handling the uncertainties in medical diagnosis and particularly aphasia diagnosis. To efficiently construct this fuzzy probabilistic mapping, statistical analysis is performed that constructs input membership functions as well as determines an effective set of input features. RESULTS: Considering the high sensitivity of performance measures to different distribution of testing/training sets, a statistical t-test of significance is applied to compare fuzzy approach results with NN results as well as author's earlier work using fuzzy logic. The proposed fuzzy probability estimator approach clearly provides better diagnosis for both classes of data sets. Specifically, for the first and second type of fuzzy probability classifiers, i.e. spontaneous speech and comprehensive model, P-values are 2.24E-08 and 0.0059, respectively, strongly rejecting the null hypothesis. CONCLUSIONS: The technique is applied and compared on both comprehensive and spontaneous speech test data for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. Statistical analysis confirms that the proposed approach can significantly improve accuracy using fewer Aphasia features. PMID:21772867
Homeopathic drug selection using Intuitionistic fuzzy sets.
Kharal, Athar
2009-01-01
Using intuitionistic fuzzy set theory, Sanchez's approach to medical diagnosis has been applied to the problem of selection of single remedy from homeopathic repertorization. Two types of Intuitionistic Fuzzy Relations (IFRs) and three types of selection indices are discussed. I also propose a new repertory exploiting the benefits of soft-intelligence.
Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S
2015-07-01
In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Li, Linlin; Ding, Steven X; Qiu, Jianbin; Yang, Ying
2017-02-01
This paper is concerned with a real-time observer-based fault detection (FD) approach for a general type of nonlinear systems in the presence of external disturbances. To this end, in the first part of this paper, we deal with the definition and the design condition for an L ∞ / L 2 type of nonlinear observer-based FD systems. This analytical framework is fundamental for the development of real-time nonlinear FD systems with the aid of some well-established techniques. In the second part, we address the integrated design of the L ∞ / L 2 observer-based FD systems by applying Takagi-Sugeno (T-S) fuzzy dynamic modeling technique as the solution tool. This fuzzy observer-based FD approach is developed via piecewise Lyapunov functions, and can be applied to the case that the premise variables of the FD system is nonsynchronous with the premise variables of the fuzzy model of the plant. In the end, a case study on the laboratory setup of three-tank system is given to show the efficiency of the proposed results.
Evaluation of Supply Chain Management Systems Used in Civil Engineering
NASA Astrophysics Data System (ADS)
Tomczak, Michał; Rzepecki, Łukasz
2017-10-01
One of the most important factors which have an effect on the cost and time of the building process is the organization of physical resources and the information flow structure. Depending on how effective this system is, a building project may end with a success or a failure. Because of many conditions of the construction executing and different needs of the contractors, there are different Supply Chain Management (SCM) systems connected with supplying construction projects: single-stage, multi-stage or combined. The article presents a comparative analysis of construction SCM systems based on a modified fuzzy AHP. The modification of this method is based on the use of interval type-2 fuzzy sets to aggregate evaluation according to the idea proposed by Mikhailov. The use of such a model of group preferences of decision-makers, makes it possible to take into consideration both the linguistic imprecision of an evaluation and the small number of experts. The weight values of specific criteria and the final scale vector of considered variants are obtained during the analysis. This may give a recommendation to general contractors in construction projects about which evaluation criteria and supply systems are preferred.
How to select combination operators for fuzzy expert systems using CRI
NASA Technical Reports Server (NTRS)
Turksen, I. B.; Tian, Y.
1992-01-01
A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI.
Enhancing the Selection of Backoff Interval Using Fuzzy Logic over Wireless Ad Hoc Networks
Ranganathan, Radha; Kannan, Kathiravan
2015-01-01
IEEE 802.11 is the de facto standard for medium access over wireless ad hoc network. The collision avoidance mechanism (i.e., random binary exponential backoff—BEB) of IEEE 802.11 DCF (distributed coordination function) is inefficient and unfair especially under heavy load. In the literature, many algorithms have been proposed to tune the contention window (CW) size. However, these algorithms make every node select its backoff interval between [0, CW] in a random and uniform manner. This randomness is incorporated to avoid collisions among the nodes. But this random backoff interval can change the optimal order and frequency of channel access among competing nodes which results in unfairness and increased delay. In this paper, we propose an algorithm that schedules the medium access in a fair and effective manner. This algorithm enhances IEEE 802.11 DCF with additional level of contention resolution that prioritizes the contending nodes according to its queue length and waiting time. Each node computes its unique backoff interval using fuzzy logic based on the input parameters collected from contending nodes through overhearing. We evaluate our algorithm against IEEE 802.11, GDCF (gentle distributed coordination function) protocols using ns-2.35 simulator and show that our algorithm achieves good performance. PMID:25879066
Interval-valued intuitionistic fuzzy matrix games based on Archimedean t-conorm and t-norm
NASA Astrophysics Data System (ADS)
Xia, Meimei
2018-04-01
Fuzzy game theory has been applied in many decision-making problems. The matrix game with interval-valued intuitionistic fuzzy numbers (IVIFNs) is investigated based on Archimedean t-conorm and t-norm. The existing matrix games with IVIFNs are all based on Algebraic t-conorm and t-norm, which are special cases of Archimedean t-conorm and t-norm. In this paper, the intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm are employed to aggregate the payoffs of players. To derive the solution of the matrix game with IVIFNs, several mathematical programming models are developed based on Archimedean t-conorm and t-norm. The proposed models can be transformed into a pair of primal-dual linear programming models, based on which, the solution of the matrix game with IVIFNs is obtained. It is proved that the theorems being valid in the exiting matrix game with IVIFNs are still true when the general aggregation operator is used in the proposed matrix game with IVIFNs. The proposed method is an extension of the existing ones and can provide more choices for players. An example is given to illustrate the validity and the applicability of the proposed method.
Fuzzy Intervals for Designing Structural Signature: An Application to Graphic Symbol Recognition
NASA Astrophysics Data System (ADS)
Luqman, Muhammad Muzzamil; Delalandre, Mathieu; Brouard, Thierry; Ramel, Jean-Yves; Lladós, Josep
The motivation behind our work is to present a new methodology for symbol recognition. The proposed method employs a structural approach for representing visual associations in symbols and a statistical classifier for recognition. We vectorize a graphic symbol, encode its topological and geometrical information by an attributed relational graph and compute a signature from this structural graph. We have addressed the sensitivity of structural representations to noise, by using data adapted fuzzy intervals. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set. The Bayesian network is deployed in a supervised learning scenario for recognizing query symbols. The method has been evaluated for robustness against degradations & deformations on pre-segmented 2D linear architectural & electronic symbols from GREC databases, and for its recognition abilities on symbols with context noise i.e. cropped symbols.
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
NASA Astrophysics Data System (ADS)
Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping
2018-03-01
System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.
Component Models for Fuzzy Data
ERIC Educational Resources Information Center
Coppi, Renato; Giordani, Paolo; D'Urso, Pierpaolo
2006-01-01
The fuzzy perspective in statistical analysis is first illustrated with reference to the "Informational Paradigm" allowing us to deal with different types of uncertainties related to the various informational ingredients (data, model, assumptions). The fuzzy empirical data are then introduced, referring to "J" LR fuzzy variables as observed on "I"…
Hardware implementation of fuzzy Petri net as a controller.
Gniewek, Lesław; Kluska, Jacek
2004-06-01
The paper presents a new approach to fuzzy Petri net (FPN) and its hardware implementation. The authors' motivation is as follows. Complex industrial processes can be often decomposed into many parallelly working subprocesses, which can, in turn, be modeled using Petri nets. If all the process variables (or events) are assumed to be two-valued signals, then it is possible to obtain a hardware or software control device, which works according to the algorithm described by conventional Petri net. However, the values of real signals are contained in some bounded interval and can be interpreted as events which are not only true or false, but rather true in some degree from the interval [0, 1]. Such a natural interpretation from multivalued logic (fuzzy logic) point of view, concerns sensor outputs, control signals, time expiration, etc. It leads to the idea of FPN as a controller, which one can rather simply obtain, and which would be able to process both analog, and binary signals. In the paper both graphical, and algebraic representations of the proposed FPN are given. The conditions under which transitions can be fired are described. The algebraic description of the net and a theorem which enables computation of new marking in the net, based on current marking, are formulated. Hardware implementation of the FPN, which uses fuzzy JK flip-flops and fuzzy gates, are proposed. An example illustrating usefulness of the proposed FPN for control algorithm description and its synthesis as a controller device for the concrete production process are presented.
NASA Astrophysics Data System (ADS)
Lei, Meizhen; Wang, Liqiang
2018-01-01
The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.
Lv, Ying; Huang, Guohe; Sun, Wei
2013-01-01
A scenario-based interval two-phase fuzzy programming (SITF) method was developed for water resources planning in a wetland ecosystem. The SITF approach incorporates two-phase fuzzy programming, interval mathematical programming, and scenario analysis within a general framework. It can tackle fuzzy and interval uncertainties in terms of cost coefficients, resources availabilities, water demands, hydrological conditions and other parameters within a multi-source supply and multi-sector consumption context. The SITF method has the advantage in effectively improving the membership degrees of the system objective and all fuzzy constraints, so that both higher satisfactory grade of the objective and more efficient utilization of system resources can be guaranteed. Under the systematic consideration of water demands by the ecosystem, the SITF method was successfully applied to Baiyangdian Lake, which is the largest wetland in North China. Multi-source supplies (including the inter-basin water sources of Yuecheng Reservoir and Yellow River), and multiple water users (including agricultural, industrial and domestic sectors) were taken into account. The results indicated that, the SITF approach would generate useful solutions to identify long-term water allocation and transfer schemes under multiple economic, environmental, ecological, and system-security targets. It can address a comparative analysis for the system satisfactory degrees of decisions under various policy scenarios. Moreover, it is of significance to quantify the relationship between hydrological change and human activities, such that a scheme on ecologically sustainable water supply to Baiyangdian Lake can be achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane
NASA Astrophysics Data System (ADS)
Smoczek, J.; Szpytko, J.; Hyla, P.
2014-07-01
The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.
Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming
NASA Astrophysics Data System (ADS)
Vercher, Enriqueta
2008-08-01
This paper provides new models for portfolio selection in which the returns on securities are considered fuzzy numbers rather than random variables. The investor's problem is to find the portfolio that minimizes the risk of achieving a return that is not less than the return of a riskless asset. The corresponding optimal portfolio is derived using semi-infinite programming in a soft framework. The return on each asset and their membership functions are described using historical data. The investment risk is approximated by mean intervals which evaluate the downside risk for a given fuzzy portfolio. This approach is illustrated with a numerical example.
Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model
Xu, Shiguo; Wang, Tianxiang; Hu, Suduan
2015-01-01
Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results. PMID:25689998
Dynamic assessment of water quality based on a variable fuzzy pattern recognition model.
Xu, Shiguo; Wang, Tianxiang; Hu, Suduan
2015-02-16
Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results.
MI-ANFIS: A Multiple Instance Adaptive Neuro-Fuzzy Inference System
2015-08-02
AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2 . REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF...fuzzy logic can deal with the uncertainty of human cognition [ 2 ]. ANFIS offers an alternative to rules’ identification. While Mamdani [3] and Sugeno [4...dimensional vector with elements xpjk corresponding to features, i.e., Bp = xp11 xp12 . . . xp1D xp21 xp22 . . . xp2D ... ... . . . ... xpMp1
Intelligent Predictor of Energy Expenditure with the Use of Patch-Type Sensor Module
Li, Meina; Kwak, Keun-Chang; Kim, Youn-Tae
2012-01-01
This paper is concerned with an intelligent predictor of energy expenditure (EE) using a developed patch-type sensor module for wireless monitoring of heart rate (HR) and movement index (MI). For this purpose, an intelligent predictor is designed by an advanced linguistic model (LM) with interval prediction based on fuzzy granulation that can be realized by context-based fuzzy c-means (CFCM) clustering. The system components consist of a sensor board, the rubber case, and the communication module with built-in analysis algorithm. This sensor is patched onto the user's chest to obtain physiological data in indoor and outdoor environments. The prediction performance was demonstrated by root mean square error (RMSE). The prediction performance was obtained as the number of contexts and clusters increased from 2 to 6, respectively. Thirty participants were recruited from Chosun University to take part in this study. The data sets were recorded during normal walking, brisk walking, slow running, and jogging in an outdoor environment and treadmill running in an indoor environment, respectively. We randomly divided the data set into training (60%) and test data set (40%) in the normalized space during 10 iterations. The training data set is used for model construction, while the test set is used for model validation. The experimental results revealed that the prediction error on treadmill running simulation was improved by about 51% and 12% in comparison to conventional LM for training and checking data set, respectively. PMID:23202166
NASA Astrophysics Data System (ADS)
Fu, Z. H.; Zhao, H. J.; Wang, H.; Lu, W. T.; Wang, J.; Guo, H. C.
2017-11-01
Economic restructuring, water resources management, population planning and environmental protection are subjects to inner uncertainties of a compound system with objectives which are competitive alternatives. Optimization model and water quality model are usually used to solve problems in a certain aspect. To overcome the uncertainty and coupling in reginal planning management, an interval fuzzy program combined with water quality model for regional planning and management has been developed to obtain the absolutely ;optimal; solution in this study. The model is a hybrid methodology of interval parameter programming (IPP), fuzzy programing (FP), and a general one-dimensional water quality model. The method extends on the traditional interval parameter fuzzy programming method by integrating water quality model into the optimization framework. Meanwhile, as an abstract concept, water resources carrying capacity has been transformed into specific and calculable index. Besides, unlike many of the past studies about water resource management, population as a significant factor has been considered. The results suggested that the methodology was applicable for reflecting the complexities of the regional planning and management systems within the planning period. The government policy makers could establish effective industrial structure, water resources utilization patterns and population planning, and to better understand the tradeoffs among economic, water resources, population and environmental objectives.
Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method
Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang
2014-01-01
In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
Family of fuzzy J-K flip-flops based on bounded product, bounded sum and complementation.
Gniewek, L; Kluska, J
1998-01-01
This paper presents a concept of new fuzzy J-K flip-flops based on bounded product, bounded sum and fuzzy complementation operations. Relationships between various types of the J-K flip-flops are given and characteristics of them are graphically shown by computer simulation. Two examples of circuits able to memorize and fuzzy information processing using the proposed fuzzy J-K flip-flops are presented.
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Realizing three generations of the Standard Model fermions in the type IIB matrix model
NASA Astrophysics Data System (ADS)
Aoki, Hajime; Nishimura, Jun; Tsuchiya, Asato
2014-05-01
We discuss how the Standard Model particles appear from the type IIB matrix model, which is considered to be a nonperturbative formulation of superstring theory. In particular, we are concerned with a constructive definition of the theory, in which we start with finite- N matrices and take the large- N limit afterwards. In that case, it was pointed out recently that realizing chiral fermions in the model is more difficult than it had been thought from formal arguments at N = ∞ and that introduction of a matrix version of the warp factor is necessary. Based on this new insight, we show that two generations of the Standard Model fermions can be realized by considering a rather generic configuration of fuzzy S2 and fuzzy S2 × S2 in the extra dimensions. We also show that three generations can be obtained by squashing one of the S2's that appear in the configuration. Chiral fermions appear at the intersections of the fuzzy manifolds with nontrivial Yukawa couplings to the Higgs field, which can be calculated from the overlap of their wave functions.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-12-16
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.
Automated cloud classification with a fuzzy logic expert system
NASA Technical Reports Server (NTRS)
Tovinkere, Vasanth; Baum, Bryan A.
1993-01-01
An unresolved problem in current cloud retrieval algorithms concerns the analysis of scenes containing overlapping cloud layers. Cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget. Most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. One promising method uses fuzzy logic to determine whether mixed cloud and/or surface types exist within a group of pixels, such as cirrus, land, and water, or cirrus and stratus. When two or more class types are present, fuzzy logic uses membership values to assign the group of pixels partially to the different class types. The strength of fuzzy logic lies in its ability to work with patterns that may include more than one class, facilitating greater information extraction from satellite radiometric data. The development of the fuzzy logic rule-based expert system involves training the fuzzy classifier with spectral and textural features calculated from accurately labeled 32x32 regions of Advanced Very High Resolution Radiometer (AVHRR) 1.1-km data. The spectral data consists of AVHRR channels 1 (0.55-0.68 mu m), 2 (0.725-1.1 mu m), 3 (3.55-3.93 mu m), 4 (10.5-11.5 mu m), and 5 (11.5-12.5 mu m), which include visible, near-infrared, and infrared window regions. The textural features are based on the gray level difference vector (GLDV) method. A sophisticated new interactive visual image Classification System (IVICS) is used to label samples chosen from scenes collected during the FIRE IFO II. The training samples are chosen from predefined classes, chosen to be ocean, land, unbroken stratiform, broken stratiform, and cirrus. The November 28, 1991 NOAA overpasses contain complex multilevel cloud situations ideal for training and validating the fuzzy logic expert system.
Methods for evaluating the predictive accuracy of structural dynamic models
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, Jon D.
1990-01-01
Uncertainty of frequency response using the fuzzy set method and on-orbit response prediction using laboratory test data to refine an analytical model are emphasized with respect to large space structures. Two aspects of the fuzzy set approach were investigated relative to its application to large structural dynamics problems: (1) minimizing the number of parameters involved in computing possible intervals; and (2) the treatment of extrema which may occur in the parameter space enclosed by all possible combinations of the important parameters of the model. Extensive printer graphics were added to the SSID code to help facilitate model verification, and an application of this code to the LaRC Ten Bay Truss is included in the appendix to illustrate this graphics capability.
Automatic approach to deriving fuzzy slope positions
NASA Astrophysics Data System (ADS)
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
An algorithm of Saxena-Easo on fuzzy time series forecasting
NASA Astrophysics Data System (ADS)
Ramadhani, L. C.; Anggraeni, D.; Kamsyakawuni, A.; Hadi, A. F.
2018-04-01
This paper presents a forecast model of Saxena-Easo fuzzy time series prediction to study the prediction of Indonesia inflation rate in 1970-2016. We use MATLAB software to compute this method. The algorithm of Saxena-Easo fuzzy time series doesn’t need stationarity like conventional forecasting method, capable of dealing with the value of time series which are linguistic and has the advantage of reducing the calculation, time and simplifying the calculation process. Generally it’s focus on percentage change as the universe discourse, interval partition and defuzzification. The result indicate that between the actual data and the forecast data are close enough with Root Mean Square Error (RMSE) = 1.5289.
Wang, Hsiao-Fan; Hsu, Hsin-Wei
2010-11-01
With the urgency of global warming, green supply chain management, logistics in particular, has drawn the attention of researchers. Although there are closed-loop green logistics models in the literature, most of them do not consider the uncertain environment in general terms. In this study, a generalized model is proposed where the uncertainty is expressed by fuzzy numbers. An interval programming model is proposed by the defined means and mean square imprecision index obtained from the integrated information of all the level cuts of fuzzy numbers. The resolution for interval programming is based on the decision maker (DM)'s preference. The resulting solution provides useful information on the expected solutions under a confidence level containing a degree of risk. The results suggest that the more optimistic the DM is, the better is the resulting solution. However, a higher risk of violation of the resource constraints is also present. By defining this probable risk, a solution procedure was developed with numerical illustrations. This provides a DM trade-off mechanism between logistic cost and the risk. Copyright 2010 Elsevier Ltd. All rights reserved.
Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua
2017-09-22
This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.
Classification of Children Intelligence with Fuzzy Logic Method
NASA Astrophysics Data System (ADS)
Syahminan; ika Hidayati, Permata
2018-04-01
Intelligence of children s An Important Thing To Know The Parents Early on. Typing Can be done With a Child’s intelligence Grouping Dominant Characteristics Of each Type of Intelligence. To Make it easier for Parents in Determining The type of Children’s intelligence And How to Overcome them, for It Created A Classification System Intelligence Grouping Children By Using Fuzzy logic method For determination Of a Child’s degree of intelligence type. From the analysis We concluded that The presence of Intelligence Classification systems Pendulum Children With Fuzzy Logic Method Of determining The type of The Child’s intelligence Can be Done in a way That is easier And The results More accurate Conclusions Than Manual tests.
NASA Astrophysics Data System (ADS)
Çakır, Süleyman
2017-10-01
In this study, a two-phase methodology for resource allocation problems under a fuzzy environment is proposed. In the first phase, the imprecise Shannon's entropy method and the acceptability index are suggested, for the first time in the literature, to select input and output variables to be used in the data envelopment analysis (DEA) application. In the second step, an interval inverse DEA model is executed for resource allocation in a short run. In an effort to exemplify the practicality of the proposed fuzzy model, a real case application has been conducted involving 16 cement firms listed in Borsa Istanbul. The results of the case application indicated that the proposed hybrid model is a viable procedure to handle input-output selection and resource allocation problems under fuzzy conditions. The presented methodology can also lend itself to different applications such as multi-criteria decision-making problems.
Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model
NASA Astrophysics Data System (ADS)
Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza
2017-08-01
Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
NASA Astrophysics Data System (ADS)
Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian
2018-02-01
In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.
NASA Astrophysics Data System (ADS)
Shah, Mazlina Muzafar; Wahab, Abdul Fatah
2017-08-01
Epilepsy disease occurs because of there is a temporary electrical disturbance in a group of brain cells (nurons). The recording of electrical signals come from the human brain which can be collected from the scalp of the head is called Electroencephalography (EEG). EEG then considered in digital format and in fuzzy form makes it a fuzzy digital space data form. The purpose of research is to identify the area (curve and surface) in fuzzy digital space affected by inside epilepsy seizure in epileptic patient's brain. The main focus for this research is to generalize fuzzy topological digital space, definition and basic operation also the properties by using digital fuzzy set and the operations. By using fuzzy digital space, the theory of digital fuzzy spline can be introduced to replace grid data that has been use previously to get better result. As a result, the flat of EEG can be fuzzy topological digital space and this type of data can be use to interpolate the digital fuzzy spline.
NASA Astrophysics Data System (ADS)
Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus
2014-05-01
The Alfeios River plays a vital role for Western Peloponnisos in Greece from natural, ecological, social and economic aspect. The main river and its six tributaries, forming the longest watercourse and the highest streamflow rate of Peloponnisose, represent a significant source of water supply for the region, aiming at delivering and satisfying the expected demands from a variety of water users, including irrigation, drinking water supply, hydropower production and recreation. In the previous EGU General Assembly, a fuzzy-boundary-interval linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), has been presented for optimal water allocation under uncertain and vague system conditions in the Alfeios River Basin. Uncertainties associated with the benefit and cost coefficient in the objective function of the main water uses (hydropower production and irrigation) were expressed as probability distributions and fuzzy boundary intervals derived by associated α-cut levels. The uncertainty of the monthly water inflows was not incorporated in the previous initial application and the analysis of all other sources of uncertainty has been applied to two extreme hydrologic years represented by a selected wet and dry year. To manage and operate the river system, decision makers should be able to analyze and evaluate the impact of various hydrologic scenarios. In the present work, the critical uncertain parameter of water inflows is analyzed and its incorporation as an additional type of uncertainty in the suggested methodology is investigated, in order to enable the assessment of optimal water allocation for hydrologic and socio-economic scenarios based both on historical data and projected climate change conditions. For this purpose, stochastic simulation analysis for a part of the Alfeios river system is undertaken, testing various stochastic models from simple stationary ones (AR and ARMA), Thomas-Fiering, ARIMA as well as more sophisticated and complete such as CASTALIA. A short description and comparison of their assumptions, the differences between them and the presentation of the results are included. Li, Y.P., Huang, G.H. and S.L., Nie, (2010), Planning water resources management systems using a fuzzy boundary interval-stochastic programming method, Elsevier Ltd, Advances in Water Resources, 33: 1105-1117. doi:10.1016/j.advwatres.2010.06.015 Bekri, E.S., Disse, M. and P.C.,Yannopoulos, (2012), Methodological framework for correction of quick river discharge measurements using quality characteristics, Session of Environmental Hydraulics - Hydrodynamics, 2nd Common Conference of Hellenic Hydrotechnical Association and Greek Committee for Water Resources Management, Volume: 546-557 (in Greek).
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-01-01
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261
Designing boosting ensemble of relational fuzzy systems.
Scherer, Rafał
2010-10-01
A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.
Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.
Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung
2007-05-01
This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.
