Interventional MRI: tapering improves the distal sensitivity of the loopless antenna.
Qian, Di; El-Sharkawy, AbdEl-Monem M; Atalar, Ergin; Bottomley, Paul A
2010-03-01
The "loopless antenna" is an interventional MRI detector consisting of a tuned coaxial cable and an extended inner conductor or "whip". A limitation is the poor sensitivity afforded at, and immediately proximal to, its distal end, which is exacerbated by the extended whip length when the whip is uniformly insulated. It is shown here that tapered insulation dramatically improves the distal sensitivity of the loopless antenna by pushing the current sensitivity toward the tip. The absolute signal-to-noise ratio is numerically computed by the electromagnetic method-of-moments for three resonant 3-T antennae with no insulation, uniform insulation, and with linearly tapered insulation. The analysis shows that tapered insulation provides an approximately 400% increase in signal-to-noise ratio in trans-axial planes 1 cm from the tip and a 16-fold increase in the sensitive area as compared to an equivalent, uniformly insulated antenna. These findings are directly confirmed by phantom experiments and by MRI of an aorta specimen. The results demonstrate that numerical electromagnetic signal-to-noise ratio analysis can accurately predict the loopless detector's signal-to-noise ratio and play a central role in optimizing its design. The manifold improvement in distal signal-to-noise ratio afforded by redistributing the insulation should improve the loopless antenna's utility for interventional MRI. (c) 2010 Wiley-Liss, Inc.
The performance of interventional loopless MRI antennae at higher magnetic field strengths
El-Sharkawy, AbdEl-Monem M.; Qian, Di; Bottomley, Paul A.
2008-01-01
Interventional, “loopless antenna” MRI detectors are currently limited to 1.5 T. This study investigates whether loopless antennae offer signal-to-noise ratio (SNR) and field-of-view (FOV) advantages at higher fields, and whether device heating can be controlled within safe limits. The absolute SNR performance of loopless antennae from 0.5 to 5 T is investigated both analytically, using electromagnetic (EM) dipole antenna theory, and numerically with the EM method of moments, and found to vary almost quadratically with field strength depending on the medium’s electrical properties, the noise being dominated by direct sample conduction losses. The prediction is confirmed by measurements of the absolute SNR of low-loss loopless antennae fabricated for 1.5, 3, and 4.7 T, immersed in physiologically comparable saline. Gains of 3.8±0.2- and 9.7±0.3-fold in SNR, and approximately 10- and 50-fold gains in the useful FOV area are observed at 3 and 4.7 T, respectively, compared to 1.5 T. Heat testing of a 3 T biocompatible nitinol-antenna fabricated with a redesigned decoupling circuit shows maximum heating of ∼1 °C for MRI operating at high MRI exposure levels. Experiments in the rabbit aorta confirm the SNR and FOV advantages of the 3 T antenna versus an equivalent commercial 1.5 T device in vivo. This work is the first to study the performance of experimental internal MRI detectors above 1.5 T. The large SNR and FOV gains realized present a major opportunity for high-resolution imaging of vascular pathology and MRI-guided intervention. PMID:18561676
The Interventional Loopless Antenna at 7 Tesla
Ertürk, Mehmet Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.
2012-01-01
The loopless antenna MRI detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at sub-millimeter diameters for inteventional use in guidewires, catheters or needles. Prior work up to 4.7T suggests a near-quadratic gain in signal-to-noise ratio (SNR) with field strength, and safe operation at 3T. Here for the first time, the SNR performance and RF safety of the loopless antenna is investigated both theoretically, using the electro-magnetic method-of-moments, and experimentally in a standard 7T human scanner. The results are compared with equivalent 3T devices. An absolute SNR gain of 5.7±1.5-fold was realized at 7T vs. 3T: more than 20-fold higher than at 1.5T. The effective field-of-view (FOV) area also increased approximately 10-fold compared to 3T. Testing in a saline gel phantom suggested safe operation is possible with maximum local 1-g average specific absorption rates of <12W/kg and temperature increases of <1.9°C, normalized to a 4W/kg RF field exposure at 7T. The antenna did not affect the power applied to the scanner's transmit coil. The SNR gain enabled MRI microscopy at 40-50μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-FOV or endoscopic MRI for targeted intervention in focal disease. PMID:22161992
Monitoring local heating around an interventional MRI antenna with RF radiometry
Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.
2015-01-01
Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or the extra space needed to accommodate alternative thermal transducers. A RF radiometer could be integrated in a MRI scanner to permit “self-monitoring” for assuring device safety and/or monitoring delivery of thermal therapy. PMID:25735295
Monitoring local heating around an interventional MRI antenna with RF radiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu
Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RFmore » transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or the extra space needed to accommodate alternative thermal transducers. A RF radiometer could be integrated in a MRI scanner to permit “self-monitoring” for assuring device safety and/or monitoring delivery of thermal therapy.« less
Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur
2012-01-01
Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-08-12
Catheter visualization and tracking remains a challenge in interventional MR.Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2 degrees C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-01-01
Background Catheter visualization and tracking remains a challenge in interventional MR. Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. Results The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. Conclusion We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures. PMID:19674464
Interventional loopless antenna at 7 T.
Ertürk, Mehmet Arcan; El-Sharkawy, Abdel-Monem M; Bottomley, Paul A
2012-09-01
The loopless antenna magnetic resonance imaging detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at submillimeter diameters for interventional use in guidewires, catheters, or needles. Prior work up to 4.7 T suggests a near-quadratic gain in signal-to-noise ratio with field strength and safe operation at 3 T. Here, for the first time, the signal-to-noise ratio performance and radiofrequency safety of the loopless antenna are investigated both theoretically, using the electromagnetic method-of-moments, and experimentally in a standard 7 T human scanner. The results are compared with equivalent 3 T devices. An absolute signal-to-noise ratio gain of 5.7 ± 1.5-fold was realized at 7 T vs. 3 T: more than 20-fold higher than at 1.5 T. The effective field-of-view area also increased approximately 10-fold compared with 3 T. Testing in a saline gel phantom suggested that safe operation is possible with maximum local 1-g average specific absorption rates of <12 W kg(-1) and temperature increases of <1.9°C, normalized to a 4 W kg(-1) radiofrequency field exposure at 7 T. The antenna did not affect the power applied to the scanner's transmit coil. The signal-to-noise ratio gain enabled magnetic resonance imaging microscopy at 40-50 μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-field-of-view or endoscopic magnetic resonance imaging for targeted intervention in focal disease. Copyright © 2011 Wiley Periodicals, Inc.
Saa, Pedro A.; Nielsen, Lars K.
2016-01-01
Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155
A proof for loop-law constraints in stoichiometric metabolic networks
2012-01-01
Background Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well. Results Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves. Conclusions The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling. PMID:23146116
An improved loopless mounting method for cryocrystallography
NASA Astrophysics Data System (ADS)
Qi, Jian-Xun; Jiang, Fan
2010-01-01
Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments.
An intravascular loopless monopole antenna for vessel wall MR imaging at 3.0 T.
Yuan, Hongyang; Lv, Xing; Ma, Xiaohai; Zhang, Rui; Fu, Youyi; Yang, Xuedong; Wang, Xiaoying; Zhang, Zhaoqi; Zhang, Jue; Fang, Jing
2013-01-01
The purpose of this study was to develop a novel intravascular loopless monopole antenna (ILMA) design specifically for imaging of small vessel walls. The ILMA consisted of an unshielded, low-friction guide wire and a tuning/matching box. The material of the guide wire was nitinol and it was coated with polyurethane. Because the guide wire was unshielded, it could be made thinner than the coaxial cable-based loopless intravascular antenna design. The material of the box was aluminum. In this study, the diameter of the guide wire was 0.5 mm and the length was 58.7 mm. The ILMA was used as a receiving antenna and body coil for transmission. To verify the feasibility of the ILMA, in vitro and in vivo experiments were performed on a 3.0-T magnetic resonance (MR) scanner. In vitro tests using the ILMA indicated that the proposed design could be used to image target vessel walls with a spatial resolution of 313 μm at the frequency coding direction and more than 100 mm of longitudinal coverage. In vivo tests demonstrated that the images showed the vessel walls clearly by using the ILMA and also indicated that the ILMA could be used for small vessels. The proposed antenna may therefore be utilized to promote MR-based diagnoses and therapeutic solutions for cardiovascular atherosclerotic diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
Loopless nontrapping invasion-percolation model for fracking.
Norris, J Quinn; Turcotte, Donald L; Rundle, John B
2014-02-01
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.
Jadhav, Siddharth P; More, Snehal R; Shenava, Vinitha; Zhang, Wei; Kan, J Herman
2018-04-25
Magnetic resonance imaging (MRI) of the hips is being increasingly used to confirm hip reduction after surgery and spica cast placement for developmental dysplasia of the hip (DDH). To review a single institutional experience with post-spica MRI in children undergoing closed or open hip reduction and describe the utility of MRI in directing the need for re-intervention. Seventy-four patients (52 female, 22 male) who underwent post-spica hip MRI over a 6-year period were retrospectively reviewed. One hundred and seven hips were included. Data reviewed included age at intervention, gender, type of intervention performed, MRI findings, the need for re-intervention and the interval between interventions. Gender was compared between the closed and open reduction groups via the Fisher exact test. Age at the first procedure was compared via the Wilcoxon rank test. Rates of re-intervention after closed and open reduction were calculated and the reasons for re-intervention were reviewed. The mean age at the time of the first intervention was 16.4 months (range: 4 to 63 months). Mean age for the closed reduction group was 10.5 months (range: 4-24 months) and for the open reduction group was 23.7 months (range: 5-63 months), which was significant (P-value <0.0001). Of the 52 hips that underwent closed reduction, 16 (31%) needed re-intervention. Of the 55 hips that underwent open reduction, MRI was useful in deciding re-intervention in only 1 (2%). This patient had prior multiple failed closed and open reductions at an outside institute. Post intervention hip spica MRI is useful in determining the need for re-intervention after closed hip reduction, but its role after open reduction is questionable.
[Clinical use of interventional MR imaging].
Kahn, Thomas; Schulz, Thomas; Moche, Michael; Prothmann, Sascha; Schneider, Jens-Peter
2003-01-01
The integration of diagnostic and therapeutic procedures by MRI is based on the combination of excellent morphologic and functional imaging. The spectrum of MR-guided interventions includes biopsies, thermal ablation procedures, vascular applications, and intraoperative MRI. In all these applications, different scientific groups have obtained convincing results in basic developments as well as in clinical use. Interventional MRI (iMRI) is expected to attain an important role in interventional radiology, minimal invasive therapy, and monitoring of surgical procedures.
Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review
Iordachita, Iulian I.; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S.
2017-01-01
Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures. PMID:28652857
Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T
2001-11-01
The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.
Barkhausen, Jörg; Kahn, Thomas; Krombach, Gabriele A; Kuhl, Christiane K; Lotz, Joachim; Maintz, David; Ricke, Jens; Schönberg, Stefan O; Vogl, Thomas J; Wacker, Frank K
2017-11-01
Background MRI is attractive for guiding and monitoring interventional procedures due to its high intrinsic soft tissue contrast and the possibility to measure flow and cardiac function. Methods Technical solutions have been developed for all procedural steps including imaging guidance, MR-safe catheters and instruments and patient monitoring. This has led to widening of the clinical applications. Interventional MRI is becoming increasingly important for the treatment of patients suffering from malignant diseases. The detectability of masses and consequently their accessibility for biopsy is higher, compared to other modalities, due to the high intrinsic soft tissue contrast of MRI. Temperature-dependent sequences allow for minimally invasive and tissue-sparing ablation (A-0 ablation). Conclusion Interventional MRI has become established in the clinical routine for a variety of indications, including biopsies and tumor ablation. Since the economic requirement of covering costs by reimbursement is met and interventional MRI decreases the mortality and morbidity of interventional procedures, broader application of interventional MRI can be expected in the clinical routine in the future. Key points · Particularly for the treatment of oncological patients, interventional MRI is superior to other methods with respect to minimal invasiveness and tissue protection due to the ability to exactly determine tumor borders and to visualize and control the size of the ablation area on the basis of MR temperature measurement.. · Due to the better visualization of targets and the effects of ablation in tissue, interventional MRI can lower the mortality and morbidity associated with these interventions for many indications.. · The complex comparison of costs and reimbursement shows that this application can be performed in a cost-covering manner and broader application can be expected in the future.. Citation Format · Barkhausen J, Kahn T, Krombach GA et al. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 2: Liver and Other Applications in Oncology. Fortschr Röntgenstr 2017; 189: 1047 - 1054. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Song, Sang-Eun; Tokuda, Junichi; Tuncali, Kemal; Tempany, Clare; Hata, Nobuhiko
2012-02-01
Image guided prostate interventions have been accelerated by Magnetic Resonance Imaging (MRI) and robotic technologies in the past few years. However, transrectal ultrasound (TRUS) guided procedure still remains as vast majority in clinical practice due to engineering and clinical complexity of the MRI-guided robotic interventions. Subsequently, great advantages and increasing availability of MRI have not been utilized at its maximum capacity in clinic. To benefit patients from the advantages of MRI, we developed an MRI-compatible motorized needle guide device "Smart Template" that resembles a conventional prostate template to perform MRI-guided prostate interventions with minimal changes in the clinical procedure. The requirements and specifications of the Smart Template were identified from our latest MRI-guided intervention system that has been clinically used in manual mode for prostate biopsy. Smart Template consists of vertical and horizontal crossbars that are driven by two ultrasonic motors via timing-belt and mitergear transmissions. Navigation software that controls the crossbar position to provide needle insertion positions was also developed. The software can be operated independently or interactively with an open-source navigation software, 3D Slicer, that has been developed for prostate intervention. As preliminary evaluation, MRI distortion and SNR test were conducted. Significant MRI distortion was found close to the threaded brass alloy components of the template. However, the affected volume was limited outside the clinical region of interest. SNR values over routine MRI scan sequences for prostate biopsy indicated insignificant image degradation during the presence of the robotic system and actuation of the ultrasonic motors.
Rube, Martin A.; Holbrook, Andrew B.; Cox, Benjamin F.; Buciuc, Razvan; Melzer, Andreas
2015-01-01
Purpose A wireless interactive display and control device combined with a platform-independent web-based User Interface (UI) was developed to improve the workflow for interventional Magnetic Resonance Imaging (iMRI). Methods The iMRI-UI enables image acquisition of up to three independent slices using various pulse sequences with different contrast weighting. Pulse sequence, scan geometry and related parameters can be changed on the fly via the iMRI-UI using a tablet computer for improved lesion detection and interventional device targeting. The iMRI-UI was validated for core biopsies with a liver phantom (n=40) and Thiel soft-embalmed human cadavers (n=24) in a clinical 1.5T MRI scanner. Results The iMRI-UI components and setup were tested and found conditionally MRI-safe to use according to current ASTM standards. Despite minor temporary touchscreen interference at a close distance to the bore (<20 cm), no other issues regarding quality or imaging artefacts were observed. The 3D root-mean-square distance error was 2.8±1.0 (phantom) / 2.9±0.8 mm (cadaver) and overall procedure times ranged between 12–22 (phantom) / 20–55 minutes (cadaver). Conclusions The wireless iMRI-UI control setup enabled fast and accurate interventional biopsy needle placements along complex trajectories and improved the workflow for percutaneous interventions under MRI guidance in a preclinical trial. PMID:25179151
Preclinical Feasibility of a Technology Framework for MRI-guided Iliac Angioplasty
Rube, Martin A.; Fernandez-Gutierrez, Fabiola; Cox, Benjamin F.; Holbrook, Andrew B.; Houston, J. Graeme; White, Richard D.; McLeod, Helen; Fatahi, Mahsa; Melzer, Andreas
2015-01-01
Purpose Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. Methods A 1.5T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-Ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. Results MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-Ray guided procedure. Conclusions MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation. PMID:25102933
Barkhausen, Jörg; Kahn, Thomas; Krombach, Gabriele A; Kuhl, Christiane K; Lotz, Joachim; Maintz, David; Ricke, Jens; Schönberg, Stefan O; Vogl, Thomas J; Wacker, Frank K
2017-07-01
Background MRI is attractive for the guiding and monitoring of interventional procedures due to its high intrinsic soft tissue contrast and the possibility to measure physiologic parameters like flow and cardiac function. Method The current status of interventional MRI for the clinical routine was analyzed. Results The effort needed for the development of MR-safe monitoring systems and instruments initially resulted in the application of interventional MRI only for procedures that could not be performed by other means. Accordingly, biopsy of lesions in the breast, which are not detectable by other modalities, has been performed under MRI guidance for decades. Currently, biopsies of the prostate under MRI guidance are established in a similar fashion. At many sites blind biopsy has already been replaced by MR-guided biopsy or at least by the fusion of MR images with ultrasound. Cardiovascular interventions are performed at several centers for ablation as a treatment for atrial fibrillation. Conclusion Interventional MRI has been established in the clinical routine for a variety of indications. Broader application can be expected in the clinical routine in the future owing to the multiple advantages compared to other techniques. Key points · Due to the significant technical effort, MR-guided interventions are only recommended in the long term for regions in which MRI either facilitates or greatly improves the intervention.. · Breast biopsy of otherwise undetectable target lesions has long been established in the clinical routine. Prostate biopsy is currently being introduced in the clinical routine for similar reasons. Other methods such as MR-guided focused ultrasound for the treatment of uterine fibroids or tumor ablation of metastases represent alternative methods and are offered in many places.. · Endovascular MR-guided interventions offer advantages for a number of indications and have already been clinically established for the treatment of children with congenital heart defects and for atrial ablation at individual centers. Greater application can be expected in the future.. Citation format · Barkhausen J, Kahn T, Krombach GA et al. White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 1: General Application. Fortschr Röntgenstr 2017; 189: 611 - 623. © Georg Thieme Verlag KG Stuttgart · New York.
Walker, Breya; Conklin, Heather M; Anghelescu, Doralina L; Hall, Lacey P; Reddick, Wilburn E; Ogg, Robert; Jacola, Lisa M
2018-06-01
Children with cancer frequently require MRI scans for clinical purposes. Sedation with general anesthesia (GA) is often used to promote compliance, reduce motion, and alleviate anxiety. The use of GA for MRI scans is costly in terms of time, personnel, and medications. In addition, prominent risks are associated with anesthesia exposure in patients with complex medical conditions. Successful behavioral interventions have been implemented in clinical research settings to promote scan success and compliance. To our knowledge, parent/caregiver acceptability of behavioral interventions to promote nonsedated MRI has not been systematically investigated in a medically complex population. As a first step toward developing a protocol-based intervention to promote nonsedated scanning, we conducted a survey to explore parental perspectives regarding acceptability of nonsedated scanning and to gain information regarding preference for specific behavioral interventions to facilitate nonsedated MRI exams. Parents or guardians of 101 patients diagnosed with childhood cancer participated in a semi-structured survey via telephone. The sample was stratified by age group (8-12 years; 13-18 years), gender, and diagnosis (solid tumor (ST), brain tumor (BT), and acute lymphoblastic leukemia (ALL)). The majority of parents indicated that nonsedated MRI scans would be acceptable. Reduced anesthesia exposure was the most frequently identified benefit, followed by decreased irritability post-MRI scan, and shorter appointment time. Challenges included fear of movement and noise during scans and change in routine, with parents of younger children and those with a history of sedated exams identifying more challenges. Behavioral intervention preference differed by patient age and gender; however, education was ranked as most preferred overall. Parents of children treated for cancer consider behavior interventions to promote nonsedated scanning as acceptable. Patient characteristics should be considered when tailoring behavioral interventions. Results can inform future studies of behavioral interventions to promote nonsedated MRI scans. Future research should also investigate the risks associated with failed exams, both in terms of patient medical care and cost effectiveness.
Kawamoto, Hirokazu; Takayasu, Hideki; Jensen, Henrik Jeldtoft; Takayasu, Misako
2015-01-01
Through precise numerical analysis, we reveal a new type of universal loopless percolation transition in randomly removed complex networks. As an example of a real-world network, we apply our analysis to a business relation network consisting of approximately 3,000,000 links among 300,000 firms and observe the transition with critical exponents close to the mean-field values taking into account the finite size effect. We focus on the largest cluster at the critical point, and introduce survival probability as a new measure characterizing the robustness of each node. We also discuss the relation between survival probability and k-shell decomposition.
Zou, Ping; Conklin, Heather M.; Scoggins, Matthew A.; Li, Yimei; Li, Xingyu; Jones, Melissa M.; Palmer, Shawna L.; Gajjar, Amar; Ogg, Robert J.
2015-01-01
Background Development of reading skills is vulnerable to disruption in children treated for brain tumors. Interventions, remedial and prophylactic, are needed to mitigate reading and other learning difficulties faced by survivors. A functional magnetic resonance imaging (fMRI) study was conducted to investigate long-term effects of a prophylactic reading intervention administered during radiation therapy in children treated for medulloblastoma. Methods The fMRI study included 19 reading-intervention (age 11.7±0.6 years) and 21 standard-of-care (age 12.1±0.6 years) medulloblastoma survivors, and 21 typically developing children (age 12.3±0.6 years). The survivors were 2.5 [1.2, 5.4] years after completion of tumor therapies and reading-intervention survivors were 2.9 [1.6, 5.9] years after intervention. Five fMRI tasks (Rapid Automatized Naming, Continuous Performance Test using faces and letters, orthographic and phonological processing of letter pairs, implicit word reading, and story reading) were used to probe reading-related neural activation. Woodcock-Johnson Reading Fluency, Word Attack, and Sound Awareness subtests were used to evaluate reading abilities. Results At the time of fMRI, Sound Awareness scores were significantly higher in the reading-intervention group than in the standard-of-care group (p = 0.046). Brain activation during the fMRI tasks was detected in left inferior frontal, temporal, ventral occipitotemporal, and subcortical regions, and differed among the groups (p<0.05, FWE). The pattern of group activation differences, across brain areas and tasks, was a normative trend in the reading-intervention group. Conclusions Standardized reading scores and patterns of brain activation provide evidence of long-term effects of prophylactic reading intervention in children treated for medulloblastoma. PMID:25967954
Bharti, Bhavneet; Malhi, Prahbhjot; Khandelwal, N
2016-03-01
To evaluate the effectiveness of an MRI-specific play therapy intervention on the need for sedation in young children. All children in the age group of 4-10 y, who were advised an MRI scan over a period of one year were randomized. Exclusion criteria included children with neurodevelopmental disorders impairing cognition and children who had previously undergone diagnostic MRI. A total of 79 children were randomized to a control or an intervention condition. The intervention involved familiarizing the child with the MRI model machine, listing the steps involved in the scan to the child in vivid detail, training the child to stand still for 5 min, and conducting several dry runs with a doll or a favorite toy. The study was approved by the Institute ethical committee. The need for sedation was 41 % (n = 16) in the control group and this declined to 20 % (n = 8) in the intervention group (χ(2) = 4.13; P = 0.04). The relative risk of sedation decreased by 49 % in the intervention group as compared to the control group (RR 0.49; 95 % CI: 0.24-1.01) and this difference was statistically significant (P = 0.04). The absolute risk difference in sedation use between intervention and control group was 21 % (95 % CI 1.3 %-40.8 %). Even on adjusting for age, relative risk of sedation remained significantly lower in children undergoing play therapy as compared to the control (RR 0.57, 95 % CI: 0.32-0.98) with P value of 0.04. The use of an MRI customized play therapy with pediatric patients undergoing diagnostic MRI resulted in significant reduction of the use of sedation.
"MRI Stealth" robot for prostate interventions.
Stoianovici, Dan; Song, Danny; Petrisor, Doru; Ursu, Daniel; Mazilu, Dumitru; Muntener, Michael; Mutener, Michael; Schar, Michael; Patriciu, Alexandru
2007-01-01
The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 1, designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the "MRI stealth" robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager's room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low-dose radiation seed brachytherapy. This paper gives an introduction to the challenges of MRI robot compatibility and presents the solutions adopted in making the MrBot. Its multi-imager compatibility and other preclinical tests are included. The robot shows the technical feasibility of MRI-guided prostate interventions, yet its clinical utility is still to be determined.
“MRI Stealth” robot for prostate interventions
STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU
2011-01-01
The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low-dose radiation seed brachytherapy. This paper gives an introduction to the challenges of MRI robot compatibility and presents the solutions adopted in making the MrBot. Its multi-imager compatibility and other preclinical tests are included. The robot shows the technical feasibility of MRI-guided prostate interventions, yet its clinical utility is still to be determined. PMID:17763098
Kawamoto, Hirokazu; Takayasu, Hideki; Jensen, Henrik Jeldtoft; Takayasu, Misako
2015-01-01
Through precise numerical analysis, we reveal a new type of universal loopless percolation transition in randomly removed complex networks. As an example of a real-world network, we apply our analysis to a business relation network consisting of approximately 3,000,000 links among 300,000 firms and observe the transition with critical exponents close to the mean-field values taking into account the finite size effect. We focus on the largest cluster at the critical point, and introduce survival probability as a new measure characterizing the robustness of each node. We also discuss the relation between survival probability and k-shell decomposition. PMID:25885791
Mesoscopic description of random walks on combs
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner
2015-12-01
Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.
Voltage-based device tracking in a 1.5 Tesla MRI during imaging: initial validation in swine models.
Schmidt, Ehud J; Tse, Zion T H; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L
2014-03-01
Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists navigation, mapping, and radiofrequency ablation. Multimodality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound electrophysiological suite, increasing the likelihood of patient-motion and image misregistration. An MRI-compatible VDT system may increase efficiency, as there is currently no single method to track devices both inside and outside the MRI scanner. An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radiofrequency unblanking pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT electro-anatomic mapping interventions were performed, navigating inside and thereafter outside the MRI. Three-catheter VDT interventions were performed at >12 frames per second both inside and outside the MRI scanner with <3 mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition time >32 ms sequences with <0.5 mm errors, and <5% MRI signal-to-noise ratio (SNR) loss. At shorter repetition times, only intracardiac electrocardiogram was reliable. Radiofrequency heating was <1.5°C. An MRI-compatible VDT system is feasible. Copyright © 2013 Wiley Periodicals, Inc.
Voltage-based Device Tracking in a 1.5 Tesla MRI during Imaging: Initial validation in swine models
Schmidt, Ehud J; Tse, Zion TH; Reichlin, Tobias R; Michaud, Gregory F; Watkins, Ronald D; Butts-Pauly, Kim; Kwong, Raymond Y; Stevenson, William; Schweitzer, Jeffrey; Byrd, Israel; Dumoulin, Charles L
2013-01-01
Purpose Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological (EP) cardiac-arrhythmia therapy. During EP procedures, electro-anatomic-mapping (EAM) workstations provide guidance by integrating VDT location and intra-cardiac-ECG information with X-ray, CT, Ultrasound, and MR images. MR assists navigation, mapping and radio-frequency-ablation. Multi-modality interventions require multiple patient transfers between an MRI and the X-ray/ultrasound EP suite, increasing the likelihood of patient-motion and image mis-registration. An MRI-compatible VDT system may increase efficiency, since there is currently no single method to track devices both inside and outside the MRI scanner. Methods An MRI-compatible VDT system was constructed by modifying a commercial system. Hardware was added to reduce MRI gradient-ramp and radio-frequency-unblanking-pulse interference. VDT patches and cables were modified to reduce heating. Five swine cardiac VDT EAM-mapping interventions were performed, navigating inside and thereafter outside the MRI. Results Three-catheter VDT interventions were performed at >12 frames-per-second both inside and outside the MRI scanner with <3mm error. Catheters were followed on VDT- and MRI-derived maps. Simultaneous VDT and imaging was possible in repetition-time (TR) >32 msec sequences with <0.5mm errors, and <5% MRI SNR loss. At shorter TRs, only intra-cardiac-ECG was reliable. RF Heating was <1.5C°. Conclusion An MRI-compatible VDT system is feasible. PMID:23580479
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seebauer, Christian J., E-mail: christian.seebauer@charite.d; Bail, Hermann J., E-mail: hermann-josef.bail@klinikum-nuernberg.d; Rump, Jens C., E-mail: jens.rump@charite.de
Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesionsmore » of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.« less
Raval, Amish N.; Karmarkar, Parag V.; Guttman, Michael A.; Ozturk, Cengizhan; Sampath, Smita; DeSilva, Ranil; Aviles, Ronnier J.; Xu, Minnan; Wright, Victor J.; Schenke, William H.; Kocaturk, Ozgur; Dick, Alexander J.; Raman, Venkatesh K.; Atalar, Ergin; McVeigh, Elliot R.; Lederman, Robert J.
2006-01-01
Background Endovascular recanalization (guidewire traversal) of peripheral artery chronic total occlusion (CTO) can be challenging. X-Ray angiography resolves CTO poorly. Virtually “blind” device advancement during X-ray-guided interventions can lead to procedure failure, perforation and hemorrhage. Alternatively, magnetic resonance imaging (MRI) may delineate the artery within the occluded segment to enhance procedural safety and success. We hypothesized that real-time MRI (rtMRI) guided CTO recanalization can be accomplished in an animal model. Methods and Results Carotid artery CTO was created by balloon injury in 19 lipid overfed swine. After 6–8 weeks, two underwent direct necropsy analysis for histology, three underwent primary X-ray-guided CTO recanalization attempts, and the remaining 14 underwent rtMRI-guided recanalization attempts in a 1.5T interventional MRI system. rtMRI intervention used custom CTO catheters and guidewires that incorporated MRI receiver antennae to enhance device visibility. The mean length of the occluded segments was 13.3 ± 1.6cm. rtMRI-guided CTO recanalization was successful in 11/14 swine and only 1/3 swine using X-ray alone. After unsuccessful rtMRI (n = 3), X-ray-guided attempts also were all unsuccessful. Conclusions Recanalization of long CTO is feasible entirely using rtMRI guidance. Low profile clinical-grade devices will be required to translate this experience to humans. Endovascular recanalization of chronic total arterial occlusion (CTO) is challenging under conventional X-ray guidance because devices are advanced almost blindly. MRI can image CTO borders and luminal contents, and could potentially guide these procedures. We test the feasibility of real-time MRI guided wire traversal in a swine model of peripheral artery CTO using custom active MRI catheters. PMID:16490819
[Principles of MR-guided interventions, surgery, navigation, and robotics].
Melzer, A
2010-08-01
The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.
Powell, Rachael; Ahmad, Mahadir; Gilbert, Fiona J; Brian, David; Johnston, Marie
2015-09-01
The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts. Previous research indicated self-efficacy to predict successful scan outcome, and interviews with patients identified a need for procedural and sensory information to facilitate successful scan behaviour. A DVD intervention was developed which targeted self-efficacy and included procedural and sensory information. It was successfully piloted with 10 patients and then evaluated in a randomized controlled trial compared with the standard hospital information leaflet (intervention group N = 41; control group N = 42). The clinic radiographer, who was blind to group allocation, rated MRI scans for motion artefact and recorded whether the participant completed the scan; participants completed MRI self-efficacy and anxiety measures. Only one participant reported not finding the DVD useful. Thirty-five participants in the intervention group and 23 in the control group completed scans and had no motion artefacts, χ(2) (1, 83) = 7.84, p < .001 (relative risk of an unsatisfactory outcome in the control group/intervention group = 3.09). The intervention effect was mediated by self-efficacy. The DVD intervention was efficacious and warrants further research to examine generalizability. © 2015 The British Psychological Society.
Fernández-Gutiérrez, Fabiola; Martínez, Santiago; Rube, Martin A; Cox, Benjamin F; Fatahi, Mahsa; Scott-Brown, Kenneth C; Houston, J Graeme; McLeod, Helen; White, Richard D; French, Karen; Gueorguieva, Mariana; Immel, Erwin; Melzer, Andreas
2015-10-01
A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages' durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education.
Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion
2015-10-01
AWARD NUMBER: W81XWH-14-1-0461 TITLE: Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion PRINCIPAL...Sep 2014 - 28 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Guided Interventions for Prostate Cancer Using 3D- Transurethral Ultrasound and...Magnetic Resonance- Ultrasound (MR-US) fusion allows for specific targeting of the tumors in real-time during clinical interventions, outside of an MR
White, Mark J; Thornton, John S; Hawkes, David J; Hill, Derek L G; Kitchen, Neil; Mancini, Laura; McEvoy, Andrew W; Razavi, Reza; Wilson, Sally; Yousry, Tarek; Keevil, Stephen F
2015-01-01
The design and operation of a facility in which a magnetic resonance imaging (MRI) scanner is incorporated into a room used for surgical or endovascular cardiac interventions presents several challenges. MR safety must be maintained in the presence of a much wider variety of equipment than is found in a diagnostic unit, and of staff unfamiliar with the MRI environment, without compromising the safety and practicality of the interventional procedure. Both the MR-guided cardiac interventional unit at Kings College London and the intraoperative imaging suite at the National Hospital for Neurology and Neurosurgery are single-room interventional facilities incorporating 1.5 T cylindrical-bore MRI scanners. The two units employ similar strategies to maintain MR safety, both in original design and day-to-day operational workflows, and between them over a decade of incident-free practice has been accumulated. This article outlines these strategies, highlighting both similarities and differences between the units, as well as some lessons learned and resulting procedural changes made in both units since installation. © 2014 Wiley Periodicals, Inc.
MR-guided endovascular interventions: a comprehensive review on techniques and applications.
Kos, Sebastian; Huegli, Rolf; Bongartz, Georg M; Jacob, Augustinus L; Bilecen, Deniz
2008-04-01
The magnetic resonance (MR) guidance of endovascular interventions is probably one of the greatest challenges of clinical MR research. MR angiography is not only an imaging tool for the vasculature but can also simultaneously depict high tissue contrast, including the differentiation of the vascular wall and perivascular tissues, as well as vascular function. Several hurdles had to be overcome to allow MR guidance for endovascular interventions. MR hardware and sequence design had to be developed to achieve acceptable patient access and to allow real-time or near real-time imaging. The development of interventional devices, both applicable and safe for MR imaging (MRI), was also mandatory. The subject of this review is to summarize the latest developments in real-time MRI hardware, MRI, visualization tools, interventional devices, endovascular tracking techniques, actual applications and safety issues.
Using real-time fMRI brain-computer interfacing to treat eating disorders.
Sokunbi, Moses O
2018-05-15
Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wybranski, Christian, E-mail: Christian.Wybranski@uk-koeln.de; Pech, Maciej; Lux, Anke
ObjectiveTo assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (≤3 mm) or dilated BD (≥3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture.MethodsA total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded.ResultsVisualization even of third-order non-dilated BDmore » and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 ± 2.13 (0:16–11:07) min. and 3:58 ± 2:35 (1:11–9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications.ConclusionA hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD.« less
Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion
2017-06-01
standard transrectal ultrasound (TRUS) probe, a TUUS probe, and MRI. (a) (b) Figure 2: 3D printed prostate phantom mold (a), and pelvis phantom mold...with prostate agar phantom in place (b). The TUUS phantoms were prepared using a standard recipe [ii] for the prostate and the 3D printed mold...AWARD NUMBER: W81XWH-14-1-0461 TITLE: Guided Interventions for Prostate Cancer Using 3D -Transurethral Ultrasound and MRI Fusion PRINCIPAL
Helyar, Vincent G; Gupta, Yuri; Blakeway, Lyndall; Charles-Edwards, Geoff; Katsanos, Konstantinos; Karunanithy, Narayan
2018-02-01
This study evaluates the use of balanced steady-state free precession MRI (bSSFP-MRI) in the diagnostic work-up of patients undergoing interventional deep venous reconstruction (I-DVR). Intravenous digital subtraction angiography (IVDSA) was used as the gold-standard for comparison to assess disease extent and severity. A retrospective comparison of bSSFP-MRI to IVDSA was performed in all patients undergoing both examinations for treatment planning prior to I-DVR. The severity of disease in each venous segment was graded by two board-certified radiologists working independently, according to a predetermined classification system. In total, 44 patients (225 venous segments) fulfilled the inclusion criteria. A total of 156 abnormal venous segments were diagnosed using bSSFP-MRI compared with 151 using IVDSA. The prevalence of disease was higher in the iliac and femoral segments (range, 79.6-88.6%). Overall sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and the diagnostic ratio for bSSFP-MRI were 99.3%, 91.9%, 12.3, 0.007 and 1700, respectively. This study supports the use of non-contrast balanced SSFP-MRI in the assessment of the deep veins of the lower limb prior to I-DVR. The technique offers an accurate, fast and non-invasive alternative to IVDSA. Advances in Knowledge: Although balanced SSFP-MRI is commonly used in cardiac imaging, its use elsewhere is limited and its use in evaluating the deep veins prior to interventional reconstruction is not described. Our study demonstrates the usefulness of this technique in the work-up of patients awaiting interventional venous reconstruction compared with the current gold standard.
Yokoyama, Satoshi; Okamoto, Yasumasa; Takagaki, Koki; Okada, Go; Takamura, Masahiro; Mori, Asako; Shiota, Syouichi; Ichikawa, Naho; Jinnin, Ran; Yamawaki, Shigeto
2018-02-01
Subthreshold depression is a risk factor for major depressive disorder, and it is known to have a negative impact on quality of life (QOL). Although behavioral activation, which is one type of cognitive behavioral therapy, is an effective psychological intervention for subthreshold depression, neural mechanisms of behavioral activation are unclear. Enhanced functional connectivity between default mode network (DMN) and the other regions has been demonstrated in participants with subthreshold depression. The purpose of this study was to examine the effects of behavioral activation on DMN abnormalities by using resting-state functional MRI (rs-fMRI). Participants with subthreshold depression (N =40) were randomly assigned to either an intervention group or a non-intervention group. They were scanned using rs-fMRI before and after the intervention. Independent component analysis indicated three subnetworks of the DMN. Analyzing intervention effects on functional connectivity of each subnetwork indicated that connectivity of the anterior DMN subnetwork with the dorsal anterior cingulate was reduced after the intervention. Moreover, this reduction was correlated with an increase in health-related QOL. We did not compare the findings with healthy participants. Further research should be conducted by including healthy controls to verify the results of this study. Mechanisms of behavioral activation might be related to enhanced ability to independently use the dACC and the DMN, which increases an attention control to positive external stimuli. This is the first study to investigate neural mechanisms of behavioral activation using rs-fMRI. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Seunggu J; Bankiewicz, Krystof; Butowski, Nicholas A; Larson, Paul S; Aghi, Manish K
2016-06-01
Local delivery of therapeutic agents into the brain has many advantages; however, the inability to predict, visualize and confirm the infusion into the intended target has been a major hurdle in its clinical development. Here, we describe the current workflow and application of the interventional MRI (iMRI) system for catheter placement and real time visualization of infusion. We have applied real time convection-enhanced delivery (CED) of therapeutic agents with iMRI across a number of different clinical trials settings in neuro-oncology and movement disorders. Ongoing developments and accumulating experience with the technique and technology of drug formulations, CED platforms, and iMRI systems will continue to make local therapeutic delivery into the brain more accurate, efficient, effective and safer.
An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention
Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor
2012-01-01
This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867
Steffens, Daniel; Hancock, Mark J; Pereira, Leani S M; Kent, Peter M; Latimer, Jane; Maher, Chris G
2016-04-01
Magnetic resonance imaging (MRI) can reveal a range of degenerative findings and anatomical abnormalities; however, the clinical importance of these remains uncertain and controversial. We aimed to investigate if the presence of MRI findings identifies patients with low back pain (LBP) or sciatica who respond better to particular interventions. MEDLINE, EMBASE and CENTRAL databases were searched. We included RCTs investigating MRI findings as treatment effect modifiers for patients with LBP or sciatica. We excluded studies with specific diseases as the cause of LBP. Risk of bias was assessed using the criteria of the Cochrane Back Review Group. Each MRI finding was examined for its individual capacity for effect modification. Eight published trials met the inclusion criteria. The methodological quality of trials was inconsistent. Substantial variability in MRI findings, treatments and outcomes across the eight trials prevented pooling of data. Patients with Modic type 1 when compared with patients with Modic type 2 had greater improvements in function when treated by Diprospan (steroid) injection, compared with saline. Patients with central disc herniation when compared with patients without central disc herniation had greater improvements in pain when treated by surgery, compared with rehabilitation. Although individual trials suggested that some MRI findings might be effect modifiers for specific interventions, none of these interactions were investigated in more than a single trial. High quality, adequately powered trials investigating MRI findings as effect modifiers are essential to determine the clinical importance of MRI findings in LBP and sciatica ( CRD42013006571).
Kahathuduwa, Chanaka Nadeeshan; Davis, Tyler; O'Boyle, Michael; Boyd, Lori Ann; Chin, Shao-Hua; Paniukov, Dmitrii; Binks, Martin
2018-01-01
Calorie restriction via total meal replacement (TMR) results in greater reduction of food cravings compared to reduced-calorie typical diet (TD). Direct evidence of the impact of these interventions on human brain fMRI food-cue reactivity (fMRI-FCR) and functional connectivity is absent. We examined the effects of a 3-week 1120 kcal/d TMR intervention as compared to an iso-caloric TD intervention using an fMRI-FCR paradigm. Thirty-two male and female subjects with obesity (19-60 years; 30-39.9 kg/m 2 ) participated in a randomized two-group repeated measures dietary intervention study consisting of 1120 kcal/d from either 1) TMR (shakes), 2) TD (portion control). Pre-intervention and following the 3-week diet fMRI-FCR, functional connectivity, food cravings (Food Craving Inventory) and weight were considered. Compared to TD, TMR showed increased fMRI-FCR of the bilateral dorsolateral prefrontal (dlPFC), orbitofrontal, anterior cingulate, primary motor and left insular cortices and bilateral nucleus accumbens regions in the post-intervention state relative to the pre-intervention state. Compared to TD, TMR was also associated with negative modulation of fMRI-FCR of the nucleus accumbens, orbitofrontal cortex and amygdala by dlPFC. Reduced body weight (4.87 kg, P < 0.001), body fat (2.19 kg, P = 0.004) and overall food cravings (0.41, P = 0.047) were seen in the TMR group. In the TD group reduced body weight (2.37 kg, P = 0.004) and body fat (1.64 kg, P = 0.002) were noted. Weight loss was significantly greater in TMR versus TD (2.50 kg, P = 0.007). Greater weight loss and reduced cravings, coupled with stronger activations and potential negative modulation of the food reward related regions by the dlPFC during exposure to visual food cues is consistent with increased executive control in TMR vs. TD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahrig, R.
MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less
Faster search by lackadaisical quantum walk
NASA Astrophysics Data System (ADS)
Wong, Thomas G.
2018-03-01
In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of O(1/log N) in O(√{N log N}) steps, which with amplitude amplification yields an overall runtime of O(√{N} log N). We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight 4 / N to each vertex speeds up the search, causing the success probability to reach a constant near 1 in O(√{N log N}) steps, thus yielding an O(√{log N}) improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.
Open-source image registration for MRI-TRUS fusion-guided prostate interventions.
Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare
2015-06-01
We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.
Optimizing real time fMRI neurofeedback for therapeutic discovery and development
Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.
2014-01-01
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891
Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions
Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor
2013-01-01
Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller. PMID:24649480
Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system.
Krieger, Axel; Csoma, Csaba; Iordachital, Iulian I; Guion, Peter; Singh, Anurag K; Fichtinger, Gabor; Whitcomb, Louis L
2007-01-01
This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners.
Approaches to creating and controlling motion in MRI.
Fischer, Gregory S; Cole, Gregory; Su, Hao
2011-01-01
Magnetic Resonance Imaging (MRI) can provide three dimensional (3D) imaging with excellent resolution and sensitivity making it ideal for guiding and monitoring interventions. The development of MRI-compatible interventional devices is complicated by factors including: the high magnetic field strength, the requirement that such devices should not degrade image quality, and the confined physical space of the scanner bore. Numerous MRI guided actuated devices have been developed or are currently being developed utilizing piezoelectric actuators as their primary means of mechanical energy generation to enable better interventional procedure performance. While piezoelectric actuators are highly desirable for MRI guided actuation for their precision, high holding force, and non-magnetic operation they are often found to cause image degradation on a large enough to scale to render live imaging unusable. This paper describes a newly developed piezoelectric actuator driver and control system designed to drive a variety of both harmonic and non-harmonic motors that has been demonstrated to be capable of operating both harmonic and non-harmonic piezoelectric actuators with less than 5% SNR loss under closed loop control. The proposed system device allows for a single controller to control any supported actuator and feedback sensor without any physical hardware changes.
MR imaging guidance for minimally invasive procedures
NASA Astrophysics Data System (ADS)
Wong, Terence Z.; Kettenbach, Joachim; Silverman, Stuart G.; Schwartz, Richard B.; Morrison, Paul R.; Kacher, Daniel F.; Jolesz, Ferenc A.
1998-04-01
Image guidance is one of the major challenges common to all minimally invasive procedures including biopsy, thermal ablation, endoscopy, and laparoscopy. This is essential for (1) identifying the target lesion, (2) planning the minimally invasive approach, and (3) monitoring the therapy as it progresses. MRI is an ideal imaging modality for this purpose, providing high soft tissue contrast and multiplanar imaging, capability with no ionizing radiation. An interventional/surgical MRI suite has been developed at Brigham and Women's Hospital which provides multiplanar imaging guidance during surgery, biopsy, and thermal ablation procedures. The 0.5T MRI system (General Electric Signa SP) features open vertical access, allowing intraoperative imaging to be performed. An integrated navigational system permits near real-time control of imaging planes, and provides interactive guidance for positioning various diagnostic and therapeutic probes. MR imaging can also be used to monitor cryotherapy as well as high temperature thermal ablation procedures sing RF, laser, microwave, or focused ultrasound. Design features of the interventional MRI system will be discussed, and techniques will be described for interactive image acquisition and tracking of interventional instruments. Applications for interactive and near-real-time imaging will be presented as well as examples of specific procedures performed using MRI guidance.
MRI-guided and CT-guided cervical nerve root infiltration therapy: a cost comparison.
Maurer, M H; Froeling, V; Röttgen, R; Bretschneider, T; Hartwig, T; Disch, A C; de Bucourt, M; Hamm, B; Streitparth, F
2014-06-01
To evaluate and compare the costs of MRI-guided and CT-guided cervical nerve root infiltration for the minimally invasive treatment of radicular neck pain. Between September 2009 and April 2012, 22 patients (9 men, 13 women; mean age: 48.2 years) underwent MRI-guided (1.0 Tesla, Panorama HFO, Philips) single-site periradicular cervical nerve root infiltration with 40 mg triamcinolone acetonide. A further 64 patients (34 men, 30 women; mean age: 50.3 years) were treated under CT fluoroscopic guidance (Somatom Definition 64, Siemens). The mean overall costs were calculated as the sum of the prorated costs of equipment use (purchase, depreciation, maintenance, and energy costs), personnel costs and expenditure for disposables that were identified for MRI- and CT-guided procedures. Additionally, the cost of ultrasound guidance was calculated. The mean intervention time was 24.9 min. (range: 12 - 36 min.) for MRI-guided infiltration and 19.7 min. (range: 5 - 54 min.) for CT-guided infiltration. The average total costs per patient were EUR 240 for MRI-guided interventions and EUR 124 for CT-guided interventions. These were (MRI/CT guidance) EUR 150/60 for equipment use, EUR 46/40 for personnel, and EUR 44/25 for disposables. The mean overall cost of ultrasound guidance was EUR 76. Cervical nerve root infiltration using MRI guidance is still about twice as expensive as infiltration using CT guidance. However, since it does not involve radiation exposure for patients and personnel, MRI-guided nerve root infiltration may become a promising alternative to the CT-guided procedure, especially since a further price decrease is expected for MRI devices and MR-compatible disposables. In contrast, ultrasound remains the less expensive method for nerve root infiltration guidance. © Georg Thieme Verlag KG Stuttgart · New York.
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2015-10-01
osteoarthritis, articular fracture, joint injury, trauma, biomarker, inflammation, MRI , knee, mouse model, translational research. 3. OVERALL PROJECT...intervention. MRI imaging of the injured knee will be obtained to assess the articular cartilage. Degenerative changes in the cartilage and joint space...successfully enrolled patients, collected and stored biosamples, obtained all post-operative MRI scans and are continuing to obtain 18- month MRI scans for
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections
Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan
2017-01-01
PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598
1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.
Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan
2017-01-01
The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.
Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.
Busse, Harald; Kahn, Thomas; Moche, Michael
2011-08-01
Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.
Lustgarten, M; Redding, W R; Schnabel, L V; Prange, T; Seiler, G S
2016-03-01
Navigational ultrasound imaging, also known as fusion imaging, is a novel technology that allows real-time ultrasound imaging to be correlated with a previously acquired computed tomography (CT) or magnetic resonance imaging (MRI) study. It has been used in man to aid interventional therapies and has been shown to be valuable for sampling and assessing lesions diagnosed with MRI or CT that are equivocal on ultrasonography. To date, there are no reports of the use of this modality in veterinary medicine. To assess whether navigational ultrasound imaging can be used to assist commonly performed interventional therapies for the treatment of equine musculoskeletal injuries diagnosed with MRI and determine the appropriateness of regional anatomical landmarks as registration sites. Retrospective, descriptive clinical study. Horses with musculoskeletal injuries of the distal limb diagnosed with MRI scheduled for ultrasound-guided interventional therapies were evaluated (n = 17 horses with a total of 29 lesions). Anatomical landmarks used for image registration for the navigational procedure were documented. Accuracy of lesion location and success of the procedure were assessed subjectively and described using a grading scale. All procedures were accurately registered using regional anatomical landmarks and considered successful based on our criteria. Anatomical landmarks were described for each lesion type. The addition of navigational imaging was considered to greatly aid the procedures in 59% of cases and added information to the remainder of the procedures. The technique was considered to improve the precision of these interventional procedures. Navigational ultrasound imaging is a complementary imaging modality that can be used for the treatment of equine soft tissue musculoskeletal injuries diagnosed with MRI. © 2015 EVJ Ltd.
Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A
2016-12-01
Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.
Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor
2008-06-01
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system.
Rehmani, Razia; Endo, Yoshimi; Bauman, Phillip; Hamilton, William; Potter, Hollis; Adler, Ronald
2015-10-01
Altered biomechanics from repetitive microtrauma, such as long practice hours in en pointe (tip of the toes) or demi pointe (balls of the feet) predispose ballet dancers to a multitude of musculoskeletal pathologies particularly in the lower extremities. Both ultrasound and magnetic resonance imaging (MRI) are radiation-sparing modalities which can be used to confidently evaluate these injuries, with ultrasound (US) offering the added utility of therapeutic intervention at the same time in experienced hands. The purposes of this paper were: (1) to illustrate the US and MRI features of lower extremity injury patterns in ballet dancers, focusing on pathologies commonly encountered at a single orthopedic hospital; (2) to present complementary roles of both ultrasound and MRI in the evaluation of these injuries whenever possible; (3) to review and present our institutional approach towards therapeutic ultrasound-guided interventions by presenting explicit cases. Online searches were performed using the search criteria of "ballet biomechanics" and "ballet injuries." The results were then further narrowed down by limiting articles published in the past 15 years, modality (US and MRI), anatomical region (foot and ankle, hip and knee) and to major radiology, orthopedics, and sports medicine journals. Performing ballet poses major stress to lower extremities and predisposes dancer to several musculoskeletal injuries. These can be adequately evaluated by both US and MRI. US is useful for evaluating superficial structures such as soft tissues, tendons, and ligaments, particularly in the foot and ankle. MRI provides superior resolution of deeper structures such as joints, bone marrow, and cartilage. In addition, US can be used as a therapeutic tool for providing quick symptomatic improvement in these athletes for who "time is money". Performing ballet may cause major stress to the lower extremities, predominantly affecting the foot and ankle, followed by the knee and hip. US and MRI play complementary roles in evaluating various orthopedic conditions in ballet dancers, with US allowing for dynamic evaluation and guidance for interventions.
Increase of frontal neuronal activity in chronic neglect after training in virtual reality.
Ekman, U; Fordell, H; Eriksson, J; Lenfeldt, N; Wåhlin, A; Eklund, A; Malm, J
2018-05-16
A third of patients with stroke acquire spatial neglect associated with poor rehabilitation outcome. New effective rehabilitation interventions are needed. Scanning training combined with multisensory stimulation to enhance the rehabilitation effect is suggested. In accordance, we have designed a virtual-reality based scanning training that combines visual, audio and sensori-motor stimulation called RehAtt ® . Effects were shown in behavioural tests and activity of daily living. Here, we use fMRI to evaluate the change in brain activity during Posner's Cuing Task (attention task) after RehAtt ® intervention, in patients with chronic neglect. Twelve patients (mean age = 72.7 years, SD = 6.1) with chronic neglect (persistent symptoms >6 months) performed the interventions 3 times/wk during 5 weeks, in total 15 hours. Training effects on brain activity were evaluated using fMRI task-evoked responses during the Posner's cuing task before and after the intervention. Patients improved their performance in the Posner fMRI task. In addition, patients increased their task-evoked brain activity after the VR interventions in an extended network including pre-frontal and temporal cortex during attentional cueing, but showed no training effects during target presentations. The current pilot study demonstrates that a novel multisensory VR intervention has the potential to benefit patients with chronic neglect in respect of behaviour and brain changes. Specifically, the fMRI results show that strategic processes (top-down control during attentional cuing) were enhanced by the intervention. The findings increase knowledge of the plasticity processes underlying positive rehabilitation effects from RehAtt ® in chronic neglect. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[First clinical experience with extended planning and navigation in an interventional MRI unit].
Moche, M; Schmitgen, A; Schneider, J P; Bublat, M; Schulz, T; Voerkel, C; Trantakis, C; Bennek, J; Kahn, T; Busse, H
2004-07-01
To present an advanced concept for patient-based navigation and to report on our first clinical experience with interventions in the cranium, of soft-tissue structures (breast, liver) and in the musculoskeletal system. A PC-based navigation system was integrated into an existing interventional MRI environment. Intraoperatively acquired 3D data were used for interventional planning. The information content of these reference data was increased by integration of additional image modalities (e. g., fMRI, CT) and by color display of areas with early contrast media enhancement. Within 18 months, the system was used in 123 patients undergoing interventions in different anatomic regions (brain: 64, paranasal sinus: 9, breast: 20, liver: 17, bone: 9, muscle: 4). The mean duration of 64 brain interventions was compared with that of 36 procedures using the scanner's standard navigation. In contrast with the continuous scanning mode of the MR system (0.25 fps), the higher quality as well as the real time display (4 fps) of the MR images reconstructed from the 3D reference data allowed adequate hand-eye coordination. With our system, patient movement and tissue shifts could be immediately detected intraoperatively, and, in contrast to the standard procedure, navigation safely resumed after updating the reference data. The navigation system was characterized by good stability, efficient system integration and easy usability. Despite additional working steps still to be optimized, the duration of the image-guided brain tumor resections was not significantly longer. The presented system combines the advantage of intraoperative MRI with established visualization, planning, and real time capabilities of neuronavigation and can be efficiently applied in a broad range of non-neurosurgical interventions.
Stem cell therapy: MRI guidance and monitoring.
Kraitchman, Dara L; Gilson, Wesley D; Lorenz, Christine H
2008-02-01
With the recent advances in magnetic resonance (MR) labeling of cellular therapeutics, it is natural that interventional MRI techniques for targeting would be developed. This review provides an overview of the current methods of stem cell labeling and the challenges that are created with respect to interventional MRI administration. In particular, stem cell therapies will require specialized, MR-compatible devices as well as integration of graphical user interfaces with pulse sequences designed for interactive, real-time delivery in many organs. Specific applications that are being developed will be reviewed as well as strategies for future translation to the clinical realm. (Copyright) 2008 Wiley-Liss, Inc.
Cooperative epidemics on multiplex networks.
Azimi-Tafreshi, N
2016-04-01
The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.
Cooperative epidemics on multiplex networks
NASA Astrophysics Data System (ADS)
Azimi-Tafreshi, N.
2016-04-01
The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.
Advancements in Magnetic Resonance–Guided Robotic Interventions in the Prostate
Macura, Katarzyna J.; Stoianovici, Dan
2011-01-01
Magnetic resonance imaging (MRI) provides more detailed anatomical images of the prostate compared with the transrectal ultrasound imaging. Therefore, for the purpose of intervention in the prostate gland, diagnostic or therapeutic, MRI guidance offers a possibility of more precise targeting that may be crucial to the success of prostate interventions. However, access within the scanner is limited for manual instrument handling and the MR environment is most demanding among all imaging equipment with respect to the instrumentation used. A solution to this problem is the use of MR-compatible robots purposely designed to operate in the space and environmental restrictions inside the MR scanner allowing real-time interventions. Building an MRI-compatible robot is a very challenging engineering task because, in addition to the material restrictions that MRI instruments have, the robot requires actuators and sensors that limit the type of energies that can be used. Several important design problems have to be overcome before a successful MR-compatible robot application can be built. A number of MR-compatible robots, ranging from a simple manipulator to a fully automated system, have been developed, proposing ingenious solutions to the design challenge. Several systems have been already tested clinically for prostate biopsy and brachytherapy. As technology matures, precise image guidance for prostate interventions performed or assisted by specialized MR-compatible robotic devices may provide a uniquely accurate solution for guiding the intervention directly based on MR findings and feedback. Such an instrument would become a valuable clinical tool for biopsies directly targeting imaged tumor foci and delivering tumor-centered focal therapy. PMID:19512852
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862
de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye
2015-05-01
New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Utility of brain MRI in children with sleep-disordered breathing.
Selvadurai, Sarah; Al-Saleh, Suhail; Amin, Reshma; Zweerink, Allison; Drake, James; Propst, Evan J; Narang, Indra
2017-02-01
To investigate the utility of a brain magnetic resonance imaging (MRI) in children with sleep-disordered breathing (SDB), classified as isolated obstructive sleep apnea (OSA) in the absence of adenotonsillar hypertrophy, persistent OSA following adenotonsillectomy, isolated central sleep apnea (CSA) of unclear etiology, OSA with coexisting CSA of unclear etiology, or unexplained nocturnal hypoventilation (NH). Retrospective chart review of polysomnography (PSG) and brain MRI data. Children with PSG evidence of SDB, as described above, and who subsequently had their first brain MRI, were included. PSG, MRI data, and subsequent interventions were recorded. A total of 59 of 6,087 (1%) children met inclusion criteria. Of those, 28 of 59 (47%) were nonsyndromic children and 31 of 59 (53%) were syndromic children with an underlying medical disorder. Abnormal brain MRI findings were observed in 19 of 59 (32%) children, where eight of 19 (42%) were nonsyndromic and 11 of 19 (58%) were syndromic. Abnormal brain MRI findings were most common in syndromic children with combined OSA and CSA without adenotonsillar hypertrophy. Isolated OSA was also a common PSG finding associated with an abnormal brain MRI. Of the nonsyndromic children with an abnormal brain MRI, the most common abnormal brain MRI finding was Chiari malformation (CM), observed in 88% of the group. A brainstem tumor was identified in one nonsyndromic child. Interventions following brain MRI included neurosurgery, chemotherapy, and noninvasive positive pressure ventilation (NiPPV). A brain MRI is an important diagnostic tool in syndromic and nonsyndromic children, especially in children with either isolated OSA or combined OSA and CSA without a clear etiology. 4. Laryngoscope, 2016 127:513-519, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Parmar, Rajni; Brewer, Barbara B; Szalacha, Laura A
2018-03-01
The purpose of the study was to determine (1) recruitment feasibility; (2) intervention adherence; (3) intervention acceptability; and (4) the preliminary effects of touch or foot massage interventions on anxiety during a magnetic resonance imaging (MRI). A quasi-experimental design was used. Foot massage and touch were the intervention groups and "presence" was the control group. The study was conducted at the Center for Neurosciences, a freestanding facility, in southern Arizona. The sample (N = 60) was predominantly Caucasian (58.3%), married (55%), and college educated (43.3%). There were 39 females and 21 males. Fifty-three percent of the participants had an MRI head scan. Recruitment feasibility was the percentage of participants enrolled out of those screened. Adherence to foot massage and touch interventions was measured by the researcher's ability to apply full intervention for 20 min. Four factors measured participants' acceptance of the interventions as follows: (1) comfort; (2) acceptability of the length of the treatment; (3) perception of effectiveness; and (4) recommendation of treatment as part of routine MRI care. The MRI technologists' acceptability was measured by whether the intervention: (1) disrupted the workflow and (2) affected the length of the scan. State anxiety was assessed verbally by a single 10-point Likert type item. Recruitment feasibility was 78.2%. There were no barriers to the intervention protocol for 91.6% participants. The overall mean value of perceived effectiveness was 8.53, SD = 2.4 on a 10-point Likert type question. There was a significant difference among the three groups in terms of perceived effectiveness of the intervention F (2, 57) = 15.19, p < 0.001. Multilevel modeling documented that the foot massage intervention was a significant predictor of decreasing anxiety (β = -1.35, SE = 0.63, p < 0.01). The use of foot massage or touch is feasible, acceptable by patients and technologists, and the use of foot massage was associated with lower state anxiety.
Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions
Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor
2011-01-01
Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system. PMID:21686038
Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions.
Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor
2008-06-13
Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system.
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor
2010-01-01
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608
A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy
NASA Astrophysics Data System (ADS)
Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.
2013-03-01
Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.
A deflectable guiding catheter for real-time MRI-guided interventions.
Bell, Jamie A; Saikus, Christina E; Ratnayaka, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z; Colyer, Jessica H; Lederman, Robert J; Kocaturk, Ozgur
2012-04-01
To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. Copyright © 2011 Wiley Periodicals, Inc.
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2015-10-01
Post-traumatic arthritis, post-traumatic osteoarthritis, articular fracture, joint injury, trauma, biomarker, inflammation, MRI , knee, mouse model...will be collected prior to or at surgical intervention. MRI imaging of the injured knee will be obtained to assess the articular cartilage...and the development of PTA. We have successfully enrolled patients, collected and stored biosamples, obtained all post-operative MRI scans and are
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post Traumatic Arthritis
2015-10-01
arthritis, post-traumatic osteoarthritis, articular fracture, joint injury, trauma, biomarker, inflammation, MRI , knee, mouse model, translational...prior to or at surgical intervention. MRI imaging of the injured knee will be obtained to assess the articular cartilage. Degenerative changes in...development of PTA. We have successfully enrolled patients, collected and stored biosamples, obtained all post-operative MRI scans and are continuing to
Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos
2007-01-01
The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.
Functional Magnetic Resonance Imaging for Preoperative Planning in Brain Tumour Surgery.
Lau, Jonathan C; Kosteniuk, Suzanne E; Bihari, Frank; Megyesi, Joseph F
2017-01-01
Functional magnetic resonance imaging (fMRI) is being increasingly used for the preoperative evaluation of patients with brain tumours. The study is a retrospective chart review investigating the use of clinical fMRI from 2002 through 2013 in the preoperative evaluation of brain tumour patients. Baseline demographic and clinical data were collected. The specific fMRI protocols used for each patient were recorded. Sixty patients were identified over the 12-year period. The tumour types most commonly investigated were high-grade glioma (World Health Organization grade III or IV), low-grade glioma (World Health Organization grade II), and meningioma. Most common presenting symptoms were seizures (69.6%), language deficits (23.2%), and headache (19.6%). There was a predominance of left hemispheric lesions investigated with fMRI (76.8% vs 23.2% for right). The most commonly involved lobes were frontal (64.3%), temporal (33.9%), parietal (21.4%), and insular (7.1%). The most common fMRI paradigms were language (83.9%), motor (75.0%), sensory (16.1%), and memory (10.7%). The majority of patients ultimately underwent a craniotomy (75.0%), whereas smaller groups underwent stereotactic biopsy (8.9%) and nonsurgical management (16.1%). Time from request for fMRI to actual fMRI acquisition was 3.1±2.3 weeks. Time from fMRI acquisition to intervention was 4.9±5.5 weeks. We have characterized patient demographics in a retrospective single-surgeon cohort undergoing preoperative clinical fMRI at a Canadian centre. Our experience suggests an acceptable wait time from scan request to scan completion/analysis and from scan to intervention.