Self-assessment procedure using fuzzy sets
NASA Astrophysics Data System (ADS)
Mimi, Fotini
2000-10-01
Self-Assessment processes, initiated by a company itself and carried out by its own people, are considered to be the starting point for a regular strategic or operative planning process to ensure a continuous quality improvement. Their importance has increased by the growing relevance and acceptance of international quality awards such as the Malcolm Baldrige National Quality Award, the European Quality Award and the Deming Prize. Especially award winners use the instrument of a systematic and regular Self-Assessment and not only because they have to verify their quality and business results for at least three years. The Total Quality Model of the European Foundation for Quality Management (EFQM), used for the European Quality Award, is the basis for Self-Assessment in Europe. This paper presents a self-assessment supporting method based on a methodology of fuzzy control systems providing an effective means of converting the linguistic approximation into an automatic control strategy. In particular, the elements of the Quality Model mentioned above are interpreted as linguistic variables. The LR-type of a fuzzy interval is used for their representation. The input data has a qualitative character based on empirical investigation and expert knowledge and therefore the base- variables are ordinal scaled. The aggregation process takes place on the basis of a hierarchical structure. Finally, in order to render the use of the method more practical a software system on PC basis is developed and implemented.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
Yin, Kedong; Wang, Pengyu; Li, Xuemei
2017-12-13
With respect to multi-attribute group decision-making (MAGDM) problems, where attribute values take the form of interval grey trapezoid fuzzy linguistic variables (IGTFLVs) and the weights (including expert and attribute weight) are unknown, improved grey relational MAGDM methods are proposed. First, the concept of IGTFLV, the operational rules, the distance between IGTFLVs, and the projection formula between the two IGTFLV vectors are defined. Second, the expert weights are determined by using the maximum proximity method based on the projection values between the IGTFLV vectors. The attribute weights are determined by the maximum deviation method and the priorities of alternatives are determined by improved grey relational analysis. Finally, an example is given to prove the effectiveness of the proposed method and the flexibility of IGTFLV.
New type of measuring and intelligent instrument for curing tobacco
NASA Astrophysics Data System (ADS)
Yi, Chui-Jie; Huang, Xieqing; Chen, Tianning; Xia, Hong
1993-09-01
A new type of measuring intelligent instrument for cured tobacco is presented in this paper. Based on fuzzy linguistic control principles the instrument is used to controlling the temperature and humidity during cured tobacco taking 803 1 singlechip computer as a center controller. By using methods of fuzzy weighted factors the cross coupling in curing procedures is decoupled. Results that the instrument has producted indicate the fuzzy controller in the instrument has perfect performance for process of cured tobacco as shown in figure
Wirojanagud, Wanpen; Srisatit, Thares
2014-01-01
Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest. PMID:25110751
Dominance-based ranking functions for interval-valued intuitionistic fuzzy sets.
Chen, Liang-Hsuan; Tu, Chien-Cheng
2014-08-01
The ranking of interval-valued intuitionistic fuzzy sets (IvIFSs) is difficult since they include the interval values of membership and nonmembership. This paper proposes ranking functions for IvIFSs based on the dominance concept. The proposed ranking functions consider the degree to which an IvIFS dominates and is not dominated by other IvIFSs. Based on the bivariate framework and the dominance concept, the functions incorporate not only the boundary values of membership and nonmembership, but also the relative relations among IvIFSs in comparisons. The dominance-based ranking functions include bipolar evaluations with a parameter that allows the decision-maker to reflect his actual attitude in allocating the various kinds of dominance. The relationship for two IvIFSs that satisfy the dual couple is defined based on four proposed ranking functions. Importantly, the proposed ranking functions can achieve a full ranking for all IvIFSs. Two examples are used to demonstrate the applicability and distinctiveness of the proposed ranking functions.
Fuzzy Arden Syntax: A fuzzy programming language for medicine.
Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter
2010-05-01
The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities. This inconvenience can, however, be attenuated by means of certain mechanisms on which the programme flow under Fuzzy Arden Syntax is based. To write a programme making use of these possibilities is not significantly more difficult than to write a programme according to the usual practice. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.
2016-10-01
This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.
A Priority Fuzzy Logic Extension of the XQuery Language
NASA Astrophysics Data System (ADS)
Škrbić, Srdjan; Wettayaprasit, Wiphada; Saeueng, Pannipa
2011-09-01
In recent years there have been significant research findings in flexible XML querying techniques using fuzzy set theory. Many types of fuzzy extensions to XML data model and XML query languages have been proposed. In this paper, we introduce priority fuzzy logic extensions to XQuery language. Describing these extensions we introduce a new query language. Moreover, we describe a way to implement an interpreter for this language using an existing XML native database.
A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.
El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M
2015-11-01
Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.
A Distributed Fuzzy Associative Classifier for Big Data.
Segatori, Armando; Bechini, Alessio; Ducange, Pietro; Marcelloni, Francesco
2017-09-19
Fuzzy associative classification has not been widely analyzed in the literature, although associative classifiers (ACs) have proved to be very effective in different real domain applications. The main reason is that learning fuzzy ACs is a very heavy task, especially when dealing with large datasets. To overcome this drawback, in this paper, we propose an efficient distributed fuzzy associative classification approach based on the MapReduce paradigm. The approach exploits a novel distributed discretizer based on fuzzy entropy for efficiently generating fuzzy partitions of the attributes. Then, a set of candidate fuzzy association rules is generated by employing a distributed fuzzy extension of the well-known FP-Growth algorithm. Finally, this set is pruned by using three purposely adapted types of pruning. We implemented our approach on the popular Hadoop framework. Hadoop allows distributing storage and processing of very large data sets on computer clusters built from commodity hardware. We have performed an extensive experimentation and a detailed analysis of the results using six very large datasets with up to 11,000,000 instances. We have also experimented different types of reasoning methods. Focusing on accuracy, model complexity, computation time, and scalability, we compare the results achieved by our approach with those obtained by two distributed nonfuzzy ACs recently proposed in the literature. We highlight that, although the accuracies result to be comparable, the complexity, evaluated in terms of number of rules, of the classifiers generated by the fuzzy distributed approach is lower than the one of the nonfuzzy classifiers.
Visibility enhancement of color images using Type-II fuzzy membership function
NASA Astrophysics Data System (ADS)
Singh, Harmandeep; Khehra, Baljit Singh
2018-04-01
Images taken in poor environmental conditions decrease the visibility and hidden information of digital images. Therefore, image enhancement techniques are necessary for improving the significant details of these images. An extensive review has shown that histogram-based enhancement techniques greatly suffer from over/under enhancement issues. Fuzzy-based enhancement techniques suffer from over/under saturated pixels problems. In this paper, a novel Type-II fuzzy-based image enhancement technique has been proposed for improving the visibility of images. The Type-II fuzzy logic can automatically extract the local atmospheric light and roughly eliminate the atmospheric veil in local detail enhancement. The proposed technique has been evaluated on 10 well-known weather degraded color images and is also compared with four well-known existing image enhancement techniques. The experimental results reveal that the proposed technique outperforms others regarding visible edge ratio, color gradients and number of saturated pixels.
A heuristic expert system for forest fire guidance in Greece.
Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D
2002-07-01
Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85.25% for 1995 and 80.89% for 1994. This makes the Expert System a very important tool for forest fire prevention planning.
Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach
Vahabi, Zahra; Kermani, Saeed
2012-01-01
Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810
A fuzzy logic approach to modeling a vehicle crash test
NASA Astrophysics Data System (ADS)
Pawlus, Witold; Karimi, Hamid Reza; Robbersmyr, Kjell G.
2013-03-01
This paper presents an application of fuzzy approach to vehicle crash modeling. A typical vehicle to pole collision is described and kinematics of a car involved in this type of crash event is thoroughly characterized. The basics of fuzzy set theory and modeling principles based on fuzzy logic approach are presented. In particular, exceptional attention is paid to explain the methodology of creation of a fuzzy model of a vehicle collision. Furthermore, the simulation results are presented and compared to the original vehicle's kinematics. It is concluded which factors have influence on the accuracy of the fuzzy model's output and how they can be adjusted to improve the model's fidelity.
Application of Fuzzy Reasoning for Filtering and Enhancement of Ultrasonic Images
NASA Technical Reports Server (NTRS)
Sacha, J. P.; Cios, K. J.; Roth, D. J.; Berke, L.; Vary, A.
1994-01-01
This paper presents a new type of an adaptive fuzzy operator for detection of isolated abnormalities, and enhancement of raw ultrasonic images. Fuzzy sets used in decision rules are defined for each image based on empirical statistics of the color intensities. Examples of the method are also presented in the paper.
MAGDM linear-programming models with distinct uncertain preference structures.
Xu, Zeshui S; Chen, Jian
2008-10-01
Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.
The coordinating contracts of supply chain in a fuzzy decision environment.
Sang, Shengju
2016-01-01
The rapid change of the product life cycle is making the parameters of the supply chain models more and more uncertain. Therefore, we consider the coordination mechanisms between one manufacturer and one retailer in a fuzzy decision marking environment, where the parameters of the models can be forecasted and expressed as the triangular fuzzy variables. The centralized decision-making system, two types of supply chain contracts, namely, the revenue sharing contract and the return contract are proposed. To obtain their optimal policies, the fuzzy set theory is adopted to solve these fuzzy models. Finally, three numerical examples are provided to analyze the impacts of the fuzziness of the market demand, retail price and salvage value of the product on the optimal solutions in two contracts. It shows that in order to obtain more fuzzy expected profits the retailer and the manufacturer should seek as low fuzziness of demand, high fuzziness of the retail price and the salvage value as possible in both contracts.
NASA Astrophysics Data System (ADS)
Anwar, Farhat; Masud, Mosharrof H.; Latif, Suhaimi A.
2013-12-01
Mobile IPv6 (MIPv6) is one of the pioneer standards that support mobility in IPv6 environment. It has been designed to support different types of technologies for providing seamless communications in next generation network. However, MIPv6 and subsequent standards have some limitations due to its handoff latency. In this paper, a fuzzy logic based mechanism is proposed to reduce the handoff latency of MIPv6 for Layer 2 (L2) by scanning the Access Points (APs) while the Mobile Node (MN) is moving among different APs. Handoff latency occurs when the MN switches from one AP to another in L2. Heterogeneous network is considered in this research in order to reduce the delays in L2. Received Signal Strength Indicator (RSSI) and velocity of the MN are considered as the input of fuzzy logic technique. This technique helps the MN to measure optimum signal quality from APs for the speedy mobile node based on fuzzy logic input rules and makes a list of interfaces. A suitable interface from the list of available interfaces can be selected like WiFi, WiMAX or GSM. Simulation results show 55% handoff latency reduction and 50% packet loss improvement in L2 compared to standard to MIPv6.
Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong
2013-09-01
Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.
NASA Astrophysics Data System (ADS)
Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong
2013-09-01
Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.
This paper presents a fuzzy set-based method of mapping spatial accuracy of thematic map and computing several ecological indicators while taking into account spatial variation of accuracy associated with different land cover types and other factors (e.g., slope, soil type, etc.)...
Optimizing structure of complex technical system by heterogeneous vector criterion in interval form
NASA Astrophysics Data System (ADS)
Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.
2018-05-01
The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.
NASA Astrophysics Data System (ADS)
Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza
2012-11-01
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.
Markowitz portfolio optimization model employing fuzzy measure
NASA Astrophysics Data System (ADS)
Ramli, Suhailywati; Jaaman, Saiful Hafizah
2017-04-01
Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.
Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.
Sil Kar, Sudeshna; Maity, Santi P
2016-09-01
Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass filter is found to be very much effective in edge enhancement whereas fuzzy conditional entropy efficiently distinguishes vessels of different widths. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Extracting TSK-type Neuro-Fuzzy model using the Hunting search algorithm
NASA Astrophysics Data System (ADS)
Bouzaida, Sana; Sakly, Anis; M'Sahli, Faouzi
2014-01-01
This paper proposes a Takagi-Sugeno-Kang (TSK) type Neuro-Fuzzy model tuned by a novel metaheuristic optimization algorithm called Hunting Search (HuS). The HuS algorithm is derived based on a model of group hunting of animals such as lions, wolves, and dolphins when looking for a prey. In this study, the structure and parameters of the fuzzy model are encoded into a particle. Thus, the optimal structure and parameters are achieved simultaneously. The proposed method was demonstrated through modeling and control problems, and the results have been compared with other optimization techniques. The comparisons indicate that the proposed method represents a powerful search approach and an effective optimization technique as it can extract the accurate TSK fuzzy model with an appropriate number of rules.
A new type of simplified fuzzy rule-based system
NASA Astrophysics Data System (ADS)
Angelov, Plamen; Yager, Ronald
2012-02-01
Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-10-01
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.
WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell
NASA Technical Reports Server (NTRS)
Pagni, A.; Poluzzi, R.; Rizzotto, G. G.
1992-01-01
During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.
Modeling changes in biomass composition during microwave-based alkali pretreatment of switchgrass.
Keshwani, Deepak R; Cheng, Jay J
2010-01-01
This study used two different approaches to model changes in biomass composition during microwave-based pretreatment of switchgrass: kinetic modeling using a time-dependent rate coefficient, and a Mamdani-type fuzzy inference system. In both modeling approaches, the dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors for changes in amounts of lignin, cellulose, and xylan during the pretreatment. Training and testing data sets for development and validation of the models were obtained from pretreatment experiments conducted using 1-3% w/v NaOH (sodium hydroxide) and pretreatment times ranging from 5 to 20 min. The kinetic modeling approach for lignin and xylan gave comparable results for training and testing data sets, and the differences between the predictions and experimental values were within 2%. The kinetic modeling approach for cellulose was not as effective, and the differences were within 5-7%. The time-dependent rate coefficients of the kinetic models estimated from experimental data were consistent with the heterogeneity of individual biomass components. The Mamdani-type fuzzy inference was shown to be an effective approach to model the pretreatment process and yielded predictions with less than 2% deviation from the experimental values for lignin and with less than 3% deviation from the experimental values for cellulose and xylan. The entropies of the fuzzy outputs from the Mamdani-type fuzzy inference system were calculated to quantify the uncertainty associated with the predictions. Results indicate that there is no significant difference between the entropies associated with the predictions for lignin, cellulose, and xylan. It is anticipated that these models could be used in process simulations of bioethanol production from lignocellulosic materials.
NASA Astrophysics Data System (ADS)
Milic, Vladimir; Kasac, Josip; Novakovic, Branko
2015-10-01
This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.
NASA Astrophysics Data System (ADS)
de Carvalho, Fábio Romeu; Abe, Jair Minoro
2010-11-01
Two recent non-classical logics have been used to make decision: fuzzy logic and paraconsistent annotated evidential logic Et. In this paper we present a simplified version of the fuzzy decision method and its comparison with the paraconsistent one. Paraconsistent annotated evidential logic Et, introduced by Da Costa, Vago and Subrahmanian (1991), is capable of handling uncertain and contradictory data without becoming trivial. It has been used in many applications such as information technology, robotics, artificial intelligence, production engineering, decision making etc. Intuitively, one Et logic formula is type p(a, b), in which a and b belong to [0, 1] (real interval) and represent respectively the degree of favorable evidence (or degree of belief) and the degree of contrary evidence (or degree of disbelief) found in p. The set of all pairs (a; b), called annotations, when plotted, form the Cartesian Unitary Square (CUS). This set, containing a similar order relation of real number, comprises a network, called lattice of the annotations. Fuzzy logic was introduced by Zadeh (1965). It tries to systematize the knowledge study, searching mainly to study the fuzzy knowledge (you don't know what it means) and distinguish it from the imprecise one (you know what it means, but you don't know its exact value). This logic is similar to paraconsistent annotated one, since it attributes a numeric value (only one, not two values) to each proposition (then we can say that it is an one-valued logic). This number translates the intensity (the degree) with which the preposition is true. Let's X a set and A, a subset of X, identified by the function f(x). For each element x∈X, you have y = f(x)∈[0, 1]. The number y is called degree of pertinence of x in A. Decision making theories based on these logics have shown to be powerful in many aspects regarding more traditional methods, like the one based on Statistics. In this paper we present a first study for a simplified version of decision making theory based on Fuzzy Logic (SVMFD) and a comparison with the Paraconsistent Decision Method (PDM) based on Paraconsistent Annotated Evidential Logic Eτ, already presented and summarized in this paper. An example showing the two methods is presented in the paper, as well as a comparison between them.
Fuzzy neural network methodology applied to medical diagnosis
NASA Technical Reports Server (NTRS)
Gorzalczany, Marian B.; Deutsch-Mcleish, Mary
1992-01-01
This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.
Molecular processors: from qubits to fuzzy logic.
Gentili, Pier Luigi
2011-03-14
Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi-valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automated Detection of Optic Disc in Fundus Images
NASA Astrophysics Data System (ADS)
Burman, R.; Almazroa, A.; Raahemifar, K.; Lakshminarayanan, V.
Optic disc (OD) localization is an important preprocessing step in the automated image detection of fundus image infected with glaucoma. An Interval Type-II fuzzy entropy based thresholding scheme along with Differential Evolution (DE) is applied to determine the location of the OD in the right of left eye retinal fundus image. The algorithm, when applied to 460 fundus images from the MESSIDOR dataset, shows a success rate of 99.07 % for 217 normal images and 95.47 % for 243 pathological images. The mean computational time is 1.709 s for normal images and 1.753 s for pathological images. These results are important for automated detection of glaucoma and for telemedicine purposes.
Interactive two-stage stochastic fuzzy programming for water resources management.
Wang, S; Huang, G H
2011-08-01
In this study, an interactive two-stage stochastic fuzzy programming (ITSFP) approach has been developed through incorporating an interactive fuzzy resolution (IFR) method within an inexact two-stage stochastic programming (ITSP) framework. ITSFP can not only tackle dual uncertainties presented as fuzzy boundary intervals that exist in the objective function and the left- and right-hand sides of constraints, but also permit in-depth analyses of various policy scenarios that are associated with different levels of economic penalties when the promised policy targets are violated. A management problem in terms of water resources allocation has been studied to illustrate applicability of the proposed approach. The results indicate that a set of solutions under different feasibility degrees has been generated for planning the water resources allocation. They can help the decision makers (DMs) to conduct in-depth analyses of tradeoffs between economic efficiency and constraint-violation risk, as well as enable them to identify, in an interactive way, a desired compromise between satisfaction degree of the goal and feasibility of the constraints (i.e., risk of constraint violation). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasim; Junaeti, E.; Wirantika, R.
2018-01-01
Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le
2013-01-01
Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real data sets, especially biomolecular data, and 2) the proposed approaches are able to provide more robust, stable, and accurate results when compared with the state-of-the-art single clustering algorithms and traditional cluster ensemble approaches.
Fuzzy control of small servo motors
NASA Technical Reports Server (NTRS)
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design
Cheng, Yi-Chang; Hsu, Yung-Chi
2010-01-01
In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations. PMID:21709856
A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection
Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta
2016-01-01
This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500
Fuzzy Logic-Based Filter for Removing Additive and Impulsive Noise from Color Images
NASA Astrophysics Data System (ADS)
Zhu, Yuhong; Li, Hongyang; Jiang, Huageng
2017-12-01
This paper presents an efficient filter method based on fuzzy logics for adaptively removing additive and impulsive noise from color images. The proposed filter comprises two parts including noise detection and noise removal filtering. In the detection part, the fuzzy peer group concept is applied to determine what type of noise is added to each pixel of the corrupted image. In the filter part, the impulse noise is deducted by the vector median filter in the CIELAB color space and an optimal fuzzy filter is introduced to reduce the Gaussian noise, while they can work together to remove the mixed Gaussian-impulse noise from color images. Experimental results on several color images proves the efficacy of the proposed fuzzy filter.
Use of fuzzy sets in modeling of GIS objects
NASA Astrophysics Data System (ADS)
Mironova, Yu N.
2018-05-01
The paper discusses modeling and methods of data visualization in geographic information systems. Information processing in Geoinformatics is based on the use of models. Therefore, geoinformation modeling is a key in the chain of GEODATA processing. When solving problems, using geographic information systems often requires submission of the approximate or insufficient reliable information about the map features in the GIS database. Heterogeneous data of different origin and accuracy have some degree of uncertainty. In addition, not all information is accurate: already during the initial measurements, poorly defined terms and attributes (e.g., "soil, well-drained") are used. Therefore, there are necessary methods for working with uncertain requirements, classes, boundaries. The author proposes using spatial information fuzzy sets. In terms of a characteristic function, a fuzzy set is a natural generalization of ordinary sets, when one rejects the binary nature of this feature and assumes that it can take any value in the interval.
Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei
2017-12-01
Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.
Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin
2017-10-01
The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.
NASA Astrophysics Data System (ADS)
Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir
2015-01-01
Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
Construction of fuzzy spaces and their applications to matrix models
NASA Astrophysics Data System (ADS)
Abe, Yasuhiro
Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.
Emergent fuzzy geometry and fuzzy physics in four dimensions
NASA Astrophysics Data System (ADS)
Ydri, Badis; Rouag, Ahlam; Ramda, Khaled
2017-03-01
A detailed Monte Carlo calculation of the phase diagram of bosonic mass-deformed IKKT Yang-Mills matrix models in three and six dimensions with quartic mass deformations is given. Background emergent fuzzy geometries in two and four dimensions are observed with a fluctuation given by a noncommutative U (1) gauge theory very weakly coupled to normal scalar fields. The geometry, which is determined dynamically, is given by the fuzzy spheres SN2 and SN2 × SN2 respectively. The three and six matrix models are effectively in the same universality class. For example, in two dimensions the geometry is completely stable, whereas in four dimensions the geometry is stable only in the limit M ⟶ ∞, where M is the mass of the normal fluctuations. The behaviors of the eigenvalue distribution in the two theories are also different. We also sketch how we can obtain a stable fuzzy four-sphere SN2 × SN2 in the large N limit for all values of M as well as models of topology change in which the transition between spheres of different dimensions is observed. The stable fuzzy spheres in two and four dimensions act precisely as regulators which is the original goal of fuzzy geometry and fuzzy physics. Fuzzy physics and fuzzy field theory on these spaces are briefly discussed.
Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering
Vianney Kinani, Jean Marie; Gallegos Funes, Francisco; Mújica Vargas, Dante; Ramos Díaz, Eduardo; Arellano, Alfonso
2017-01-01
We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient's response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time. PMID:29158887
NASA Astrophysics Data System (ADS)
Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing
2017-09-01
The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four
Fuzzy logic and neural networks in artificial intelligence and pattern recognition
NASA Astrophysics Data System (ADS)
Sanchez, Elie
1991-10-01
With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing
2013-01-01
The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.
Complex fuzzy soft expert sets
NASA Astrophysics Data System (ADS)
Selvachandran, Ganeshsree; Hafeed, Nisren A.; Salleh, Abdul Razak
2017-04-01
Complex fuzzy sets and its accompanying theory although at its infancy, has proven to be superior to classical type-1 fuzzy sets, due its ability in representing time-periodic problem parameters and capturing the seasonality of the fuzziness that exists in the elements of a set. These are important characteristics that are pervasive in most real world problems. However, there are two major problems that are inherent in complex fuzzy sets: it lacks a sufficient parameterization tool and it does not have a mechanism to validate the values assigned to the membership functions of the elements in a set. To overcome these problems, we propose the notion of complex fuzzy soft expert sets which is a hybrid model of complex fuzzy sets and soft expert sets. This model incorporates the advantages of complex fuzzy sets and soft sets, besides having the added advantage of allowing the users to know the opinion of all the experts in a single model without the need for any additional cumbersome operations. As such, this model effectively improves the accuracy of representation of problem parameters that are periodic in nature, besides having a higher level of computational efficiency compared to similar models in literature.
Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.
de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2017-01-01
Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.
NASA Astrophysics Data System (ADS)
Khademi, April; Hosseinzadeh, Danoush
2014-03-01
Alzheimer's disease (AD) is the most common form of dementia in the elderly characterized by extracellular deposition of amyloid plaques (AP). Using animal models, AP loads have been manually measured from histological specimens to understand disease etiology, as well as response to treatment. Due to the manual nature of these approaches, obtaining the AP load is labourious, subjective and error prone. Automated algorithms can be designed to alleviate these challenges by objectively segmenting AP. In this paper, we focus on the development of a novel algorithm for AP segmentation based on robust preprocessing and a Type II fuzzy system. Type II fuzzy systems are much more advantageous over the traditional Type I fuzzy systems, since ambiguity in the membership function may be modeled and exploited to generate excellent segmentation results. The ambiguity in the membership function is defined as an adaptively changing parameter that is tuned based on the local contrast characteristics of the image. Using transgenic mouse brains with AP ground truth, validation studies were carried out showing a high degree of overlap and low degree of oversegmentation (0.8233 and 0.0917, respectively). The results highlight that such a framework is able to handle plaques of various types (diffuse, punctate), plaques with varying Aβ concentrations as well as intensity variation caused by treatment effects or staining variability.
Effective Mechanical Properties of Fuzzy Fiber Composites
2012-03-16
fibers’’. Numerical examples of compositesmade of epoxy resin , carbonfibers and carbon nanotubes are presented and the impact of the carbon nanotubes...allows us to compute effective properties of composites with multiple types of ??fuzzy fibers??. Numerical examples of composites made of epoxy resin ...length (Fig. 1 in [42]). The CNTs have inter- nal radius 0.51 nm and external radius 0.85 nm. The ‘‘fuzzy fibers’’ are embedded in EPIKOTE 862 resin . The
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data
2014-01-01
Background Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. Methods This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. Results The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Conclusions Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary. PMID:25078574
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.
Mayer, Christopher C; Bachler, Martin; Hörtenhuber, Matthias; Stocker, Christof; Holzinger, Andreas; Wassertheurer, Siegfried
2014-01-01
Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary.
Rong, Qiangqiang; Cai, Yanpeng; Chen, Bing; Yue, Wencong; Yin, Xin'an; Tan, Qian
2017-02-15
In this research, an export coefficient based dual inexact two-stage stochastic credibility constrained programming (ECDITSCCP) model was developed through integrating an improved export coefficient model (ECM), interval linear programming (ILP), fuzzy credibility constrained programming (FCCP) and a fuzzy expected value equation within a general two stage programming (TSP) framework. The proposed ECDITSCCP model can effectively address multiple uncertainties expressed as random variables, fuzzy numbers, pure and dual intervals. Also, the model can provide a direct linkage between pre-regulated management policies and the associated economic implications. Moreover, the solutions under multiple credibility levels can be obtained for providing potential decision alternatives for decision makers. The proposed model was then applied to identify optimal land use structures for agricultural NPS pollution mitigation in a representative upstream subcatchment of the Miyun Reservoir watershed in north China. Optimal solutions of the model were successfully obtained, indicating desired land use patterns and nutrient discharge schemes to get a maximum agricultural system benefits under a limited discharge permit. Also, numerous results under multiple credibility levels could provide policy makers with several options, which could help get an appropriate balance between system benefits and pollution mitigation. The developed ECDITSCCP model can be effectively applied to addressing the uncertain information in agricultural systems and shows great applicability to the land use adjustment for agricultural NPS pollution mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Health state evaluation of shield tunnel SHM using fuzzy cluster method
NASA Astrophysics Data System (ADS)
Zhou, Fa; Zhang, Wei; Sun, Ke; Shi, Bin
2015-04-01
Shield tunnel SHM is in the path of rapid development currently while massive monitoring data processing and quantitative health grading remain a real challenge, since multiple sensors belonging to different types are employed in SHM system. This paper addressed the fuzzy cluster method based on fuzzy equivalence relationship for the health evaluation of shield tunnel SHM. The method was optimized by exporting the FSV map to automatically generate the threshold value. A new holistic health score(HHS) was proposed and its effectiveness was validated by conducting a pilot test. A case study on Nanjing Yangtze River Tunnel was presented to apply this method. Three types of indicators, namely soil pressure, pore pressure and steel strain, were used to develop the evaluation set U. The clustering results were verified by analyzing the engineering geological conditions; the applicability and validity of the proposed method was also demonstrated. Besides, the advantage of multi-factor evaluation over single-factor model was discussed by using the proposed HHS. This investigation indicated the fuzzy cluster method and HHS is capable of characterizing the fuzziness of tunnel health, and it is beneficial to clarify the tunnel health evaluation uncertainties.
Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests
NASA Technical Reports Server (NTRS)
Douglas, Freddie; Bourgeois, Edit Kaminsky
2005-01-01
The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).
Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook
2017-10-01
The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil
2001-07-01
We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.
NASA Astrophysics Data System (ADS)
Najafi, Ali; Karimpour, Mohammad Hassan; Ghaderi, Majid
2014-12-01
Using fuzzy analytical hierarchy process (AHP) technique, we propose a method for mineral prospectivity mapping (MPM) which is commonly used for exploration of mineral deposits. The fuzzy AHP is a popular technique which has been applied for multi-criteria decision-making (MCDM) problems. In this paper we used fuzzy AHP and geospatial information system (GIS) to generate prospectivity model for Iron Oxide Copper-Gold (IOCG) mineralization on the basis of its conceptual model and geo-evidence layers derived from geological, geochemical, and geophysical data in Taherabad area, eastern Iran. The FuzzyAHP was used to determine the weights belonging to each criterion. Three geoscientists knowledge on exploration of IOCG-type mineralization have been applied to assign weights to evidence layers in fuzzy AHP MPM approach. After assigning normalized weights to all evidential layers, fuzzy operator was applied to integrate weighted evidence layers. Finally for evaluating the ability of the applied approach to delineate reliable target areas, locations of known mineral deposits in the study area were used. The results demonstrate the acceptable outcomes for IOCG exploration.
NASA Astrophysics Data System (ADS)
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
NASA Astrophysics Data System (ADS)
Smoczek, Jaroslaw
2015-10-01
The paper deals with the problem of reducing the residual vibration and limiting the transient oscillations of a flexible and underactuated system with respect to the variation of operating conditions. The comparative study of generalized predictive control (GPC) and fuzzy scheduling scheme developed based on the P1-TS fuzzy theory, local pole placement method and interval analysis of closed-loop system polynomial coefficients is addressed to the problem of flexible crane control. The two alternatives of a GPC-based method are proposed that enable to realize this technique either with or without a sensor of payload deflection. The first control technique is based on the recursive least squares (RLS) method applied to on-line estimate the parameters of a linear parameter varying (LPV) model of a crane dynamic system. The second GPC-based approach is based on a payload deflection feedback estimated using a pendulum model with the parameters interpolated using the P1-TS fuzzy system. Feasibility and applicability of the developed methods were confirmed through experimental verification performed on a laboratory scaled overhead crane.
Prediction of coagulation and flocculation processes using ANN models and fuzzy regression.
Zangooei, Hossein; Delnavaz, Mohammad; Asadollahfardi, Gholamreza
2016-09-01
Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R 2 ) of 0.96 and root mean square error of 0.0106.
Fuzzy controller training using particle swarm optimization for nonlinear system control.
Karakuzu, Cihan
2008-04-01
This paper proposes and describes an effective utilization of particle swarm optimization (PSO) to train a Takagi-Sugeno (TS)-type fuzzy controller. Performance evaluation of the proposed fuzzy training method using the obtained simulation results is provided with two samples of highly nonlinear systems: a continuous stirred tank reactor (CSTR) and a Van der Pol (VDP) oscillator. The superiority of the proposed learning technique is that there is no need for a partial derivative with respect to the parameter for learning. This fuzzy learning technique is suitable for real-time implementation, especially if the system model is unknown and a supervised training cannot be run. In this study, all parameters of the controller are optimized with PSO in order to prove that a fuzzy controller trained by PSO exhibits a good control performance.
Looking at flood trends with different eyes: the value of a fuzzy flood classification scheme
NASA Astrophysics Data System (ADS)
Sikorska, A. E.; Viviroli, D.; Brunner, M. I.; Seibert, J.
2016-12-01
Natural floods can be governed by several processes such as heavy rainfall or intense snow- or glacier-melt. These processes result in different flood characteristics in terms of flood shape and magnitude. Pooling floods of different types might therefore impair the analyses of flood frequencies and trends. Thus, the categorization of flood events into different flood type classes and the determination of their respective frequencies is essential for a better understanding and for the prediction of floods. In reality however most flood events are caused by a mix of processes and a unique determination of a flood type per event often becomes difficult. This study proposes an innovative method for a more reliable categorization of floods according to similarities in flood drivers. The categorization of floods into subgroups relies on a fuzzy decision tree. While the classical (crisp) decision tree allows for the identification of only one flood type per event, the fuzzy approach enables the detection of mixed types. Hence, events are represented as a spectrum of six possible flood types, while a degree of acceptance attributed to each of them specifies the importance of each type during the event formation. Considered types are flash, short rainfall, long rainfall, snow-melt, rainfall-on-snow, and, in high altitude watersheds, also glacier-melt floods. The fuzzy concept also enables uncertainty present in the identification of flood processes and in the method to be incorporated into the flood categorization process. We demonstrate, for a set of nine Swiss watersheds and 30 years of observations, that this new concept provides more reliable flood estimates than the classical approach as it allows for a more dedicated flood prevention technique adapted to a specific flood type.
Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos
2007-01-01
Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Software for occupational health and safety risk analysis based on a fuzzy model.
Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan
2012-01-01
Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.
Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters
Liu, Fei; Heiner, Monika; Yang, Ming
2016-01-01
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830
Explorations in fuzzy physics and non-commutative geometry
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Seckin
Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.
NASA Astrophysics Data System (ADS)
Masudin, I.; Saputro, T. E.
2016-02-01
In today's technology, electronic trading transaction via internet has been utilized properly with rapid growth. This paper intends to evaluate related to B2C e-commerce website in order to find out the one which meets the usability factors better than another. The influential factors to B2C e-commerce website are determined for two big retailer websites. The factors are investigated based on the consideration of several studies and conformed to the website characteristics. The evaluation is conducted by using different methods namely fuzzy AHP and hierarchical fuzzy TOPSIS so that the final evaluation can be compared. Fuzzy triangular number is adopted to deal with imprecise judgment under fuzzy environment.
NASA Astrophysics Data System (ADS)
Santiago Girola Schneider, Rafael
2015-08-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that 'everything is a matter of degree.' It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others.The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters.Fuzzy logic enables the researcher to work with “imprecise” information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic’s techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
NASA Astrophysics Data System (ADS)
Girola Schneider, R.
2017-07-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
NASA Astrophysics Data System (ADS)
Meng, Fanyong
2018-02-01
Triangular fuzzy reciprocal preference relations (TFRPRs) are powerful tools to denoting decision-makers' fuzzy judgments, which permit the decision-makers to apply triangular fuzzy ratio rather than real numbers to express their judgements. Consistency analysis is one of the most crucial issues in preference relations that can guarantee the reasonable ranking order. However, all previous consistency concepts cannot well address this type of preference relations. Based on the operational laws on triangular fuzzy numbers, this paper introduces an additive consistency concept for TFRPRs by using quasi TFRPRs, which can be seen as a natural extension of the crisp case. Using this consistency concept, models to judging the additive consistency of TFRPRs and to estimating missing values in complete TFRPRs are constructed. Then, an algorithm to decision-making with TFRPRs is developed. Finally, two numerical examples are offered to illustrate the application of the proposed procedure, and comparison analysis is performed.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system
NASA Astrophysics Data System (ADS)
Mahendran, Venmathi; Ramabadran, Ramaprabha
2016-11-01
Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.
NASA Astrophysics Data System (ADS)
Pradhan, Moumita; Pradhan, Dinesh; Bandyopadhyay, G.
2010-10-01
Fuzzy System has demonstrated their ability to solve different kinds of problem in various application domains. There is an increasing interest to apply fuzzy concept to improve tasks of any system. Here case study of a thermal power plant is considered. Existing time estimation represents time to complete tasks. Applying fuzzy linear approach it becomes clear that after each confidence level least time is taken to complete tasks. As time schedule is less than less amount of cost is needed. Objective of this paper is to show how one system becomes more efficient in applying Fuzzy Linear approach. In this paper we want to optimize the time estimation to perform all tasks in appropriate time schedules. For the case study, optimistic time (to), pessimistic time (tp), most likely time(tm) is considered as data collected from thermal power plant. These time estimates help to calculate expected time(te) which represents time to complete particular task to considering all happenings. Using project evaluation and review technique (PERT) and critical path method (CPM) concept critical path duration (CPD) of this project is calculated. This tells that the probability of fifty percent of the total tasks can be completed in fifty days. Using critical path duration and standard deviation of the critical path, total completion of project can be completed easily after applying normal distribution. Using trapezoidal rule from four time estimates (to, tm, tp, te), we can calculate defuzzyfied value of time estimates. For range of fuzzy, we consider four confidence interval level say 0.4, 0.6, 0.8,1. From our study, it is seen that time estimates at confidence level between 0.4 and 0.8 gives the better result compared to other confidence levels.
Evolving fuzzy rules for relaxed-criteria negotiation.
Sim, Kwang Mong
2008-12-01
In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2018-03-01
The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.
Security risk assessment: applying the concepts of fuzzy logic.
Bajpai, Shailendra; Sachdeva, Anish; Gupta, J P
2010-01-15
Chemical process industries (CPI) handling hazardous chemicals in bulk can be attractive targets for deliberate adversarial actions by terrorists, criminals and disgruntled employees. It is therefore imperative to have comprehensive security risk management programme including effective security risk assessment techniques. In an earlier work, it has been shown that security risk assessment can be done by conducting threat and vulnerability analysis or by developing Security Risk Factor Table (SRFT). HAZOP type vulnerability assessment sheets can be developed that are scenario based. In SRFT model, important security risk bearing factors such as location, ownership, visibility, inventory, etc., have been used. In this paper, the earlier developed SRFT model has been modified using the concepts of fuzzy logic. In the modified SRFT model, two linguistic fuzzy scales (three-point and four-point) are devised based on trapezoidal fuzzy numbers. Human subjectivity of different experts associated with previous SRFT model is tackled by mapping their scores to the newly devised fuzzy scale. Finally, the fuzzy score thus obtained is defuzzyfied to get the results. A test case of a refinery is used to explain the method and compared with the earlier work.
NASA Technical Reports Server (NTRS)
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.
Chang, Chia-Wen; Tao, Chin-Wang
2017-09-01
This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.
Application of fuzzy system theory in addressing the presence of uncertainties
NASA Astrophysics Data System (ADS)
Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.; Ariffin, A. K.
2015-02-01
In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statistical approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Evolutionary Fuzzy Block-Matching-Based Camera Raw Image Denoising.
Yang, Chin-Chang; Guo, Shu-Mei; Tsai, Jason Sheng-Hong
2017-09-01
An evolutionary fuzzy block-matching-based image denoising algorithm is proposed to remove noise from a camera raw image. Recently, a variance stabilization transform is widely used to stabilize the noise variance, so that a Gaussian denoising algorithm can be used to remove the signal-dependent noise in camera sensors. However, in the stabilized domain, the existed denoising algorithm may blur too much detail. To provide a better estimate of the noise-free signal, a new block-matching approach is proposed to find similar blocks by the use of a type-2 fuzzy logic system (FLS). Then, these similar blocks are averaged with the weightings which are determined by the FLS. Finally, an efficient differential evolution is used to further improve the performance of the proposed denoising algorithm. The experimental results show that the proposed denoising algorithm effectively improves the performance of image denoising. Furthermore, the average performance of the proposed method is better than those of two state-of-the-art image denoising algorithms in subjective and objective measures.
Detection of Dendritic Spines Using Wavelet Packet Entropy and Fuzzy Support Vector Machine.
Wang, Shuihua; Li, Yang; Shao, Ying; Cattani, Carlo; Zhang, Yudong; Du, Sidan
2017-01-01
The morphology of dendritic spines is highly correlated with the neuron function. Therefore, it is of positive influence for the research of the dendritic spines. However, it is tried to manually label the spine types for statistical analysis. In this work, we proposed an approach based on the combination of wavelet contour analysis for the backbone detection, wavelet packet entropy, and fuzzy support vector machine for the spine classification. The experiments show that this approach is promising. The average detection accuracy of "MushRoom" achieves 97.3%, "Stubby" achieves 94.6%, and "Thin" achieves 97.2%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.
Zhu, Lin; Chung, Fu-Lai; Wang, Shitong
2009-06-01
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
Gettings, Mark E.; Bultman, Mark W.
1993-01-01
An application of possibility theory from fuzzy logic to the quantification of favorableness for quartz-carbonate vein deposits in the southern Santa Rita Mountains of southeastern Arizona is described. Three necessary but probably not sufficient conditions for the formation of these deposits were defined as the occurrence of carbonate berain rocks within hypabyssal depths, significant fracturing of the rocks, and proximity to a felsic intrusive. The quality of data available to evaluate these conditions is variable over the study area. The possibility of each condition was represented as a fuzzy set enumerated over the area. The intersection of the sets measures the degree of simultaneous occurrence of hte necessary factors and provides a measure of the possibility of deposit occurrence. Using fuzzy set technicques, the effect of one or more fuzzy sets relative to the others in the intersection can be controlled and logical combinations of the sets can be used to impose a time sequential constraint on the necessary conditions. Other necessary conditions, and supplementary conditions such as variable data quality or intensity of exploration can be included in the analysis by their proper representation as fuzzy sets.
Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.
Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G
2011-10-01
In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts.
NASA Astrophysics Data System (ADS)
Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan
2017-12-01
Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.
Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method
NASA Astrophysics Data System (ADS)
Nugraha, A. L.; Awaluddin, M.; Sasmito, B.
2018-02-01
One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.
NASA Astrophysics Data System (ADS)
El-Sebakhy, Emad A.
2009-09-01
Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.
ERIC Educational Resources Information Center
Herrera-Viedma, Enrique; Peis, Eduardo
2003-01-01
Presents a fuzzy evaluation method of SGML documents based on computing with words. Topics include filtering the amount of information available on the Web to assist users in their search processes; document type definitions; linguistic modeling; user-system interaction; and use with XML and other markup languages. (Author/LRW)
Exploiting expert systems in cardiology: a comparative study.
Economou, George-Peter K; Sourla, Efrosini; Stamatopoulou, Konstantina-Maria; Syrimpeis, Vasileios; Sioutas, Spyros; Tsakalidis, Athanasios; Tzimas, Giannis
2015-01-01
An improved Adaptive Neuro-Fuzzy Inference System (ANFIS) in the field of critical cardiovascular diseases is presented. The system stems from an earlier application based only on a Sugeno-type Fuzzy Expert System (FES) with the addition of an Artificial Neural Network (ANN) computational structure. Thus, inherent characteristics of ANNs, along with the human-like knowledge representation of fuzzy systems are integrated. The ANFIS has been utilized into building five different sub-systems, distinctly covering Coronary Disease, Hypertension, Atrial Fibrillation, Heart Failure, and Diabetes, hence aiding doctors of medicine (MDs), guide trainees, and encourage medical experts in their diagnoses centering a wide range of Cardiology. The Fuzzy Rules have been trimmed down and the ANNs have been optimized in order to focus into each particular disease and produce results ready-to-be applied to real-world patients.
Application of fuzzy system theory in addressing the presence of uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.
In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statisticalmore » approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.« less
Fuzzy Traffic Control with Vehicle-to-Everything Communication.
Salman, Muntaser A; Ozdemir, Suat; Celebi, Fatih V
2018-01-27
Traffic signal control (TSC) with vehicle-to everything (V2X) communication can be a very efficient solution to traffic congestion problem. Ratio of vehicles equipped with V2X communication capability in the traffic to the total number of vehicles (called penetration rate PR) is still low, thus V2X based TSC systems need to be supported by some other mechanisms. PR is the major factor that affects the quality of TSC process along with the evaluation interval. Quality of the TSC in each direction is a function of overall TSC quality of an intersection. Hence, quality evaluation of each direction should follow the evaluation of the overall intersection. Computational intelligence, more specifically swarm algorithm, has been recently used in this field in a European Framework Program FP7 supported project called COLOMBO. In this paper, using COLOMBO framework, further investigations have been done and two new methodologies using simple and fuzzy logic have been proposed. To evaluate the performance of our proposed methods, a comparison with COLOMBOs approach has been realized. The results reveal that TSC problem can be solved as a logical problem rather than an optimization problem. Performance of the proposed approaches is good enough to be suggested for future work under realistic scenarios even under low PR.
Fuzzy Traffic Control with Vehicle-to-Everything Communication
Ozdemir, Suat; Celebi, Fatih V.
2018-01-01
Traffic signal control (TSC) with vehicle-to everything (V2X) communication can be a very efficient solution to traffic congestion problem. Ratio of vehicles equipped with V2X communication capability in the traffic to the total number of vehicles (called penetration rate PR) is still low, thus V2X based TSC systems need to be supported by some other mechanisms. PR is the major factor that affects the quality of TSC process along with the evaluation interval. Quality of the TSC in each direction is a function of overall TSC quality of an intersection. Hence, quality evaluation of each direction should follow the evaluation of the overall intersection. Computational intelligence, more specifically swarm algorithm, has been recently used in this field in a European Framework Program FP7 supported project called COLOMBO. In this paper, using COLOMBO framework, further investigations have been done and two new methodologies using simple and fuzzy logic have been proposed. To evaluate the performance of our proposed methods, a comparison with COLOMBOs approach has been realized. The results reveal that TSC problem can be solved as a logical problem rather than an optimization problem. Performance of the proposed approaches is good enough to be suggested for future work under realistic scenarios even under low PR. PMID:29382053
Data fusion approach to threat assessment for radar resources management
NASA Astrophysics Data System (ADS)
Komorniczak, Wojciech; Pietrasinski, Jerzy; Solaiman, Basel
2002-03-01
The paper deals with the problem of the multifunction radar resources management. The problem consists of target/tasks ranking and tasks scheduling. The paper is focused on the target ranking, with the data fusion approach. The data from the radar (object's velocity, range, altitude, direction etc.), IFF system (Identification Friend or Foe) and ESM system (Electronic Support Measures - information concerning threat's electro - magnetic activities) is used to decide of the importance assignment for each detected target. The main problem consists of the multiplicity of various types of the input information. The information from the radar is of the probabilistic or ambiguous imperfection type and the IFF information is of evidential type. To take the advantage of these information sources the advanced data fusion system is necessary. The system should deal with the following situations: fusion of the evidential and fuzzy information, fusion of the evidential information and a'priori information. The paper describes the system which fuses the fuzzy and the evidential information without previous change to the same type of information. It is also described the proposal of using of the dynamic fuzzy qualifiers. The paper shows the results of the preliminary system's tests.
Yin, Kedong; Yang, Benshuo; Li, Xuemei
2018-01-24
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.
Yin, Kedong; Yang, Benshuo
2018-01-01
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making. PMID:29364849
Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Milos Manic
The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less
de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Blacky, Alexander; Koller, Walter
2016-05-01
Many electronic infection detection systems employ dichotomous classification methods, classifying patient data as pathological or normal with respect to one or several types of infection. An electronic monitoring and surveillance system for healthcare-associated infections (HAIs) known as Moni-ICU is being operated at the intensive care units (ICUs) of the Vienna General Hospital (VGH) in Austria. Instead of classifying patient data as pathological or normal, Moni-ICU introduces a third borderline class. Patient data classified as borderline with respect to an infection-related clinical concept or HAI surveillance definition signify that the data nearly or partly fulfill the definition for the respective concept or HAI, and are therefore neither fully pathological nor fully normal. Using fuzzy sets and propositional fuzzy rules, we calculated how frequently patient data are classified as normal, borderline, or pathological with respect to infection-related clinical concepts and HAI definitions. In dichotomous classification methods, borderline classification results would be confounded by normal. Therefore, we also assessed whether the constructed fuzzy sets and rules employed by Moni-ICU classified patient data too often or too infrequently as borderline instead of normal. Electronic surveillance data were collected from adult patients (aged 18 years or older) at ten ICUs of the VGH. All adult patients admitted to these ICUs over a two-year period were reviewed. In all 5099 patient stays (4120 patients) comprising 49,394 patient days were evaluated. For classification, a part of Moni-ICU's knowledge base comprising fuzzy sets and rules for ten infection-related clinical concepts and four top-level HAI definitions was employed. Fuzzy sets were used for the classification of concepts directly related to patient data; fuzzy rules were employed for the classification of more abstract clinical concepts, and for top-level HAI surveillance definitions. Data for each clinical concept and HAI definition were classified as either normal, borderline, or pathological. For the assessment of fuzzy sets and rules, we compared how often a borderline value for a fuzzy set or rule would result in a borderline value versus a normal value for its associated HAI definition(s). The statistical significance of these comparisons was expressed in p-values calculated with Fisher's exact test. The results showed that, for clinical concepts represented by fuzzy sets, 1-17% of the data were classified as borderline. The number was substantially higher (20-81%) for fuzzy rules representing more abstract clinical concepts. A small body of data were found to be in the borderline range for the four top-level HAI definitions (0.02-2.35%). Seven of ten fuzzy sets and rules were associated significantly more often with borderline values than with normal values for their respective HAI definition(s) (p<0.001). The study showed that Moni-ICU was effective in classifying patient data as borderline for infection-related concepts and top-level HAI surveillance definitions. Copyright © 2016 Elsevier B.V. All rights reserved.
Distributed autonomous systems: resource management, planning, and control algorithms
NASA Astrophysics Data System (ADS)
Smith, James F., III; Nguyen, ThanhVu H.
2005-05-01
Distributed autonomous systems, i.e., systems that have separated distributed components, each of which, exhibit some degree of autonomy are increasingly providing solutions to naval and other DoD problems. Recently developed control, planning and resource allocation algorithms for two types of distributed autonomous systems will be discussed. The first distributed autonomous system (DAS) to be discussed consists of a collection of unmanned aerial vehicles (UAVs) that are under fuzzy logic control. The UAVs fly and conduct meteorological sampling in a coordinated fashion determined by their fuzzy logic controllers to determine the atmospheric index of refraction. Once in flight no human intervention is required. A fuzzy planning algorithm determines the optimal trajectory, sampling rate and pattern for the UAVs and an interferometer platform while taking into account risk, reliability, priority for sampling in certain regions, fuel limitations, mission cost, and related uncertainties. The real-time fuzzy control algorithm running on each UAV will give the UAV limited autonomy allowing it to change course immediately without consulting with any commander, request other UAVs to help it, alter its sampling pattern and rate when observing interesting phenomena, or to terminate the mission and return to base. The algorithms developed will be compared to a resource manager (RM) developed for another DAS problem related to electronic attack (EA). This RM is based on fuzzy logic and optimized by evolutionary algorithms. It allows a group of dissimilar platforms to use EA resources distributed throughout the group. For both DAS types significant theoretical and simulation results will be presented.