Jonczyk, Martin; Hamm, Bernd; Heinrich, Andreas; Thomas, Andreas; Rathke, Hendrik; Schnackenburg, Bernhard; Güttler, Felix; Teichgräber, Ulf K M; de Bucourt, Maximilian
2014-02-01
To report our initial clinical experience with a new magnetic resonance imaging (MRI) quadrupole coil that allows interventions in prone position. Fifteen patients (seven women, eight men; average age, 42.8 years) were treated in the same 1.0-Tesla Panorama High Field Open (HFO) MRI system (Panorama HFO) using a quadrupole butterfly coil (Bfly) and compared with 15 patients matched for sex, age, and MR intervention using the MultiPurposeL coil (MPL), performed in conventional lateral decubitus position (all, Philips Medical Systems, Best, The Netherlands). All interventions were performed with a near-real-time proton density turbo spin echo (PD TSE) sequence (time to repeat/time to echo/flip angle/acquisition time, 600 ms/10 ms/90°/3 s/image). Qualitative and quantitative image analyses were performed, including signal intensity, signal-to-noise and contrast-to-noise ratio (SNR, CNR), contrast, and full width at half maximum (FWHM) measurements. Contrast differed significantly between the needle and muscles (Bfly 0.27/MPL 0.17), as well as the needle and periradicular fat (0.13/0.24) during the intervention (both, p=0.029), as well as the CNR between muscles and the needle (10.61/5.23; p=0.010), although the FWHM values did not (2.4/2.2; p=0.754). The signal intensity of the needle in interventional imaging (1152.9/793.2; p=0.006) and the postinterventional SNR values of subcutaneous fat (15.3/28.6; p=0.007), muscles (6.6/11.8; p=0.011), and the CNR between these tissues (8.7/17.5; p=0.004) yielded significant differences. The new coil is a valid alternative for MR-guided interventions in an open MRI system at 1.0 tesla, especially if patients cannot (or prefer not to) be in a lateral decubitus position or if prone positioning yields better access to the target zone.
Randell, Elizabeth; McNamara, Rachel; Subramanian, Leena; Hood, Kerenza; Linden, David
2018-04-01
A core principle of creating a scientific evidence base is that results can be replicated in independent experiments and in health intervention research. The TIDieR (Template for Intervention Description and Replication) checklist has been developed to aid in summarising key items needed when reporting clinical trials and other well designed evaluations of complex interventions in order that findings can be replicated or built on reliably. Neurofeedback (NF) using functional MRI (fMRI) is a multicomponent intervention that should be considered a complex intervention. The TIDieR checklist (with minor modification to increase applicability in this context) was distributed to NF researchers as a survey of current practice in the design and conduct of clinical studies. The aim was to document practice and convergence between research groups, highlighting areas for discussion and providing a basis for recommendations for harmonisation and standardisation. The TIDieR checklist was interpreted and expanded (21 questions) to make it applicable to neurofeedback research studies. Using the web-based Bristol Online Survey (BOS) tool, the revised checklist was disseminated to researchers in the BRAINTRAIN European research collaborative network (supported by the European Commission) and others in the fMRI-neurofeedback community. There were 16 responses to the survey. Responses were reported under eight main headings which covered the six domains of the TIDieR checklist: What, Why, When, How, Where and Who. This piece of work provides encouraging insight into the ability to be able to map neuroimaging interventions to a structured framework for reporting purposes. Regardless of the considerable variability of design components, all studies could be described in standard terms of diagnostic groups, dose/duration, targeted areas/signals, and psychological strategies and learning models. Recommendations are made which include providing detailed rationale of intervention design in study protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A networked modular hardware and software system for MRI-guided robotic prostate interventions
NASA Astrophysics Data System (ADS)
Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.
2012-02-01
Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.
Interventional robotic systems: Applications and technology state-of-the-art
CLEARY, KEVIN; MELZER, ANDREAS; WATSON, VANCE; KRONREIF, GERNOT; STOIANOVICI, DAN
2011-01-01
Many different robotic systems have been developed for invasive medical procedures. In this article we will focus on robotic systems for image-guided interventions such as biopsy of suspicious lesions, interstitial tumor treatment, or needle placement for spinal blocks and neurolysis. Medical robotics is a young and evolving field and the ultimate role of these systems has yet to be determined. This paper presents four interventional robotics systems designed to work with MRI, CT, fluoroscopy, and ultrasound imaging devices. The details of each system are given along with any phantom, animal, or human trials. The systems include the AcuBot for active needle insertion under CT or fluoroscopy, the B-Rob systems for needle placement using CT or ultrasound, the INNOMOTION for MRI and CT interventions, and the MRBot for MRI procedures. Following these descriptions, the technology issues of image compatibility, registration, patient movement and respiration, force feedback, and control mode are briefly discussed. It is our belief that robotic systems will be an important part of future interventions, but more research and clinical trials are needed. The possibility of performing new clinical procedures that the human cannot achieve remains an ultimate goal for medical robotics. Engineers and physicians should work together to create and validate these systems for the benefits of patients everywhere. PMID:16754193
Dental MRI using wireless intraoral coils
NASA Astrophysics Data System (ADS)
Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd
2016-03-01
Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.
Silvestrini, Matthew T; Yin, Dali; Martin, Alastair J; Coppes, Valerie G; Mann, Preeti; Larson, Paul S; Starr, Philip A; Zeng, Xianmin; Gupta, Nalin; Panter, S S; Desai, Tejal A; Lim, Daniel A
2015-01-01
Intracerebral cell transplantation is being pursued as a treatment for many neurological diseases, and effective cell delivery is critical for clinical success. To facilitate intracerebral cell transplantation at the scale and complexity of the human brain, we developed a platform technology that enables radially branched deployment (RBD) of cells to multiple target locations at variable radial distances and depths along the initial brain penetration tract with real-time interventional magnetic resonance image (iMRI) guidance. iMRI-guided RBD functioned as an "add-on" to standard neurosurgical and imaging workflows, and procedures were performed in a commonly available clinical MRI scanner. Multiple deposits of super paramagnetic iron oxide beads were safely delivered to the striatum of live swine, and distribution to the entire putamen was achieved via a single cannula insertion in human cadaveric heads. Human embryonic stem cell-derived dopaminergic neurons were biocompatible with the iMRI-guided RBD platform and successfully delivered with iMRI guidance into the swine striatum. Thus, iMRI-guided RBD overcomes some of the technical limitations inherent to the use of straight cannulas and standard stereotactic targeting. This platform technology could have a major impact on the clinical translation of a wide range of cell therapeutics for the treatment of many neurological diseases.
Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.
Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H
2009-01-01
Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.
MR guided breast interventions: role in biopsy targeting and lumpectomies
Jagadeesan, Jayender; Richman, Danielle M; Kacher, Daniel F
2015-01-01
Synopsis Contrast enhanced breast MRI is increasingly being used to diagnose breast cancer and to perform biopsy procedures. The American Cancer Society has advised women at high risk for breast cancer to have breast MRI screening as an adjunct to screening mammography. This article places special emphasis on biopsy and operative planning involving MRI and reviews utility of breast MRI in monitoring response to neoadjuvant chemotherapy. We describe peer-reviewed data on currently accepted MR-guided therapeutic methods for addressing benign and malignant breast diseases, including intraoperative imaging. PMID:26499274
A deflectable guiding catheter for real-time MRI-guided interventions
Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur
2011-01-01
Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071
Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C
2010-01-01
The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.
Techniques for Interventional MRI Guidance in Closed-Bore Systems.
Busse, Harald; Kahn, Thomas; Moche, Michael
2018-02-01
Efficient image guidance is the basis for minimally invasive interventions. In comparison with X-ray, computed tomography (CT), or ultrasound imaging, magnetic resonance imaging (MRI) provides the best soft tissue contrast without ionizing radiation and is therefore predestined for procedural control. But MRI is also characterized by spatial constraints, electromagnetic interactions, long imaging times, and resulting workflow issues. Although many technical requirements have been met over the years-most notably magnetic resonance (MR) compatibility of tools, interventional pulse sequences, and powerful processing hardware and software-there is still a large variety of stand-alone devices and systems for specific procedures only.Stereotactic guidance with the table outside the magnet is common and relies on proper registration of the guiding grids or manipulators to the MR images. Instrument tracking, often by optical sensing, can be added to provide the physicians with proper eye-hand coordination during their navigated approach. Only in very short wide-bore systems, needles can be advanced at the extended arm under near real-time imaging. In standard magnets, control and workflow may be improved by remote operation using robotic or manual driving elements.This work highlights a number of devices and techniques for different interventional settings with a focus on percutaneous, interstitial procedures in different organ regions. The goal is to identify technical and procedural elements that might be relevant for interventional guidance in a broader context, independent of the clinical application given here. Key challenges remain the seamless integration into the interventional workflow, safe clinical translation, and proper cost effectiveness.
Yang, Hongyu; Leaver, Amber M; Siddarth, Prabha; Paholpak, Pattharee; Ercoli, Linda; St Cyr, Natalie M; Eyre, Harris A; Narr, Katherine L; Khalsa, Dharma S; Lavretsky, Helen
2016-01-01
Behavioral interventions are becoming increasingly popular approaches to ameliorate age-related cognitive decline, but their underlying neurobiological mechanisms and clinical efficiency have not been fully elucidated. The present study explored brain plasticity associated with two behavioral interventions, memory enhancement training (MET) and a mind-body practice (yogic meditation), in healthy seniors with mild cognitive impairment (MCI) using structural magnetic resonance imaging (s-MRI) and proton magnetic resonance spectroscopy ( 1 H-MRS). Senior participants (age ≥55 years) with MCI were randomized to the MET or yogic meditation interventions. For both interventions, participants completed either MET training or Kundalini Yoga (KY) for 60-min sessions over 12 weeks, with 12-min daily homework assignments. Gray matter volume and metabolite concentrations in the dorsal anterior cingulate cortex (dACC) and bilateral hippocampus were measured by structural MRI and 1 H-MRS at baseline and after 12 weeks of training. Metabolites measured included glutamate-glutamine (Glx), choline-containing compounds (Cho, including glycerophosphocholine and phosphocholine), gamma-aminobutyric acid (GABA), and N-acetyl aspartate and N-acetylaspartyl-glutamate (NAA-NAAG). In total, 11 participants completed MET and 14 completed yogic meditation for this study. Structural MRI analysis showed an interaction between time and group in dACC, indicating a trend towards increased gray matter volume after the MET intervention. 1 H-MRS analysis showed an interaction between time and group in choline-containing compounds in bilateral hippocampus, induced by significant decreases after the MET intervention. Though preliminary, our results suggest that memory training induces structural and neurochemical plasticity in seniors with MCI. Further research is needed to determine whether mind-body interventions like yoga yield similar neuroplastic changes.
Yang, Hongyu; Leaver, Amber M.; Siddarth, Prabha; Paholpak, Pattharee; Ercoli, Linda; St. Cyr, Natalie M.; Eyre, Harris A.; Narr, Katherine L.; Khalsa, Dharma S.; Lavretsky, Helen
2016-01-01
Behavioral interventions are becoming increasingly popular approaches to ameliorate age-related cognitive decline, but their underlying neurobiological mechanisms and clinical efficiency have not been fully elucidated. The present study explored brain plasticity associated with two behavioral interventions, memory enhancement training (MET) and a mind-body practice (yogic meditation), in healthy seniors with mild cognitive impairment (MCI) using structural magnetic resonance imaging (s-MRI) and proton magnetic resonance spectroscopy (1H-MRS). Senior participants (age ≥55 years) with MCI were randomized to the MET or yogic meditation interventions. For both interventions, participants completed either MET training or Kundalini Yoga (KY) for 60-min sessions over 12 weeks, with 12-min daily homework assignments. Gray matter volume and metabolite concentrations in the dorsal anterior cingulate cortex (dACC) and bilateral hippocampus were measured by structural MRI and 1H-MRS at baseline and after 12 weeks of training. Metabolites measured included glutamate-glutamine (Glx), choline-containing compounds (Cho, including glycerophosphocholine and phosphocholine), gamma-aminobutyric acid (GABA), and N-acetyl aspartate and N-acetylaspartyl-glutamate (NAA-NAAG). In total, 11 participants completed MET and 14 completed yogic meditation for this study. Structural MRI analysis showed an interaction between time and group in dACC, indicating a trend towards increased gray matter volume after the MET intervention. 1H-MRS analysis showed an interaction between time and group in choline-containing compounds in bilateral hippocampus, induced by significant decreases after the MET intervention. Though preliminary, our results suggest that memory training induces structural and neurochemical plasticity in seniors with MCI. Further research is needed to determine whether mind-body interventions like yoga yield similar neuroplastic changes. PMID:27917121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsumori, Tetsuya, E-mail: katsumo@eurus.dti.ne.jp; Kasahara, Toshiyuki; Kin, Yoko
2008-01-15
Purpose. To retrospectively evaluate the relationship between the degree of infarction of uterine fibroids on enhanced MRI after embolization and long-term clinical outcomes. Methods. During 92 months, 290 consecutive patients with symptomatic uterine fibroids were treated with embolization; 221 who underwent enhanced MRI before embolization and 1 week after embolization were included in this study. The infarction rates of all fibroid tissue were assessed using enhanced MRI after embolization. Patients were divided into three groups according to the infarction rates: group A (100% infarction, n 142), group B (90-99% infarction, n = 74), group C (<90% infarction, n = 5).more » The cumulative rates of clinical outcomes were compared among groups using the Kaplan-Meier limited method. Results. Group A had a significantly higher rate of symptom control than groups B and C. The cumulative rates of symptom control at 5 years were 93%, 71%, and 60% in groups A, B, and C, respectively. Group A had a significantly lower rate of gynecologic intervention after embolization than groups B and C. The cumulative rates of additional gynecologic intervention at 5 years were 3%, 15%, and 20% in groups A, B, and C, respectively. Conclusions. The degree of infarction of uterine fibroids after embolization on enhanced MRI was related to long-term clinical outcomes. Complete infarction of all fibroid tissue can induce a higher rate of symptom control, with a lower rate of additional gynecologic intervention in the long term compared with incomplete infarction of fibroid tissue.« less
A MR-conditional High-torque Pneumatic Stepper Motor for MRI-guided and Robot-assisted Intervention
Chen, Yue; Kwok, Ka-Wai; Tse, Zion Tsz Ho
2015-01-01
Magnetic Resonance Imaging allows for visualizing detailed pathological and morphological changes of soft tissue. This increasingly attracts attention on MRI-guided intervention; hence, MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the MRI. This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800mNm output torque can be achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a Siemens 3T MRI scanner. The image artifact and the signal-to-noise ratio (SNR) were evaluated in order to study its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images and no observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the motor capability for later incorporation with motorized devices used in robot-assisted surgery under MRI. PMID:24957635
Nycz, Christopher J; Gondokaryono, Radian; Carvalho, Paulo; Patel, Nirav; Wartenberg, Marek; Pilitsis, Julie G; Fischer, Gregory S
2017-09-01
The use of magnetic resonance imaging (MRI) for guiding robotic surgical devices has shown great potential for performing precisely targeted and controlled interventions. To fully realize these benefits, devices must work safely within the tight confines of the MRI bore without negatively impacting image quality. Here we expand on previous work exploring MRI guided robots for neural interventions by presenting the mechanical design and assessment of a device for positioning, orienting, and inserting an interstitial ultrasound-based ablation probe. From our previous work we have added a 2 degree of freedom (DOF) needle driver for use with the aforementioned probe, revised the mechanical design to improve strength and function, and performed an evaluation of the mechanism's accuracy and effect on MR image quality. The result of this work is a 7-DOF MRI robot capable of positioning a needle tip and orienting it's axis with accuracy of 1.37 ± 0.06 mm and 0.79° ± 0.41°, inserting it along it's axis with an accuracy of 0.06 ± 0.07 mm , and rotating it about it's axis to an accuracy of 0.77° ± 1.31°. This was accomplished with no significant reduction in SNR caused by the robot's presence in the MRI bore, ≤ 10.3% reduction in SNR from running the robot's motors during a scan, and no visible paramagnetic artifacts.
Valdois, Sylviane; Peyrin, Carole; Lassus-Sangosse, Delphine; Lallier, Marie; Démonet, Jean-François; Kandel, Sonia
2014-04-01
We report the case study of a French-Spanish bilingual dyslexic girl, MP, who exhibited a severe visual attention (VA) span deficit but preserved phonological skills. Behavioural investigation showed a severe reduction of reading speed for both single items (words and pseudo-words) and texts in the two languages. However, performance was more affected in French than in Spanish. MP was administered an intensive VA span intervention programme. Pre-post intervention comparison revealed a positive effect of intervention on her VA span abilities. The intervention further transferred to reading. It primarily resulted in faster identification of the regular and irregular words in French. The effect of intervention was rather modest in Spanish that only showed a tendency for faster word reading. Text reading improved in the two languages with a stronger effect in French but pseudo-word reading did not improve in either French or Spanish. The overall results suggest that VA span intervention may primarily enhance the fast global reading procedure, with stronger effects in French than in Spanish. MP underwent two fMRI sessions to explore her brain activations before and after VA span training. Prior to the intervention, fMRI assessment showed that the striate and extrastriate visual cortices alone were activated but none of the regions typically involved in VA span. Post-training fMRI revealed increased activation of the superior and inferior parietal cortices. Comparison of pre- and post-training activations revealed significant activation increase of the superior parietal lobes (BA 7) bilaterally. Thus, we show that a specific VA span intervention not only modulates reading performance but further results in increased brain activity within the superior parietal lobes known to housing VA span abilities. Furthermore, positive effects of VA span intervention on reading suggest that the ability to process multiple visual elements simultaneously is one cause of successful reading acquisition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG.
Vaudano, Anna Elisabetta; Avanzini, Pietro; Tassi, Laura; Ruggieri, Andrea; Cantalupo, Gaetano; Benuzzi, Francesca; Nichelli, Paolo; Lemieux, Louis; Meletti, Stefano
2013-01-01
Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.
Reproducibility and Temporal Structure in Weekly Resting-State fMRI over a Period of 3.5 Years
Choe, Ann S.; Jones, Craig K.; Joel, Suresh E.; Muschelli, John; Belegu, Visar; Caffo, Brian S.; Lindquist, Martin A.; van Zijl, Peter C. M.; Pekar, James J.
2015-01-01
Resting-state functional MRI (rs-fMRI) permits study of the brain’s functional networks without requiring participants to perform tasks. Robust changes in such resting state networks (RSNs) have been observed in neurologic disorders, and rs-fMRI outcome measures are candidate biomarkers for monitoring clinical trials, including trials of extended therapeutic interventions for rehabilitation of patients with chronic conditions. In this study, we aim to present a unique longitudinal dataset reporting on a healthy adult subject scanned weekly over 3.5 years and identify rs-fMRI outcome measures appropriate for clinical trials. Accordingly, we assessed the reproducibility, and characterized the temporal structure of, rs-fMRI outcome measures derived using independent component analysis (ICA). Data was compared to a 21-person dataset acquired on the same scanner in order to confirm that the values of the single-subject RSN measures were within the expected range as assessed from the multi-participant dataset. Fourteen RSNs were identified, and the inter-session reproducibility of outcome measures—network spatial map, temporal signal fluctuation magnitude, and between-network connectivity (BNC)–was high, with executive RSNs showing the highest reproducibility. Analysis of the weekly outcome measures also showed that many rs-fMRI outcome measures had a significant linear trend, annual periodicity, and persistence. Such temporal structure was most prominent in spatial map similarity, and least prominent in BNC. High reproducibility supports the candidacy of rs-fMRI outcome measures as biomarkers, but the presence of significant temporal structure needs to be taken into account when such outcome measures are considered as biomarkers for rehabilitation-style therapeutic interventions in chronic conditions. PMID:26517540
Salamon, Johannes; Hofmann, Martin; Jung, Caroline; Kaul, Michael Gerhard; Werner, Franziska; Them, Kolja; Reimer, Rudolph; Nielsen, Peter; Vom Scheidt, Annika; Adam, Gerhard; Knopp, Tobias; Ittrich, Harald
2016-01-01
In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4) was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography. Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide. 4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.
Real-time MRI-guided needle intervention for cryoablation: a phantom study
NASA Astrophysics Data System (ADS)
Gao, Wenpeng; Jiang, Baichuan; Kacher, Dan F.; Fetics, Barry; Nevo, Erez; Lee, Thomas C.; Jayender, Jagadeesan
2017-03-01
MRI-guided needle intervention for cryoablation is a promising way to relieve the pain and treat the cancer. However, the limited size of MRI bore makes it impossible for clinicians to perform the operation in the bore. The patients had to be moved into the bore for scanning to verify the position of the needle's tip and out for adjusting the needle's trajectory. Real-time needle tracking and shown in MR images is of importance for clinicians to perform the operation more efficiently. In this paper, we have instrumented the cryotherapy needle with a MRI-safe electromagnetic (EM) sensor and optical sensor to measure the needle's position and orientation. To overcome the limitation of line-of-sight for optical sensor and the poor dynamic performance of the EM sensor, Kalman filter based data fusion is developed. Further, we developed a navigation system in open-source software, 3D Slicer, to provide accurate visualization of the needle and the surrounding anatomy. Experiment of simulation the needle intervention at the entrance was performed with a realistic spine phantom to quantify the accuracy of the navigation using the retrospective analysis method. Eleven trials of needle insertion were performed independently. The target accuracy with the navigation using only EM sensor, only optical sensor and data fusion are 2.27 +/-1.60 mm, 4.11 +/- 1.77 mm and 1.91 - 1.10 mm, respectively.
Neurofunctional changes after a single mirror therapy intervention in chronic ischemic stroke.
Novaes, Morgana M; Palhano-Fontes, Fernanda; Peres, Andre; Mazzetto-Betti, Kelley; Pelicioni, Maristela; Andrade, Kátia C; Dos Santos, Antonio Carlos; Pontes-Neto, Octavio; Araujo, Draulio
2018-03-20
Mirror therapy (MT) is becoming an alternative rehabilitation strategy for various conditions, including stroke. Although recent studies suggest the positive benefit of MT in chronic stroke motor recovery, little is known about its neural mechanisms. To identify functional brain changes induced by a single MT intervention in ischemic stroke survivors, assessed by both transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI). TMS and fMRI were used to investigate 15 stroke survivors immediately before and after a single 30-min MT session. We found statistically significant increase in post-MT motor evoked potential (MEP) amplitude (increased excitability) from the affected primary motor cortex (M1), when compared to pre-MT MEP. Post-MT fMRI maps were associated with a more organized and constrained pattern, with a more focal M1 activity within the affected hemisphere after MT, limited to the cortical area of hand representation. Furthermore, we find a change in the balance of M1 activity toward the affected hemisphere. In addition, significant correlation was found between decreased fMRI β-values and increased MEP amplitude post-MT, in the affected hemisphere. Our study suggests that a single MT intervention in stroke survivors is related to increased MEP of the affected limb, and a more constrained activity of the affected M1, as if activity had become more constrained and limited to the affected hemisphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Rachel, E-mail: rachel.sparks@ucl.ac.uk; Barratt, Dean; Nicolas Bloch, B.
2015-03-15
Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. Inmore » this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State-of-the-art MRI-TRUS fusion methods report RMSE of 3.06–2.07 mm. Conclusions: MAPPER aligns MRI and TRUS imagery without manual intervention ensuring efficient, reproducible registration. MAPPER has a similar RMSE to state-of-the-art methods that require manual intervention.« less
2014-01-01
Background Permanent joint damage is a major consequence of rheumatoid arthritis (RA), the most common and destructive form of inflammatory arthritis. In aggressive disease, joint damage can occur within 6 months from symptom onset. Early, intensive treatment with conventional and biologic disease-modifying anti-rheumatic drugs (DMARDs) can delay the onset and progression of joint damage. The primary objective of the study is to investigate the value of magnetic resonance imaging (MRI) or radiography (X-ray) over standard of care as tools to guide DMARD treatment decision-making by rheumatologists for the care of RA. Methods A double-blind, randomized controlled trial has been designed. Rheumatoid and undifferentiated inflammatory arthritis patients will undergo an MRI and X-ray assessment every 6 months. Baseline adaptive randomization will be used to allocate participants to MRI, X-ray, or sham-intervention groups on a background of standard of care. Prognostic markers, treating physician, and baseline DMARD therapy will be used as intervention allocation parameters. The outcome measures in rheumatology RA MRI score and the van der Heijde-modified Sharp score will be used to evaluate the MRI and X-ray images, respectively. Radiologists will score anonymized images for all patients regardless of intervention allocation. Disease progression will be determined based on the study-specific, inter-rater smallest detectable difference. Allocation-dependent, intervention-concealed reports of positive or negative disease progression will be reported to the treating rheumatologist. Negative reports will be delivered for the sham-intervention group. Study-based radiology clinical reports will be provided to the treating rheumatologists for extra-study X-ray requisitions to limit patient radiation exposure as part of diagnostic imaging standard of care. DMARD treatment dose escalation and therapy changes will be measured to evaluate the primary objective. A sample size of 186 (62 per group) patients will be required to determine a 36% difference in pharmacological treatment escalation between the three groups with intermediate dispersion of data with 90% power at a 5% level of significance. Discussion This study will determine if monitoring RA and undifferentiated inflammatory arthritis patients using MRI and X-ray every 6 months over 2 years provides incremental evidence over standard of care to influence pharmacotherapeutic decision-making and ultimately hinder disease progression. Trial registration This trial has been registered at ClinicalTrials.gov: NCT00808496 (registered on 12 December 2008). PMID:24997587
Tugwell-Allsup, J; Pritchard, A W
2018-05-01
This paper reports qualitative findings from within a larger randomised control trial where a video clip or telephone conversation with a radiographer was compared to routine appointment letter and information sheet to help alleviate anxiety prior to their MRI scan. Questionnaires consisting of three free-text response questions were administered to all of the 74 patients recruited to the MRI anxiety clinical trial. The questionnaire was designed to establish patients' experiences of the intervention they had received. These questionnaires were administered post-scan. Two participants from each trial arm were also interviewed. A thematic approach was utilised for identifying recurrent categories emerging from the qualitative data which are supported by direct quotations. Participants in the interventional groups commented positively about the provision of pre-MRI scan information they received and this was contrastable with the relatively indifferent responses observed among those who received the standard information letter. Many important themes were identified including the patients needs for clear and simplified information, the experience of anticipation when waiting for the scan, and also the informally acquired information about having an MRI scan i.e. the shared experiences of friends and family. All themes highlighted the need for an inclusive and individually tailored approach to pre-scan information provision. Qualitative data collected throughout the trial is supportive of the statistical findings, where it is asserted that the use of a short video clip or a radiographer having a short conversation with patients before their scan reduces pre-scan anxiety. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers.
Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; Yue, Di; Zhou, Hexin; Jin, Xiaofeng; Galitski, Victor M; Yakovenko, Victor M; Xia, Jing
2017-03-01
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the [Formula: see text] orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.
Hunter, Jacob B.; Francis, David O.; O’Connell, Brendan P.; Kabagambe, Edmond K.; Bennett, Marc L.; Wanna, George B.; Rivas, Alejandro; Thompson, Reid C.; Haynes, David S.
2016-01-01
Objective To characterize the risk and predictors of growth during observation of vestibular schwannomas (VS). Study Design Retrospective case series. Setting Single academic, tertiary care center. Patients 564 consecutive VS patients who underwent at least two MRI studies prior to intervention. Intervention(s) Serial MRI studies Main outcome measure(s) Tumor growth, defined as a ≥2 mm increase in the maximum tumor diameter between consecutive MRI studies, or between the first and last study. Results A total of 1,296 patients (1995–2015) with VS were identified. Of those, 564 patients (median age 59.2 years; 53.5% female) were initially observed and underwent multiple MRI studies (median follow-up 22.9 months, interquartile range [IQR] 11.7 – 42.7). The median maximum tumor diameter at presentation was 1.00 cm (IQR 0.6 – 1.51 cm). In all, 40.8% of tumors demonstrated growth and 32.1% underwent intervention (21.5% microsurgery, 10.5% radiation) during the surveillance period. Multivariable Cox regression analysis showed that for each tumor, the risk of growth or intervention was significantly increased for larger initial VS diameters (HR=2.22; 95% CI: 1.90 – 2.61) and when disequilibrium was a presenting symptom (HR=1.70; 95% CI: 1.30 – 2.23). Patient age, gender, aspirin use and presenting symptoms of asymmetric hearing loss, tinnitus, and vertigo, were not associated with tumor growth. Conclusions To date, this is the largest series of observed VS reported in the literature. Risk of VS growth is significantly increased among patients who present with larger tumors and who have concomitant disequilibrium. IRB 151481 Define Professional Practice Gap & Educational Need No cohort with this sample size has assessed vestibular schwannoma growth rates in conjunction with this number of variables. Learning Objective To characterize vestibular schwannoma growth rates and predictors of growth. PMID:27668793
Southwell, Derek G; Narvid, Jared A; Martin, Alastair J; Qasim, Salman E; Starr, Philip A; Larson, Paul S
2016-01-01
Interventional magnetic resonance imaging (iMRI) allows deep brain stimulator lead placement under general anesthesia. While the accuracy of lead targeting has been described for iMRI systems utilizing 1.5-tesla magnets, a similar assessment of 3-tesla iMRI procedures has not been performed. To compare targeting accuracy, the number of lead targeting attempts, and surgical duration between procedures performed on 1.5- and 3-tesla iMRI systems. Radial targeting error, the number of targeting attempts, and procedure duration were compared between surgeries performed on 1.5- and 3-tesla iMRI systems (SmartFrame and ClearPoint systems). During the first year of operation of each system, 26 consecutive leads were implanted using the 1.5-tesla system, and 23 consecutive leads were implanted using the 3-tesla system. There was no significant difference in radial error (Mann-Whitney test, p = 0.26), number of lead placements that required multiple targeting attempts (Fisher's exact test, p = 0.59), or bilateral procedure durations between surgeries performed with the two systems (p = 0.15). Accurate DBS lead targeting can be achieved with iMRI systems utilizing either 1.5- or 3-tesla magnets. The use of a 3-tesla magnet, however, offers improved visualization of the target structures and allows comparable accuracy and efficiency of placement at the selected targets. © 2016 S. Karger AG, Basel.
Nycz, Christopher J; Gondokaryono, Radian; Carvalho, Paulo; Patel, Nirav; Wartenberg, Marek; Pilitsis, Julie G; Fischer, Gregory S
2018-01-01
The use of magnetic resonance imaging (MRI) for guiding robotic surgical devices has shown great potential for performing precisely targeted and controlled interventions. To fully realize these benefits, devices must work safely within the tight confines of the MRI bore without negatively impacting image quality. Here we expand on previous work exploring MRI guided robots for neural interventions by presenting the mechanical design and assessment of a device for positioning, orienting, and inserting an interstitial ultrasound-based ablation probe. From our previous work we have added a 2 degree of freedom (DOF) needle driver for use with the aforementioned probe, revised the mechanical design to improve strength and function, and performed an evaluation of the mechanism’s accuracy and effect on MR image quality. The result of this work is a 7-DOF MRI robot capable of positioning a needle tip and orienting it’s axis with accuracy of 1.37 ± 0.06mm and 0.79° ± 0.41°, inserting it along it’s axis with an accuracy of 0.06 ± 0.07mm, and rotating it about it’s axis to an accuracy of 0.77° ± 1.31°. This was accomplished with no significant reduction in SNR caused by the robot’s presence in the MRI bore, ≤ 10.3% reduction in SNR from running the robot’s motors during a scan, and no visible paramagnetic artifacts. PMID:29696097
Fischer, Christian; Nissen, Mareike; Schmidmaier, Gerhard; Bruckner, Thomas; Kauczor, Hans-Ulrich; Weber, Marc-André
2017-02-01
Non-union perfusion can be visualized with dynamic contrast-enhanced (DCE) MRI. This study evaluated DCE-MRI to predict non-union consolidation after surgery and detect factors that affect bone healing. Between 2010 and 2015 non-union perfusion was prospectively quantified in 205 patients (mean age, 51.5 years, 129 men, 76 women) before intervention and at 6, 12, 26, 52 and more weeks follow-up. DCE-MRI results were related to the osseous consolidation, the ability to predict successful outcome was estimated by ROC analysis. The relevance of the body mass index (BMI) and the non-union severity score (NUSS) to the healing process was assessed. Tibial (n=99) and femoral (n=76) non-unions were most common. Consolidation could be assessed in 169 patients, of these 103 (61%) showed eventual healing and demonstrated higher perfusion than in failed consolidation at 6 (p=0.0226), 12 (p=0.0252) and 26 (p=0.0088) weeks follow-up. DCE-MRI at 26 weeks follow-up predicted non-union consolidation with a sensitivity of 75% and a specificity of 87% (false classification rate 19%). Higher BMI (p=0.041) and NUSS (p<0.0001) were associated with treatment failure. DCE-MRI perfusion analysis after non-union surgery predicts successful outcome and could facilitate the decision of early intervention. NUSS and BMI are important prognostic factors concerning consolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Yongxin; Bai, Jing
2007-01-01
A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.
Saleem, Sahar N
2013-07-01
Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.
MRI Segmentation of the Human Brain: Challenges, Methods, and Applications
Despotović, Ivana
2015-01-01
Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121
MacMillan, Freya; Camfield, David A.; Seto, Sai W.
2017-01-01
Neuroimaging facilitates the assessment of complementary medicines (CMs) by providing a noninvasive insight into their mechanisms of action in the human brain. This is important for identifying the potential treatment options for target disease cohorts with complex pathophysiologies. The aim of this systematic review was to evaluate study characteristics, intervention efficacy, and the structural and functional neuroimaging methods used in research assessing nutritional and herbal medicines for mild cognitive impairment (MCI) and dementia. Six databases were searched for articles reporting on CMs, dementia, and neuroimaging methods. Data were extracted from 21/2,742 eligible full text articles and risk of bias was assessed. Nine studies examined people with Alzheimer's disease, 7 MCI, 4 vascular dementia, and 1 all-cause dementia. Ten studies tested herbal medicines, 8 vitamins and supplements, and 3 nootropics. Ten studies used electroencephalography (EEG), 5 structural magnetic resonance imaging (MRI), 2 functional MRI (fMRI), 3 cerebral blood flow (CBF), 1 single photon emission tomography (SPECT), and 1 positron emission tomography (PET). Four studies had a low risk of bias, with the majority consistently demonstrating inadequate reporting on randomisation, allocation concealment, blinding, and power calculations. A narrative synthesis approach was assumed due to heterogeneity in study methods, interventions, target cohorts, and quality. Eleven key recommendations are suggested to advance future work in this area. PMID:28303161
Tokuda, Junichi; Song, Sang-Eun; Fischer, Gregory S; Iordachita, Iulian I; Seifabadi, Reza; Cho, Nathan B; Tuncali, Kemal; Fichtinger, Gabor; Tempany, Clare M; Hata, Nobuhiko
2012-11-01
To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume. We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle toward a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between -5.7° and 5.7° horizontally and between -5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device. The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5mm along the horizontal axis and 0.8 ± 0.8mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4mm. Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study.
Rafii, Michael S; Lukic, Ana S; Andrews, Randolph D; Brewer, James; Rissman, Robert A; Strother, Stephen C; Wernick, Miles N; Pennington, Craig; Mobley, William C; Ness, Seth; Matthews, Dawn C
2017-01-01
Adults with Down syndrome (DS) represent an enriched population for the development of Alzheimer's disease (AD), which could aid the study of therapeutic interventions, and in turn, could benefit from discoveries made in other AD populations. 1) Understand the relationship between tau pathology and age, amyloid deposition, neurodegeneration (MRI and FDG PET), and cognitive and functional performance; 2) detect and differentiate AD-specific changes from DS-specific brain changes in longitudinal MRI. Twelve non-demented adults, ages 30 to 60, with DS were enrolled in the Down Syndrome Biomarker Initiative (DSBI), a 3-year, observational, cohort study to demonstrate the feasibility of conducting AD intervention/prevention trials in adults with DS. We collected imaging data with 18F-AV-1451 tau PET, AV-45 amyloid PET, FDG PET, and volumetric MRI, as well as cognitive and functional measures and additional laboratory measures. All amyloid negative subjects imaged were tau-negative. Among the amyloid positive subjects, three had tau in regions associated with Braak stage VI, two at stage V, and one at stage II. Amyloid and tau burden correlated with age. The MRI analysis produced two distinct volumetric patterns. The first differentiated DS from normal (NL) and AD, did not correlate with age or amyloid, and was longitudinally stable. The second pattern reflected AD-like atrophy and differentiated NL from AD. Tau PET and MRI atrophy correlated with several cognitive and functional measures. Tau accumulation is associated with amyloid positivity and age, as well as with progressive neurodegeneration measurable using FDG and MRI. Tau correlates with cognitive decline, as do AD-specific hypometabolism and atrophy.
RF HEATING OF MRI-ASSISTED CATHETER STEERING COILS FOR INTERVENTIONAL MRI
Settecase, Fabio; Hetts, Steven W.; Martin, Alastair J.; Roberts, Timothy P. L.; Bernhardt, Anthony F.; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L.; Kucharzyk, Walter; Wilson, Mark W.
2010-01-01
RATIONALE AND OBJECTIVES To assess magnetic resonance imaging (MRI) radiofrequency (RF) related heating of conductive wire coils used in magnetically steerable endovascular catheters. MATERIALS AND METHODS A 3-axis microcoil was fabricated onto a 1.8 Fr catheter tip. In vitro testing was performed in a 1.5 T MRI system using an agarose gel filled vessel phantom, a transmit/receive body RF coil and a steady state free precession (SSFP) pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from magnet isocenter and varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with SSFP pulse sequence on and off, and under physiologic flow and zero flow conditions. RESULTS In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from magnet isocenter. For a single axis microcoil, maximal temperature increases were 0.73-1.91°C in air and 0.45-0.55°C in saline. In vivo, delayed contrast enhanced MRI revealed no evidence of vascular injury and histopathological sections from the common carotid arteries confirmed the lack of vascular damage. CONCLUSIONS Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. PMID:21075019
Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Yu-Chuan; Nan, Hai-Yan; Yang, Yang; Liu, Zhi-Cheng; Wang, Wen; Cui, Guang-Bin
2016-08-24
Type 2 diabetes mellitus (T2DM) is a risk factor for dementia. Mild cognitive impairment (MCI), an intermediary state between normal cognition and dementia, often occurs during the prodromal diabetic stage, making early diagnosis and intervention of MCI very important. Latest neuroimaging techniques revealed some underlying microstructure alterations for diabetic MCI, from certain aspects. But there still lacks an integrated multimodal MRI system to detect early neuroimaging changes in diabetic MCI patients. Thus, we intended to conduct a diagnostic trial using multimodal MRI techniques to detect early diabetic MCI that is determined by the Montreal Cognitive Assessment (MoCA). In this study, healthy controls, prodromal diabetes and diabetes subjects (53 subjects/group) aged 40-60 years will be recruited from the physical examination center of Tangdu Hospital. The neuroimaging and psychometric measurements will be repeated at a 0.5 year-interval for 2.5 years' follow-up. The primary outcome measures are 1) Microstructural and functional alterations revealed with multimodal MRI scans including structure magnetic resonance imaging (sMRI), resting state functional magnetic resonance imaging (rs-fMRI), diffusion kurtosis imaging (DKI), and three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL); 2) Cognition evaluation with MoCA. The second outcome measures are obesity, metabolic characteristics, lifestyle and quality of life. The study will provide evidence for the potential use of multimodal MRI techniques with psychometric evaluation in diagnosing MCI at prodromal diabetic stage so as to help decision making in early intervention and improve the prognosis of T2DM. This study has been registered to ClinicalTrials.gov ( NCT02420470 ) on April 2, 2015 and published on July 29, 2015.
Proulx, Steven T.; Kwok, Edmund; You, Zhigang; Papuga, M. Owen; Beck, Christopher A.; Shealy, David J.; Ritchlin, Christopher T.; Awad, Hani A.; Boyce, Brendan F.; Xing, Lianping; Schwarz, Edward M.
2009-01-01
Objective Development of longitudinal 3D outcomes of inflammation and bone erosion in murine arthritis using contrast enhanced (CE) MRI and in vivo micro-CT; and in a pilot study, to determine the value of entrance criteria by age versus synovial volume in therapeutic intervention studies. Methods CE-MRI and in vivo micro-CT was performed on TNF-Tg and WT littermates to quantify the synovial and popliteal lymph node (LN) volumes and patella and talus bone volumes, respectively, which were validated with histology. These longitudinal outcome measures were used to assess the natural history of inflammatory-erosive arthritis. We also performed anti-TNF versus placebo efficacy studies in TNF-Tg mice in which treatment was initiated either by age (4–5 months) or synovial volume (3mm3 as detected by CE-MRI). Linear regression was performed to analyze the correlation between synovitis and focal erosion. Results CE-MRI demonstrated the highly variable nature of TNF-induced joint inflammation. Initiation of treatment by synovial volume produced significantly larger treatment effects on synovial volume (p=0.04) and lymph node volume (p<0.01) than initiation by age. By correlating the MRI and microCT data we were able to demonstrate a significant relationship between changes in synovial and patellar volumes (R2 =0.75; p<0.01). Conclusion In vivo CE-MRI and micro-CT 3D outcome measures are powerful tools that accurately demonstrate the progression of inflammatory-erosive arthritis in mice. These methods can be used to identify mice with arthritis of similar severity before intervention studies are initiated and thus minimize heterogeneity in outcome studies of chronic arthritis seen between genetically identical littermates. PMID:18050199
Real-time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures
Horvath, Keith A.; Li, Ming; Mazilu, Dumitru; Guttman, Michael A.; McVeigh, Elliot R.
2008-01-01
Magnetic resonance imaging (MRI) of the cardiovascular system has proven to be an invaluable diagnostic tool. Given the ability to allow for real-time imaging, MRI guidance of intraoperative procedures can provide superb visualization which can facilitate a variety of interventions and minimize the trauma of the operations as well. In addition to the anatomic detail, MRI can provide intraoperative assessment of organ and device function. Instruments and devices can be marked to enhance visualization and tracking. All of which is an advance over standard x-ray or ultrasonic imaging. PMID:18395633
Declining Skeletal Muscle Function in Diabetic Peripheral Neuropathy.
Parasoglou, Prodromos; Rao, Smita; Slade, Jill M
2017-06-01
The present review highlights current concepts regarding the effects of diabetic peripheral neuropathy (DPN) in skeletal muscle. It discusses the lack of effective pharmacologic treatments and the role of physical exercise intervention in limb protection and symptom reversal. It also highlights the importance of magnetic resonance imaging (MRI) techniques in providing a mechanistic understanding of the disease and helping develop targeted treatments. This review provides a comprehensive reporting on the effects of DPN in the skeletal muscle of patients with diabetes. It also provides an update on the most recent trials of exercise intervention targeting DPN pathology. Lastly, we report on emerging MRI techniques that have shown promise in providing a mechanistic understanding of DPN and can help improve the design and implementation of clinical trials in the future. Impairments in lower limb muscles reduce functional capacity and contribute to altered gait, increased fall risk, and impaired balance in patients with DPN. This finding is an important concern for patients with DPN because their falls are likely to be injurious and lead to bone fractures, poorly healing wounds, and chronic infections that may require amputation. Preliminary studies have shown that moderate-intensity exercise programs are well tolerated by patients with DPN. They can improve their cardiorespiratory function and partially reverse some of the symptoms of DPN. MRI has the potential to bring new mechanistic insights into the effects of DPN as well as to objectively measure small changes in DPN pathology as a result of intervention. Noninvasive exercise intervention is particularly valuable in DPN because of its safety, low cost, and potential to augment pharmacologic interventions. As we gain a better mechanistic understanding of the disease, more targeted and effective interventions can be designed. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
Real-time MRI guidance of cardiac interventions.
Campbell-Washburn, Adrienne E; Tavallaei, Mohammad A; Pop, Mihaela; Grant, Elena K; Chubb, Henry; Rhode, Kawal; Wright, Graham A
2017-10-01
Cardiac magnetic resonance imaging (MRI) is appealing to guide complex cardiac procedures because it is ionizing radiation-free and offers flexible soft-tissue contrast. Interventional cardiac MR promises to improve existing procedures and enable new ones for complex arrhythmias, as well as congenital and structural heart disease. Guiding invasive procedures demands faster image acquisition, reconstruction and analysis, as well as intuitive intraprocedural display of imaging data. Standard cardiac MR techniques such as 3D anatomical imaging, cardiac function and flow, parameter mapping, and late-gadolinium enhancement can be used to gather valuable clinical data at various procedural stages. Rapid intraprocedural image analysis can extract and highlight critical information about interventional targets and outcomes. In some cases, real-time interactive imaging is used to provide a continuous stream of images displayed to interventionalists for dynamic device navigation. Alternatively, devices are navigated relative to a roadmap of major cardiac structures generated through fast segmentation and registration. Interventional devices can be visualized and tracked throughout a procedure with specialized imaging methods. In a clinical setting, advanced imaging must be integrated with other clinical tools and patient data. In order to perform these complex procedures, interventional cardiac MR relies on customized equipment, such as interactive imaging environments, in-room image display, audio communication, hemodynamic monitoring and recording systems, and electroanatomical mapping and ablation systems. Operating in this sophisticated environment requires coordination and planning. This review provides an overview of the imaging technology used in MRI-guided cardiac interventions. Specifically, this review outlines clinical targets, standard image acquisition and analysis tools, and the integration of these tools into clinical workflow. 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:935-950. © 2017 International Society for Magnetic Resonance in Medicine.
MRI-powered biomedical devices.
Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho
2017-11-16
Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.
Characterization of optically actuated MRI-compatible active needles for medical interventions
NASA Astrophysics Data System (ADS)
Black, Richard J.; Ryu, Seokchang; Moslehi, Behzad; Costa, Joannes M.
2014-03-01
The development of a Magnetic Resonance Imaging (MRI) compatible optically-actuated active needle for guided percutaneous surgery and biopsy procedures is described. Electrically passive MRI-compatible actuation in the small diameter needle is provided by non-magnetic materials including a shape memory alloy (SMA) subject to precise fiber laser operation that can be from a remote (e.g., MRI control room) location. Characterization and optimization of the needle is facilitated using optical fiber Bragg grating (FBG) temperature sensors arrays. Active bending of the needle during insertion allows the needle to be accurately guided to even relatively small targets in an organ while avoiding obstacles and overcoming undesirable deviations away from the planned path due to unforeseen or unknowable tissue interactions. This feature makes the needle especially suitable for use in image-guided surgical procedures (ranging from MRI to CT and ultrasound) when accurate targeting is imperative for good treatment outcomes. Such interventions include reaching small tumors in biopsies, delineating freezing areas in, for example, cryosurgery and improving the accuracy of seed placement in brachytherapy. Particularly relevant are prostate procedures, which may be subject to pubic arch interference. Combining diagnostic imaging and actuation assisted biopsy into one treatment can obviate the need for a second exam for guided biopsy, shorten overall procedure times (thus increasing operating room efficiencies), address healthcare reimbursement constraints and, most importantly, improve patient comfort and clinical outcomes.
Spottiswoode, B S; van den Heever, D J; Chang, Y; Engelhardt, S; Du Plessis, S; Nicolls, F; Hartzenberg, H B; Gretschel, A
2013-01-01
Neurosurgeons regularly plan their surgery using magnetic resonance imaging (MRI) images, which may show a clear distinction between the area to be resected and the surrounding healthy brain tissue depending on the nature of the pathology. However, this distinction is often unclear with the naked eye during the surgical intervention, and it may be difficult to infer depth and an accurate volumetric interpretation from a series of MRI image slices. In this work, MRI data are used to create affordable patient-specific 3-dimensional (3D) scale models of the brain which clearly indicate the location and extent of a tumour relative to brain surface features and important adjacent structures. This is achieved using custom software and rapid prototyping. In addition, functionally eloquent areas identified using functional MRI are integrated into the 3D models. Preliminary in vivo results are presented for 2 patients. The accuracy of the technique was estimated both theoretically and by printing a geometrical phantom, with mean dimensional errors of less than 0.5 mm observed. This may provide a practical and cost-effective tool which can be used for training, and during neurosurgical planning and intervention. Copyright © 2013 S. Karger AG, Basel.
Clinical oncologic applications of PET/MRI: a new horizon
Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R
2014-01-01
Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986
MRI-based dynamic tracking of an untethered ferromagnetic microcapsule navigating in liquid
NASA Astrophysics Data System (ADS)
Dahmen, Christian; Belharet, Karim; Folio, David; Ferreira, Antoine; Fatikow, Sergej
2016-04-01
The propulsion of ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the ferromagnetic objects, and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment, integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this article aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in the human body. The proposed approaches are validated with different experiments.
WE-EF-BRD-00: New Developments in Hybrid MR-Treatment: Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less
WE-EF-BRD-02: Battling Maxwell’s Equations: Physics Challenges and Solutions for Hybrid MRI Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, P.
MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less
WE-EF-BRD-01: Past, Present and Future: MRI-Guided Radiotherapy From 2005 to 2025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagendijk, J.
MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less
O'Brien, Kevin D; Hippe, Daniel S; Chen, Huijun; Neradilek, Moni B; Probstfield, Jeffrey L; Peck, Suzanne; Isquith, Daniel A; Canton, Gador; Yuan, Chun; Polissar, Nayak L; Zhao, Xue-Qiao; Kerwin, William S
2016-03-01
This brief data article summarizes the clinical risk factors and laboratory data of a group of subjects recruited for the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides and Impact on Global Health Outcomes) and an associated magnetic resonance imaging (MRI) substudy. The sample is restricted to those on statin therapy at the time of enrollment and data are presented stratified by whether dynamic contrast enhanced MRI (DCE-MRI) markers of carotid plaque vascularity and inflammation were available or not. The data provided herein are directly related to the article "Longer Duration of Statin Therapy is Associated with Decreased Carotid Plaque Vascularity by Magnetic Resonance Imaging" [2].
Napora, Joshua K; Gilmore, Allison; Son-Hing, Jochen P; Grimberg, Dominic C; Thompson, George H; Liu, Raymond W
2018-04-01
Unstable slipped capital femoral epiphysis (SCFE) has an increased incidence of avascular necrosis (AVN). Early identification and surgical intervention for AVN may help preserve the femoral head. We retrospectively reviewed 48 patients (50 hips) with unstable SCFE managed between 2000 and 2014. AVN was diagnosed based on 2 different postoperative protocols. Seventeen patients (17 hips) had a scheduled magnetic resonance imaging (MRI) between 1 and 6 months from initial surgery, and the remaining 31 patients (33 hips) were evaluated by plain radiographs alone. If AVN was diagnosed, we offered core decompression and closed bone graft epiphysiodesis (CBGE) to mitigate its affects. At final follow-up, we assessed progression of AVN using the Steinberg classification. Overall 13 hips (26%) with unstable SCFEs developed AVN. MRI revealed AVN in 7 of 17 hips (41%) at a mean of 2.5 months postoperatively (range, 1.0 to 5.2 mo). Six hips diagnosed by MRI received surgical intervention (4 CBGE, 1 free vascularized fibula graft, and 1 repinning due to screw cutout) at a mean of 4.1 months (range, 1.3 to 7.2 mo) postoperatively. None of the 4 patients treated with CBGE within 2 months postoperatively progressed to stage IVC AVN. The 2 patients treated after 4 months postoperatively both progressed to stage VC AVN.Plain radiographs demonstrated AVN in 6 of 33 hips (18%) at a mean of 6.8 months postoperatively (range, 2.1 to 21.1 mo). One patient diagnosed with stage IVB AVN at 2.4 months had screw cutout and received CBGE at 2.5 months from initial pinning. The remaining 5 were not offered surgical intervention. Five of the 6 radiographically diagnosed AVN, including the 1 treated with CBGE, progressed to stage IVC AVN or greater. Although all patients with positive MRI scans developed radiographic AVN, none of the 4 patients treated with CBGE within 2 months after pinning developed grade IVC or greater AVN. Early MRI detection and CBGE may mitigate the effects of AVN after SCFE. Level III-retrospective comparative study.
Effect of live music therapy for patients undergoing magnetic resonance imaging.
Walworth, Darcy D
2010-01-01
The purpose of the current study was to identify the effects of live music therapy interventions compared with preferred recorded music for patients undergoing MRI scans. To date, there has not been a published study involving the use of live music therapy during MRI scans. The current study investigated the differences between teenage through adult patients receiving live music therapy intervention during outpatient MRI scans versus the standard protocol of care listening to recorded music (N = 88). Subjects ranged in age from 15 to 93 years old. Results indicated subjects who received the live music therapy protocol reported significantly better perception of the MRI procedure (p < 0.05). Additionally, subjects receiving the live music therapy protocol had fewer scans repeated due to movement. Of the repeated images, 26% occurred in the live music group and 73% occurred in the recorded music group. Subjects receiving live music therapy also requested less breaks from the scan. Two percent of the live music subjects requested a break and 17.6% of the control patients requested breaks. When comparing the same type of scan between groups, subjects receiving the live music protocol required less time to complete the scans. For lumbar scans without contrast (N = 14, n = 7, n = 7), live music subjects spent an average of 4.63 less min per scan for a total of 32 less min for 7 subjects. For brain scans (N = 8, n = 4, n = 4), live music subjects spent an average of 5.8 less min per scan for a total of 23 less min for 4 subjects. Results of the current study supports the use of live music therapy intervention for teenage and adult patients undergoing MRI scans to reduce patient anxiety and improve patient perception of the scan experience. Additionally, live music therapy has the potential to shorten the length of time required for patients to complete MRI scans due to decreased patient movements and fewer breaks requested during the scans. The cost savings impact of reduced procedure time can positively impact the facility productivity by allowing more scans to be scheduled daily.
Eslami, Sohrab; Shang, Weijian; Li, Gang; Patel, Nirav; Fischer, Gregory S.; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Iordachita, Iulian
2015-01-01
Background The robot-assisted minimally-invasive surgery is well recognized as a feasible solution for diagnosis and treatment of the prostate cancer in human. Methods In this paper the kinematics of a parallel 4 Degrees-of-Freedom (DOF) surgical manipulator designed for minimally invasive in-bore prostate percutaneous interventions through the patient's perineum. The proposed manipulator takes advantage of 4 sliders actuated by MRI-compatible piezoelectric motors and incremental rotary encoders. Errors, mostly originating from the design and manufacturing process, need to be identified and reduced before the robot is deployed in the clinical trials. Results The manipulator has undergone several experiments to evaluate the repeatability and accuracy of the needle placement which is an essential concern in percutaneous prostate interventions. Conclusion The acquired results endorse the sustainability, precision (about 1 mm in air (in x or y direction) at the needle's reference point) and reliability of the manipulator. PMID:26111458
Schmidt, Ehud J; Watkins, Ronald D; Zviman, Menekhem M; Guttman, Michael A; Wang, Wei; Halperin, Henry A
2016-10-01
Subjects undergoing cardiac arrest within a magnetic resonance imaging (MRI) scanner are currently removed from the bore and then from the MRI suite, before the delivery of cardiopulmonary resuscitation and defibrillation, potentially increasing the risk of mortality. This precludes many higher-risk (acute ischemic and acute stroke) patients from undergoing MRI and MRI-guided intervention. An MRI-conditional cardiac defibrillator should enable scanning with defibrillation pads attached and the generator ON, enabling application of defibrillation within the seconds of MRI after a cardiac event. An MRI-conditional external defibrillator may improve patient acceptance for MRI procedures. A commercial external defibrillator was rendered 1.5 Tesla MRI-conditional by the addition of novel radiofrequency filters between the generator and commercial disposable surface pads. The radiofrequency filters reduced emission into the MRI scanner and prevented cable/surface pad heating during imaging, while preserving all the defibrillator monitoring and delivery functions. Human volunteers were imaged using high specific absorption rate sequences to validate MRI image quality and lack of heating. Swine were electrically fibrillated (n=4) and thereafter defibrillated both outside and inside the MRI bore. MRI image quality was reduced by 0.8 or 1.6 dB, with the generator in monitoring mode and operating on battery or AC power, respectively. Commercial surface pads did not create artifacts deeper than 6 mm below the skin surface. Radiofrequency heating was within US Food and Drug Administration guidelines. Defibrillation was completely successful inside and outside the MRI bore. A prototype MRI-conditional defibrillation system successfully defibrillated in the MRI without degrading the image quality or increasing the time needed for defibrillation. It can increase patient acceptance for MRI procedures. © 2016 American Heart Association, Inc.
Young, Kymberly D; Siegle, Greg J; Misaki, Masaya; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy
2018-01-01
We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback regulation success. Neurofeedback training to increase amygdala hemodynamic activity during positive AM recall increased amygdala connectivity with regions involved in self-referential, salience, and reward processing. Results suggest future targets for neurofeedback interventions, particularly interventions involving the precuneus.
Role of MRI in differentiating various causes of non-traumatic paraparesis and tetraparesis.
Ahmed, Nisar; Akram, Hamid; Qureshi, Ishtiaq Ahmed
2004-10-01
To assess the frequency of various causes of non-traumatic paraparesis and tetraparesis in adults based only on the findings of magnetic resonance imaging (MRI). Non-interventional descriptive study carried out from May 2001 to October 2002 at Radiology Department, CMH, Rawalpindi. A total of 100 adult patients who presented with non-traumatic paraparesis or tetraparesis, were studied. MRI spine of all the patients and MRI brain of selected patients, was carried out. Based on MRI findings alone causes of non-traumatic paraparesis and tetraparesis were categorized. Paraparesis was more frequent than tetraparesis. Cord compression was found in 72% cases. Neoplastic compression, infective spondylitis and non-compressive myelopathies were the main causes of paraparesis while spondylotic myelopathy was the main cause of tetraparesis. Based upon MRI findings causes of non-traumatic paraparesis or tetraparesis can be subcategorized into spondylotic, infective or neoplastic cord compression and non-compressive myelopathies. Further subcategorization of neoplastic lesions according to their compartment of origin can also be done.
MRI-guidance in percutaneous core decompression of osteonecrosis of the femoral head.
Kerimaa, Pekka; Väänänen, Matti; Ojala, Risto; Hyvönen, Pekka; Lehenkari, Petri; Tervonen, Osmo; Blanco Sequeiros, Roberto
2016-04-01
The purpose of this study was to evaluate the usefulness of MRI-guidance for core decompression of avascular necrosis of the femoral head. Twelve MRI-guided core decompressions were performed on patients with different stages of avascular necrosis of the femoral head. The patients were asked to evaluate their pain and their ability to function before and after the procedure and imaging findings were reviewed respectively. Technical success in reaching the target was 100 % without complications. Mean duration of the procedure itself was 54 min. All patients with ARCO stage 1 osteonecrosis experienced clinical benefit and pathological MRI findings were seen to diminish. Patients with more advanced disease gained less, if any, benefit and total hip arthroplasty was eventually performed on four patients. MRI-guidance seems technically feasible, accurate and safe for core decompression of avascular necrosis of the femoral head. Patients with early stage osteonecrosis may benefit from the procedure. • MRI is a useful guidance method for minimally invasive musculoskeletal interventions. • Bone drilling seems beneficial at early stages of avascular necrosis. • MRI-guidance is safe and accurate for bone drilling.
Barquero, Laura A.; Davis, Nicole; Cutting, Laurie E.
2014-01-01
A growing number of studies examine instructional training and brain activity. The purpose of this paper is to review the literature regarding neuroimaging of reading intervention, with a particular focus on reading difficulties (RD). To locate relevant studies, searches of peer-reviewed literature were conducted using electronic databases to search for studies from the imaging modalities of fMRI and MEG (including MSI) that explored reading intervention. Of the 96 identified studies, 22 met the inclusion criteria for descriptive analysis. A subset of these (8 fMRI experiments with post-intervention data) was subjected to activation likelihood estimate (ALE) meta-analysis to investigate differences in functional activation following reading intervention. Findings from the literature review suggest differences in functional activation of numerous brain regions associated with reading intervention, including bilateral inferior frontal, superior temporal, middle temporal, middle frontal, superior frontal, and postcentral gyri, as well as bilateral occipital cortex, inferior parietal lobules, thalami, and insulae. Findings from the meta-analysis indicate change in functional activation following reading intervention in the left thalamus, right insula/inferior frontal, left inferior frontal, right posterior cingulate, and left middle occipital gyri. Though these findings should be interpreted with caution due to the small number of studies and the disparate methodologies used, this paper is an effort to synthesize across studies and to guide future exploration of neuroimaging and reading intervention. PMID:24427278
Needle position estimation from sub-sampled k-space data for MRI-guided interventions
NASA Astrophysics Data System (ADS)
Schmitt, Sebastian; Choli, Morwan; Overhoff, Heinrich M.
2015-03-01
MRI-guided interventions have gained much interest. They profit from intervention synchronous data acquisition and image visualization. Due to long data acquisition durations, ergonomic limitations may occur. For a trueFISP MRI-data acquisition sequence, a time sparing sub-sampling strategy has been developed that is adapted to amagnetic needle detection. A symmetrical and contrast rich susceptibility needle artifact, i.e. an approximately rectangular gray scale profile is assumed. The 1-D-Fourier transformed of a rectangular function is a sinc-function. Its periodicity is exploited by sampling only along a few orthogonal trajectories in k-space. Because a needle moves during intervention, its tip region resembles a rectangle in a time-difference image that is reconstructed from such sub-sampled k-spaces acquired at different time stamps. In different phantom experiments, a needle was pushed forward along a reference trajectory, which was determined from a needle holders geometric parameters. In addition, the trajectory of the needle tip was estimated by the method described above. Only ca. 4 to 5% of the entire k-space data was used for needle tip estimation. The misalignment of needle orientation and needle tip position, i.e. the differences between reference and estimated values, is small and even in its worst case less than 2 mm. The results show that the method is applicable under nearly real conditions. Next steps are addressed to the validation of the method for clinical data.
NEURAL SUBSTRATES OF CUE-REACTIVITY: ASSOCIATION WITH TREATMENT OUTCOMES AND RELAPSE
Courtney, Kelly E.; Schacht, Joseph P.; Hutchison, Kent; Roche, Daniel J.O.; Ray, Lara A.
2016-01-01
Given the strong evidence for neurological alterations at the basis of drug dependence, functional magnetic resonance imaging (fMRI) represents an important tool in the clinical neuroscience of addiction. fMRI cue-reactivity paradigms represent an ideal platform to probe the involvement of neurobiological pathways subserving the reward/motivation system in addiction and potentially offer a translational mechanism by which interventions and behavioral predictions can be tested. Thus, this review summarizes the research that has applied fMRI cue-reactivity paradigms to the study of adult substance use disorder treatment responses. Studies utilizing fMRI cue-reactivity paradigms for the prediction of relapse, and as a means to investigate psychosocial and pharmacological treatment effects on cue-elicited brain activation are presented within four primary categories of substances: alcohol, nicotine, cocaine, and opioids. Lastly, suggestions for how to leverage fMRI technology to advance addiction science and treatment development are provided. PMID:26435524
Fritz, Jan; Henes, Jörg C; Thomas, Christoph; Clasen, Stephan; Fenchel, Michael; Claussen, Claus D; Lewin, Jonathan S; Pereira, Philippe L
2008-12-01
The objective of our study was to prospectively test the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively. Over a 12-month period, 60 patients (32 women and 28 men; median age, 28 years; age range, 18-49 years) with chronic lower back pain suspected to originate from the sacroiliac joints were enrolled in the study. Based on diagnostic MRI findings, MR fluoroscopy-guided sacroiliac joint injections were performed in 57 (95%) patients. Diagnostic injections (35, 58.3%) were performed if nonspecific or degenerative MRI findings were present. Therapeutic injections (22, 36.7%) were performed in patients with inflammatory arthropathy. In three (5%) patients, no injections were performed. Technical effectiveness was assessed by analyzing, first, the rate of intraarticular injection; second, the time required for the procedure; third, image quality; and, fourth, occurrence of complications and clinical outcome by analyzing pain intensity changes and volume and signal intensity of sacroiliac inflammatory changes. The rate of intraarticular injection was 90.4% (103/114). The mean length of time for the procedure was 50 minutes (range, 34-103 minutes), with exponential shortening over time (p < or = 0.001). The contrast-to-noise ratios of the needle and tissues were sufficiently different for excellent delineation of the needle. No complications occurred. Diagnostic injections identified the sacroiliac joints as generating significant pain in 46.9% (15/32) of the patients. Three months after therapeutic injections, pain intensity had decreased by 62.5% (p < or = 0.001) and the volume and relative signal intensity of inflammatory changes had decreased by 37.5% (p = 0.003) and 47.6% (p < or = 0.001), respectively. We accept the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively for comprehensive diagnosis and therapy of lower back pain originating from the sacroiliac joints.