Wan, Neng; Lin, Ge
2016-12-01
Smartphones have emerged as a promising type of equipment for monitoring human activities in environmental health studies. However, degraded location accuracy and inconsistency of smartphone-measured GPS data have limited its effectiveness for classifying human activity patterns. This study proposes a fuzzy classification scheme for differentiating human activity patterns from smartphone-collected GPS data. Specifically, a fuzzy logic reasoning was adopted to overcome the influence of location uncertainty by estimating the probability of different activity types for single GPS points. Based on that approach, a segment aggregation method was developed to infer activity patterns, while adjusting for uncertainties of point attributes. Validations of the proposed methods were carried out based on a convenient sample of three subjects with different types of smartphones. The results indicate desirable accuracy (e.g., up to 96% in activity identification) with use of this method. Two examples were provided in the appendix to illustrate how the proposed methods could be applied in environmental health studies. Researchers could tailor this scheme to fit a variety of research topics.
Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions
Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi
2015-01-01
In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452
Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets
NASA Astrophysics Data System (ADS)
Porwal, A.; Carranza, J.; Hale, M.
2004-12-01
A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.
Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making
NASA Astrophysics Data System (ADS)
harliana, Putri; Rahim, Robbi
2017-12-01
Membership function is a curve that shows mapping the input data points into the value or degree of membership which has an interval between 0 and 1. One way to get membership value is through a function approach. There are some membership functions can be used on mamdani fuzzy inference system. They are triangular, trapezoid, singleton, sigmoid, Gaussian, etc. In this paper only discuss three membership functions, are triangular, trapezoid and Gaussian. These three membership functions will be compared to see the difference in parameter values and results obtained. For case study in this paper is admission of students at popular school. There are three variable can be used, they are students’ report, IQ score and parents’ income. Which will then be created if-then rules.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.
Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong
2014-12-01
In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.
NASA Astrophysics Data System (ADS)
Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming
2006-10-01
The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix
Robust Fuzzy Logic Stabilization with Disturbance Elimination
Danapalasingam, Kumeresan A.
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713
NASA Astrophysics Data System (ADS)
Kozel, Tomas; Stary, Milos
2017-12-01
The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for all numbers from interval. Resulted course of management was compared with course, which was obtained from using GE + real flow series. Comparing results showed that fuzzy model with forecasted values has been able to manage main malfunction and artificially disorders made by model were founded essential, after values of water volume during management were evaluated. Forecasting model in combination with fuzzy model provide very good results in management of water reservoir with storage function and can be recommended for this purpose.
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Implementation of a new fuzzy vector control of induction motor.
Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz
2014-05-01
The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Differential Decomposition Among Pig, Rabbit, and Human Remains.
Dautartas, Angela; Kenyhercz, Michael W; Vidoli, Giovanna M; Meadows Jantz, Lee; Mundorff, Amy; Steadman, Dawnie Wolfe
2018-03-30
While nonhuman animal remains are often utilized in forensic research to develop methods to estimate the postmortem interval, systematic studies that directly validate animals as proxies for human decomposition are lacking. The current project compared decomposition rates among pigs, rabbits, and humans at the University of Tennessee's Anthropology Research Facility across three seasonal trials that spanned nearly 2 years. The Total Body Score (TBS) method was applied to quantify decomposition changes and calculate the postmortem interval (PMI) in accumulated degree days (ADD). Decomposition trajectories were analyzed by comparing the estimated and actual ADD for each seasonal trial and by fuzzy cluster analysis. The cluster analysis demonstrated that the rabbits formed one group while pigs and humans, although more similar to each other than either to rabbits, still showed important differences in decomposition patterns. The decomposition trends show that neither nonhuman model captured the pattern, rate, and variability of human decomposition. © 2018 American Academy of Forensic Sciences.
Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach
NASA Astrophysics Data System (ADS)
Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata
2014-12-01
In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root mean square error (RMSE), absolute error mean (AEM) and scatter index (SI) between target and predicted sand fraction values. The achieved estimation accuracy may diverge minutely depending on geological characteristics of a particular study area. The documented results in this study demonstrate acceptable resemblance between target and predicted variables, and hence, encourage the application of integrated machine learning approaches such as Neuro-Fuzzy in reservoir characterization domain. Furthermore, visualization of the variation of sand probability in the study area would assist in identifying placement of potential wells for future drilling operations.
Prepositioning emergency supplies under uncertainty: a parametric optimization method
NASA Astrophysics Data System (ADS)
Bai, Xuejie; Gao, Jinwu; Liu, Yankui
2018-07-01
Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J
2017-06-01
In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.
2016-08-01
Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.
Transmogrifying fuzzy vortices
NASA Astrophysics Data System (ADS)
Murugan, Jeff; Millner, Antony
2004-04-01
We show that the construction of vortex solitons of the noncommutative abelian-Higgs model can be extended to a critically coupled gauged linear sigma model with Fayet-Illiopolous D-terms. Like its commutative counterpart, this fuzzy linear sigma model has a rich spectrum of BPS solutions. We offer an explicit construction of the degree-k static semilocal vortex and study in some detail the infinite coupling limit in which it descends to a degree-k Bbb CBbb PkN instanton. This relation between the fuzzy vortex and noncommutative lump is used to suggest an interpretation of the noncommutative sigma model soliton as tilted D-strings stretched between an NS5-brane and a stack of D3-branes in type-IIB superstring theory.
Using a fuzzy DEMATEL method for analyzing the factors influencing subcontractors selection
NASA Astrophysics Data System (ADS)
Kozik, Renata
2016-06-01
Subcontracting is a long-standing practice in the construction industry. This form of project organization, if manage properly, could provide the better quality, reduction in project time and costs. Subcontractors selection is a multi-criterion problem and can be determined by many factors. Identifying the importance of each of them as well as the direction of cause-effect relations between various types of factors can improve the management process. Their values could be evaluated on the basis of the available expert opinions with the application of a fuzzy multi-stage grading scale. In this paper it is recommended to use fuzzy DEMATEL method to analyze the relationship between factors affecting subcontractors selection.
An Analytical Framework for Soft and Hard Data Fusion: A Dempster-Shafer Belief Theoretic Approach
2012-08-01
fusion. Therefore, we provide a detailed discussion on uncertain data types, their origins and three uncertainty pro- cessing formalisms that are popular...suitable membership functions corresponding to the fuzzy sets. 3.2.3 DS Theory The DS belief theory, originally proposed by Dempster, can be thought of as... originated and various imperfections of the source. Uncertainty handling formalisms provide techniques for modeling and working with these uncertain data types
TRStalker: an efficient heuristic for finding fuzzy tandem repeats.
Pellegrini, Marco; Renda, M Elena; Vecchio, Alessio
2010-06-15
Genomes in higher eukaryotic organisms contain a substantial amount of repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are originated via phenomena such as replication slippage and are characterized by close spatial contiguity. They play an important role in several molecular regulatory mechanisms, and also in several diseases (e.g. in the group of trinucleotide repeat disorders). While for TRs with a low or medium level of divergence the current methods are rather effective, the problem of detecting TRs with higher divergence (fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic to enriching our view of their role in regulatory mechanisms and diseases. Fuzzy TRs are also important as tools to shed light on the evolutionary history of the genome, where higher divergence correlates with more remote duplication events. We have developed an algorithm (christened TRStalker) with the aim of detecting efficiently TRs that are hard to detect because of their inherent fuzziness, due to high levels of base substitutions, insertions and deletions. To attain this goal, we developed heuristics to solve a Steiner version of the problem for which the fuzziness is measured with respect to a motif string not necessarily present in the input string. This problem is akin to the 'generalized median string' that is known to be an NP-hard problem. Experiments with both synthetic and biological sequences demonstrate that our method performs better than current state of the art for fuzzy TRs and that the fuzzy TRs of the type we detect are indeed present in important biological sequences. TRStalker will be integrated in the web-based TRs Discovery Service (TReaDS) at bioalgo.iit.cnr.it. Supplementary data are available at Bioinformatics online.
Performance of fuzzy approach in Malaysia short-term electricity load forecasting
NASA Astrophysics Data System (ADS)
Mansor, Rosnalini; Zulkifli, Malina; Yusof, Muhammad Mat; Ismail, Mohd Isfahani; Ismail, Suzilah; Yin, Yip Chee
2014-12-01
Many activities such as economic, education and manafucturing would paralyse with limited supply of electricity but surplus contribute to high operating cost. Therefore electricity load forecasting is important in order to avoid shortage or excess. Previous finding showed festive celebration has effect on short-term electricity load forecasting. Being a multi culture country Malaysia has many major festive celebrations such as Eidul Fitri, Chinese New Year and Deepavali but they are moving holidays due to non-fixed dates on the Gregorian calendar. This study emphasis on the performance of fuzzy approach in forecasting electricity load when considering the presence of moving holidays. Autoregressive Distributed Lag model was estimated using simulated data by including model simplification concept (manual or automatic), day types (weekdays or weekend), public holidays and lags of electricity load. The result indicated that day types, public holidays and several lags of electricity load were significant in the model. Overall, model simplification improves fuzzy performance due to less variables and rules.
Yadav, Jyoti; Rani, Asha; Singh, Vijander
2016-12-01
This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.
An interval model updating strategy using interval response surface models
NASA Astrophysics Data System (ADS)
Fang, Sheng-En; Zhang, Qiu-Hu; Ren, Wei-Xin
2015-08-01
Stochastic model updating provides an effective way of handling uncertainties existing in real-world structures. In general, probabilistic theories, fuzzy mathematics or interval analyses are involved in the solution of inverse problems. However in practice, probability distributions or membership functions of structural parameters are often unavailable due to insufficient information of a structure. At this moment an interval model updating procedure shows its superiority in the aspect of problem simplification since only the upper and lower bounds of parameters and responses are sought. To this end, this study develops a new concept of interval response surface models for the purpose of efficiently implementing the interval model updating procedure. The frequent interval overestimation due to the use of interval arithmetic can be maximally avoided leading to accurate estimation of parameter intervals. Meanwhile, the establishment of an interval inverse problem is highly simplified, accompanied by a saving of computational costs. By this means a relatively simple and cost-efficient interval updating process can be achieved. Lastly, the feasibility and reliability of the developed method have been verified against a numerical mass-spring system and also against a set of experimentally tested steel plates.
A fuzzy rumor spreading model based on transmission capacity
NASA Astrophysics Data System (ADS)
Zhang, Yi; Xu, Jiuping; Wu, Yue
This paper proposes a rumor spreading model that considers three main factors: the event importance, event ambiguity, and the publics critical sense, each of which are defined by decision makers using linguistic descriptions and then transformed into triangular fuzzy numbers. To calculate the resultant force of these three factors, the transmission capacity and a new parameter category with fuzzy variables are determined. A rumor spreading model is then proposed which has fuzzy parameters rather than the fixed parameters in traditional models. As the proposed model considers the comprehensive factors affecting rumors from three aspects rather than examining special factors from a particular aspect. The proposed rumor spreading model is tested using different parameters for several different conditions on BA networks and three special cases are simulated. The simulation results for all three cases suggested that events of low importance, those that are only clarifying facts, and those that are strongly critical do not result in rumors. Therefore, the model assessment results were proven to be in agreement with reality. Parameters for the model were then determined and applied to an analysis of the 7.23 Yong-Wen line major transportation accident (YWMTA). When the simulated data were compared with the real data from this accident, the results demonstrated that the interval for the rumor spreading key point in the model was accurate, and that the key point for the YWMTA rumor spread fell into the range estimated by the model.
NASA Astrophysics Data System (ADS)
Papadopoulou, Pinelopi; Iliopoulos, George; Koukouvelas, Ioannis; Rentoumi, Evaggelia; Groumpos, Peter
2017-04-01
Palaeoecological analyses are important tools for the reconstruction of palaeoenvironmental changes. In this paper microfossil assemblages (ostracodes and palynomorphs) of Lower Pleistocene age, are used to reconstruct the biological and physical conditions of the palaeoenvironment during a time interval when palaeoclimatic and palaeoecological data from the Balkan Peninsula are scarce. Lower Pleistocene is an epoch when major changes in the palaeoclimate occurred (commencement of the Quaternary glaciations) affecting the palaeoenvironments worldwide. The studied section, geotectonically belongs to the Northeastern Corinth gulf, and lies near the town Ag. Theodoroi, west of Athens, consisting of alterations of marls and marly limestones with intercalations of organic rich sediments and gypsum beds. Detailed logging of the section was carried out and 76 samples were collected for micropalaeontological analysis. Additionally, 22 samples were studied for their palynological content. The results were statistically processed using standard palaeoecological methods (percentage abundance diagrams, biodiversity indices and multivariate analysis). Our interpretation was further supported by fuzzy logic methods, in order to remove subjectivity from the biostratigraphical data providing a higher degree of detail. Despite this though, their use in geology remains limited until now. In our case study, fuzzy sets examine the data from a more general perspective and contain natural variations that are present in species abundance gradients between evolving environments. The lithological and micropalaeontological analysis revealed a brackish lagoonal environment dominated by the typical brackish ostracode species Cyprideis torosa. The studied sequence shows cyclically changing subenvironments fluctuating from the outer to the inner zone of a lagoon as imposed by the alternating occurrence of the ostracode families Tyrrhenocytheridae and Candonidae and the foraminifera species A. tepida. The palynological analysis revealed a vegetation of Mediterranean type with altitudinal zonation and a more or less stable climate with minor fluctuations in aridity. These fluctuations correspond to the zonation of the palaeoenvironment suggesting that it is climatically controlled. The combination, for the first time, of typical micropalaeontological analyses and fuzzy modeling results enabled the generation of a high-resolution palaeoenvironmental reconstruction model and eventually allowed the determination of the main factors that affected the evolution of the palaeoenvironment in the wider Sousaki basin during the Lower Pleistocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, Thomas E.; Deshpande, Ashok W.
2004-06-14
In modeling complex environmental problems, we often fail to make precise statements about inputs and outcome. In this case the fuzzy logic method native to the human mind provides a useful way to get at these problems. Fuzzy logic represents a significant change in both the approach to and outcome of environmental evaluations. Risk assessment is currently based on the implicit premise that probability theory provides the necessary and sufficient tools for dealing with uncertainty and variability. The key advantage of fuzzy methods is the way they reflect the human mind in its remarkable ability to store and process informationmore » which is consistently imprecise, uncertain, and resistant to classification. Our case study illustrates the ability of fuzzy logic to integrate statistical measurements with imprecise health goals. But we submit that fuzzy logic and probability theory are complementary and not competitive. In the world of soft computing, fuzzy logic has been widely used and has often been the ''smart'' behind smart machines. But it will require more effort and case studies to establish its niche in risk assessment or other types of impact assessment. Although we often hear complaints about ''bright lines,'' could we adapt to a system that relaxes these lines to fuzzy gradations? Would decision makers and the public accept expressions of water or air quality goals in linguistic terms with computed degrees of certainty? Resistance is likely. In many regions, such as the US and European Union, it is likely that both decision makers and members of the public are more comfortable with our current system in which government agencies avoid confronting uncertainties by setting guidelines that are crisp and often fail to communicate uncertainty. But some day perhaps a more comprehensive approach that includes exposure surveys, toxicological data, epidemiological studies coupled with fuzzy modeling will go a long way in resolving some of the conflict, divisiveness, and controversy in the current regulatory paradigm.« less
Fuzzy logic particle tracking velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory
NASA Astrophysics Data System (ADS)
Deyi, Feng; Ichikawa, M.
1989-11-01
In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.
NASA Astrophysics Data System (ADS)
Vasheghani Farahani, Jamileh; Zare, Mehdi; Lucas, Caro
2012-04-01
Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.
Remembering a criminal conversation: beyond eyewitness testimony.
Campos, Laura; Alonso-Quecuty, María L
2006-01-01
Unlike the important body of work on eyewitness memory, little research has been done on the accuracy and completeness of "earwitness" memory for conversations. The present research examined the effects of mode of presentation (audiovisual/ auditory-only) on witnesses' free recall for utterances in a criminal conversation at different retention intervals (immediate/delayed) within a single experiment. Different forms of correct recall (verbatim/gist) of the verbal information as well as different types of errors (distortions/fabrications) were also examined. It was predicted that participants in the audiovisual modality would provide more correct information, and fewer errors than participants in the auditory-only modality. Participants' recall was predicted to be impaired over time, dropping to a greater extent after a delay in the auditory-only modality. Results confirmed these hypotheses. Interpretations of the overall findings are offered within the context of dual-coding theory, and within the theoretical frameworks of source monitoring and fuzzy-trace theory.
Designing Fuzzy Algorithms to Develop Healthy Dietary Pattern
Asghari, Golaleh; Ejtahed, Hanieh-Sadat; Sarsharzadeh, Mohammad Mahdi; Nazeri, Pantea; Mirmiran, Parvin
2013-01-01
Background Fuzzy logic, a mathematical approach, defines the percentage of desirability for recommended amount of food groups and describes the range of intakes, from deficiency to excess. Objectives The purpose of this research was to find the best fuzzy dietary pattern that constraints energy and nutrients by the iterative algorithm. Materials and Methods An index is derived that reflects how closely the diet of an individual meets all the nutrient requirements set by the dietary reference intake. Fuzzy pyramid pattern was applied for the energy levels from 1000 to 4000 Kcal which estimated the range of recommended servings for seven food groups including fruits, vegetables, grains, meats, milk, oils, fat and added sugar. Results The optimum (lower attention – upper attention) recommended servings per day for fruits, vegetables, grain, meat, dairy, and oils of the 2000 kcal diet were 4.06 (3.75-4.25), 6.69 (6.25-7.00), 5.69 (5.75-6.25), 4.94 (4.5-5.2), 2.75(2.50-3.00), and 2.56 (2.5-2.75), respectively. The fuzzy pattern met most recommended nutrient intake levels except for potassium and vitamin E, which were estimated at 98% and 69% of the dietary reference intake, respectively. Conclusions Using fuzzy logic provides an elegant mathematical solution for finding the optimum point of food groups in dietary pattern. PMID:24454416
The search for structure - Object classification in large data sets. [for astronomers
NASA Technical Reports Server (NTRS)
Kurtz, Michael J.
1988-01-01
Research concerning object classifications schemes are reviewed, focusing on large data sets. Classification techniques are discussed, including syntactic, decision theoretic methods, fuzzy techniques, and stochastic and fuzzy grammars. Consideration is given to the automation of MK classification (Morgan and Keenan, 1973) and other problems associated with the classification of spectra. In addition, the classification of galaxies is examined, including the problems of systematic errors, blended objects, galaxy types, and galaxy clusters.
A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias
2013-10-01
Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
NASA Astrophysics Data System (ADS)
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
Saltkjel, Therese; Ingelsrud, Mari Holm; Dahl, Espen; Halvorsen, Knut
2017-08-01
This is the first part of a two-part paper that takes an explorative approach to assess crisis and austerity in European countries during the Great Recession. The ultimate aim of this two-part paper is to explore the "crisis-austerity" thesis by Stuckler and Basu and assess whether it is the interplay between austerity and crisis, rather than the current economic crisis per se, that can led to deterioration in population health. In Part I of this paper we offer one way of operationalizing crisis severity and austerity. We examine countries as specific configurations of crisis and policy responses and classify European countries into "ideal types." Cases included were 29 countries participating in the European Union Statistics on Income and Living Conditions (EU-SILC) surveys. Based on fuzzy set methodology, we constructed two fuzzy sets, "austerity" and "severe crisis." Austerity was measured by changes in welfare generosity; severe crisis was measured by changes in gross domestic product (GDP) per capita growth. In the initial phase of the Great Recession, most countries faced severe crisis combined with no austerity. From 2010-2011 onward, there was a divide between countries. Some countries consistently showed signs of austerity policies (with or without severe crisis); others consistently did not. The fuzzy set ideal-type analysis shows that the European countries position themselves, by and large, in configurations of crisis and austerity in meaningful ways that allow us to explore the "crisis-austerity" thesis by Stuckler and Basu. This exploration is the undertaking of Part II of this paper.
Optimization with Fuzzy Data via Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Kosiński, Witold
2010-09-01
Order fuzzy numbers (OFN) that make possible to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers, have been recently defined by the author and his 2 coworkers. The set of OFN forms a normed space and is a partially ordered ring. The case when the numbers are presented in the form of step functions, with finite resolution, simplifies all operations and the representation of defuzzification functionals. A general optimization problem with fuzzy data is formulated. Its fitness function attains fuzzy values. Since the adjoint space to the space of OFN is finite dimensional, a convex combination of all linear defuzzification functionals may be used to introduce a total order and a real-valued fitness function. Genetic operations on individuals representing fuzzy data are defined.
Smith, Troy A; Kimball, Daniel R
2012-01-01
Leading theories of false memory predict that veridical and false recall of lists of semantically associated words can be dissociated by varying the presentation speed during study. Specifically, as presentation rate increases from milliseconds to seconds, veridical recall is predicted to increase monotonically while false recall is predicted to show a rapid rise and then a slow decrease--a pattern shown by McDermott and Watson (2001) in a study using immediate recall tests. In three experiments we tested the generality of the effects of rapid presentation rates on veridical and false memory. In Experiments 1 and 2 participants exhibited high levels of false recall on a delayed recall test, even for very fast stimulus onset asynchronies (SOA)--contrary to predictions from leading theories of false memory. When we switched to an immediate recall test in Experiment 3 we replicated the pattern predicted by the theories and observed by McDermott and Watson. Follow-up analyses further showed that the relative output position of false recalls is not affected by presentation rate, contrary to predictions from fuzzy trace theory. Implications for theories of false memory, including activation monitoring theory and fuzzy trace theory, are discussed.
Guo, Guang-Hui; Wu, Feng-Chang; He, Hong-Ping; Feng, Cheng-Lian; Zhang, Rui-Qing; Li, Hui-Xian
2012-04-01
Probabilistic approaches, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS), and non-probabilistic approaches, such as interval analysis, fuzzy set theory and variance propagation, were used to characterize uncertainties associated with risk assessment of sigma PAH8 in surface water of Taihu Lake. The results from MCS and LHS were represented by probability distributions of hazard quotients of sigma PAH8 in surface waters of Taihu Lake. The probabilistic distribution of hazard quotient were obtained from the results of MCS and LHS based on probabilistic theory, which indicated that the confidence intervals of hazard quotient at 90% confidence level were in the range of 0.000 18-0.89 and 0.000 17-0.92, with the mean of 0.37 and 0.35, respectively. In addition, the probabilities that the hazard quotients from MCS and LHS exceed the threshold of 1 were 9.71% and 9.68%, respectively. The sensitivity analysis suggested the toxicity data contributed the most to the resulting distribution of quotients. The hazard quotient of sigma PAH8 to aquatic organisms ranged from 0.000 17 to 0.99 using interval analysis. The confidence interval was (0.001 5, 0.016 3) at the 90% confidence level calculated using fuzzy set theory, and the confidence interval was (0.000 16, 0.88) at the 90% confidence level based on the variance propagation. These results indicated that the ecological risk of sigma PAH8 to aquatic organisms were low. Each method has its own set of advantages and limitations, which was based on different theory; therefore, the appropriate method should be selected on a case-by-case to quantify the effects of uncertainties on the ecological risk assessment. Approach based on the probabilistic theory was selected as the most appropriate method to assess the risk of sigma PAH8 in surface water of Taihu Lake, which provided an important scientific foundation of risk management and control for organic pollutants in water.
Artificial Intelligence Methods Applied to Parameter Detection of Atrial Fibrillation
NASA Astrophysics Data System (ADS)
Arotaritei, D.; Rotariu, C.
2015-09-01
In this paper we present a novel method to develop an atrial fibrillation (AF) based on statistical descriptors and hybrid neuro-fuzzy and crisp system. The inference of system produce rules of type if-then-else that care extracted to construct a binary decision system: normal of atrial fibrillation. We use TPR (Turning Point Ratio), SE (Shannon Entropy) and RMSSD (Root Mean Square of Successive Differences) along with a new descriptor, Teager- Kaiser energy, in order to improve the accuracy of detection. The descriptors are calculated over a sliding window that produce very large number of vectors (massive dataset) used by classifier. The length of window is a crisp descriptor meanwhile the rest of descriptors are interval-valued type. The parameters of hybrid system are adapted using Genetic Algorithm (GA) algorithm with fitness single objective target: highest values for sensibility and sensitivity. The rules are extracted and they are part of the decision system. The proposed method was tested using the Physionet MIT-BIH Atrial Fibrillation Database and the experimental results revealed a good accuracy of AF detection in terms of sensitivity and specificity (above 90%).
Application of fuzzy theories to formulation of multi-objective design problems. [for helicopters
NASA Technical Reports Server (NTRS)
Dhingra, A. K.; Rao, S. S.; Miura, H.
1988-01-01
Much of the decision making in real world takes place in an environment in which the goals, the constraints, and the consequences of possible actions are not known precisely. In order to deal with imprecision quantitatively, the tools of fuzzy set theory can by used. This paper demonstrates the effectiveness of fuzzy theories in the formulation and solution of two types of helicopter design problems involving multiple objectives. The first problem deals with the determination of optimal flight parameters to accomplish a specified mission in the presence of three competing objectives. The second problem addresses the optimal design of the main rotor of a helicopter involving eight objective functions. A method of solving these multi-objective problems using nonlinear programming techniques is presented. Results obtained using fuzzy formulation are compared with those obtained using crisp optimization techniques. The outlined procedures are expected to be useful in situations where doubt arises about the exactness of permissible values, degree of credibility, and correctness of statements and judgements.
Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples
NASA Astrophysics Data System (ADS)
Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.
2009-05-01
An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Fluorescence intensity positivity classification of Hep-2 cells images using fuzzy logic
NASA Astrophysics Data System (ADS)
Sazali, Dayang Farzana Abang; Janier, Josefina Barnachea; May, Zazilah Bt.
2014-10-01
Indirect Immunofluorescence (IIF) is a good standard used for antinuclear autoantibody (ANA) test using Hep-2 cells to determine specific diseases. Different classifier algorithm methods have been proposed in previous works however, there still no valid set as a standard to classify the fluorescence intensity. This paper presents the use of fuzzy logic to classify the fluorescence intensity and to determine the positivity of the Hep-2 cell serum samples. The fuzzy algorithm involves the image pre-processing by filtering the noises and smoothen the image, converting the red, green and blue (RGB) color space of images to luminosity layer, chromaticity layer "a" and "b" (LAB) color space where the mean value of the lightness and chromaticity layer "a" was extracted and classified by using fuzzy logic algorithm based on the standard score ranges of antinuclear autoantibody (ANA) fluorescence intensity. Using 100 data sets of positive and intermediate fluorescence intensity for testing the performance measurements, the fuzzy logic obtained an accuracy of intermediate and positive class as 85% and 87% respectively.
An Application of Fuzzy Logic Control to a Classical Military Tracking Problem
1994-05-19
34, Fuzzy Sets and Systems, vol.4., 1980, pp.13-30. Berenji , Hamid R . and Pratap Khedkar. "Learning and Tuning Fuzzy Logic Controllers Through...A TRIDENT SCHOLAR PROJECT REPORT" NO. 222 "An Application of Fuzzy Logic Control to a Classical Military Tracking Problem" DTIC •S r F UNITED STATES...Zq qAvail andlor ____________________I__________ Dist SpecialDate USNA- 1531-2 REPORT DOCUMENTATION PAGE r •,,,op APmw OMB no. 0704.0188 ¢iQiiati~m.f
The Construction of a Vague Fuzzy Measure Through L1 Parameter Optimization
2012-08-26
Programming v. 1.21, http://cvxr.com/cvx, (2011) 11 [3] E.J. Candes, J. Romberg and T. Tao. Robust Uncertainty Principles: Exact Signal Reconstruction From...Annales de I’institut Fourer, 5 (1954), pp. 131-295 [9] D. Diakoulaki, C. Antunes and A. Martins. MCDA in Energy Planning, Int. Series in Operations...formance and Tests , Fuzzy Sets and Systems, Vol. 65, Issues 2-3 (1994), pp.255-271 [15] M. Grabisch. Fuzzy Integral in Multicriteria Decision Making, Fuzzy
Peng, Tiffany Y; Ehrlich, Samantha F; Crites, Yvonne; Kitzmiller, John L; Kuzniewicz, Michael W; Hedderson, Monique M; Ferrara, Assiamira
2017-02-01
Despite concern for adverse perinatal outcomes in women with diabetes mellitus before pregnancy, recent data on the prevalence of pregestational type 1 and type 2 diabetes mellitus in the United States are lacking. The purpose of this study was to estimate changes in the prevalence of overall pregestational diabetes mellitus (all types) and pregestational type 1 and type 2 diabetes mellitus and to estimate whether changes varied by race-ethnicity from 1996-2014. We conducted a cohort study among 655,428 pregnancies at a Northern California integrated health delivery system from 1996-2014. Logistic regression analyses provided estimates of prevalence and trends. The age-adjusted prevalence (per 100 deliveries) of overall pregestational diabetes mellitus increased from 1996-1999 to 2012-2014 (from 0.58 [95% confidence interval, 0.54-0.63] to 1.06 [95% confidence interval, 1.00-1.12]; P trend <.0001). Significant increases occurred in all racial-ethnic groups; the largest relative increase was among Hispanic women (121.8% [95% confidence interval, 84.4-166.7]); the smallest relative increase was among non-Hispanic white women (49.6% [95% confidence interval, 27.5-75.4]). The age-adjusted prevalence of pregestational type 1 and type 2 diabetes mellitus increased from 0.14 (95% confidence interval, 0.12-0.16) to 0.23 (95% confidence interval, 0.21-0.27; P trend <.0001) and from 0.42 (95% confidence interval, 0.38-0.46) to 0.78 (95% confidence interval, 0.73-0.83; P trend <.0001), respectively. The greatest relative increase in the prevalence of type 1 diabetes mellitus was in non-Hispanic white women (118.4% [95% confidence interval, 70.0-180.5]), who had the lowest increases in the prevalence of type 2 diabetes mellitus (13.6% [95% confidence interval, -8.0 to 40.1]). The greatest relative increase in the prevalence of type 2 diabetes mellitus was in Hispanic women (125.2% [95% confidence interval, 84.8-174.4]), followed by African American women (102.0% [95% confidence interval, 38.3-194.3]) and Asian women (93.3% [95% confidence interval, 48.9-150.9]). The prevalence of overall pregestational diabetes mellitus and pregestational type 1 and type 2 diabetes mellitus increased from 1996-1999 to 2012-2014 and racial-ethnic disparities were observed, possibly because of differing prevalence of maternal obesity. Targeted prevention efforts, preconception care, and disease management strategies are needed to reduce the burden of diabetes mellitus and its sequelae. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantum mechanics on space with SU(2) fuzziness
NASA Astrophysics Data System (ADS)
Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad
2009-04-01
Quantum mechanics of models is considered which are constructed in spaces with Lie algebra type commutation relations between spatial coordinates. The case is specialized to that of the group SU(2), for which the formulation of the problem via the Euler parameterization is also presented. SU(2)-invariant systems are discussed, and the corresponding eigenvalue problem for the Hamiltonian is reduced to an ordinary differential equation, as is the case with such models on commutative spaces.
Ye, Jun
2016-01-01
An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.
NASA Astrophysics Data System (ADS)
Juels, Ari
The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.
New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.
ERIC Educational Resources Information Center
Song, Qiang; Chissom, Brad S.
Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…
FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY
The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...
Durham, Erin-Elizabeth A; Yu, Xiaxia; Harrison, Robert W
2014-12-01
Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.
NASA Astrophysics Data System (ADS)
Ebrahimabadi, Arash
2016-12-01
This paper describes an effective approach to select suitable plant species for reclamation of mined lands in Chadormaloo iron mine which is located in central part of Iran, near the city of Bafgh in Yazd province. After mine's total reserves are excavated, the mine requires to be permanently closed and reclaimed. Mine reclamation and post-mining land-use are the main issues in the phase of mine closure. In general, among various scenarios for mine reclamation process, i.e. planting, agriculture, forestry, residency, tourist attraction, etc., planting is the oldest and commonly-used technology for the reclamation of lands damaged by mining activities. Planting and vegetation play a major role in restoring productivity, ecosystem stability and biological diversity to degraded areas, therefore the main goal of this research work is to choose proper and suitable plants compatible with the conditions of Chadormaloo mined area, providing consistent conditions for future use. To ensure the sustainability of the reclaimed landscape, the most suitable plant species adapted to the mine conditions are selected. Plant species selection is a Multi Criteria Decision Making (MCDM) problem. In this paper, a fuzzy MCDM technique, namely Fuzzy Analytic Hierarchy Process (FAHP) is developed to assist chadormaloo iron mine managers and designers in the process of plant type selection for reclamation of the mine under fuzzy environment where the vagueness and uncertainty are taken into account with linguistic variables parameterized by triangular fuzzy numbers. The results achieved from using FAHP approach demonstrate that the most proper plant species are ranked as Artemisia sieberi, Salsola yazdiana, Halophytes types, and Zygophyllum, respectively for reclamation of Chadormaloo iron mine.
NASA Astrophysics Data System (ADS)
Sheehan, T.; Baker, B.; Degagne, R. S.
2015-12-01
With the abundance of data sources, analytical methods, and computer models, land managers are faced with the overwhelming task of making sense of a profusion of data of wildly different types. Luckily, fuzzy logic provides a method to work with different types of data using language-based propositions such as "the landscape is undisturbed," and a simple set of logic constructs. Just as many surveys allow different levels of agreement with a proposition, fuzzy logic allows values reflecting different levels of truth for a proposition. Truth levels fall within a continuum ranging from Fully True to Fully False. Hence a fuzzy logic model produces continuous results. The Environmental Evaluation Modeling System (EEMS) is a platform-independent, tree-based, fuzzy logic modeling framework. An EEMS model provides a transparent definition of an evaluation model and is commonly developed as a collaborative effort among managers, scientists, and GIS experts. Managers specify a set of evaluative propositions used to characterize the landscape. Scientists, working with managers, formulate functions that convert raw data values into truth values for the propositions and produce a logic tree to combine results into a single metric used to guide decisions. Managers, scientists, and GIS experts then work together to implement and iteratively tune the logic model and produce final results. We present examples of two successful EEMS projects that provided managers with map-based results suitable for guiding decisions: sensitivity and climate change exposure in Utah and the Colorado Plateau modeled for the Bureau of Land Management; and terrestrial ecological intactness in the Mojave and Sonoran region of southern California modeled for the Desert Renewable Energy Conservation Plan.
ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study.
Heddam, Salim; Bermad, Abdelmalek; Dechemi, Noureddine
2012-04-01
Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.
TeV-photon paradox and space with SU(2) fuzziness
NASA Astrophysics Data System (ADS)
Shariati, A.; Khorrami, M.; Fatollahi, A. H.
2008-02-01
The possibility is examined that a model based on space noncommutativity of linear type can explain why photons from distant sources with multi-TeV energies can reach the Earth. In particular within a model in which space coordinates satisfy the algebra of the SU(2) Lie group, it is shown that there is a possibility that the pair production through the reaction of CMB and energetic photons be forbidden kinematically.
Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images
Cao, Jianfang; Chen, Lichao
2015-01-01
With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818
NASA Astrophysics Data System (ADS)
Widodo, Slamet; Miftakul, Amin M.; Sutrisman, Adi
2018-02-01
There are many phenomena that human are exposed to toxins from certain types such as of CO2, CO2 and CH4 gases. The device used to detect large amounts of CO, CO2, and CH4 gas in air in enclosed spaces using MQ 135 gas sensors of different types based on the three sensitivity of the Gas. The results of testing the use of sensors MQ 135 on the gas content of CO, CO2 and CH4 received by the sensor is still in the form of ppm based on the maximum ppm detection range of each sensor. Active sensor detects CO 120 ppm gas, CO2 1600 ppm and CH4 1ppm "standby 1" air condition with intermediate rotary fan. Active sensor detects CO 30 ppm gas, CO2 490 ppm and CH4 7 ppm "Standby 2" with low rotating fan output. Fuzzy rulebase logic for motor speed when gas detection sensor CO, CO2, and CH4 output controls the motion speed of the fan blower. Active sensors detect CO 15 ppm, CO2 320 ppm and CH4 45 ppm "Danger" air condition with high fan spin fan. At the gas level of CO 15 ppm, CO2 390 ppm and CH4 3 ppm detect "normal" AC sensor with fan output stop spinning.
Spherical D-brane by tachyon condensation
NASA Astrophysics Data System (ADS)
Asakawa, Tsuguhiko; Matsuura, So
2018-03-01
We find a novel tachyon condensation which provides a D-brane system with spherical worldvolume in the flat spacetime. The tachyon profile is a deformation of a known D0-brane solution on non-BPS D3-branes in type IIA superstring theory, which realizes a bound state of a spherical D2-brane and a D0-brane. The D0-brane is resolved into the sphere as a U(1) monopole flux of the unit magnetic charge. We show that the system has the correct tension and the RR-coupling. Although the low-energy effective action of the system is the same as that of the dual description of the fuzzy sphere solution of multiple D0-branes, our system cannot be equivalent to the fuzzy sphere. The use of projective modules in describing the tachyon condensation is emphasized.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping
NASA Astrophysics Data System (ADS)
Yousefi, Mahyar; Carranza, Emmanuel John M.
2015-01-01
Complexities of geological processes portrayed as certain feature in a map (e.g., faults) are natural sources of uncertainties in decision-making for exploration of mineral deposits. Besides natural sources of uncertainties, knowledge-driven (e.g., fuzzy logic) mineral prospectivity mapping (MPM) is also plagued and incurs further uncertainty in subjective judgment of analyst when there is no reliable proven value of evidential scores corresponding to relative importance of geological features that can directly be measured. In this regard, analysts apply expert opinion to assess relative importance of spatial evidences as meaningful decision support. This paper aims for fuzzification of continuous spatial data used as proxy evidence to facilitate and to support fuzzy MPM to generate exploration target areas for further examination of undiscovered deposits. In addition, this paper proposes to adapt the concept of expected value to further improve fuzzy logic MPM because the analysis of uncertain variables can be presented in terms of their expected value. The proposed modified expected value approach to MPM is not only a multi-criteria approach but it also treats uncertainty of geological processes a depicted by maps or spatial data in term of biased weighting more realistically in comparison with classified evidential maps because fuzzy membership scores are defined continuously whereby, for example, there is no need to categorize distances from evidential features to proximity classes using arbitrary intervals. The proposed continuous weighting approach and then integrating the weighted evidence layers by using modified expected value function, described in this paper can be used efficiently in either greenfields or brownfields.
Business Planning in the Light of Neuro-fuzzy and Predictive Forecasting
NASA Astrophysics Data System (ADS)
Chakrabarti, Prasun; Basu, Jayanta Kumar; Kim, Tai-Hoon
In this paper we have pointed out gain sensing on forecast based techniques.We have cited an idea of neural based gain forecasting. Testing of sequence of gain pattern is also verifies using statsistical analysis of fuzzy value assignment. The paper also suggests realization of stable gain condition using K-Means clustering of data mining. A new concept of 3D based gain sensing has been pointed out. The paper also reveals what type of trend analysis can be observed for probabilistic gain prediction.
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Machine learning approaches for estimation of prediction interval for the model output.
Shrestha, Durga L; Solomatine, Dimitri P
2006-03-01
A novel method for estimating prediction uncertainty using machine learning techniques is presented. Uncertainty is expressed in the form of the two quantiles (constituting the prediction interval) of the underlying distribution of prediction errors. The idea is to partition the input space into different zones or clusters having similar model errors using fuzzy c-means clustering. The prediction interval is constructed for each cluster on the basis of empirical distributions of the errors associated with all instances belonging to the cluster under consideration and propagated from each cluster to the examples according to their membership grades in each cluster. Then a regression model is built for in-sample data using computed prediction limits as targets, and finally, this model is applied to estimate the prediction intervals (limits) for out-of-sample data. The method was tested on artificial and real hydrologic data sets using various machine learning techniques. Preliminary results show that the method is superior to other methods estimating the prediction interval. A new method for evaluating performance for estimating prediction interval is proposed as well.
A hierarchical fuzzy rule-based approach to aphasia diagnosis.
Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid
2007-10-01
Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.
Interval Exercise Therapy for Type 2 Diabetes.
Hamasaki, Hidetaka
2018-01-01
Regular exercise improves glycemic control and reduces cardiovascular risk and mortality in patients with type 2 diabetes. Continuous moderate- to high-intensity exercise has been recommended to manage type 2 diabetes; however, only approximately 30% of diabetic patients achieve the recommended levels of physical activity. The reasons for not engaging in regular exercise vary; however, one of the common reasons is lack of time. Recently, the effectiveness of shortduration interval exercise such as high-intensity interval training and interval walking has been observed. Thus, the author aimed to summarize the current knowledge and discuss recent literature regarding the effects of interval exercise therapy in type 2 diabetes. The author searched the English literature on interval training and type 2 diabetes using Pub- Med. A total of 8 studies met the criteria. Interval exercise is feasible and effective in obtaining glycemic control in patients with type 2 diabetes. It may also improve body composition, insulin sensitivity, aerobic capacity, and oxidative stress more effectively than continuous exercise. As a novel exercise therapy, interval training appears to be effective in managing type 2 diabetes. However, the safety and efficacy of this exercise modality in patients with progressed diabetic complications or a history of cardiovascular disease and in extremely older individuals remain unknown. Additionally, there is considerable heterogeneity in exercise interventions (intensity and duration) between clinical studies. Further studies are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Aguilera Eguía, Raúl Alberto; Russell Guzmán, Javier Antonio; Soto Muñoz, Marcelo Enrique; Villegas González, Bastián Eduardo; Poblete Aro, Carlos Emilio; Ibacache Palma, Alejandro
2015-03-05
Type 2 diabetes mellitus is one of the major non-communicable chronic diseases in the world. Its prevalence in Chile is significant, and complications associated with this disease involve great costs, which is why prevention and treatment of this condition are essential. Physical exercise is an effective means for prevention and treatment of type 2 diabetes mellitus. The emergence of new forms of physical training, such as "high intensity interval training", presents novel therapeutic alternatives for patients and health care professionals. To assess the validity and applicability of the results regarding the effectiveness of high intensity interval training in reducing glycosylated hemoglobin in adult patients with type 2 diabetes mellitus and answer the following question: In subjects with type 2 diabetes, can the method of high intensity interval training compared to moderate intensity exercise decrease glycosylated hemoglobin? We performed a critical analysis of the article "Feasibility and preliminary effectiveness of high intensity interval training in type 2 diabetes". We found no significant differences in the amount of glycosylated hemoglobin between groups of high intensity interval training and moderate-intensity exercise upon completion of the study (p>0.05). In adult patients with type 2 diabetes mellitus, high intensity interval training does not significantly improve glycosylated hemoglobin levels. Despite this, the high intensity interval training method shows as much improvement in body composition and physical condition as the moderate intensity exercise program.
1989-10-31
fo tmaa OmfuogeM ara Mmi. fal in fM?05V~ ~ ~ ~ ~ ~ A D A 2 4 0409"~ n ugt Psoo,@’ oducbof Proton (07044 136M. WagaWapN. DC 20141 T1 3. REPORT TYPE...Al (circumscription, non- monotonic reasoning, and default reasoning), our approach is based on fuzzy logic and, more specifically, on the theory of
Sensory evaluation of selected formulated milk barberry drinks using the fuzzy approach.
Tahsiri, Zahra; Niakousari, Mehrdad; Khoshnoudi-Nia, Sara; Hosseini, Seyed Mohamad H
2017-05-01
Amid rigid competition in marketing to accomplish customers' needs, the cost of disappointment is too high. In an effort to escape market disappointment, one of the options to be considered is probing for customer satisfaction through sensory evaluation. This study aims to rank the six selected milk-barberry drink formulae out of 24 (code numbers S3, S4, S15, S16, S17 and S18) each having different milk:barberry:pectin amount (7: 3: 0.2; 6: 4: 0.2; 7: 3: 0.4, 6: 4: 0.4, 5: 5: 0.4 and 6: 4: 0.4), respectively, and to determine the best of quality attribute through sensory evaluation, using the fuzzy decision-making model. The selection was based on pH, total solid content, and degree of serum separation and rheological properties of the drinks. The results showed that the S4 had the highest acceptability, rated under the "very good" category, whereas the lowest acceptability was reported for the S3 which was classified under the "satisfactory" category. In summary, the ranking of the milk-barberry drinks was S4 > S17 > S16 > S15 > S18 > S3. Furthermore, quality attributes were ranked as taste > mouth feel > aroma > color. Results suggest that the fuzzy approach could be appropriately used to evaluate this type of sensory data.
A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting
NASA Astrophysics Data System (ADS)
Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle
2017-10-01
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.
Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar
2017-03-01
In the context of underground coal mining industry, the increased economic issues regarding implementation of additional safety measure systems, along with growing public awareness to ensure high level of workers safety, have put great pressure on the managers towards finding the best solution to ensure safe as well as economically viable alternative selection. Risk-based decision support system plays an important role in finding such solutions amongst candidate alternatives with respect to multiple decision criteria. Therefore, in this paper, a unified risk-based decision-making methodology has been proposed for selecting an appropriate safety measure system in relation to an underground coal mining industry with respect to multiple risk criteria such as financial risk, operating risk, and maintenance risk. The proposed methodology uses interval-valued fuzzy set theory for modelling vagueness and subjectivity in the estimates of fuzzy risk ratings for making appropriate decision. The methodology is based on the aggregative fuzzy risk analysis and multi-criteria decision making. The selection decisions are made within the context of understanding the total integrated risk that is likely to incur while adapting the particular safety system alternative. Effectiveness of the proposed methodology has been validated through a real-time case study. The result in the context of final priority ranking is seemed fairly consistent.
Limited Rationality and Its Quantification Through the Interval Number Judgments With Permutations.
Liu, Fang; Pedrycz, Witold; Zhang, Wei-Guo
2017-12-01
The relative importance of alternatives expressed in terms of interval numbers in the fuzzy analytic hierarchy process aims to capture the uncertainty experienced by decision makers (DMs) when making a series of comparisons. Under the assumption of full rationality, the judgements of DMs in the typical analytic hierarchy process could be consistent. However, since the uncertainty in articulating the opinions of DMs is unavoidable, the interval number judgements are associated with the limited rationality. In this paper, we investigate the concept of limited rationality by introducing interval multiplicative reciprocal comparison matrices. By analyzing the consistency of interval multiplicative reciprocal comparison matrices, it is observed that the interval number judgements are inconsistent. By considering the permutations of alternatives, the concepts of approximation-consistency and acceptable approximation-consistency of interval multiplicative reciprocal comparison matrices are proposed. The exchange method is designed to generate all the permutations. A novel method of determining the interval weight vector is proposed under the consideration of randomness in comparing alternatives, and a vector of interval weights is determined. A new algorithm of solving decision making problems with interval multiplicative reciprocal preference relations is provided. Two numerical examples are carried out to illustrate the proposed approach and offer a comparison with the methods available in the literature.
USDA-ARS?s Scientific Manuscript database
This work is devoted to review the new scientific divisions that emerged in agrophysics in the last 10-15 years. Among them are the following: 1) application of Adaptive Neuro-Fuzzy Inference System (ANFIS), 2) development and application of fuzzy indicator modeling, 3) agrophysical and physic-tech...
An Energy Saving Green Plug Device for Nonlinear Loads
NASA Astrophysics Data System (ADS)
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function
NASA Astrophysics Data System (ADS)
Seo, Sang-Wha; Kim, Yong; Choi, Han Ho
2017-11-01
This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.
Neuro-fuzzy control of structures using acceleration feedback
NASA Astrophysics Data System (ADS)
Schurter, Kyle C.; Roschke, Paul N.
2001-08-01
This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.
A hybrid modeling approach for option pricing
NASA Astrophysics Data System (ADS)
Hajizadeh, Ehsan; Seifi, Abbas
2011-11-01
The complexity of option pricing has led many researchers to develop sophisticated models for such purposes. The commonly used Black-Scholes model suffers from a number of limitations. One of these limitations is the assumption that the underlying probability distribution is lognormal and this is so controversial. We propose a couple of hybrid models to reduce these limitations and enhance the ability of option pricing. The key input to option pricing model is volatility. In this paper, we use three popular GARCH type model for estimating volatility. Then, we develop two non-parametric models based on neural networks and neuro-fuzzy networks to price call options for S&P 500 index. We compare the results with those of Black-Scholes model and show that both neural network and neuro-fuzzy network models outperform Black-Scholes model. Furthermore, comparing the neural network and neuro-fuzzy approaches, we observe that for at-the-money options, neural network model performs better and for both in-the-money and an out-of-the money option, neuro-fuzzy model provides better results.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
A recurrent self-organizing neural fuzzy inference network.
Juang, C F; Lin, C T
1999-01-01
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.
Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir
2014-01-01
Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.
A Fuzzy Query Mechanism for Human Resource Websites
NASA Astrophysics Data System (ADS)
Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih
Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.
Urban Growth Modeling Using Anfis Algorithm: a Case Study for Sanandaj City, Iran
NASA Astrophysics Data System (ADS)
Mohammady, S.; Delavar, M. R.; Pijanowski, B. C.