Magnetic Catheter Manipulation in the Interventional MRI Environment
Wilson, Mark W.; Martin, Alastair B.; Lillaney, Prasheel; Losey, Aaron D.; Yee, Erin J.; Bernhardt, Anthony; Malba, Vincent; Evans, Lee; Sincic, Ryan; Saeed, Maythem; Arenson, Ronald L.; Hetts, Steven W.
2013-01-01
Purpose To evaluate deflection capability of a prototype endovascular catheter, which is remotely magnetically steerable, for use in the interventional MRI environment. Materials and Methods Copper coils were mounted on the tips of commercially available 2.3 – 3.0 Fr microcatheters. The coils were fabricated in a novel manner by plasma vapor deposition of a copper layer followed by laser lithography of the layer into coils. Orthogonal helical (solenoid) and saddle-shaped (Helmholtz) coils were mounted on a single catheter tip. Microcatheters were tested in water bath phantoms in a 1.5T clinical MRI scanner, with variable simultaneous currents applied to the coils. Catheter tip deflection was imaged in the axial plane utilizing a “real-time” steady-state free precession (SSFP) MRI sequence. Degree of deflection and catheter tip orientation were measured for each current application. Results The catheter tip was clearly visible in the longitudinal and axial planes. Magnetic field artifacts were visible when the orthogonal coils at the catheter tip were energized. Variable amounts of current applied to a single coil demonstrated consistent catheter deflection in all water bath experiments. Changing current polarity reversed the observed direction of deflection, whereas current applied to two different coils resulted in deflection represented by the composite vector of individual coil activations. Microcatheter navigation through the vascular phantom was successful through control of applied current to one or more coils. Conclusion Controlled catheter deflection is possible with laser lithographed multi-axis coil tipped catheters in the MRI environment. PMID:23707097
Magnetic resonance imaging findings in pediatric bilateral vocal fold dysfunction.
Steiner, Joel I; Fink, A Michelle; Berkowitz, Robert G
2013-07-01
We studied the findings of brain magnetic resonance imaging (MRI) in infants with idiopathic congenital bilateral vocal fold dysfunction (CBVFD). We performed a retrospective investigation of a case series. We identified 26 children (14 male, 12 female) over 11 years. Three children were excluded. Thirteen patients required airway interventions, including continuous positive airway pressure (4 patients), endotracheal intubation (1), and tracheostomy (8). The findings on brain MRI were abnormal in 8 patients (35%). Tracheostomy was required in 3 patients (38%) with abnormal MRI findings, as compared with 5 of 15 patients (33%) with normal MRI findings. The MRI abnormalities involved evidence of white matter injury (2), abnormal white matter signal (1), subdural blood (3), cerebral swelling (1), and perisylvian polymicrogyria (1). The cranial ultrasound findings were abnormal in 4 of 11 patients. The MRI findings were abnormal in 2 of 7 children in whom the cranial ultrasound findings were normal, and in 2 of the 4 patients in whom the cranial ultrasound findings were abnormal. The MRI abnormalities were nonspecific; however, they may indicate unrecognized perinatal intracranial injury as being related to CBVFD. In addition, MRI may reveal an underlying structural brain anomaly. Cranial ultrasound has poor sensitivity and specificity. Hence, MRI should be considered as part of the routine assessment of neonates with CBVFD.
Emil, Sherif; Youssef, Fouad; Arbash, Ghaidaa; Baird, Robert; Laberge, Jean-Martin; Puligandla, Pramod; Albuquerque, Pedro
2018-01-31
The utility of magnetic resonance imaging (MRI) in the diagnosis and management of pediatric ovarian lesions has not been well defined. A retrospective review of all girls who underwent MRI evaluation of ovarian masses during the period 2009-2015 was performed. The accuracy of MRI was evaluated by comparing results with surgical findings, pathology reports, and subsequent imaging. The influence of the MRI on the treatment plan was specifically explored. Eighteen girls, 12-17years of age, underwent 27 MRIs, subsequent to ultrasound identification of ovarian lesions. Of 9 neoplastic lesions diagnosed on MRI, 8 (89%) were confirmed by surgical and pathological findings. Of 18 functional lesions, 17 (94.4%) were confirmed pathologically or by resolution on subsequent imaging. Twenty MRI exams (74%) directly influenced the treatment plan, by leading to appropriate operative intervention in 9 and appropriate observation in 11. The extent of ovarian resection was guided by MRI findings in 8 of 9 (89%) neoplastic lesions. For characterizing lesions as neoplastic, the sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of MRI were 89%, 94%, 94%, 89%, and 93% respectively. MRI can differentiate functional from neoplastic pediatric ovarian masses, and guide ovarian resection in appropriate cases. II. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos
2012-04-15
Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; andmore » (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.« less
Oshiro, Thomas; Sinha, Usha; Lu, David; Sinha, Shantanu
2002-01-01
MRI has been used increasingly in the recent past for the guidance and monitoring of minimally invasive interventional procedures, using typically radiofrequency (RF) and laser energy, cryoablation, and percutaneous ethanol. RF energy has been used over the last 30 years for the ablation of tissues. Its use in conjunction with MRI for monitoring is limited, however, because of the electronic noise produced by the RF generators, which can significantly deteriorate image quality. The objective of this work was to devise methods by which this noise can be reduced to an acceptable level to allow simultaneous acquisition of MR images for monitoring purposes with the application of RF energy. Three different methods of noise reduction were investigated in a 0.2 T MR scanner: filtration using external hardware circuitry, MR scanner software-controlled filtration, and keyholing. The last two methods were unable by themselves to suppress the noise to an acceptable degree. Hardware filtration, however, provides excellent suppression of RF noise and is able to withstand up to 12 W of RF energy. When all the three approaches are combined, significant reduction of RF noise is achieved. The feasibility of creating an RF lesion of about 1.2 cm diameter in vivo in a porcine model simultaneously with temperature-sensitive MRI with adequate noise suppression is demonstrated.
Doman, Sydney E; Girish, Akanksha; Nemeth, Christina L; Drummond, Gabrielle T; Carr, Patrice; Garcia, Maxine S; Johnston, Michael V; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann
2018-01-01
Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell death and inflammation. Our results demonstrate that hypothermia has early neuroprotective effects in this model. These findings suggest that hypothermia has an impact on early mechanisms of excitotoxic injury and support initiation of hypothermic intervention as soon as possible after diagnosis of HIE.
Doman, Sydney E.; Girish, Akanksha; Nemeth, Christina L.; Drummond, Gabrielle T.; Carr, Patrice; Garcia, Maxine S.; Johnston, Michael V.; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann
2018-01-01
Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell death and inflammation. Our results demonstrate that hypothermia has early neuroprotective effects in this model. These findings suggest that hypothermia has an impact on early mechanisms of excitotoxic injury and support initiation of hypothermic intervention as soon as possible after diagnosis of HIE.
Gebauer, Daniela; Fink, Andreas; Kargl, Reinhard; Reishofer, Gernot; Koschutnig, Karl; Purgstaller, Christian; Fazekas, Franz; Enzinger, Christian
2012-01-01
Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training. PMID:22693600
Kenigsberg, Lisa E; Agarwal, Chhavi; Sin, Sanghun; Shifteh, Keivan; Isasi, Carmen R; Crespi, Rebecca; Ivanova, Janeta; Coupey, Susan M; Heptulla, Rubina A; Arens, Raanan
2015-01-01
Objectives Evaluate ovarian morphology using 3-dimensional MRI in adolescent girls with and without PCOS. Compare the utility of MRI versus ultrasonography (US) for diagnosis of PCOS Design Cross-sectional Setting Urban academic tertiary-care children’s hospital Patients Thirty-nine adolescent girls with untreated PCOS and 22 age/BMI-matched controls. Intervention MRI and/or transvaginal/transabdominal US Main Outcome Measure Ovarian volume (OV); follicle number per section (FNPS); correlation between OV on MRI and US; proportion of subjects with features of polycystic ovaries on MRI and US. Results MRI demonstrated larger OV and higher FNPS in subjects with PCOS compared to controls. Within the PCOS group, median OV was 11.9 (7.7) cm3 by MRI, compared with 8.8 (7.8) cm3 by US. Correlation coefficient between OV by MRI and US was 0.701. Due to poor resolution, FNPS could not be determined by US or compared with MRI. ROC curve analysis for MRI demonstrated that increasing volume cut-offs for polycystic ovaries from 10cm3 to 14cm3, increased specificity from 77% to 95%. For FNPS on MRI, specificity increased from 82% to 98% by increasing cut-offs from ≥12 to ≥17. Using Rotterdam cut-offs, 91% of subjects with PCOS met polycystic ovary criteria on MRI, while only 52% met criteria by US. Conclusions US measures smaller OV than MRI, cannot accurately detect follicle number, and is a poor imaging modality for characterizing polycystic ovaries in adolescents with suspected PCOS. For adolescents in whom diagnosis of PCOS remains uncertain after clinical and laboratory evaluation, MRI should be considered as a diagnostic imaging modality. PMID:26354095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Y.
MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapymore » from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.« less
Larson, Paul S; Willie, Jon T; Vadivelu, Sudhakar; Azmi-Ghadimi, Hooman; Nichols, Amy; Fauerbach, Loretta Litz; Johnson, Helen Boehm; Graham, Denise
2017-07-01
The development of navigation technology facilitating MRI-guided stereotactic neurosurgery has enabled neurosurgeons to perform a variety of procedures ranging from deep brain stimulation to laser ablation entirely within an intraoperative or diagnostic MRI suite while having real-time visualization of brain anatomy. Prior to this technology, some of these procedures required multisite workflow patterns that presented significant risk to the patient during transport. For those facilities with access to this technology, safe practice guidelines exist only for procedures performed within an intraoperative MRI. There are currently no safe practice guidelines or parameters available for facilities looking to integrate this technology into practice in conventional MRI suites. Performing neurosurgical procedures in a diagnostic MRI suite does require precautionary measures. The relative novelty of technology and workflows for direct MRI-guided procedures requires consideration of safe practice recommendations, including those pertaining to infection control and magnet safety issues. This article proposes a framework of safe practice recommendations designed for assessing readiness and optimization of MRI-guided neurosurgical interventions in the diagnostic MRI suite in an effort to mitigate patient risk. The framework is based on existing clinical evidence, recommendations, and guidelines related to infection control and prevention, health care-associated infections, and magnet safety, as well as the clinical and practical experience of neurosurgeons utilizing this technology. © 2017 American Society for Healthcare Risk Management of the American Hospital Association.
Kennedy, Anne
2017-01-01
Ventriculomegaly (VM) is a non-specific finding on fetal imaging. Identification of the specific aetiology is important, as it affects prognosis and may even change the course of current or future pregnancies. In this review, we will focus on the application of fetal MRI to demonstrate intracranial haemorrhage and ischaemic brain injury as opposed to other causes of VM. MRI is able to identify the specific aetiology of VM with much more sensitivity and specificity than ultrasound and should be considered whenever VM is identified on obstetric ultrasound. Advances in both fetal and neonatal MRI have the potential to shed further light on mechanisms of brain injury and the impact of chronic hypoxia; such information may guide future interventions. PMID:27734711
RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI.
Settecase, Fabio; Hetts, Steven W; Martin, Alastair J; Roberts, Timothy P L; Bernhardt, Anthony F; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L; Kucharzyk, Walter; Wilson, Mark W
2011-03-01
The aim of this study was too assess magnetic resonance imaging (MRI) radiofrequency (RF)-related heating of conductive wire coils used in magnetically steerable endovascular catheters. A three-axis microcoil was fabricated onto a 1.8Fr catheter tip. In vitro testing was performed on a 1.5-T MRI system using an agarose gel-filled vessel phantom, a transmit-receive body RF coil, a steady-state free precession pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from the magnet isocenter and at varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with steady-state free precession pulse sequence on and off and under physiologic-flow and zero-flow conditions. In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from the magnet isocenter. For a single-axis microcoil, maximal temperature increases were 0.73°C to 1.91°C in air and 0.45°C to 0.55°C in saline. In vivo, delayed contrast-enhanced MRI revealed no evidence of vascular injury, and histopathologic sections from the common carotid arteries confirmed the lack of vascular damage. Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Weinstein, Maya; Myers, Vicki; Green, Dido; Schertz, Mitchell; Shiran, Shelly I.; Geva, Ronny; Artzi, Moran; Gordon, Andrew M.; Fattal-Valevski, Aviva; Ben Bashat, Dafna
2015-01-01
Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children's Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH. PMID:26640717
The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia.
Yang, Mi; He, Hui; Duan, Mingjun; Chen, Xi; Chang, Xin; Lai, Yongxiu; Li, Jianfu; Liu, Tiejun; Luo, Cheng; Yao, Dezhong
2018-01-01
Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.
Rodriguez, Fatima; Degnan, Kathleen O; Seidman, Christine E; Mangion, Judy R
2014-08-01
We report the case of a 67-year-old man with hypertrophic cardiomyopathy who presented for a second opinion about implantable cardio-defibrillator (ICD) placement after a witnessed syncopal episode. Despite his older age, being mutation-negative, and having a maximal septal thickness of 2.2 cm on echocardiography, he demonstrated rapid progression of myocardial fibrosis on cardiac MRI, correlating to ventricular tachyarrhythmias and syncope. We review the role of echocardiography and cardiac MRI in optimizing medical care for such patients who may not otherwise meet criteria for an ICD placement or further interventions. © 2014, Wiley Periodicals, Inc.
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers
Gong, Xinxin; Kargarian, Mehdi; Stern, Alex; ...
2017-03-31
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of three-dimensional (3D) crystals with bulk inversion symmetry. We report an observation of spontaneous TRS breaking in a 2D superconducting system without inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singletmore » or triplet.We propose a theoretical model where magnetic fluctuations in Ni induce the superconducting pairing of the d xy ± id x2-y2 orbital symmetry between the electrons in Bi. In this model, the order parameter spontaneously breaks the TRS and has a nonzero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.« less
Wu, Anna H.; Spicer, Darcy; Garcia, Agustin; Tseng, Chiu-Chen; Hovanessian-Larsen, Linda; Sheth, Pulin; Martin, Sue Ellen; Hawes, Debra; Russell, Christy; McDonald, Heather; Tripathy, Debu; Su, Min-Ying; Ursin, Giske; Pike, Malcolm C.
2015-01-01
Soy supplementation by breast cancer patients remains controversial. No controlled intervention studies have investigated the effects of soy supplementation on mammographic density in breast cancer patients. We conducted a double-blind, randomized, placebo-controlled intervention study in previously treated breast cancer patients (n=66) and high-risk women (n=29). We obtained digital mammograms and breast magnetic resonance imaging (MRI) scans at baseline and after 12 months of daily soy (50 mg isoflavones per day) (n=46) or placebo (n=49) tablet supplementation. The total breast area (MA) and the area of mammographic density (MD) on the mammogram was measured using a validated computer-assisted method, and mammographic density percent (MD% = 100 × MD/MA) was determined. A well-tested computer algorithm was used to quantitatively measure the total breast volume (TBV) and fibroglandular tissue volume (FGV) on the breast MRI, and the FGV percent (FGV% = 100 × FGV/TBV) was calculated. On the basis of plasma soy isoflavone levels, compliance was excellent. Small decreases in MD% measured by the ratios of month 12 to baseline levels, were seen in the soy (0.95) and the placebo (0.87) groups; these changes did not differ between the treatments (P=0.38). Small decreases in FGV% were also found in both the soy (0.90) and the placebo (0.92) groups; these changes also did not differ between the treatments (P=0.48). Results were comparable in breast cancer patients and high-risk women. We found no evidence that soy supplementation would decrease mammographic density and that MRI might be more sensitive to changes in density than mammography. PMID:26276750
Robotic System for MRI-Guided Stereotactic Neurosurgery
Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.
2015-01-01
Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035
Kühn, Simone; Kugler, Dimitrij; Schmalen, Katharina; Weichenberger, Markus; Witt, Charlotte; Gallinat, Jürgen
2018-01-31
It is a common concern in the research field and the community that habitual violent video gaming reduces empathy for pain in its players. However, previous fMRI studies have only compared habitual game players against control participants cross-sectionally. However the observed pattern of results may be due to a priori differences in people who become gamers and who not. In order to derive the causal conclusion that violent video game play causes desensitisation, longitudinal studies are needed. Therefore we conducted a longitudinal fMRI intervention study over 16 weeks. Participants were randomly assigned to 1) play a violent video game (Grand Theft Auto 5), 2) perform a social life simulation game (The Sims 3) 30 min/day for 8 weeks, 3) serve as passive control. To assess empathy processing, participants were exposed to painful and non-painful stimuli (e.g. someone cutting a cucumber with or without hurting herself) either as real photographs or video-game like depictions in a 3T MRI scanner before and after the training intervention as well as two months after training. We did not find any evidence for desensitization in the empathy network for pain in the violent video game group at any time point. The present results provide strong evidence against the frequently proclaimed negative effects of playing violent video games and will therefore help to communicate a more realistic scientific perspective of the effects of violent video gaming in real life. © 2018 The Author(s). Published by S. Karger AG, Basel.
Rennert, J; Georgieva, M; Schreyer, A G; Jung, W; Ross, C; Stroszczynski, C; Jung, E M
2011-01-01
To evaluate, whether image fusion of contrast enhanced ultrasound (CEUS) with CT or MRI affects the diagnosis and characterization of liver lesions or the therapeutic strategy of surgical or interventional procedures compared to the preliminary diagnosis. In a retrospective study the image fusion scans of CEUS with contrast enhanced CT or MRI of 100 patients (71 male, mean age 59 years, 0.3-85 years) with benign or malignant liver lesions were evaluated. Fundamental B-scan, color Doppler imaging and CEUS were performed in all patients by an experienced examiner using a multifrequency convex transducer (1-5 MHz, LOGIQ 9/GE) and volume navigation (Vnav). After a bolus injections of up to 2.4 ml SonoVue® (BRACCO, Italy) digital raw data was stored as cine-loops up to 5 min. In 74 patients, CEUS was fused with a pre-existing ceCT, in 26 patients a ceMRI was used. In all 100 patients (100%) the image quality in all modalities (ceCT, ceMRI and CEUS) was excellent or with only minor diagnostic limitations. Regarding the number of lesions revealed in image fusion of CEUS/ceCT/ceMRI and the preceding diagnostic method, concordant results were found in 84 patients. In 12 patients, additional lesions were found using fusion imaging causing subsequently a change of the therapeutical strategy. In 15 out of 21 patients with either concordant or discordant results regarding the number of lesions, image fusion allowed a definite diagnosis due to a continuous documentation of the microcirculation of the tumor and its contrast enhancement. A significant coherency (p < 0.05) among image fusion with either ceCT or ceMRI and CEUS and a subsequent change of therapeutic strategy was found. Image fusion with volume navigation (VNav) of CEUS with ceCT or ceMRI frequently allows a definite localization and diagnosis of hepatic lesions in patients with primary hepatic carcinoma or metastatic diseases. This might cause a change of the therapeutic strategy in many patients with hepatic lesions.
Schertz, Mitchell; Shiran, Shelly I; Myers, Vicki; Weinstein, Maya; Fattal-Valevski, Aviva; Artzi, Moran; Ben Bashat, Dafna; Gordon, Andrew M; Green, Dido
2016-08-01
Background Motor-learning interventions may improve hand function in children with unilateral cerebral palsy (UCP) but with inconsistent outcomes across participants. Objective To examine if pre-intervention brain imaging predicts benefit from bimanual intervention. Method Twenty children with UCP with Manual Ability Classification System levels I to III, aged 7-16 years, participated in an intensive bimanual intervention. Assessments included the Assisting Hand Assessment (AHA), Jebsen Taylor Test of Hand Function (JTTHF) and Children's Hand Experience Questionnaire (CHEQ) at baseline (T1), completion (T2) and 8-10 weeks post-intervention (T3). Imaging at baseline included conventional structural (radiological score), functional (fMRI) and diffusion tensor imaging (DTI). Results Improvements were seen across assessments; AHA (P = 0.04), JTTHF (P < .001) and CHEQ (P < 0.001). Radiological score significantly correlated with improvement at T2; AHA (r = .475) and CHEQ (r = .632), but negatively with improvement on unimanual measures at T3 (JTTFH r = -.514). fMRI showed negative correlations between contralesional brain activation when moving the affected hand and AHA improvements (T2: r = -.562, T3: r = -0.479). Fractional Anisotropy in the affected posterior limb of the internal capsule correlated negatively with increased bimanual use on CHEQ at T2 (r = -547) and AHA at T3 (r = -.656). Conclusions Children with greater structural, functional and connective brain damage showed enhanced responses to bimanual intervention. Baseline imaging may identify parameters predicting response to intervention in children with UCP. © The Author(s) 2015.
Image-guided laparoscopic surgery in an open MRI operating theater.
Tsutsumi, Norifumi; Tomikawa, Morimasa; Uemura, Munenori; Akahoshi, Tomohiko; Nagao, Yoshihiro; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Maehara, Yoshihiko; Hashizume, Makoto
2013-06-01
The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater. Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater. All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance-incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI. Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.
Fujii, Miki; Armstrong, David G; Armsrong, David G; Terashi, Hiroto
2013-01-01
Magnetic resonance imaging (MRI) has been recognized as the most accurate imaging modality for the detection of diabetic foot osteomyelitis. However, how accurately MRI displays the extent of diabetic foot osteomyelitis in the presence of ischemia is still unclear. We retrospectively compared the preoperative MRI findings with the results of histopathologic examinations of resected bones and studied the efficacy of MRI in the diagnosis of diabetic foot osteomyelitis of different etiologies. A total 104 bones from 18 foot ulcers in 16 diabetic patients (10 men and 6 women; age range 42 to 84 years) treated by surgical intervention from 2008 to 2012 was examined. In 8 neuropathic ulcers, 29 bones were accurately diagnosed in detail using MRI, even those with severe soft tissue infection. Of 75 bones in 10 ischemic ulcers, only 7 bones evaluated by MRI after revascularization were diagnosed accurately; the other 68 could not be diagnosed because of unclear or equivocal MRI findings. On histopathologic examination, all the bones were found to be infected through the bone cortex by the surrounding infected soft tissue, not directly by articulation. Overall, preoperative MRI is effective in the diagnosis of neuropathic ulcers, but less so of ischemic ones. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
MRI-negative temporal lobe epilepsy-What do we know?
Muhlhofer, Wolfgang; Tan, Yee-Leng; Mueller, Susanne G; Knowlton, Robert
2017-05-01
Temporal lobe epilepsy (TLE) is the most common focal epilepsy in adults. TLE has a high chance of becoming medically refractory, and as such, is frequently considered for further evaluation and surgical intervention. Up to 30% of TLE cases, however, can have normal ("nonlesional" or negative) magnetic resonance imaging (MRI) results, which complicates the presurgical workup and has been associated with worse surgical outcomes. Helped by contributions from advanced imaging techniques and electrical source localization, the number of surgeries performed on MRI-negative TLE has increased over the last decade. Thereby new epidemiologic, clinical, electrophysiologic, neuropathologic, and surgical data of MRI-negative TLE has emerged, showing characteristics that are distinct from those of lesional TLE. This review article summarizes what we know today about MRI-negative TLE, and discusses the comprehensive assessment of patients with MRI-negative TLE in a structured and systematic approach. It also includes a concise description of the most recent developments in structural and functional imaging, and highlights postprocessing imaging techniques that have been shown to add localization value in MRI-negative epilepsies. We evaluate surgical outcomes of MRI-negative TLE, identify prognostic makers of postoperative seizure freedom, and discuss strategies for optimizing the selection of surgical candidates in this group. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts
2015-09-01
Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.
Satoh, Masayuki; Yuba, Toru; Tabei, Ken-Ichi; Okubo, Yukari; Kida, Hirotaka; Sakuma, Hajime; Tomimoto, Hidekazu
2015-01-01
To investigate the effect of singing training on the cognitive function in Alzheimer's disease (AD) patients. Ten AD patients (mean age 78.1 years) participated in music therapy using singing training once a week for 6 months (music therapy group). Each session was performed with professional musicians using karaoke and a unique voice training method (the YUBA Method). Before and after the intervention period, each patient was assessed by neuropsychological batteries, and functional magnetic resonance imaging (fMRI) was performed while the patients sang familiar songs with a karaoke device. As the control group, another 10 AD patients were recruited (mean age 77.0 years), and neuropsychological assessments were performed twice with an interval of 6 months. In the music therapy group, the time for completion of the Japanese Raven's Colored Progressive Matrices was significantly reduced (p = 0.026), and the results obtained from interviewing the patients' caregivers revealed a significant decrease in the Neuropsychiatric Inventory score (p = 0.042) and a prolongation of the patients' sleep time (p = 0.039). The fMRI study revealed increased activity in the right angular gyrus and the left lingual gyrus in the before-minus-after subtraction analysis of the music therapy intervention. Music therapy intervention using singing training may be useful for dementia patients by improving the neural efficacy of cognitive processing.
Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S
2016-06-01
MRI-guided interventions demand high frame rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real time to interactively deblur spiral images. Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF-predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF-predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 min of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. This real-time distortion correction framework will enable the use of these high frame rate imaging methods for MRI-guided interventions. Magn Reson Med 75:2278-2285, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Satoh, Masayuki; Yuba, Toru; Tabei, Ken-ichi; Okubo, Yukari; Kida, Hirotaka; Sakuma, Hajime; Tomimoto, Hidekazu
2015-01-01
Background/Aims To investigate the effect of singing training on the cognitive function in Alzheimer's disease (AD) patients. Methods Ten AD patients (mean age 78.1 years) participated in music therapy using singing training once a week for 6 months (music therapy group). Each session was performed with professional musicians using karaoke and a unique voice training method (the YUBA Method). Before and after the intervention period, each patient was assessed by neuropsychological batteries, and functional magnetic resonance imaging (fMRI) was performed while the patients sang familiar songs with a karaoke device. As the control group, another 10 AD patients were recruited (mean age 77.0 years), and neuropsychological assessments were performed twice with an interval of 6 months. Results In the music therapy group, the time for completion of the Japanese Raven's Colored Progressive Matrices was significantly reduced (p = 0.026), and the results obtained from interviewing the patients' caregivers revealed a significant decrease in the Neuropsychiatric Inventory score (p = 0.042) and a prolongation of the patients' sleep time (p = 0.039). The fMRI study revealed increased activity in the right angular gyrus and the left lingual gyrus in the before-minus-after subtraction analysis of the music therapy intervention. Conclusion Music therapy intervention using singing training may be useful for dementia patients by improving the neural efficacy of cognitive processing. PMID:26483829
Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S
2015-01-01
Purpose MRI-guided interventions demand high frame-rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Methods Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real-time to interactively de-blur spiral images. Results Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 minutes of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. Conclusions This real-time distortion correction framework will enable the use of these high frame-rate imaging methods for MRI-guided interventions. PMID:26114951
[Interventional radiology and radiation therapy].
Hadjiev, Janaki
2015-04-26
The revolutionary role of modern cross-sectional imaging, the improved target definition in CT/MRI image guided brachytherapy, the precise topography for applicator and anatomy contribute to a better knowledge and management of tumors and critical organs. Further developments and functional imaging is expected to lead to a broad use of patient tailored therapy in the field of interventional radiation oncology.
Zhang, Lansheng; Wang, Chun; Yan, Qiuyue; Zhang, Tao; Han, Zhengxiang; Jiang, Guan
2017-01-01
Abstract Rationale: Using magnetic resonance imaging (MRI), we diagnosed pneumoconiosis by identifying the content and distribution of hydrogen protons in the water molecules in different tissues and lesions. Patient concerns: 25 cases of CWP patients with progressive massive fibrosis (PMF) lesions. Diagnoses: Patients were correctly diagnosed, with one case each of Phase I and II pneumoconiosis and 23 cases of Phase III pneumoconiosis. Interventions: None. Outcomes: Through MRI, 39 PMF pneumoconiosis lesions exhibited equal, low or equally low, and uneven signals on T2WI and fat suppression (SPIR) (38/39, 37/39). Lessons: MRI has good specificity to identify the characteristics of PMF lesions of CWP, as well as has high application value for the differential diagnosis of lung cancer and other lung tumor-like lesions. PMID:28514304
Willis, Sarah R; Ahmed, Hashim U; Moore, Caroline M; Donaldson, Ian; Emberton, Mark; Miners, Alec H; van der Meulen, Jan
2014-01-01
Objective To compare the diagnostic outcomes of the current approach of transrectal ultrasound (TRUS)-guided biopsy in men with suspected prostate cancer to an alternative approach using multiparametric MRI (mpMRI), followed by MRI-targeted biopsy if positive. Design Clinical decision analysis was used to synthesise data from recently emerging evidence in a format that is relevant for clinical decision making. Population A hypothetical cohort of 1000 men with suspected prostate cancer. Interventions mpMRI and, if positive, MRI-targeted biopsy compared with TRUS-guided biopsy in all men. Outcome measures We report the number of men expected to undergo a biopsy as well as the numbers of correctly identified patients with or without prostate cancer. A probabilistic sensitivity analysis was carried out using Monte Carlo simulation to explore the impact of statistical uncertainty in the diagnostic parameters. Results In 1000 men, mpMRI followed by MRI-targeted biopsy ‘clinically dominates’ TRUS-guided biopsy as it results in fewer expected biopsies (600 vs 1000), more men being correctly identified as having clinically significant cancer (320 vs 250), and fewer men being falsely identified (20 vs 50). The mpMRI-based strategy dominated TRUS-guided biopsy in 86% of the simulations in the probabilistic sensitivity analysis. Conclusions Our analysis suggests that mpMRI followed by MRI-targeted biopsy is likely to result in fewer and better biopsies than TRUS-guided biopsy. Future research in prostate cancer should focus on providing precise estimates of key diagnostic parameters. PMID:24934207
Design of an interventional magnetic resonance imaging coil for cerebral surgery
NASA Astrophysics Data System (ADS)
Xu, Yue; Wang, Wen-Tao; Wang, Wei-Min
2012-11-01
In clinical magnetic resonance imaging (MRI), the design of the radiofrequency (RF) coil is very important. For certain applications, the appropriate coil can produce an improved image quality. However, it is difficult to achieve a uniform B1 field and a high signal-to-noise ratio (SNR) simultaneously. In this article, we design an interventional transmitter-and-receiver RF coil for cerebral surgery. This coil adopts a disassembly structure that can be assembled and disassembled repeatedly on the cerebral surgery gantry to reduce the amount of interference from the MRI during surgery. The simulation results and the imaging experiments demonstrate that this coil can produce a uniform RF field, a high SNR, and a large imaging range to meet the requirements of the cerebral surgery.
Successful management of risk in the hybrid OR.
Childs, Shannon; Bruch, Paul
2015-02-01
The advent of intraoperative magnetic resonance imaging (MRI) surgery has resulted in numerous advances in minimally invasive procedures. This progress has also revealed serious environmental hazards for the patient and perioperative team. At one facility, implementation of an MRI/OR intervention suite has enhanced surgical care and outcomes. Achieving the benefits of intraoperative MRI can occur with a multidisciplinary, interdepartmental approach to the design and layout of the hybrid environment and through implementation of education and safety protocols, including patient screening and prep for scanning. Personnel, including perioperative nurses, must receive expert hands-on training to successfully mitigate risk and provide care in the hybrid OR setting. Copyright © 2015 AORN, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Scott M., E-mail: Thompson.scott@mayo.edu; Gorny, Krzysztof R.; Jondal, Danielle E.
A 17-year-old previously healthy female presented with a progressive soft tissue infiltrative process involving the neck and thorax. Extensive diagnostic evaluation including multiple imaging, laboratory, and biopsy studies was nondiagnostic. Due to an urgent need to establish a diagnosis and several previous nondiagnostic biopsies, she was referred to interventional radiology for MRI-guided wire localization immediately prior to open surgical biopsy. Under general anesthesia, wires were placed in the areas of increased T2 signal within the bilateral splenius capitis muscles using intermittent MRI-guidance followed by immediate surgical biopsy down to the wires. Pathology confirmed the diagnosis of diffuse large B-cell lymphoma.
Wu, Sze-jung; Sylwestrzak, Gosia; Shah, Christiane; DeVries, Andrea
2014-08-01
To encourage patients to select high-value providers, an insurer-initiated price transparency program that focused on elective advanced imaging procedures was implemented. Patients having at least one outpatient magnetic resonance imaging (MRI) scan in 2010 or 2012 were divided according to their membership in commercial health plans participating in the program (the intervention group) or in nonparticipating commercial health plans (the reference group) in similar US geographic regions. Patients in the intervention group were informed of price differences among available MRI facilities and given the option of selecting different providers. For those patients, the program resulted in a $220 cost reduction (18.7 percent) per test and a decrease in use of hospital-based facilities from 53 percent in 2010 to 45 percent in 2012. Price variation between hospital and nonhospital facilities for the intervention group was reduced by 30 percent after implementation. Nonparticipating members residing in intervention areas also observed price reductions, which indicates increased price competition among providers. The program significantly reduced imaging costs. This suggests that patients select lower-price facilities when informed about available alternatives. Project HOPE—The People-to-People Health Foundation, Inc.
Changes in intrinsic local connectivity after reading intervention in children with autism.
Maximo, Jose O; Murdaugh, Donna L; O'Kelley, Sarah; Kana, Rajesh K
2017-12-01
Most of the existing behavioral and cognitive intervention programs in autism spectrum disorders (ASD) have not been tested at the neurobiological level, thus falling short of finding quantifiable neurobiological changes underlying behavioral improvement. The current study takes a translational neuroimaging approach to test the impact of a structured visual imagery-based reading intervention on improving reading comprehension and assessing its underlying local neural circuitry. Behavioral and resting state functional MRI (rs-fMRI) data were collected from children with ASD who were randomly assigned to an Experimental group (ASD-EXP; n=14) and a Wait-list control group (ASD-WLC; n=14). Participants went through an established reading intervention training program (Visualizing and Verbalizing for language comprehension and thinking or V/V; 4-h per day, 10-weeks, 200h of face-to-face instruction). Local functional connectivity was examined using a connection density approach from graph theory focusing on brain areas considered part of the Reading Network. The main results are as follows: (I) the ASD-EXP group showed significant improvement, compared to the ASD-WLC group, in their reading comprehension ability evidenced from change in comprehension scores; (II) the ASD-EXP group showed increased local brain connectivity in Reading Network regions compared to the ASD-WLC group post-intervention; (III) intervention-related changes in local brain connectivity were observed in the ASD-EXP from pre to post-intervention; and (IV) improvement in language comprehension significantly predicted changes in local connectivity. The findings of this study provide novel insights into brain plasticity in children with developmental disorders using targeted intervention programs. Published by Elsevier Inc.
MRI Before Radiography for Patients With New Shoulder Conditions.
Small, Kirstin M; Rybicki, Frank J; Miller, Lindsay R; Daniels, Stephen D; Higgins, Laurence D
2017-06-01
To assess the patterns of Appropriate Criteria application among orthopedic specialists and other fields of medicine for use of MRI and radiography and the subsequent necessity for surgical intervention. The hospital electronic medical record was used to identify all shoulder MRI studies at a single large urban teaching hospital between January 2, 2011, and June 30, 2011. For each study, variables collected included ordering department, patient age, patient gender, patient's self-reported race/ethnicity, whether the patient obtained surgery for an issue related to the MRI diagnosis, the type of MRI ordered, the date of pain onset, the date of x-ray (if any), and the date of the MRI. A total of 475 patients who underwent shoulder MRI were included in our study. We found significant associations between a patient having had a prior x-ray and ordering department (P < .0001), male gender (P = .0005), and subjects who had subsequent surgery (P = .0006). Neither age nor race and ethnicity had an influence on x-ray before MRI. Orthopedic specialists ordering MRIs had the highest percentage of patients undergo subsequent surgery (33.3%) compared with the second-most, primary care (18.4%), and all other ordering departments (P = .0009). Detailed analysis suggests that providers who do not have specific training in shoulder pathology should consider consultation with an orthopedic surgeon before ordering shoulder MRI for patients who may need additional imaging after radiography. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
James, Iyore Ao; Moukalled, Ahmad; Yu, Elizabeth; Tulman, David B; Bergese, Sergio D; Jones, Christian D; Stawicki, Stanislaw Pa; Evans, David C
2014-10-01
Clearance of cervical spine injury (CSI) in the obtunded or comatose blunt trauma patient remains controversial. In patients with unreliable physical examination and no evidence of CSI on computed tomography (CT), magnetic resonance imaging of the cervical spine (CS-MRI) is the typical follow-up study. There is a growing body of evidence suggesting that CS-MRI is unnecessary with negative findings on a multi-detector CT (MDCT) scan. This review article systematically analyzes current literature to address the controversies surrounding clearance of CSI in obtunded blunt trauma patients. A literature search through MEDLINE database was conducted using all databases on the National Center for Biotechnology Information (NCBI) website (www.ncbi.nlm.nih.gov) for keywords: "cervical spine injury," "obtunded," and "MRI." The search was limited to studies published within the last 10 years and with populations of patients older than 18 years old. Eleven studies were included in the analysis yielding data on 1535 patients. CS-MRI detected abnormalities in 256 patients (16.6%). The abnormalities reported on CS-MRI resulted in prolonged rigid c-collar immobilization in 74 patients (4.9%). Eleven patients (0.7%) had unstable injury detected on CS-MRI alone that required surgical intervention. In the obtunded blunt trauma patient with unreliable clinical examination and a normal CT scan, there is still a role for CS-MRI in detecting clinically significant injuries when MRI resources are available. However, when a reliable clinical exam reveals intact gross motor function, CS-MRI may be unnecessary.
Telles, Shirley; Bhardwaj, Abhishek K.; Gupta, Ram K.; Sharma, Sachin K.; Monro, Robin; Balkrishna, Acharya
2016-01-01
Background The present study aimed at determining whether 12 weeks of yoga practice in patients with chronic LBP and MRI-based degenerative changes would result in differences in: (i) self-reported pain, anxiety, and spinal flexibility; and (ii) the structure of the discs or vertebrae. Material/Methods Sixty-two persons with MRI-proven degenerative intervertebral discs (group mean ±S.D., 36.2±6.4 years; 30 females) were randomly assigned to yoga and control groups. However, testing was conducted on only 40 subjects, so only their data are included in this study. The assessments were: self-reported pain, state anxiety, spinal flexibility, and MRI of the lumbosacral spine, performed using a 1.5 Tesla system with a spinal surface column. The yoga group was taught light exercises, physical postures, breathing techniques, and yoga relaxation techniques for 1 hour daily for 3 months. No intervention was given to the control group except for routine medical care. A repeated-measures analysis of variance (ANOVA) with post hoc analyses (which was Bonferroni-adjusted) was used. The Ethics Committee of Patanjali Research Foundation had approved the study which had been registered in the Clinical Trials Registry of India (CTRI/2012/11/003094). Results The yoga group showed a significant reduction in self-reported pain and state anxiety in a before/after comparison at 12 weeks. A few patients in both groups showed changes in the discs and vertebrae at post-intervention assessment. Conclusions Within 12 weeks, yoga practice reduced pain and state anxiety but did not alter MRI-proven changes in the intervertebral discs and in the vertebrae.
NASA Astrophysics Data System (ADS)
Filippatos, Konstantinos; Boehler, Tobias; Geisler, Benjamin; Zachmann, Harald; Twellmann, Thorsten
2010-02-01
With its high sensitivity, dynamic contrast-enhanced MR imaging (DCE-MRI) of the breast is today one of the first-line tools for early detection and diagnosis of breast cancer, particularly in the dense breast of young women. However, many relevant findings are very small or occult on targeted ultrasound images or mammography, so that MRI guided biopsy is the only option for a precise histological work-up [1]. State-of-the-art software tools for computer-aided diagnosis of breast cancer in DCE-MRI data offer also means for image-based planning of biopsy interventions. One step in the MRI guided biopsy workflow is the alignment of the patient position with the preoperative MR images. In these images, the location and orientation of the coil localization unit can be inferred from a number of fiducial markers, which for this purpose have to be manually or semi-automatically detected by the user. In this study, we propose a method for precise, full-automatic localization of fiducial markers, on which basis a virtual localization unit can be subsequently placed in the image volume for the purpose of determining the parameters for needle navigation. The method is based on adaptive thresholding for separating breast tissue from background followed by rigid registration of marker templates. In an evaluation of 25 clinical cases comprising 4 different commercial coil array models and 3 different MR imaging protocols, the method yielded a sensitivity of 0.96 at a false positive rate of 0.44 markers per case. The mean distance deviation between detected fiducial centers and ground truth information that was appointed from a radiologist was 0.94mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucourt, Maximilian de, E-mail: mdb@charite.de; Streitparth, Florian, E-mail: florian.streitparth@charite.de; Collettini, Federico
Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SDmore » {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.« less
Role of fMRI in the decision-making process: epilepsy surgery for children.
Liégeois, Frédérique; Cross, J Helen; Gadian, David G; Connelly, Alan
2006-06-01
Functional MRI (fMRI) is increasingly being used to evaluate children and adolescents who are candidates for surgical treatment of intractable epilepsy. It has the advantage of being noninvasive and well tolerated by young people. By identifying important functional regions within the brain, including unpredictable patterns of functional reorganization, it can aid in surgical decision-making. Here we illustrate this using a number of case studies from the pediatric epilepsy surgery program at our institution. We describe how fMRI, used in conjunction with conventional investigative methods such as neuropsychological assessment, MRI, and electrophysiology, can 1) help to improve functional outcome by enabling resective surgery that spares functional cortex, 2) guide surgical intervention by revealing when reorganization of function has occurred, and 3) show when abnormal cortex is also functionally active, and hence that surgery may not be the best option. Altogether, these roles have reduced the need for invasive procedures that can be both risky and distressing for young people with epilepsy. In our experience, fMRI has significantly contributed to the decision-making process, and improved the counseling and management of young people with intractable epilepsy. Copyright 2006 Wiley-Liss, Inc.
Lee, SoJung; Kuk, Jennifer L.
2013-01-01
Objective We examined skeletal muscle (SM) and fat distribution using whole-body MRI in response to aerobic (AE) versus resistance exercise (RE) training in obese adolescents and whether DXA provides similar estimates of fat and SM change as MRI. Design and Methods Thirty-nine obese boys (12–18 yr) were randomly assigned to one of three 3-month interventions: AE (n=14), RE (n=14) or a control (n=11). Results At baseline, MRI-measured total fat was significantly greater than DXA-measured total fat [Δ=3.1 kg (95% CI: −0.4 to 7.4 kg, P<0.05)], wherein underestimation by DXA was greatest in those with the highest total fat. Overall, the changes in total fat were not significantly different between MRI and DXA [Δ= −0.4 kg (95% CI: −3.5 to 2.6 kg, P>0.05)], but DXA tended to overestimate MRI fat losses in those with larger fat losses. MRI-measured SM and DXA-measured LBM (lean body mass) were significantly correlated, but as expected the absolute values were different at baseline [Δ= −28.4 kg (95% CI: −35.4 to −21.3 kg, P<0.05)]. Further, DXA overestimated MRI gains in SM in those with larger SM gains. Conclusions Although DXA and MRI-measured total and regional measures tended to be correlated at baseline and changes with exercise, there were substantial differences in the absolute values derived using DXA versus MRI. Further, there were systemic biases in the estimation between the methods wherein DXA tended to overestimate fat losses and SM gains compared to MRI. Thus, the changes in body composition observed are influenced by the method employed. PMID:23512818
Freitag, Julien; Shah, Kiran; Wickham, James; Boyd, Richard; Tenen, Abi
2017-07-14
A prospective analysis of the effect of autologous adipose derived mesenchymal stem cell (MSC) therapy in the treatment of an osteochondral defect of the knee with early progressive osteoarthritis following unsuccessful surgical intervention of osteochondritis dissecans (OCD). After failed conventional management of OCD a patient undergoes intra-articular MSC therapy. Patient outcome measures included the Numeric Pain Rating Scale (NPRS), the Western Ontario and McMaster Universities Arthritis Index (WOMAC) and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Structural outcome was assessed using MRI with the novel technique of T2 mapping used to indicate cartilage quality. Following MSC therapy the patient reported improvement in pain and function as measured by NPRS, WOMAC and KOOS. Repeat MRI analysis showed regeneration of cartilage. MRI T2 mapping indicated hyaline like cartilage regrowth. In this report, the use of MSCs, after unsuccessful conventional OCD management, resulted in structural, functional and pain improvement. These results highlight the need to further study the regenerative potential of MSC therapy. Australian and New Zealand Clinical Trial Registry Number - ACTRN12615000258550 (Date registered 19/03/2015 - retrospectively registered).
MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics
Napoli, Alessandro; Sacconi, Beatrice; Battista, Giuseppe; Guglielmi, Giuseppe; Catalano, Carlo; Albisinni, Ugo
2016-01-01
MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a “new” interventional technique and on its applications for MSK and allied sciences. PMID:26607640
Multiparametric Magnetic Resonance Imaging for Active Surveillance of Prostate Cancer.
An, Julie Y; Sidana, Abhinav; Choyke, Peter L; Wood, Bradford J.; Pinto, Peter A; Türkbey, İsmail Barış
2017-09-29
Active surveillance has gained popularity as an acceptable management option for men with low-risk prostate cancer. Successful utilization of this strategy can delay or prevent unnecessary interventions - thereby reducing morbidity associated with overtreatment. The usefulness of active surveillance primarily depends on correct identification of patients with low-risk disease. However, current population-wide algorithms and tools do not adequately exclude high-risk disease, thereby limiting the confidence of clinicians and patients to go on active surveillance. Novel imaging tools such as mpMRI provide information about the size and location of potential cancers enabling more informed treatment decisions. The term "multiparametric" in prostate mpMRI refers to the summation of several MRI series into one examination whose initial goal is to identify potential clinically-significant lesions suitable for targeted biopsy. The main advantages of MRI are its superior anatomic resolution and the lack of ionizing radiation. Recently, the Prostate Imaging-Reporting and Data System has been instituted as an international standard for unifying mpMRI results. The imaging sequences in mpMRI defined by Prostate Imaging Reporting and Data System version 2 includes: T2-weighted MRI, diffusion-weighted MRI, derived apparent-diffusion coefficient from diffusion-weighted MRI, and dynamic contrast-enhanced MRI. The use of mpMRI prior to starting active surveillance could prevent those with missed, high-grade lesions from going on active surveillance, and reassure those with minimal disease who may be hesitant to take part in active surveillance. Although larger validation studies are still necessary, preliminary results suggest mpMRI has a role in selecting patients for active surveillance. Less certain is the role of mpMRI in monitoring patients on active surveillance, as data on this will take a long time to mature. The biggest obstacles to routine use of prostate MRI are quality control, cost, reproducibility, and access. Nevertheless, there is great a potential for mpMRI to improve outcomes and quality of treatment. The major roles of MRI will continue to expand and its emerging use in standard of care approaches becomes more clearly defined and supported by increasing levels of data.
Imaging of Groin Pain: Magnetic Resonance and Ultrasound Imaging Features
Lee, Susan C.; Endo, Yoshimi; Potter, Hollis G.
2017-01-01
Context: Evaluation of groin pain in athletes may be challenging as pain is typically poorly localized and the pubic symphyseal region comprises closely approximated tendons and muscles. As such, magnetic resonance imaging (MRI) and ultrasound (US) may help determine the etiology of groin pain. Evidence Acquisition: A PubMed search was performed using the following search terms: ultrasound, magnetic resonance imaging, sports hernia, athletic pubalgia, and groin pain. Date restrictions were not placed on the literature search. Study Design: Clinical review. Level of Evidence: Level 4. Results: MRI is sensitive in diagnosing pathology in groin pain. Not only can MRI be used to image rectus abdominis/adductor longus aponeurosis and pubic bone pathology, but it can also evaluate other pathology within the hip and pelvis. MRI is especially helpful when groin pain is poorly localized. Real-time capability makes ultrasound useful in evaluating the pubic symphyseal region, as it can be used for evaluation and treatment. Conclusion: MRI and US are valuable in diagnosing pathology in athletes with groin pain, with the added utility of treatment using US-guided intervention. Strength-of Recommendation Taxonomy: C PMID:28850315
Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I.; Koch, Stefan P.; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G.; Czisch, Michael
2012-01-01
Study Objectives: To investigate the neural correlates of lucid dreaming. Design: Parallel EEG/fMRI recordings of night sleep. Setting: Sleep laboratory and fMRI facilities. Participants: Four experienced lucid dreamers. Interventions: N/A. Measurements and Results: Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. Conclusions: In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming. Citation: Dresler M; Wehrle R; Spoormaker VI; Koch SP; Holsboer F; Steiger A; Obrig H; Sämann PG; Czisch M. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study. SLEEP 2012;35(7):1017–1020. PMID:22754049
Fisher, Brian M; Cowles, Steven; Matulich, Jennifer R; Evanson, Bradley G; Vega, Diana; Dissanaike, Sharmila
2013-12-01
Guidelines are in place directing the clearance of the cervical spine in patients who are awake, alert, and oriented, but a gold standard has not been recognized for patients who are obtunded. Our study is designed to determine if magnetic resonance imaging (MRI) detects clinically significant injuries not seen on computed tomographic (CT) scans. The trauma registry was used to identify and retrospectively review medical records of blunt trauma patients from January 1, 2005, to March 30, 2012. Only obtunded patients with a CT scan and MRI of the cervical spine were included. The study cohort consisted of 277 patients. In 13 (5%) patients, MRI detected clinically significant cervical spine injuries that were missed by CT scans, and in 7 (3%) these injuries required intervention. The number needed to screen with MRI to prevent 1 missed injury was 21. The findings suggest that the routine use of MRI in clearing the cervical spine in the obtunded blunt trauma patient. Copyright © 2013 Elsevier Inc. All rights reserved.
Imaging of Groin Pain: Magnetic Resonance and Ultrasound Imaging Features.
Lee, Susan C; Endo, Yoshimi; Potter, Hollis G
Evaluation of groin pain in athletes may be challenging as pain is typically poorly localized and the pubic symphyseal region comprises closely approximated tendons and muscles. As such, magnetic resonance imaging (MRI) and ultrasound (US) may help determine the etiology of groin pain. A PubMed search was performed using the following search terms: ultrasound, magnetic resonance imaging, sports hernia, athletic pubalgia, and groin pain. Date restrictions were not placed on the literature search. Clinical review. Level 4. MRI is sensitive in diagnosing pathology in groin pain. Not only can MRI be used to image rectus abdominis/adductor longus aponeurosis and pubic bone pathology, but it can also evaluate other pathology within the hip and pelvis. MRI is especially helpful when groin pain is poorly localized. Real-time capability makes ultrasound useful in evaluating the pubic symphyseal region, as it can be used for evaluation and treatment. MRI and US are valuable in diagnosing pathology in athletes with groin pain, with the added utility of treatment using US-guided intervention. Strength-of Recommendation Taxonomy: C.
Medrano, M; Maiz, E; Maldonado-Martín, S; Arenaza, L; Rodríguez-Vigil, B; Ortega, F B; Ruiz, J R; Larrarte, E; Diez-López, I; Sarasúa-Miranda, A; Tobalina, I; Barrenechea, L; Pérez-Asenjo, J; Kannengiesser, S; Manhães-Savio, A; Echaniz, O; Labayen, I
2015-11-01
Non-alcoholic fatty liver disease is the most frequent liver abnormality observed in overweight or obese children and is strongly associated with metabolic syndrome and insulin resistance. (i) To evaluate the effect of a 22-week multidisciplinary intervention program on hepatic fat fraction in overweight or obese children and (ii) to examine the effect of the intervention on cardiometabolic risk factors, self-esteem and well-being. A total of 160 children, 9-11 years, will be recruited by pediatricians and randomly assigned to control (N = 80) or intervention (N = 80) groups. The control group will receive a family-based lifestyle and psycho-educational program (2 days/month), while the intervention group will attend the same lifestyle education and psycho-educational program plus the exercise program (3 days/week). The duration of training sessions will be 90 min of exercise, including warm-up, moderate to vigorous aerobic activities, and strength exercises. The primary outcome is the change in hepatic fat fraction (magnetic resonance imaging, MRI). Secondary outcomes include cardiometabolic risk factors such as total adiposity (dual Xray absorptiometry), visceral adiposity (MRI), functional peak aerobic capacity (cardiopulmonary exercise testing), blood pressure, muscular fitness, speed–agility, and fasting blood insulin, glucose, C-reactive protein, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, lipid profile and psychological measurements (questionnaires). All the measurements will be evaluated at baseline prior to randomization and after the intervention. This study will provide insight in the efficacy of a multidisciplinary intervention program including healthy lifestyle education, psycho-education and supervised exercise to reduce hepatic fat and cardiometabolic risk in overweight children.
Magnetic navigation in ultrasound-guided interventional radiology procedures.
Xu, H-X; Lu, M-D; Liu, L-N; Guo, L-H
2012-05-01
To evaluate the usefulness of magnetic navigation in ultrasound (US)-guided interventional procedures. Thirty-seven patients who were scheduled for US-guided interventional procedures (20 liver cancer ablation procedures and 17 other procedures) were included. Magnetic navigation with three-dimensional (3D) computed tomography (CT), magnetic resonance imaging (MRI), 3D US, and position-marking magnetic navigation were used for guidance. The influence on clinical outcome was also evaluated. Magnetic navigation facilitated applicator placement in 15 of 20 ablation procedures for liver cancer in which multiple ablations were performed; enhanced guidance in two small liver cancers invisible on conventional US but visible at CT or MRI; and depicted the residual viable tumour after transcatheter arterial chemoembolization for liver cancer in one procedure. In four of 17 other interventional procedures, position-marking magnetic navigation increased the visualization of the needle tip. Magnetic navigation was beneficial in 11 (55%) of 20 ablation procedures; increased confidence but did not change management in five (25%); added some information but did not change management in two (10%); and made no change in two (10%). In the other 17 interventional procedures, the corresponding numbers were 1 (5.9%), 2 (11.7%), 7 (41.2%), and 7 (41.2%), respectively (p=0.002). Magnetic navigation in US-guided interventional procedure provides solutions in some difficult cases in which conventional US guidance is not suitable. It is especially useful in complicated interventional procedures such as ablation for liver cancer. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Fine, Benjamin; Schultz, Susan E.; White, Lawrence; Henry, David
2017-01-01
Background: In 2012, the Ontario government withdrew public insurance coverage of imaging tests for uncomplicated low back pain. We studied the impact of this restriction on test ordering by physicians. Methods: We compared the numbers of lumbar spine radiography, computed tomography (CT) and single-segment magnetic resonance imaging (MRI) studies ordered by physicians in the 3 years before and after the policy change. We linked claims data from the Ontario Health Insurance Program with physician details to calculate rates per test-ordering physician. We compared changes in rates of monthly test ordering by family physicians and specialists before and after the policy change using segmented regression analysis of interrupted time series data. Results: The number of lumbar spine radiography and spine CT studies ordered by family physicians decreased by 98 597 (28.7%) and 17 499 (28.7%), respectively, in the year after the policy change; there was little change in ordering by specialists. The number of lumbar spine radiography studies ordered per family physician by month decreased by 0.81 tests (p < 0.001) after the intervention, followed by a smaller rebound increase that remained below baseline. Monthly ordering of spine CT per family physician declined by 0.1 tests (p < 0.001), and that of limited spine MRI rose before the intervention, decreased by 0.18 tests (p < 0.001) after the intervention, then started to rise again. Monthly ordering of limited spine MRI by specialists, which had been stable before the policy change, decreased by 0.1 tests per specialist (p < 0.001) afterward, then rose to preintervention levels. Interpretation: The restriction in coverage of imaging tests caused a larger decrease in test ordering by family physicians than by specialists and a larger, more sustained reduction in the use of lumbar spine radiography and spine CT than of spine MRI. PMID:29042408
Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard
2014-04-01
Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.
Earhart, Gammon M; Duncan, Ryan P; Huang, John L; Perlmutter, Joel S; Pickett, Kristen A
2015-02-05
Effective treatment of locomotor dysfunction in Parkinson disease (PD) is essential, as gait difficulty is an early and major contributor to disability. Exercise is recommended as an adjunct to traditional treatments for improving gait, balance, and quality of life. Among the exercise approaches known to improve walking, tango and treadmill training have recently emerged as two promising therapies for improving gait, disease severity and quality of life, yet these two interventions have not been directly compared to each other. Prior studies have been helpful in identifying interventions effective in improving gait function, but have done little to elucidate the neural mechanisms underlying functional improvements. The primary objective of the proposed work is to compare the effects of three community-based exercise programs, tango, treadmill training and stretching, on locomotor function in individuals with PD. In addition, we aim to determine whether and how these interventions alter functional connectivity of locomotor control networks in the brain. One hundred and twenty right-handed individuals with idiopathic PD who are at least 30 years of age will be assigned in successive waves to one of three community-based exercise groups: tango dancing, treadmill training or stretching (control). Each group will receive three months of exercise training with twice weekly one-hour group classes. Each participant will be evaluated at three time points: pre-intervention (baseline), post-intervention (3 months), and follow-up (6 months). All evaluations will include assessment of gait, balance, disease severity, and quality of life. Baseline and post-intervention evaluations will also include task-based functional magnetic resonance imaging (fMRI) and resting state functional connectivity MRI. All MRI and behavioral measures will be conducted with participants OFF anti-Parkinson medication, with behavioral measures also assessed ON medication. This study will provide important insights regarding the effects of different modes of exercise on locomotor function in PD. The protocol is innovative because it: 1) uses group exercise approaches for all conditions including treadmill training, 2) directly compares tango to treadmill training and stretching, 3) tests participants OFF medication, and 4) utilizes two distinct neuroimaging approaches to explore mechanisms of the effects of exercise on the brain. ClinicalTrials.gov NCT01768832 .
An Automated Method for Identifying Artifact in Independent Component Analysis of Resting-State fMRI
Bhaganagarapu, Kaushik; Jackson, Graeme D.; Abbott, David F.
2013-01-01
An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available. PMID:23847511
Cuong, Nguyen Ngoc; Luu, Vu Dang; Tuan, Tran Anh; Linh, Le Tuan; Hung, Kieu Dinh; Ngoc, Vo Truong Nhu; Sharma, Kulbhushan; Pham, Van Huy; Chu, Dinh-Toi
2018-06-01
Digital subtractional angiography (DSA) is the standard method for diagnosis, assessment and management of arteriovenous malformation in the brain. Conventional DSA (cDSA) is an invasive imaging modality that is often indicated before interventional treatments (embolization, open surgery, gamma knife). Here, we aimed to compare this technique with a non-invasive MR angiography (MRI DSA) for brain arteriovenous malformation (bAVM). Fourteen patients with ruptured brain AVM underwent embolization treatment pre-operation. Imaging was performed for all patients using MRI (1.5 T). After injecting contrast Gadolinium, dynamic MRI was performed with 40 phases, each phase of a duration of 1.2 s and having 70 images. The MRI results were independently assessed by experienced radiologist blinded to the cDSA. The AVM nidus was depicted in all patients using cDSA and MRI DSA; there was an excellent correlation between these techniques in terms of the maximum diameter and Spetzler Martin grading. Of the fourteen patients, the drainage vein was depicted in 13 by both cDSA and MRI DSA showing excellent correlation between the techniques used. MRI DSA is a non-invasive imaging modality that can give the images in dynamic view. It can be considered as an adjunctive method with cDSA to plan the strategy treatment for bAVM. Copyright © 2018 Elsevier B.V. All rights reserved.
Evolution and selection of river networks: Statics, dynamics, and complexity
Rinaldo, Andrea; Rigon, Riccardo; Banavar, Jayanth R.; Maritan, Amos; Rodriguez-Iturbe, Ignacio
2014-01-01
Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics—every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept. PMID:24550264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, A; Bhagwat, M; Buzurovic, I
Purpose: To investigate image modality selection in an environment with limited access to interventional MRI for image-guided high-dose-rate cervical-cancer brachytherapy. Methods: Records of all cervical-cancer patients treated with brachytherapy between 1/2013 and 8/2014 were analyzed. Insertions were performed under CT guidance (CT group) or with >1 fraction under 3T MR guidance (MRI group; subMRI includes only patients who also had a CT-guided insertion). Differences between groups in clinical target volume (CTV), disease stage (I/II or III/IV), number of patients with or without interstitial needles, and CTV D90 were investigated. Statistical significance was evaluated with the Student T test and Fishermore » test (p <0.05). Results: 46 cervical-cancer patients were included (16 MRI [3 subMRI], 30 CT). CTV: overall, 55±53 cm3; MRI, 81±61 cm3; CT, 42±44 cm3 (p = 0.017). Stage: overall, 24 I/II and 22 III/IV; MRI, 3 I/II and 13 III/IV; CT, 21 I/II and 9 III/IV (p = 0.002). Use of needles: overall, 26 without and 20 with; MRI, 5 without and 11 with; CT, 21 without and 9 with (p = 0.015). CTV D90: overall, 82±5 Gy; MRI, 81±6 Gy; CT, 82±5 Gy (p = 0.78). SubMRI: CTV and D90 (as % of nominal fraction dose) were 23±6 cm3 and 124±3% for MRI-guided insertions and 21±5 cm3 (p = 0.83) and 106±12% (p = 0.15) for CT-guided insertions. Conclusion: Statistically significant differences in patient population indicate preferential use of MRI for patients with high-stage disease and large residual CTVs requiring the use of interstitial needles. CTV D90 was similar between groups, despite the difference in patient selection. For patients who underwent both CT and MRI insertions, a larger MR CTV D90 and similar CTVs between insertions were observed. While MRI is generally preferable to CT, MRI selection can be optimized in environments without a dedicated MRI brachytherapy suite. This work was partially funded by the NIH R21 CA167800 (PI: Viswanathan; aviswanathan@partners.org)« less
Smits, M; Wieberdink, R G; Bakker, S L M; Dippel, D W J
2011-04-01
We describe a left-handed patient with transient aphasia and bilateral carotid stenosis. Computed tomography (CT) arteriography showed a 90% stenosis of the right and 30% stenosis of the left internal carotid artery. Head CT and magnetic resonance imaging (MRI) of the brain showed no recent ischemic changes. As only the symptomatic side would require surgical intervention, and because hemispheric dominance for language in left-handed patients may be either left or right sided, a preoperative assessment of hemispheric dominance was required. We used functional MRI to determine hemispheric dominance for language and hence to establish the indication for carotid endarterectomy surgery. Functional MRI demonstrated right hemispheric dominance for language and right-sided carotid endarterectomy was performed. We propose that the clinical use of functional MRI as a noninvasive imaging technique for the assessment of hemispheric language dominance may be extended to the assessment of hemispheric language dominance prior to carotid endarterectomy. Copyright © 2010 by the American Society of Neuroimaging.
Siddiqui, M R S; Shanmuganandan, A P; Rasheed, S; Tekkis, P; Brown, G; Abulafi, A M
2017-11-01
This article focuses on the audit and assessment of clinical practice before and after introduction of MRI reporting guidelines. Standardised proforma based reporting may improve quality of MRI reports. Uptake of the use may be facilitated by endorsement from regional and national cancer organisations. This audit was divided into 2 phases. MRI reports issued between April 2014 and June 2014 were included in the first part of our audit. Phase II included MRI reports issued between April 2015 and June 2015. 14 out of 15 hospitals that report MRI scans in the LCA responded to our audit proposal. The completion rate of key MRI metrics/metrics was better in proforma compared to prose reports both before (98% vs 73%; p < 0.05) and after introduction of the guidelines (98% vs 71%; p < 0.05). There was an approximate doubling of proforma reporting after the introduction of guidelines and workshop interventions (39% vs 65%; p < 0.05). Evaluation of locally advanced cancers (tumours extending to or beyond the circumferential resection margin) for beyond TME surgery was reported in 3% of prose reports vs. 42% in proformas. Incorporation of standardised reporting in official guidelines improved the uptake of proforma based reporting. Proforma based reporting captured more MRI reportable items compared to prose summaries, before and after the implementation of guidelines. MRI reporting of advanced cancers for beyond TME surgery falls short of acceptable standards but is more detailed in proforma based reports. Further work to improve completion especially in beyond TME reporting is required. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Wu, Ed X.; Tang, Haiying; Tong, Christopher; Heymsfield, Steve B.; Vasselli, Joseph R.
2015-01-01
This study aimed to develop a quantitative and in vivo magnetic resonance imaging (MRI) approach to investigate the muscle growth effects of anabolic steroids. A protocol of MRI acquisition on a standard clinical 1.5 Tesla scanner and quantitative image analysis was established and employed to measure the individual muscle and organ volumes in the intact and castrated guinea pigs undergoing a 16-week treatment protocol by two well-documented anabolic steroids, testosterone and nandrolone, via implanted silastic capsules. High correlations between the in vivo MRI and postmortem dissection measurements were observed for shoulder muscle complex (R = 0.86), masseter (R=0.79), temporalis (R=0.95), neck muscle complex (R=0.58), prostate gland and seminal vesicles (R=0.98), and testis (R=0.96). Furthermore, the longitudinal MRI measurements yielded adequate sensitivity to detect the restoration of growth to or towards normal in castrated guinea pigs by replacing circulating steroid levels to physiological or slightly higher levels, as expected. These results demonstrated that quantitative MRI using a standard clinical scanner provides accurate and sensitive measurement of individual muscles and organs, and this in vivo MRI protocol in conjunction with the castrated guinea pig model constitutes an effective platform to investigate the longitudinal and cross-sectional growth effects of other potential anabolic steroids. The quantitative MRI protocol developed can also be readily adapted for human studies on most clinical MRI scanner to investigate the anabolic steroid growth effects, or monitor the changes in individual muscle and organ volume and geometry following injury, strength training, neuromuscular disorders, and pharmacological or surgical interventions. PMID:18241900
Peters, N H G M; van Esser, S; van den Bosch, M A A J; Storm, R K; Plaisier, P W; van Dalen, T; Diepstraten, S C E; Weits, T; Westenend, P J; Stapper, G; Fernandez-Gallardo, M A; Borel Rinkes, I H M; van Hillegersberg, R; Mali, W P Th M; Peeters, P H M
2011-04-01
We evaluated whether performing contrast-enhanced breast MRI in addition to mammography and/or ultrasound in patients with nonpalpable suspicious breast lesions improves breast cancer management. The MONET - study (MR mammography of nonpalpable breast tumours) is a randomised controlled trial in patients with a nonpalpable BIRADS 3-5 lesion. Patients were randomly assigned to receive routine medical care, including mammography, ultrasound and lesion sampling by large core needle biopsy or additional MRI preceding biopsy. Patients with cancer were referred for surgery. Primary end-point was the rate of additional surgical procedures (re-excisions and conversion to mastectomy) in patients with a nonpalpable breast cancer. Four hundred and eighteen patients were randomised, 207 patients were allocated to MRI, and 211 patients to the control group. In the MRI group 74 patients had 83 malignant lesions, compared to 75 patients with 80 malignant lesions in the control group. The primary breast conserving surgery (BCS) rate was similar in both groups; 68% in the MRI group versus 66% in the control group. The number of re-excisions performed because of positive resection margins after primary BCS was increased in the MRI group; 18/53 (34%) patients in the MRI group versus 6/50 (12%) in the control group (p=0.008). The number of conversions to mastectomy did not differ significantly between groups. Overall, the rate of an additional surgical intervention (BCS and mastectomy combined) after initial breast conserving surgery was 24/53 (45%) in the MRI group versus 14/50 (28%) in the control group (p=0.069). Addition of MRI to routine clinical care in patients with nonpalpable breast cancer was paradoxically associated with an increased re-excision rate. Breast MRI should not be used routinely for preoperative work-up of patients with nonpalpable breast cancer. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sparks, Rachel; Bloch, B Nicolas; Feleppa, Ernest; Barratt, Dean; Madabhushi, Anant
2013-03-08
In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is dependent on the reader's ability to determine fiducials or prostate surfaces with minimal error, which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion method represents a significant advance over the current state-of-the-art because it does not require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the urethra, calcifications, and the centroids of CaP nodules) of 3.39 ± 0.85 mm.
Bleyenheuft, Yannick; Dricot, Laurence; Gilis, Nathalie; Kuo, Hsing-Ching; Grandin, Cécile; Bleyenheuft, Corinne; Gordon, Andrew M.; Friel, Kathleen M.
2016-01-01
Intensive rehabilitation interventions have been shown to be efficacious in improving upper extremity function in children with unilateral spastic cerebral palsy (USCP). These interventions are based on motor learning principles and engage children in skillful movements. Improvements in upper extremity function are believed to be associated with neuroplastic changes. However, these neuroplastic changes have not been well-described in children with cerebral palsy, likely due to challenges in defining and implementing the optimal tools and tests in children. Here we documented the implementation of three different neurological assessments (diffusion tensor imaging-DTI, transcranial magnetic stimulation-TMS and functional magnetic resonance imaging-fMRI) before and after a bimanual intensive treatment (HABIT-ILE) in two children with USCP presenting differential corticospinal developmental reorganization (ipsilateral and contralateral). The aim of the study was to capture neurophysiological changes and to document the complementary relationship between these measures, the potential measurable changes and the feasibility of applying these techniques in children with USCP. Independent of cortical reorganization, both children showed increases in activation and size of the motor areas controlling the affected hand, quantified with different techniques. In addition, fMRI provided additional unexpected changes in the reward circuit while using the affected hand. PMID:26183338
Intra-opeartive OCT imaging and sensing devices for clinical translation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Yu
2017-02-01
Stereotactic procedures that require insertion of needle-based instruments into the brain serve important roles in a variety of neurosurgical interventions, such as biopsy, catheterization, and electrode placement. A fundamental limitation of these stereotactic procedures is that they are blind procedures in that the operator does not have real-time feedback as to what lies immediately ahead of the advancing needle. Therefore, there is a great clinical need to navigate the instrument safely and accurately to the targets. Towards that end, we developed a forwarding-imaging needle-type optical coherence tomography (OCT) probe for avoiding the hemorrhage and guiding neurosurgical interventions. The needle probe has a thin diameter of 0.7 mm. The feasibility of vessel detection and neurosurgical guidance were demonstrated on sheep brain in vivo and human brain ex vivo. In addition, we further reduced the probe size to 0.3 mm using an optical Doppler sensing (ODS) fiber probe that can integrate with microelectrode recording (MER) to detect the blood vessels lying ahead to improve the safety of this procedure. Furthermore, to overcome the field-of-view limitation of OCT probe, we developed an MRI-compatible OCT imaging probe for neurosurgery. MRI/OCT multi-scale imaging integrates micro-resolution optical imaging with wide-field MRI imaging, and has potential to further improve the targeting accuracy.
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.
2014-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S
2013-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
Spoormakers, T J P; Ensink, J M; Goehring, L S; Koeman, J P; Ter Braake, F; van der Vlugt-Meijer, R H; van den Belt, A J M
2003-03-01
The occurrence of unexpectedly high numbers of horses with neurological signs during two outbreaks of strangles required prompt in-depth researching of these cases, including the exploration of magnetic resonance imaging (MRI) as a possible diagnostic technique. To describe the case series and assess the usefulness of MRI as an imaging modality for cases suspected of space-occupying lesions in the cerebral cavity. Four cases suspected of suffering from cerebral damage due to Streptococcus equi subsp. equi infection were examined clinically, pathologically, bacteriologically, by clinical chemistry (3 cases) and MRI (2 cases). In one case, MRI findings were compared to images acquired using computer tomography (CT). In all cases, cerebral abscesses positive for Streptococcus equi subsp. equi were found, which explained the clinical signs. Although the lesions could be visualised with CT, MRI images were superior in representing the exact anatomic reality of the soft tissue lesions. The diagnosis of bastard strangles characterised by metastatic brain abscesses was confirmed. MRI appeared to be an excellent tool for the imaging of cerebral lesions in the horse. The high incidence of neurological complications could not be explained but possibly indicated a change in virulence of certain strains of Streptococcus equi subsp. equi. MRI images were very detailed, permitting visualisation of much smaller lesions than demonstrated in this study and this could allow prompt clinical intervention in less advanced cases with a better prognosis. Further, MRI could assist in the surgical treatment of brain abscesses, as has been described earlier for CT.
Individualized real-time fMRI neurofeedback to attenuate craving in nicotine-dependent smokers.
Hartwell, Karen J; Hanlon, Colleen A; Li, Xingbao; Borckardt, Jeffrey J; Canterberry, Melanie; Prisciandaro, James J; Moran-Santa Maria, Megan M Moran; LeMatty, Todd; George, Mark S; Brady, Kathleen T
2016-01-01
Cue-induced craving plays an important role in relapse, and the neural correlates of cue-induced craving have been elucidated using fMRI. This study examined the utility of real-time fMRI (rtfMRI) neurofeedback to strengthen self-regulation of craving-related neural activation and cue-reactivity in cigarette smokers. Nicotine-dependent smokers were randomized to rtfMRI neurofeedback or to a no-feedback control group. Participants completed 3 neuroimaging visits. Within each visit, an initial run during which smoking-related cues were used to provoke craving, an individualized craving-related region of interest (ROI) in the prefrontal cortex or anterior cingulate cortex was identified. In the rtfMRI group, activity from the ROI was fed back via a visual display during 3 subsequent runs while participants were instructed to reduce craving during cue exposure. The control group had an identical experience with no feedback provided. Forty-four nicotine-dependent smokers were recruited to participate in our study; data from the 33 participants who completed a 1-week follow-up visit were included in the analysis. Subjective craving ratings and cue-induced brain activation were lower in the rtfMRI group than in the control group. As participants were not seeking treatment, clinical outcomes are lacking. Nicotine-dependent smokers receiving rtfMRI feedback from an individualized ROI attenuated smoking cue-elicited neural activation and craving, relative to a control group. Further studies are needed in treatment-seeking smokers to determine if this intervention can translate into a clinically meaningful treatment modality.
Occult Intertrochanteric Fracture Mimicking the Fracture of Greater Trochanter.
Chung, Phil Hyun; Kang, Suk; Kim, Jong Pil; Kim, Young Sung; Lee, Ho Min; Back, In Hwa; Eom, Kyeong Soo
2016-06-01
Occult intertrochanteric fractures are misdiagnosed as isolated greater trochanteric fractures in some cases. We investigated the utility of three-dimensional computed tomography (3D-CT) and magnetic resonance imaging (MRI) in the diagnosis and outcome management of occult intertrochanteric fractures. This study involved 23 cases of greater trochanteric fractures as diagnosed using plain radiographs from January 2004 to July 2013. Until January 2008, 9 cases were examined with 3D-CT only, while 14 cases were screened with both 3D-CT and MRI scans. We analyzed diagnostic accuracy and treatment results following 3D-CT and MRI scanning. Nine cases that underwent 3D-CT only were diagnosed with isolated greater trochanteric fractures without occult intertrochanteric fractures. Of these, a patient with displacement received surgical treatment. Of the 14 patients screened using both CT and MRI, 13 were diagnosed with occult intertrochanteric fractures. Of these, 11 were treated with surgical intervention and 2 with conservative management. Three-dimensional CT has very low diagnostic accuracy in diagnosing occult intertrochanteric fractures. For this reason, MRI is recommended to confirm a suspected occult intertrochanteric fracture and to determine the most appropriate mode of treatment.
Occult Intertrochanteric Fracture Mimicking the Fracture of Greater Trochanter
Chung, Phil Hyun; Kang, Suk; Kim, Jong Pil; Kim, Young Sung; Back, In Hwa; Eom, Kyeong Soo
2016-01-01
Purpose Occult intertrochanteric fractures are misdiagnosed as isolated greater trochanteric fractures in some cases. We investigated the utility of three-dimensional computed tomography (3D-CT) and magnetic resonance imaging (MRI) in the diagnosis and outcome management of occult intertrochanteric fractures. Materials and Methods This study involved 23 cases of greater trochanteric fractures as diagnosed using plain radiographs from January 2004 to July 2013. Until January 2008, 9 cases were examined with 3D-CT only, while 14 cases were screened with both 3D-CT and MRI scans. We analyzed diagnostic accuracy and treatment results following 3D-CT and MRI scanning. Results Nine cases that underwent 3D-CT only were diagnosed with isolated greater trochanteric fractures without occult intertrochanteric fractures. Of these, a patient with displacement received surgical treatment. Of the 14 patients screened using both CT and MRI, 13 were diagnosed with occult intertrochanteric fractures. Of these, 11 were treated with surgical intervention and 2 with conservative management. Conclusion Three-dimensional CT has very low diagnostic accuracy in diagnosing occult intertrochanteric fractures. For this reason, MRI is recommended to confirm a suspected occult intertrochanteric fracture and to determine the most appropriate mode of treatment. PMID:27536653
Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S
2015-05-01
Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.
An RF dosimeter for independent SAR measurement in MRI scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.
2013-12-15
Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.« less
[Contrast-enhanced ultrasound (CEUS) and image fusion for procedures of liver interventions].
Jung, E M; Clevert, D A
2018-06-01
Contrast-enhanced ultrasound (CEUS) is becoming increasingly important for the detection and characterization of malignant liver lesions and allows percutaneous treatment when surgery is not possible. Contrast-enhanced ultrasound image fusion with computed tomography (CT) and magnetic resonance imaging (MRI) opens up further options for the targeted investigation of a modified tumor treatment. Ultrasound image fusion offers the potential for real-time imaging and can be combined with other cross-sectional imaging techniques as well as CEUS. With the implementation of ultrasound contrast agents and image fusion, ultrasound has been improved in the detection and characterization of liver lesions in comparison to other cross-sectional imaging techniques. In addition, this method can also be used for intervention procedures. The success rate of fusion-guided biopsies or CEUS-guided tumor ablation lies between 80 and 100% in the literature. Ultrasound-guided image fusion using CT or MRI data, in combination with CEUS, can facilitate diagnosis and therapy follow-up after liver interventions. In addition to the primary applications of image fusion in the diagnosis and treatment of liver lesions, further useful indications can be integrated into daily work. These include, for example, intraoperative and vascular applications as well applications in other organ systems.
Young, Kymberly D; Zotev, Vadim; Phillips, Raquel; Misaki, Masaya; Drevets, Wayne C; Bodurka, Jerzy
2018-04-23
Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy. © 2018 The Author. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.
Bhaganagarapu, Kaushik; Jackson, Graeme D; Abbott, David F
2013-01-01
An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available.
Vik, Berit Marie Dykesteen; Skeie, Geir Olve; Vikane, Eirik; Specht, Karsten
2018-01-01
We explored the effects of playing the piano on patients with cognitive impairment after mild traumatic brain injury (mTBI) and, addressed the question if this approach would stimulate neural networks in re-routing neural connections and link up cortical circuits that had been functional inhibited due to disruption of brain tissue. Functional neuroimaging scans (fMRI) and neuropsychological tests were performed pre-post intervention. Three groups participated, one mTBI group (n = 7), two groups of healthy participants, one with music training (n = 11), one baseline group without music (n = 12). The music groups participated in 8 weeks music-supported intervention. The patient group revealed training-related neuroplasticity in the orbitofrontal cortex. fMRI results fit well with outcome from neuropsychological tests with significant enhancement of cognitive performance in the music groups. Ninety per cent of mTBI group returned to work post intervention. Here, for the first time, we demonstrated behavioural improvements and functional brain changes after 8 weeks of playing piano on patients with mTBI having attention, memory and social interaction problems. We present evidence for a causal relationship between musical training and reorganisation of neural networks promoting enhanced cognitive performance. These results add a novel music-supported intervention within rehabilitation of patients with cognitive deficits following mTBI.
Macoveanu, Julian; Fisher, Patrick M; Haahr, Mette E; Frokjaer, Vibe G; Knudsen, Gitte M; Siebner, Hartwig R
2014-10-01
Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are commonly prescribed antidepressant drugs targeting the dysfunctional serotonin (5-HT) system, yet little is known about the functional effects of prolonged serotonin reuptake inhibition in healthy individuals. Here we used functional MRI (fMRI) to investigate how a three-week fluoxetine intervention influences neural activity related to risk taking and reward processing. Employing a double-blinded parallel-group design, 29 healthy young males were randomly assigned to receive 3 weeks of a daily dose of 40 mg fluoxetine or placebo. Participants underwent task-related fMRI prior to and after the three-week intervention while performing a card gambling task. The task required participants to choose between two decks of cards. Choices were associated with different risk levels and potential reward magnitudes. Relative to placebo, the SSRI intervention did not alter individual risk-choice preferences, but modified neural activity during decision-making and reward processing: During the choice phase, SSRI reduced the neural response to increasing risk in lateral orbitofrontal cortex, a key structure for value-based decision-making. During the outcome phase, a midbrain region showed an independent decrease in the responsiveness to rewarding outcomes. This midbrain cluster included the raphe nuclei from which serotonergic modulatory projections originate to both cortical and subcortical regions. The findings corroborate the involvement of the normally functioning 5HT-system in decision-making under risk and processing of monetary rewards. The data suggest that prolonged SSRI treatment might reduce emotional engagement by reducing the impact of risk during decision-making or the impact of reward during outcome evaluation. Copyright © 2014 Elsevier Inc. All rights reserved.
Predicting Treatment Response in Social Anxiety Disorder From Functional Magnetic Resonance Imaging
Doehrmann, Oliver; Ghosh, Satrajit S.; Polli, Frida E.; Reynolds, Gretchen O.; Horn, Franziska; Keshavan, Anisha; Triantafyllou, Christina; Saygin, Zeynep M.; Whitfield-Gabrieli, Susan; Hofmann, Stefan G.; Pollack, Mark; Gabrieli, John D.
2013-01-01
Context Current behavioral measures poorly predict treatment outcome in social anxiety disorder (SAD). To our knowledge, this is the first study to examine neuroimaging-based treatment prediction in SAD. Objective To measure brain activation in patients with SAD as a biomarker to predict subsequent response to cognitive behavioral therapy (CBT). Design Functional magnetic resonance imaging (fMRI) data were collected prior to CBT intervention. Changes in clinical status were regressed on brain responses and tested for selectivity for social stimuli. Setting Patients were treated with protocol-based CBT at anxiety disorder programs at Boston University or Massachusetts General Hospital and underwent neuroimaging data collection at Massachusetts Institute of Technology. Patients Thirty-nine medication-free patients meeting DSM-IV criteria for the generalized subtype of SAD. Interventions Brain responses to angry vs neutral faces or emotional vs neutral scenes were examined with fMRI prior to initiation of CBT. Main Outcome Measures Whole-brain regression analyses with differential fMRI responses for angry vs neutral faces and changes in Liebowitz Social Anxiety Scale score as the treatment outcome measure. Results Pretreatment responses significantly predicted subsequent treatment outcome of patients selectively for social stimuli and particularly in regions of higher-order visual cortex. Combining the brain measures with information on clinical severity accounted for more than 40% of the variance in treatment response and substantially exceeded predictions based on clinical measures at baseline. Prediction success was unaffected by testing for potential confounding factors such as depression severity at baseline. Conclusions The results suggest that brain imaging can provide biomarkers that substantially improve predictions for the success of cognitive behavioral interventions and more generally suggest that such biomarkers may offer evidence-based, personalized medicine approaches for optimally selecting among treatment options for a patient. PMID:22945462
Dumitrascu, Oana M.; Torbati, Sam; Tighiouart, Mourad; Newman-Toker, David E.; Song, Shlee S.
2016-01-01
Objectives Isolated Acute Vestibular Syndrome (iAVS) presentations to the Emergency Department (ED) pose management challenges given concerns for posterior circulation strokes. False negative brain imaging may erroneously reassure clinicians, while HINTS-plus examination outperforms imaging to screen for strokes in iAVS. We studied the feasibility of implementing HINTS-plus testing in the ED, aiming to reduce neuroimaging in patients with iAVS. Methods We launched an institutional Quality Improvement initiative, using DMAIC methodology. The outcome measures (proportion of iAVS subjects that had HINTS-plus examinations and underwent neuroimaging by CT/MRI) were compared before and after the established intervention. The intervention consisted of formal training for neurologists and emergency physicians on how to perform, document, and interpret HINTS-plus and implementation of novel iAVS management algorithm. Neuroimaging was not recommended if HINTS-plus suggested peripheral vestibular etiology. If a central process was suspected, brain MRI/MR angiogram was performed. Head CT was reserved only for thrombolytic time-window cases. Results In the first 2 months post-implementation, HINTS-plus testing performance by neurologists increased from 0% to 80% (p = 0.007), and by ED providers from 0% to 9.09% (p = 0.367). Head CT scans were reduced from 18.5% to 6. 25%. Brain MRI use was reduced from 51.8% to 31.2%. 60% of the iAVS subjects were discharged from the ED; none were readmitted or had another ED presentation in the ensuing 30 days. Conclusions Implementation of HINTS-plus evaluation in the ED is valuable and feasible for neurologists, but challenging for emergency physicians. Future studies should determine the ‘dose-response’ curve of educational interventions. PMID:28248913
Dumitrascu, Oana M; Torbati, Sam; Tighiouart, Mourad; Newman-Toker, David E; Song, Shlee S
2017-03-01
Isolated acute vestibular syndrome (iAVS) presentations to the emergency department (ED) pose management challenges, given the concerns for posterior circulation strokes. False-negative brain imaging may erroneously reassure clinicians, whereas HINTS-plus examination outperforms imaging to screen for strokes in iAVS. We studied the feasibility of implementing HINTS-plus testing in the ED, aiming to reduce neuroimaging in patients with iAVS. We launched an institutional Quality Improvement initiative, using DMAIC methodology. The outcome measures [proportion of iAVS subjects who had HINTS-plus examinations and underwent neuroimaging by computed tomography/magnetic resonance imaging (CT/MRI)] were compared before and after the established intervention. The intervention consisted of formal training for neurologists and emergency physicians on how to perform, document, and interpret HINTS-plus and implementation of novel iAVS management algorithm. Neuroimaging was not recommended if HINTS-plus suggested peripheral vestibular etiology. If a central process was suspected, brain MRI/MR angiogram was performed. Head CT was reserved only for thrombolytic time-window cases. In the first 2 months postimplementation, HINTS-plus testing performance by neurologists increased from 0% to 80% (P=0.007), and by ED providers from 0% to 9.09% (P=0.367). Head CT scans were reduced from 18.5% to 6.25%. Brain MRI use was reduced from 51.8% to 31.2%. About 60% of the iAVS subjects were discharged from the ED; none were readmitted or had another ED presentation in the ensuing 30 days. Implementation of HINTS-plus evaluation in the ED is valuable and feasible for neurologists, but challenging for emergency physicians. Future studies should determine the "dose-response" curve of educational interventions.
Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul
2018-02-12
Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.
Derias, Mina; Subramanian, Ashok; Allan, Simon; Shah, Elizabeth; Teraifi, Hassan El; Howlett, David
2016-07-01
Invasive lobular carcinoma (ILC) accounts for 5-15% of breast cancers. In comparison to other types of breast cancer, ILC is more likely to be associated with multifocal and contralateral breast involvement as well as a tendency to a diffuse infiltrative growth pattern which can represent a diagnostic challenge. The National Institute of Clinical Excellence guidelines in 2009 recommended the use of magnetic resonance imaging (MRI) in the preoperative assessment of ILC. This study aims to assess compliance with the guidelines in two District General Hospitals and the utility of MRI in the investigation of ILC. All cases of ILC between 2011 and 2013 were retrospectively identified from the pathology database and their breast imaging findings, pathology report, and operative intervention were reviewed. A total of 126 patients were identified with ILC, of these 46 had MRI preoperatively (36.5%). MRI upgraded mammography/ultrasound diagnoses in 10 patients (21.7%). MRI showed multicentric unilateral disease in 17 patients (37.0%) occult on ultrasound/mammogram, with these patients undergoing mastectomy and 16/17 (94.1%) confirmed multifocality on pathology. MRI showed a contralateral lesion in 9 patients (19.6%), four (8.7%) of which were malignant and had bilateral surgery, and five (10.9%) were benign on further imaging/biopsy. MRI also downgraded three patients (6.5%) to unifocal disease with reported multifocal appearances on mammography/ultrasound, and these patients underwent breast-conserving surgery. MRI adds significant additional information to mammograms/ultrasound in ILC and should be undertaken in all such cases preoperatively assuming no contraindication. © 2016 Wiley Periodicals, Inc.
Kemp, Stephen F; Alter, Craig A; Dana, Ken; Baptista, Joyce; Blethen, Sandra L
2002-05-01
The primary use of magnetic resonance imaging (MRI) in the evaluation of children with short stature (SS) is to discover lesions in the central nervous system (CNS), particularly tumors that may require intervention. MRI has a secondary role in identifying structural abnormalities responsible for growth hormone deficiency (GHD). We examined data from the National Cooperative Growth Study (NCGS) Substudy 8 to determine how American physicians are using MRI in evaluating children with SS. Of the 21,738 short children enrolled in NCGS, 5% underwent MRI during their follow-up. Children who had GH stimulation testing were more likely to have had an MRI than those in whom no GH stimulation test was performed (19% vs 2%, p <0.0001). Moreover, children diagnosed with severe GHD (maximum GH <5 ng/ml) were more likely to have an abnormal finding on MRI. Of these patients, 27% demonstrated an abnormality as compared to 12% and 12.5% in patients with partial GHD and normal GH stimulation test results (>10 ng/ml), respectively. Abnormalities unrelated to the hypothalamus or pituitary represented 30% of these findings, while disorders in pituitary anatomy, including pituitary hypoplasia, pituitary stalk interruption, and ectopic posterior pituitary, represented an additional 30% of abnormal MRI examinations. CNS tumors comprised 23% of abnormal findings in these patients. We conclude that MRI provides significant value in the evaluation of children with SS, by identifying CNS tumors associated with growth failure as well as anatomical abnormalities of the pituitary. These findings are useful in confirming the diagnosis of GHD in children and identifying potential candidates for continued GH replacement in adulthood.
ACCORDION MIND: results of the observational extension of the ACCORD MIND randomised trial.
Murray, Anne M; Hsu, Fang-Chi; Williamson, Jeff D; Bryan, R Nick; Gerstein, Hertzel C; Sullivan, Mark D; Miller, Michael E; Leng, Iris; Lovato, Laura L; Launer, Lenore J
2017-01-01
The Memory in Diabetes (MIND) substudy of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study, a double 2x2 factorial parallel-group randomised clinical trial, tested whether intensive compared with standard management of hyperglycaemia, BP or lipid levels reduced cognitive decline and brain atrophy in 2977 people with type 2 diabetes. We describe the results of the observational extension study, ACCORDION MIND (ClinicalTrials.gov registration no. NCT00182910), which aimed to measure the long-term effects of the three ACCORD interventions on cognitive and brain structure outcomes approximately 4 years after the trial ended. Participants (mean diabetes duration 10 years; mean age 62 years at baseline) received a fourth cognitive assessment and a third brain MRI, targeted at 80 months post-randomisation. Primary outcomes were performance on the Digit Symbol Substitution Test (DSST) and total brain volume (TBV). The contrast of primary interest compared glycaemic intervention groups at the ACCORDION visit; secondary contrasts were the BP and lipid interventions. Of the surviving ACCORD participants eligible for ACCORDION MIND, 1328 (68%) were re-examined at the ACCORDION follow-up visit, approximately 47 months after the intensive glycaemia intervention was stopped. The significant differences in therapeutic targets for each of the three interventions (glycaemic, BP and lipid) were not sustained. We found no significant difference in 80 month mean change from baseline in DSST scores or in TBV between the glycaemic intervention groups, or the BP and lipid interventions. Sensitivity analyses of the sites with ≥70% participation at 80 months revealed consistent results. The ACCORD interventions did not result in long-term beneficial or adverse effects on cognitive or brain MRI outcomes at approximately 80 months follow-up. Loss of separation in therapeutic targets between treatment arms and loss to follow-up may have contributed to the lack of detectable long-term effects. ClinicalTrials.gov NCT00182910.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsumori, Tetsuya, E-mail: katsumo@eurus.dti.ne.jp; Kasahara, Toshiyuki; Oda, Minori
The purpose of this study was to prospectively assess the safety and effectiveness of uterine artery embolization (UAE) using porous gelatin particle (PGP; Gelpart; Asuterasu, Tokyo, Japan) for symptomatic uterine fibroids. Twenty-five consecutive premenopausal women underwent UAE with PGP. The angiographic end point of embolization was near stasis of the ascending uterine artery. Pelvic magnetic resonance imaging (MRI) was obtained before and after the procedure. Complications were assessed. The outcomes of technique, infarction rates of all fibroid tissue after UAE with contrast-enhanced MRI, change in symptoms and quality of life using serial Uterine Fibroid Symptom and Quality of Life (UFS-QOL)more » questionnaires, and additional interventions were evaluated. Bilateral UAE was successfully performed in all patients. Enhanced MRI 1 week after UAE showed that 100% infarction of all fibroid tissue was achieved in 65% (15 of 23) of patients; 90-99% infarction was achieved in 35% (8 of 23) of patients. Mean follow-up was 12 months (range 1-20). Symptom and QOL scores at baseline were 47.2 and 61.7, respectively. Both scores significantly improved to 26.3 (P < 0.001) and 82.4 (P < 0.001) at 4 months and to 20.4 (P < 0.001) and 77.6 (P < 0.001) at 1 year, respectively. No additional gynecologic interventions were performed in any patient. There were no major complications. Minor complications occurred in two patients. UAE using PGP is a safe and effective procedure and shows that outcomes after UAE, as measured with enhanced MRI and UFS-QOL questionnaires, seem comparable with those of UAE using other embolic agents. PGP is a promising embolic agent used for UAE to treat symptomatic uterine fibroids. Further comparative study between PGP and other established embolic agents is required.« less
Johansson, Fredrik R.; Skillgate, Eva; Adolfsson, Anders; Jenner, Göran; DeBri, Edin; Swärdh, Leif; Cools, Ann M.
2015-01-01
Context Tennis is an asymmetric overhead sport with specific muscle-activation patterns, especially eccentrically in the rotator cuff. Magnetic resonance imaging (MRI) findings in asymptomatic adolescent elite tennis players have not previously been reported. Objective The first aim of the study was to describe MRI findings regarding adaptations or abnormalities, as well as muscle cross-sectional area (CSA), of the rotator cuff. The second aim of the study was to investigate the rotator cuff based on the interpretation of the MRI scans as normal versus abnormal, with the subdivision based on the grade of tendinosis, and its association with eccentric rotator cuff strength in the dominant arm (DA) of the asymptomatic elite adolescent tennis player. Setting Testing environment at the radiology department of Medicinsk Röntgen AB. Patients or Other Participants Thirty-five asymptomatic elite tennis players (age = 17.4 ± 2.7 years) were selected based on ranking and exposure time. Intervention(s) We assessed MRI scans and measured the CSA of the rotator cuff muscle. The non-DA (NDA) was used as a control. In addition, eccentric testing of the external rotators of the DA was performed with a handheld dynamometer. Results The DA and NDA displayed different frequencies of infraspinatus tendinosis (grade 1 changes) (P < .05). Rotator cuff measurements revealed larger infraspinatus and teres minor CSA (P < .05) in the DA than in the NDA. Mean eccentric external-rotation strength in the DA stratified by normal tendon and tendinosis was not different between groups (P = .723). Conclusions Asymptomatic adolescent elite tennis players demonstrated infraspinatus tendinosis more frequently in the DA than in the NDA. Clinicians must recognize these tendon changes in order to modify conditioning and performance programs appropriately. PMID:26651279
Malikova, Marina A; Tkacz, Jaroslaw N; Slanetz, Priscilla J; Guo, Chao-Yu; Aakil, Adam; Jara, Hernan
2017-08-01
Early breast cancer detection is important for intervention and prognosis. Advances in treatment and outcome require diagnostic tools with highly positive predictive value. To study the potential role of quantitative MRI (qMRI) using T1/T2 ratios to differentiate benign from malignant breast lesions. A cross-sectional study of 69 women with 69 known or suspicious breast lesions were scanned with mixed-turbo spin echo pulse sequence. Patients were grouped according to histopathological assessment of disease stage: untreated malignant tumor, treated malignancy and benign disease. Elevated T1/T2 means were observed for biopsy-proven malignant lesions and for malignant lesions treated prior to qMRI with chemotherapy and/or radiation, as compared with benign lesions. The qMRI-obtained T1/T2 ratios correlated with histopathology. Analysis revealed correlation between elevated T1/T2 ratio and disease stage. This could provide valuable complementary information on tissue properties as an additional diagnostic tool.
Medusa: A Scalable MR Console Using USB
Stang, Pascal P.; Conolly, Steven M.; Santos, Juan M.; Pauly, John M.; Scott, Greig C.
2012-01-01
MRI pulse sequence consoles typically employ closed proprietary hardware, software, and interfaces, making difficult any adaptation for innovative experimental technology. Yet MRI systems research is trending to higher channel count receivers, transmitters, gradient/shims, and unique interfaces for interventional applications. Customized console designs are now feasible for researchers with modern electronic components, but high data rates, synchronization, scalability, and cost present important challenges. Implementing large multi-channel MR systems with efficiency and flexibility requires a scalable modular architecture. With Medusa, we propose an open system architecture using the Universal Serial Bus (USB) for scalability, combined with distributed processing and buffering to address the high data rates and strict synchronization required by multi-channel MRI. Medusa uses a modular design concept based on digital synthesizer, receiver, and gradient blocks, in conjunction with fast programmable logic for sampling and synchronization. Medusa is a form of synthetic instrument, being reconfigurable for a variety of medical/scientific instrumentation needs. The Medusa distributed architecture, scalability, and data bandwidth limits are presented, and its flexibility is demonstrated in a variety of novel MRI applications. PMID:21954200
Hammerstingl, R M; Schwarz, W; Hochmuth, K; Staib-Sebler, E; Lorenz, M; Vogl, T J
2001-01-01
The development in oncologic liver surgery as well as modified interventional therapy strategies of the liver have resulted in improved diagnostic imaging. The evolution of contrast agents for MR imaging of the liver has proceeded along several different paths with the common goal of improving liver-lesion contrast. In MRI contrast agents act indirectly by their effects on relaxation times. Contrast agents used for hepatic MR imaging can be categorized in those that target the extracellular space, the hepatobiliary system, and the reticuloendothelial system. The first two result in a positive enhancement, the last one in a negative enhancement. Positive enhancers allow a better characterization of liver metastases using dynamic sequence protocols. Detection rate of liver metastases is increased using hepatobiliary contrast-enhanced MRI compared to unenhanced MRI. Negative enhancers, iron oxide particles, significantly increase tumor-to-liver contrast and allow detection of more lesions than other diagnostic methods. Iron-oxide enhanced MRI enables differential diagnosis of liver metastases comparing morphologic features using T2 and T1-weighted sequences.
A Protocol for the Administration of Real-Time fMRI Neurofeedback Training
Sherwood, Matthew S.; Diller, Emily E.; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T.; Parker, Jason G.
2017-01-01
Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain. PMID:28872110
A Protocol for the Administration of Real-Time fMRI Neurofeedback Training.
Sherwood, Matthew S; Diller, Emily E; Ey, Elizabeth; Ganapathy, Subhashini; Nelson, Jeremy T; Parker, Jason G
2017-08-24
Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain.
Satahoo, Shevonne S; Davis, James S; Garcia, George D; Alsafran, Salman; Pandya, Reeni K; Richie, Cheryl D; Habib, Fahim; Rivas, Luis; Namias, Nicholas; Schulman, Carl I
2014-03-01
Evaluating the cervical spine in the obtunded trauma patient is a subject fraught with controversy. Some authors assert that a negative computed tomography (CT) scan is sufficient. Others argue that CT alone misses occult unstable injuries, and magnetic resonance imaging (MRI) will alter treatment. This study examines the data in an urban, county trauma center to determine if a negative cervical spine CT scan is sufficient to clear the obtunded trauma patient. Records of all consecutive patients admitted to a level 1 trauma center from January 2000 to December 2011 were retrospectively analyzed. Patients directly admitted to the intensive care unit with a Glasgow Coma Scale score ≤13, contemporaneous CT and MRI, and a negative CT reading were included. The results of the cervical spine MRI were analyzed. A total of 309 patients had both CT and MRI, 107 (35%) of whom had negative CTs. Mean time between CT and MRI was 16 d. Of those patients, seven (7%) had positive acute traumatic findings on MRI. Findings included ligamentous injury, subluxation, and fracture. However, only two of these patients required surgical intervention. None had unstable injuries. In the obtunded trauma patient with a negative cervical spine CT, obtaining an MRI does not appear to significantly alter management, and no unstable injuries were missed on CT scan. This should be taken into consideration given the current efforts at cost-containment in the health care system. It is one of the larger studies published to date. Copyright © 2014 Elsevier Inc. All rights reserved.
Design considerations for a novel MRI compatible manipulator for prostate cryoablation.
Abdelaziz, S; Esteveny, L; Renaud, P; Bayle, B; Barbé, L; De Mathelin, M; Gangi, A
2011-11-01
Prostate carcinoma is a commonly diagnosed cancer in men. Nonsurgical treatment of early stage prostate cancer is an important alternative. The use of MRI for tumor cryoablation is of particular interest: it offers lower morbidity compared with other localized techniques. However, the current manual procedure is very time-consuming and has limited accuracy. A novel robotic assistant is therefore designed for prostate cancer cryotherapy treatment under MRI guidance to improve efficiency and accuracy. Gesture definition was achieved based on actions of interventional radiologists at University Hospital of Strasbourg. A transperineal approach with a semiautonomous prostatic cryoprobe localization procedure was developed where the needle axis is automatically positioned before manual insertion. The workflow was developed simultaneously with the robotic assistant used for needle positioning. The design and the associated workflow of an original wire-driven manipulator were developed. The device is compact and has a low weight: its overall dimensions in the scanner are 100 × 100 × 40 mm with a weight of 120 g. Very good MRI compatibility was demonstrated. A novel cryoablation procedure based on the use of a robotic assistant is proposed. The device design was presented with demonstration of MRI compatibility. Further developments include automatic registration and in vivo experimental testing.
Busse, Harald; Schmitgen, Arno; Trantakis, Christos; Schober, Ralf; Kahn, Thomas; Moche, Michael
2006-07-01
To present an advanced approach for intraoperative image guidance in an open 0.5 T MRI and to evaluate its effectiveness for neurosurgical interventions by comparison with a dynamic scan-guided localization technique. The built-in scan guidance mode relied on successive interactive MRI scans. The additional advanced mode provided real-time navigation based on reformatted high-quality, intraoperatively acquired MR reference data, allowed multimodal image fusion, and used the successive scans of the built-in mode for quick verification of the position only. Analysis involved tumor resections and biopsies in either scan guidance (N = 36) or advanced mode (N = 59) by the same three neurosurgeons. Technical, surgical, and workflow aspects were compared. The image quality and hand-eye coordination of the advanced approach were improved. While the average extent of resection, neurologic outcome after functional MRI (fMRI) integration, and diagnostic yield appeared to be slightly better under advanced guidance, particularly for the main surgeon, statistical analysis revealed no significant differences. Resection times were comparable, while biopsies took around 30 minutes longer. The presented approach is safe and provides more detailed images and higher navigation speed at the expense of actuality. The surgical outcome achieved with advanced guidance is (at least) as good as that obtained with dynamic scan guidance. (c) 2006 Wiley-Liss, Inc.
Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A
2011-08-01
Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.
Bleyenheuft, Yannick; Dricot, Laurence; Gilis, Nathalie; Kuo, Hsing-Ching; Grandin, Cécile; Bleyenheuft, Corinne; Gordon, Andrew M; Friel, Kathleen M
2015-01-01
Intensive rehabilitation interventions have been shown to be efficacious in improving upper extremity function in children with unilateral spastic cerebral palsy (USCP). These interventions are based on motor learning principles and engage children in skillful movements. Improvements in upper extremity function are believed to be associated with neuroplastic changes. However, these neuroplastic changes have not been well-described in children with cerebral palsy, likely due to challenges in defining and implementing the optimal tools and tests in children. Here we documented the implementation of three different neurological assessments (diffusion tensor imaging-DTI, transcranial magnetic stimulation-TMS and functional magnetic resonance imaging-fMRI) before and after a bimanual intensive treatment (HABIT-ILE) in two children with USCP presenting differential corticospinal developmental reorganization (ipsilateral and contralateral). The aim of the study was to capture neurophysiological changes and to document the complementary relationship between these measures, the potential measurable changes and the feasibility of applying these techniques in children with USCP. Independent of cortical reorganization, both children showed increases in activation and size of the motor areas controlling the affected hand, quantified with different techniques. In addition, fMRI provided additional unexpected changes in the reward circuit while using the affected hand. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Catheter tracking using continuous radial MRI.
Rasche, V; Holz, D; Köhler, J; Proksa, R; Röschmann, P
1997-06-01
The guidance of minimally invasive procedures may become a very important future application of MRI. The guidance of interventions requires images of the anatomy as well as the information of the position of invasive devices used. This paper introduces continuous radial MRI for the simultaneous acquisition of the anatomic MR image and the position of one or more small RF-coils (mu-coils), which can be mounted on invasive devices such as catheters or biopsy needles. This approach allows the in-plane tracking of an invasive device without any prolongation of the overall acquisition time. The extension to three-dimensional position tracking is described. Phantom studies are presented demonstrating the capability of this technique for real-time automatic adjustment of the slice position to the current catheter position with a temporal resolution of 100 ms. Simultaneously the in-plane catheter position is depicted in the actually acquired MR image during continuous scanning.
Kwee, Thomas C; Sonneveld, Heleen; Nix, Maarten
2016-05-01
The dorsal patellar defect is a relatively rare entity that involves the superolateral quadrant of the patella. It is usually considered to represent a delayed ossification process, although its exact origin remains unclear. Because of its usually innocuous nature and clinical course, invasive interventions are generally deemed unnecessary, although curretage has been successfully performed on symptomatic cases. This case report presents a rather unusual case of symptomatic bilateral dorsal patellar defects with cartilage involvement and widespread surrounding bone marrow edema as demonstrated by magnetic resonance imaging (MRI). Both cartilage involvement and bone marrow edema should be considered part of the spectrum of associated MRI findings that can be encountered in this entity. Furthermore, the presented case shows that symptomatic dorsal patellar defects can be treated conservatively with success and that (decrease of) pain symptoms are likely related to (decrease of) bone marrow edema.
MR-based real time path planning for cardiac operations with transapical access.
Yeniaras, Erol; Navkar, Nikhil V; Sonmez, Ahmet E; Shah, Dipan J; Deng, Zhigang; Tsekos, Nikolaos V
2011-01-01
Minimally invasive surgeries (MIS) have been perpetually evolving due to their potential high impact on improving patient management and overall cost effectiveness. Currently, MIS are further strengthened by the incorporation of magnetic resonance imaging (MRI) for amended visualization and high precision. Motivated by the fact that real-time MRI is emerging as a feasible modality especially for guiding interventions and surgeries in the beating heart; in this paper we introduce a real-time path planning algorithm for intracardiac procedures. Our approach creates a volumetric safety zone inside a beating heart and updates it on-the-fly using real-time MRI during the deployment of a robotic device. In order to prove the concept and assess the feasibility of the introduced method, a realistic operational scenario of transapical aortic valve replacement in a beating heart is chosen as the virtual case study.
Novel technique for preoperative pedicle localization in spinal surgery with challenging anatomy.
Young, Richard M; Prasad, Vikram; Wind, Joshua J; Olan, Wayne; Caputy, Anthony J
2014-04-01
Accurately localizing a spine level in the thoracic spine is often not easily achieved with the existing imaging modalities available in the operating room. The coordination of the preoperative imaging pathology with intraoperative imaging is even more difficult in patients with challenging anatomy. Using standard percutaneous techniques, the authors placed a radiopaque embolization coil into the pedicle of interest under biplanar fluoroscopy in 1 patient. Thoracic spine MRI along with scout MRI was then performed to confirm coil marker placement in relation to the actual spine pathology prior to surgical intervention. No complications were observed during placement of the radiopaque marker. Intraoperatively, the marker was immediately and easily visualized, leading to a confident identification of the correct thoracic spinal level. The preoperative placement of a radiopaque marker into the vertebral pedicle of the identified pathological level combined with postplacement MRI verification provides an advantage over previously proposed techniques in the literature.
DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review.
Hoza, David; Vlasák, Aleš; Hořínek, Daniel; Sameš, Martin; Alfieri, Alex
2015-04-01
Normal pressure hydrocephalus (NPH) is a clinical syndrome characterized by gait disturbances, urinary incontinence and dementia. Clinical presentation overlaps with Alzheimer disease (AD). Early recognition thus early intervention (shunting) is important for successful treatment, but lack of a diagnostic test with sufficient sensitivity and specificity complicates the diagnosis. We performed literature search and composed a structured review of imaging biomarkers of NPH. Morphometric studies are not sufficient to diagnose NPH. Hydrocephalus is a common finding in elderly people due to the symmetric brain atrophy and is even more pronounced in patients with AD. The key MRI biomarker seems to be diffusion tensor imaging (DTI). According to recent studies, the DTI analysis of the splenium corporis callosi, posterior limb of internal capsule, hippocampus and fornix combined with measurement of Evans index is a promising MRI biomarker of NPH and could be used for NPH diagnostics and in the differential diagnosis from AD and other dementias.
Quantitative Serial MRI of the Treated Fibroid Uterus
Williams, Alistair R. W.; McKillop, Graham; Walker, Jane; Horne, Andrew W.; Newby, David E.; Anderson, Richard A.; Semple, Scott I.; Marshall, Ian; Lewis, Steff C.; Millar, Robert P.; Bastin, Mark E.; Critchley, Hilary O. D.
2014-01-01
Objective There are no long-term medical treatments for uterine fibroids, and non-invasive biomarkers are needed to evaluate novel therapeutic interventions. The aim of this study was to determine whether serial dynamic contrast-enhanced MRI (DCE-MRI) and magnetization transfer MRI (MT-MRI) are able to detect changes that accompany volume reduction in patients administered GnRH analogue drugs, a treatment which is known to reduce fibroid volume and perfusion. Our secondary aim was to determine whether rapid suppression of ovarian activity by combining GnRH agonist and antagonist therapies results in faster volume reduction. Methods Forty women were assessed for eligibility at gynaecology clinics in the region, of whom thirty premenopausal women scheduled for hysterectomy due to symptomatic fibroids were randomized to three groups, receiving (1) GnRH agonist (Goserelin), (2) GnRH agonist+GnRH antagonist (Goserelin and Cetrorelix) or (3) no treatment. Patients were monitored by serial structural, DCE-MRI and MT-MRI, as well as by ultrasound and serum oestradiol concentration measurements from enrolment to hysterectomy (approximately 3 months). Results A volumetric treatment effect assessed by structural MRI occurred by day 14 of treatment (9% median reduction versus 9% increase in untreated women; P = 0.022) and persisted throughout. Reduced fibroid perfusion and permeability assessed by DCE-MRI occurred later and was demonstrable by 2–3 months (43% median reduction versus 20% increase respectively; P = 0.0093). There was no apparent treatment effect by MT-MRI. Effective suppression of oestradiol was associated with early volume reduction at days 14 (P = 0.041) and 28 (P = 0.0061). Conclusion DCE-MRI is sensitive to the vascular changes thought to accompany successful GnRH analogue treatment of uterine fibroids and should be considered for use in future mechanism/efficacy studies of proposed fibroid drug therapies. GnRH antagonist administration does not appear to accelerate volume reduction, though our data do support the role of oestradiol suppression in GnRH analogue treatment of fibroids. Trial Registration ClinicalTrials.gov NCT00746031 PMID:24608161
Intersession reliability of fMRI activation for heat pain and motor tasks
Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.
2014-01-01
As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is recommended for future studies of test–retest reliability. PMID:25161897
Cramer, Gregory D.; Cambron, Jerrilyn; Cantu, Joe A; Dexheimer, Jennifer M.; Pocius, Judith D; Gregerson, Douglas; Fergus, Michael; McKinnis, Ray; Grieve, Thomas J
2013-01-01
Objective The purpose of this study was to quantify lumbar zygapophyseal (Z) joint space separation (gapping) in low back pain (LBP) subjects after spinal manipulative therapy (SMT) or side-posture positioning (SPP). Methods This was a controlled mechanisms trial with randomization and blinding. Acute LBP subjects (N=112, four n=28 MRI protocol groups) had 2 magnetic resonance imaging (MRI) appointments (initial enrollment [M1] and following 2 weeks of chiropractic treatment [M2]; receiving 2 MRI scans of the L4/L5 and L5/S1 Z joints at each MRI appointment. After the first MRI scan of each appointment, subjects were randomized (M1 appointment) or assigned (M2 appointment) into SPP (non-manipulation), SMT (manipulation), or control MRI protocol groups. After SPP or SMT, a second MRI was taken. The central anterior-posterior (A-P) joint space was measured. Difference between most painful side A-P measurements taken post- and pre-intervention was the Z joint “gapping difference.” Gapping differences were compared (ANOVA) among protocol groups. Secondary measures of pain visual analog scale (VAS), verbal numeric pain rating scale (VNPRS), and function Bournemouth questionnaire (BQ) were assessed. Results Gapping differences were significant at the first (adjusted, p=0.01; SPP=0.66 +0.48mm; SMT=0.23 +0.86; control=0.18 +0.71) and second (adjusted, p=0.0005; SPP=0.65 +0.92mm, SMT=0.89 +0.71; control=0.35 +0.32) MRI appointments. VNPRS differences were significant at first MRI appointment (p=0.04) with SMT showing the greatest improvement. VAS and BQ improved after two weeks of care in all groups (both p<0.0001). Conclusions SPP showed greatest gapping at baseline. After two weeks, SMT resulted in greatest gapping. SPP appeared to have additive therapeutic benefit to SMT. PMID:23648055
Parkinson's disease patient preference and experience with various methods of DBS lead placement.
LaHue, Sara C; Ostrem, Jill L; Galifianakis, Nicholas B; San Luciano, Marta; Ziman, Nathan; Wang, Sarah; Racine, Caroline A; Starr, Philip A; Larson, Paul S; Katz, Maya
2017-08-01
Physiology-guided deep brain stimulation (DBS) surgery requires patients to be awake during a portion of the procedure, which may be poorly tolerated. Interventional MRI-guided (iMRI) DBS surgery was developed to use real-time image guidance, obviating the need for patients to be awake during lead placement. All English-speaking adults with PD who underwent iMRI DBS between 2010 and 2014 at our Center were invited to participate. Subjects completed a structured interview that explored perioperative preferences and experiences. We compared these responses to patients who underwent the physiology-guided method, matched for age and gender. Eighty-nine people with PD completed the study. Of those, 40 underwent iMRI, 44 underwent physiology-guided implantation, and five underwent both methods. There were no significant differences in baseline characteristics between groups. The primary reason for choosing iMRI DBS was a preference to be asleep during implantation due to: 1) a history of claustrophobia; 2) concerns about the potential for discomfort during the awake physiology-guided procedure in those with an underlying pain syndrome or severe off-medication symptoms; or 3) non-specific fear about being awake during neurosurgery. Participants were satisfied with both DBS surgery methods. However, identification of the factors associated with a preference for iMRI DBS may allow for optimization of patient experience and satisfaction when choices of surgical methods for DBS implantation are available. Published by Elsevier Ltd.
The costs and utility of imaging in evaluating dizzy patients in the emergency room.
Ahsan, Syed F; Syamal, Mausumi N; Yaremchuk, Kathleen; Peterson, Edward; Seidman, Michael
2013-09-01
To determine the usefulness and the costs of computed tomography (CT) and magnetic resonance imaging (MRI) in the evaluation of patients with dizziness in the emergency department (ED). Retrospective chart review. Charts of patients with a specific health maintenance insurance plan presenting with dizziness and vertigo to a large health system's ED between January 2008 and January 2011 were reviewed. Patient demographics, signs/symptoms, and CT and MRI results were assessed. CT and MRI charges were determined based on positive versus unremarkable findings. Data analysis included stepwise logistic regressions. Of 1681 patients identified, 810 (48%) received CT brain/head scan totaling $988,200 in charges. Of these, only 0.74% yielded clinically significant pathology requiring intervention. However, 12.2% of MRI studies yielded discovery of significant abnormalities. Logistic regression analysis revealed that older patients (P = .001) were more likely to receive a CT scan. In the 3-year period studied, CT scans for ED patients with dizziness and vertigo yielded a low predictive value for significant pathology. These data reveal a great opportunity for cost savings by developing stricter guidelines for ordering CT scans for this set of ED patients. The use of MRI in all cases of dizziness was found to be neither practical nor useful. However, appropriately directed MRI of the brain is recommended in patients with dizziness and other neurological signs or symptoms. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Fink, Ericka L; Panigrahy, A; Clark, R S B; Fitz, C R; Landsittel, D; Kochanek, P M; Zuccoli, G
2013-08-01
To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection. We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI). We examined 28 subjects with median age 1.9 years (IQR 0.4-13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions. Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.
NASA Astrophysics Data System (ADS)
Jagadale, Basavaraj N.; Udupa, Jayaram K.; Tong, Yubing; Wu, Caiyun; McDonough, Joseph; Torigian, Drew A.; Campbell, Robert M.
2018-02-01
General surgeons, orthopedists, and pulmonologists individually treat patients with thoracic insufficiency syndrome (TIS). The benefits of growth-sparing procedures such as Vertical Expandable Prosthetic Titanium Rib (VEPTR)insertionfor treating patients with TIS have been demonstrated. However, at present there is no objective assessment metricto examine different thoracic structural components individually as to their roles in the syndrome, in contributing to dynamics and function, and in influencing treatment outcome. Using thoracic dynamic MRI (dMRI), we have been developing a methodology to overcome this problem. In this paper, we extend this methodology from our previous structural analysis approaches to examining lung tissue properties. We process the T2-weighted dMRI images through a series of steps involving 4D image construction of the acquired dMRI images, intensity non-uniformity correction and standardization of the 4D image, lung segmentation, and estimation of the parameters describing lung tissue intensity distributions in the 4D image. Based on pre- and post-operative dMRI data sets from 25 TIS patients (predominantly neuromuscular and congenital conditions), we demonstrate how lung tissue can be characterized by the estimated distribution parameters. Our results show that standardized T2-weighted image intensity values decrease from the pre- to post-operative condition, likely reflecting improved lung aeration post-operatively. In both pre- and post-operative conditions, the intensity values decrease also from end-expiration to end-inspiration, supporting the basic premise of our results.
MR to CT registration of brains using image synthesis
NASA Astrophysics Data System (ADS)
Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon
2014-03-01
Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.
Genetic Factors in Breast Cancer: Center for Interdisciplinary Biobehavioral Research
2006-10-01
Hypnosis Intervention, Dr. Guy Montgomery, Associate Professor, Oncological Sciences 12/14/2005 Patient Navigation for CRC Screening with Low Income...Attending Psychologist Psychiatry and Behavioral Sciences Memorial Sloan-Kettering Cancer Center 4/20/2006 "It’s all in your head: The use of MRI in
Optimising EEG-fMRI for Localisation of Focal Epilepsy in Children.
Centeno, Maria; Tierney, Tim M; Perani, Suejen; Shamshiri, Elhum A; StPier, Kelly; Wilkinson, Charlotte; Konn, Daniel; Banks, Tina; Vulliemoz, Serge; Lemieux, Louis; Pressler, Ronit M; Clark, Christopher A; Cross, J Helen; Carmichael, David W
2016-01-01
Early surgical intervention in children with drug resistant epilepsy has benefits but requires using tolerable and minimally invasive tests. EEG-fMRI studies have demonstrated good sensitivity for the localization of epileptic focus but a poor yield although the reasons for this have not been systematically addressed. While adults EEG-fMRI studies are performed in the "resting state"; children are commonly sedated however, this has associated risks and potential confounds. In this study, we assessed the impact of the following factors on the tolerability and results of EEG-fMRI in children: viewing a movie inside the scanner; movement; occurrence of interictal epileptiform discharges (IED); scan duration and design efficiency. This work's motivation is to optimize EEG-fMRI parameters to make this test widely available to paediatric population. Forty-six children with focal epilepsy and 20 controls (6-18) underwent EEG-fMRI. For two 10 minutes sessions subjects were told to lie still with eyes closed, as it is classically performed in adult studies ("rest sessions"), for another two sessions, subjects watched a child friendly stimulation i.e. movie ("movie sessions"). IED were mapped with EEG-fMRI for each session and across sessions. The resulting maps were classified as concordant/discordant with the presumed epileptogenic focus for each subject. Movement increased with scan duration, but the movie reduced movement by ~40% when played within the first 20 minutes. There was no effect of movie on the occurrence of IED, nor in the concordance of the test. Ability of EEG-fMRI to map the epileptogenic region was similar for the 20 and 40 minute scan durations. Design efficiency was predictive of concordance. A child friendly natural stimulus improves the tolerability of EEG-fMRI and reduces in-scanner movement without having an effect on IED occurrence and quality of EEG-fMRI maps. This allowed us to scan children as young as 6 and obtain localising information without sedation. Our data suggest that ~20 minutes is the optimal length of scanning for EEG-fMRI studies in children with frequent IED. The efficiency of the fMRI design derived from spontaneous IED generation is an important factor for producing concordant results.
Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole
2017-05-03
Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (<0.1 Hz) are driven by underlying electrophysiological rhythms that typically occur at much faster timescales (>5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to resting state networks derived from rs-fMRI. Here we take a novel approach to address this problem and establish a causal link between the power fluctuations of electrophysiological signals and rs-fMRI via a new neuromodulation paradigm, which exploits these power synchronization mechanisms. These novel mechanistic insights bridge different scientific domains and are of broad interest to researchers in the fields of Medical Imaging, Neuroscience, Physiology, and Psychology. Copyright © 2017 the authors 0270-6474/17/374766-12$15.00/0.
Wörsching, Jana; Padberg, Frank; Goerigk, Stephan; Heinz, Irmgard; Bauer, Christine; Plewnia, Christian; Hasan, Alkomiet; Ertl-Wagner, Birgit; Keeser, Daniel
2018-05-04
Transcranial direct current stimulation (tDCS) of the prefrontal cortex (PFC) has been widely applied in cognitive neurosciences and advocated as a therapeutic intervention, e.g. in major depressive disorder. Although several targets and protocols have been suggested, comparative studies of tDCS parameters, particularly electrode montages and their cortical targets, are still lacking. This study investigated a priori hypotheses on specific effects of prefrontal-tDCS montages by using multimodal functional magnetic resonance imaging (fMRI) in healthy participants. 28 healthy male participants underwent three common active-tDCS montages and sham tDCS in a pseudo-randomized order, comprising a total of 112 tDCS-fMRI sessions. Active tDCS was applied at 2 mA for 20 min. Before and after tDCS, a resting-state fMRI (RS fMRI) was recorded, followed by a task fMRI with a delayed-response working-memory (DWM) task for assessing cognitive control over emotionally negative or neutral distractors. After tDCS with a cathode-F3/anode-F4 montage, RS-fMRI connectivity decreased in a medial part of the left PFC. Also, after the same stimulation condition, regional brain activity during DWM retrieval decreased more in this area after negative than after neutral distraction, and responses to the DWM task were faster, independent of distractor type. The current study does not confirm our a priori hypotheses on direction and localization of polarity-dependent tDCS effects using common bipolar electrode montages over PFC regions, but it provides evidence for montage-specific effects on multimodal neurophysiological and behavioral outcome measures. Systematic research on the actual targets and the respective dose-response relationships of prefrontal tDCS is warranted. Copyright © 2018 Elsevier Inc. All rights reserved.
McGuire, Jennifer A; Sherman, Paul M; Dean, Erica; Bernot, Jeremy M; Rowland, Laura M; McGuire, Stephen A; Kochunov, Peter V
2017-05-01
Repetitive hypobaric exposure in humans induces subcortical white matter change, observable on magnetic resonance imaging (MRI) and associated with cognitive impairment. Similar findings occur in traumatic brain injury (TBI). We are developing a swine MRI-driven model to understand the pathophysiology and to develop treatment interventions. Five miniature pigs (Sus scrofa domestica) were repetitively exposed to nonhypoxic hypobaria (30,000 feet/FIO 2 100%/transcutaneous PO 2 >90%) while under general anesthesia. Three pigs served as controls. Pre-exposure and postexposure MRIs were obtained that included structural sequences, dynamic contrast perfusion, and diffusion tensor quantification. Statistical comparison of individual subject and group change was performed utilizing a two-tailed t test. No structural imaging change was noted on T2-weighted or three-dimensional fluid-attenuated inversion recovery imaging between MRI 1 and MRI 2. No absolute difference in dynamic contrast perfusion was observed. A trend (p = 0.084) toward increase in interstitial extra-axonal fluid was noted. When individual subjects were examined, this trend toward increased extra-axonal fluid paralleled a decrease in contrast perfusion rate. This study demonstrates high reproducibility of quantitative noninvasive MRI, suggesting MRI is an appropriate assessment tool for TBI and hypobaric-induced injury research in swine. The lack of fluid-attenuated inversion recovery change may be multifactorial and requires further investigation. A trend toward increased extra-axonal water content that negatively correlates with dynamic contrast perfusion implies generalized axonal injury was induced. This study suggests this is a potential model for hypobaric-induced injury as well as potentially other axonal injuries such as TBI in which similar subcortical white matter change occurs. Further development of this model is necessary. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Burton, Rebecca A.B.; Lee, Peter; Casero, Ramón; Garny, Alan; Siedlecka, Urszula; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente
2014-01-01
Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing. PMID:25362175
Elbes, Delphine; Magat, Julie; Govari, Assaf; Ephrath, Yaron; Vieillot, Delphine; Beeckler, Christopher; Weerasooriya, Rukshen; Jais, Pierre; Quesson, Bruno
2017-03-01
Interventional cardiac catheter mapping is routinely guided by X-ray fluoroscopy, although radiation exposure remains a significant concern. Feasibility of catheter ablation for common flutter has recently been demonstrated under magnetic resonance imaging (MRI) guidance. The benefit of catheter ablation under MRI could be significant for complex arrhythmias such as atrial fibrillation (AF), but MRI-compatible multi-electrode catheters such as Lasso have not yet been developed. This study aimed at demonstrating the feasibility and safety of using a multi-electrode catheter [magnetic resonance (MR)-compatible Lasso] during MRI for cardiac mapping. We also aimed at measuring the level of interference between MR and electrophysiological (EP) systems. Experiments were performed in vivo in sheep (N = 5) using a multi-electrode, circular, steerable, MR-compatible diagnostic catheter. The most common MRI sequences (1.5T) relevant for cardiac examination were run with the catheter positioned in the right atrium. High-quality electrograms were recorded while imaging with a maximal signal-to-noise ratio (peak-to-peak signal amplitude/peak-to-peak noise amplitude) ranging from 5.8 to 165. Importantly, MRI image quality was unchanged. Artefacts induced by MRI sequences during mapping were demonstrated to be compatible with clinical use. Phantom data demonstrated that this 10-pole circular catheter can be used safely with a maximum of 4°C increase in temperature. This new MR-compatible 10-pole catheter appears to be safe and effective. Combining MR and multipolar EP in a single session offers the possibility to correlate substrate information (scar, fibrosis) and EP mapping as well as online monitoring of lesion formation and electrical endpoint. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Serkova, Natalie J.; Van Rheen, Zachary; Tobias, Meghan; Pitzer, Joshua E.; Wilkinson, J. Erby; Stringer, Kathleen A.