2013-10-01
Global urban population has increased from 22.9% in 1985 to 47% in 2010. In spite of the tendency for urbanization worldwide, only about 2% of Earth's land surface is covered by cities. Urban population in Iran is increasing due to social and economic development. The proportion of the population living in Iran urban areas has consistently increased from about 31% in 1956 to 68.4% in 2006. Migration of the rural population to cities and population growth in cities have caused many problems, such as irregular growth of cities, improper placement of infrastructure and urban services. Air and environmental pollution, resource degradation and insufficient infrastructure, are the results of poor urban planning that have negative impact on the environment or livelihoods of people living in cities. These issues are a consequence of improper land use planning. Models have been employed to assist in our understanding of relations between land use and its subsequent effects. Different models for urban growth modeling have been developed. Methods from computational intelligence have made great contributions in all specific application domains and hybrid algorithms research as a part of them has become a big trend in computational intelligence. Artificial Neural Network (ANN) has the capability to deal with imprecise data by training, while fuzzy logic can deal with the uncertainty of human cognition. ANN learns from scratch by adjusting the interconnections between layers and Fuzzy Inference Systems (FIS) is a popular computing framework based on the concept of fuzzy set theory, fuzzy logic, and fuzzy reasoning. Fuzzy logic has many advantages such as flexibility and at the other sides, one of the biggest problems in fuzzy logic application is the location and shape and of membership function for each fuzzy variable which is generally being solved by trial and error method. In contrast, numerical computation and learning are the advantages of neural network, however, it is not easy to obtain the optimal structure. Since, in this type of fuzzy logic, neural network has been used, therefore, by using a learning algorithm the parameters have been changed until reach the optimal solution. Adaptive Neuro Fuzzy Inference System (ANFIS) computing due to ability to understand nonlinear structures is a popular framework for solving complex problems. Fusion of ANN and FIS has attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. In this research, an ANFIS method has been developed for modeling land use change and interpreting the relationship between the drivers of urbanization. Our study area is the city of Sanandaj located in the west of Iran. Landsat images acquired in 2000 and 2006 have been used for model development and calibration. The parameters used in this study include distance to major roads, distance to residential regions, elevation, number of urban pixels in a 3 by 3 neighborhood and distance to green space. Percent Correct Match (PCM) and Figure of Merit were used to assess model goodness of fit were 93.77% and 64.30%, respectively.
Fuzzy logic based on-line fault detection and classification in transmission line.
Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam
2016-01-01
This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application.
Comparative study of a learning fuzzy PID controller and a self-tuning controller.
Kazemian, H B
2001-01-01
The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.
Runge Kutta Algorithm applied to a Hydrology Problem
NASA Astrophysics Data System (ADS)
Narayanan, M.
2003-12-01
In this paper, the author utilizes a fourth order Runge Kutta Algorithm technique to solve a design problem in Hydrology and Fluid Mechanics. Principles of Fuzzy Logic Design methodologies were utilized to analyze the problem and arrive at an appropriate solution. The problem posed was to examine the depletion of water from a reservoir. A suitable model was to be created to represent different parameters that contributed to the depletion, such as evaporation, drainage and seepage, irrigation channels, city water supply pipes, etc. The reservoir was being fed via natural resources such as rain, streams, rivers, etc. A model of a catchment area and a reservoir lake is simulated as a tank and exit discharge is represented as fluid output via a long pipe. The Input to the reservoir is assumed to be continuous-time and time varying. In other words, the flow rate of fluid input is presumed to change with time. The required objective is to maintain a predetermined level of water in the reservoir, regardless of input conditions. This is accomplished by adjusting the depletion rate. This means that some of the Irrigation channels may have to be closed or some of the city water supply lines need to be shut off. The differential equation governing the system can be easily derived using Bernoulli's' equation. If hd is the desired height of water in the reservoir and h(t) represents the height of water in the reservoir at any given time, K represents a positive constant. (dh/dt) + K [ h(t) - hd ] = 0 The closed loop system is simulated by using fourth-order Runge-Kutta algorithm. The controller output u(t) can be calculated using the above equation. The Runge-Kutta algorithm is a very popular method, which is widely used for obtaining a numerical solution to a given differential equation. The Runge-Kutta algorithm is considered to be quite accurate for a broad range of scientific and engineering applications, and as such, the method is heavily used by many scholars and researchers. In summary, Runge-Kutta is a common method of solving ordinary differential equations using numerical integration techniques. The principle is to use a trial step at the midpoint of an interval to cancel out lower-order error terms. Suppose that hn is the value of the variable at time tn. The Runge-Kutta formula takes hn and tn and calculates an approximation for hn+1 at a brief time later, tn+Âä. It uses a weighted average of approximated values of f(t, h) at several times within the interval (tn, tn+Âä). hn+1 = hn + (1/6) [ k1 + 2k2 + 2k3 + k4 ] k1, k2, k3 & k4 are four gradient terms. Fuzzy logic FLC rule base can be developed based on the above derivations and equations. Further, a graphical representation of water level over a time step period can be obtained. References : Nguyen, Hung T.; Prasad, Nadipuram R.; Walker, Carol L. and Walker, Elbert A. (2003). A First Course in Fuzzy and Neural Control. Boca Raton, Florida : Chapman & Hall / CRC. Yager, R. R., and Zadeh, L. A. (1991). An Introduction to Fuzzy Logic Applications in Intelligent Systems. New York : Kluwer Academic Publishers
A fuzzy-match search engine for physician directories.
Rastegar-Mojarad, Majid; Kadolph, Christopher; Ye, Zhan; Wall, Daniel; Murali, Narayana; Lin, Simon
2014-11-04
A search engine to find physicians' information is a basic but crucial function of a health care provider's website. Inefficient search engines, which return no results or incorrect results, can lead to patient frustration and potential customer loss. A search engine that can handle misspellings and spelling variations of names is needed, as the United States (US) has culturally, racially, and ethnically diverse names. The Marshfield Clinic website provides a search engine for users to search for physicians' names. The current search engine provides an auto-completion function, but it requires an exact match. We observed that 26% of all searches yielded no results. The goal was to design a fuzzy-match algorithm to aid users in finding physicians easier and faster. Instead of an exact match search, we used a fuzzy algorithm to find similar matches for searched terms. In the algorithm, we solved three types of search engine failures: "Typographic", "Phonetic spelling variation", and "Nickname". To solve these mismatches, we used a customized Levenshtein distance calculation that incorporated Soundex coding and a lookup table of nicknames derived from US census data. Using the "Challenge Data Set of Marshfield Physician Names," we evaluated the accuracy of fuzzy-match engine-top ten (90%) and compared it with exact match (0%), Soundex (24%), Levenshtein distance (59%), and fuzzy-match engine-top one (71%). We designed, created a reference implementation, and evaluated a fuzzy-match search engine for physician directories. The open-source code is available at the codeplex website and a reference implementation is available for demonstration at the datamarsh website.
Fuzzy self-learning control for magnetic servo system
NASA Technical Reports Server (NTRS)
Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.
1994-01-01
It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.
Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan
2010-10-15
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.
Error and Uncertainty in the Accuracy Assessment of Land Cover Maps
NASA Astrophysics Data System (ADS)
Sarmento, Pedro Alexandre Reis
Traditionally the accuracy assessment of land cover maps is performed through the comparison of these maps with a reference database, which is intended to represent the "real" land cover, being this comparison reported with the thematic accuracy measures through confusion matrixes. Although, these reference databases are also a representation of reality, containing errors due to the human uncertainty in the assignment of the land cover class that best characterizes a certain area, causing bias in the thematic accuracy measures that are reported to the end users of these maps. The main goal of this dissertation is to develop a methodology that allows the integration of human uncertainty present in reference databases in the accuracy assessment of land cover maps, and analyse the impacts that uncertainty may have in the thematic accuracy measures reported to the end users of land cover maps. The utility of the inclusion of human uncertainty in the accuracy assessment of land cover maps is investigated. Specifically we studied the utility of fuzzy sets theory, more precisely of fuzzy arithmetic, for a better understanding of human uncertainty associated to the elaboration of reference databases, and their impacts in the thematic accuracy measures that are derived from confusion matrixes. For this purpose linguistic values transformed in fuzzy intervals that address the uncertainty in the elaboration of reference databases were used to compute fuzzy confusion matrixes. The proposed methodology is illustrated using a case study in which the accuracy assessment of a land cover map for Continental Portugal derived from Medium Resolution Imaging Spectrometer (MERIS) is made. The obtained results demonstrate that the inclusion of human uncertainty in reference databases provides much more information about the quality of land cover maps, when compared with the traditional approach of accuracy assessment of land cover maps. None
Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches
Kavitha, Muthu Subash; Ganesh Kumar, Pugalendhi; Park, Soon-Yong; Huh, Kyung-Hoe; Heo, Min-Suk; Kurita, Takio; Asano, Akira; An, Seo-Yong
2016-01-01
Objectives: This study proposed a new automated screening system based on a hybrid genetic swarm fuzzy (GSF) classifier using digital dental panoramic radiographs to diagnose females with a low bone mineral density (BMD) or osteoporosis. Methods: The geometrical attributes of both the mandibular cortical bone and trabecular bone were acquired using previously developed software. Designing an automated system for osteoporosis screening involved partitioning of the input attributes to generate an initial membership function (MF) and a rule set (RS), classification using a fuzzy inference system and optimization of the generated MF and RS using the genetic swarm algorithm. Fivefold cross-validation (5-FCV) was used to estimate the classification accuracy of the hybrid GSF classifier. The performance of the hybrid GSF classifier has been further compared with that of individual genetic algorithm and particle swarm optimization fuzzy classifiers. Results: Proposed hybrid GSF classifier in identifying low BMD or osteoporosis at the lumbar spine and femoral neck BMD was evaluated. The sensitivity, specificity and accuracy of the hybrid GSF with optimized MF and RS in identifying females with a low BMD were 95.3%, 94.7% and 96.01%, respectively, at the lumbar spine and 99.1%, 98.4% and 98.9%, respectively, at the femoral neck BMD. The diagnostic performance of the proposed system with femoral neck BMD was 0.986 with a confidence interval of 0.942–0.998. The highest mean accuracy using 5-FCV was 97.9% with femoral neck BMD. Conclusions: The combination of high accuracy along with its interpretation ability makes this proposed automatic system using hybrid GSF classifier capable of identifying a large proportion of undetected low BMD or osteoporosis at its early stage. PMID:27186991
A fuzzy set preference model for market share analysis
NASA Technical Reports Server (NTRS)
Turksen, I. B.; Willson, Ian A.
1992-01-01
Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share prediction).
Intelligent Traffic Quantification System
NASA Astrophysics Data System (ADS)
Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta
2017-08-01
Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.
Using new aggregation operators in rule-based intelligent control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Chen, Yung-Yaw; Yager, Ronald R.
1990-01-01
A new aggregation operator is applied in the design of an approximate reasoning-based controller. The ordered weighted averaging (OWA) operator has the property of lying between the And function and the Or function used in previous fuzzy set reasoning systems. It is shown here that, by applying OWA operators, more generalized types of control rules, which may include linguistic quantifiers such as Many and Most, can be developed. The new aggregation operators, as tested in a cart-pole balancing control problem, illustrate improved performance when compared with existing fuzzy control aggregation schemes.
Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1997-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty
Xu, Ye; Huang, Guohe; Xu, Ling
2014-01-01
Abstract In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies. PMID:25317037
A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty.
Xu, Ye; Huang, Guohe; Xu, Ling
2014-10-01
In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies.
NASA Astrophysics Data System (ADS)
Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John
2005-04-01
To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.
Fuzzy classifier based support vector regression framework for Poisson ratio determination
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa
2013-09-01
Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.
NASA Astrophysics Data System (ADS)
Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman
2013-06-01
This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.
Application of fuzzy set and Dempster-Shafer theory to organic geochemistry interpretation
NASA Technical Reports Server (NTRS)
Kim, C. S.; Isaksen, G. H.
1993-01-01
An application of fuzzy sets and Dempster Shafter Theory (DST) in modeling the interpretational process of organic geochemistry data for predicting the level of maturities of oil and source rock samples is presented. This was accomplished by (1) representing linguistic imprecision and imprecision associated with experience by a fuzzy set theory, (2) capturing the probabilistic nature of imperfect evidences by a DST, and (3) combining multiple evidences by utilizing John Yen's generalized Dempster-Shafter Theory (GDST), which allows DST to deal with fuzzy information. The current prototype provides collective beliefs on the predicted levels of maturity by combining multiple evidences through GDST's rule of combination.
NASA Technical Reports Server (NTRS)
Togai, Masaki
1990-01-01
Viewgraphs on commercial applications of fuzzy logic in Japan are presented. Topics covered include: suitable application area of fuzzy theory; characteristics of fuzzy control; fuzzy closed-loop controller; Mitsubishi heavy air conditioner; predictive fuzzy control; the Sendai subway system; automatic transmission; fuzzy logic-based command system for antilock braking system; fuzzy feed-forward controller; and fuzzy auto-tuning system.
NASA Astrophysics Data System (ADS)
Subagadis, Yohannes Hagos; Schütze, Niels; Grundmann, Jens
2014-05-01
An amplified interconnectedness between a hydro-environmental and socio-economic system brings about profound challenges of water management decision making. In this contribution, we present a fuzzy stochastic approach to solve a set of decision making problems, which involve hydrologically, environmentally, and socio-economically motivated criteria subjected to uncertainty and ambiguity. The proposed methodological framework combines objective and subjective criteria in a decision making procedure for obtaining an acceptable ranking in water resources management alternatives under different type of uncertainty (subjective/objective) and heterogeneous information (quantitative/qualitative) simultaneously. The first step of the proposed approach involves evaluating the performance of alternatives with respect to different types of criteria. The ratings of alternatives with respect to objective and subjective criteria are evaluated by simulation-based optimization and fuzzy linguistic quantifiers, respectively. Subjective and objective uncertainties related to the input information are handled through linking fuzziness and randomness together. Fuzzy decision making helps entail the linguistic uncertainty and a Monte Carlo simulation process is used to map stochastic uncertainty. With this framework, the overall performance of each alternative is calculated using an Order Weighted Averaging (OWA) aggregation operator accounting for decision makers' experience and opinions. Finally, ranking is achieved by conducting pair-wise comparison of management alternatives. This has been done on the basis of the risk defined by the probability of obtaining an acceptable ranking and mean difference in total performance for the pair of management alternatives. The proposed methodology is tested in a real-world hydrosystem, to find effective and robust intervention strategies for the management of a coastal aquifer system affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. The results show that the approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.
NASA Astrophysics Data System (ADS)
Allah Taleizadeh, Ata; Niaki, Seyed Taghi Akhavan; Aryanezhad, Mir-Bahador
2010-10-01
While the usual assumptions in multi-periodic inventory control problems are that the orders are placed at the beginning of each period (periodic review) or depending on the inventory level they can happen at any time (continuous review), in this article, we relax these assumptions and assume that the periods between two replenishments of the products are independent and identically distributed random variables. Furthermore, assuming that the purchasing price are triangular fuzzy variables, the quantities of the orders are of integer-type and that there are space and service level constraints, total discount are considered to purchase products and a combination of back-order and lost-sales are taken into account for the shortages. We show that the model of this problem is a fuzzy mixed-integer nonlinear programming type and in order to solve it, a hybrid meta-heuristic intelligent algorithm is proposed. At the end, a numerical example is given to demonstrate the applicability of the proposed methodology and to compare its performance with one of the existing algorithms in real world inventory control problems.
GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks
NASA Astrophysics Data System (ADS)
Kong, Changduk; Koo, Youngju
2011-04-01
The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.
Fuzzy methods in decision making process - A particular approach in manufacturing systems
NASA Astrophysics Data System (ADS)
Coroiu, A. M.
2015-11-01
We are living in a competitive environment, so we can see and understand that the most of manufacturing firms do the best in order to accomplish meeting demand, increasing quality, decreasing costs, and delivery rate. In present a stake point of interest is represented by the development of fuzzy technology. A particular approach for this is represented through the development of methodologies to enhance the ability to managed complicated optimization and decision making aspects involving non-probabilistic uncertainty with the reason to understand, development, and practice the fuzzy technologies to be used in fields such as economic, engineering, management, and societal problems. Fuzzy analysis represents a method for solving problems which are related to uncertainty and vagueness; it is used in multiple areas, such as engineering and has applications in decision making problems, planning and production. As a definition for decision making process we can use the next one: result of mental processes based upon cognitive process with a main role in the selection of a course of action among several alternatives. Every process of decision making can be represented as a result of a final choice and the output can be represented as an action or as an opinion of choice. Different types of uncertainty can be discovered in a wide variety of optimization and decision making problems related to planning and operation of power systems and subsystems. The mixture of the uncertainty factor in the construction of different models serves for increasing their adequacy and, as a result, the reliability and factual efficiency of decisions based on their analysis. Another definition of decision making process which came to illustrate and sustain the necessity of using fuzzy method: the decision making is an approach of choosing a strategy among many different projects in order to achieve some purposes and is formulated as three different models: high risk decision, usual risk decision and low risk decision - some specific formulas of fuzzy logic. The fuzzy set concepts has some certain parameterization features which are certain extensions of crisp and fuzzy relations respectively and have a rich potential for application to the decision making problems. The proposed approach from this paper presents advantages of fuzzy approach, in comparison with other paradigm and presents a particular way in which fuzzy logic can emerge in decision making process and planning process with implication, as a simulation, in manufacturing - involved in measuring performance of advanced manufacturing systems. Finally, an example is presented to illustrate our simulation.
Multitask TSK fuzzy system modeling by mining intertask common hidden structure.
Jiang, Yizhang; Chung, Fu-Lai; Ishibuchi, Hisao; Deng, Zhaohong; Wang, Shitong
2015-03-01
The classical fuzzy system modeling methods implicitly assume data generated from a single task, which is essentially not in accordance with many practical scenarios where data can be acquired from the perspective of multiple tasks. Although one can build an individual fuzzy system model for each task, the result indeed tells us that the individual modeling approach will get poor generalization ability due to ignoring the intertask hidden correlation. In order to circumvent this shortcoming, we consider a general framework for preserving the independent information among different tasks and mining hidden correlation information among all tasks in multitask fuzzy modeling. In this framework, a low-dimensional subspace (structure) is assumed to be shared among all tasks and hence be the hidden correlation information among all tasks. Under this framework, a multitask Takagi-Sugeno-Kang (TSK) fuzzy system model called MTCS-TSK-FS (TSK-FS for multiple tasks with common hidden structure), based on the classical L2-norm TSK fuzzy system, is proposed in this paper. The proposed model can not only take advantage of independent sample information from the original space for each task, but also effectively use the intertask common hidden structure among multiple tasks to enhance the generalization performance of the built fuzzy systems. Experiments on synthetic and real-world datasets demonstrate the applicability and distinctive performance of the proposed multitask fuzzy system model in multitask regression learning scenarios.
Knowledge guided information fusion for segmentation of multiple sclerosis lesions in MRI images
NASA Astrophysics Data System (ADS)
Zhu, Chaozhe; Jiang, Tianzi
2003-05-01
In this work, T1-, T2- and PD-weighted MR images of multiple sclerosis (MS) patients, providing information on the properties of tissues from different aspects, are treated as three independent information sources for the detection and segmentation of MS lesions. Based on information fusion theory, a knowledge guided information fusion framework is proposed to accomplish 3-D segmentation of MS lesions. This framework consists of three parts: (1) information extraction, (2) information fusion, and (3) decision. Information provided by different spectral images is extracted and modeled separately in each spectrum using fuzzy sets, aiming at managing the uncertainty and ambiguity in the images due to noise and partial volume effect. In the second part, the possible fuzzy map of MS lesions in each spectral image is constructed from the extracted information under the guidance of experts' knowledge, and then the final fuzzy map of MS lesions is constructed through the fusion of the fuzzy maps obtained from different spectrum. Finally, 3-D segmentation of MS lesions is derived from the final fuzzy map. Experimental results show that this method is fast and accurate.
Availability-Based Importance Framework for Supplier Selection
2015-04-30
IMA Journal of Management Math, 15(2), 161– 174. Chen, C . -T., Lin, C . -T., & Huang, S. -F. (2006). A fuzzy approach for supplier evaluation and...reliability modeling: Principles and applications. Hoboken, NJ: Wiley. Liao, C . -N., & Kao, H. -P. (2011). An integrated fuzzy TOPSIS and MCGP approach to...5307–5326. Wang, J. -W., Cheng, C . -H., & Huang, K.- C . (2009). Fuzzy hierarchical TOPSIS for supplier selection. Applied Soft Computing, 9(1), 377
Decomposed fuzzy systems and their application in direct adaptive fuzzy control.
Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang
2014-10-01
In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.
Fuzzy Comprehensive Evaluation Method Applied in the Real Estate Investment Risks Research
NASA Astrophysics Data System (ADS)
ML(Zhang Minli), Zhang; Wp(Yang Wenpo), Yang
Real estate investment is a high-risk and high returned of economic activity, the key of real estate analysis is the identification of their types of investment risk and the risk of different types of effective prevention. But, as the financial crisis sweeping the world, the real estate industry also faces enormous risks, how effective and correct evaluation of real estate investment risks becomes the multitudinous scholar concern[1]. In this paper, real estate investment risks were summarized and analyzed, and comparative analysis method is discussed and finally presented fuzzy comprehensive evaluation method, not only in theory has the advantages of science, in the application also has the reliability, for real estate investment risk assessment provides an effective means for investors in real estate investing guidance on risk factors and forecasts.
Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets
NASA Astrophysics Data System (ADS)
Kaishan, Liu; Huimin, Li
2017-12-01
The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
Fuzzy support vector machines for adaptive Morse code recognition.
Yang, Cheng-Hong; Jin, Li-Cheng; Chuang, Li-Yeh
2006-11-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, facilitating mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. Therefore, an adaptive automatic recognition method with a high recognition rate is needed. The proposed system uses both fuzzy support vector machines and the variable-degree variable-step-size least-mean-square algorithm to achieve these objectives. We apply fuzzy memberships to each point, and provide different contributions to the decision learning function for support vector machines. Statistical analyses demonstrated that the proposed method elicited a higher recognition rate than other algorithms in the literature.
Shi, Wuxi; Luo, Rui; Li, Baoquan
2017-01-01
In this study, an adaptive fuzzy prescribed performance control approach is developed for a class of uncertain multi-input and multi-output (MIMO) nonlinear systems with unknown control direction and unknown dead-zone inputs. The properties of symmetric matrix are exploited to design adaptive fuzzy prescribed performance controller, and a Nussbaum-type function is incorporated in the controller to estimate the unknown control direction. This method has two prominent advantages: it does not require the priori knowledge of control direction and only three parameters need to be updated on-line for this MIMO systems. It is proved that all the signals in the resulting closed-loop system are bounded and that the tracking errors converge to a small residual set with the prescribed performance bounds. The effectiveness of the proposed approach is validated by simulation results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh
2015-01-01
Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin–blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results. PMID:26284169
Dinani, Soudabeh Taghian; Zekri, Maryam; Kamali, Marzieh
2015-01-01
Diabetes is considered as a global affecting disease with an increasing contribution to both mortality rate and cost damage in the society. Therefore, tight control of blood glucose levels has gained significant attention over the decades. This paper proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on combining the fuzzy logic theory and single order sliding mode control (SOSMC) to improve the properties of sliding mode control method and to alleviate its drawbacks. The aim of the proposed controller that is called SOSMC combined with fuzzy on-line tunable gain is to tune the gain of the controller adaptively. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. As a result, this method can decline the risk of hypoglycemia, a lethal phenomenon in regulating blood glucose level in diabetics caused by a low blood glucose level. Moreover, it attenuates the chattering observed in SOSMC significantly. It is worth noting that in this approach, a mathematical model called minimal model is applied instead of the intravenously infused insulin-blood glucose dynamics. The simulation results demonstrate a good performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. In addition, this method is compared to fuzzy high-order sliding mode control (FHOSMC) and the superiority of the new method compared to FHOSMC is shown in the results.
Prescribed burning impact on forest soil properties--a Fuzzy Boolean Nets approach.
Castro, Ana C Meira; Paulo Carvalho, Joao; Ribeiro, S
2011-02-01
The Portuguese northern forests are often and severely affected by wildfires during the Summer season. These occurrences significantly affect and negatively impact all ecosystems, namely soil, fauna and flora. In order to reduce the occurrences of natural wildfires, some measures to control the availability of fuel mass are regularly implemented. Those preventive actions concern mainly prescribed burnings and vegetation pruning. This work reports on the impact of a prescribed burning on several forest soil properties, namely pH, soil moisture, organic matter content and iron content, by monitoring the soil self-recovery capabilities during a one year span. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, which was kept intact from prescribed burnings during a period of four years. Soil samples were collected from five plots at three different layers (0-3, 3-6 and 6-18) 1 day before prescribed fire and at regular intervals after the prescribed fire. This paper presents an approach where Fuzzy Boolean Nets (FBN) and Fuzzy reasoning are used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil properties. FBN were chosen due to the scarcity on available quantitative data. The results showed that soil properties were affected by prescribed burning practice and were unable to recover their initial values after one year. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen
2014-09-01
Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.
Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan
2013-06-01
The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.
L∞-gain adaptive fuzzy fault accommodation control design for nonlinear time-delay systems.
Wu, Huai-Ning; Qiang, Xiao-Hong; Guo, Lei
2011-06-01
In this paper, an adaptive fuzzy fault accommodation (FA) control design with a guaranteed L(∞)-gain performance is developed for a class of nonlinear time-delay systems with persistent bounded disturbances. Using the Lyapunov technique and the Razumikhin-type lemma, the existence condition of the L(∞) -gain adaptive fuzzy FA controllers is provided in terms of linear matrix inequalities (LMIs). In the proposed FA scheme, a fuzzy logic system is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown fault function; a continuous-state feedback control strategy is adopted for the control design to avoid the undesirable chattering phenomenon. The resulting FA controllers can ensure that every response of the closed-loop system is uniformly ultimately bounded with a guaranteed L(∞)-gain performance in the presence of a fault. Moreover, by the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(∞)-gain. Finally, the achieved simulation results on the FA control of a continuous stirred tank reactor (CSTR) show the effectiveness of the proposed design procedure.
The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center
NASA Astrophysics Data System (ADS)
Tseng, Pai-Chung; Chen, Shen-Len
The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.
Qazi, Abroon Jamal; de Silva, Clarence W.
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868
A Scalable Framework For Segmenting Magnetic Resonance Images
Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar
2009-01-01
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893
NASA Astrophysics Data System (ADS)
Rahmani, Kianoosh; Kavousifard, Farzaneh; Abbasi, Alireza
2017-09-01
This article proposes a novel probabilistic Distribution Feeder Reconfiguration (DFR) based method to consider the uncertainty impacts into account with high accuracy. In order to achieve the set aim, different scenarios are generated to demonstrate the degree of uncertainty in the investigated elements which are known as the active and reactive load consumption and the active power generation of the wind power units. Notably, a normal Probability Density Function (PDF) based on the desired accuracy is divided into several class intervals for each uncertain parameter. Besides, the Weiball PDF is utilised for modelling wind generators and taking the variation impacts of the power production in wind generators. The proposed problem is solved based on Fuzzy Adaptive Modified Particle Swarm Optimisation to find the most optimal switching scheme during the Multi-objective DFR. Moreover, this paper holds two suggestions known as new mutation methods to adjust the inertia weight of PSO by the fuzzy rules to enhance its ability in global searching within the entire search space.
An ERP Study on Decisions between Attractive Females and Money
Zhang, Qinglin
2012-01-01
To investigate the neural processes of decision-makings between attractive females and money, we recorded 18 male participants' brain event-related potentials (ERPs) when they performed a novel task of deciding between viewing an attractive female's fuzzy picture in clear and gaining a certain amount of money. Two types of attractive females were included: sexy females and beautiful females. Several new electrophysiological discoveries were obtained as following. First, the beautiful females vs. money task (task B) elicited a larger positive ERP deflection (P2) than the sexy females vs. money task (task S) between 290 and 340 ms, and this probably related to the perception matching process between a visual input and an internal representation or expectation. Second, task S evoked greater negative ERP waves (N2) than task B during the time window of 340–390 ms, and this might relate to response conflict and cognitive monitoring for impulsive tendency. Third, the ERP positivity in task S was larger than task B in the time interval of 550–1000 ms, reflecting that sexy female images may have higher decision value for males than beautiful female images. Fourth, compared with choosing to gain money, choosing to view an attractive female evoked a larger late positive component (LPC) during the same time window, possibly because attractive females are more direct and evolutionarily earlier rewards for males than money amounts. PMID:23077499
An ERP study on decisions between attractive females and money.
Zeng, Jianmin; Wang, Yujiao; Zhang, Qinglin
2012-01-01
To investigate the neural processes of decision-makings between attractive females and money, we recorded 18 male participants' brain event-related potentials (ERPs) when they performed a novel task of deciding between viewing an attractive female's fuzzy picture in clear and gaining a certain amount of money. Two types of attractive females were included: sexy females and beautiful females. Several new electrophysiological discoveries were obtained as following. First, the beautiful females vs. money task (task B) elicited a larger positive ERP deflection (P2) than the sexy females vs. money task (task S) between 290 and 340 ms, and this probably related to the perception matching process between a visual input and an internal representation or expectation. Second, task S evoked greater negative ERP waves (N2) than task B during the time window of 340-390 ms, and this might relate to response conflict and cognitive monitoring for impulsive tendency. Third, the ERP positivity in task S was larger than task B in the time interval of 550-1000 ms, reflecting that sexy female images may have higher decision value for males than beautiful female images. Fourth, compared with choosing to gain money, choosing to view an attractive female evoked a larger late positive component (LPC) during the same time window, possibly because attractive females are more direct and evolutionarily earlier rewards for males than money amounts.
Tsai, Sang-Bing; Chien, Min-Fang; Xue, Youzhi; Li, Lei; Jiang, Xiaodong; Chen, Quan; Zhou, Jie; Wang, Lei
2015-01-01
The method by which high-technology product manufacturers balance profits and environmental performance is of crucial concern for governments and enterprises. To examine the environmental performance of manufacturers, the present study applied Fuzzy-DEMATEL model to examine environmental performance of the PCB industry in Taiwan. Fuzzy theory was employed to examine the environmental performance criteria of manufacturers and analyse fuzzy linguistics. The fuzzy-DEMATEL model was then employed to assess the direction and level of interaction between environmental performance criteria. The core environmental performance criteria which were critical for enhancing environmental performance of the PCB industry in Taiwan were identified and presented. The present study revealed that green design (a1), green material procurement (a2), and energy consumption (b3) constitute crucial reason criteria, the core criteria influencing other criteria, and the driving factors for resolving problems. PMID:26052710
Tsai, Sang-Bing; Chien, Min-Fang; Xue, Youzhi; Li, Lei; Jiang, Xiaodong; Chen, Quan; Zhou, Jie; Wang, Lei
2015-01-01
The method by which high-technology product manufacturers balance profits and environmental performance is of crucial concern for governments and enterprises. To examine the environmental performance of manufacturers, the present study applied Fuzzy-DEMATEL model to examine environmental performance of the PCB industry in Taiwan. Fuzzy theory was employed to examine the environmental performance criteria of manufacturers and analyse fuzzy linguistics. The fuzzy-DEMATEL model was then employed to assess the direction and level of interaction between environmental performance criteria. The core environmental performance criteria which were critical for enhancing environmental performance of the PCB industry in Taiwan were identified and presented. The present study revealed that green design (a1), green material procurement (a2), and energy consumption (b3) constitute crucial reason criteria, the core criteria influencing other criteria, and the driving factors for resolving problems.
A Z-number-based decision making procedure with ranking fuzzy numbers method
NASA Astrophysics Data System (ADS)
Mohamad, Daud; Shaharani, Saidatull Akma; Kamis, Nor Hanimah
2014-12-01
The theory of fuzzy set has been in the limelight of various applications in decision making problems due to its usefulness in portraying human perception and subjectivity. Generally, the evaluation in the decision making process is represented in the form of linguistic terms and the calculation is performed using fuzzy numbers. In 2011, Zadeh has extended this concept by presenting the idea of Z-number, a 2-tuple fuzzy numbers that describes the restriction and the reliability of the evaluation. The element of reliability in the evaluation is essential as it will affect the final result. Since this concept can still be considered as new, available methods that incorporate reliability for solving decision making problems is still scarce. In this paper, a decision making procedure based on Z-numbers is proposed. Due to the limitation of its basic properties, Z-numbers will be first transformed to fuzzy numbers for simpler calculations. A method of ranking fuzzy number is later used to prioritize the alternatives. A risk analysis problem is presented to illustrate the effectiveness of this proposed procedure.
Kim, Dongcheol; Rhee, Sehun
2002-01-01
CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.
Wang, Zengfang; Wang, Zengyan; Wang, Luang; Qiu, Mingyue; Wang, Yangang; Hou, Xu; Guo, Zhong; Wang, Bin
2017-03-01
Many studies assessed the association between hypertensive disorders during pregnancy and risk of type 2 diabetes mellitus in later life, but contradictory findings were reported. A systemic review and meta-analysis was carried out to elucidate type 2 diabetes mellitus risk in women with hypertensive disorders during pregnancy. Pubmed, Embase, and Web of Science were searched for cohort or case-control studies on the association between hypertensive disorders during pregnancy and subsequent type 2 diabetes mellitus. Random-effect model was used to pool risk estimates. Bayesian meta-analysis was carried out to further estimate the type 2 diabetes mellitus risk associated with hypertensive disorders during pregnancy. Seventeen cohort or prospective matched case-control studies were finally included. Those 17 studies involved 2,984,634 women and 46,732 type 2 diabetes mellitus cases. Overall, hypertensive disorders during pregnancy were significantly correlated with type 2 diabetes mellitus risk (relative risk = 1.56, 95 % confidence interval 1.21-2.01, P = 0.001). Preeclampsia was significantly and independently correlated with type 2 diabetes mellitus risk (relative risk = 2.25, 95 % confidence interval 1.73-2.90, P < 0.001). In addition, gestational hypertension was also significantly and independently correlated with subsequent type 2 diabetes mellitus risk (relative risk = 2.06, 95 % confidence interval 1.57-2.69, P < 0.001). The pooled estimates were not significantly altered in the subgroup analyses of studies on preeclampsia or gestational hypertension. Bayesian meta-analysis showed the relative risks of type 2 diabetes mellitus risk for individuals with hypertensive disorders during pregnancy, preeclampsia, and gestational hypertension were 1.59 (95 % credibility interval: 1.11-2.32), 2.27 (95 % credibility interval: 1.67-2.97), and 2.06 (95 % credibility interval: 1.41-2.84), respectively. Publication bias was not evident in the meta-analysis. Preeclampsia and gestational hypertension are independently associated with substantially elevated risk of type 2 diabetes mellitus in later life.
Improving land resource evaluation using fuzzy neural network ensembles
Xue, Yue-Ju; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.
2007-01-01
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.
Fuzzy Naive Bayesian model for medical diagnostic decision support.
Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W
2009-01-01
This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.
Identification of different geologic units using fuzzy constrained resistivity tomography
NASA Astrophysics Data System (ADS)
Singh, Anand; Sharma, S. P.
2018-01-01
Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.
Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Fuzzy Set Methods for Object Recognition in Space Applications
NASA Technical Reports Server (NTRS)
Keller, James M. (Editor)
1992-01-01
Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.
NASA Astrophysics Data System (ADS)
Błaszczuk, Artur; Krzywański, Jarosław
2017-03-01
The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB) has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K) and 111-240 W/(m2K), for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.
Multiple attribute decision making model and application to food safety risk evaluation.
Ma, Lihua; Chen, Hong; Yan, Huizhe; Yang, Lifeng; Wu, Lifeng
2017-01-01
Decision making for supermarket food purchase decisions are characterized by network relationships. This paper analyzed factors that influence supermarket food selection and proposes a supplier evaluation index system based on the whole process of food production. The author established the intuitive interval value fuzzy set evaluation model based on characteristics of the network relationship among decision makers, and validated for a multiple attribute decision making case study. Thus, the proposed model provides a reliable, accurate method for multiple attribute decision making.
Solving fully fuzzy transportation problem using pentagonal fuzzy numbers
NASA Astrophysics Data System (ADS)
Maheswari, P. Uma; Ganesan, K.
2018-04-01
In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Huy, Ta Duc; Mien, Van; Choi, Seung-Bok
2018-07-01
This work proposes a novel composite adaptive controller based on the prescribed performance of the sliding surface and applies it to vibration control of a semi-active vehicle seat suspension system subjected to severe external disturbances. As a first step, the online fast interval type 2 fuzzy neural network system is adopted to establish a model and two sliding surfaces are used; conventional surface and prescribed surface. Then, an equivalent control is determined by assuming the derivative of the prescribed surface is zero, followed by the design of a controller which can guarantee both stability and robustness. Then, two controllers are combined and integrated with adaptation laws using the projection algorithm. The effectiveness of the proposed composite controller is validated through both simulation and experiment by undertaking vibration control of a semi-active seat suspension system equipped with a magneto-rheological (MR) damper. It is shown from both simulation and experimental realization that excellent vibration control performances are achieved with a small tracking error between the proposed and prescribed objectives. In addition, the control superiority of the proposed controller to conventional sliding mode controller featuring one sliding surface and proportional-integral-derivative (PID) controllers are demonstrated through a comparative work.
Zhang, Kejiang; Achari, Gopal; Pei, Yuansheng
2010-10-01
Different types of uncertain information-linguistic, probabilistic, and possibilistic-exist in site characterization. Their representation and propagation significantly influence the management of contaminated sites. In the absence of a framework with which to properly represent and integrate these quantitative and qualitative inputs together, decision makers cannot fully take advantage of the available and necessary information to identify all the plausible alternatives. A systematic methodology was developed in the present work to incorporate linguistic, probabilistic, and possibilistic information into the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), a subgroup of Multi-Criteria Decision Analysis (MCDA) methods for ranking contaminated sites. The identification of criteria based on the paradigm of comparative risk assessment provides a rationale for risk-based prioritization. Uncertain linguistic, probabilistic, and possibilistic information identified in characterizing contaminated sites can be properly represented as numerical values, intervals, probability distributions, and fuzzy sets or possibility distributions, and linguistic variables according to their nature. These different kinds of representation are first transformed into a 2-tuple linguistic representation domain. The propagation of hybrid uncertainties is then carried out in the same domain. This methodology can use the original site information directly as much as possible. The case study shows that this systematic methodology provides more reasonable results. © 2010 SETAC.
Mouzé-Amady, Marc; Raufaste, Eric; Prade, Henri; Meyer, Jean-Pierre
2013-01-01
The aim of this study was to assess mental workload in which various load sources must be integrated to derive reliable workload estimates. We report a new algorithm for computing weights from qualitative fuzzy integrals and apply it to the National Aeronautics and Space Administration -Task Load indeX (NASA-TLX) subscales in order to replace the standard pair-wise weighting technique (PWT). In this paper, two empirical studies were reported: (1) In a laboratory experiment, age- and task-related variables were investigated in 53 male volunteers and (2) In a field study, task- and job-related variables were studied on aircrews during 48 commercial flights. The results found in this study were as follows: (i) in the experimental setting, fuzzy estimates were highly correlated with classical (using PWT) estimates; (ii) in real work conditions, replacing PWT by automated fuzzy treatments simplified the NASA-TLX completion; (iii) the algorithm for computing fuzzy estimates provides a new classification procedure sensitive to various variables of work environments and (iv) subjective and objective measures can be used for the fuzzy aggregation of NASA-TLX subscales. NASA-TLX, a classical tool for mental workload assessment, is based on a weighted sum of ratings from six subscales. A new algorithm, which impacts on input data collection and computes weights and indexes from qualitative fuzzy integrals, is evaluated through laboratory and field studies. Pros and cons are discussed.
Fuzzy set approach to quality function deployment: An investigation
NASA Technical Reports Server (NTRS)
Masud, Abu S. M.
1992-01-01
The final report of the 1992 NASA/ASEE Summer Faculty Fellowship at the Space Exploration Initiative Office (SEIO) in Langley Research Center is presented. Quality Function Deployment (QFD) is a process, focused on facilitating the integration of the customer's voice in the design and development of a product or service. Various input, in the form of judgements and evaluations, are required during the QFD analyses. All the input variables in these analyses are treated as numeric variables. The purpose of the research was to investigate how QFD analyses can be performed when some or all of the input variables are treated as linguistic variables with values expressed as fuzzy numbers. The reason for this consideration is that human judgement, perception, and cognition are often ambiguous and are better represented as fuzzy numbers. Two approaches for using fuzzy sets in QFD have been proposed. In both cases, all the input variables are considered as linguistic variables with values indicated as linguistic expressions. These expressions are then converted to fuzzy numbers. The difference between the two approaches is due to how the QFD computations are performed with these fuzzy numbers. In Approach 1, the fuzzy numbers are first converted to their equivalent crisp scores and then the QFD computations are performed using these crisp scores. As a result, the output of this approach are crisp numbers, similar to those in traditional QFD. In Approach 2, all the QFD computations are performed with the fuzzy numbers and the output are fuzzy numbers also. Both the approaches have been explained with the help of illustrative examples of QFD application. Approach 2 has also been applied in a QFD application exercise in SEIO, involving a 'mini moon rover' design. The mini moon rover is a proposed tele-operated vehicle that will traverse and perform various tasks, including autonomous operations, on the moon surface. The output of the moon rover application exercise is a ranking of the rover functions so that a subset of these functions can be targeted for design improvement. The illustrative examples and the mini rover application exercise confirm that the proposed approaches for using fuzzy sets in QFD are viable. However, further research is needed to study the various issues involved and to verify/validate the methods proposed.
Poblete Aro, Carlos Emilio; Russell Guzmán, Javier Antonio; Soto Muñoz, Marcelo Enrique; Villegas González, Bastián Eduardo
2015-08-13
Oxidative stress is caused by an imbalance between an excessive production of reactive oxygen species and/or a deficiency in the level of endogenous and exogenous antioxidant defenses. The presence of reactive oxygen species in large concentrations and for long periods is associated with the occurrence of various diseases, including type 2 diabetes mellitus. Exercise represents an effective means for the prevention and treatment of type 2 diabetes mellitus, and is also able to reduce long-term oxidative stress levels. High-intensity interval training has shown to be an efficient and viable option for type 2 diabetes mellitus control. In turn, high-intensity interval training seems to have positive effects on oxidative stress levels by increasing levels of endogenous antioxidants. To assess the validity and applicability of the results regarding the effectiveness of high-intensity interval training compared to moderate intensity continuous training to reduce oxidative stress in patients with type 2 diabetes mellitus and to answer the following question: In adults with type 2 diabetes mellitus, can the method of high-intensity interval training, compared to moderate intensity continuous training reduce oxidative stress levels? We performed a critical analysis of the article "Continuous training vs Interval training in glycemic control and macro and microvascular reactivity in patients with type 2 diabetes". No statistically significant differences were observed in concentrations of superoxide dismutase in any of the experimental groups. Only in the interval group a decrease in malondialdehyde regarding control group and baseline (p<0.05) was observed. In addition, only in the interval group there was an increase in glutathione peroxidase compared to the group of continuous aerobic training and baseline (p<0.05). Nitric oxide showed a significant increase regarding the control, continuous aerobic group and baseline (p<0.05) in the interval training group. Despite the fact that both training groups show improvements over markers of lipid profile and fitness, high intensity interval training has shown to be more effective in the normalization of oxidative stress, impacting positively on the concentration of pro-oxidant markers and antioxidants.
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
NASA Astrophysics Data System (ADS)
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals
NASA Technical Reports Server (NTRS)
Campbell, Janet W.
1998-01-01
The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.
Introduction to Fuzzy Set Theory
NASA Technical Reports Server (NTRS)
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Alguliyev, Rasim M.; Aliguliyev, Ramiz M.; Mahmudova, Rasmiyya S.
2015-01-01
Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM) model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method. PMID:26516634
Combining fuzzy mathematics with fuzzy logic to solve business management problems
NASA Astrophysics Data System (ADS)
Vrba, Joseph A.
1993-12-01
Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
A two-phased fuzzy decision making procedure for IT supplier selection
NASA Astrophysics Data System (ADS)
Shohaimay, Fairuz; Ramli, Nazirah; Mohamed, Siti Rosiah; Mohd, Ainun Hafizah
2013-09-01
In many studies on fuzzy decision making, linguistic terms are usually represented by corresponding fixed triangular or trapezoidal fuzzy numbers. However, the fixed fuzzy numbers used in decision making process may not explain the actual respondents' opinions. Hence, a two-phased fuzzy decision making procedure is proposed. First, triangular fuzzy numbers were built based on respondents' opinions on the appropriate range (0-100) for each seven-scale linguistic terms. Then, the fuzzy numbers were integrated into fuzzy decision making model. The applicability of the proposed method is demonstrated in a case study of supplier selection in Information Technology (IT) department. The results produced via the developed fuzzy numbers were consistent with the results obtained using fixed fuzzy numbers. However, with different set of fuzzy numbers based on respondents, there is a difference in the ranking of suppliers based on criterion X1 (background of supplier). Hopefully the proposed model which incorporates fuzzy numbers based on respondents will provide a more significant meaning towards future decision making.
NASA Astrophysics Data System (ADS)
Indarsih, Indrati, Ch. Rini
2016-02-01
In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.
Fast parallel algorithms that compute transitive closure of a fuzzy relation
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.
1993-01-01
The notion of a transitive closure of a fuzzy relation is very useful for clustering in pattern recognition, for fuzzy databases, etc. The original algorithm proposed by L. Zadeh (1971) requires the computation time O(n(sup 4)), where n is the number of elements in the relation. In 1974, J. C. Dunn proposed a O(n(sup 2)) algorithm. Since we must compute n(n-1)/2 different values s(a, b) (a not equal to b) that represent the fuzzy relation, and we need at least one computational step to compute each of these values, we cannot compute all of them in less than O(n(sup 2)) steps. So, Dunn's algorithm is in this sense optimal. For small n, it is ok. However, for big n (e.g., for big databases), it is still a lot, so it would be desirable to decrease the computation time (this problem was formulated by J. Bezdek). Since this decrease cannot be done on a sequential computer, the only way to do it is to use a computer with several processors working in parallel. We show that on a parallel computer, transitive closure can be computed in time O((log(sub 2)(n))2).
Application of fuzzy set theory for integral assessment of agricultural products quality
NASA Astrophysics Data System (ADS)
Derkanosova, N. M.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.
2018-05-01
The methodology of integrated assessment of quality and safety of agricultural products, approbated by the example of indicators of wheat grain in relation to the provision of consumer properties of bakery products, was developed. Determination of the level of quality of the raw ingredients will allow direct using of agricultural raw materials for food production, taking into account ongoing technology, types of products, and, respectively, rational use of resource potential of the agricultural sector. The mathematical tool of the proposed method is a fuzzy set theory. The fuzzy classifier to evaluate the properties of the grain is formed. The set of six indicators normalized by the national standard is determined; values are ordered and represented by linguistic variables with a trapeziform membership function; the rules for calculation of membership functions are presented. Specific criteria values for individual indicators in shaping the quality of the finished products are considered. For one of the samples of wheat grain values of membership; functions of the linguistic variable "level" for all indicators and the linguistic variable "level of quality" were calculated. It is established that the studied sample of grain obtains the 2 (average) level of quality. Accordingly, it can be recommended for the production of bakery products with higher requirements for the structural-mechanical properties bakery and puff pastry products hearth bread and flour confectionery products of the group of hard dough cookies and crackers
Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties
Ma, Shengquan; Li, Shenggang
2014-01-01
Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
An ANFIS-based on B2C electronic commerce transaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Juan, E-mail: linjuanliucaihong@qq.com; Liu, Chenlian, E-mail: chenglian.liu@gmail.com; Guo, Yongning, E-mail: guoyn@163.com
2014-10-06
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
An ANFIS-based on B2C electronic commerce transaction
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenlian; Guo, Yongning
2014-10-01
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
Predicting Learners Styles Based on Fuzzy Model
ERIC Educational Resources Information Center
Alian, Marwah; Shaout, Adnan
2017-01-01
Learners style is grouped into four types mainly; Visual, auditory, kinesthetic and Read/Write. Each type of learners learns primarily through one of the main receiving senses, visual, listening, or by doing. Learner style has an effect on the learning process and learner's achievement. It is better to select suitable learning tool for the learner…
Peng, Chen; Ma, Shaodong; Xie, Xiangpeng
2017-02-07
This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi-Sugeno (T-S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions. First, a unified event-triggered T-S fuzzy model is provided, in which: 1) a fuzzy observer with the imperfect premise matching is constructed to estimate the unmeasurable states of the studied system; 2) a fuzzy controller is designed following the same premise as the observer; and 3) an output-based event-triggering transmission scheme is designed to economize the restricted network resources. Different from the traditional PDC method, the synchronous premise between the fuzzy observer and the T-S fuzzy system are no longer needed in this paper. Second, by use of Lyapunov theory, a stability criterion and a stabilization condition are obtained for ensuring asymptotically stable of the studied system. On account of the imperfect premise matching conditions are well considered in the derivation of the above criteria, less conservation can be expected to enhance the design flexibility. Compared with some existing emulation-based methods, the controller gains are no longer required to be known a priori. Finally, the availability of proposed non-PDC design scheme is illustrated by the backing-up control of a truck-trailer system.
Specification and Verification of Medical Monitoring System Using Petri-nets.