2008-01-01
Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention. Integration of MRI and NMR could extend the application of experimental data into the clinical setting. This study investigated the ability of MRI and metabolic NMR to detect and quantify inflammation-mediated lung injury. Pulmonary inflammation was induced in male B6C3F1 mice by intratracheal administration of IL-1β and TNF-α under isoflurane anesthesia. Mice underwent MRI at 2, 4, 6, and 24 h after dosing. At 6 and 24 h lungs were harvested for metabolic NMR analysis. Data acquired from IL-1β+TNF-α-treated animals were compared with saline-treated control mice. The hyperintense-to-total lung volume (HTLV) ratio derived from MRI was higher in IL-1β+TNF-α-treated mice compared with control at 2, 4, and 6 h but returned to control levels by 24 h. The ability of MRI to detect pulmonary inflammation was confirmed by the association between HTLV ratio and histological and pathological end points. Principal component analysis of NMR-detectable metabolites also showed a temporal pattern for which energy metabolism-based biomarkers were identified. These data demonstrate that both MRI and metabolic NMR have utility in the detection and quantification of inflammation-mediated lung injury. Integration of these clinically available techniques into experimental models of lung injury could improve the translation of basic science knowledge and information to the clinic. PMID:18441091
Quatman, Carmen E.; Hettrich, Carolyn M.; Schmitt, Laura C.; Spindler, Kurt P.
2013-01-01
Background Current diagnostic strategies for detection of structural articular cartilage abnormalities, the earliest structural signs of osteoarthritis, often do not capture the condition until it is too far advanced for the most potential benefit of non-invasive interventions. Purpose Systematically review the literature relative to the following questions: (1) Is MRI a valid, sensitive, specific, accurate and reliable instrument to identify knee articular cartilage abnormalities compared to arthroscopy? (2) Is MRI a sensitive tool that can be utilized to identify early cartilage degeneration? Study Design Systematic Review Methods A systematic search was performed in November 2010 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), and SCOPUS (from 1996) databases. Results Fourteen level I and 13 level II studies were identified that met inclusion criteria and provided information related to diagnostic performance of MRI compared to arthroscopic evaluation. The diagnostic performance of MRI demonstrated a large range of sensitivities, specificities, and accuracies. The sensitivity for identifying articular cartilage abnormalities in the knee joint was reported between 26–96%. Specificity and accuracy was reported between 50–100% and 49–94%, respectively. The sensitivity, specificity, and accuracy for identifying early osteoarthritis were reported between 0–86%, 48–95%, and 5–94%, respectively. As a result of inconsistencies between imaging techniques and methodological shortcomings of many of the studies, a meta-analysis was not performed and it was difficult to fully synthesize the information to state firm conclusions about the diagnostic performance of MRI. Conclusions There is evidence in some MRI protocols that MRI is a relatively valid, sensitive, specific, accurate, and reliable clinical tool for identifying articular cartilage degeneration. Due to heterogeneity of MRI sequences it is not possible to make definitive conclusions regarding its global clinical utility for guiding diagnosis and treatment strategies. Clinical Relevance Traumatic sports injuries to the knee may be significant precursor events to early onset of posttraumatic osteoarthritis. MRI may aid in early identification of structural injuries to articular cartilage as evidenced by articular cartilage degeneration grading. PMID:21730207
Bailey, D L; Pichler, B J; Gückel, B; Antoch, G; Barthel, H; Bhujwalla, Z M; Biskup, S; Biswal, S; Bitzer, M; Boellaard, R; Braren, R F; Brendle, C; Brindle, K; Chiti, A; la Fougère, C; Gillies, R; Goh, V; Goyen, M; Hacker, M; Heukamp, L; Knudsen, G M; Krackhardt, A M; Law, I; Morris, J C; Nikolaou, K; Nuyts, J; Ordonez, A A; Pantel, K; Quick, H H; Riklund, K; Sabri, O; Sattler, B; Troost, E G C; Zaiss, M; Zender, L; Beyer, Thomas
2018-02-01
The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
The Intensive Diet and Exercise for Arthritis (IDEA) trial: 18-month radiographic and MRI outcomes.
Hunter, D J; Beavers, D P; Eckstein, F; Guermazi, A; Loeser, R F; Nicklas, B J; Mihalko, S L; Miller, G D; Lyles, M; DeVita, P; Legault, C; Carr, J J; Williamson, J D; Messier, S P
2015-07-01
Report the radiographic and magnetic resonance imaging (MRI) structural outcomes of an 18-month study of diet-induced weight loss, with or without exercise, compared to exercise alone in older, overweight and obese adults with symptomatic knee osteoarthritis (OA). Prospective, single-blind, randomized controlled trial that enrolled 454 overweight and obese (body mass index, BMI = 27-41 kg m(-2)) older (age ≥ 55 yrs) adults with knee pain and radiographic evidence of femorotibial OA. Participants were randomized to one of three 18-month interventions: diet-induced weight loss only (D); diet-induced weight loss plus exercise (D + E); or exercise-only control (E). X-rays (N = 325) and MRIs (N = 105) were acquired at baseline and 18 months follow-up. X-ray and MRI (cartilage thickness and semi-quantitative (SQ)) results were analyzed to compare change between groups at 18-month follow-up using analysis of covariance (ANCOVA) adjusted for baseline values, baseline BMI, and gender. Mean baseline descriptive characteristics of the cohort included: age, 65.6 yrs; BMI 33.6 kg m(-2); 72% female; 81% white. There was no significant difference between groups in joint space width (JSW) loss; D -0.07 (SE 0.22) mm, D + E -0.27 (SE 0.22) mm and E -0.16 (SE 0.24) mm (P = 0.79). There was also no significant difference in MRI cartilage loss between groups; D -0.10(0.05) mm, D + E -0.13(0.04) mm and E -0.05(0.04) mm (P = 0.42). Despite the potent effects of weight loss in this study on symptoms as well as mechanistic outcomes (such as joint compressive force and markers of inflammation), there was no statistically significant difference between the three active interventions on the rate of structural progression either on X-ray or MRI over 18-months. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Suntharos, Patcharapong; Setser, Randolph M; Bradley-Skelton, Sharon; Prieto, Lourdes R
2017-10-01
To validate the feasibility and spatial accuracy of pre-procedural 3D images to 3D rotational fluoroscopy registration to guide interventional procedures in patients with congenital heart disease and acquired pulmonary vein stenosis. Cardiac interventions in patients with congenital and structural heart disease require complex catheter manipulation. Current technology allows registration of the anatomy obtained from 3D CT and/or MRI to be overlaid onto fluoroscopy. Thirty patients scheduled for interventional procedures from 12/2012 to 8/2015 were prospectively recruited. A C-arm CT using a biplane C-arm system (Artis zee, VC14H, Siemens Healthcare) was acquired to enable 3D3D registration with pre-procedural images. Following successful image fusion, the anatomic landmarks marked in pre-procedural images were overlaid on live fluoroscopy. The accuracy of image registration was determined by measuring the distance between overlay markers and a reference point in the image. The clinical utility of the registration was evaluated as either "High", "Medium" or "None". Seventeen patients with congenital heart disease and 13 with acquired pulmonary vein stenosis were enrolled. Accuracy and benefit of registration were not evaluated in two patients due to suboptimal images. The distance between the marker and the actual anatomical location was 0-2 mm in 18 (64%), 2-4 mm in 3 (11%) and >4 mm in 7 (25%) patients. 3D3D registration was highly beneficial in 18 (64%), intermediate in 3 (11%), and not beneficial in 7 (25%) patients. 3D3D registration can facilitate complex congenital and structural interventions. It may reduce procedure time, radiation and contrast dose.
Pan, Zhujun; Su, Xiwen; Fang, Qun; Hou, Lijuan; Lee, Younghan; Chen, Chih C; Lamberth, John; Kim, Mi-Lyang
2018-01-01
Aging is a process associated with a decline in cognitive and motor functions, which can be attributed to neurological changes in the brain. Tai Chi, a multimodal mind-body exercise, can be practiced by people across all ages. Previous research identified effects of Tai Chi practice on delaying cognitive and motor degeneration. Benefits in behavioral performance included improved fine and gross motor skills, postural control, muscle strength, and so forth. Neural plasticity remained in the aging brain implies that Tai Chi-associated benefits may not be limited to the behavioral level. Instead, neurological changes in the human brain play a significant role in corresponding to the behavioral improvement. However, previous studies mainly focused on the effects of behavioral performance, leaving neurological changes largely unknown. This systematic review summarized extant studies that used brain imaging techniques and EEG to examine the effects of Tai Chi on older adults. Eleven articles were eligible for the final review. Three neuroimaging techniques including fMRI ( N = 6), EEG ( N = 4), and MRI ( N = 1), were employed for different study interests. Significant changes were reported on subjects' cortical thickness, functional connectivity and homogeneity of the brain, and executive network neural function after Tai Chi intervention. The findings suggested that Tai Chi intervention give rise to beneficial neurological changes in the human brain. Future research should develop valid and convincing study design by applying neuroimaging techniques to detect effects of Tai Chi intervention on the central nervous system of older adults. By integrating neuroimaging techniques into randomized controlled trials involved with Tai Chi intervention, researchers can extend the current research focus from behavioral domain to neurological level.
Chaddock-Heyman, Laura; Erickson, Kirk I.; Voss, Michelle W.; Knecht, Anya M.; Pontifex, Matthew B.; Castelli, Darla M.; Hillman, Charles H.; Kramer, Arthur F.
2013-01-01
This study used functional magnetic resonance imaging (fMRI) to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ min of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait-list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait-list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex (ACC) for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control. PMID:23487583
An fMRI compatible wrist robotic interface to study brain development in neonates.
Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E
2013-06-01
A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.
Computation of an MRI brain atlas from a population of Parkinson’s disease patients
NASA Astrophysics Data System (ADS)
Angelidakis, L.; Papageorgiou, I. E.; Damianou, C.; Psychogios, M. N.; Lingor, P.; von Eckardstein, K.; Hadjidemetriou, S.
2017-11-01
Parkinson’s Disease (PD) is a degenerative disorder of the brain. This study presents an MRI-based brain atlas of PD to characterize associated alterations for diagnostic and interventional purposes. The atlas standardizes primarily the implicated subcortical regions such as the globus pallidus (GP), substantia nigra (SN), subthalamic nucleus (STN), caudate nucleus (CN), thalamus (TH), putamen (PUT), and red nucleus (RN). The data were 3.0 T MRI brain images from 16 PD patients and 10 matched controls. The images used were T1-weighted (T 1 w), T2-weighted (T 2 w) images, and Susceptibility Weighted Images (SWI). The T1w images were the reference for the inter-subject non-rigid registration available from 3DSlicer. Anatomic labeling was achieved with BrainSuite and regions were refined with the level sets segmentation of ITK-Snap. The subcortical centers were analyzed for their volume and signal intensity. Comparison with an age-matched control group unravels a significant PD-related T1w signal loss in the striatum (CN and PUT) centers, but approximately a constant volume. The results in this study improve MRI based PD localization and can lead to the development of novel biomarkers.
Imaging the accumulation and suppression of tau pathology using multiparametric MRI
Holmes, Holly E.; Colgan, Niall; Ismail, Ozama; Ma, Da; Powell, Nick M.; O'Callaghan, James M.; Harrison, Ian F.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morton; Fisher, Alice; Cardoso, M.J.; Modat, Marc; Walker-Samuel, Simon; Fisher, Elizabeth M.C.; Ourselin, Sebastien; O'Neill, Michael J.; Wells, Jack A.; Collins, Emily C.; Lythgoe, Mark F.
2016-01-01
Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology—a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes. PMID:26923415
Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus
2015-01-01
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239
Diffusion MRI: literature review in salivary gland tumors.
Attyé, A; Troprès, I; Rouchy, R-C; Righini, C; Espinoza, S; Kastler, A; Krainik, A
2017-07-01
Surgical resection is currently the best treatment for salivary gland tumors. A reliable magnetic resonance imaging mapping, encompassing tumor grade, location, and extension may assist safe and effective tumor resection and provide better information for patients regarding potential risks and morbidity after surgical intervention. However, direct examination of the tumor grade and extension using conventional morphological MRI remains difficult, often requiring contrast media injection and complex algorithms on perfusion imaging to estimate the degree of malignancy. In addition, contrast-enhanced MRI technique may be problematic due to the recently demonstrated gadolinium accumulation in the dentate nucleus of the cerebellum. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of the apparent diffusion coefficient, have enhanced our knowledge on the different histopathological salivary tumor grades. Other diffusion imaging-derived techniques, including high-order tractography models, have recently demonstrated their usefulness in assessing the facial nerve location in parotid tumor context. All of these imaging techniques do not require contrast media injection. Our review starts by outlining the physical basis of diffusion imaging, before discussing findings from diagnostic studies testing its usefulness in assessing salivary glands tumors with diffusion MRI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de
Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less
Law, S W; Szeto, G P Y; Chau, W W; Chan, Carol; Kwok, Anthony W L; Lai, H S; Lee, Ryan K L; Griffith, James F; Hung, L K; Cheng, J C Y
2016-08-10
The objective of this study is to evaluate the effects of the Multi-disciplinary Orthopaedics Rehabilitation Empowerment (MORE) Program on reducing chronic disability among injured workers and improving efficiency of work rehabilitation process. A cohort of patients with workplace injuries in the lower back were recruited from orthopaedics clinics and assigned to either MORE group (n= 139) or control group (n= 106). Patients in MORE group received an early MRI screening and a coordinated multi-disciplinary management, while patients in the control group received conventional care. Outcome variables are time to return-to-work (RTW) from date of injury, waiting time for MRI screening and time to medical assessment board (MAB). Patients in the MORE Program had significantly shorter duration for RTW (MORE: 6.1 months, 12.8 months, p< 0.01), and more RTW cases (n= 64, 46.0%) compared to CONTROL group (n= 29, 27.4%). The MORE group also had much shorter waiting time for MRI scans (91.85 vs. 309.2 days, p< 0.001) and MAB referral after MRI scans (97.2 vs. 178.9 days, p= 0.001) compared to CONTROL group. The MORE Program which emphasizes early intervention and early MRI screening, is shown to be effective in shortening sick leave and improving RTW outcomes of injured workers.
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-11-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.
Dynamic contrast-enhanced magnetic resonance imaging of the sarcopenic muscle
Nicolato, Elena; Farace, Paolo; Asperio, Roberto M; Marzola, Pasquina; Lunati, Ernesto; Sbarbati, Andrea; Osculati, Francesco
2002-01-01
Background Studies about capillarity of the aged muscle provided conflicting results and no data are currently available about the magnetic resonance imaging (MRI) in vivo characteristics of the microvascular bed in aged rats. We have studied age-related modifications of the skeletal muscle by in vivo T2-relaxometry and dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) at high field intensity (4.7 T). The aim of the work was to test the hypothesis that the ageing process involves microvessels in skeletal muscle. Methods The study was performed in 4-month-old (n = 6) and 20-month-old (n = 6) rats. Results At MRI examination, the relaxation time T2 of the gastrocnemius muscle showed no significant difference between these two groups. The kinetic of contrast penetration in the tissue showed that in 4-month-old rats the enhancement values of the signal intensity at different time-points were significantly higher than those found in senescent rats. Conclusion The reported finding suggests that there is a modification of the microcirculatory function in skeletal muscle of aged rats. This work also demonstrates that CE-MRI allows for an in vivo quantification of the multiple biological processes involving the skeletal muscle during aging. Therefore, CE-MRI could represent a further tool for the follow up of tissue modification and therapeutic intervention both in patients with sarcopenia and in experimental models of this pathology. PMID:12049675
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-01-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857
MRI/TRUS data fusion for prostate brachytherapy. Preliminary results.
Reynier, Christophe; Troccaz, Jocelyne; Fourneret, Philippe; Dusserre, André; Gay-Jeune, Cécile; Descotes, Jean-Luc; Bolla, Michel; Giraud, Jean-Yves
2004-06-01
Prostate brachytherapy involves implanting radioactive seeds (I125 for instance) permanently in the gland for the treatment of localized prostate cancers, e.g., cT1c-T2a N0 M0 with good prognostic factors. Treatment planning and seed implanting are most often based on the intensive use of transrectal ultrasound (TRUS) imaging. This is not easy because prostate visualization is difficult in this imaging modality particularly as regards the apex of the gland and from an intra- and interobserver variability standpoint. Radioactive seeds are implanted inside open interventional MR machines in some centers. Since MRI was shown to be sensitive and specific for prostate imaging whilst open MR is prohibitive for most centers and makes surgical procedures very complex, this work suggests bringing the MR virtually in the operating room with MRI/TRUS data fusion. This involves providing the physician with bi-modality images (TRUS plus MRI) intended to improve treatment planning from the data registration stage. The paper describes the method developed and implemented in the PROCUR system. Results are reported for a phantom and first series of patients. Phantom experiments helped characterize the accuracy of the process. Patient experiments have shown that using MRI data linked with TRUS data improves TRUS image segmentation especially regarding the apex and base of the prostate. This may significantly modify prostate volume definition and have an impact on treatment planning.
Moche, Michael; Zajonz, Dirk; Kahn, Thomas; Busse, Harald
2010-04-01
To present the clinical setup and workflow of a robotic assistance system for image-guided interventions in a conventional magnetic resonance imaging (MRI) environment and to report our preliminary clinical experience with percutaneous biopsies in various body regions. The MR-compatible, servo-pneumatically driven, robotic device (Innomotion) fits into the 60-cm bore of a standard MR scanner. The needle placement (n = 25) accuracy was estimated by measuring the 3D deviation between needle tip and prescribed target point in a phantom. Percutaneous biopsies in six patients and different body regions were planned by graphically selecting entry and target points on intraoperatively acquired roadmap MR data. For insertion depths between 29 and 95 mm, the average 3D needle deviation was 2.2 +/- 0.7 mm (range 0.9-3.8 mm). Patients with a body mass index of up to approximately 30 kg/m(2) fitted into the bore with the device. Clinical work steps and limitations are reported for the various applications. All biopsies were diagnostic and could be completed without any major complications. Median planning and intervention times were 25 (range 20-36) and 44 (36-68) minutes, respectively. Preliminary clinical results in a standard MRI environment suggest that the presented robotic device provides accurate guidance for percutaneous procedures in various body regions. Shorter procedure times may be achievable by optimizing technical and workflow aspects. (c) 2010 Wiley-Liss, Inc.
Spinal cord ischemia following thoracotomy without epidural anesthesia.
Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A
2006-06-01
Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.
Registration of MRI to Intraoperative Radiographs for Target Localization in Spinal Interventions
De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Goerres, J; Jacobson, M W; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Siewerdsen, J H
2017-01-01
Purpose Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Methods Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (Covariance-Matrix-Adaptation Evolutionary-Strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Results The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± iqr) = 4.3 ± 2.6 mm (median ± iqr) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded Dice coefficient = 88.1 ± 5.2, Accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE < 3 mm and CAR > 0.50. Conclusion The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness. PMID:28050972
Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A
2018-06-01
Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord
Yang, Pai-Feng; Wang, Feng
2015-01-01
Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and touch, information that will be valuable for designing and optimizing therapeutic interventions for chronic pain management. PMID:26203144
Ladd, Lauren M; Tirkes, Temel; Tann, Mark; Agarwal, David M; Johnson, Matthew S; Tahir, Bilal; Sandrasegaran, Kumaresan
2016-12-01
The diagnosis and treatment plan for hepatocellular carcinoma (HCC) can be made from radiologic imaging. However, lesion detection may vary depending on the imaging modality. This study aims to evaluate the sensitivities of hepatic multidetector computed tomography (MDCT), magnetic resonance imaging (MRI), and digital subtraction angiography (DSA) in the detection of HCC and the consequent management impact on potential liver transplant patients. One hundred and sixteen HCC lesions were analyzed in 41 patients who received an orthotopic liver transplant (OLT). All of the patients underwent pretransplantation hepatic DSA, MDCT, and/or MRI. The imaging results were independently reviewed retrospectively in a blinded fashion by two interventional and two abdominal radiologists. The liver explant pathology was used as the gold standard for assessing each imaging modality. The sensitivity for overall HCC detection was higher for cross-sectional imaging using MRI (51.5%, 95% confidence interval [CI]=36.2-58.4%) and MDCT (49.8%, 95% CI=43.7-55.9%) than for DSA (41.7%, 95% CI=36.2-47.3%) ( P =0.05). The difference in false-positive rate was not statistically significant between MRI (22%), MDCT (29%), and DSA (29%) ( P =0.67). The sensitivity was significantly higher for detecting right lobe lesions than left lobe lesions for all modalities (MRI: 56.1% vs. 43.1%, MDCT: 55.0% vs. 42.0%, and DSA: 46.9% vs. 33.9%; all P <0.01). The sensitivities of the three imaging modalities were also higher for lesions ≥2 cm vs. <2 cm (MRI: 73.4% vs. 32.7%, MDCT: 66.9% vs. 33.8%, and DSA: 62.2% vs. 24.1%; all P <0.01). The interobserver correlation was rated as very good to excellent. The sensitivity for detecting HCC is higher for MRI and MDCT than for DSA, and so cross-sectional imaging modalities should be used to evaluate OLT candidacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boon, S.
The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less
Slone, H Wayne; Kontzialis, Marinos; Kiani, Bahram; Triola, Craig; Oettel, David J; Bourekas, Eric C
2013-01-01
Scedosporium apiospermum is a deadly fungal infection that can infect the central nervous system, particularly in immunocompromised patients. We present two cases of Scedosporium brain abscesses. The first case was fatal and relevant conventional MRI and MR spectroscopy findings are discussed. To our knowledge, this is the first reported case of MR spectroscopy in Scedosporium apiospermum abscesses. In the second case, the patient recovered and conventional MR findings are followed over several months. In the appropriate clinical setting, conventional MR imaging and MR spectroscopy may facilitate diagnosis, earlier initiation of antifungal pharmacotherapy and surgical intervention in this frequently fatal infection. Copyright © 2013 Elsevier Inc. All rights reserved.
Zanto, Theodore P; Pa, Judy; Gazzaley, Adam
2014-01-01
As the aging population grows, it has become increasingly important to carefully characterize amnestic mild cognitive impairment (aMCI), a preclinical stage of Alzheimer's disease (AD). Functional magnetic resonance imaging (fMRI) is a valuable tool for monitoring disease progression in selectively vulnerable brain regions associated with AD neuropathology. However, the reliability of fMRI data in longitudinal studies of older adults with aMCI is largely unexplored. To address this, aMCI participants completed two visual working tasks, a Delayed-Recognition task and a One-Back task, on three separate scanning sessions over a three-month period. Test-retest reliability of the fMRI blood oxygen level dependent (BOLD) activity was assessed using an intraclass correlation (ICC) analysis approach. Results indicated that brain regions engaged during the task displayed greater reliability across sessions compared to regions that were not utilized by the task. During task-engagement, differential reliability scores were observed across the brain such that the frontal lobe, medial temporal lobe, and subcortical structures exhibited fair to moderate reliability (ICC=0.3-0.6), while temporal, parietal, and occipital regions exhibited moderate to good reliability (ICC=0.4-0.7). Additionally, reliability across brain regions was more stable when three fMRI sessions were used in the ICC calculation relative to two fMRI sessions. In conclusion, the fMRI BOLD signal is reliable across scanning sessions in this population and thus a useful tool for tracking longitudinal change in observational and interventional studies in aMCI. © 2013.
Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses.
Zamora, Irving J; Sheikh, Fariha; Cassady, Christopher I; Olutoye, Oluyinka O; Mehollin-Ray, Amy R; Ruano, Rodrigo; Lee, Timothy C; Welty, Stephen E; Belfort, Michael A; Ethun, Cecilia G; Kim, Michael E; Cass, Darrell L
2014-06-01
The purpose of this study was to evaluate fetal magnetic resonance imaging (MRI) as a modality for predicting perinatal outcomes and lung-related morbidity in fetuses with congenital lung masses (CLM). The records of all patients treated for CLM from 2002 to 2012 were reviewed retrospectively. Fetal MRI-derived lung mass volume ratio (LMVR), observed/expected normal fetal lung volume (O/E-NFLV), and lesion-to-lung volume ratio (LLV) were calculated. Multivariate regression and receiver operating characteristic analyses were applied to determine the predictive accuracy of prenatal imaging. Of 128 fetuses with CLM, 93% (n=118) survived. MRI data were available for 113 fetuses. In early gestation (<26weeks), MRI measurements of LMVR and LLV correlated with risk of fetal hydrops, mortality, and/or need for fetal intervention. In later gestation (>26weeks), LMVR, LLV, and O/E-NFLV correlated with neonatal respiratory distress, intubation, NICU admission and need for neonatal surgery. On multivariate regression, LMVR was the strongest predictor for development of fetal hydrops (OR: 6.97, 1.58-30.84; p=0.01) and neonatal respiratory distress (OR: 12.38, 3.52-43.61; p≤0.001). An LMVR >2.0 predicted worse perinatal outcome with 83% sensitivity and 99% specificity (AUC=0.94; p<0.001). Fetal MRI volumetric measurements of lung masses and residual normal lung are predictive of perinatal outcomes in fetuses with CLM. These data may assist in perinatal risk stratification, counseling, and resource utilization. Copyright © 2014 Elsevier Inc. All rights reserved.
Structural and Functional Bases for Individual Differences in Motor Learning
Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi
2013-01-01
People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562
ERIC Educational Resources Information Center
Hart, Anthony R.; Whitby, Elspeth W.; Griffiths, Paul D.; Smith, Michael F.
2008-01-01
Preterm birth is associated with an increased risk of developmental difficulties. Magnetic resonance imaging (MRI) is increasingly being used to identify damage to the brain following preterm birth. It is hoped this information will aid prognostication and identify neonates who would benefit from early therapeutic intervention. Cystic…
Conklin, Heather M.; Scoggins, Matthew A.; Ashford, Jason M.; Merchant, Thomas E.; Mandrell, Belinda N.; Ogg, Robert J.; Curtis, Elizabeth; Wise, Merrill S.; Indelicato, Daniel J.; Crabtree, Valerie M.
2016-01-01
Objective: Despite excellent survival prognosis, children treated for craniopharyngioma experience significant morbidity. We examined the role of hypothalamic involvement (HI) in excessive daytime sleepiness (EDS) and attention regulation in children enrolled on a Phase II trial of limited surgery and proton therapy. Methods: Participants completed a sleep evaluation (N = 62) and a continuous performance test (CPT) during functional magnetic resonance imaging (fMRI; n = 29) prior to proton therapy. Results: EDS was identified in 76% of the patients and was significantly related to increased HI extent (p = .04). There was no relationship between CPT performance during fMRI and HI or EDS. Visual examination of group composite fMRI images revealed greater spatial extent of activation in frontal cortical regions in patients with EDS, consistent with a compensatory activation hypothesis. Conclusion: Routine screening for sleep problems during therapy is indicated for children with craniopharyngioma, to optimize the timing of interventions and reduce long-term morbidity. PMID:27189690
Multimode intravascular RF coil for MRI-guided interventions.
Kurpad, Krishna N; Unal, Orhan
2011-04-01
To demonstrate the feasibility of using a single intravascular radiofrequency (RF) probe connected to the external magnetic resonance imaging (MRI) system via a single coaxial cable to perform active tip tracking and catheter visualization and high signal-to-noise ratio (SNR) intravascular imaging. A multimode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. The multimode coil behaves as an inductively coupled transmit coil. The forward-looking capability of 6 mm was measured. A greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil was demonstrated. Simultaneous active tip tracking and catheter visualization was demonstrated. It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multimode intravascular RF coil that is connected to the external system via a single coaxial cable. Copyright © 2011 Wiley-Liss, Inc.
Multi-mode Intravascular RF Coil for MRI-guided Interventions
Kurpad, Krishna N.; Unal, Orhan
2011-01-01
Purpose To demonstrate the feasibility of using a single intravascular RF probe connected to the external MRI system via a single coaxial cable to perform active tip tracking and catheter visualization, and high SNR intravascular imaging. Materials and Methods A multi-mode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. Results The multi-mode coil behaves as an inductively-coupled transmit coil. Forward looking capability of 6mm is measured. Greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil is demonstrated. Simultaneous active tip tracking and catheter visualization is demonstrated. Conclusions It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multi-mode intravascular RF coil that is connected to the external system via a single coaxial cable. PMID:21448969
ISMRM Workshop on Fat–Water Separation: Insights, Applications and Progress in MRI
Hu, Houchun Harry; Börnert, Peter; Hernando, Diego; Kellman, Peter; Ma, Jingfei; Reeder, Scott; Sirlin, Claude
2013-01-01
Approximately 130 attendees convened on February 19–22, 2012 for the first ISMRM-sponsored workshop on water–fat imaging. The motivation to host this meeting was driven by the increasing number of research publications on this topic over the past decade. The scientific program included an historical perspective and a discussion of the clinical relevance of water–fat MRI, a technical description of multiecho pulse sequences, a review of data acquisition and reconstruction algorithms, a summary of the confounding factors that influence quantitative fat measurements and the importance of MRI-based biomarkers, a description of applications in the heart, liver, pancreas, abdomen, spine, pelvis, and muscles, an overview of the implications of fat in diabetes and obesity, a discussion on MR spectroscopy, a review of childhood obesity, the efficacy of lifestyle interventional studies, and the role of brown adipose tissue, and an outlook on federal funding opportunities from the National Institutes of Health. PMID:22693111
Yuan, Weihong; Treble-Barna, Amery; Sohlberg, McKay M; Harn, Beth; Wade, Shari L
2017-02-01
Structural connectivity analysis based on graph theory and diffusion tensor imaging tractography is a novel method that quantifies the topological characteristics in the brain network. This study aimed to examine structural connectivity changes following the Attention Intervention and Management (AIM) program designed to improve attention and executive function (EF) in children with traumatic brain injury (TBI). Seventeen children with complicated mild to severe TBI (13.66 ± 2.68 years; >12 months postinjury) completed magnetic resonance imaging (MRI) and neurobehavioral measures at time 1, 10 of whom completed AIM and assessment at time 2. Eleven matched healthy comparison (HC) children (13.37 ± 2.08 years) completed MRI and neurobehavioral assessment at both time points, but did not complete AIM. Network characteristics were analyzed to quantify the structural connectivity before and after the intervention. Mixed model analyses showed that small-worldness was significantly higher in the TBI group than the HC group at time 1, and both small-worldness and normalized clustering coefficient decreased significantly at time 2 in the TBI group whereas the HC group remained relatively unchanged. Reductions in mean local efficiency were significantly correlated with improvements in verbal inhibition and both parent- and child-reported EF. Increased normalized characteristic path length was significantly correlated with improved sustained attention. The results provide preliminary evidence suggesting that graph theoretical analysis may be a sensitive tool in pediatric TBI for detecting ( a) abnormalities of structural connectivity in brain network and ( b) structural neuroplasticity associated with neurobehavioral improvement following a short-term intervention for attention and EF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wonneberger, Uta, E-mail: uta.wonneberger@charite.d; Schnackenburg, Bernhard, E-mail: bernhard.schnackenburg@philips.co; Streitparth, Florian, E-mail: florian.streitparth@charite.de
2010-04-15
In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0{sup o} to 90{sup o}) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring wasmore » assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width <3.5 mm, tip error <2 mm) at 45{sup o} to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR{sub Muscle/Needle} >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.« less
Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Köhler, Stefanie; Puta, Christian; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen
2017-03-01
Strong evidence indicates that regular aerobic training induces beneficial effects on cognitive functions. The present controlled fMRI study was designed to investigate the impact of a short-term intense aerobic exercise on the pattern of functional activation during the retrieval of learned pair-associates in 17 young and healthy male adults compared to 17 matched control subjects. We further aimed to relate putative changes in hippocampal activation to postulated changes in the exercised-induced brain derived neurotrophic factor (BDNF). The supervised exercise program was performed on a bicycle ergometer and lasted six weeks, with three aerobic sessions per week. We found profound improvement of physical fitness in most subjects indicated by the target parameter 'individual anaerobic threshold'. Significant improvements in the cognitive performance were detected in the exercise group, but also in the control group. We observed significant differences in the activation pattern of the left anterior hippocampus during the pair-associates task after the intervention. We could also show a significant positive correlation between changes in exercise-induced BDNF and left anterior hippocampal activation. Moreover, we observed the brain's motor network to be significantly stronger activated after the exercise intervention. Thus, our results suggest BDNF dependent activation changes of the hippocampus in addition to previously described structural changes after exercise. Copyright © 2017 Elsevier B.V. All rights reserved.
Imaging the neuroplastic effects of ketamine with VBM and the necessity of placebo control.
Höflich, A; Ganger, S; Tik, M; Hahn, A; Kranz, G S; Vanicek, T; Spies, M; Kraus, C; Windischberger, C; Kasper, S; Winkler, D; Lanzenberger, R
2017-02-15
In the last years a plethora of studies have investigated morphological changes induced by behavioural or pharmacological interventions using structural T1-weighted MRI and voxel-based morphometry (VBM). Ketamine is thought to exert its antidepressant action by restoring neuroplasticity. In order to test for acute impact of a single ketamine infusion on grey matter volume we performed a placebo-controlled, double-blind investigation in healthy volunteers using VBM. 28 healthy individuals underwent two MRI sessions within a timeframe of 2 weeks, each consisting of two structural T1-weighted MRIs within a single session, one before and one 45min after infusion of S-ketamine (bolus of 0.11mg/kg, followed by an maintenance infusion of 0.12mg/kg) or placebo (0.9% NaCl infusion) using a crossover design. In the repeated-measures ANOVA with time (post-infusion/pre-infusion) and medication (placebo/ketamine) as factors, no significant effect of interaction and no effect of medication was found (FWE-corrected). Importantly, further post-hoc t-tests revealed a strong "decrease" of grey matter both in the placebo and the ketamine condition over time. This effect was evident mainly in frontal and temporal regions bilaterally with t-values ranging from 4.95 to 5.31 (FWE-corrected at p<0.05 voxel level). The vulnerabilities of VBM have been repeatedly demonstrated, with reports of influence of blood flow, tissue water and direct effects of pharmacological compounds on the MRI signal. Here again, we highlight that the relationship between intervention and VBM results is apparently subject to a number of physiological influences, which are partly unknown. Future studies focusing on the effects of ketamine on grey matter should try to integrate known influential factors such as blood flow into analysis. Furthermore, the results of this study highlight the importance of a carefully performed placebo condition in pharmacological fMRI studies. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali
Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation wasmore » 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.« less
Biederman, Robert W W; Doyle, Mark; Young, Alistair A; Devereux, Richard B; Kortright, Eduardo; Perry, Gilbert; Bella, Jonathan N; Oparil, Suzanne; Calhoun, David; Pohost, Gerald M; Dell'Italia, Louis J
2008-08-01
Concentric hypertensive left ventricular (LV) hypertrophy is presumed to be a symmetrical process. Using MRI-derived intramyocardial strain, we sought to determine whether segmental deformation was also symmetrical, as suggested by echocardiography. High echocardiographic LV relative wall thickness in hypertensive LV hypertrophy allows preserved endocardial excursion despite depressed LV midwall shortening (MWS). Depressed MWS is an adverse prognostic indicator, but whether this is related to global or regional myocardial depression is unknown. We prospectively compared MWS derived from linear echocardiographic dimensions with MR strain(in) in septal and posterior locations in 27 subjects with ECG LV hypertrophy in the Losartan Intervention for Endpoint Reduction in Hypertension Study. Although MRI-derived mass was higher in patients than in normal control subjects (124.0+/-38.6 versus 60.5+/-13.2g/m(2); P<0.001), fractional shortening (30+/-5% versus 33+/-3%) and end-systolic stress (175+/-22 versus 146+/-28 g/cm(2)) did not differ between groups. However, mean MR(in) was decreased in patients versus normal control subjects (13.9+/-6.8% versus 22.4+/-3.5%), as was echo MWS (13.4+/-2.8% versus 18.2+/-1.4%; both P<0.001). For patients versus normal control subjects, posterior wall(in) was not different (17.8+/-7.1% versus 21.6+/-4.0%), whereas septal(in) was markedly depressed (10.1+/-6.6% versus 23.2+/-3.4%; P<0.001). Although global MWS by echocardiography or MRI is depressed in hypertensive LV hypertrophy, MRI tissue tagging demonstrates substantial regional intramyocardial strain(in) heterogeneity, with most severely depressed strain patterns in the septum. Although posterior wall 2D principal strain was inversely related to radius of curvature, septal strain was not, suggesting that factors other than afterload are responsible for pronounced myocardial strain heterogeneity in concentric hypertrophy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatebe, Ken, E-mail: Ken.Tatebe@gmail.com; Ramsay, Elizabeth; Kazem, Mohammad
2016-01-15
Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry wasmore » investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device orientations. These new strategies are being incorporated into the next generation of applicators. The general strategy described in this study can be applied to the design of other interventional devices intended for use with MRI.« less
Rathke, Hendrik; Hamm, Bernd; Guettler, Felix; Lohneis, Philipp; Stroux, Andrea; Suttmeyer, Britta; Jonczyk, Martin; Teichgräber, Ulf; de Bucourt, Maximilian
2015-12-01
In a patient, it is usually not macroscopically possible to estimate the non-viable volume induced by radiofrequency ablation (RFA) after the procedure. The purpose of this study was to use an ex vivo bovine liver model to perform magnetic resonance (MR) volumetry of the visible tissue signal change induced by RFA and to correlate the MR measurement with the actual macroscopic volume measured in the dissected specimens. Sixty-four liver specimens cut from 16 bovine livers were ablated under constant simulated, close physiological conditions with target volumes set to 14.14 ml (3-cm lesion) and 65.45 ml (5-cm lesion). Four commercially available radiofrequency (RF) systems were tested (n=16 for each system; n=8 for 3 cm and n=8 for 5 cm). A T1-weighted turbo spin echo (TSE) sequence with inversion recovery and a proton-density (PD)-weighted TSE sequence were acquired in a 1.0-T open magnetic resonance imaging (MRI) system. After manual dissection, actual macroscopic ablation diameters were measured and volumes calculated. MR volumetry was performed using a semiautomatic software tool. To validate the correctness and feasibility of the volume formula in macroscopic measurements, MR multiplanar reformation diameter measurements with subsequent volume calculation and semiautomatic MR volumes were correlated. Semiautomatic MR volumetry yielded smaller volumes than manual measurement after dissection, irrespective of RF system used, target lesion size, and MR sequence. For the 3-cm lesion, only 43.3% (T1) and 41.5% (PD) of the entire necrosis are detectable. For the 5-cm lesion, only 40.8% (T1) and 37.2% (PD) are visualized in MRI directly after intervention. The correlation between semiautomatic MR volumes and calculated MR volumes was 0.888 for the T1-weighted sequence and 0.875 for the PD sequence. After correlation of semiautomatic MR volumes and calculated MR volumes, it seems reasonable to use the respective volume formula for macroscopic volume calculation. Hyperacute MRI after ex vivo intervention may result in the underestimation of the real expansion of the produced necrosis zone. This must be kept in mind when using MRI for validating ablation success directly after RFA. One reason for the discrepancy between macroscopic and MRI appearance immediately after RFA may be that the transitional zone shows no or only partially visible MR signal change.
Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri
2018-01-01
Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n = 65, included in final analyses: n = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.
Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression
Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna
2016-01-01
Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11–60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD. PMID:26593265
Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression.
Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna
2016-06-01
Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11-60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD.
Imaging Characteristics of Children with Auditory Neuropathy Spectrum Disorder
Roche, Joseph P.; Huang, Benjamin Y.; Castillo, Mauricio; Bassim, Marc K.; Adunka, Oliver F.; Buchman, Craig A.
2013-01-01
Objective To identify and define the imaging characteristics of children with auditory neuropathy spectrum disorder (ANSD). Design Retrospective medical records review and analysis of both temporal bone computed tomography (CT) and magnetic resonance images (MRI) in from children with the diagnosis of ANSD. Setting Tertiary referral center. Patients 118 children with the electrophysiological characteristics of ANSD with available imaging studies for review. Interventions Two neuroradiologists and a neurotologist reviewed each study and consensus descriptions were established. Main outcome measures The type and number of imaging findings were tabulated. Results Sixty-eight (64%) MRIs revealed at least one imaging abnormality while selective use of CT identified 23 (55%) with anomalies. The most prevalent MRI findings included cochlear nerve deficiency (n=51; 28% of 183 nerves), brain abnormalities (n=42; 40% of 106 brains) and prominent temporal horns (n=33, 16% of 212 temporal lobes). The most prevalent CT finding from selective use of CT was cochlear dysplasia (n=13; 31%). Conclusions MRI will identify many abnormalities in children with ANSD that are not readily discernable on CT. Specifically, both developmental and acquired abnormalities of the brain, posterior cranial fossa, and cochlear nerves are not uncommonly seen in this patient population. Inner ear anomalies are well delineated using either imaging modality. Since many of the central nervous system findings identified in this study using MRI can alter the treatment and prognosis for these children, we believe that MRI should be the initial imaging study of choice for children with ANSD. PMID:20593543
Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI
Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng
2016-01-01
Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy
Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.
2014-01-01
This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962
Grace, Sally A; Rossell, Susan L; Heinrichs, Markus; Kordsachia, Catarina; Labuschagne, Izelle
2018-05-24
Oxytocin (OXT) is a neuropeptide which has a critical role in human social behaviour and cognition. Research investigating the role of OXT on functional brain changes in humans has often used task paradigms that probe socioemotional processes. Preliminary evidence suggests a central role of the amygdala in the social cognitive effects of intranasal OXT (IN-OXT), however, inconsistencies in task-design and analysis methods have led to inconclusive findings regarding a cohesive model of the neural mechanisms underlying OXT's actions. The aim of this meta-analysis was to systematically investigate these findings. A systematic search of PubMed, PsycINFO, and Scopus databases was conducted for fMRI studies which compared IN-OXT to placebo in humans. First, we systematically reviewed functional magnetic resonance imaging (fMRI) studies of IN-OXT, including studies of healthy humans, those with clinical disorders, and studies examining resting-state fMRI (rsfMRI). Second, we employed a coordinate-based meta-analysis for task-based neuroimaging literature using activation likelihood estimation (ALE), whereby, coordinates were extracted from clusters with significant differences in IN-OXT versus placebo in healthy adults. Data were included for 39 fMRI studies that reported a total of 374 distinct foci. The meta-analysis identified task-related IN-OXT increases in activity within a cluster of the left superior temporal gyrus during tasks of emotion processing. These findings are important as they implicate regions beyond the amygdala in the neural effects of IN-OXT. The outcomes from this meta-analysis can guide a priori predictions for future OXT research, and provide an avenue for targeted treatment interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fishbein, Kenneth W; Makrogiannis, Sokratis K; Lukas, Vanessa A; Okine, Marilyn; Ramachandran, Ramona; Ferrucci, Luigi; Egan, Josephine M; Chia, Chee W; Spencer, Richard G
2018-07-01
To develop a protocol to non-invasively measure and map fat fraction, fat/(fat+water), as a function of age in the adult thymus for future studies monitoring the effects of interventions aimed at promoting thymic rejuvenation and preservation of immunity in older adults. Three-dimensional spoiled gradient echo 3T MRI with 3-point Dixon fat-water separation was performed at full inspiration for thymus conspicuity in 36 volunteers 19 to 56 years old. Reproducible breath-holding was facilitated by real-time pressure recording external to the console. The MRI method was validated against localized spectroscopy in vivo, with ECG triggering to compensate for stretching during the cardiac cycle. Fat fractions were corrected for T 1 and T 2 bias using relaxation times measured using inversion recovery-prepared PRESS with incremented echo time. In thymus at 3 T, T 1water = 978 ± 75 ms, T 1fat = 323 ± 37 ms, T 2water = 43.4 ± 9.7 ms and T 2fat = 52.1 ± 7.6 ms were measured. Mean T 1 -corrected MRI fat fractions varied from 0.2 to 0.8 and were positively correlated with age, weight and body mass index (BMI). In subjects with matching MRI and MRS fat fraction measurements, the difference between these measurements exhibited a mean of -0.008 with a 95% confidence interval of (0.123, -0.138). 3-point Dixon MRI of the thymus with T 1 bias correction produces quantitative fat fraction maps that correlate with T 2 -corrected MRS measurements and show age trends consistent with thymic involution. Published by Elsevier Inc.
Steventon, Jessica J; Harrison, David J; Trueman, Rebecca C; Rosser, Anne E; Jones, Derek K; Brooks, Simon P
2015-01-01
Environmental enrichment has been shown to improve symptoms and reduce neuropathology in mouse models of Huntington's disease (HD); however results are limited to ex vivo techniques with associated shortcomings. In-vivo magnetic resonance imaging (MRI) can overcome some of the shortcomings and is applied for the first time here to assess the effect of a cognitive intervention in a mouse model of HD. We aimed to investigate whether in-vivo high-field MRI can detect a disease-modifying effect in tissue macrostructure following a cognitive enrichment regime. YAC128 transgenic and wild type mice were exposed to cognitive enrichment throughout their lifetime. At 20-months old, mice were scanned with a T2-weighted MRI sequence and a region-of-interest (ROI) approach was used to examine structural changes. Locomotor activity and performance on the rotarod and serial discrimination watermaze task were assessed to measure motor and cognitive function respectively. Mice exposed to cognitive enrichment were more active and able to stay on a rotating rod longer compared to control mice, with comparable rotarod performance between HD enriched mice and wild-type mice. YAC128 mice demonstrated cognitive impairments which were not improved by cognitive enrichment. In-vivo MRI revealed a reduction in the degree of caudate-putamen atrophy in the enriched HD mice. We provide in vivo evidence of a beneficial effect of environmental enrichment on neuropathology and motor function in a HD mouse model. This demonstrates the efficacy of MRI in a model of HD and provides the basis for an in-vivo non-destructive outcome measure necessary for longitudinal study designs to understand the effect of enrichment with disease progression.
EU Directive 2004/40: field measurements of a 1.5 T clinical MR scanner.
Riches, S F; Collins, D J; Scuffham, J W; Leach, M O
2007-06-01
The European Union (EU) Physical Agents (EMF) Directive [1] must be incorporated into UK law in 2008. The directive, which applies to employees working in MRI, sets legal exposure limits for two of the three types of EMF exposure employed in MRI; time-varying gradient fields and radiofrequency (RF) fields. Limits on the static field are currently not included but may be added at a later date. Conservative action values have been set for all three types of exposure including the static field. The absolute exposure limits will exclude staff from the scanner bore and adjacent areas during scanning, impacting on many clinical activities such as anaesthetic monitoring during sedated scans, paediatric scanning and interventional MRI. When the legislation comes into force, NHS Trusts, scanner companies and academic institutions will be required to show compliance with the law. We present results of initial measurements performed on a 1.5 T clinical MRI scanner. For the static field, the proposed action value is exceeded at 40 cm from the scanner bore and would be exceeded when positioning a patient for scanning. For the RF field, the action values were only exceeded within the bore at distances of 40 cm from the scanner ends during a very RF intensive sequence; MRI employees are unlikely to be in the bore during an acquisition. For the time-varying gradient fields the action values were exceeded 52 cm out from the mouth of the bore during two clinical sequences, and estimated current densities show the exposure limit to be exceeded at 40 cm for frequencies above 333 Hz. Limiting employees to distances greater than these from the scanner during acquisition will have a severe impact on the future use and development of MRI.
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
Linnman, Clas; Catana, Ciprian; Petkov, Mike P; Chonde, Daniel Burje; Becerra, Lino; Hooker, Jacob; Borsook, David
2018-01-01
Pain interventions with no active ingredient, placebo, are sometimes effective in treating chronic pain conditions. Prior studies on the neurobiological underpinnings of placebo analgesia indicate endogenous opioid release and changes in brain responses and functional connectivity during pain anticipation and pain experience in healthy subjects. Here, we investigated placebo analgesia in healthy subjects and in interictal migraine patients (n = 9) and matched healthy controls (n = 9) using 11 C-diprenoprhine Positron Emission Tomography (PET) and simultaneous functional Magnetic Resonance Imaging (fMRI). Intravenous saline injections (the placebo) led to lower pain ratings, but we did not find evidence for an altered placebo response in interictal migraine subjects as compared to healthy subjects.
Campbell, J; Langdon, D; Cercignani, M; Rashid, W
2016-01-01
Aim. To explore the efficacy of home-based, computerised, cognitive rehabilitation in patients with multiple sclerosis using neuropsychological assessment and advanced structural and functional magnetic resonance imaging (fMRI). Methods. 38 patients with MS and cognitive impairment on the Brief International Cognitive Assessment for MS (BICAMS) were enrolled. Patients were randomised to undergo 45 minutes of computerised cognitive rehabilitation using RehaCom software ( n = 19) three times weekly for six weeks or to a control condition ( n = 19). Neuropsychological and MRI data were obtained at baseline (time 1), following the 6-week intervention (time 2), and after a further twelve weeks (time 3). Cortical activations were explored using fMRI and microstructural changes were explored using quantitative magnetisation transfer (QMT) imaging. Results. The treatment group showed a greater improvement in SDMT gain scores between baseline and time 2 compared to the control group ( p = 0.005). The treatment group exhibited increased activation in the bilateral prefrontal cortex and right temporoparietal regions relative to control group at time 3 ( p < 0.05 FWE corrected ). No significant changes were observed on QMT. Conclusion. This study supports the hypothesis that home-based, computerised, cognitive rehabilitation may be effective in improving cognitive performance in patients with MS. Clinical trials registration is ISRCTN54901925.
Dazzan, Paola
2014-12-01
Studies that have used structural magnetic resonance imaging (MRI) suggest that individuals with psychoses have brain alterations, particularly in frontal and temporal cortices, and in the white matter tracts that connect them. Furthermore, these studies suggest that brain alterations may be particularly prominent, already at illness onset, in those individuals more likely to have poorer outcomes (eg, higher number of hospital admissions, and poorer symptom remission, level of functioning, and response to the first treatment with antipsychotic drugs). The fact that, even when present, these brain alterations are subtle and distributed in nature, has limited, until now, the utility of MRI in the clinical management of these disorders. More recently, MRI approaches, such as machine learning, have suggested that these neuroanatomical biomarkers can be used for direct clinical benefits. For example, using support vector machine, MRI data obtained at illness onset have been used to predict, with significant accuracy, whether a specific individual is likely to experience a remission of symptoms later on in the course of the illness. Taken together, this evidence suggests that validated, strong neuroanatomical markers could be used not only to inform tailored intervention strategies in a single individual, but also to allow patient stratification in clinical trials for new treatments.
Magnetic Resonance Imaging to Detect Early Molecular and Cellular Changes in Alzheimer's Disease.
Knight, Michael J; McCann, Bryony; Kauppinen, Risto A; Coulthard, Elizabeth J
2016-01-01
Recent pharmaceutical trials have demonstrated that slowing or reversing pathology in Alzheimer's disease is likely to be possible only in the earliest stages of disease, perhaps even before significant symptoms develop. Pathology in Alzheimer's disease accumulates for well over a decade before symptoms are detected giving a large potential window of opportunity for intervention. It is therefore important that imaging techniques detect subtle changes in brain tissue before significant macroscopic brain atrophy. Current diagnostic techniques often do not permit early diagnosis or are too expensive for routine clinical use. Magnetic Resonance Imaging (MRI) is the most versatile, affordable, and powerful imaging modality currently available, being able to deliver detailed analyses of anatomy, tissue volumes, and tissue state. In this mini-review, we consider how MRI might detect patients at risk of future dementia in the early stages of pathological change when symptoms are mild. We consider the contributions made by the various modalities of MRI (structural, diffusion, perfusion, relaxometry) in identifying not just atrophy (a late-stage AD symptom) but more subtle changes reflective of early dementia pathology. The sensitivity of MRI not just to gross anatomy but to the underlying "health" at the cellular (and even molecular) scales, makes it very well suited to this task.
New concepts and materials for the manufacturing of MR-compatible guide wires.
Brecher, Christian; Emonts, Michael; Brack, Alexander; Wasiak, Christian; Schütte, Adrian; Krämer, Nils; Bruhn, Robin
2014-04-01
This paper shows the development of a new magnetic resonance imaging (MRI)-compatible guide wire made from fiber-reinforced plastics. The basic material of the developed guide wire is manufactured using a specially developed micro-pullwinding technology, which allows the adjustment of tensile, bending, and torsional stiffness independent from each other. Additionally, the micro-pullwinding technology provides the possibility to vary the stiffness along the length of the guide wire in a continuous process. With the possibilities of this technology, the mechanical properties of the guide wire were precisely adjusted for the intended usage in MRI-guided interventions. The performance of the guide wire regarding the mechanical properties was investigated. It could be shown, that the mechanical properties could be changed independently from each other by varying the process parameters. Especially, the torsional stiffness could be significantly improved with only a minor influence on bending and tensile properties. The precise influence of the variation of the winding angle on the mechanical and geometrical properties has to be further investigated. The usability of the guide wire as well as its visibility in MRI was investigated by radiologists. With the micro-pullwinding technology, a continuous manufacturing technique for highly stressable, MRI-safe profiles is available and can be the trigger for a new class of medical devices.
Komesu, Yuko M; Rogers, Rebecca G; Sapien, Robert E; Schrader, Ronald M; Simmerman-Sierra, Timothy; Mayer, Andrew R; Ketai, Loren H
2017-06-01
We describe the rationale and methodology for a study comparing mind-body treatment and pharmacotherapy in women with urgency urinary incontinence (UUI). To explore brain associations in UUI, a subset of patients will also undergo functional magnetic resonance imaging (fMRI). We hypothesize that hypnotherapy, a mind-body intervention, will be at least as effective as pharmacotherapy in treating UUI. We also hypothesize that fMRI findings will change following treatment, with changes potentially differing between groups. We describe the development and design challenges of a study comparing the efficacy of hypnotherapy and conventional pharmacotherapy in the treatment of UUI. The study randomizes women to either of these treatments, and outcome measures include bladder diaries and validated questionnaires. Sample size estimates, based on a noninferiority test (alpha = 0.025, beta = 0.20), after considering dropout subjects and subjects lost to follow-up, indicated that approximately 150 woman would be required to test the hypothesis that hypnotherapy is not inferior to pharmacotherapy within a 5 % noninferiority margin. The study will also evaluate fMRI changes in a subset of participants before and after therapy. Challenges included designing a study with a mind-body therapy and a comparison treatment equally acceptable to participants, standardizing the interventions, and confronting the reality that trials are time-consuming for participants who have to make appropriate accommodations in their schedule. Study enrollment began in March 2013 and is ongoing. We describe the design of a randomized controlled trial comparing mind-body therapy and pharmacotherapy in the treatment of UUI and the challenges encountered in its implementation.
Lee, Dong Ryul; Lee, Nam Gi; Cha, Hyun Jung; Yun Sung, O; You, Sung Joshua Hyun; Oh, Jin Hwan; Bang, Hyo Seong
2011-01-01
This case study was conducted to highlight the clinical and radiological features of a patient with progressive neuromuscular scoliosis before and after robo-horseback riding therapy (HBRT). A clinical, laboratory, and radiological analysis of a single case. An 11-year-old child, dignosed right thoracolumbar neuromuscular scoliosis secondary to cerebral palsy. The child received a 5-week course of robo-HBRT, comprising of 60-minute periods a day, five times a week. Postural alignment was determined by Cobb's method. A real-time magnetic resonance imaging (MRI) was performed to determine the robo-HBRT-induced changes in cross-sectional area (CSA) of bilateral thoracic (T2) and lumbar (L2) paraspinalis. Clinical tests including the standard Gross Motor Function Measure (GMFM) and manual muscle testing (MMT) with the Lafayette Manual Muscle Tester were used to compare the intervention-related changes in motor performance and power. The surface EMG was also used to examine therapy-induced changes in muscle activity amplitude for bilateral T2 and L2 paraspinalis and rectus abdominis muscles. Clinical motor and strength scores increased after the intervention. Radiographic Cobb's angle, MRI, and electromyographic amplitude data demonstrated notably enhanced spinal alignment and muscle fiber CSA and symmetry, respectively. This is the first study to provide evidence of the therapeutic efficacy of a novel form of robo-HBRT on motor function and associated structural and motor control improvements, thus suggesting a method of augmenting therapy in neuromuscular scoliosis.
MRI Brain Volume Measurements in Infantile Neuronal Ceroid Lipofuscinosis
Baker, Eva H.; Levin, Sondra W.; Zhang, Zhongjian; Mukherjee, Anil B.
2016-01-01
Background Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative storage disease caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. PPT1 deficiency impairs degradation of palmitoylated proteins (constituents of ceroid) by lysosomal hydrolases. Consequent lysosomal ceroid accumulation leads to neuronal injury, resulting in rapid neurodegeneration and childhood demise. As part of a project studying treatment benefits of a combination of cysteamine bitartrate and N-acetylcysteine, we made serial measurements of patients’ brain volumes using MRI. Methods Ten INCL patients participating in a treatment/follow-up study underwent brain MRI that included high resolution T1-weighted images. After manual placement of a mask delineating the surface of the brain, a maximum-likelihood classifier was applied to determine total brain volume, further subdivided as cerebrum, cerebellum, brainstem, and thalamus. Patients’ brain volumes were compared to those of a normal population. Results Major subdivisions of the brain followed similar trajectories with different timing. The cerebrum demonstrated early, rapid volume loss, and may never have been normal postnatally. The thalamus dropped out of the normal range around age 6 months, cerebellum around age 2 years, and brainstem around age 3 years. Discussion Rapid cerebral volume loss was expected based upon previous qualitative reports. Because our study did not include a non-treatment arm, and because progression of brain volumes in INCL has not previously been quantified, we could not determine whether our intervention had a beneficial effect on brain volumes. However, the level of quantitative detail in this study allows it to serve as a reference for evaluation of future therapeutic interventions. PMID:27765741
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
Neuroimaging the Effectiveness of Substance Use Disorder Treatments.
Cabrera, Elizabeth A; Wiers, Corinde E; Lindgren, Elsa; Miller, Gregg; Volkow, Nora D; Wang, Gene-Jack
2016-09-01
Neuroimaging techniques to measure the function and biochemistry of the human brain such as positron emission tomography (PET), proton magnetic resonance spectroscopy ((1)H MRS), and functional magnetic resonance imaging (fMRI), are powerful tools for assessing neurobiological mechanisms underlying the response to treatments in substance use disorders. Here, we review the neuroimaging literature on pharmacological and behavioral treatment in substance use disorder. We focus on neural effects of medications that reduce craving (e.g., naltrexone, bupropion hydrochloride, baclofen, methadone, varenicline) and that improve cognitive control (e.g., modafinil, N-acetylcysteine), of behavioral treatments for substance use disorders (e.g., cognitive bias modification training, virtual reality, motivational interventions) and neuromodulatory interventions such as neurofeedback and transcranial magnetic stimulation. A consistent finding for the effectiveness of therapeutic interventions identifies the improvement of executive control networks and the dampening of limbic activation, highlighting their values as targets for therapeutic interventions in substance use disorders.
Quatman, Carmen E; Hettrich, Carolyn M; Schmitt, Laura C; Spindler, Kurt P
2011-07-01
Current diagnostic strategies for detection of structural articular cartilage abnormalities, the earliest structural signs of osteoarthritis, often do not capture the condition until it is too far advanced for the most potential benefit of noninvasive interventions. To systematically review the literature relative to the following questions: (1) Is magnetic resonance imaging (MRI) a valid, sensitive, specific, accurate, and reliable instrument to identify knee articular cartilage abnormalities compared with arthroscopy? (2) Is MRI a sensitive tool that can be utilized to identify early cartilage degeneration? Systematic review. A systematic search was performed in November 2010 using PubMed MEDLINE (from 1966), CINAHL (from 1982), SPORTDiscus (from 1985), SCOPUS (from 1996), and EMBASE (from 1974) databases. Fourteen level I and 13 level II studies were identified that met inclusion criteria and provided information related to diagnostic performance of MRI compared with arthroscopic evaluation. The diagnostic performance of MRI demonstrated a large range of sensitivities, specificities, and accuracies. The sensitivity for identifying articular cartilage abnormalities in the knee joint was reported between 26% and 96%. Specificity and accuracy were reported between 50% and 100% and between 49% and 94%, respectively. The sensitivity, specificity, and accuracy for identifying early osteoarthritis were reported between 0% and 86%, 48% and 95%, and 5% and 94%, respectively. As a result of inconsistencies between imaging techniques and methodological shortcomings of many of the studies, a meta-analysis was not performed, and it was difficult to fully synthesize the information to state firm conclusions about the diagnostic performance of MRI. There is evidence in some MRI protocols that MRI is a relatively valid, sensitive, specific, accurate, and reliable clinical tool for identifying articular cartilage degeneration. Because of heterogeneity of MRI sequences, it is not possible to make definitive conclusions regarding its global clinical utility for guiding diagnosis and treatment strategies. Traumatic sports injuries to the knee may be significant precursor events to early onset of posttraumatic osteoarthritis. Magnetic resonance imaging may aid in early identification of structural injuries to articular cartilage as evidenced by articular cartilage degeneration grading.
Wörsching, Jana; Padberg, Frank; Helbich, Konstantin; Hasan, Alkomiet; Koch, Lena; Goerigk, Stephan; Stoecklein, Sophia; Ertl-Wagner, Birgit; Keeser, Daniel
2017-07-15
Transcranial Direct Current Stimulation (tDCS) of the prefrontal cortex (PFC) can be used for probing functional brain connectivity and meets general interest as novel therapeutic intervention in psychiatric and neurological disorders. Along with a more extensive use, it is important to understand the interplay between neural systems and stimulation protocols requiring basic methodological work. Here, we examined the test-retest (TRT) characteristics of tDCS-induced modulations in resting-state functional-connectivity MRI (RS fcMRI). Twenty healthy subjects received 20minutes of either active or sham tDCS of the dorsolateral PFC (2mA, anode over F3 and cathode over F4, international 10-20 system), preceded and ensued by a RS fcMRI (10minutes each). All subject underwent three tDCS sessions with one-week intervals in between. Effects of tDCS on RS fcMRI were determined at an individual as well as at a group level using both ROI-based and independent-component analyses (ICA). To evaluate the TRT reliability of individual active-tDCS and sham effects on RS fcMRI, voxel-wise intra-class correlation coefficients (ICC) of post-tDCS maps between testing sessions were calculated. For both approaches, results revealed low reliability of RS fcMRI after active tDCS (ICC (2,1) = -0.09 - 0.16). Reliability of RS fcMRI (baselines only) was low to moderate for ROI-derived (ICC (2,1) = 0.13 - 0.50) and low for ICA-derived connectivity (ICC (2,1) = 0.19 - 0.34). Thus, for ROI-based analyses, the distribution of voxel-wise ICC was shifted to lower TRT reliability after active, but not after sham tDCS, for which the distribution was similar to baseline. The intra-individual variation observed here resembles variability of tDCS effects in motor regions and may be one reason why in this study robust tDCS effects at a group level were missing. The data can be used for appropriately designing large scale studies investigating methodological issues such as sources of variability and localisation of tDCS effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Measurement of segmental lumbar spine flexion and extension using ultrasound imaging.
Chleboun, Gary S; Amway, Matthew J; Hill, Jesse G; Root, Kara J; Murray, Hugh C; Sergeev, Alexander V
2012-10-01
Clinical measurement, technical note. To describe a technique to measure interspinous process distance using ultrasound (US) imaging, to assess the reliability of the technique, and to compare the US imaging measurements to magnetic resonance imaging (MRI) measurements in 3 different positions of the lumbar spine. Segmental spinal motion has been assessed using various imaging techniques, as well as surgically inserted pins. However, some imaging techniques are costly (MRI) and some require ionizing radiation (radiographs and fluoroscopy), and surgical procedures have limited use because of the invasive nature of the technique. Therefore, it is important to have an easily accessible and inexpensive technique for measuring lumbar segmental motion to more fully understand spine motion in vivo, to evaluate the changes that occur with various interventions, and to be able to accurately relate the changes in symptoms to changes in motion of individual vertebral segments. Six asymptomatic subjects participated. The distance between spinous processes at each lumbar segment (L1-2, L2-3, L3-4, L4-5) was measured digitally using MRI and US imaging. The interspinous distance was measured with subjects supine and the lumbar spine in 3 different positions (resting, lumbar flexion, and lumbar extension) for both MRI and US imaging. The differences in distance from neutral to extension, neutral to flexion, and extension to flexion were calculated. The measurement methods had excellent reliability for US imaging (intraclass correlation coefficient [ICC3,3] = 0.94; 95% confidence interval: 0.85, 0.97) and MRI (ICC3,3 = 0.98; 95% confidence interval: 0.95, 0.99). The distance measured was similar between US imaging and MRI (P>.05), except at L3-4 flexion-extension (P = .003). On average, the MRI measurements were 1.3 mm greater than the US imaging measurements. This study describes a new method for the measurement of lumbar spine segmental flexion and extension motion using US imaging. The US method may offer an alternative to other imaging techniques to monitor clinical outcomes because of its ease of use and the consistency of measurements compared to MRI.
Lowén, Mats B.O.; Mayer, Emeran A.; Sjöberg, Martha; Tillisch, Kirsten; Naliboff, Bruce; Labus, Jennifer; Lundberg, Peter; Ström, Magnus; Engström, Maria; Walter, Susanna A.
2013-01-01
SUMMARY Background Gut directed hypnotherapy can reduce IBS symptoms but the mechanisms underlying this therapeutic effect remain unknown. Aim We determined the effect of hypnotherapy and educational intervention on brain responses to cued rectal distensions in IBS patients. Methods 44 women with moderate to severe IBS and 20 healthy controls (HCs) were included. Blood oxygen level dependent (BOLD) signals were measured by functional Magnetic Resonance Imaging (fMRI) during expectation and delivery of high (45 mmHg) and low (15 mmHg) intensity rectal distensions. Twenty-five patients were assigned to hypnotherapy (HYP) and 16 to educational intervention (EDU). 31 patients completed treatments and post treatment fMRI. Results Similar symptom reduction was achieved in both groups. Clinically successful treatment (all responders) was associated with significant BOLD attenuation during high intensity distension in the dorsal and ventral anterior insula (cluster size 142, p=0.006, and cluster size 101, p=0.005, respectively). Moreover HYP responders demonstrated a pre-post treatment BOLD attenuation in posterior insula (cluster sizes 59, p=0.05) while EDU responders had a BOLD attenuation in prefrontal cortex (cluster size 60, p=0.05). Pre-post differences for expectation conditions were almost exclusively seen in the HYP group. Following treatment, the brain response to distension was similar to that observed in HCs, suggesting that the treatment had a normalizing effect on the central processing abnormality of visceral signals in IBS. Conclusions The abnormal processing and enhanced perception of visceral stimuli in IBS can be normalized by psychological interventions. Symptom improvement in the treatment groups may be mediated by different brain mechanisms. PMID:23617618
Lowén, M B O; Mayer, E A; Sjöberg, M; Tillisch, K; Naliboff, B; Labus, J; Lundberg, P; Ström, M; Engström, M; Walter, S A
2013-06-01
Gut-directed hypnotherapy can reduce IBS symptoms, but the mechanisms underlying this therapeutic effect remain unknown. To determine the effect of hypnotherapy and educational intervention on brain responses to cued rectal distensions in IBS patients. Forty-four women with moderate-to-severe IBS and 20 healthy controls (HCs) were included. Blood oxygen level dependent (BOLD) signals were measured by functional Magnetic Resonance Imaging (fMRI) during expectation and delivery of high- (45 mmHg) and low-intensity (15 mmHg) rectal distensions. Twenty-five patients were assigned to hypnotherapy (HYP) and 16 to educational intervention (EDU). Thirty-one patients completed treatments and posttreatment fMRI. Similar symptom reduction was achieved in both groups. Clinically successful treatment (all responders) was associated with significant BOLD attenuation during high-intensity distension in the dorsal and ventral anterior insula (cluster size 142, P = 0.006, and cluster size 101, P = 0.005 respectively). Moreover HYP responders demonstrated a pre-post treatment BOLD attenuation in posterior insula (cluster sizes 59, P = 0.05) while EDU responders had a BOLD attenuation in prefrontal cortex (cluster size 60, P = 0.05). Pre-post differences for expectation conditions were almost exclusively seen in the HYP group. Following treatment, the brain response to distension was similar to that observed in HCs, suggesting that the treatment had a normalising effect on the central processing abnormality of visceral signals in IBS. The abnormal processing and enhanced perception of visceral stimuli in IBS can be normalised by psychological interventions. Symptom improvement in the treatment groups may be mediated by different brain mechanisms. NCT01815164. © 2013 John Wiley & Sons Ltd.
Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers.
Kurian, Allison W; Sigal, Bronislava M; Plevritis, Sylvia K
2010-01-10
Women with BRCA1/2 mutations inherit high risks of breast and ovarian cancer; options to reduce cancer mortality include prophylactic surgery or breast screening, but their efficacy has never been empirically compared. We used decision analysis to simulate risk-reducing strategies in BRCA1/2 mutation carriers and to compare resulting survival probability and causes of death. We developed a Monte Carlo model of breast screening with annual mammography plus magnetic resonance imaging (MRI) from ages 25 to 69 years, prophylactic mastectomy (PM) at various ages, and/or prophylactic oophorectomy (PO) at ages 40 or 50 years in 25-year-old BRCA1/2 mutation carriers. With no intervention, survival probability by age 70 is 53% for BRCA1 and 71% for BRCA2 mutation carriers. The most effective single intervention for BRCA1 mutation carriers is PO at age 40, yielding a 15% absolute survival gain; for BRCA2 mutation carriers, the most effective single intervention is PM, yielding a 7% survival gain if performed at age 40 years. The combination of PM and PO at age 40 improves survival more than any single intervention, yielding 24% survival gain for BRCA1 and 11% for BRCA2 mutation carriers. PM at age 25 instead of age 40 offers minimal incremental benefit (1% to 2%); substituting screening for PM yields a similarly minimal decrement in survival (2% to 3%). Although PM at age 25 plus PO at age 40 years maximizes survival probability, substituting mammography plus MRI screening for PM seems to offer comparable survival. These results may guide women with BRCA1/2 mutations in their choices between prophylactic surgery and breast screening.
Hossain, Shaolie S.; Zhang, Yongjie; Fu, Xiaoyi; Brunner, Gerd; Singh, Jaykrishna; Hughes, Thomas J. R.; Shah, Dipan; Decuzzi, Paolo
2015-01-01
Peripheral arterial disease (PAD) is generally attributed to the progressive vascular accumulation of lipoproteins and circulating monocytes in the vessel walls leading to the formation of atherosclerotic plaques. This is known to be regulated by the local vascular geometry, haemodynamics and biophysical conditions. Here, an isogeometric analysis framework is proposed to analyse the blood flow and vascular deposition of circulating nanoparticles (NPs) into the superficial femoral artery (SFA) of a PAD patient. The local geometry of the blood vessel and the haemodynamic conditions are derived from magnetic resonance imaging (MRI), performed at baseline and at 24 months post intervention. A dramatic improvement in blood flow dynamics is observed post intervention. A 500% increase in peak flow rate is measured in vivo as a consequence of luminal enlargement. Furthermore, blood flow simulations reveal a 32% drop in the mean oscillatory shear index, indicating reduced disturbed flow post intervention. The same patient information (vascular geometry and blood flow) is used to predict in silico in a simulation of the vascular deposition of systemically injected nanomedicines. NPs, targeted to inflammatory vascular molecules including VCAM-1, E-selectin and ICAM-1, are predicted to preferentially accumulate near the stenosis in the baseline configuration, with VCAM-1 providing the highest accumulation (approx. 1.33 and 1.50 times higher concentration than that of ICAM-1 and E-selectin, respectively). Such selective deposition of NPs within the stenosis could be effectively used for the detection and treatment of plaques forming in the SFA. The presented MRI-based computational protocol can be used to analyse data from clinical trials to explore possible correlations between haemodynamics and disease progression in PAD patients, and potentially predict disease occurrence as well as the outcome of an intervention. PMID:25878124
Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; Vinogradov, Sophia
2012-08-01
Cognitive remediation training has been shown to improve both cognitive and social cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 h (10-week) remediation intervention which included both cognitive and social cognitive training would influence neural function in regions that support social cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 min/day] plus social cognition training (SCT) which was focused on emotion recognition [~5-15 min per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. fMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social cognition training impacts neural mechanisms that support social cognition skills. Copyright © 2012 Elsevier B.V. All rights reserved.
In vivo validation of a 3D ultrasound system for imaging the lateral ventricles of neonates
NASA Astrophysics Data System (ADS)
Kishimoto, J.; Fenster, A.; Chen, N.; Lee, D.; de Ribaupierre, S.
2014-03-01
Dilated lateral ventricles in neonates can be due to many different causes, such as brain loss, or congenital malformation; however, the main cause is hydrocephalus, which is the accumulation of fluid within the ventricular system. Hydrocephalus can raise intracranial pressure resulting in secondary brain damage, and up to 25% of patients with severely enlarged ventricles have epilepsy in later life. Ventricle enlargement is clinically monitored using 2D US through the fontanels. The sensitivity of 2D US to dilation is poor because it cannot provide accurate measurements of irregular volumes such as the ventricles, so most clinical evaluations are of a qualitative nature. We developed a 3D US system to image the cerebral ventricles of neonates within the confines of incubators that can be easily translated to more open environments. Ventricle volumes can be segmented from these images giving a quantitative volumetric measurement of ventricle enlargement without moving the patient into an imaging facility. In this paper, we report on in vivo validation studies: 1) comparing 3D US ventricle volumes before and after clinically necessary interventions removing CSF, and 2) comparing 3D US ventricle volumes to those from MRI. Post-intervention ventricle volumes were less than pre-intervention measurements for all patients and all interventions. We found high correlations (R = 0.97) between the difference in ventricle volume and the reported removed CSF with the slope not significantly different than 1 (p < 0.05). Comparisons between ventricle volumes from 3D US and MR images taken 4 (±3.8) days of each other did not show significant difference (p=0.44) between 3D US and MRI through paired t-test.
The Importance of Neurogenic Inflammation in Blast-Induced Neurotrauma
2013-01-01
mild/moderate BINT are imaged by magnetic resonance imaging ( MRI ) to visualize potential macrophage infiltration; blood-brain barrier (BBB) disturbance...TERMS blast, traumatic brain injury, brain, inflammation, magnetic resonance imaging , mice 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...monitoring the success of therapeutic interventions. In this annual report we have utilized current live imaging methods (i.e. magnetic resonance
Martel, Sylvain; Felfoul, Ouajdi; Mohammadi, Mahmood; Mathieu, Jean-Baptiste
2008-01-01
Flagellated bacteria used as bio-actuators may prove to be efficient propulsion mechanisms for future hybrid medical nanorobots when operating in the microvasculature. Here, we briefly describe a medical interventional procedure where flagellated bacteria and more specifically MC-1 Magnetotactic Bacteria (MTB) can be used to propel and steer micro-devices and nanorobots under computer control to reach remote locations in the human body. In particular, we show through experimental results the potential of using MTB-tagged robots to deliver therapeutic agents to tumors even the ones located in deep regions of the human body. We also show that such bacterial nanorobots can be tracked inside the human body for enhanced targeting under computer guidance using MRI as imaging modality. MTB can not only be guided and controlled directly towards a specific target, but we also show experimentally that these flagellated bacterial nanorobots can be propelled and steered in vivo deeply through the interstitial region of a tumor. The targeting efficacy is increased when combined with larger ferromagnetic micro-carriers being propelled by magnetic gradients generated by a MRI platform to carry and release nanorobots propelled by a single flagellated bacterium near the arteriocapillar entry. Based on the experimental data obtained and the experience gathered during several experiments conducted in vivo with this new approach, a general medical interventional procedure is briefly described here in a biomedical engineering context.
Polkinghorn, B S
1994-09-01
To present the first reported case of successful chiropractic intervention in treatment of a torn medial meniscus of the knee, the meniscal tear being documented by magnetic resonance imaging (MRI). A 54-yr-old woman complaining of right knee pain of several months' duration with accompanying marked functional impairment was diagnosed as having a tear in the posterior horn of the ipsilateral medial meniscus, verified by MRI studies of the same. Independent consultation with three medical specialists resulted in the unanimous decision that surgical intervention for the purpose of meniscectomy provided the only therapeutic approach indicated for the problem. However, the patient was reticent to undergo said surgical procedure and chose, instead, to utilize chiropractic care and conservative management in an effort to resolve her condition without having to resort to surgery. The patient received chiropractic treatment to the knee via mechanical force, manually assisted short lever chiropractic adjusting procedures (MFMA) utilizing an Activator Adjusting Instrument. Auxiliary treatment included the use of homeopathic therapy as an adjunct to chiropractic care. Said treatment resulted in a complete resolution of the patient's disability, the patient recovering full function of the knee joint and achieving an asymptomatic status without having to submit to surgical intervention and its possible adverse sequelae. Conservative management of meniscal tears via chiropractic treatment may provide a therapeutically effective and financially cost containing alternative to routine meniscectomy in certain cases involving torn medial menisci of the knee.
Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; D'Esposito, Mark; Vinogradov, Sophia
2013-08-30
Both cognitive and social-cognitive deficits impact functional outcome in schizophrenia. Cognitive remediation studies indicate that targeted cognitive and/or social-cognitive training improves behavioral performance on trained skills. However, the neural effects of training in schizophrenia and their relation to behavioral gains are largely unknown. This study tested whether a 50-h intervention which included both cognitive and social-cognitive training would influence neural mechanisms that support social ccognition. Schizophrenia participants completed a computer-based intervention of either auditory-based cognitive training (AT) plus social-cognition training (SCT) (N=11) or non-specific computer games (CG) (N=11). Assessments included a functional magnetic resonance imaging (fMRI) task of facial emotion recognition, and behavioral measures of cognition, social cognition, and functional outcome. The fMRI results showed the predicted group-by-time interaction. Results were strongest for emotion recognition of happy, surprise and fear: relative to CG participants, AT+SCT participants showed a neural activity increase in bilateral amygdala, right putamen and right medial prefrontal cortex. Across all participants, pre-to-post intervention neural activity increase in these regions predicted behavioral improvement on an independent emotion perception measure (MSCEIT: Perceiving Emotions). Among AT+SCT participants alone, neural activity increase in right amygdala predicted behavioral improvement in emotion perception. The findings indicate that combined cognition and social-cognition training improves neural systems that support social-cognition skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.
Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta
2015-01-01
Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning. © The Author(s) 2014.
Turnbull, L W; Brown, S R; Olivier, C; Harvey, I; Brown, J; Drew, P; Hanby, A; Manca, A; Napp, V; Sculpher, M; Walker, L G; Walker, S
2010-01-01
To determine whether the addition of magnetic resonance imaging (MRI) to current patient evaluation by triple assessment would aid tumour localisation within the breast and thus reduce the reoperation rate in women with primary breast tumours who are scheduled for wide local excision (WLE), and to assess whether the addition of MRI would be cost-effective for the UK NHS. A multicentre, randomised controlled, open, parallel group trial with equal randomisation. The main design was supplemented with a qualitative study to assess patients' experiences of the treatment process and care pathway, and involved the development of a non-scheduled standardised interview (NSSI). The study took place at 45 hospitals throughout the UK. Women aged 18 years or over with biopsy-proven primary breast cancer who had undergone triple assessment, were scheduled for WLE, and were capable of providing written informed consent. Patients were randomised to receive MRI or no MR1. Randomisation was performed using minimisation, incorporating a random element. All MRI was performed at 1.5 T or 1.0 T with a dedicated bilateral breast coil. The primary end point of the trial was the reoperation rate. Secondary outcome measures included discrepancies between imaging and histopathology, and the effectiveness of using both procedures; change in clinical management after using MRI; the clinical significance of MRI-only-detected lesions; the rate of interventions; the ipsilateral tumour recurrence rate; patient quality of life (QoL); and cost-effectiveness. From a total of 1623 patients, 816 were randomised to MRI and 807 to no MRI. No differences in reoperation rates were found between the two groups of patients [MRI patients 18.75%, no MRI 19.33%, difference 0.58%, 95% confidence interval (CI) -3.24 to 4.40]. Therefore, the addition of MRI to conventional triple assessment was not found to be statistically significantly associated with a reduced reoperation rate (odds ratio = 0.96, 95% CI 0.75-1.24, p = 0.7691). The best agreement between all imaging modalities and histopathology with regard to tumour size and extent of disease was found in patients over 50 years old with ductal tumours NST and who were node negative. In the imaging arm, mastectomy was found to be pathologically avoidable for 16 (27.6%) out of 58 patients who underwent the procedure. There were no significant differences between the groups regarding the proportion of patients receiving chemotherapy, radiotherapy or additional adjuvant therapies, as well as for local recurrence-free interval rates and QoL. An acceptable NSSI was developed for use in this population of patients. Economic analysis found no difference in outcomes between the two trial arms. The addition of MRI to triple assessment did not result in a reduction in operation rates, and the use of MRI would thus consume extra resource with few or no benefits in terms of cost-effectiveness or HRQoL. However, MRI showed potential to improve tumour localisation, and preoperative biopsy of MRI-only-detected lesions is likely to minimise the incidence of inappropriate mastectomy. Current Controlled Trials ISRCTN57474502.
An fMRI-Based Neural Signature of Decisions to Smoke Cannabis.
Bedi, Gillinder; Lindquist, Martin A; Haney, Margaret
2015-11-01
Drug dependence may be at its core a pathology of choice, defined by continued decisions to use drugs irrespective of negative consequences. Despite evidence of dysregulated decision making in addiction, little is known about the neural processes underlying the most clinically relevant decisions drug users make: decisions to use drugs. Here, we combined functional magnetic resonance imaging (fMRI), machine learning, and human laboratory drug administration to investigate neural activation underlying decisions to smoke cannabis. Nontreatment-seeking daily cannabis smokers completed an fMRI choice task, making repeated decisions to purchase or decline 1-12 placebo or active cannabis 'puffs' ($0.25-$5/puff). One randomly selected decision was implemented. If the selected choice had been bought, the cost was deducted from study earnings and the purchased cannabis smoked in the laboratory; alternatively, the participant remained in the laboratory without cannabis. Machine learning with leave-one-subject-out cross-validation identified distributed neural activation patterns discriminating decisions to buy cannabis from declined offers. A total of 21 participants were included in behavioral analyses; 17 purchased cannabis and were thus included in fMRI analyses. Purchasing varied lawfully with dose and cost. The classifier discriminated with 100% accuracy between fMRI activation patterns for purchased vs declined cannabis at the level of the individual. Dorsal striatum, insula, posterior parietal regions, anterior and posterior cingulate, and dorsolateral prefrontal cortex all contributed reliably to this neural signature of decisions to smoke cannabis. These findings provide the basis for a brain-based characterization of drug-related decision making in drug abuse, including effects of psychological and pharmacological interventions on these processes.
Addressing metabolic heterogeneity in clear cell renal cell carcinoma with quantitative Dixon MRI
Zhang, Yue; Udayakumar, Durga; Cai, Ling; Hu, Zeping; Kapur, Payal; Kho, Eun-Young; Pavía-Jiménez, Andrea; Fulkerson, Michael; de Leon, Alberto Diaz; Yuan, Qing; Dimitrov, Ivan E.; Ye, Jin; Mitsche, Matthew A.; Kim, Hyeonwoo; McDonald, Jeffrey G.; Madhuranthakam, Ananth J.; Dwivedi, Durgesh K.; Lenkinski, Robert E.; Cadeddu, Jeffrey A.; Margulis, Vitaly; Brugarolas, James; DeBerardinis, Ralph J.
2017-01-01
BACKGROUND. Dysregulated lipid and glucose metabolism in clear cell renal cell carcinoma (ccRCC) has been implicated in disease progression, and whole tumor tissue–based assessment of these changes is challenged by the tumor heterogeneity. We studied a noninvasive quantitative MRI method that predicts metabolic alterations in the whole tumor. METHODS. We applied Dixon-based MRI for in vivo quantification of lipid accumulation (fat fraction [FF]) in targeted regions of interest of 45 primary ccRCCs and correlated these MRI measures to mass spectrometry–based lipidomics and metabolomics of anatomically colocalized tissue samples isolated from the same tumor after surgery. RESULTS. In vivo tumor FF showed statistically significant (P < 0.0001) positive correlation with histologic fat content (Spearman correlation coefficient, ρ = 0.79), spectrometric triglycerides (ρ = 0.56) and cholesterol (ρ = 0.47); it showed negative correlation with free fatty acids (ρ = –0.44) and phospholipids (ρ = –0.65). We observed both inter- and intratumoral heterogeneity in lipid accumulation within the same tumor grade, whereas most aggressive tumors (International Society of Urological Pathology [ISUP] grade 4) exhibited reduced lipid accumulation. Cellular metabolites in tumors were altered compared with adjacent renal parenchyma. CONCLUSION. Our results support the use of noninvasive quantitative Dixon-based MRI as a biomarker of reprogrammed lipid metabolism in ccRCC, which may serve as a predictor of tumor aggressiveness before surgical intervention. FUNDING. NIH R01CA154475 (YZ, MF, PK, IP), NIH P50CA196516 (IP, JB, RJD, JAC, PK), Welch Foundation I-1832 (JY), and NIH P01HL020948 (JGM). PMID:28768909
A Metal-Free Method for Producing MRI Contrast at Amyloid-Beta
Hilt, Silvia; Tang, Tang; Walton, Jeffrey H.; Budamagunta, Madhu; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Singh, Vikrant; Wulff, Heike; Gong, Qizhi; Jin, Lee-Way; Louie, Angelique; Voss, John C.
2017-01-01
Alzheimer’s disease (AD) is characterized by depositions of the amyloid-β (Aβ) peptide in the brain. The disease process develops over decades, with substantial neurological loss occurring before a clinical diagnosis of dementia can be rendered. It is therefore imperative to develop methods that permit early detection and monitoring of disease progression. In addition, the multifactorial pathogenesis of AD has identified several potential avenues for AD intervention. Thus, evaluation of therapeutic candidates over lengthy trial periods also demands a practical, noninvasive method for measuring Aβ in the brain. Magnetic resonance imaging (MRI) is the obvious choice for such measurements, but contrast enhancement for Aβ has only been achieved using Gd(III)-based agents. There is great interest in gadolinium-free methods to image the brain. In this study, we provide the first demonstration that a nitroxide-based small-molecule produces MRI contrast in brain specimens with elevated levels of Aβ. The molecule is comprised of a fluorene (a molecule with high affinity for Aβ) and a nitroxide spin label (a paramagnetic MRI contrast species). Labeling of brain specimens with the spin-labeled fluorene produces negative contrast in samples from AD model mice whereas no negative contrast is seen in specimens harvested from wild-type mice. Injection of SLF into live mice resulted in good brain penetration, with the compound able to generate contrast 24-hr post injection. These results provide a proof of concept method that can be used for early, noninvasive, gadolinium-free detection of amyloid plaques by magnetic resonance imaging (MRI). PMID:27911291
New concept in natural history and management of diabetes mellitus in thalassemia major.
Chatterjee, Ratna; Bajoria, Rekha
2009-01-01
Diabetes Mellitus is a major endocrinopathy, which occurs due transfusional haemosiderosis and is found in 20-30% of adult patients with beta-thalassaemia worldwide, accounting for significant morbidity. It is multifactorial with iron loading being the dominant cause and its management poses a clinical challenge. Diabetes in thalassaemia patients is distinct from type 2 diabetes. It is peculiar in many aspects including its pathophysiology and occurs due to insulin resistance as well as islet cell insufficiency. This article reviews the natural history of diabetes in this presentation with emphasis on prevention monitoring and management. Use of MRI techniques may be useful for future monitoring as well as biochemical monitoring to prevent complications of diabetes. Early intervention with intensified chelation may reverse pancreatic function and structural changes as evident from MRI.
Monti, Daniel A; Tobia, Anna; Stoner, Marie; Wintering, Nancy; Matthews, Michael; He, Xiao-Song; Doucet, Gaelle; Chervoneva, Inna; Tracy, Joseph I; Newberg, Andrew B
2017-08-01
The purpose of this study was to characterize the neurophysiological and clinical effects that may result from the neuro emotional technique (NET) in patients with traumatic stress symptoms associated with a cancer-related event. We hypothesized that self-regulatory processing of traumatic memories would be observable as physiological changes in key brain areas after undergoing the NET intervention and that these changes would be associated with improvement of traumatic stress symptoms. We enrolled 23 participants with a prior cancer diagnosis who expressed a distressing cancer-related memory that was associated with traumatic stress symptoms of at least 6 months in duration. Participants were randomized to either the NET intervention or a waitlist control condition. To evaluate the primary outcome of neurophysiological effects, all participants received functional magnetic resonance imaging (fMRI) during the auditory presentation of both a neutral stimulus and a description of the specific traumatic event. Pre/post-comparisons were performed between the traumatic and neutral condition, within and between groups. Psychological measures included the Impact of Event Scale (IES), State Trait Anxiety Index (STAI), Brief Symptom Inventory (BSI)-18, and Posttraumatic Cognitions Inventory (PTCI). The initial fMRI scans in both groups showed significant increases in the bilateral parahippocampus and brainstem. After NET, reactivity in the parahippocampus, brainstem, anterior cingulate, and insula was significantly decreased during the traumatic stimulus. Likewise, participants receiving the NET intervention had significant reductions (p < 0.05) compared to the control group in distress as measured by the BSI-18 global severity index, anxiety as measured by the STAI, and traumatic stress as measured by the IES and PTCI. This study is an initial step towards understanding mechanistic features of the NET intervention. Specifically, brain regions involved with traumatic memories and distress such as the brainstem, insula, anterior cingulate gyrus, and parahippocampus had significantly reduced activity after the NET intervention and were associated with clinical improvement of symptoms associated with distressing recollections. This preliminary study suggests that the NET intervention may be effective at reducing emotional distress in patients who suffer from traumatic stress symptoms associated with a cancer-related event.
Komesu, Yuko M.; Ketai, Loren H.; Sapien, Robert E.; Rogers, Rebecca G.; Schrader, Ronald M.; Simmerman-Sierra, Timothy; Mayer, Andrew R.
2016-01-01
Introduction This paper describes the rationale and methodology a study which investigates mind-body treatment versus pharmacotherapy for women with urgency urinary incontinence (UUI). To explore brain associations in UUI, a subset of patients will also undergo functional magnetic resonance imaging (fMRI). We hypothesize that hypnotherapy a mind-body intervention, will be at least as effective pharmacotherapy in treating UUI. We also hypothesize that fMRI findings will change following treatment, with changes potentially differing between groups. Methods The purpose of this manuscript is to recount the development and design challenges of a study evaluating the efficacy of hypnotherapy compared to conventional pharmacotherapy in UUI treatment. The study randomizes women to either of these treatments and outcome measures include bladder diaries and validated questionnaires. Sample size estimates, based on a non-inferiority test (alpha=.025, beta=0.20), after considering drop-out/loss to follow-up, indicated approximately 150 woman would be required to test the hypothesis that hypnotherapy is non-inferior to pharmacotherapy within a 5% non-inferiority margin. The study will also evaluate fMRI change in a subset of participants before and after therapy. Study challenges included designing a study with a mind-body therapy and a comparison treatment equally acceptable to participants, standardizing the interventions, confronting the reality that trials are time-consuming for participants and making appropriate accommodations. Results Study enrollment began March 2013 and is ongoing. Conclusions This manuscript details the design a of randomized controlled trial (RCT) comparing mind-body therapy to medications in treatment of UUI and describes the challenges encountered in its planning. PMID:27752750
Defining the abdominal radiologist based on the current U.S. job market.
Hoffman, David H; Rosenkrantz, Andrew B
2018-03-24
The purpose of the study is to characterize current practice patterns of abdominal radiologists based on work descriptions within job postings on numerous national radiology specialty websites. Job postings for either "abdominal" or "body" radiologists were searched weekly on five society websites (SAR, SCBT-MR, ARRS, ACR, RSNA) over a 1-year period. Postings were reviewed for various characteristics. Nine hundred and sixteen total ads for 341 unique abdominal radiologist positions were reviewed (34.6% academic, 64.2% private practice, 1.2% other). Postings occurred most commonly in March (12.3%) and least commonly in November (4.8%). States with most positions were Florida (27), California (26), and New York (24). Of postings delineating expectations of specific abdominal modalities, 67.4% mentioned MRI, 58.5% ultrasound, 41.1% fluoroscopy, 14.3% PET, and 54.0% interventions. Additional non-abdominal expectations included general radiology (28.7%), breast imaging (21.1%), and general nuclear medicine (9.7%). Additional skills included prostate MRI (7.0%), OBGYN ultrasound (5.0%), and CT colonoscopy (2.6%). 79.2% required an abdominal imaging fellowship (specifically a body MRI fellowship in 4.1%). By using job postings for abdominal radiologists, we have taken a practical approach to characterizing the current status of this subspecialty, reflecting recent job expectations and requirements. The large majority of positions required a body fellowship, and the positions commonly entailed a variety of skills beyond non-invasive diagnostic abdominal imaging. Of note, expectations of considerable minorities of positions included abdominal interventions, general radiology, and breast imaging. These insights may guide the development of abdominal radiology fellowships and mini-fellowships, as well as assist radiologists entering or returning to the job market.
Zhao, Sinan; Rangaprakash, D; Venkataraman, Archana; Liang, Peipeng; Deshpande, Gopikrishna
2017-01-01
Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD. PMID:28729831
Prisciandaro, James J; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L; Santa Ana, Elizabeth J; Saladin, Michael E; Brady, Kathleen T
2013-09-01
The development of addiction is marked by a pathological associative learning process that imbues incentive salience to stimuli associated with drug use. Recent efforts to treat addiction have targeted this learning process using cue exposure therapy augmented with d-cycloserine (DCS), a glutamatergic agent hypothesized to enhance extinction learning. To better understand the impact of DCS-facilitated extinction on neural reactivity to drug cues, the present study reports fMRI findings from a randomized, double-blind, placebo-controlled trial of DCS-facilitated cue exposure for cocaine dependence. Twenty-five participants completed two MRI sessions (before and after intervention), with a cocaine-cue reactivity fMRI task. The intervention consisted of 50mg of DCS or placebo, combined with two sessions of cocaine cue exposure and skills training. Participants demonstrated cocaine cue activation in a variety of brain regions at baseline. From the pre- to post-study scan, participants experienced decreased activation to cues in a number of regions (e.g., accumbens, caudate, frontal poles). Unexpectedly, placebo participants experienced decreases in activation to cues in the left angular and middle temporal gyri and the lateral occipital cortex, while DCS participants did not. Three trials of DCS-facilitated cue exposure therapy for cocaine dependence have found that DCS either increases or does not significantly impact response to cocaine cues. The present study adds to this literature by demonstrating that DCS may prevent extinction to cocaine cues in temporal and occipital brain regions. Although consistent with past research, results from the present study should be considered preliminary until replicated in larger samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Willey, Joshua Z; Moon, Yeseon P; Kulick, Erin R; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S V
2017-01-01
Gait speed is associated with multiple adverse outcomes of aging. We hypothesized that physical inactivity would be prospectively inversely associated with gait speed independently of white matter hyperintensity volume and silent brain infarcts on MRI. Participants in the Northern Manhattan Study MRI sub-study had physical activity assessed when they were enrolled into the study. A mean of 5 years after the MRI, participants had gait speed measured via a timed 5-meter walk test. Physical inactivity was defined as reporting no leisure-time physical activity. Multi-variable logistic and quantile regression was performed to examine the associations between physical inactivity and future gait speed adjusted for confounders. Among 711 participants with MRI and gait speed measures (62% women, 71% Hispanic, mean age 74.1 ± 8.4), the mean gait speed was 1.02 ± 0.26 m/s. Physical inactivity was associated with a greater odds of gait speed in the lowest quartile (<0.85 m/s, adjusted OR 1.90, 95% CI 1.17-3.08), and in quantile regression with 0.06 m/s slower gait speed at the lowest 20 percentile (p = 0.005). Physical inactivity is associated with slower gait speed independently of osteoarthritis, grip strength, and subclinical ischemic brain injury. Modifying sedentary behavior poses a target for interventions aimed at reducing decline in mobility. © 2017 S. Karger AG, Basel.
Bookheimer, Susan Y.; Renner, Brian A.; Ekstrom, Arne; Henning, Susanne M.; Brown, Jesse A.; Jones, Mike; Moody, Teena; Small, Gary W.
2013-01-01
Despite increasing emphasis on the potential of dietary antioxidants in preventing memory loss and on diet as a precursor of neurological health, rigorous studies investigating the cognitive effects of foods and their components are rare. Recent animal studies have reported memory and other cognitive benefits of polyphenols, found abundantly in pomegranate juice. We performed a preliminary, placebo-controlled randomized trial of pomegranate juice in older subjects with age-associated memory complaints using memory testing and functional brain activation (fMRI) as outcome measures. Thirty-two subjects (28 completers) were randomly assigned to drink 8 ounces of either pomegranate juice or a flavor-matched placebo drink for 4 weeks. Subjects received memory testing, fMRI scans during cognitive tasks, and blood draws for peripheral biomarkers before and after the intervention. Investigators and subjects were all blind to group membership. After 4 weeks, only the pomegranate group showed a significant improvement in the Buschke selective reminding test of verbal memory and a significant increase in plasma trolox-equivalent antioxidant capacity (TEAC) and urolithin A-glucuronide. Furthermore, compared to the placebo group, the pomegranate group had increased fMRI activity during verbal and visual memory tasks. While preliminary, these results suggest a role for pomegranate juice in augmenting memory function through task-related increases in functional brain activity. PMID:23970941
The impact of routine whole spine MRI screening in the evaluation of spinal degenerative diseases.
Kanna, Rishi Mugesh; Kamal, Younis; Mahesh, Anupama; Venugopal, Prakash; Shetty, Ajoy Prasad; Rajasekaran, S
2017-08-01
Magnetic resonance imaging (MRI) of the spine is a sensitive investigation, which not only provides detailed images of the spinal column but also adjacent spinal regions and para-vertebral organ systems. Such incidental findings (IF) can be asymptomatic but significant. The efficacy of whole spine T2 sagittal screening in providing additional information has been demonstrated in several spinal diseases but its routine use in patients with spinal degenerative diseases has not been studied. A review of 1486 consecutive T2w whole spine screening MRI performed for cervical, thoracic or lumbar spinal imaging for degenerative diseases, was performed to document the incidence and significance of asymptomatic IF in the spinal and extra-spinal regions. 236 (15.88%) patients had IF with a M:F ratio of 102:134 and the mean age being 50.3 years. Of these, spinal IF was observed in 122 (51.7%-Group A) while extra-spinal IF was present in 114 (48.3%-Group B). In Group A, 84 patients had IF in the vertebral column and 38 patients had IF in the spinal cord. IF within the spine included vertebral haemangioma (n = 60, 4.5%), diffuse vertebral marrow changes (n = 18, 1.2%), vertebral metastasis (n = 2), incidental cord myelopathy (n = 21), intradural tumour (n = 7), and others. 33 patients required surgical intervention of the IF (2.2%). In Group B, pelvic IF were most prevalent (n = 79, 5.3%) followed by retro-peritoneal abdominal IF in 22 (1.48%) and intra-cranial IF in 9 (0.60%). 32 (2.1%) of these pathologies required further specialist medical or surgical evaluation. Routine T2 whole spine screening MRI identified 15.8% IF of the spinal and extra-spinal regions. 65 patients (4.3%) required either spine surgical intervention or other specialist care. Considering the potential advantages in identifying significant IF and the minimal extra time spent to perform whole spine screening, its application can be considered to be incorporated in routine imaging of spinal degenerative diseases.
Stathi, Afroditi; Withall, Janet; Greaves, Colin J; Thompson, Janice L; Taylor, Gordon; Medina-Lara, Antonieta; Green, Colin; Bilzon, James; Gray, Selena; Johansen-Berg, Heidi; Sexton, Claire E; Western, Max J; de Koning, Jolanthe L; Bollen, Jessica C; Moorlock, Sarah J; Demnitz, Naiara; Seager, Poppy; Guralnik, Jack M; Jack Rejeski, W; Fox, Ken R
2018-04-17
The REtirement in ACTion (REACT) study is a multi-centre, pragmatic, two-arm, parallel-group randomised controlled trial (RCT) with an internal pilot phase. It aims to test the effectiveness and cost-effectiveness of a community, group-based physical activity intervention for reducing, or reversing, the progression of functional limitations in older people who are at high risk of mobility-related disability. A sample of 768 sedentary, community-dwelling, older people aged 65 years and over with functional limitations, but who are still ambulatory (scores between 4 and 9 out of 12 in the Short Physical Performance Battery test (SPPB)) will be randomised to receive either the REACT intervention, delivered over a period of 12 months by trained facilitators, or a minimal control intervention. The REACT study incorporates comprehensive process and economic evaluation and a nested sub-study which will test the hypothesis that the REACT intervention will slow the rate of brain atrophy and of decline in cognitive function assessed using magnetic resonance imaging (MRI). Outcome data will be collected at baseline, 6, 12 and 24 months for the main study, with MRI sub-study data collected at baseline, 6 and 12 months. The primary outcome analysis (SPPB score at 24 months) will be undertaken blinded to group allocation. Primary comparative analyses will be on an intention-to-treat (ITT) basis with due emphasis placed on confidence intervals. REACT represents the first large-scale, pragmatic, community-based trial in the UK to target the non-disabled but high-risk segment of the older population with an intervention to reduce mobility-related disability. A programme that can successfully engage this population in sufficient activity to improve strength, aerobic capacity, coordination and balance would have a major impact on sustaining health and independence. REACT is also the first study of its kind to conduct a full economic and comprehensive process evaluation alongside the RCT. If effective and cost-effective, the REACT intervention has strong potential to be implemented widely in the UK and elsewhere. ISRCTN, ID: ISRCTN45627165 . Retrospectively registered on 13 June 2016. Trial sponsor: University of Bath. Protocol Version 1.5.
Vernon, Jordyn; Andruszkiewicz, Nicole; Schneider, Laura; Schieman, Colin; Finley, Christian J; Shargall, Yaron; Fahim, Christine; Farrokhyar, Forough; Hanna, Waël C
2016-11-01
In our model of comprehensive clinical staging (CCS) for lung cancer, patients with a computerized tomography scan of the chest and upper abdomen not showing distant metastases will then routinely undergo whole body positron emission tomography/computerized tomography and magnetic resonance imaging (MRI) of the brain before any therapeutic decision. Our aim was to determine the accuracy of CCS and the value of brain MRI in this population. A retrospective analysis of a prospectively entered database was performed for all patients who underwent lung cancer resection from January 2012 to June 2014. Demographics, clinical and pathological stage (seventh edition of the American Joint Committee on Cancer/Union for International Cancer Control tumor, node, and metastasis staging manual), and costs of staging were collected. Correlation between clinical and pathological stage was determined. Of 315 patients with primary lung cancer, 55.6% were female and the mean age was 70 ± 9.6 years. When correlation was analyzed without consideration for substages A and B, 49.8% of patients (158 of 315) were staged accurately, 39.7% (125 of 315) were overstaged, and 10.5% (32 of 315) were understaged. Only 4.7% of patients (15 of 315) underwent surgery without appropriate neoadjuvant treatment. Preoperative brain MRI detected asymptomatic metastases in four of 315 patients (1.3%). At a median postoperative follow-up of 19 months (range 6-43), symptomatic brain metastases developed in seven additional patients. The total cost of CCS in Canadian dollars was $367,292 over the study period, with $117,272 (31.9%) going toward brain MRI. CCS is effective for patients with resectable lung cancer, with less than 5% of patients being denied appropriate systemic treatment before surgery. Brain MRI is a low-yield and high-cost intervention in this population, and its routine use should be questioned. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghose, Soumya, E-mail: soumya.ghose@case.edu; Mitra, Jhimli; Rivest-Hénault, David
Purpose: The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Methods: Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contoursmore » were selected in a spectral clustering manifold learning framework. This aids in clustering “similar” gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. Results: A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). Conclusions: An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold seeds are either correctly detected or a warning is raised for further manual intervention.« less
Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael
2015-01-01
MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators - attending (AR) and resident radiologists (RR) as well as medical students (MS) - performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between groups with different expertise there were significant differences in experimental procedure times but not in the number of successful biopsies.
Gurwara, Sheena; Allen, Brian C; Kouri, Brian; Clingan, M Jennings; Picard, Melissa; Leyendecker, John R
2016-07-01
The aim of this study was to determine whether a self-referred population screened by an interventional radiology (IR) clinic and a non-IR, physician-referred population differed with regard to suitability for uterine artery embolization (UAE) for symptomatic leiomyomas on the basis of preprocedure MRI. This was an institutional review board-approved, HIPAA-compliant retrospective study of 301 women evaluated in an IR clinic for possible UAE from January 2009 to September 2012. Subjects were retrospectively divided into two groups: self-referred via direct marketing (group A, n = 203; mean age, 41.8 years; range, 22-58 years) and physician referred (group B, n = 98; mean age, 42.9 years; range, 30-65 years). There was no significant difference between groups in presenting symptoms (multiple symptoms, bleeding, bulk-related symptoms, pain). After initial screening, 73.4% of group A (149 of 203) and 79.6% of group B (78 of 98) underwent MRI (P = .242). On the basis of MRI findings, 91.3% of group A (136 of 149) and 94.9% of group B (74 of 78) had uterine leiomyomas (P = .328). Adenomyosis without leiomyoma was present in 4.0% of group A (6 of 149) and 3.8% of group B (3 of 78) (P = .947). Incidental findings requiring further clinical or imaging evaluation were found in 20.8% of group A (31 of 149) and 24.4% of group B (19 of 78) (P = .539). After MRI, 41.6% of group A (62 of 149) and 48.7% of group B (38 of 78) proceeded to UAE (P = .306). After initial screening, similar proportions of self-referred and physician-referred patients were candidates for UAE. The rates of confirmed leiomyomas and incidental findings on MRI were similar between groups. Copyright © 2016 American College of Radiology. All rights reserved.
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Tsymbal, Alexey; Ionasec, Razvan; Georgescu, Bogdan; Zhou, Shaohua K.; Hornegger, Joachim; Comaniciu, Dorin
2011-03-01
Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to "black box" regression with immediate prediction of coordinates, while providing transparency to the predictions made.
MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection.
Ghose, Soumya; Mitra, Jhimli; Rivest-Hénault, David; Fazlollahi, Amir; Stanwell, Peter; Pichler, Peter; Sun, Jidi; Fripp, Jurgen; Greer, Peter B; Dowling, Jason A
2016-05-01
The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contours were selected in a spectral clustering manifold learning framework. This aids in clustering "similar" gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold seeds are either correctly detected or a warning is raised for further manual intervention.
Wireless Medical Devices for MRI-Guided Interventions
NASA Astrophysics Data System (ADS)
Venkateswaran, Madhav
Wireless techniques can play an important role in next-generation, image-guided surgical techniques with integration strategies being the key. We present our investigations on three wireless applications. First, we validate a position and orientation independent method to noninvasively monitor wireless power delivery using current perturbation measurements of switched load modulation of the RF carrier. This is important for safe and efficient powering without using bulky batteries or invasive cables. Use of MRI transmit RF pulses for simultaneous powering is investigated in the second part. We develop system models for the MRI transmit chain, wireless powering circuits and a typical load. Detailed analysis and validation of nonlinear and cascaded modeling strategies are performed, useful for decoupled optimization of the harvester coil and RF-DC converter. MRI pulse sequences are investigated for suitability for simultaneous powering. Simulations indicate that a 1.8V, 2 mA load can be powered with a 100% duty cycle using a 30° fGRE sequence, despite the RF duty cycle being 44 mW for a 30° flip angle, consistent with model predictions. Investigations on imaging artifacts indicates that distortion is mostly restricted to within the physical span of the harvester coil in the imaging volume, with the homogeneous B1+ transmit field providing positioning flexibility to minimize this for simultaneous powering. The models are potentially valuable in designing wireless powering solutions for implantable devices with simultaneous real-time imaging in MRI-guided surgical suites. Finally in the last section, we model endovascular MRI coil coupling during RF transmit. FEM models for a series-resonant multimode coil and quadrature birdcage coil fields are developed and computationally efficient, circuit and full-wave simulations are used to model inductive coupling. The Bloch Siegert B1 mapping sequence is used for validating at 24, 28 and 34 microT background excitation. Quantitative performance metrics are successfully predicted and the role of simulation in geometric optimization is demonstrated. In a pig study, we demonstrate navigation of a catheter, with tip-tracking and high-resolution intravascular imaging, through the vasculature into the heart, followed by contextual visualization. A potentially significant application is in MRI-guided cardiac ablation procedures.
Tsai, Richard; Raptis, Constantine; Fowler, Kathryn J; Owen, Joseph W; Mellnick, Vincent M
2017-11-01
To determine the degree of interradiologist agreement between the MRI features of appendicitis during pregnancy, the outcomes associated with an indeterminate interpretation and the negative predictive value of non-visualization of the appendix. Our study was approved by the institutional review board at the Washington University in St. Louis, Missouri (WUStL) and was HIPAA (Health Insurance Portability and Accountability Act of 1996)-compliant. The informed consent requirement was waived. Cases of suspected appendicitis during pregnancy evaluated using MRI were retrospectively identified using search queries. Scans were re-reviewed by two radiologists (7 and 9 years experience, respectively) to evaluate the interradiologist agreement of different MRI features of appendicitis during pregnancy (visualization of the appendix, appendiceal diameter, appendiceal wall thickening, periappendiceal fat stranding, fluid-filled appendix and periappendiceal fluid). The radiologists were blinded to patient outcome, patient intervention, laboratory data, demographic data and the original MRI reports. Clinical outcomes were documented by surgical pathology or clinical observation. Interradiologist agreement was analysed using Cohen's κ, while patient demographic and clinical data was analysed using Student's t-testing. 233 females with suspected appendicitis during pregnancy were evaluated using MRI over a 13-year period (mean age, 28.4 years; range, 17-38 years). There were 14 (6%) positive examinations for appendicitis during pregnancy, including 1 patient whose MRI was interpreted as negative, proven by surgical pathology. The presence of periappendiceal soft-tissue stranding and the final overall impression had the most interradiologist agreement (к = 0.81-1). There were no pregnant patients found to have acute appendicitis who had an indeterminate MR interpretation or when the appendix could not be visualized. The final impression by the two retrospectively reviewing radiologists of MR examinations performed for suspected appendicitis during pregnancy had near-perfect agreement. In patients where the appendix could not be visualized or in patients that were interpreted as indeterminate, no patients had acute appendicitis. Advances in knowledge: MR impression for suspected appendicitis in the pregnant patient has high interradiologist agreement, and a non-visualized appendix or lack of inflammatory findings at the time of MR, reliably excludes surgical appendicitis.
Test-Retest Reliability of Memory Task fMRI in Alzheimer’s Disease Clinical Trials
Atri, Alireza; O’Brien, Jacqueline L.; Sreenivasan, Aishwarya; Rastegar, Sarah; Salisbury, Sibyl; DeLuca, Amy N.; O’Keefe, Kelly M.; LaViolette, Peter S.; Rentz, Dorene M.; Locascio, Joseph J.; Sperling, Reisa A.
2012-01-01
Objective To examine feasibility and test-retest reliability of encoding-task functional MRI (fMRI) in mild Alzheimer’s disease (AD). Design Randomized, double-blind, placebo-controlled (RCT) study. Setting Memory clinical trials unit. Participants Twelve subjects with mild AD (MMSE 24.0±0.7, CDR 1), on >6 months stable donepezil, from the placebo-arm of a larger 24-week (n=24, four scans on weeks 0,6,12,24) study. Interventions Placebo and three face-name paired-associate encoding, block-design BOLD-fMRI scans in 12 weeks. Main Outcomes Whole-brain t-maps (p<0.001, 5-contiguous voxels) and hippocampal regions-of-interest (ROI) analyses of extent (EXT, %voxels active) and magnitude (MAG, %signal change) for Novel-greater-than-Repeated (N>R) face-name contrasts. Calculation of Intraclass Correlations (ICC) and power estimates for hippocampal ROIs. Results Task-tolerability and data yield were high (95 of 96 scans yield good quality data). Whole-brain maps were stable. Right and left hippocampal ROI ICCs were 0.59–0.87 and 0.67–0.74, respectively. To detect 25–50% changes in 0–12 week hippocampal activity using L/R-EXT or R-MAG with 80% power (2-sided-α=0.05) requires 14–51 subjects. Using L-MAG requires >125 subjects due to relatively small signals to variance ratios. Conclusions Encoding-task fMRI was successfully implemented in a single-site, 24-week, AD RCT. Week 0–12 whole-brain t-maps were stable and test-retest reliability of hippocampal fMRI measures ranged from moderate to substantial. Right hippocampal-MAG may be the most promising of these candidate measures in a leveraged context. These initial estimates of test-retest reliability and power justify evaluation of encoding-task fMRI as a potential biomarker for “signal-of-effect” in exploratory and proof-of-concept trials in mild AD. Validation of these results with larger sample sizes and assessment in multi-site studies is warranted. PMID:21555634
Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abi-Jaoudeh, Nadine, E-mail: naj@mail.nih.gov; Kruecker, Jochen, E-mail: jochen.kruecker@philips.com; Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca
2012-10-15
Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methodsmore » of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.« less
QUANTITATIVE MAGNETIC RESONANCE IMAGING OF ARTICULAR CARTILAGE AND ITS CLINICAL APPLICATIONS
Li, Xiaojuan; Majumdar, Sharmila
2013-01-01
Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a non-invasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides non-invasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts towards prevention and early intervention in OA. PMID:24115571
Registration of MRI to intraoperative radiographs for target localization in spinal interventions
NASA Astrophysics Data System (ADS)
De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Goerres, J.; Jacobson, M. W.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Siewerdsen, J. H.
2017-01-01
Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (covariance-matrix-adaptation evolutionary-strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± IQR) = 4.3 ± 2.6 mm (median ± IQR) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded dice coefficient = 88.1 ± 5.2, accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE <3 mm and CAR >0.50. The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness.
MRI assessment of whole-brain structural changes in aging.
Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei
2017-01-01
One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P <0.00001). They were associated with age ( r 2 >0.29; P <0.00001) and differed by cognitive status ( χ 2 >26.48, P <0.00001). T2-FLAIR revealed a greater level of periventricular ( χ 2 =29.09) and deep white matter ( χ 2 =26.65, P <0.001) lesions than others, but missed revealing certain dilated perivascular spaces that were seen in T2WI ( P <0.001). Microhemorrhages occurred in 15.3% of the sample examined and were detected using only T2*GRE. The T1WI- and T2WI-based BALI evaluations consistently identified the burden of aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests increased lesion differentiation. Further research is to integrate MRI tests for a clinical tool to aid the diagnosis and intervention of brain aging.
Quantification of human body fat tissue percentage by MRI.
Müller, Hans-Peter; Raudies, Florian; Unrath, Alexander; Neumann, Heiko; Ludolph, Albert C; Kassubek, Jan
2011-01-01
The MRI-based evaluation of the quantity and regional distribution of adipose tissue is one objective measure in the investigation of obesity. The aim of this article was to report a comprehensive and automatic analytical method for the determination of the volumes of subcutaneous fat tissue (SFT) and visceral fat tissue (VFT) in either the whole human body or selected slices or regions of interest. Using an MRI protocol in an examination position that was convenient for volunteers and patients with severe diseases, 22 healthy subjects were examined. The software platform was able to merge MRI scans of several body regions acquired in separate acquisitions. Through a cascade of image processing steps, SFT and VFT volumes were calculated. Whole-body SFT and VFT distributions, as well as fat distributions of defined body slices, were analysed in detail. Complete three-dimensional datasets were analysed in a reproducible manner with as few operator-dependent interventions as possible. In order to determine the SFT volume, the ARTIS (Adapted Rendering for Tissue Intensity Segmentation) algorithm was introduced. The advantage of the ARTIS algorithm was the delineation of SFT volumes in regions in which standard region grow techniques fail. Using the ARTIS algorithm, an automatic SFT volume detection was feasible. MRI data analysis was able to determine SFT and VFT volume percentages using new analytical strategies. With the techniques described, it was possible to detect changes in SFT and VFT percentages of the whole body and selected regions. The techniques presented in this study are likely to be of use in obesity-related investigations, as well as in the examination of longitudinal changes in weight during various medical conditions. Copyright © 2010 John Wiley & Sons, Ltd.
Altay, Ebru Erbayat; Fisher, Elizabeth; Jones, Stephen E.; Hara-Cleaver, Claire; Lee, Jar-Chi; Rudick, Richard A.
2013-01-01
Objective To assess the reliability of new magnetic resonance imaging (MRI) lesion counts by clinicians in a multiple sclerosis specialty clinic. Design An observational study. Setting A multiple sclerosis specialty clinic. Patients Eighty-five patients with multiple sclerosis participating in a National Institutes of Health–supported longitudinal study were included. Intervention Each patient had a brain MRI scan at entry and 6 months later using a standardized protocol. Main Outcome Measures The number of new T2 lesions, newly enlarging T2 lesions, and gadolinium-enhancing lesions were measured on the 6-month MRI using a computer-based image analysis program for the original study. For this study, images were reanalyzed by an expert neuroradiologist and 3 clinician raters. The neuroradiologist evaluated the original image pairs; the clinicians evaluated image pairs that were modified to simulate clinical practice. New lesion counts were compared across raters, as was classification of patients as MRI active or inactive. Results Agreement on lesion counts was highest for gadolinium-enhancing lesions, intermediate for new T2 lesions, and poor for enlarging T2 lesions. In 18% to 25% of the cases, MRI activity was classified differently by the clinician raters compared with the neuroradiologist or computer program. Variability among the clinical raters for estimates of new T2 lesions was affected most strongly by the image modifications that simulated low image quality and different head position. Conclusions Between-rater variability in new T2 lesion counts may be reduced by improved standardization of image acquisitions, but this approach may not be practical in most clinical environments. Ultimately, more reliable, robust, and accessible image analysis methods are needed for accurate multiple sclerosis disease-modifying drug monitoring and decision making in the routine clinic setting. PMID:23599930
Continuous Rapid Quantification of Stroke Volume using Magnetohydrodynamic Voltages in 3T MRI
Gregory, T. Stan; Oshinski, John; Schmidt, Ehud J.; Kwong, Raymond Y.; Stevenson, William G.; Tse, Zion Tsz Ho
2015-01-01
Background To develop a technique to non-invasively estimate Stroke Volume (SV) in real-time during Magnetic Resonance Imaging (MRI) guided procedures, based on induced Magnetohydrodynamic Voltages (VMHD) that occur in Electrocardiogram (ECG) recordings during MRI exams, leaving the MRI scanner free to perform other imaging tasks. Due to the relationship between blood-flow (BF) and VMHD, we hypothesized that a method to obtain SV could be derived from extracted VMHD vectors in the Vectorcardiogram frame-of-reference (VMHDVCG). Methods and Results To estimate a subject-specific BF-VMHD model, VMHDVCG was acquired during a 20-second breath-hold and calibrated versus aortic BF measured using Phase Contrast Magnetic Resonance (PCMR) in 10 subjects (n=10) and one subject diagnosed with Premature Ventricular Contractions (PVCs). Beat-to-Beat validation of VMHDVCG derived BF was performed using Real-Time Phase Contrast (RTPC) imaging in 7 healthy subjects (n=7) during a 15 minute cardiac exercise stress tests and 30 minutes after stress relaxation in 3T MRIs. Subject-specific equations were derived to correlate VMHDVCG to BF at rest, and validated using RTPC. An average error of 7.22% and 3.69% in SV estimation, respectively, was found during peak stress, and after complete relaxation. Measured beat-to-beat blood flow time-history derived from RTPC and VMHD were highly correlated using a Spearman Rank Correlation Coefficient during stress tests (0.89) and after stress relaxation (=0.86). Conclusions Accurate beat-to-beat SV and BF were estimated using VMHDVCG extracted from intra-MRI 12-lead ECGs, providing a means to enhance patient monitoring during MR imaging and MR-guided interventions. PMID:26628581
Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu
2018-01-01
Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.
Ley, C J; Björnsdóttir, S; Ekman, S; Boyde, A; Hansson, K
2016-01-01
Validated noninvasive detection methods for early osteoarthritis (OA) are required for OA prevention and early intervention treatment strategies. To evaluate radiography and low-field magnetic resonance imaging (MRI) for the detection of early stage OA osteochondral lesions in equine centrodistal joints using microscopy as the reference standard. Prospective imaging of live horses and imaging and microscopy of cadaver tarsal joints. Centrodistal (distal intertarsal) joints of 38 Icelandic research horses aged 27-29 months were radiographed. Horses were subjected to euthanasia approximately 2 months later and cadaver joints examined with low-field MRI. Osteochondral joint specimens were classified as negative or positive for OA using light microscopy histology or scanning electron microscopy. Radiographs and MRIs were evaluated for osteochondral lesions and results compared with microscopy. Forty-two joints were classified OA positive with microscopy. Associations were detected between microscopic OA and the radiography lesion categories; mineralisation front defect (P<0.0001), joint margin lesion (P<0.0001), central osteophyte (P = 0.03) and the low-field MRI lesion categories; mineralisation front defect (P = 0.01), joint margin lesion (P = 0.02) and articular cartilage lesion (P = 0.0003). The most frequent lesion category detected in microscopic OA positive joints was the mineralisation front defect in radiographs (28/42 OA positive joints, specificity 97%, sensitivity 67%). No significant differences were detected between the sensitivity and specificity of radiography and low-field MRI pooled lesion categories, but radiography was often superior when individual lesion categories were compared. Early stage centrodistal joint OA changes may be detected with radiography and low-field MRI. Detection of mineralisation front defects in radiographs may be a useful screening method for detection of early OA in centrodistal joints of young Icelandic horses. © 2015 EVJ Ltd.
A structured light system to guide percutaneous punctures in interventional radiology
NASA Astrophysics Data System (ADS)
Nicolau, S. A.; Brenot, J.; Goffin, L.; Graebling, P.; Soler, L.; Marescaux, J.
2008-04-01
Interventional radiology is a new medical field which allows percutaneous punctures on patients for tumoral destruction or tissue analysis. The patient lies on a CT or MRI table and the practitioner guides the needle insertion iteratively using repetitive acquisitions (2D slices). We aim at designing a guidance system to reduce the number of CT/MRI acquisitions, and therefore decrease the irradiation and shorten the duration of intervention. We propose a system composed of two calibrated cameras and a structured light videoprojector. The cameras track at 15Hz the needle manipulated by the practitioner and a software displays the needle position with respect to a preoperative segmented image of the patient. To register the preoperative image in the camera frame, we firstly reconstruct the patient skin in 3D using the structured light. Then, the surfacic registration between the reconstructed skin and the segmented skin from the preoperative image is performed using the Iterative Closest Point (ICP) algorithm. Ensuring the quality of this registration is the most challenging task of the system. Indeed, a surfacic registration cannot correctly converge if the surfaces to be registered are too smooth. The main contribution of our work is the evaluation on patients of the conditions that can ensure a correct registration of the preoperative skin surface with the reconstructed one. Furthermore, in case of unfavourable conditions, we propose a method to create enough singularities on the patient abdomen so that the convergence is guaranteed. In the coming months, we plan to evaluate the full system during standard needle insertion on patients.
Tang, Qi-sheng; Li, Ning; Luo, Bin
2011-01-01
To study the metabolic change in brain of rats with generalized anxiety disorder (GAD) and the intervention effect with Anshen Jielu Recipe (AJR) on it. Eight rats selected from 32 Wistar rats as normal group, the others were established as GAD model by using uncertainty empty water bottles method. Then the GAD rats were randomly divided into the model group (saline, by gastrogavage), the control group [buspirone hydrochloride, 2.0 mg/(kg x d), by gastrogavage], the treatment group [AJR, 12.5 g/(kg x d), by gastrogavage], 8 in each group, all were treated for 7 days. The concentration of cerebral metabolites, including N-acetyl aspartate (NAA), choline (Cho), creatine (Cr) and glutamate (Glu), in bilateral prefrontal cortex and hippocampus were measured using high-field strong super-conductivity (7.0T) animal MRI; and the ratio of NAA/Cr, Cho/Cr and Glu/Cr were calculated. The effect of AJR intervention was evaluated by changes of MRI before and after rats being treated with AJR for 7 days. Rats with GAD showed lowered ratios of NAA/Cr and Cho/Cr, and elevated Glu/Cr ratio in the right prefrontal cortex than those in normal rats. After AJR intervention, the abnormal changes in the three indices were restored to certain extents. AJR has apparent antianxiety effect in rats with GAD, with the effect initiation faster than that in the control group. Its mechanism is probably correlated with the regulation of abnormal metabolism in the brain.
Navigation within the heart and vessels in clinical practice.
Beyar, Rafael
2010-02-01
The field of interventional cardiology has developed at an unprecedented pace on account of the visual and imaging power provided by constantly improving biomedical technologies. Transcatheter-based technology is now routinely used for coronary revascularization and noncoronary interventions using balloon angioplasty, stents, and many other devices. In the early days of interventional practice, the operating physician had to manually navigate catheters and devices under fluoroscopic imaging and was exposed to radiation, with its comcomitant necessity for wearing heavy lead aprons for protection. Until recently, very little has changed in the way procedures have been carried out in the catheterization laboratory. The technological capacity to remotely manipulate devices, using robotic arms and computational tools, has been developed for surgery and other medical procedures. This has brought to practice the powerful combination of the abilities afforded by imaging, navigational tools, and remote control manipulation. This review covers recent developments in navigational tools for catheter positioning, electromagnetic mapping, magnetic resonance imaging (MRI)-based cardiac electrophysiological interventions, and navigation tools through coronary arteries.
Praveen, Alampath; Sreekumar, Karumathil Pullara; Nazar, Puthukudiyil Kader; Moorthy, Srikanth
2012-04-01
Thoracic duct embolization (TDE) is an established radiological interventional procedure for thoracic duct injuries. Traditionally, it is done under fluoroscopic guidance after opacifying the thoracic duct with bipedal lymphangiography. We describe our experience in usinga heavily T2W sequence for guiding thoracic duct puncture and direct injection of glue through the puncture needle without cannulating the duct.
Globally optimal, minimum stored energy, double-doughnut superconducting magnets.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2010-01-01
The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.
[Neuromodulation as an intervention for addiction: overview and future prospects].
Luigjes, J; Breteler, R; Vanneste, S; de Ridder, D
2013-01-01
In recent years several neuromodulation techniques have been introduced as interventions for addiction. To review and discuss studies that have investigated the effects of treating addiction by means of electroencephalography (EEG) neurofeedback, real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback, transcranial magnetic stimulation/transcranial direct current stimulation (TMS/tDCS) and deep brain stimulation (DBS). We reviewed the literature, focusing on Dutch studies in particular. Studies using EEG neurofeedback were shown to have positive effects on drug use, treatment compliance, and cue reactivity in patients with cocaine and alcohol dependence. A pilot study investigating the effects of rt-fMRI neurofeedback on nicotine dependent patients showed that modulation of the anterior cingulate cortex can decrease smokers' craving for nicotine. In several studies decreased craving was found in alcohol dependent patients after TMS or tDCS stimulation of the anterior cingulate cortex or the dorsolateral prefrontal cortex. The first DBS pilot studies suggest that the nucleus accumbens is a promising target region for the treatment of alcohol and heroin dependence. Neuromodulation provides us with a unique opportunity to directly apply neuroscientific knowledge to the treatment of addiction. However, more research is needed to ensure the efficacy, safety and feasibility of the various neuromodulation techniques that are now available.
Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun
2014-01-01
In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.
Lee, Emily; Grooms, Richard; Mamidala, Soumya; Nagy, Paul
2014-12-01
Value stream mapping (VSM) is a very useful technique to visualize and quantify the complex workflows often seen in clinical environments. VSM brings together multidisciplinary teams to identify parts of processes, collect data, and develop interventional ideas. An example involving pediatric MRI with general anesthesia VSM is outlined. As the process progresses, the map shows a large delay between the fax referral and the date of the scheduled and registered appointment. Ideas for improved efficiency and metrics were identified to measure improvement within a 6-month period, and an intervention package was developed for the department. Copyright © 2014. Published by Elsevier Inc.