Majma, Negar; Babamir, Seyed Morteza
2014-07-01
To monitor the patient behavior, data are collected from patient's body by a medical monitoring device so as to calculate the output using embedded software. Incorrect calculations may endanger the patient's life if the software fails to meet the patient's requirements. Accordingly, the veracity of the software behavior is a matter of concern in the medicine; moreover, the data collected from the patient's body are fuzzy. Some methods have already dealt with monitoring the medical monitoring devices; however, model based monitoring fuzzy computations of such devices have been addressed less. The present paper aims to present synthesizing a fuzzy Petri-net (FPN) model to verify behavior of a sample medical monitoring device called continuous infusion insulin (INS) because Petri-net (PN) is one of the formal and visual methods to verify the software's behavior. The device is worn by the diabetic patients and then the software calculates the INS dose and makes a decision for injection. The input and output of the infusion INS software are not crisp in the real world; therefore, we present them in fuzzy variables. Afterwards, we use FPN instead of clear PN to model the fuzzy variables. The paper follows three steps to synthesize an FPN to deal with verification of the infusion INS device: (1) Definition of fuzzy variables, (2) definition of fuzzy rules and (3) design of the FPN model to verify the software behavior.
A diagnostic process extended in time as a fuzzy model
NASA Astrophysics Data System (ADS)
Rakus-Andersson, Elisabeth; Gerstenkorn, Tadeusz
1999-03-01
The paper refers to earlier results obtained by the authors and constitutes their essential complement and extension by introducing to a diagnostic model the assumption that the decision concerning the diagnosis is based on observations of symptoms carried out repeatedly, by stages, which may have effect in a change of these symptoms in increasing time. The model concerns the observations of symptoms at an individual patient at a time interval. The changes of the symptoms give some additional information, sometimes very important in the diagnostic process when the clinical picture of a patient in a certain interval of time differs from that one which has been received from the beginning of the disease. It may occur that the change in the intensity of a symptom decides an acceptance of another diagnosis after some time when the patient does not feel better. The aim is to fix an optimal diagnosis on the basis of clinical symptoms typical of several morbid units with respect to the changes of these symptoms in time. In order to solve such a posed problem the authors apply the method of fuzzy relation equations which are modelled by means of logical rules of inference. Moreover, in the final decision concerning the choice of a proper diagnosis, a normed Euclidean distance is introduced as a measure between a real decision and an "ideal" decision. A simple example presents the practical action of the method to show its relevance to a possible user.
Fuzzy scalar and vector median filters based on fuzzy distances.
Chatzis, V; Pitas, I
1999-01-01
In this paper, the fuzzy scalar median (FSM) is proposed, defined by using ordering of fuzzy numbers based on fuzzy minimum and maximum operations defined by using the extension principle. Alternatively, the FSM is defined from the minimization of a fuzzy distance measure, and the equivalence of the two definitions is proven. Then, the fuzzy vector median (FVM) is proposed as an extension of vector median, based on a novel distance definition of fuzzy vectors, which satisfy the property of angle decomposition. By defining properly the fuzziness of a value, the combination of the basic properties of the classical scalar and vector median (VM) filter with other desirable characteristics can be succeeded.
Research on Bounded Rationality of Fuzzy Choice Functions
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function. PMID:24782677
Research on bounded rationality of fuzzy choice functions.
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.
The Framingham study and treatment guidelines for stroke prevention.
Grossi, Enzo
2008-06-01
In recent years, institutional bodies and scientific societies of principal Western countries have produced several guidelines dealing with risk assessment, primary prevention, and treatment of acute stroke. From a prospective, community-based, observational cohort of patients from the Framingham Heart Study, an absolute estimate of risk for stroke alone or stroke or death was determined based on several risk factors, including advanced age, female sex, increased systolic blood pressure, prior stroke or transient ischemic attack, and diabetes mellitus. This algorithm considers many variables and expresses their results as the percentage of risk of developing a fatal or nonfatal stroke in the following 5 years. The author has identified three major pitfalls of this algorithm, which are related to the limitation of the classic statistical approach in handling this kind of nonlinear and complex information: 1) the very large confidence interval of individual risk assessment, 2) the inability to capture the process dynamics, and 3) the inability to capture the disease complexity. The artificial intelligence armamentarium may provide an advantage in the attempt to overcome these limitations. The theoretic background and some application examples related to artificial neural networks (ANNs) and fuzzy logic are reviewed and discussed. Newer approaches linked to artificial intelligence, such as fuzzy logic and ANNs, seem better at addressing the challenge of the increasing complexity of the predisposing factors linked to cerebrovascular events and at predicting future events in an individual patient.
Qu, Jianhua; Meng, Xianlin; You, Hong
2016-06-05
Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method
NASA Astrophysics Data System (ADS)
Vasant, Pandian
2011-06-01
Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.
NASA Astrophysics Data System (ADS)
Saadoud, Djouher; Hassani, Mohamed; Martin Peinado, Francisco José; Guettouche, Mohamed Saïd
2018-06-01
Wind erosion is one of the most serious environmental problems in Algeria that threatens human activities and socio-economic development. The main goal of this study is to apply a fuzzy logic approach to wind erosion sensitivity mapping in the Laghouat region, Algeria. Six causative factors, obtained by applying fuzzy membership functions to each used parameter, are considered: soil, vegetation cover, wind factor, soil dryness, land topography and land cover sensitivity. Different fuzzy operators (AND, OR, SUM, PRODUCT, and GAMMA) are applied to generate wind-erosion hazard map. Success rate curves reveal that the fuzzy gamma (γ) operator, with γ equal to 0.9, gives the best prediction accuracy with an area under curve of 85.2%. The resulting wind-erosion sensitivity map delineates the area into different zones of five relative sensitivity classes: very high, high, moderate, low and very low. The estimated result was verified by field measurements and the high statistically significant value of a chi-square test.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control
NASA Astrophysics Data System (ADS)
Petrovic-Lazarevic, Sonja; Zhang, Jian Ying
2007-12-01
The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.
A Novel Method for Discovering Fuzzy Sequential Patterns Using the Simple Fuzzy Partition Method.
ERIC Educational Resources Information Center
Chen, Ruey-Shun; Hu, Yi-Chung
2003-01-01
Discusses sequential patterns, data mining, knowledge acquisition, and fuzzy sequential patterns described by natural language. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method which allows the linguistic interpretation of each fuzzy set to be easily obtained. (Author/LRW)
Implementation of Steiner point of fuzzy set.
Liang, Jiuzhen; Wang, Dejiang
2014-01-01
This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.
The consistency of positive fully fuzzy linear system
NASA Astrophysics Data System (ADS)
Malkawi, Ghassan O.; Alfifi, Hassan Y.
2017-11-01
In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.
Using fuzzy fractal features of digital images for the material surface analisys
NASA Astrophysics Data System (ADS)
Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.
2018-01-01
Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.
Luo, Yi; Zhang, Tao; Li, Xiao-song
2016-05-01
To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Narayanamoorthy, S.; Kalyani, S.
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713
Zhang, Zhaoyang; Fang, Hua; Wang, Honggang
2016-06-01
Web-delivered trials are an important component in eHealth services. These trials, mostly behavior-based, generate big heterogeneous data that are longitudinal, high dimensional with missing values. Unsupervised learning methods have been widely applied in this area, however, validating the optimal number of clusters has been challenging. Built upon our multiple imputation (MI) based fuzzy clustering, MIfuzzy, we proposed a new multiple imputation based validation (MIV) framework and corresponding MIV algorithms for clustering big longitudinal eHealth data with missing values, more generally for fuzzy-logic based clustering methods. Specifically, we detect the optimal number of clusters by auto-searching and -synthesizing a suite of MI-based validation methods and indices, including conventional (bootstrap or cross-validation based) and emerging (modularity-based) validation indices for general clustering methods as well as the specific one (Xie and Beni) for fuzzy clustering. The MIV performance was demonstrated on a big longitudinal dataset from a real web-delivered trial and using simulation. The results indicate MI-based Xie and Beni index for fuzzy-clustering are more appropriate for detecting the optimal number of clusters for such complex data. The MIV concept and algorithms could be easily adapted to different types of clustering that could process big incomplete longitudinal trial data in eHealth services.
Zhang, Zhaoyang; Wang, Honggang
2016-01-01
Web-delivered trials are an important component in eHealth services. These trials, mostly behavior-based, generate big heterogeneous data that are longitudinal, high dimensional with missing values. Unsupervised learning methods have been widely applied in this area, however, validating the optimal number of clusters has been challenging. Built upon our multiple imputation (MI) based fuzzy clustering, MIfuzzy, we proposed a new multiple imputation based validation (MIV) framework and corresponding MIV algorithms for clustering big longitudinal eHealth data with missing values, more generally for fuzzy-logic based clustering methods. Specifically, we detect the optimal number of clusters by auto-searching and -synthesizing a suite of MI-based validation methods and indices, including conventional (bootstrap or cross-validation based) and emerging (modularity-based) validation indices for general clustering methods as well as the specific one (Xie and Beni) for fuzzy clustering. The MIV performance was demonstrated on a big longitudinal dataset from a real web-delivered trial and using simulation. The results indicate MI-based Xie and Beni index for fuzzy-clustering is more appropriate for detecting the optimal number of clusters for such complex data. The MIV concept and algorithms could be easily adapted to different types of clustering that could process big incomplete longitudinal trial data in eHealth services. PMID:27126063
Sensor Fusion Based Model for Collision Free Mobile Robot Navigation
Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar
2015-01-01
Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766
NASA Astrophysics Data System (ADS)
Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil
2018-04-01
Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.
Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.
Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar
2015-12-26
Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.
Modelling and experimental performance analysis of solar-assisted ground source heat pump system
NASA Astrophysics Data System (ADS)
Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur
2017-01-01
In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.
Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks
NASA Astrophysics Data System (ADS)
Wu, Zhengping; Wu, Hao
With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
NASA Astrophysics Data System (ADS)
Jacquin, A. P.; Shamseldin, A. Y.
2009-04-01
This study analyses the sensitivity of the parameters of Takagi-Sugeno-Kang rainfall-runoff fuzzy models previously developed by the authors. These models can be classified in two types, where the first type is intended to account for the effect of changes in catchment wetness and the second type incorporates seasonality as a source of non-linearity in the rainfall-runoff relationship. The sensitivity analysis is performed using two global sensitivity analysis methods, namely Regional Sensitivity Analysis (RSA) and Sobol's Variance Decomposition (SVD). In general, the RSA method has the disadvantage of not being able to detect sensitivities arising from parameter interactions. By contrast, the SVD method is suitable for analysing models where the model response surface is expected to be affected by interactions at a local scale and/or local optima, such as the case of the rainfall-runoff fuzzy models analysed in this study. The data of six catchments from different geographical locations and sizes are used in the sensitivity analysis. The sensitivity of the model parameters is analysed in terms of two measures of goodness of fit, assessing the model performance from different points of view. These measures are the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the study show that the sensitivity of the model parameters depends on both the type of non-linear effects (i.e. changes in catchment wetness or seasonality) that dominates the catchment's rainfall-runoff relationship and the measure used to assess the model performance. Acknowledgements: This research was supported by FONDECYT, Research Grant 11070130. We would also like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.
Encoding spatial images: A fuzzy set theory approach
NASA Technical Reports Server (NTRS)
Sztandera, Leszek M.
1992-01-01
As the use of fuzzy set theory continues to grow, there is an increased need for methodologies and formalisms to manipulate obtained fuzzy subsets. Concepts involving relative position of fuzzy patterns are acknowledged as being of high importance in many areas. In this paper, we present an approach based on the concept of dominance in fuzzy set theory for modelling relative positions among fuzzy subsets of a plane. In particular, we define the following spatial relations: to the left (right), in front of, behind, above, below, near, far from, and touching. This concept has been implemented to define spatial relationships among fuzzy subsets of the image plane. Spatial relationships based on fuzzy set theory, coupled with a fuzzy segmentation, should therefore yield realistic results in scene understanding.
Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network
NASA Astrophysics Data System (ADS)
Khan, U. T.
2016-12-01
Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged precipitation and lagged mean daily flow as candidate inputs. Model performance metric show that the CNPSA method had higher performance (with an efficiency of 0.76). Model output was used to assess the risk of extreme peak flows for a given day using an inverse possibility-to-probability transformation.
Diagnosis of the OCD Patients using Drawing Features of the Bender Gestalt Shapes
Boostani, R.; Asadi, F.; Mohammadi, N.
2017-01-01
Background: Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD) is the Bender Gestalt, though its reliability is not promising. Objective: The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Materials and Methods: Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing) Hidden Markov Model (HMM) is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Results: Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP), as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Conclusion: Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers. PMID:28462208
Diagnosis of the OCD Patients using Drawing Features of the Bender Gestalt Shapes.
Boostani, R; Asadi, F; Mohammadi, N
2017-03-01
Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD) is the Bender Gestalt, though its reliability is not promising. The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing) Hidden Markov Model (HMM) is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP), as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers.
Fuzzy α-minimum spanning tree problem: definition and solutions
NASA Astrophysics Data System (ADS)
Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan
2016-04-01
In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.
A review on classification methods for solving fully fuzzy linear systems
NASA Astrophysics Data System (ADS)
Daud, Wan Suhana Wan; Ahmad, Nazihah; Aziz, Khairu Azlan Abd
2015-12-01
Fully Fuzzy Linear System (FFLS) exists when there are fuzzy numbers on both sides of the linear systems. This system is quite significant today since most of the linear systems play with uncertainties of parameters especially in mathematics, engineering and finance. Many researchers and practitioners used the FFLS to model their problem and they apply various methods to solve it. In this paper, we present the outcome of a comprehensive review that we have done on various methods used for solving the FFLS. We classify our findings based on parameters' type used for the FFLS either restricted or unrestricted. We also discuss some of the methods by illustrating numerical examples and identify the differences between the methods. Ultimately, we summarize all findings in a table. We hope this study will encourage researchers to appreciate the use of this method and with that it will be easier for them to choose the right method or to propose any new method for solving the FFLS.
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
Rare birds for fuzzy jobs: A new type of water professional at the watershed scale in France
NASA Astrophysics Data System (ADS)
Richard-Ferroudji, Audrey
2014-11-01
This paper documents changes in the field of water management in France, through the analyses of the activities of water professionals. Hydro-territory professionals work for local authorities in charge of water management at the watershed scale. Their functions appear to be fuzzy. Yet, this paper assumes that this fuzziness is a crucial feature as it manifests an ability to deal with "wicked" problems. Based on quantitative and qualitative inquiries, this paper discusses to what extent these new kind of professionals present themselves as, or differentiate themselves from, experts, facilitators or policy entrepreneurs. It contributes to the studies that highlight the new water professional as a transdisciplinary engineer capable of dealing with negotiation, cooperation or communication issues. Yet, the main result of our study is to show the embedded dimension of hydro-territory professionals, considering water governance as a long term issue of adjustment, assembling, fitting, in a territory and across scales.
Torshizi, Abolfazl Doostparast; Zarandi, Mohammad Hossein Fazel; Torshizi, Ghazaleh Doostparast; Eghbali, Kamyar
2014-01-01
This paper deals with application of fuzzy intelligent systems in diagnosing severity level and recommending appropriate therapies for patients having Benign Prostatic Hyperplasia. Such an intelligent system can have remarkable impacts on correct diagnosis of the disease and reducing risk of mortality. This system captures various factors from the patients using two modules. The first module determines severity level of the Benign Prostatic Hyperplasia and the second module, which is a decision making unit, obtains output of the first module accompanied by some external knowledge and makes an appropriate treatment decision based on its ontology model and a fuzzy type-1 system. In order to validate efficiency and accuracy of the developed system, a case study is conducted by 44 participants. Then the results are compared with the recommendations of a panel of experts on the experimental data. Then precision and accuracy of the results were investigated based on a statistical analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Design of fuzzy system by NNs and realization of adaptability
NASA Technical Reports Server (NTRS)
Takagi, Hideyuki
1993-01-01
The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.
GPU accelerated fuzzy connected image segmentation by using CUDA.
Zhuge, Ying; Cao, Yong; Miller, Robert W
2009-01-01
Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.
Discussion on “A Fuzzy Method for Medical Diagnosis of Headache”
NASA Astrophysics Data System (ADS)
Hung, Kuo-Chen; Wou, Yu-Wen; Julian, Peterson
This paper is in response to the report of Ahn, Mun, Kim, Oh, and Han published in IEICE Trans. INF. & SYST., Vol.E91-D, No.4, 2008, 1215-1217. They tried to extend their previous paper that published on IEICE Trans. INF. & SYST., Vol.E86-D, No.12, 2003, 2790-2793. However, we will point out that their extension is based on the detailed data of knowing the frequency of three types. Their new occurrence information based on intuitionistic fuzzy set for medical diagnosis of headache becomes redundant. We advise researchers to directly use the detailed data to decide the diagnosis of headache.
Salminen, Marika; Vahlberg, Tero; Räihä, Ismo; Niskanen, Leo; Kivelä, Sirkka-Liisa; Irjala, Kerttu
2015-05-01
To analyze whether sex hormone levels predict the incidence of type2 diabetes among elderly Finnish men. This was a prospective population-based study, with a 9-year follow up period. The study population in the municipality of Lieto, Finland, consisted of elderly (age ≥64 years) men free of type 2 diabetes at baseline in 1998-1999 (n = 430). Body mass index and cardiovascular disease-adjusted hazard ratios and their 95% confidence intervals for type 2 diabetes predicted by testosterone, free testosterone, sex hormone-binding globulin, luteinizing hormone, and testosterone/luteinizing hormone were estimated. A total of 30 new cases of type 2 diabetes developed during the follow-up period. After adjustment, only higher levels of testosterone (hazard ratio for one-unit increase 0.93, 95% confidence interval 0.87-0.99, P = 0.020) and free testosterone (hazard ratio for 10-unit increase 0.96, 95% confidence interval 0.91-1.00, P = 0.044) were associated with a lower risk of incident type 2 diabetes during the follow up. These associations (0.94, 95% confidence interval 0.87-1.00, P = 0.050 and 0.95, 95% confidence interval 0.90-1.00, P = 0.035, respectively) persisted even after additional adjustment of sex hormone-binding globulin. Higher levels of testosterone and free testosterone independently predicted a reduced risk of type 2 diabetes in the elderly men. © 2014 Japan Geriatrics Society.
Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.
Edge Preserved Speckle Noise Reduction Using Integrated Fuzzy Filters
Dewal, M. L.; Rohit, Manoj Kumar
2014-01-01
Echocardiographic images are inherent with speckle noise which makes visual reading and analysis quite difficult. The multiplicative speckle noise masks finer details, necessary for diagnosis of abnormalities. A novel speckle reduction technique based on integration of geometric, wiener, and fuzzy filters is proposed and analyzed in this paper. The denoising applications of fuzzy filters are studied and analyzed along with 26 denoising techniques. It is observed that geometric filter retains noise and, to address this issue, wiener filter is embedded into the geometric filter during iteration process. The performance of geometric-wiener filter is further enhanced using fuzzy filters and the proposed despeckling techniques are called integrated fuzzy filters. Fuzzy filters based on moving average and median value are employed in the integrated fuzzy filters. The performances of integrated fuzzy filters are tested on echocardiographic images and synthetic images in terms of image quality metrics. It is observed that the performance parameters are highest in case of integrated fuzzy filters in comparison to fuzzy and geometric-fuzzy filters. The clinical validation reveals that the output images obtained using geometric-wiener, integrated fuzzy, nonlocal means, and details preserving anisotropic diffusion filters are acceptable. The necessary finer details are retained in the denoised echocardiographic images. PMID:27437499
Class dependency of fuzzy relational database using relational calculus and conditional probability
NASA Astrophysics Data System (ADS)
Deni Akbar, Mohammad; Mizoguchi, Yoshihiro; Adiwijaya
2018-03-01
In this paper, we propose a design of fuzzy relational database to deal with a conditional probability relation using fuzzy relational calculus. In the previous, there are several researches about equivalence class in fuzzy database using similarity or approximate relation. It is an interesting topic to investigate the fuzzy dependency using equivalence classes. Our goal is to introduce a formulation of a fuzzy relational database model using the relational calculus on the category of fuzzy relations. We also introduce general formulas of the relational calculus for the notion of database operations such as ’projection’, ’selection’, ’injection’ and ’natural join’. Using the fuzzy relational calculus and conditional probabilities, we introduce notions of equivalence class, redundant, and dependency in the theory fuzzy relational database.
NASA Technical Reports Server (NTRS)
Sultan, Labib; Janabi, Talib
1992-01-01
This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.
FuzzyCLIPS from research to product
NASA Technical Reports Server (NTRS)
Bochsler, Dan; Dohmann, Edgar
1994-01-01
This paper describes the commercial productization of FuzzyCLIPS which was developed under a NASA Phase 2 SBIR contract. The intent of this paper is to provide a general roadmap of the processes that are required to make a viable, marketable product once its concept and development are complete.
Data driven model generation based on computational intelligence
NASA Astrophysics Data System (ADS)
Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus
2010-05-01
The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion parameters with respect to a defined rating function and experimental data. To find A, we use for example a linear equation solver and RMSE-function. In practical process models, the number of Fuzzy sets and the according number of rules is fairly low. Nevertheless, creating the optimal model requires some experience. Therefore, we improved this development step by methods for automatic generation of Fuzzy sets, rules, and conclusions. Basically, the model achievement depends to a great extend on the selection of the conclusion variables. It is the aim that variables having most influence on the system reaction being considered and superfluous ones being neglected. At first, we use Kohonen maps, a specialized ANN, to identify relevant input variables from the large set of available system variables. A greedy algorithm selects a comprehensive set of dominant and uncorrelated variables. Next, the premise variables are analyzed with clustering methods (e.g. Fuzzy-C-means) and Fuzzy sets are then derived from cluster centers and outlines. The rule base is automatically constructed by permutation of the Fuzzy sets of the premise variables. Finally, the conclusion parameters are calculated and the total coverage of the input space is iteratively tested with experimental data, rarely firing rules are combined and coarse coverage of sensitive process states results in refined Fuzzy sets and rules. Results The described methods were implemented and integrated in a development system for process models. A series of models has already been built e.g. for rainfall-runoff modeling or for flood prediction (up to 72 hours) in river catchments. The models required significantly less development effort and showed advanced simulation results compared to conventional models. The models can be used operationally and simulation takes only some minutes on a standard PC e.g. for a gauge forecast (up to 72 hours) for the whole Mosel (Germany) river catchment.
Shanthi, C; Pappa, N
2017-05-01
Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bisht, K.; Dodamani, S. S.
2016-12-01
Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.
Fuzzy tree automata and syntactic pattern recognition.
Lee, E T
1982-04-01
An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.
Fuzzy object models for newborn brain MR image segmentation
NASA Astrophysics Data System (ADS)
Kobashi, Syoji; Udupa, Jayaram K.
2013-03-01
Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.
Vink, Arja S; Clur, Sally-Ann B; Geskus, Ronald B; Blank, Andreas C; De Kezel, Charlotte C A; Yoshinaga, Masao; Hofman, Nynke; Wilde, Arthur A M; Blom, Nico A
2017-04-01
In congenital long-QT syndrome, age, sex, and genotype have been associated with cardiac events, but their effect on the trend in QTc interval has never been established. We, therefore, aimed to assess the effect of age and sex on the QTc interval in children and adolescents with type 1 (LQT1) and type 2 (LQT2) long-QT syndrome. QTc intervals of 12-lead resting electrocardiograms were determined, and trends over time were analyzed using a linear mixed-effects model. The study included 278 patients with a median follow-up of 4 years (interquartile range, 1-9) and a median number of 6 (interquartile range, 2-10) electrocardiograms per patient. Both LQT1 and LQT2 male patients showed QTc interval shortening after the onset of puberty. In LQT2 male patients, this was preceded by a progressive QTc interval prolongation. In LQT1, after the age of 12 years, male patients had a significantly shorter QTc interval than female patients. In LQT2, during the first years of life and from 14 to 26 years, male patients had a significantly shorter QTc interval than female patients. On the contrary, between 5 and 14 years, LQT2 male patients had significantly longer QTc interval than LQT2 female patients. There is a significant effect of age and sex on the QTc interval in long-QT syndrome, with a unique pattern per genotype. The age of 12 to 14 years is an important transitional period. In the risk stratification and management of long-QT syndrome patients, clinicians should be aware of these age-, sex-, and genotype-related trends in QTc interval and especially the important role of the onset of puberty. © 2017 American Heart Association, Inc.
Method of fuzzy inference for one class of MISO-structure systems with non-singleton inputs
NASA Astrophysics Data System (ADS)
Sinuk, V. G.; Panchenko, M. V.
2018-03-01
In fuzzy modeling, the inputs of the simulated systems can receive both crisp values and non-Singleton. Computational complexity of fuzzy inference with fuzzy non-Singleton inputs corresponds to an exponential. This paper describes a new method of inference, based on the theorem of decomposition of a multidimensional fuzzy implication and a fuzzy truth value. This method is considered for fuzzy inputs and has a polynomial complexity, which makes it possible to use it for modeling large-dimensional MISO-structure systems.