Image fusion and navigation platforms for percutaneous image-guided interventions.
Rajagopal, Manoj; Venkatesan, Aradhana M
2016-04-01
Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.
Jacola, Lisa M; Conklin, Heather M; Scoggins, Matthew A; Ashford, Jason M; Merchant, Thomas E; Mandrell, Belinda N; Ogg, Robert J; Curtis, Elizabeth; Wise, Merrill S; Indelicato, Daniel J; Crabtree, Valerie M
2016-07-01
Despite excellent survival prognosis, children treated for craniopharyngioma experience significant morbidity. We examined the role of hypothalamic involvement (HI) in excessive daytime sleepiness (EDS) and attention regulation in children enrolled on a Phase II trial of limited surgery and proton therapy. Participants completed a sleep evaluation (N = 62) and a continuous performance test (CPT) during functional magnetic resonance imaging (fMRI; n = 29) prior to proton therapy. EDS was identified in 76% of the patients and was significantly related to increased HI extent (p = .04). There was no relationship between CPT performance during fMRI and HI or EDS. Visual examination of group composite fMRI images revealed greater spatial extent of activation in frontal cortical regions in patients with EDS, consistent with a compensatory activation hypothesis. Routine screening for sleep problems during therapy is indicated for children with craniopharyngioma, to optimize the timing of interventions and reduce long-term morbidity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Control of nucleus accumbens activity with neurofeedback
Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian
2014-01-01
The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203
Molet, Jenny; Maras, Pamela M; Kinney-Lang, Eli; Harris, Neil G; Rashid, Faisal; Ivy, Autumn S; Solodkin, Ana; Obenaus, Andre; Baram, Tallie Z
2016-12-01
Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne
2015-01-01
Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126
Guan, Hao; Liu, Tao; Jiang, Jiyang; Tao, Dacheng; Zhang, Jicong; Niu, Haijun; Zhu, Wanlin; Wang, Yilong; Cheng, Jian; Kochan, Nicole A.; Brodaty, Henry; Sachdev, Perminder; Wen, Wei
2017-01-01
Amnestic MCI (aMCI) and non-amnestic MCI (naMCI) are considered to differ in etiology and outcome. Accurately classifying MCI into meaningful subtypes would enable early intervention with targeted treatment. In this study, we employed structural magnetic resonance imaging (MRI) for MCI subtype classification. This was carried out in a sample of 184 community-dwelling individuals (aged 73–85 years). Cortical surface based measurements were computed from longitudinal and cross-sectional scans. By introducing a feature selection algorithm, we identified a set of discriminative features, and further investigated the temporal patterns of these features. A voting classifier was trained and evaluated via 10 iterations of cross-validation. The best classification accuracies achieved were: 77% (naMCI vs. aMCI), 81% (aMCI vs. cognitively normal (CN)) and 70% (naMCI vs. CN). The best results for differentiating aMCI from naMCI were achieved with baseline features. Hippocampus, amygdala and frontal pole were found to be most discriminative for classifying MCI subtypes. Additionally, we observed the dynamics of classification of several MRI biomarkers. Learning the dynamics of atrophy may aid in the development of better biomarkers, as it may track the progression of cognitive impairment. PMID:29085292
Baliski, Christopher; McGahan, Colleen E; Liberto, Caitlyn M; Broughton, Sandra; Ellard, Susan; Taylor, Marianne; Bates, Janet; Lai, Anky
2014-05-01
The wait times for breast cancer care in our region do not meet acceptable benchmarks. We implemented the Interior Breast Rapid Access Investigation and Diagnosis (IB-RAPID) nurse navigation program to address this issue. The IB-RAPID prospective database was reviewed for patients entering the program between April 1, 2011 and April 30, 2012 (2011/2012 cohort), and was compared with patients from the same area in 2010. The main end point was the time between the 1st diagnostic imaging test and the surgery. Multiple linear regression was performed to investigate factors influencing the wait times. The wait times decreased with the introduction of IB-RAPID (59 vs 48 days; median). Stage of disease, total number of biopsies, and magnetic resonance imaging (MRI) use influenced wait times. MRI significantly delayed surgical intervention in both groups with those not having an MRI having a shorter wait time to surgery (68.5 vs 57.6 days; mean) in 2011/2012. The implementation of nurse navigation for patients with breast cancer appears to be effective at reducing the wait times for surgical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI.
Rea, Marc; McRobbie, Donald; Elhawary, Haytham; Tse, Zion T H; Lamperth, Michael; Young, Ian
2009-04-01
Electromechanical devices enable increased accuracy in surgical procedures, and the recent development of MRI-compatible mechatronics permits the use of MRI for real-time image guidance. Integrated imaging of resonant micro-coil fiducials provides an accurate method of tracking devices in a scanner with increased flexibility compared to gradient tracking. Here we report on the ability of ten different image-processing algorithms to track micro-coil fiducials with sub-pixel accuracy. Five algorithms: maximum pixel, barycentric weighting, linear interpolation, quadratic fitting and Gaussian fitting were applied both directly to the pixel intensity matrix and to the cross-correlation matrix obtained by 2D convolution with a reference image. Using images of a 3 mm fiducial marker and a pixel size of 1.1 mm, intensity linear interpolation, which calculates the position of the fiducial centre by interpolating the pixel data to find the fiducial edges, was found to give the best performance for minimal computing power; a maximum error of 0.22 mm was observed in fiducial localisation for displacements up to 40 mm. The inherent standard deviation of fiducial localisation was 0.04 mm. This work enables greater accuracy to be achieved in passive fiducial tracking.
Development of a fiber based Raman probe compatible with interventional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Ashok, Praveen C.; Praveen, Bavishna B.; Rube, Martin; Cox, Benjamin; Melzer, Andreas; Dholakia, Kishan
2014-02-01
Raman spectroscopy has proven to be a powerful tool for discriminating between normal and abnormal tissue types. Fiber based Raman probes have demonstrated its potential for in vivo disease diagnostics. Combining Raman spectroscopy with Magnetic Resonance Imaging (MRI) opens up new avenues for MR guided minimally invasive optical biopsy. Although Raman probes are commercially available, they are not compatible with a MRI environment due to the metallic components which are used to align the micro-optic components such as filters and lenses at the probe head. Additionally they are not mechanically compatible with a typical surgical environment as factors such as sterility and length of the probe are not addressed in those designs. We have developed an MRI compatible fiber Raman probe with a disposable probe head hence maintaining sterility. The probe head was specially designed to avoid any material that would cause MR imaging artefacts. The probe head that goes into patient's body had a diameter <1.5 mm so that it is compatible with biopsy needles and catheters. The probe has been tested in MR environment and has been proven to be capable of obtaining Raman signal while the probe is under real-time MR guidance.
A variable torque motor compatible with magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Roeck, W. W.; Ha, S.-H.; Farmaka, S.; Nalcioglu, O.
2009-04-01
High magnetic fields used in magnetic resonance imaging (MRI) do not allow the employment of conventional motors due to various incompatibility issues. This paper reports on a new motor that can operate in or near high field magnets used for MRI. The motor was designed to be operational with the MRI equipment and could be used in a rotating imaging gantry inside the magnet designed for dual modality imaging. Furthermore, it could also be used for image guided robotic interventional procedures inside a MRI system if so desired. The prototype motor was developed using magnetic resonance (MR) compatible materials, and its functionality with MR imaging was evaluated experimentally by measuring the performance of the motor and its effect on the MR image quality. Since in our application, namely, single photon emission tomography, the motor has to perform precise stepping of the gantry in small angular steps the most important parameter is the start-up torque. The experimental results showed that the motor has a start-up torque up to 1.37 Nm and rotates at 196 rpm when a constant voltage difference of 12 V is applied at a magnetic field strength of 1 T. The MR image quality was quantified by measuring the signal-to-noise of images acquired under different conditions. The results presented here indicate that the motor is MR compatible and could be used for rotating an imaging gantry or a surgical device inside the magnet.
Moeller, Scott J; Konova, Anna B; Tomasi, Dardo; Parvaz, Muhammad A; Goldstein, Rita Z
2016-07-01
The indirect dopamine agonist methylphenidate remediates cognitive deficits in psychopathology, but the individual characteristics that determine its effects on the brain are not known. We aimed to determine whether targeted dopaminergically modulated traits and individual differences could predict neural response to methylphenidate across multiple functional magnetic resonance imaging (fMRI) procedures. We combined neural measures from three separate procedures (two inhibitory control tasks differing in their degree of emotional salience and resting-state functional connectivity) during methylphenidate (20 mg oral, versus randomized and counterbalanced placebo) and correlated these aggregated responses with cocaine use disorder diagnosis (22 cocaine abusers, 21 controls), symptoms of attention deficit hyperactivity disorder, and working memory capacity. Cocaine abusers, relative to controls, had a lower response in the dorsolateral prefrontal cortex to methylphenidate across all three procedures, driven by responses to the two inhibitory control tasks; reduced methylphenidate fMRI response in this region further correlated with more frequent cocaine use. Cocaine abuse (and its frequency), associated with lower tonic dopamine levels, correlated with a reduction in activation to methylphenidate (versus placebo). These initial results provide feasibility to the idea that multimodal fMRI tasks can be meaningfully aggregated, and that these aggregated procedures show a common disruption in addiction in a highly anticipated region relevant to cognitive control. Results also suggest that drug use frequency may represent an important modulatory variable in interpreting the efficacy of pharmacologically enhanced cognitive interventions in addiction.
Cancio, Maria I; Helton, Kathleen J; Schreiber, Jane E; Smeltzer, Matthew P; Kang, Guolian; Wang, Winfred C
2015-10-01
Silent cerebral infarctions (SCI) are the most common neurological injury in children with sickle cell anaemia (SCA), but their incidence/prognosis in early childhood has not been well described. We report clinical, neuroradiological, psychometric and academic follow-up over an average period of 14 years in 37 children with SCA who had magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) of the brain between ages 7 and 48 months. Ten patients (27%) younger than age 5 years (Group I) had SCI, as did 12 (32%) older than 5 years (Group II). Fifteen (41%) had no lesions (Group III). Overt stroke or transient ischaemic attack occurred in 5/9 (56%) in Group I. Most Group I patients had progressive MRI abnormalities, concurrent stenosis, decreased cognitive ability, attention/executive function deficits and hindered academic attainment. The proportions of subjects in Group I with subsequent neurological events (P ≤ 0·006), progressive ischaemia (P ≤ 0·001) and vascular stenosis (P ≤ 0·006) were greater than in Groups II and III. Thus, SCI in young children with SCA may predict overt central nervous system events, progressive MRI abnormalities, stenosis, cognitive dysfunction and poor academic performance. Children younger than 5 years may benefit from MRI/MRA testing and should be considered for aggressive intervention when SCI are detected. © 2015 John Wiley & Sons Ltd.
Carey, Daniel; McGettigan, Carolyn
2017-04-01
The human vocal system is highly plastic, allowing for the flexible expression of language, mood and intentions. However, this plasticity is not stable throughout the life span, and it is well documented that adult learners encounter greater difficulty than children in acquiring the sounds of foreign languages. Researchers have used magnetic resonance imaging (MRI) to interrogate the neural substrates of vocal imitation and learning, and the correlates of individual differences in phonetic "talent". In parallel, a growing body of work using MR technology to directly image the vocal tract in real time during speech has offered primarily descriptive accounts of phonetic variation within and across languages. In this paper, we review the contribution of neural MRI to our understanding of vocal learning, and give an overview of vocal tract imaging and its potential to inform the field. We propose methods by which our understanding of speech production and learning could be advanced through the combined measurement of articulation and brain activity using MRI - specifically, we describe a novel paradigm, developed in our laboratory, that uses both MRI techniques to for the first time map directly between neural, articulatory and acoustic data in the investigation of vocalisation. This non-invasive, multimodal imaging method could be used to track central and peripheral correlates of spoken language learning, and speech recovery in clinical settings, as well as provide insights into potential sites for targeted neural interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vidoni, Eric D; Gayed, Matthew R; Honea, Robyn A; Savage, Cary R; Hobbs, Derek; Burns, Jeffrey M
2013-07-01
Despite mounting evidence that physical activity has positive benefits for brain and cognitive health, there has been little characterization of the relationship between cardiorespiratory (CR) fitness and cognition-associated brain activity as measured by functional magnetic resonance imaging (fMRI). The lack of evidence is particularly glaring for diseases such as Alzheimer disease (AD) that degrade cognitive and functional performance. The aim of this study was to describe the relationship between regional brain activity during cognitive tasks and CR fitness level in people with and without AD. A case-control, single-observation study design was used. Thirty-four individuals (18 without dementia and 16 in the earliest stages of AD) completed maximal exercise testing and performed a Stroop task during fMRI. Cardiorespiratory fitness was inversely associated with anterior cingulate activity in the participants without dementia (r=-.48, P=.05) and unassociated with activation in those with AD (P>.7). Weak associations of CR fitness and middle frontal cortex were noted. The wide age range and the use of a single task in fMRI rather than multiple tasks challenging different cognitive capacities were limitations of the study. The results offer further support of the relationship between CR fitness and regional brain activity. However, this relationship may be attenuated by disease. Future work in this area may provide clinicians and researchers with interpretable and dependable regional fMRI biomarker signatures responsive to exercise intervention. It also may shed light on mechanisms by which exercise can support cognitive function.
Alterations of brain activity in fibromyalgia patients.
Sawaddiruk, Passakorn; Paiboonworachat, Sahattaya; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2017-04-01
Fibromyalgia is a chronic pain syndrome, characterized by widespread musculoskeletal pain with diffuse tenderness at multiple tender points. Despite intense investigations, the pathophysiology of fibromyalgia remains elusive. Evidence shows that it could be due to changes in either the peripheral or central nervous system (CNS). For the CNS changes, alterations in the high brain area of fibromyalgia patients have been investigated but the definite mechanisms are still unclear. Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance (fMRI) have been used to gather evidence regarding the changes of brain morphologies and activities in fibromyalgia patients. Nevertheless, due to few studies, limited knowledge for alterations in brain activities in fibromyalgia is currently available. In this review, the changes in brain activity in various brain areas obtained from reports in fibromyalgia patients are comprehensively summarized. Changes of the grey matter in multiple regions such as the superior temporal gyrus, posterior thalamus, amygdala, basal ganglia, cerebellum, cingulate cortex, SII, caudate and putamen from the MRI as well as the increase of brain activities in the cerebellum, prefrontal cortex, anterior cingulate cortex, thalamus, somatosensory cortex, insula in fMRI studies are presented and discussed. Moreover, evidence from pharmacological interventions offering benefits for fibromyalgia patients by reducing brain activity is presented. Because of limited knowledge regarding the roles of brain activity alterations in fibromyalgia, this summarized review will encourage more future studies to elucidate the underlying mechanisms involved in the brains of these patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of alterations in diabetic myocardial tissue using high resolution MRI.
Loganathan, Rajaprasad; Bilgen, Mehmet; Al-Hafez, Baraa; Smirnova, Irina V
2006-02-01
Cardiovascular complications, including diabetic cardiomyopathy, are the major cause of fatalities in diabetes. Diabetic cardiomyopathy is expressed in part through fibrosis and left ventricular hypertrophy, increasing myocardial stiffness leading to heart failure. In order to search for curative interventions, precise evaluation of the diabetic heart pathology is extremely important. Magnetic resonance imaging (MRI) is ideally suited for the assessment of heart disorders due to its high resolution, three-dimensional properties and dimensional accuracy. In this study streptozotocin injected Sprague-Dawley rats were used as a model of type 1 diabetes to characterize abnormalities in the diabetic left ventricle (LV). High resolution MRI using a 9.4 T horizontal bore scanner was performed on control and 7 weeks diabetic rats. In the diabetic rats as compared to controls, we found increased LV wall volume to body weight ratio, suggestive of LV hypertrophy; increased LV wall mean pixel intensity, and decreased T2 relaxation time, both suggestive of changes in the diabetic tissue properties, perhaps due to presence of fibrosis which was detected through increase in the collagen fractional area. In addition, changes in the LV cavity area were observed and quantified in post-mortem diabetic hearts indicative of stiffer and less resilient LV myocardial tissue with diabetes. Together the data suggest that LV hypertrophy and fibrosis may be a major factor underlying structural and functional abnormalities in the diabetic heart, and MRI is a valuable tool to non-invasively monitor the pathological changes in diabetic cardiomyopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Jiyang; Teng Gaojun; Feng Yi
2007-04-15
Purpose. To compare a necrosis-avid contrast agent (NACA) bis-Gd-DTPA-pamoic acid derivative (ECIII-60) after intracoronary delivery with an extracellular agent Gd-DTPA after intravenous injection on magnetic resonance imaging (MRI) in a swine model of acute reperfused myocardial infarction (MI). Methods. Eight pigs underwent 90 min of transcatheter coronary balloon occlusion and 60 min of reperfusion. After intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg, all pigs were scanned with T1-weighted MRI until the delayed enhancement of MI disappeared. Then they were intracoronarily infused with ECIII-60 at 0.0025 mmol/kg and imaged for 5 hr. Signal intensity, infarct-over-normal contrast ratio andmore » relative infarct size were quantified, compared, and correlated with the results of postmortem MRI and triphenyltetrazolium chloride (TTC) histochemical staining. Results. A contrast ratio over 3.0 was induced by both Gd-DTPA and ECIII-60. However, while the delayed enhancement with Gd-DTPA virtually vanished in 1 hr, ECIII-60 at an 80x smaller dose depicted the MI accurately over 5 hr as proven by ex vivo MRI and TTC staining. Conclusion. Both Gd-DTPA and ECIII-60 strongly enhanced acute MI. Comparing with fading contrast in a narrow time window with intravenous Gd-DTPA, intracoronary ECIII-60 persistently demarcated the acute MI, indicating a potential method for postprocedural assessment of myocardial viability after coronary interventions.« less
Basu, Tania; Bao, Pinglei; Lerner, Alexander; Anderson, Lindsey; Page, Kathleen; Stanczyk, Frank; Mishell, Daniel; Segall-Gutierrez, Penina
2016-10-01
The primary objective is to examine activation of food motivation centers in the brain before and 8 weeks after depo medroxyprogesterone acetate (DMPA) administration. This prospective experimental pilot study examined the effects of DMPA on food motivation centers utilizing functional magnetic resonance imaging (fMRI) in eight nonobese, ovulatory subjects. fMRI blood oxygen level dependent (BOLD) signal was measured using a 3-Tesla Scanner while participants viewed images of high-calorie foods, low-calorie foods and nonfood objects. fMRI scans were performed at baseline and 8 weeks after participants received one intramuscular dose of DMPA 150 mg. fMRI data were analyzed using the FMRIB Software Library. Changes in adiposity and circulating leptin and ghrelin levels were also measured. There was a greater BOLD signal response to food cues in brain regions associated with food motivation (anterior cingulate gyrus, orbitofrontal cortex) 8 weeks after DMPA administration compared to baseline (z>2.3, p<.05 whole-brain analysis clustered corrected). No statistically significant change was detected in circulating leptin or ghrelin levels or fat mass 8 weeks after DMPA administration. Analysis of differences in food motivation may guide the development of interventions to prevent weight gain in DMPA users. These data support a neural origin as one of the mechanisms underlying weight gain in DMPA users and may guide future research examining weight gain and contraception. Copyright © 2016 Elsevier Inc. All rights reserved.
Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness
Wentland, Andrew L.; Grist, Thomas M.
2014-01-01
Atherosclerosis is the leading cause of cardiovascular disease (CVD) in the Western world. In the early development of atherosclerosis, vessel walls remodel outwardly such that the vessel luminal diameter is minimally affected by early plaque development. Only in the late stages of the disease does the vessel lumen begin to narrow—leading to stenoses. As a result, angiographic techniques are not useful for diagnosing early atherosclerosis. Given the absence of stenoses in the early stages of atherosclerosis, CVD remains subclinical for decades. Thus, methods of diagnosing atherosclerosis early in the disease process are needed so that affected patients can receive the necessary interventions to prevent further disease progression. Pulse wave velocity (PWV) is a biomarker directly related to vessel stiffness that has the potential to provide information on early atherosclerotic disease burden. A number of clinical methods are available for evaluating global PWV, including applanation tonometry and ultrasound. However, these methods only provide a gross global measurement of PWV—from the carotid to femoral arteries—and may mitigate regional stiffness within the vasculature. Additionally, the distance measurements used in the PWV calculation with these methods can be highly inaccurate. Faster and more robust magnetic resonance imaging (MRI) sequences have facilitated increased interest in MRI-based PWV measurements. This review provides an overview of the state-of-the-art in MRI-based PWV measurements. In addition, both gold standard and clinical standard methods of computing PWV are discussed. PMID:24834415
Ohn, Suk Hoon; Chang, Won Hyuk; Park, Chang-hyun; Kim, Sung Tae; Lee, Jung Il; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background Repetitive transcranial magnetic stimulation (rTMS) modulates central neuropathic pain in some patients after stroke, but the mechanisms of action are uncertain. Objective The authors used diffusion tensor imaging (DTI) and functional MRI (fMRI) to evaluate the integrity of the thalamocortical tract (TCT) and the activation pattern of the pain network in 22 patients with poststroke central pain. Methods Each patient underwent daily 10-Hz rTMS sessions for 1000 pulses on 5 consecutive days over the hotspot for the first dorsal interosseus muscle. Pain severity was monitored using the Visual Analogue Scale (VAS). Mood was assessed by the Hamilton Depression Rating Scale. Results Clinical data from all participants along with the DTI and fMRI findings from 10 patients were analyzed. VAS scores decreased significantly, if modestly, following administration of rTMS in 14 responders, which lasted for 2 weeks after the intervention. Regression analysis showed a significant correlation between less initial depression and higher antalgic effect of rTMS. Integrity of the superior TCT in the ipsilesional hemisphere showed significant correlation with change of VAS score after rTMS. fMRI showed significantly decreased activity in the secondary somatosensory cortex, insula, prefrontal cortex, and putamen in rTMS responders, whereas no change was noted in nonresponders. Conclusion Mood may affect the modest antinociceptive effects of rTMS that we found, which may be mediated by the superior TCT through modulation of a distributed pain network. PMID:21980153
Trans-rectal interventional MRI: initial prostate biopsy experience
NASA Astrophysics Data System (ADS)
Greenwood, Bernadette M.; Behluli, Meliha R.; Feller, John F.; May, Stuart T.; Princenthal, Robert; Winkel, Alex; Kaminsky, David B.
2010-02-01
Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland when evaluated along with T2-weighted images, diffusion-weighted images (DWI) and their corresponding apparent diffusion coefficient (ADC) maps can yield valuable information in patients with rising or elevated serum prostate-specific antigen (PSA) levels1. In some cases, patients present with multiple negative trans-rectal ultrasound (TRUS) biopsies, often placing the patient into a cycle of active surveillance. Recently, more patients are undergoing TRIM for targeted biopsy of suspicious findings with a cancer yield of ~59% compared to 15% for second TRUS biopsy2 to solve this diagnostic dilemma and plan treatment. Patients were imaged in two separate sessions on a 1.5T magnet using a cardiac phased array parallel imaging coil. Automated CAD software was used to identify areas of wash-out. If a suspicious finding was identified on all sequences it was followed by a second imaging session. Under MRI-guidance, cores were acquired from each target region3. In one case the microscopic diagnosis was prostatic intraepithelial neoplasia (PIN), in the other it was invasive adenocarcinoma. Patient 1 had two negative TRUS biopsies and a PSA level of 9ng/mL. Patient 2 had a PSA of 7.2ng/mL. He underwent TRUS biopsy which was negative for malignancy. He was able to go on to treatment for his prostate carcinoma (PCa)4. MRI may have an important role in a subset of patients with multiple negative TRUS biopsies and elevated or rising PSA.
Connectivity in Autism: A review of MRI connectivity studies
Rane, Pallavi; Cochran, David; Hodge, Steven M.; Haselgrove, Christian; Kennedy, David; Frazier, Jean A.
2016-01-01
Autism Spectrum Disorder (ASD) affects 1 in 50 children between the ages of 6–17 years as per a 2012 CDC survey of parents. The etiology of ASD is not precisely known. ASD is an umbrella term, which includes low (IQ<70) to high functioning (IQ>70) individuals. A better understanding of the disorder, and how it manifests in an individual subject can lead to more effective intervention plans to fulfill the individual’s treatment needs. Magnetic resonance imaging (MRI) is a non-invasive investigational tool that can help study the ways in which the brain develops and/or deviates from the typical developmental trajectory. MRI offers insights into the structure, function, and metabolism of the brain. In this article, we review published studies on brain connectivity changes in ASD using either resting state functional MRI or diffusion tensor imaging. The general findings of decreases in white matter integrity and long-range neural coherence are prevalent in ASD literature. However, there is somewhat less of a consensus in the detailed localization of these findings. There are even fewer studies linking these connectivity alterations with the behavioral phenotype of the disorder. Nevertheless, with the help of data sharing and large-scale analytic efforts, the field is advancing towards several convergent themes. These include reduced functional coherence of long-range intra-hemispheric cortico-cortical default mode circuitry, impaired inter-hemispheric regulation, and an associated, perhaps compensatory, increase in local and short-range cortico-subcortical coherence. PMID:26146755
NASA Astrophysics Data System (ADS)
Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Dynamic fMRI networks predict success in a behavioral weight loss program among older adults.
Mokhtari, Fatemeh; Rejeski, W Jack; Zhu, Yingying; Wu, Guorong; Simpson, Sean L; Burdette, Jonathan H; Laurienti, Paul J
2018-06-01
More than one-third of adults in the United States are obese, with a higher prevalence among older adults. Obesity among older adults is a major cause of physical dysfunction, hypertension, diabetes, and coronary heart diseases. Many people who engage in lifestyle weight loss interventions fail to reach targeted goals for weight loss, and most will regain what was lost within 1-2 years following cessation of treatment. This variability in treatment efficacy suggests that there are important phenotypes predictive of success with intentional weight loss that could lead to tailored treatment regimen, an idea that is consistent with the concept of precision-based medicine. Although the identification of biochemical and metabolic phenotypes are one potential direction of research, neurobiological measures may prove useful as substantial behavioral change is necessary to achieve success in a lifestyle intervention. In the present study, we use dynamic brain networks from functional magnetic resonance imaging (fMRI) data to prospectively identify individuals most likely to succeed in a behavioral weight loss intervention. Brain imaging was performed in overweight or obese older adults (age: 65-79 years) who participated in an 18-month lifestyle weight loss intervention. Machine learning and functional brain networks were combined to produce multivariate prediction models. The prediction accuracy exceeded 95%, suggesting that there exists a consistent pattern of connectivity which correctly predicts success with weight loss at the individual level. Connectivity patterns that contributed to the prediction consisted of complex multivariate network components that substantially overlapped with known brain networks that are associated with behavior emergence, self-regulation, body awareness, and the sensory features of food. Future work on independent datasets and diverse populations is needed to corroborate our findings. Additionally, we believe that efforts can begin to examine whether these models have clinical utility in tailoring treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Magon, Stefano; Donath, Lars; Gaetano, Laura; Thoeni, Alain; Radue, Ernst-Wilhelm; Faude, Oliver; Sprenger, Till
2016-09-01
Practice-induced effects of specific balance training on brain structure and activity in elderly people are largely unknown. In the present study, we investigated morphological and functional brain changes following slacking training (balancing over nylon ribbons) in a group of elderly people. Twenty-eight healthy volunteers were recruited and randomly assigned to the intervention (mean age: 62.3±5.4years) or control group (mean age: 61.8±5.3years). The intervention group completed six-weeks of slackline training. Brain morphological changes were investigated using voxel-based morphometry and functional connectivity changes were computed via independent component analysis and seed-based analyses. All analyses were applied to the whole sample and to a subgroup of participants who improved in slackline performance. The repeated measures analysis of variance showed a significant interaction effect between groups and sessions. Specifically, the Tukey post-hoc analysis revealed a significantly improved slackline standing performance after training for the left leg stance time (pre: 4.5±3.6s vs. 26.0±30.0s, p<0.038) as well as for tandem stance time (pre: 1.4±0.6s vs. post: 4.5±4.0s, p=0.003) in the intervention group. No significant changes in balance performance were observed in the control group. The MRI analysis did not reveal morphological or functional connectivity differences before or after the training between the intervention and control groups (whole sample). However, subsequent analysis in subjects with improved slackline performance showed a decrease of connectivity between the striatum and other brain areas during the training period. These preliminary results suggest that improved balance performance with slackline training goes along with an increased efficiency of the striatal network. Copyright © 2016 Elsevier B.V. All rights reserved.
Cortical Plasticity Following Motor Skill Learning During Mental Practice in Stroke1
Page, Stephen J.; Szaflarski, Jerzy P.; Eliassen, James C.; Pan, Hai; Cramer, Steven C
2012-01-01
Background and Purpose Mental practice (MP), which involves cognitive rehearsal of physical movements, is a non-invasive, inexpensive method of enabling repetitive, task specific practice (RTP). Recent, randomized controlled data suggest that MP, when combined with a RTP therapy program, increases affected arm use and function significantly more than RTP only. As a next step, this 10-subject case series examined the possibility that cortical plasticity is a mechanism underlying the treatment effect of MP when combined with RTP. Method 10 chronic stroke patients (mean = 36.7 months) exhibiting stable, moderate motor deficits received ½ hour therapy sessions for their affected arms, occurring 3 days/week for 10 weeks, and emphasizing valued activities of daily living (ADLs). Directly after therapy, subjects received 30-minute MP sessions, which required MP of the ADLs performed during therapy. Behavioral outcomes were blindly evaluated using the Action Research Arm Test (ARAT) and the Fugl-Meyer Assessment (FM). Functional magnetic resonance imaging (fMRI) was administered before and after intervention to assess cortical changes. Results Before intervention, subjects exhibited stable motor deficits. After intervention, subjects exhibited marked ARAT and FM score increases (+ 5.3 and + 4.2, respectively), and clinically significant, new abilities to perform valued ADLs. Post-intervention fMRI revealed significant increases in activation to wrist flexion and extension of the affected hand in the premotor area and primary motor cortex ipsi- and contralaterally to the affected hand, and superior parietal cortex ipsilateral to the affected hand. Decreased activations were noted in parietal cortex of the hemisphere ipsilateral to the affected hand. These changes correlated with anatomical regions in which behavioral changes were observed via the ARAT and FM. Conclusions MP is an easy to use, cost effective strategy that was again shown to improve affected arm outcomes after stroke. This is the first study suggesting alteration in the cortical map as a possible MP mechanism for the affected arm. PMID:19155350
van de Weijer, Sjors C F; Duits, Annelien A; Bloem, Bastiaan R; Kessels, Roy P; Jansen, Jacobus F A; Köhler, Sebastian; Tissingh, Gerrit; Kuijf, Mark L
2016-11-03
In Parkinson's disease (PD), cognitive impairment is an important non-motor symptom heralding the development of dementia. Effective treatments to slow down the rate of cognitive decline in PD patients with mild cognitive impairment are lacking. Here, we describe the design of the Parkin'Play study, which assesses the effects of a cognitive health game intervention on cognition in PD. This study is a multicentre, phase-II, open-randomized clinical trial that aims to recruit 222 PD patients with mild cognitive impairment. Eligible patients have PD, Hoehn & Yahr stages I-III, are aged between 40 and 75 years, and have cognitive impairment but no dementia. The intervention group (n = 111) will be trained using a web-based health game targeting multiple cognitive domains. The control group (n = 111) will be placed on a waiting list. In order to increase compliance the health game adapts to the subjects' performance, is enjoyable, and can be played at home. From each group, 20 patients will undergo fMRI to test for potential functional brain changes underlying treatment. The primary outcome after 12 weeks of training is cognitive function, as assessed by a standard neuropsychological assessment battery and an online cognitive assessment. The neuropsychological assessment battery covers the following domains: executive function, memory, visual perception, visuoconstruction and language. A compound score for overall cognitive function will be calculated as the mean score of all test Z-scores based on the distribution of scores for both groups taken together. Secondary outcomes at follow-up visits up to 24 weeks include various motor and non-motor symptoms, compliance, and biological endpoints (fMRI). This study aims at evaluating whether a cognitive intervention among PD patients leads to an increased cognitive performance on targeted domains. Strengths of this study are a unique web-based health game intervention, the large sample size, a control group without intervention and innovations designed to increase compliance. NTR5637 on 7-jan-2016.
Mohanty, Rosaleena; Sinha, Anita M; Remsik, Alexander B; Dodd, Keith C; Young, Brittany M; Jacobson, Tyler; McMillan, Matthew; Thoma, Jaclyn; Advani, Hemali; Nair, Veena A; Kang, Theresa J; Caldera, Kristin; Edwards, Dorothy F; Williams, Justin C; Prabhakaran, Vivek
2018-01-01
Interventional therapy using brain-computer interface (BCI) technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated resting-state functional connectivity (rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and post-intervention, to identify discriminative functional changes using a machine learning classifier with the goal of categorizing participants into one of the two therapy stages. Twenty chronic stroke participants with persistent upper-extremity motor impairment received neuromodulatory training using a closed-loop neurofeedback BCI device, and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-, post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-FC was analyzed from two specific stages, namely pre- and post-therapy. In total, 236 seeds spanning both motor and non-motor regions of the brain were computed at each stage. A univariate feature selection was applied to reduce the number of features followed by a principal component-based data transformation used by a linear binary support vector machine (SVM) classifier to classify each participant into a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5% using a leave-one-out method. Outside of the motor network, seeds from the fronto-parietal task control, default mode, subcortical, and visual networks emerged as important contributors to the classification. Furthermore, a higher number of functional changes were observed to be strengthening from the pre- to post-therapy stage than the ones weakening, both of which involved motor and non-motor regions of the brain. These findings may provide new evidence to support the potential clinical utility of BCI therapy as a form of stroke rehabilitation that not only benefits motor recovery but also facilitates recovery in other brain networks. Moreover, delineation of stronger and weaker changes may inform more optimal designs of BCI interventional therapy so as to facilitate strengthened and suppress weakened changes in the recovery process.
2013-10-01
VA Ann Arbor PTSD clinic; and c.) conducting a translational neuroimaging mechanistic study with pre- and post fMRI and neurocognitive testing . 15...might be helpful – both in terms of the psychological characteristics of change, and in terms of neural mechanisms in the brain. Mindfulness...neurocognitive testing . Our novel 16 week Mindfulness and Self-compassion group intervention, “Mindfulness-based Exposure therapy” (MBET), was developed
Praveen, Alampath; Sreekumar, Karumathil Pullara; Nazar, Puthukudiyil Kader; Moorthy, Srikanth
2012-01-01
Thoracic duct embolization (TDE) is an established radiological interventional procedure for thoracic duct injuries. Traditionally, it is done under fluoroscopic guidance after opacifying the thoracic duct with bipedal lymphangiography. We describe our experience in usinga heavily T2W sequence for guiding thoracic duct puncture and direct injection of glue through the puncture needle without cannulating the duct. PMID:23162248
Ultrasound of skeletal muscle injury.
Koh, Eamon Su Chun; McNally, Eugene G
2007-06-01
The professional and recreational demands of modern society make the treatment of muscle injury an increasingly important clinical problem, particularly in the athletic population. In the elite athlete, significant financial and professional pressures may also exist that emphasize the need for accurate diagnosis and treatment. With new advances in ultrasound technology, images of exquisite detail allow diagnosis of muscle injury that matches the accuracy of magnetic resonance imaging (MRI). Furthermore, the benefits of real-time and Doppler imaging, ability to perform interventional procedures, and relative cost benefits compared with MRI place ultrasound at the forefront for investigation for these injuries in many circumstances. Muscle injury may be divided into acute and chronic pathology, with muscle strain injury the most common clinical problem presenting to sports physicians. This article reviews the spectrum of acute and chronic muscle injuries, with particular attention to clinical features and some common or important muscle strain injuries.
Integration of XNAT/PACS, DICOM, and Research Software for Automated Multi-modal Image Analysis.
Gao, Yurui; Burns, Scott S; Lauzon, Carolyn B; Fong, Andrew E; James, Terry A; Lubar, Joel F; Thatcher, Robert W; Twillie, David A; Wirt, Michael D; Zola, Marc A; Logan, Bret W; Anderson, Adam W; Landman, Bennett A
2013-03-29
Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes. Integration and management of disparate data types are major obstacles. In a multi-institution collaboration, we are collecting electroencephalogy (EEG), structural MRI, diffusion tensor MRI (DTI), and single photon emission computed tomography (SPECT) from a large cohort of US Army service members exposed to mild or moderate TBI who are undergoing experimental treatment. We have constructed a robust informatics backbone for this project centered on the DICOM standard and eXtensible Neuroimaging Archive Toolkit (XNAT) server. Herein, we discuss (1) optimization of data transmission, validation and storage, (2) quality assurance and workflow management, and (3) integration of high performance computing with research software.
Integration of XNAT/PACS, DICOM, and research software for automated multi-modal image analysis
NASA Astrophysics Data System (ADS)
Gao, Yurui; Burns, Scott S.; Lauzon, Carolyn B.; Fong, Andrew E.; James, Terry A.; Lubar, Joel F.; Thatcher, Robert W.; Twillie, David A.; Wirt, Michael D.; Zola, Marc A.; Logan, Bret W.; Anderson, Adam W.; Landman, Bennett A.
2013-03-01
Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes. Integration and management of disparate data types are major obstacles. In a multi-institution collaboration, we are collecting electroencephalogy (EEG), structural MRI, diffusion tensor MRI (DTI), and single photon emission computed tomography (SPECT) from a large cohort of US Army service members exposed to mild or moderate TBI who are undergoing experimental treatment. We have constructed a robust informatics backbone for this project centered on the DICOM standard and eXtensible Neuroimaging Archive Toolkit (XNAT) server. Herein, we discuss (1) optimization of data transmission, validation and storage, (2) quality assurance and workflow management, and (3) integration of high performance computing with research software.
Integration of XNAT/PACS, DICOM, and Research Software for Automated Multi-modal Image Analysis
Gao, Yurui; Burns, Scott S.; Lauzon, Carolyn B.; Fong, Andrew E.; James, Terry A.; Lubar, Joel F.; Thatcher, Robert W.; Twillie, David A.; Wirt, Michael D.; Zola, Marc A.; Logan, Bret W.; Anderson, Adam W.; Landman, Bennett A.
2013-01-01
Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes. Integration and management of disparate data types are major obstacles. In a multi-institution collaboration, we are collecting electroencephalogy (EEG), structural MRI, diffusion tensor MRI (DTI), and single photon emission computed tomography (SPECT) from a large cohort of US Army service members exposed to mild or moderate TBI who are undergoing experimental treatment. We have constructed a robust informatics backbone for this project centered on the DICOM standard and eXtensible Neuroimaging Archive Toolkit (XNAT) server. Herein, we discuss (1) optimization of data transmission, validation and storage, (2) quality assurance and workflow management, and (3) integration of high performance computing with research software. PMID:24386548
Busireddy, Kiran K; AlObaidy, Mamdoh; Ramalho, Miguel; Kalubowila, Janaka; Baodong, Liu; Santagostino, Ilaria; Semelka, Richard C
2014-01-01
Pancreatitis is defined as the inflammation of the pancreas and considered the most common pancreatic disease in children and adults. Imaging plays a significant role in the diagnosis, severity assessment, recognition of complications and guiding therapeutic interventions. In the setting of pancreatitis, wider availability and good image quality make multi-detector contrast-enhanced computed tomography (MD-CECT) the most used imaging technique. However, magnetic resonance imaging (MRI) offers diagnostic capabilities similar to those of CT, with additional intrinsic advantages including lack of ionizing radiation and exquisite soft tissue characterization. This article reviews the proposed definitions of revised Atlanta classification for acute pancreatitis, illustrates a wide range of morphologic pancreatic parenchymal and associated peripancreatic changes for different types of acute pancreatitis. It also describes the spectrum of early and late chronic pancreatitis imaging findings and illustrates some of the less common types of chronic pancreatitis, with special emphasis on the role of CT and MRI. PMID:25133027
Pohlmann, Andreas; Arakelyan, Karen; Hentschel, Jan; Cantow, Kathleen; Flemming, Bert; Ladwig, Mechthild; Waiczies, Sonia; Seeliger, Erdmann; Niendorf, Thoralf
2014-08-01
This study was designed to detail the relation between renal T2* and renal tissue pO2 using an integrated approach that combines parametric magnetic resonance imaging (MRI) and quantitative physiological measurements (MR-PHYSIOL). Experiments were performed in 21 male Wistar rats. In vivo modulation of renal hemodynamics and oxygenation was achieved by brief periods of aortic occlusion, hypoxia, and hyperoxia. Renal perfusion pressure (RPP), renal blood flow (RBF), local cortical and medullary tissue pO2, and blood flux were simultaneously recorded together with T2*, T2 mapping, and magnetic resonance-based kidney size measurements (MR-PHYSIOL). Magnetic resonance imaging was carried out on a 9.4-T small-animal magnetic resonance system. Relative changes in the invasive quantitative parameters were correlated with relative changes in the parameters derived from MRI using Spearman analysis and Pearson analysis. Changes in T2* qualitatively reflected tissue pO2 changes induced by the interventions. T2* versus pO2 Spearman rank correlations were significant for all interventions, yet quantitative translation of T2*/pO2 correlations obtained for one intervention to another intervention proved not appropriate. The closest T2*/pO2 correlation was found for hypoxia and recovery. The interlayer comparison revealed closest T2*/pO2 correlations for the outer medulla and showed that extrapolation of results obtained for one renal layer to other renal layers must be made with due caution. For T2* to RBF relation, significant Spearman correlations were deduced for all renal layers and for all interventions. T2*/RBF correlations for the cortex and outer medulla were even superior to those between T2* and tissue pO2. The closest T2*/RBF correlation occurred during hypoxia and recovery. Close correlations were observed between T2* and kidney size during hypoxia and recovery and for occlusion and recovery. In both cases, kidney size correlated well with renal vascular conductance, as did renal vascular conductance with T2*. Our findings indicate that changes in T2* qualitatively mirror changes in renal tissue pO2 but are also associated with confounding factors including vascular volume fraction and tubular volume fraction. Our results demonstrate that MR-PHYSIOL is instrumental to detail the link between renal tissue pO2 and T2* in vivo. Unravelling the link between regional renal T2* and tissue pO2, including the role of the T2* confounding parameters vascular and tubular volume fraction and oxy-hemoglobin dissociation curve, requires further research. These explorations are essential before the quantitative capabilities of parametric MRI can be translated from experimental research to improved clinical understanding of hemodynamics/oxygenation in kidney disorders.
García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo
2017-07-01
Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 ( p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex ( p < 0.001), left posterior cingulate ( p < 0.001), and right posterior cingulate ( p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex ( p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex ( p < 0.025); and decreased connectivity between the left and right posterior cingulate ( p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise.
Lei, Hong; Chen, Xiao; Liu, Shuyun; Chen, Zhenyan
2017-04-01
Visceral adipose tissue (VAT) and hepatic fat deposition are the most important risk factors for women's health. Acupuncture, including electroacupuncture (EA), is used to treat obesity throughout the world. The effect of EA is evaluated mainly by body mass index (BMI) and waist circumference (WC). Few studies have assessed its effect in reducing VAT volume and hepatic fat fraction (HFF) based on an exact measurement method such as magnetic resonance imaging (MRI). This study aimed to resolve this issue. Thirty subjects were randomly divided into two groups. The control group (n = 15) did not receive any intervention and maintained a normal diet and their usual exercise habits. The treatment group (n = 15) received EA three times a week for 3 months. BMI and WC were measured using different devices. VAT and HFF were measured by MRI and calculated by related software before and after the intervention. A marked difference was evident in group that received EA treatment in the following tests. The differences in BMI (U = 21.00, p < 0.001), WC (U = 40.50, p = 0.002), VAT volume (U = 13.00, p < 0.001), and mean HFF (U = 0.00, p < 0.001) before and after the intervention in the treatment group were distinct and significant compared with those of the control group. Three months later, the treatment group showed a lower BMI (W = 91.00, p = 0.001), WC (t = 4.755, p < 0.001), VAT volume (t = 5.164, p < 0.001), and mean HFF (W = 120.00, p = 0.001) compared with pretreatment levels. Compared with the control group, the treatment group showed a lower VAT volume (t = 60.00, p = 0.029) after 3 months of treatment. After 3 months, the control group showed higher mean HFF (t = -2.900, p = 0.012) and VAT volume (W = 11.50, p = 0.006) compared with their initial levels. Based on MRI evaluation, this randomized controlled study proved that EA treatment reduces BMI and WC as well as VAT volume and HFF in women with abdominal obesity.
Ziemssen, Tjalf; Kern, Raimar; Cornelissen, Christian
2016-08-08
The therapeutic options for patients with Multiple Sclerosis (MS) have steadily increased due to the approval of new substances that now supplement traditional first-line agents, demanding a paradigm shift in the assessment of disease activity and treatment response in clinical routine. Here, we report the study design of PANGAEA 2.0 (Post-Authorization Non-interventional GermAn treatment benefit study of GilEnyA in MS patients), a non-interventional study in patients with relapsing-remitting MS (RRMS) identify patients with disease activity and monitor their disease course after treatment switch to fingolimod (Gilenya®), an oral medication approved for patients with highly active RRMS. In the first phase of the PANGAEA 2.0 study the disease activity status of patients receiving a disease-modifying therapy (DMT) is evaluated in order to identify patients at risk of disease progression. This evaluation is based on outcome parameters for both clinical disease activity and magnetic resonance imaging (MRI), and subclinical measures, describing disease activity from the physician's and the patient's perspective. In the second phase of the study, 1500 RRMS patients identified as being non-responders and switched to fingolimod (oral, 0.5 mg/daily) are followed-up for 3 years. Data on relapse activity, disability progression, MRI lesions, and brain volume loss will be assessed in accordance to 'no evidence of disease activity-4' (NEDA-4). The modified Rio score, currently validated for the evaluation of treatment response to interferons, will be used to evaluate the treatment response to fingolimod. The MS management software MSDS3D will guide physicians through the complex processes of diagnosis and treatment. A sub-study further analyzes the benefits of a standardized quantitative evaluation of routine MRI scans by a central reading facility. PANGAEA 2.0 is being conducted between June 2015 and December 2019 in 350 neurological practices and centers in Germany, including 100 centers participating in the sub-study. PANGAEA 2.0 will not only evaluate the long-term benefit of a treatment change to fingolimod but also the applicability of new concepts of data acquisition, assessment of MS disease activity and evaluation of treatment response for the in clinical routine. BfArM6532; Trial Registration Date: 20/05/2015.
2013-01-01
Background Physical activity is believed to exert a beneficial effect on functional and cognitive rehabilitation of patients with stroke. Although studies have addressed the impact of physical exercise in cerebrovascular prevention and rehabilitation, the underlying mechanisms leading to improvement are poorly understood. Training-induced increase of cerebral perfusion is a possible mediating mechanism. Our exploratory study aims to investigate training-induced changes in blood biomarker levels and magnetic resonance imaging in patients with subacute ischemic stroke. Methods/design This biomarker-driven study uses an observational design to examine a subgroup of patients in the randomized, controlled PHYS-STROKE trial. In PHYS-STROKE, 215 patients with subacute stroke (hemorrhagic and ischemic) receive either 4 weeks of physical training (aerobic training, 5 times a week, for 50 minutes) or 4 weeks of relaxation sessions (5 times a week, for 50 minutes). A convenience sample of 100 of these patients with ischemic stroke will be included in BAPTISe and will receive magnetic resonance imaging (MRI) scans and an additional blood draw before and after the PHYS-STROKE intervention. Imaging scans will address parameters of cerebral perfusion, vessel size imaging, and microvessel density (the Q factor) to estimate the degree of neovascularization in the brain. Blood tests will determine several parameters of immunity, inflammation, endothelial function, and lipometabolism. Primary objective of this study is to evaluate differential changes in MRI and blood-derived biomarkers between groups. Other endpoints are next cerebrovascular events and functional status of the patient after the intervention and after 3 months assessed by functional scores, in particular walking speed and Barthel index (co-primary endpoints of PHYS-STROKE). Additionally, we will assess the association between functional outcomes and biomarkers including imaging results. For all endpoints we will compare changes between patients who received physical fitness training and patients who had relaxation sessions. Discussion This exploratory study will be the first to investigate the effects of physical fitness training in patients with ischemic stroke on MRI-based cerebral perfusion, pertinent blood biomarker levels, and functional outcome. The study may have an impact on current patient rehabilitation strategies and reveal important information about the roles of MRI and blood-derived biomarkers in ischemic stroke. Trial registration NCT01954797. PMID:24330706
Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine
2017-01-01
Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional faces. In addition, training was associated with increased connectivity in emotion processing networks, including greater STS-medial prefrontal connectivity and normalization of amygdala connectivity patterns. Conclusion: These results suggest that targeted cognitive training produced improvements in emotion recognition and may be effective in altering functional network connectivity in networks associated with psychosis risk. TCT may be a useful tool for early intervention in individuals at risk for psychotic disorders to address behaviors that impact functional outcome.
Navigation concepts for MR image-guided interventions.
Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald
2008-02-01
The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.
Compassion meditation enhances empathic accuracy and related neural activity
Mascaro, Jennifer S.; Rilling, James K.; Tenzin Negi, Lobsang; Raison, Charles L.
2013-01-01
The ability to accurately infer others’ mental states from facial expressions is important for optimal social functioning and is fundamentally impaired in social cognitive disorders such as autism. While pharmacologic interventions have shown promise for enhancing empathic accuracy, little is known about the effects of behavioral interventions on empathic accuracy and related brain activity. This study employed a randomized, controlled and longitudinal design to investigate the effect of a secularized analytical compassion meditation program, cognitive-based compassion training (CBCT), on empathic accuracy. Twenty-one healthy participants received functional MRI scans while completing an empathic accuracy task, the Reading the Mind in the Eyes Test (RMET), both prior to and after completion of either CBCT or a health discussion control group. Upon completion of the study interventions, participants randomized to CBCT and were significantly more likely than control subjects to have increased scores on the RMET and increased neural activity in the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex (dmPFC). Moreover, changes in dmPFC and IFG activity from baseline to the post-intervention assessment were associated with changes in empathic accuracy. These findings suggest that CBCT may hold promise as a behavioral intervention for enhancing empathic accuracy and the neurobiology supporting it. PMID:22956676
Marsh, Courtney A.; Berent-Spillson, Alison; Love, Tiffany; Persad, Carol C.; Pop-Busui, Rodica; Zubieta, Jon-Kar; Smith, Yolanda R.
2013-01-01
Objective To evaluate emotional processing in women with insulin-resistant polycystic ovary syndrome (IR-PCOS) and its relationship to glucose regulation and the mu-opioid system. Design Case-control pilot. Setting Tertiary referring medical center. Patient(s) Seven women with IR-PCOS and five non-insulin-resistant controls, aged 21–40 years, recruited from the general population. Intervention(s) Sixteen weeks of metformin (1,500 mg/day) in women with IR-PCOS. Main Outcome Measure(s) Assessment of mood, metabolic function, and neuronal activation during an emotional task using functional magnetic resonance imaging (fMRI), and mu-opioid receptor availability using positive emission tomography (PET). Result(s) We found that insulin-resistant PCOS patients [1] had greater limbic activation during an emotion task than controls (n = 5); [2] trended toward decreased positive affect and increased trait anxiety; [3] after metformin treatment, had limbic activation that no longer differed from controls; and [4] had positive correlations between fMRI limbic activation during emotional processing and mu-opioid binding potential. Conclusion(s) Patients with IR-PCOS had greater regional activation during an emotion task than the controls, although this resolved with metformin therapy. Alterations in mu-opioid neurotransmission may underlie limbic system activity and mood disorders in IR-PCOS. Clinical Trial Registration Number NCT00670800. PMID:23557757
Bachmann, Katharina; Lam, Alexandra P; Sörös, Peter; Kanat, Manuela; Hoxhaj, Eliza; Matthies, Swantje; Feige, Bernd; Müller, Helge; Özyurt, Jale; Thiel, Christiane M; Philipsen, Alexandra
2018-07-01
Adult attention-deficit/hyperactivity disorder (ADHD) is a serious mental disorder associated with impaired neurocognitive performance related to working memory function. Recent clinical trials have suggested that mindfulness is a promising intervention in adults with ADHD. We performed a randomised controlled clinical trial to investigate working memory (WM) with an n-back task in adults with ADHD during fMRI before and after an 8-week mindfulness intervention (MAP) compared with psychoeducation (PE). ADHD symptoms were assessed using the self- and observer-rated Conners Adult ADHD Rating Scales (CAARS). The complete pre-post data of 21 MAP and 19 PE participants were analysed. We found no group difference in ADHD symptoms or task performance at the pre-measurement, but there was a significant decrease in ADHD symptoms and significant improvement in task performance in both groups at the post-measurement. Furthermore, we found a significant increase in task-related activation in the right parietal lobe, with no difference between groups. Exploratory two-sample paired t-tests revealed significant increased brain activation after MAP in the bilateral inferior parietal lobule, right posterior insula and right precuneus. A decrease in self-rated 'Inattention/Memory Problems' after MAP compared to baseline was associated with stronger activation in parts of the left putamen, globus pallidus and thalamus. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Latulippe, Maxime; Felfoul, Ouajdi; Dupont, Pierre E.; Martel, Sylvain
2016-02-01
The magnetic navigation of drugs in the vascular network promises to increase the efficacy and reduce the secondary toxicity of cancer treatments by targeting tumors directly. Recently, dipole field navigation (DFN) was proposed as the first method achieving both high field and high navigation gradient strengths for whole-body interventions in deep tissues. This is achieved by introducing large ferromagnetic cores around the patient inside a magnetic resonance imaging (MRI) scanner. However, doing so distorts the static field inside the scanner, which prevents imaging during the intervention. This limitation constrains DFN to open-loop navigation, thus exposing the risk of a harmful toxicity in case of a navigation failure. Here, we are interested in periodically assessing drug targeting efficiency using MRI even in the presence of a core. We demonstrate, using a clinical scanner, that it is in fact possible to acquire, in specific regions around a core, images of sufficient quality to perform this task. We show that the core can be moved inside the scanner to a position minimizing the distortion effect in the region of interest for imaging. Moving the core can be done automatically using the gradient coils of the scanner, which then also enables the core to be repositioned to perform navigation to additional targets. The feasibility and potential of the approach are validated in an in vitro experiment demonstrating navigation and assessment at two targets.
Peressutti, Devis; Penney, Graeme P; Housden, R James; Kolbitsch, Christoph; Gomez, Alberto; Rijkhorst, Erik-Jan; Barratt, Dean C; Rhode, Kawal S; King, Andrew P
2013-05-01
In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method. Copyright © 2013 Elsevier B.V. All rights reserved.
Saggar, Manish; Quintin, Eve-Marie; Bott, Nicholas T; Kienitz, Eliza; Chien, Yin-Hsuan; Hong, Daniel W-C; Liu, Ning; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L
2017-07-01
Creativity is widely recognized as an essential skill for entrepreneurial success and adaptation to daily-life demands. However, we know little about the neural changes associated with creative capacity enhancement. For the first time, using a prospective, randomized control design, we examined longitudinal changes in brain activity associated with participating in a five-week design-thinking-based Creative Capacity Building Program (CCBP), when compared with Language Capacity Building Program (LCBP). Creativity, an elusive and multifaceted construct, is loosely defined as an ability to produce useful/appropriate and novel outcomes. Here, we focus on one of the facets of creative thinking-spontaneous improvization. Participants were assessed pre- and post-intervention for spontaneous improvization skills using a game-like figural Pictionary-based fMRI task. Whole-brain group-by-time interaction revealed reduced task-related activity in CCBP participants (compared with LCBP participants) after training in the right dorsolateral prefrontal cortex, anterior/paracingulate gyrus, supplementary motor area, and parietal regions. Further, greater cerebellar-cerebral connectivity was observed in CCBP participants at post-intervention when compared with LCBP participants. In sum, our results suggest that improvization-based creative capacity enhancement is associated with reduced engagement of executive functioning regions and increased involvement of spontaneous implicit processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhang, Jin-Tao; Yao, Yuan-Wei; Potenza, Marc N; Xia, Cui-Cui; Lan, Jing; Liu, Lu; Wang, Ling-Jiao; Liu, Ben; Ma, Shan-Shan; Fang, Xiao-Yi
2016-07-06
Internet gaming disorder (IGD) has become a serious mental health issue worldwide. Evaluating the benefits of interventions for IGD is of great significance. Thirty-six young adults with IGD and 19 healthy comparison (HC) subjects were recruited and underwent resting-state fMRI scanning. Twenty IGD subjects participated in a group craving behavioral intervention (CBI) and were scanned before and after the intervention. The remaining 16 IGD subjects did not receive an intervention. The results showed that IGD subjects showed decreased amplitude of low fluctuation in the orbital frontal cortex and posterior cingulate cortex, and exhibited increased resting-state functional connectivity between the posterior cingulate cortex and dorsolateral prefrontal cortex, compared with HC subjects. Compared with IGD subjects who did not receive the intervention, those receiving CBI demonstrated significantly reduced resting-state functional connectivity between the: (1) orbital frontal cortex with hippocampus/parahippocampal gyrus; and, (2) posterior cingulate cortex with supplementary motor area, precentral gyrus, and postcentral gyrus. These findings suggest that IGD is associated with abnormal resting-state neural activity in reward-related, default mode and executive control networks. Thus, the CBI may exert effects by reducing interactions between regions within a reward-related network, and across the default mode and executive control networks.
Zhang, Jin-Tao; Yao, Yuan-Wei; Potenza, Marc N.; Xia, Cui-Cui; Lan, Jing; Liu, Lu; Wang, Ling-Jiao; Liu, Ben; Ma, Shan-Shan; Fang, Xiao-Yi
2016-01-01
Internet gaming disorder (IGD) has become a serious mental health issue worldwide. Evaluating the benefits of interventions for IGD is of great significance. Thirty-six young adults with IGD and 19 healthy comparison (HC) subjects were recruited and underwent resting-state fMRI scanning. Twenty IGD subjects participated in a group craving behavioral intervention (CBI) and were scanned before and after the intervention. The remaining 16 IGD subjects did not receive an intervention. The results showed that IGD subjects showed decreased amplitude of low fluctuation in the orbital frontal cortex and posterior cingulate cortex, and exhibited increased resting-state functional connectivity between the posterior cingulate cortex and dorsolateral prefrontal cortex, compared with HC subjects. Compared with IGD subjects who did not receive the intervention, those receiving CBI demonstrated significantly reduced resting-state functional connectivity between the: (1) orbital frontal cortex with hippocampus/parahippocampal gyrus; and, (2) posterior cingulate cortex with supplementary motor area, precentral gyrus, and postcentral gyrus. These findings suggest that IGD is associated with abnormal resting-state neural activity in reward-related, default mode and executive control networks. Thus, the CBI may exert effects by reducing interactions between regions within a reward-related network, and across the default mode and executive control networks. PMID:27381822
Gay, Charles W.; Robinson, Michael E.; George, Steven Z.; Perlstein, William M.; Bishop, Mark D.
2014-01-01
Objective The purpose of this study was to use functional magnetic resonance imaging (fMRI) to investigate the immediate changes in functional connectivity (FC) between brain regions that process and modulate the pain experience following 3 different types of manual therapies (MT) and to identify reductions in experimentally induced myalgia and changes in local and remote pressure pain sensitivity. Methods Twenty-four participants (17 females, mean age ± SD = 21.6 ± 4.2 years), who completed an exercise-injury protocol to induce low back pain, were randomized into 3 groups: chiropractic spinal manipulation (n=6), spinal mobilization (n=8) or therapeutic touch (n=10). The primary outcome was the immediate change in FC as measured on fMRI between the following brain regions: somatosensory cortex, secondary somatosensory cortex, thalamus, anterior and posterior cingulate cortices, anterior and poster insula, and periaqueductal grey. Secondary outcomes were immediate changes in pain intensity measured with a 101-point numeric rating scale, and pain sensitivity, measured with a hand-held dynamometer. Repeated measures ANOVA models and correlation analyses were conducted to examine treatment effects and the relationship between within-person changes across outcome measures. Results Changes in FC were found between several brain regions that were common to all 3 manual therapy interventions. Treatment-dependent changes in FC were also observed between several brain regions. Improvement was seen in pain intensity following all interventions (p<0.05) with no difference between groups (p>0.05). There were no observed changes in pain sensitivity, or an association between primary and secondary outcome measures. Conclusion These results suggest that manual therapies (chiropractic spinal manipulation, spinal mobilization, and therapeutic touch) have an immediate effect on the FC between brain regions involved in processing and modulating the pain experience. This suggests that neurophysiological changes following MT may be an underlying mechanism of pain relief. PMID:25284739
Multi-imager compatible actuation principles in surgical robotics.
Stoianovici, D
2005-01-01
Today's most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using "intervention friendly" energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-Imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several implementations have been constructed and tested, and the results are presented here. This is the first paper addressing these issues. Copyright 2005 Robotic Publications Ltd.
Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael
2015-01-01
Objectives MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Methods Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators – attending (AR) and resident radiologists (RR) as well as medical students (MS) – performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Results Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). Conclusions The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between groups with different expertise there were significant differences in experimental procedure times but not in the number of successful biopsies. PMID:26222443
Nam, Denis; Barrack, Robert L; Potter, Hollis G
2014-12-01
Adverse tissue reactions are known to occur after total hip arthroplasty using both conventional and metal-on-metal (MoM) bearings and after MoM hip resurfacing arthroplasty (SRA). A variety of imaging tools, including ultrasound (US), CT, and MRI, have been used to diagnose problems associated with wear after MoM hip arthroplasty and corrosion at the head-trunnion junction; however, the relative advantages and disadvantages of each remain a source of controversy. The purposes of this review were to evaluate the advantages and disadvantages of (1) US; (2) CT; and (3) MRI as diagnostic tools in the assessment of wear-related corrosion problems after hip arthroplasty. A systematic literature review was performed through Medline, EMBASE, Scopus CINAHL, and the Cochrane Library without time restriction using search terms related to THA, SRA, US, CT, MRI, adverse tissue reactions, and corrosion. Inclusion criteria were Level I through IV studies in the English language, whereas expert opinions and case reports were excluded. The quality of included studies was judged by their level of evidence, method of intervention allocation, outcome assessments, and followup of patients. Four hundred ninety unique results were returned and 40 articles were reviewed. The prevalence of adverse local tissue reactions in both asymptomatic and symptomatic patients varies based on the method of evaluation (US, CT, MRI) and imaging protocols. US is accessible and relatively inexpensive, yet has not been used to report synovial thicknesses in the setting of wear-related corrosion. CT scans are highly sensitive and provide information regarding component positioning but are limited in providing enhanced soft tissue contrast and require ionizing radiation. MRI has shown promise in predicting both the presence and severity of adverse local tissue reactions but is more expensive. All three imaging modalities have a role in the assessment of adverse local tissue reactions and tribocorrosion after total hip arthroplasty. Although US may serve as a screening technique for the detection of larger periprosthetic collections, only MRI has been shown to predict the severity of tissue destruction found at revision and correlate to the degree of tissue necrosis at histologic evaluation.
Gayed, Matthew R.; Honea, Robyn A.; Savage, Cary R.; Hobbs, Derek; Burns, Jeffrey M.
2013-01-01
Background Despite mounting evidence that physical activity has positive benefits for brain and cognitive health, there has been little characterization of the relationship between cardiorespiratory (CR) fitness and cognition-associated brain activity as measured by functional magnetic resonance imaging (fMRI). The lack of evidence is particularly glaring for diseases such as Alzheimer disease (AD) that degrade cognitive and functional performance. Objective The aim of this study was to describe the relationship between regional brain activity during cognitive tasks and CR fitness level in people with and without AD. Design A case-control, single-observation study design was used. Methods Thirty-four individuals (18 without dementia and 16 in the earliest stages of AD) completed maximal exercise testing and performed a Stroop task during fMRI. Results Cardiorespiratory fitness was inversely associated with anterior cingulate activity in the participants without dementia (r=−.48, P=.05) and unassociated with activation in those with AD (P>.7). Weak associations of CR fitness and middle frontal cortex were noted. Limitations The wide age range and the use of a single task in fMRI rather than multiple tasks challenging different cognitive capacities were limitations of the study. Conclusions The results offer further support of the relationship between CR fitness and regional brain activity. However, this relationship may be attenuated by disease. Future work in this area may provide clinicians and researchers with interpretable and dependable regional fMRI biomarker signatures responsive to exercise intervention. It also may shed light on mechanisms by which exercise can support cognitive function. PMID:23559521
Henningsson, S; Madsen, K H; Pinborg, A; Heede, M; Knudsen, G M; Siebner, H R; Frokjaer, V G
2015-01-01
Sex-hormone fluctuations may increase risk for developing depressive symptoms and alter emotional processing as supported by observations in menopausal and pre- to postpartum transition. In this double-blinded, placebo-controlled study, we used blood−oxygen level dependent functional magnetic resonance imaging (fMRI) to investigate if sex-steroid hormone manipulation with a gonadotropin-releasing hormone agonist (GnRHa) influences emotional processing. Fifty-six healthy women were investigated twice: at baseline (follicular phase of menstrual cycle) and 16±3 days post intervention. At both sessions, fMRI-scans during exposure to faces expressing fear, anger, happiness or no emotion, depressive symptom scores and estradiol levels were acquired. The fMRI analyses focused on regions of interest for emotional processing. As expected, GnRHa initially increased and subsequently reduced estradiol to menopausal levels, which was accompanied by an increase in subclinical depressive symptoms relative to placebo. Women who displayed larger GnRHa-induced increase in depressive symptoms had a larger increase in both negative and positive emotion-elicited activity in the anterior insula. When considering the post-GnRHa scan only, depressive responses were associated with emotion-elicited activity in the anterior insula and amygdala. The effect on regional activity in anterior insula was not associated with the estradiol net decline, only by the GnRHa-induced changes in mood. Our data implicate enhanced insula recruitment during emotional processing in the emergence of depressive symptoms following sex-hormone fluctuations. This may correspond to the emotional hypersensitivity frequently experienced by women postpartum. PMID:26624927
Nenert, Rodolphe; Allendorfer, Jane B; Martin, Amber M; Banks, Christi; Ball, Angel; Vannest, Jennifer; Dietz, Aimee R; Szaflarski, Jerzy P
2017-07-18
BACKGROUND Recovery from post-stroke aphasia is a long and complex process with an uncertain outcome. Various interventions have been proposed to augment the recovery, including constraint-induced aphasia therapy (CIAT). CIAT has been applied to patients suffering from post-stroke aphasia in several unblinded studies to show mild-to-moderate linguistic gains. The aim of the present study was to evaluate the neuroimaging correlates of CIAT in patients with chronic aphasia related to left middle cerebral artery stroke. MATERIAL AND METHODS Out of 24 patients recruited in a pilot randomized blinded trial of CIAT, 19 patients received fMRI of language. Eleven of them received CIAT (trained) and eight served as a control group (untrained). Each patient participated in three fMRI sessions (before training, after training, and 3 months later) that included semantic decision and verb generation fMRI tasks, and a battery of language tests. Matching healthy control participants were also included (N=38; matching based on age, handedness, and sex). RESULTS Language testing showed significantly improved performance on Boston Naming Test (BNT; p<0.001) in both stroke groups over time and fMRI showed differences in the distribution of the areas involved in language production between groups that were not present at baseline. Further, regression analysis with BNT indicated changes in brain regions correlated with behavioral performance (temporal gyrus, postcentral gyrus, precentral gyrus, thalamus, left middle and superior frontal gyri). CONCLUSIONS Overall, our results suggest the possibility of language-related cortical plasticity following stroke-induced aphasia with no specific effect from CIAT training.
Automated pulmonary lobar ventilation measurements using volume-matched thoracic CT and MRI
NASA Astrophysics Data System (ADS)
Guo, F.; Svenningsen, S.; Bluemke, E.; Rajchl, M.; Yuan, J.; Fenster, A.; Parraga, G.
2015-03-01
Objectives: To develop and evaluate an automated registration and segmentation pipeline for regional lobar pulmonary structure-function measurements, using volume-matched thoracic CT and MRI in order to guide therapy. Methods: Ten subjects underwent pulmonary function tests and volume-matched 1H and 3He MRI and thoracic CT during a single 2-hr visit. CT was registered to 1H MRI using an affine method that incorporated block-matching and this was followed by a deformable step using free-form deformation. The resultant deformation field was used to deform the associated CT lobe mask that was generated using commercial software. 3He-1H image registration used the same two-step registration method and 3He ventilation was segmented using hierarchical k-means clustering. Whole lung and lobar 3He ventilation and ventilation defect percent (VDP) were generated by mapping ventilation defects to CT-defined whole lung and lobe volumes. Target CT-3He registration accuracy was evaluated using region- , surface distance- and volume-based metrics. Automated whole lung and lobar VDP was compared with semi-automated and manual results using paired t-tests. Results: The proposed pipeline yielded regional spatial agreement of 88.0+/-0.9% and surface distance error of 3.9+/-0.5 mm. Automated and manual whole lung and lobar ventilation and VDP were not significantly different and they were significantly correlated (r = 0.77, p < 0.0001). Conclusion: The proposed automated pipeline can be used to generate regional pulmonary structural-functional maps with high accuracy and robustness, providing an important tool for image-guided pulmonary interventions.
Su, Hao; Shang, Weijian; Li, Gang; Patel, Niravkumar; Fischer, Gregory S
2017-08-01
This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.
Control of nucleus accumbens activity with neurofeedback.
Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian
2014-08-01
The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. Copyright © 2014 Elsevier Inc. All rights reserved.
Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis.
Lau, W K W; Leung, M-K; Lee, T M C; Law, A C K
2016-04-26
Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD). As no effective drug can cure AD, early diagnosis and intervention for aMCI are urgently needed. The standard diagnostic procedure for aMCI primarily relies on subjective neuropsychological examinations that require the judgment of experienced clinicians. The development of other objective and reliable aMCI markers, such as neural markers, is therefore required. Previous neuroimaging findings revealed various abnormalities in resting-state activity in MCI patients, but the findings have been inconsistent. The current study provides an updated activation likelihood estimation meta-analysis of resting-state functional magnetic resonance imaging (fMRI) data on aMCI. The authors searched on the MEDLINE/PubMed databases for whole-brain resting-state fMRI studies on aMCI published until March 2015. We included 21 whole-brain resting-state fMRI studies that reported a total of 156 distinct foci. Significant regional resting-state differences were consistently found in aMCI patients relative to controls, including the posterior cingulate cortex, right angular gyrus, right parahippocampal gyrus, left fusiform gyrus, left supramarginal gyrus and bilateral middle temporal gyri. Our findings support that abnormalities in resting-state activities of these regions may serve as neuroimaging markers for aMCI.
Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E
2016-05-13
Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.
NASA Astrophysics Data System (ADS)
Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.
2016-05-01
Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.
Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan
2018-06-13
To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.
Novel technologies and configurations of superconducting magnets for MRI
NASA Astrophysics Data System (ADS)
Lvovsky, Yuri; Stautner, Ernst Wolfgang; Zhang, Tao
2013-09-01
A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for ‘greener’ magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented.
Hydrocephalus secondary to obstruction of the lateral apertures in two dogs.
Kent, M; Glass, E N; Haley, A C; Shaikh, L S; Sequel, M; Blas-Machado, U; Bishop, T M; Holmes, S P; Platt, S R
2016-11-01
Traditionally, hydrocephalus is divided into communicating or non-communicating (obstructive) based on the identification of a blockage of cerebrospinal fluid (CSF) flow through the ventricular system. Hydrocephalus ex vacuo refers to ventricular enlargement as a consequence of neuroparenchymal loss. Hydrocephalus related to obstruction of the lateral apertures of the fourth ventricles has rarely been described. The clinicopathologic findings in two dogs with hydrocephalus secondary to obstruction of the lateral apertures of the fourth ventricle are reported. Signs were associated with a caudal cervical spinal cord lesion in one dog and a caudal brain stem lesion in the other dog. Magnetic resonance imaging (MRI) disclosed dilation of the ventricular system, including the lateral recesses of the fourth ventricle. In one dog, postmortem ventriculography confirmed obstruction of the lateral apertures. Microscopic changes were identified in the choroid plexus in both dogs, yet a definitive cause of the obstructions was not identified. The MRI findings in both dogs are similar to membranous occlusion of the lateral and median apertures in human patients. MRI detection of dilation of the entire ventricular system in the absence of an identifiable cause should prompt consideration of an obstruction of the lateral apertures. In future cases, therapeutic interventions aimed at re-establishing CSF flow or ventriculoperitoneal catheterisation should be considered. © 2016 Australian Veterinary Association.
Nicholson, Andrew A; Rabellino, Daniela; Densmore, Maria; Frewen, Paul A; Paret, Christian; Kluetsch, Rosemarie; Schmahl, Christian; Théberge, Jean; Neufeld, Richard W J; McKinnon, Margaret C; Reiss, Jim; Jetly, Rakesh; Lanius, Ruth A
2017-01-01
Amygdala dysregulation has been shown to be central to the pathophysiology of posttraumatic stress disorder (PTSD) representing a critical treatment target. Here, amygdala downregulation was targeted using real-time fMRI neurofeedback (rt-fMRI-nf) in patients with PTSD, allowing us to examine further the regulation of emotional states during symptom provocation. Patients (n = 10) completed three sessions of rt-fMRI-nf with the instruction to downregulate activation in the amygdala, while viewing personalized trauma words. Amygdala downregulation was assessed by contrasting (a) regulate trials, with (b) viewing trauma words and not attempting to regulate. Training was followed by one transfer run not involving neurofeedback. Generalized psychophysiological interaction (gPPI) and dynamic causal modeling (DCM) analyses were also computed to explore task-based functional connectivity and causal structure, respectively. It was found that PTSD patients were able to successfully downregulate both right and left amygdala activation, showing sustained effects within the transfer run. Increased activation in the dorsolateral and ventrolateral prefrontal cortex (PFC), regions related to emotion regulation, was observed during regulate as compared with view conditions. Importantly, activation in the PFC, rostral anterior cingulate cortex, and the insula, were negatively correlated to PTSD dissociative symptoms in the transfer run. Increased functional connectivity between the amygdala- and both the dorsolateral and dorsomedial PFC was found during regulate, as compared with view conditions during neurofeedback training. Finally, our DCM analysis exploring directional structure suggested that amygdala downregulation involves both top-down and bottom-up information flow with regard to observed PFC-amygdala connectivity. This is the first demonstration of successful downregulation of the amygdala using rt-fMRI-nf in PTSD, which was critically sustained in a subsequent transfer run without neurofeedback, and corresponded to increased connectivity with prefrontal regions involved in emotion regulation during the intervention. Hum Brain Mapp 38:541-560, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mao, Lei; Liu, Chang; Xiong, Shuyu
2018-01-01
Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice. PMID:29755716
Knirsch, Walter; Mayer, Kristina Nadine; Scheer, Ianina; Tuura, Ruth; Schranz, Dietmar; Hahn, Andreas; Wetterling, Kristina; Beck, Ingrid; Latal, Beatrice; Reich, Bettina
2017-04-01
Neonates with single ventricle congenital heart disease are at risk for structural cerebral abnormalities. Little is known about the further evolution of cerebral abnormalities until Fontan procedure. Between August 2012 and July 2015, we conducted a prospective cross-sectional two centre study using cerebral magnetic resonance imaging (MRI) and neuro-developmental outcome assessed by the Bayley-III. Forty-seven children (31 male) were evaluated at a mean age of 25.9 ± 3.4 months with hypoplastic left heart syndrome (25) or other single ventricle (22). Cerebral MRI was abnormal in 17 patients (36.2%) including liquor space enlargements (10), small grey (9) and minimal white (5) matter injuries. Eight of 17 individuals had combined lesions. Median (range) cognitive composite score (CCS) (100, 65-120) and motor composite score (MCS) (97, 55-124) were comparable to the reference data, while language composite score (LCS) (97, 68-124) was significantly lower ( P = 0.040). Liquor space enlargement was associated with poorer performance on all Bayley-III subscores (CCS: P = 0.02; LCS: P = 0.002; MCS: P = 0.013). The number of re-operations [odds ratio (OR) 2.2, 95% confidence interval (CI) 1.1-4.3] ( P = 0.03) and re-interventions (OR 2.1, 95% CI 1.1-3.8) ( P = 0.03) was associated with a higher rate of overall MRI abnormalities. Cerebral MRI abnormalities occur in more than one third of children with single ventricle, while the neuro-developmental status is less severely affected before Fontan procedure. Liquor space enlargement is the predominant MRI finding associated with poorer neuro-developmental status, warranting further studies to determine aetiology and further evolution until school-age. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Task-related fMRI in hemiplegic cerebral palsy-A systematic review.
Gaberova, Katerina; Pacheva, Iliyana; Ivanov, Ivan
2018-04-27
Functional magnetic resonance imaging (fMRI) is used widely to study reorganization after early brain injuries. Unilateral cerebral palsy (UCP) is an appealing model for studying brain plasticity by fMRI. To summarize the results of task-related fMRI studies in UCP in order to get better understanding of the mechanism of neuroplasticity of the developing brain and its reorganization potential and better translation of this knowledge to clinical practice. A systematic search was conducted on the PubMed database by keywords: "cerebral palsy", "congenital hemiparesis", "unilateral", "Magnetic resonance imaging" , "fMRI", "reorganization", and "plasticity" The exclusion criteria were as follows: case reports; reviews; studies exploring non-UCP patients; and studies with results of rehabilitation. We found 7 articles investigated sensory tasks; 9 studies-motor tasks; 12 studies-speech tasks. Ipsilesional reorganization is dominant in sensory tasks (in 74/77 patients), contralesional-in only 3/77. In motor tasks, bilateral activation is found in 64/83, only contralesional-in 11/83, and only ipsilesional-8/83. Speech perception is bilateral in 35/51, only or dominantly ipsilesional (left-sided) in 8/51, and dominantly contralesional (right-sided) in 8/51. Speech production is only or dominantly contralesional (right-sided) in 88/130, bilateral-26/130, and only or dominantly ipsilesional (left-sided)-in 16/130. The sensory system is the most "rigid" to reorganization probably due to absence of ipsilateral (contralesional) primary somatosensory representation. The motor system is more "flexible" due to ipsilateral (contralesional) motor pathways. The speech perception and production show greater flexibility resulting in more bilateral or contralateral activation. The models of reorganization are variable, depending on the development and function of each neural system and the extent and timing of the damage. The plasticity patterns may guide therapeutic intervention and prognostics, thus proving the fruitiness of the translational approach in neurosciences. © 2018 John Wiley & Sons, Ltd.
Automatic initialization and quality control of large-scale cardiac MRI segmentations.
Albà, Xènia; Lekadir, Karim; Pereañez, Marco; Medrano-Gracia, Pau; Young, Alistair A; Frangi, Alejandro F
2018-01-01
Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang
2014-01-01
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.
Hemke, Robert; Tzaribachev, Nikolay; Nusman, Charlotte M; van Rossum, Marion A J; Maas, Mario; Doria, Andrea S
2017-08-01
There is increasing evidence that early therapeutic intervention improves longterm joint outcome in juvenile idiopathic arthritis (JIA). Given the existence of highly effective treatments, there is an urgent need for reliable and accurate measures of disease activity and joint damage in JIA. Our objective was to assess the reliability of 2 magnetic resonance imaging (MRI) scoring methods: the Juvenile Arthritis MRI Scoring (JAMRIS) system and the International Prophylaxis Study Group (IPSG) consensus score, for evaluating disease status of the knee in patients with JIA. Four international readers independently scored an MRI dataset of 25 JIA patients with clinical knee involvement. Synovial thickening, joint effusion, bone marrow changes, cartilage lesions, bone erosions, and subchondral cysts were scored using the JAMRIS and IPSG systems. Further, synovial enhancement, infrapatellar fat pad heterogeneity, tendinopathy, and enthesopathy were scored. Interreader reliability was analyzed by using the generalized κ, ICC, and the smallest detectable difference (SDD). ICC regarding interreader reliability ranged from 0.33 (95% CI 0.12-0.52, SDD = 0.29) for enthesopathy up to 0.95 (95% CI 0.92-0.97, SDD = 3.19) for synovial thickening. Good interreader reliability was found concerning joint effusion (ICC 0.93, 95% CI 0.89-0.95, SDD = 0.51), synovial enhancement (ICC 0.90, 95% CI 0.85-0.94, SDD = 9.85), and bone marrow changes (ICC 0.87, 95% CI 0.80-0.92, SDD = 10.94). Moderate to substantial reliability was found concerning cartilage lesions and bone erosions (ICC 0.55-0.72, SDD 1.41-13.65). The preliminary results are promising for most of the scored JAMRIS and IPSG items. However, further refinement of the scoring system is warranted for unsatisfactorily reliable items such as bone erosions, cartilage lesions, and enthesopathy.
Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang
2014-01-01
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966
Gornitzky, Alex L; Georgiadis, Andrew G; Seeley, Mark A; Horn, B David; Sankar, Wudbhav N
2016-05-01
Gadolinium-enhanced perfusion MRI (pMRI) after closed reduction/spica casting for developmental dysplasia of the hip (DDH) has been suggested as a potential means to identify and avoid avascular necrosis (AVN). To date, however, no study has evaluated the effectiveness of pMRI in clinical practice or compared it with other approaches (such as postreduction CT scan) to show a difference in the proportion of AVN. (1) Can a pMRI-based protocol be used immediately post closed reduction to minimize the risk that AVN would develop? (2) What are the overall hip-related outcomes after closed reduction/spica casting using this protocol? (3) Do any patient-specific factors at the time of closed reduction predict future AVN? This was a retrospective cohort study at a large tertiary care children's hospital. Between 2009 and 2013 we treated 43 patients with closed reduction/spica casting for DDH, of whom 33 (77%) received a postreduction pMRI. All patients were indicated for pMRI per treating surgeon preference. A convenience sample totaling 25 hips in 22 patients treated with pMRI was then established using the following exclusion criteria: DDH of neuromuscular/syndromic origin, failed initial closed reduction, less than 1 year of clinical and radiographic followup, and subsequent open reduction. Next, the 40 patients treated with closed reduction between 2004 and 2009 were screened until the chronologically most recent 25 hips (after applying the previously mentioned exclusion criteria) were identified in 21 of the first 34 patients (62%) screened. Although termed the CT group, specific postreduction imaging was not a defined inclusion criterion in this group with the majority (21 of 25 [84%]) receiving postreduction CT and the remainder (four of 25 [16%]) receiving only postreduction radiographs. All hips with globally decreased femoral head perfusion on postreduction pMRI were treated with immediate cast removal followed by repeat closed reduction or open reduction, as per surgeon preference, with two of 33 (6%) requiring such further interventions. Salter criteria were then used to determine the proportion of AVN on radiographs at 1-year and final followup. Secondary outcomes including residual dysplasia and the need for further corrective surgery were ascertained through radiographic and retrospective chart review. At 1-year followup there was no difference in the proportion of AVN in the historical CT group as compared with the pMRI group (six of 25 [24%] versus one of 25 [4%]; odds ratio [OR], 7.6; 95% confidence interval [CI], 0.8-363; p = 0.098). However, by final followup there was a statistically higher proportion of AVN in the CT group (seven of 25 [28%] versus one of 25 [4%]; OR, 9.3; 95% CI, 1.0-438; p = 0.049). No patient with normal perfusion on postreduction pMRI went on to develop AVN. In those pMRI patients in whom a successful reduction was initially obtained, two of 25 (8%) went on to require further corrective surgery and one of 25 (4%) had a redislocation event. With the numbers available, no patient-specific factors at the time of closed reduction were predictive of future AVN, including the patient's age/weight, the presence of an ossific nucleus, history of previous bracing treatment, or the abduction angle in spica cast. A pMRI-based protocol immediately after closed reduction/spica casting may decrease the risk of AVN by helping the surgeon to evaluate femoral head vascularity. Although preliminary in nature, this study could serve to guide further investigation into the potential role of pMRI for the treatment of patients who require closed reduction/spica casting for DDH. Level III, therapeutic study.
Cross-sectional imaging of congenital and acquired abnormalities of the portal venous system
Özbayrak, Mustafa; Tatlı, Servet
2016-01-01
Knowing the normal anatomy, variations, congenital and acquired pathologies of the portal venous system are important, especially when planning liver surgery and percutaneous interventional procedures. The portal venous system pathologies can be congenital such as agenesis of portal vein (PV) or can be involved by other hepatic disorders such as cirrhosis and malignancies. In this article, we present normal anatomy, variations, and acquired pathologies involving the portal venous system as seen on computed tomography (CT) and magnetic resonance imaging (MRI). PMID:27731302
Chronic Invasive Fungal Sinusitis Presenting as Inferior Altitudinal Visual Field Defect.
Bansal, Reema; Takkar, Aastha; Lal, Vivek; Bal, Amanjit; Bansal, Sandeep
2017-06-01
A young male with acute blurring of vision (6/9) complained of an inferior altitudinal field defect in right eye. Clinical ophthalmological examination was normal. Magnetic resonance imaging (MRI) of the brain revealed the expansion and mucosal thickening of right posterior ethmoid and sphenoid sinuses and opacified right maxillary sinus. Surgical intervention (transethmoidal sphenoidotomy) and histopathological examination revealed chronic invasive granulomatous fungal sinusitis. Anti-fungal therapy led to resolution of visual complaints and restoration of visual field defects.
Ultrasonic image analysis and image-guided interventions.
Noble, J Alison; Navab, Nassir; Becher, H
2011-08-06
The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.
Mindfulness and emotion regulation—an fMRI study
Lutz, Jacqueline; Herwig, Uwe; Opialla, Sarah; Hittmeyer, Anna; Jäncke, Lutz; Rufer, Michael; Grosse Holtforth, Martin
2014-01-01
Mindfulness—an attentive non-judgmental focus on present experiences—is increasingly incorporated in psychotherapeutic treatments as a skill fostering emotion regulation. Neurobiological mechanisms of actively induced emotion regulation are associated with prefrontally mediated down-regulation of, for instance, the amygdala. We were interested in neurobiological correlates of a short mindfulness instruction during emotional arousal. Using functional magnetic resonance imaging, we investigated effects of a short mindfulness intervention during the cued expectation and perception of negative and potentially negative pictures (50% probability) in 24 healthy individuals compared to 22 controls. The mindfulness intervention was associated with increased activations in prefrontal regions during the expectation of negative and potentially negative pictures compared to controls. During the perception of negative stimuli, reduced activation was identified in regions involved in emotion processing (amygdala, parahippocampal gyrus). Prefrontal and right insular activations when expecting negative pictures correlated negatively with trait mindfulness, suggesting that more mindful individuals required less regulatory resources to attenuate emotional arousal. Our findings suggest emotion regulatory effects of a short mindfulness intervention on a neurobiological level. PMID:23563850
Choosing Between MRI and CT Imaging in the Adult with Congenital Heart Disease.
Bonnichsen, Crystal; Ammash, Naser
2016-05-01
Improvements in the outcomes of surgical and catheter-based interventions and medical therapy have led to a growing population of adult patients with congenital heart disease. Adult patients with previously undiagnosed congenital heart disease or those previously palliated or repaired may have challenging echocardiographic examinations. Understanding the distinct anatomic and hemodynamic features of the congenital anomaly and quantifying ventricular function and valvular dysfunction plays an important role in the management of these patients. Rapid advances in imaging technology with magnetic resonance imaging (MRI) and computed tomography angiography (CTA) allow for improved visualization of complex cardiac anatomy in the evaluation of this unique patient population. Although echocardiography remains the most widely used imaging tool to evaluate congenital heart disease, alternative and, at times, complimentary imaging modalities should be considered. When caring for adults with congenital heart disease, it is important to choose the proper imaging study that can answer the clinical question with the highest quality images, lowest risk to the patient, and in a cost-efficient manner.
Engineered Biocompatible Nanoparticles for in Vivo Imaging Applications
2010-01-01
Iron−platinum alloy nanoparticles (FePt NPs) are extremely promising candidates for the next generation of contrast agents for magnetic resonance (MR) diagnostic imaging and MR-guided interventions, including hyperthermic ablation of solid cancers. FePt has high Curie temperature, saturation magnetic moment, magneto-crystalline anisotropy, and chemical stability. We describe the synthesis and characterization of a family of biocompatible FePt NPs suitable for biomedical applications, showing and discussing that FePt NPs can exhibit low cytotoxicity. The importance of engineering the interface of strongly magnetic NPs using a coating allowing free aqueous permeation is demonstrated to be an essential parameter in the design of new generations of diagnostic and therapeutic MRI contrast agents. We report effective cell internalization of FePt NPs and demonstrate that they can be used for cellular imaging and in vivo MRI applications. This opens the way for several future applications of FePt NPs, including regenerative medicine and stem cell therapy in addition to enhanced MR diagnostic imaging. PMID:20919679
Migration of an Intracranial Subdural Hematoma to the Spinal Subdural Space: A Case Report.
Kwon, O Ik; Son, Dong Wuk; Kim, Young Ha; Kim, Young Soo; Sung, Soon Ki; Lee, Sang Weon; Song, Geun Sung
2015-09-01
A 57-year-old man complained of severe lower back pain and radicular pain in both legs for 1 week after falling from a ladder. Magnetic resonance imaging (MRI) of the spine showed a subdural hematoma (SDH), which was surgically removed. The patient had no back pain or the radicular leg pain at 2 weeks post-surgery. However, he complained of diffuse headaches upon follow-up. Brain computed tomography (CT) and MRI revealed an intracranial SDH, which was immediately removed by surgery. During his 1-year follow-up, he reported that the pain had resolved without recurrence. Simultaneous spinal and intracranial SDH are rare and no standard treatment exists for this condition. This case suggests that it is possible that an intracranial SDH can migrate into the cerebrospinal fluid (CSF) space through an arachnoid tear. CSF circulation allows the intracranial SDH to enter subarachnoid spaces encasing the spinal cord. In order to prevent irreversible damage, surgical intervention should be considered for case of spinal SDH with progressive neurological deficits.
Age-related T2 changes in hindlimb muscles of mdx mice.
Vohra, Ravneet S; Mathur, Sunita; Bryant, Nathan D; Forbes, Sean C; Vandenborne, Krista; Walter, Glenn A
2016-01-01
Magnetic resonance imaging (MRI) was used to monitor changes in the transverse relaxation time constant (T2) in lower hindlimb muscles of mdx mice at different ages. Young (5 weeks), adult (44 weeks), and old mdx (96 weeks), and age-matched control mice were studied. Young mdx mice were imaged longitudinally, whereas adult and old mdx mice were imaged at a single time-point. Mean muscle T2 and percent of pixels with elevated T2 were significantly different between mdx and control mice at all ages. In young mdx mice, mean muscle T2 peaked at 7-8 weeks and declined at 9-11 weeks. In old mdx mice, mean muscle T2 was decreased compared with young and adult mice, which could be attributed to fibrosis. MRI captured longitudinal changes in skeletal muscle integrity of mdx mice. This information will be valuable for pre-clinical testing of potential therapeutic interventions for muscular dystrophy. © 2015 Wiley Periodicals, Inc.
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions
Park, Yong-Lae; Elayaperumal, Santhi; Daniel, Bruce; Ryu, Seok Chang; Shin, Mihye; Savall, Joan; Black, Richard J.; Moslehi, Behzad; Cutkosky, Mark R.
2015-01-01
We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-μm-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner. PMID:26405428
Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy
Balter, S.; Lin, G.; Leyden, K.M.; Paul, B.M.; McDonald, C.R.
2016-01-01
Advanced, noninvasive imaging has revolutionized our understanding of language networks in the brain and is reshaping our approach to the presurgical evaluation of patients with epilepsy. Functional magnetic resonance imaging (fMRI) has had the greatest impact, unveiling the complexity of language organization and reorganization in patients with epilepsy both pre- and postoperatively, while volumetric MRI and diffusion tensor imaging have led to a greater appreciation of structural and microstructural correlates of language dysfunction in different epilepsy syndromes. In this article, we review recent literature describing how unimodal and multimodal imaging has advanced our knowledge of language networks and their plasticity in epilepsy, with a focus on the most frequently studied epilepsy syndrome in adults, temporal lobe epilepsy (TLE). We also describe how new analytic techniques (i.e., graph theory) are leading to a refined characterization of abnormal brain connectivity, and how subject-specific imaging profiles combined with clinical data may enhance the prediction of both seizure and language outcomes following surgical interventions. PMID:27393391
Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas
2016-01-01
In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.
Intracellular bimodal nanoparticles based on quantum dots for high-field MRI at 21.1 T.
Rosenberg, Jens T; Kogot, Joshua M; Lovingood, Derek D; Strouse, Geoffrey F; Grant, Samuel C
2010-09-01
Multimodal, biocompatible contrast agents for high magnetic field applications represent a new class of nanomaterials with significant potential for tracking of fluorescence and MR in vitro and vivo. Optimized for high-field MR applications-including biomedical imaging at 21.1 T, the highest magnetic field available for MRI-these nanoparticles capitalize on the improved performance of chelated Dy(3+) with increasing magnetic field coupled to a noncytotoxic Indium Phosphide/Zinc Sulfide (InP/ZnS) quantum dot that provides fluorescence detection, MR responsiveness, and payload delivery. By surface modifying the quantum dot with a cell-penetrating peptide sequence coupled to an MR contrast agent, the bimodal nanomaterial functions as a self-transfecting high-field MR/optical contrast agent for nonspecific intracellular labeling. Fluorescent images confirm sequestration in perinuclear vesicles of labeled cells, with no apparent cytotoxicity. These techniques can be extended to impart cell selectivity or act as a delivery vehicle for genetic or pharmaceutical interventions. 2010 Wiley-Liss, Inc.
Deshpande, Aniruddha K; Tan, Lirong; Lu, Long J; Altaye, Mekibib; Holland, Scott K
2016-01-01
Despite the positive effects of cochlear implantation, postimplant variability in speech perception and oral language outcomes is still difficult to predict. The aim of this study was to identify neuroimaging biomarkers of postimplant speech perception and oral language performance in children with hearing loss who receive a cochlear implant. The authors hypothesized positive correlations between blood oxygen level-dependent functional magnetic resonance imaging (fMRI) activation in brain regions related to auditory language processing and attention and scores on the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition (CELF-P2) and the Early Speech Perception Test for Profoundly Hearing-Impaired Children (ESP), in children with congenital hearing loss. Eleven children with congenital hearing loss were recruited for the present study based on referral for clinical MRI and other inclusion criteria. All participants were <24 months at fMRI scanning and <36 months at first implantation. A silent background fMRI acquisition method was performed to acquire fMRI during auditory stimulation. A voxel-based analysis technique was utilized to generate z maps showing significant contrast in brain activation between auditory stimulation conditions (spoken narratives and narrow band noise). CELF-P2 and ESP were administered 2 years after implantation. Because most participants reached a ceiling on ESP, a voxel-wise regression analysis was performed between preimplant fMRI activation and postimplant CELF-P2 scores alone. Age at implantation and preimplant hearing thresholds were controlled in this regression analysis. Four brain regions were found to be significantly correlated with CELF-P2 scores. These clusters of positive correlation encompassed the temporo-parieto-occipital junction, areas in the prefrontal cortex and the cingulate gyrus. For the story versus silence contrast, CELF-P2 core language score demonstrated significant positive correlation with activation in the right angular gyrus (r = 0.95), left medial frontal gyrus (r = 0.94), and left cingulate gyrus (r = 0.96). For the narrow band noise versus silence contrast, the CELF-P2 core language score exhibited significant positive correlation with activation in the left angular gyrus (r = 0.89; for all clusters, corrected p < 0.05). Four brain regions related to language function and attention were identified that correlated with CELF-P2. Children with better oral language performance postimplant displayed greater activation in these regions preimplant. The results suggest that despite auditory deprivation, these regions are more receptive to gains in oral language development performance of children with hearing loss who receive early intervention via cochlear implantation. The present study suggests that oral language outcome following cochlear implant may be predicted by preimplant fMRI with auditory stimulation using natural speech.
O'Laughlin, Shaun J; Flynn, Timothy W; Westrick, Richard B; Ross, Michael D
2014-05-01
Hamstring injuries are frequent injuries in athletes, with the most common being strains at the musculotendinous junction or within the muscle belly. Conversely, hamstring avulsions are rare and often misdiagnosed leading to delay in appropriate surgical interventions. The purpose of this case report is to describe the history and physical examination findings that led to appropriate diagnostic imaging and the subsequent diagnosis and expedited surgical intervention of a complete avulsion of the hamstring muscle group from the ischium in a military combatives athlete. The patient was a 25 year-old male who sustained a hyperflexion injury to his right hip with knee extension while participating in military combatives, presenting with acute posterior thigh and buttock pain. History and physical examination findings from a physical therapy evaluation prompted an urgent magnetic resonance imaging (MRI) study, which led to the diagnosis of a complete avulsion of the hamstring muscle group off the ischium. Expedited surgical intervention occurred within 13 days of the injury potentially limiting comorbidities associated with delayed diagnosis. Recognition of the avulsion led to prompt surgical evaluation and intervention. Literature has shown that diagnosis of hamstring avulsions are frequently missed or delayed, which results in a myriad of complications. Level 4.
Imaging in juvenile idiopathic arthritis with a focus on ultrasonography.
Laurell, Louise; Court-Payen, Michel; Boesen, Mikael; Fasth, Anders
2013-01-01
Early therapeutic intervention and use of new highly efficacious treatments have improved the outcome in many patients with juvenile idiopathic arthritis (JIA), but have also led to the need for more precise methods to evaluate disease activity. In adult rheumatology, numerous studies have established the importance of magnetic resonance imaging (MRI) and ultrasonography (US), and MRI is considered the reference standard. Nevertheless, due to differences in disease characteristics and the unique features of the growing skeleton, the findings obtained in adults are not directly applicable to children and adolescents. For paediatric patients, US offers specific advantages over MRI, because it is non-invasive, does not require sedation or general anesthesia (which facilitates repeated examinations for follow-up), is quickly accessible bedside, and is easy to combine with clinical assessment (interactivity). Agitation of the patient is rarely a problem, and hence young children can be seated on a parent's lap or play while being examined, and multiple locations can be assessed during a single session. Furthermore, modern high-frequency US transducers used by experienced US examiners can provide unsurpassed resolution of the superficial musculoskeletal structures in children. US is also the best available technique for imaging guidance of steroid injections. Unfortunately, there are still no validated MRI or US scoring systems for evaluating inflammatory and joint damage abnormalities in JIA, and few US studies have been conducted. Sonographic assessment of disease activity has, however, been proven to be more informative than clinical examination and is also readily available at points of care. This review summarises the literature on imaging in JIA, focusing on US and the important role this technique will play in JIA in the future.
Gregory, T Stan; Oshinski, John; Schmidt, Ehud J; Kwong, Raymond Y; Stevenson, William G; Ho Tse, Zion Tsz
2015-12-01
To develop a technique to noninvasively estimate stroke volume in real time during magnetic resonance imaging (MRI)-guided procedures, based on induced magnetohydrodynamic voltages (VMHD) that occur in ECG recordings during MRI exams, leaving the MRI scanner free to perform other imaging tasks. Because of the relationship between blood flow (BF) and VMHD, we hypothesized that a method to obtain stroke volume could be derived from extracted VMHD vectors in the vectorcardiogram (VCG) frame of reference (VMHDVCG). To estimate a subject-specific BF-VMHD model, VMHDVCG was acquired during a 20-s breath-hold and calibrated versus aortic BF measured using phase-contrast magnetic resonance in 10 subjects (n=10) and 1 subject diagnosed with premature ventricular contractions. Beat-to-beat validation of VMHDVCG-derived BF was performed using real-time phase-contrast imaging in 7 healthy subjects (n=7) during 15-minute cardiac exercise stress tests and 30 minutes after stress relaxation in 3T MRIs. Subject-specific equations were derived to correlate VMHDVCG with BF at rest and validated using real-time phase-contrast. An average error of 7.22% and 3.69% in stroke volume estimation, respectively, was found during peak stress and after complete relaxation. Measured beat-to-beat BF time history derived from real-time phase-contrast and VMHD was highly correlated using a Spearman rank correlation coefficient during stress tests (0.89) and after stress relaxation (0.86). Accurate beat-to-beat stroke volume and BF were estimated using VMHDVCG extracted from intra-MRI 12-lead ECGs, providing a means to enhance patient monitoring during MR imaging and MR-guided interventions. © 2015 American Heart Association, Inc.
Brain tumor segmentation in MRI by using the fuzzy connectedness method
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Udupa, Jayaram K.; Hackney, David; Moonis, Gul
2001-07-01
The aim of this paper is the precise and accurate quantification of brain tumor via MRI. This is very useful in evaluating disease progression, response to therapy, and the need for changes in treatment plans. We use multiple MRI protocols including FLAIR, T1, and T1 with Gd enhancement to gather information about different aspects of the tumor and its vicinity- edema, active regions, and scar left over due to surgical intervention. We have adapted the fuzzy connectedness framework to segment tumor and to measure its volume. The method requires only limited user interaction in routine clinical MRI. The first step in the process is to apply an intensity normalization method to the images so that the same body region has the same tissue meaning independent of the scanner and patient. Subsequently, a fuzzy connectedness algorithm is utilized to segment the different aspects of the tumor. The system has been tested, for its precision, accuracy, and efficiency, utilizing 40 patient studies. The percent coefficient of variation (% CV) in volume due to operator subjectivity in specifying seeds for fuzzy connectedness segmentation is less than 1%. The mean operator and computer time taken per study is 3 minutes. The package is designed to run under operator supervision. Delineation has been found to agree with the operators' visual inspection most of the time except in some cases when the tumor is close to the boundary of the brain. In the latter case, the scalp is included in the delineation and an operator has to exclude this manually. The methodology is rapid, robust, consistent, yielding highly reproducible measurements, and is likely to become part of the routine evaluation of brain tumor patients in our health system.
Zilverstand, Anna; Sorger, Bettina; Kaemingk, Anita; Goebel, Rainer
2017-06-01
We employed a novel parametric spider picture set in the context of a parametric fMRI anxiety provocation study, designed to tease apart brain regions involved in threat monitoring from regions representing an exaggerated anxiety response in spider phobics. For the stimulus set, we systematically manipulated perceived proximity of threat by varying a depicted spider's context, size, and posture. All stimuli were validated in a behavioral rating study (phobics n = 20; controls n = 20; all female). An independent group participated in a subsequent fMRI anxiety provocation study (phobics n = 7; controls n = 7; all female), in which we compared a whole-brain categorical to a whole-brain parametric analysis. Results demonstrated that the parametric analysis provided a richer characterization of the functional role of the involved brain networks. In three brain regions-the mid insula, the dorsal anterior cingulate, and the ventrolateral prefrontal cortex-activation was linearly modulated by perceived proximity specifically in the spider phobia group, indicating a quantitative representation of an exaggerated anxiety response. In other regions (e.g., the amygdala), activation was linearly modulated in both groups, suggesting a functional role in threat monitoring. Prefrontal regions, such as dorsolateral prefrontal cortex, were activated during anxiety provocation but did not show a stimulus-dependent linear modulation in either group. The results confirm that brain regions involved in anxiety processing hold a quantitative representation of a pathological anxiety response and more generally suggest that parametric fMRI designs may be a very powerful tool for clinical research in the future, particularly when developing novel brain-based interventions (e.g., neurofeedback training). Hum Brain Mapp 38:3025-3038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
2014-01-01
Background The purpose of this analysis was to determine whether in office diagnostic needle arthroscopy (Visionscope Imaging System [VSI]) can provide for improved diagnostic assessment and; more cost effective care. Methods Data on arthroscopy procedures in the US for deep seated pathology in the knee and shoulder were used (Calendar Year 2012). These procedures represent approximately 25-30% of all arthroscopic procedures performed annually. Sensitivities, specificities, positive predictive, and negative predictive values for MRI analysis of this deep seated pathology from systematic reviews and meta-analyses were used in assessing for false positive and false negative MRI findings. The costs of performing diagnostic and surgical arthroscopy procedures (using 2013 Medicare reimbursement amounts); costs associated with false negative findings; and the costs for treating associated complications arising from diagnostic and therapeutic arthroscopy procedures were then assessed. Results In patients presenting with medial meniscal pathology (ICD9CM diagnosis 836.0 over 540,000 procedures in CY 2012); use of the VSI system in place of MRI assessment (standard of care) resulted in a net cost savings to the system of $151 million. In patients presenting with rotator cuff pathology (ICD9CM 840.4 over 165,000 procedures in CY2012); use of VSI in place of MRI similarly saved $59 million. These savings were realized along with more appropriate care as; fewer patients were exposed to higher risk surgical arthroscopic procedures. Conclusions The use of an in-office arthroscopy system can: possibly save the US healthcare system money; shorten the diagnostic odyssey for patients; potentially better prepare clinicians for arthroscopic surgery (when needed) and; eliminate unnecessary outpatient arthroscopy procedures, which commonly result in surgical intervention. PMID:24885678
Oltedal, Leif; Bartsch, Hauke; Sørhaug, Ole Johan Evjenth; Kessler, Ute; Abbott, Christopher; Dols, Annemieke; Stek, Max L; Ersland, Lars; Emsell, Louise; van Eijndhoven, Philip; Argyelan, Miklos; Tendolkar, Indira; Nordanskog, Pia; Hamilton, Paul; Jorgensen, Martin Balslev; Sommer, Iris E; Heringa, Sophie M; Draganski, Bogdan; Redlich, Ronny; Dannlowski, Udo; Kugel, Harald; Bouckaert, Filip; Sienaert, Pascal; Anand, Amit; Espinoza, Randall; Narr, Katherine L; Holland, Dominic; Dale, Anders M; Oedegaard, Ketil J
2017-01-01
Major depression, currently the world's primary cause of disability, leads to profound personal suffering and increased risk of suicide. Unfortunately, the success of antidepressant treatment varies amongst individuals and can take weeks to months in those who respond. Electroconvulsive therapy (ECT), generally prescribed for the most severely depressed and when standard treatments fail, produces a more rapid response and remains the most effective intervention for severe depression. Exploring the neurobiological effects of ECT is thus an ideal approach to better understand the mechanisms of successful therapeutic response. Though several recent neuroimaging studies show structural and functional changes associated with ECT, not all brain changes associate with clinical outcome. Larger studies that can address individual differences in clinical and treatment parameters may better target biological factors relating to or predictive of ECT-related therapeutic response. We have thus formed the Global ECT-MRI Research Collaboration (GEMRIC) that aims to combine longitudinal neuroimaging as well as clinical, behavioral and other physiological data across multiple independent sites. Here, we summarize the ECT sample characteristics from currently participating sites, and the common data-repository and standardized image analysis pipeline developed for this initiative. This includes data harmonization across sites and MRI platforms, and a method for obtaining unbiased estimates of structural change based on longitudinal measurements with serial MRI scans. The optimized analysis pipeline, together with the large and heterogeneous combined GEMRIC dataset, will provide new opportunities to elucidate the mechanisms of ECT response and the factors mediating and predictive of clinical outcomes, which may ultimately lead to more effective personalized treatment approaches.
Pagnozzi, Alex M; Fiori, Simona; Boyd, Roslyn N; Guzzetta, Andrea; Doecke, James; Gal, Yaniv; Rose, Stephen; Dowson, Nicholas
2016-02-01
Several scoring systems for measuring brain injury severity have been developed to standardize the classification of MRI results, which allows for the prediction of functional outcomes to help plan effective interventions for children with cerebral palsy. The aim of this study is to use statistical techniques to optimize the clinical utility of a recently proposed template-based scoring method by weighting individual anatomical scores of injury, while maintaining its simplicity by retaining only a subset of scored anatomical regions. Seventy-six children with unilateral cerebral palsy were evaluated in terms of upper limb motor function using the Assisting Hand Assessment measure and injuries visible on MRI using a semiquantitative approach. This cohort included 52 children with periventricular white matter injury and 24 with cortical and deep gray matter injuries. A subset of the template-derived cerebral regions was selected using a data-driven region selection algorithm. Linear regression was performed using this subset, with interaction effects excluded. Linear regression improved multiple correlations between MRI-based and Assisting Hand Assessment scores for both periventricular white matter (R squared increased to 0.45 from 0, P < 0.0001) and cortical and deep gray matter (0.84 from 0.44, P < 0.0001) cohorts. In both cohorts, the data-driven approach retained fewer than 8 of the 40 template-derived anatomical regions. The equal or better prediction of the clinically meaningful Assisting Hand Assessment measure using fewer anatomical regions highlights the potential of these developments to enable enhanced quantification of injury and prediction of patient motor outcome, while maintaining the clinical expediency of the scoring approach.
Taylor, Robert M; Sillerud, Laurel O
2012-01-01
Background and methods: Problems with the clinical management of prostate cancer include the lack of both specific detection and efficient therapeutic intervention. We report the encapsulation of superparamagnetic iron platinum nanoparticles (SIPPs) and paclitaxel in a mixture of polyethyleneglycolated, fluorescent, and biotin-functionalized phospholipids to create multifunctional SIPP-PTX micelles (SPMs) that were conjugated to an antibody against prostate-specific membrane antigen (PSMA) for the specific targeting, magnetic resonance imaging (MRI), and treatment of human prostate cancer xenografts in mice. Results: SPMs were 45.4 ± 24.9 nm in diameter and composed of 160.7 ± 22.9 μg/mL iron, 247.0 ± 33.4 μg/mL platinum, and 702.6 ± 206.0 μg/mL paclitaxel. Drug release measurements showed that, at 37°C, half of the paclitaxel was released in 30.2 hours in serum and two times faster in saline. Binding assays suggested that PSMA-targeted SPMs specifically bound to C4-2 human prostate cancer cells in vitro and released paclitaxel into the cells. In vitro, paclitaxel was 2.2 and 1.6 times more cytotoxic than SPMs to C4-2 cells at 24 and 48 hours of incubation, respectively. After 72 hours of incubation, paclitaxel and SPMs were equally cytotoxic. SPMs had MRI transverse relaxivities of 389 ± 15.5 Hz/mM iron, and SIPP micelles with and without drug caused MRI contrast enhancement in vivo. Conclusion: Only PSMA-targeted SPMs and paclitaxel significantly prevented growth of C4-2 prostate cancer xenografts in nude mice. Furthermore, mice injected with PSMA-targeted SPMs showed significantly more paclitaxel and platinum in tumors, compared with nontargeted SPM-injected and paclitaxel-injected mice. PMID:22915856
Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.
2009-01-01
Hybrid closed bore x-ray∕MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (≈1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789
Bracken, John A; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A
2009-05-01
Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.
Vollstädt-Klein, Sabine; Loeber, Sabine; Kirsch, Martina; Bach, Patrick; Richter, Anne; Bühler, Mira; von der Goltz, Christoph; Hermann, Derik; Mann, Karl; Kiefer, Falk
2011-06-01
In alcohol-dependent patients, alcohol-associated cues elicit brain activation in mesocorticolimbic networks involved in relapse mechanisms. Cue-exposure based extinction training (CET) has been shown to be efficacious in the treatment of alcoholism; however, it has remained unexplored whether CET mediates its therapeutic effects via changes of activity in mesolimbic networks in response to alcohol cues. In this study, we assessed CET treatment effects on cue-induced responses using functional magnetic resonance imaging (fMRI). In a randomized controlled trial, abstinent alcohol-dependent patients were randomly assigned to a CET group (n = 15) or a control group (n = 15). All patients underwent an extended detoxification treatment comprising medically supervised detoxification, health education, and supportive therapy. The CET patients additionally received nine CET sessions over 3 weeks, exposing the patient to his/her preferred alcoholic beverage. Cue-induced fMRI activation to alcohol cues was measured at pretreatment and posttreatment. Compared with pretreatment, fMRI cue-reactivity reduction was greater in the CET relative to the control group, especially in the anterior cingulate gyrus and the insula, as well as limbic and frontal regions. Before treatment, increased cue-induced fMRI activation was found in limbic and reward-related brain regions and in visual areas. After treatment, the CET group showed less activation than the control group in the left ventral striatum. The study provides first evidence that an exposure-based psychotherapeutic intervention in the treatment of alcoholism impacts on brain areas relevant for addiction memory and attentional focus to alcohol-associated cues and affects mesocorticolimbic reward pathways suggested to be pathophysiologically involved in addiction. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Acute bithalamic infarct manifesting as sleep-like coma: A diagnostic challenge.
Honig, Asaf; Eliahou, Ruth; Eichel, Roni; Shemesh, Ari Aharon; Ben-Hur, Tamir; Auriel, Eitan
2016-12-01
Bilateral thalamic infarction (BTI) typically presents as a sleep-like coma (SLC) without localizing signs, posing a diagnostic challenge that may lead the treating physician to search for toxic or metabolic causes and delay treatment. We review our experience with BTI of different etiologies, and emphasize the critical role of timely imaging, diagnosis, and management in a series of 12 patients with a presentation of SLC and acute BTI who were managed in our Medical Centers from 2006-2015. In 11/12, urgent head CT scans showed normal brain tissue, while diffusion-weighted (DWI) MRI revealed symmetric bilateral thalamic hyperintense lesions with variable degrees of brainstem involvement. In 1/12, CT scans revealed a contralateral subacute stroke from a thalamic infarct 1month earlier with a unilateral hyperintense lesion on DWI-MRI. From clinical and imaging findings (DWI-MRI, CT angiography and venography), etiology was attributed to embolic causes (cardio-embolism, artery-to-artery mechanism), small vessel disease, or deep sinus vein thrombosis secondary to dural arteriovenous (AV) fistula. Three patients had good outcomes after prompt diagnosis and optimal treatment in <3hours (intravenous tissue plasminogen activator in two patients cardio-embolic etiology and neuro-endovascular repair in one patient with venous infarction due to a dural AV fistula). The diagnosis was made beyond the therapeutic window in seven patients, who were left with significant neurological sequelae. Higher awareness of BTI presenting as SLC is warranted. Optimal patient management includes urgent DWI-MRI. In cases of BTI, further imaging workup is indicated to provide a comprehensive assessment for etiology. Early diagnosis and prompt, targeted intervention are crucial. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakao, Tomohiro; Okada, Kayo; Kanba, Shigenobu
2014-08-01
Obsessive-compulsive disorder (OCD) was previously considered refractory to most types of therapeutic intervention. There is now, however, ample evidence that selective serotonin reuptake inhibitors and behavior therapy are highly effective methods for treatment of OCD. Furthermore, recent neurobiological studies of OCD have found a close correlation between clinical symptoms, cognitive function, and brain function. A large number of previous neuroimaging studies using positron emission tomography, single-photon emission computed tomography or functional magnetic resonance imaging (fMRI) have identified abnormally high activities throughout the frontal cortex and subcortical structures in patients with OCD. Most studies reported excessive activation of these areas during symptom provocation. Furthermore, these hyperactivities were decreased after successful treatment using either selective serotonin reuptake inhibitors or behavioral therapy. Based on these findings, an orbitofronto-striatal model has been postulated as an abnormal neural circuit that mediates symptomatic expression of OCD. On the other hand, previous neuropsychological studies of OCD have reported cognitive dysfunction in executive function, attention, nonverbal memory, and visuospatial skills. Moreover, recent fMRI studies have revealed a correlation between neuropsychological dysfunction and clinical symptoms in OCD by using neuropsychological tasks during fMRI. The evidence from fMRI studies suggests that broader regions, including dorsolateral prefrontal and posterior regions, might be involved in the pathophysiology of OCD. Further, we should consider that OCD is heterogeneous and might have several different neural systems related to clinical factors, such as symptom dimensions. This review outlines recent neuropsychological and neuroimaging studies of OCD. We will also describe several neurobiological models that have been developed recently. Advanced findings in these fields will update the conventional biological model of OCD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, K.
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less
Haaf, Moritz; Leicht, Gregor; Curic, Stjepan; Mulert, Christoph
2018-06-19
The basic mechanism of pharmacotherapy in schizophrenia has barely changed in the last 60 years. Currently used medications allow the effective treatment of positive symptoms via antagonistic effects at dopamine receptors whereas the effect on negative and cognitive symptoms is most often negligible. The observation that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists such as ketamine transiently induce schizophrenia-like positive, negative and cognitive symptoms has led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The NMDAR hypofunction can explain not only the whole range of schizophrenia symptoms but also the dopaminergic dysfunction itself, and it emphasizes the need for pharmacologicallytargeted glutamatergic neurotransmission. Moreover, ketamine-induced psychopathological changes in healthy participants were accompanied by altered electro-(EEG), magnetoencephalographic (MEG) (e.g. Mismatch Negativity (MMN), N100), and functional magnetic resonance imaging (fMRI) signals, reminiscent of findings observed in patients with schizophrenia. Hence, the ketamine model offers the possibility to assess the effect of novel pharmacological agents on schizophrenia-like symptoms and neurophysiology, thereby potentially facilitating drug research and development by providing a way to ascertain functional target engagement and the ability to prioritize candidate drugs. Therefore, this review summarizes the recent evidence from EEG, MEG and fMRI studies on potential biomarkers found in healthy subjects treated with ketamine and pharmacological interventions within the ketamine model. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Walkup, Laura L; Thomen, Robert P; Akinyi, Teckla G; Watters, Erin; Ruppert, Kai; Clancy, John P; Woods, Jason C; Cleveland, Zackary I
2016-11-01
Hyperpolarized 129 Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. To assess the feasibility, safety and tolerability of hyperpolarized 129 Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent 129 Xe MRI, receiving up to three doses of 129 Xe gas prepared by either a commercially available or a homebuilt 129 Xe polarizer. Subject heart rate and SpO 2 were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. All children tolerated multiple doses of 129 Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO 2 (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO 2 values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following 129 Xe MRI, but all were deemed unrelated to the study. The feasibility, safety and tolerability of 129 Xe MRI has been assessed in a small group of children as young as 6 years. SpO 2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were consistent with the known anesthetic properties of xenon and with previous safety assessments of 129 Xe MRI in adults. Hyperpolarized 129 Xe is a safe and well-tolerated inhaled contrast agent for pulmonary MR imaging in healthy children and in children with cystic fibrosis who have mild to moderate lung disease.
Ochmann, Sina; Dyrba, Martin; Grothe, Michel J; Kasper, Elisabeth; Webel, Steffi; Hauenstein, Karlheinz; Teipel, Stefan J
2017-01-01
Cognitive rehabilitation (CR) is a cognitive intervention for patients with Alzheimer's disease (AD) that aims to maintain everyday competences. The analysis of functional connectivity (FC) in resting-state functional MRI has been used to investigate the effects of cognitive interventions. We evaluated the effect of CR on the default mode network FC in a group of patients with mild AD, compared to an active control group. We performed a three-month interventional study including 16 patients with a diagnosis of AD. The intervention group (IG) consisted of eight patients, performing twelve sessions of CR. The active control group (CG) performed a standardized cognitive training. We used a seed region placed in the posterior cingulate cortex (PCC) for FC analysis, comparing scans acquired before and after the intervention. Effects were thresholded at a significance of p < 0.001 (uncorrected) and a minimal cluster size of 50 voxels. The interaction of group by time showed a higher increase of PCC connectivity in IG compared to CG in the bilateral cerebellar cortex. CG revealed widespread, smaller clusters of higher FC increase compared with IG. Across all participants, an increase in quality of life was associated with connectivity increase over time in the bilateral precuneus. CR showed an effect on the FC of the DMN in the IG. These effects need further study in larger samples to confirm if FC analysis may suit as a surrogate marker for the effect of cognitive interventions in AD.
Plasticity of language-related brain function during recovery from stroke.
Thulborn, K R; Carpenter, P A; Just, M A
1999-04-01
This study was undertaken to correlate functional recovery from aphasia after acute stroke with the temporal evolution of the anatomic, physiological, and functional changes as measured by MRI. Blood oxygenation level-dependent contrast and echo-planar MRI were used to map language comprehension in 6 normal adults and in 2 adult patients during recovery from acute stroke presenting with aphasia. Perfusion, diffusion, sodium, and conventional anatomic MRI were used to follow physiological and structural changes. The normal activation pattern for language comprehension showed activation predominately in left-sided Wernicke's and Broca's areas, with laterality ratios of 0.8 and 0.3, respectively. Recovery of the patient confirmed as having a completed stroke affecting Broca's area occurred rapidly with a shift of activation to the homologous region in the right hemisphere within 3 days, with continued rightward lateralization over 6 months. In the second patient, in whom mapping was performed fortuitously before stroke, recovery of a Wernicke's aphasia showed a similar increasing rightward shift in activation recruitment over 9 months after the event. Recovery of aphasia in adults can occur rapidly and is concomitant with an activation pattern that changes from left to a homologous right hemispheric pattern. Such recovery occurs even when the stroke evolves to completion. Such plasticity must be considered when evaluating stroke interventions based on behavioral and neurological measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streitparth, F., E-mail: florian.streitparth@charite.de; Walter, A.; Stolzenburg, N.
Purpose. To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. Methods. Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served asmore » a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. Results. In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. Conclusion. MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.« less
Schmitter, Marc; Wacker, Katrin; Pritsch, Maria; Giannakopoulos, Nikolas Nikitas; Klose, Christina; Faggion, Clovis; Kress, Bodo; Leckel, Michael; Rammelsberg, Peter
2010-01-01
The objectives of this preliminary, longitudinal, and explorative cohort study were to assess changes in and the onset of osteoarthrosis (OA)-related pain in the temporomandibular joint (TMJ) and to address factors that might impact the development or reduction of associated pain symptoms. In this sex-matched study, 60 women were recruited (30 asymptomatic with a magnetic resonance imaging [MRI] diagnosis of OA-related TMJ changes, 30 symptomatic with accompanying MRI evidence of OA of the TMJ). All subjects underwent a baseline clinical examination and MRI assessment and were subsequently referred to a dental practitioner, who was informed of the diagnosis and further treatment where required. Not all subjects underwent dental treatment interventions. Following a mean 4-year period, subjects were reexamined clinically. Spearman rank correlation and Mann-Whitney U tests were used to evaluate possible correlations in reported pain level changes with the number of posterior occlusal contacts and new dental restorations placed between baseline and recall appointments. The dropout rate was 28% (6.7% for symptomatic, 50% for asymptomatic). OA-related TMJ pain in symptomatic subjects decreased with time (pain reduction: ?3.6 ± 3.4 on a 0 to 10 numeric rating scale); asymptomatic patients rarely developed pain. These preliminary results suggest that factors other than dental occlusion might play a role in the reduction of pain.
Padilla, Nelly; Eklöf, Eva; Mårtensson, Gustaf E; Bölte, Sven; Lagercrantz, Hugo; Ådén, Ulrika
2017-02-01
Preterm infants face an increased risk of autism spectrum disorder (ASD). The relationship between autism during childhood and early brain development remains unexplored. We studied 84 preterm children born at <27 weeks of gestation, who underwent neonatal magnetic resonance imaging (MRI) at term and were screened for ASD at 6.5 years. Full-scale intelligence quotient was measured and neonatal morbidities were recorded. Structural brain morphometric studies were performed in 33 infants with high-quality MRI and no evidence of focal brain lesions. Twenty-three (27.4%) of the children tested ASD positive and 61 (72.6%) tested ASD negative. The ASD-positive group had a significantly higher frequency of neonatal complications than the ASD-negative group. In the subgroup of 33 children, the ASD infants had reduced volumes in the temporal, occipital, insular, and limbic regions and in the brain areas involved in social/behavior and salience integration. This study shows that the neonatal MRI scans of extremely preterm children, subsequently diagnosed with ASD at 6.5 years, showed brain structural alterations, localized in the regions that play a key role in the core features of autism. Early detection of these structural alterations may allow the early identification and intervention of children at risk of ASD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
MR efficiency using automated MRI-desktop eProtocol
NASA Astrophysics Data System (ADS)
Gao, Fei; Xu, Yanzhe; Panda, Anshuman; Zhang, Min; Hanson, James; Su, Congzhe; Wu, Teresa; Pavlicek, William; James, Judy R.
2017-03-01
MRI protocols are instruction sheets that radiology technologists use in routine clinical practice for guidance (e.g., slice position, acquisition parameters etc.). In Mayo Clinic Arizona (MCA), there are over 900 MR protocols (ranging across neuro, body, cardiac, breast etc.) which makes maintaining and updating the protocol instructions a labor intensive effort. The task is even more challenging given different vendors (Siemens, GE etc.). This is a universal problem faced by all the hospitals and/or medical research institutions. To increase the efficiency of the MR practice, we designed and implemented a web-based platform (eProtocol) to automate the management of MRI protocols. It is built upon a database that automatically extracts protocol information from DICOM compliant images and provides a user-friendly interface to the technologists to create, edit and update the protocols. Advanced operations such as protocol migrations from scanner to scanner and capability to upload Multimedia content were also implemented. To the best of our knowledge, eProtocol is the first MR protocol automated management tool used clinically. It is expected that this platform will significantly improve the radiology operations efficiency including better image quality and exam consistency, fewer repeat examinations and less acquisition errors. These protocols instructions will be readily available to the technologists during scans. In addition, this web-based platform can be extended to other imaging modalities such as CT, Mammography, and Interventional Radiology and different vendors for imaging protocol management.
MRI-guided Dose-escalated Salvage Radiotherapy for Bulky Bladder Neck Recurrence of Prostate Cancer
Tyran, Marguerite; Steinberg, Michael L.; Holden, Stuart B; Cao, Minsong
2018-01-01
Nearly 30% of patients treated with radical prostatectomy for prostate cancer ultimately develop biochemical recurrences, and nearly a quarter of men with nonpalpable biochemical recurrences have gross local recurrences identified with magnetic resonance imaging (MRI). The only curative intervention for patients with recurrent disease after radical prostatectomy is salvage radiotherapy – this is particularly true for patients with gross local recurrences. Furthermore, even in patients with an incurable metastatic disease, a local recurrence can be the source of significant morbidity and should be addressed. Delivering a sufficient dose of radiation in the postoperative setting to control gross disease while minimizing toxicity poses a significant technical challenge. Because of the inherent uncertainty in the verification of gross disease positioning with standard onboard imaging technologies, large margins must be used. Larger margins, in turn, will lead to larger volumes of tissue receiving high doses of radiation, potentially increasing long-term toxicity. Herein, we present the case of a patient with a bulky gross recurrence (>40 cm3) at the bladder neck and synchronous metastatic disease who was referred for salvage radiotherapy after a multidisciplinary consensus recommendation to pursue local therapy for mitigating urinary morbidity from the bulky tumor. The case illustrates the utilization of MRI-guided radiotherapy to allow significant margin reduction, thereby facilitating the delivery of an escalated dose of radiotherapy to a bulky recurrence. PMID:29805929
Haque, Muhammad E; Franklin, Tammy; Bokhary, Ujala; Mathew, Liby; Hack, Bradley K; Chang, Anthony; Puri, Tipu S; Prasad, Pottumarthi V
2014-04-01
To evaluate longitudinal changes in renal oxygenation and diffusion measurements in a model of reversible unilateral ureteral obstruction (rUUO) which has been shown to induce chronic renal functional deficits in a strain dependent way. C57BL/6 mice show higher degree of functional deficit compared with BALB/c mice. Because hypoxia and development of fibrosis are associated with chronic kidney diseases and are responsible for progression, we hypothesized that MRI measurements would be able to monitor the longitudinal changes in this model and will show strain dependent differences in response. Here blood oxygenation level dependent (BOLD) and diffusion MRI measurements were performed at three time points over a 30 day period in mice with rUUO. The studies were performed on a 4.7T scanner with the mice anesthetized with isoflurane before UUO, 2 and 28 days postrelease of 6 days of obstruction. We found at the early time point (∼2 days after releasing the obstruction), the relative oxygenation in C57Bl/6 mice were lower compared with BALB/c. Diffusion measurements were lower at this time point and reached statistical significance in BALB/c These methods may prove valuable in better understanding the natural progression of kidney diseases and in evaluating novel interventions to limit progression. Copyright © 2013 Wiley Periodicals, Inc.