Sample records for intestinal morphological effect

  1. Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth.

    PubMed

    Dreon, Marcos S; Fernández, Patricia E; Gimeno, Eduardo J; Heras, Horacio

    2014-06-01

    The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies. This defense mechanism may explain the near absence of predators of apple snail eggs.

  2. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs.

    PubMed

    Bilić-Šobot, Diana; Kubale, Valentina; Škrlep, Martin; Čandek-Potokar, Marjeta; Prevolnik Povše, Maja; Fazarinc, Gregor; Škorjanc, Dejan

    2016-10-01

    This study aimed to evaluate the effect of hydrolysable tannin supplementation on morphology, cell proliferation and apoptosis in the intestine and liver of fattening boars. A total of 24 boars (Landrace × Large white) were assigned to four treatment groups: Control (fed commercial feed mixture) and three experimental groups fed the same diet supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract. Animals were housed individually with ad libitum access to feed and then slaughtered at 193 d of age and 122 ± 10 kg body weight. Diets supplemented with hydrolysable tannin affected the morphometric traits of the duodenum mucosa as reflected in increased villus height, villus perimeter and mucosal thickness. No effect was observed on other parts of the small intestine. In the large intestine, tannin supplementation reduced mitosis (in the caecum and descending colon) and apoptosis (in the caecum, ascending and descending colon). No detrimental effect of tannin supplementation on liver tissue was observed. The present findings suggest that supplementing boars with hydrolysable tannins at concentrations tested in this experiment has no unfavourable effects on intestinal morphology. On the contrary, it may alter cell debris production in the large intestine and thus reduce intestinal skatole production.

  3. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets.

    PubMed

    Zhang, Li-Li; Zhang, Hao; Li, Yue; Wang, Tian

    2017-06-01

    It has been shown that there is a relationship between intrauterine growth retardation (IUGR) and postnatal intestinal damage involved in energy deficits. Therefore, the present study was conducted to investigate the effect of medium-chain triglycerides (MCT) on the intestinal morphology, intestinal function and energy metabolism of piglets with IUGR. At weaning (21 ± 1.1 d of age), 24 IUGR piglets and 24 normal birth weight (NBW) piglets were selected according to their birth weights (BW) (IUGR: 0.95 ± 0.04 kg BW; NBW: 1.58 ± 0.04 kg BW) and their weights at the time of weaning (IUGR: 5.26 ± 0.15 kg BW; NBW: 6.98 ± 0.19 kg BW). The piglets were fed a diet of either long-chain triglycerides (LCT) (containing 5% LCT) or MCT (containing 1% LCT and 4% MCT) for 28 d. Then, the piglets' intestinal morphology, biochemical parameters and mRNA abundance related to intestinal damage and energy metabolism were determined. IUGR was found to impair intestinal morphology, with evidence of decreased villus height and increased crypt depth; however, these negative effects of IUGR were ameliorated by MCT treatment. IUGR piglets showed compromised intestinal digestion and absorption functions when compared with NBW piglets. However, feeding MCT increased the maltase activity in the jejunum and alleviated IUGR-induced reductions in plasma d-xylose concentrations and jejunal sucrase activity. IUGR decreased the efficiency of the piglets' intestinal energy metabolism; however, piglets fed an MCT diet exhibited increased adenosine triphosphate (ATP) concentrations and ATP synthase F1 complex beta polypeptide expression, as well as decreased adenosine monophosphate-activated kinase alpha 1 expression in the jejunum of piglets. In addition, up-regulation of the piglets' citrate synthase and succinate dehydrogenase levels was found to occur following MCT treatment at both the activity and the transcriptional levels of the jejunum. Therefore, it can be postulated that MCT treatment has beneficial effects in alleviating IUGR-induced intestinal morphologic damage, which is associated with improved intestinal energy metabolism.

  4. Long-term enteral arginine supplementation in rats with intestinal ischemia and reperfusion.

    PubMed

    Lee, Chien-Hsing; Hsiao, Chien-Chou; Hung, Ching-Yi; Chang, Yu-Jun; Lo, Hui-Chen

    2012-06-01

    The effects of short-term enteral arginine supplementation on intestinal ischemia-reperfusion (IR) injury have been widely studied, especially the ischemic preconditioning supplementation. The aim of this study was to investigate the effects of long-term intra-duodenal supplementation of arginine on intestinal morphology, arginine-associated amino acid metabolism, and inflammatory responses in rats with intestinal IR. Male Wistar rats with or without three hours of ileal ischemia underwent duodenal cannulation for continuous infusion of formula with 2% arginine or commercial protein powder for 7 d. The serological examinations, plasma amino acid and cytokine profiles, and intestinal morphology were assessed. Intestinal IR injury had significant impacts on the decreases in circulating red blood cells, hemoglobin, ileum mass, and villus height and crypt depth of the distal jejunum. In addition, arginine supplementation decreased serum cholesterol and increased plasma arginine concentrations. In rats with intestinal IR injury, arginine supplementation significantly decreased serum nitric oxide, plasma citrulline and ornithine, and the mucosal protein content of the ileum. These results suggest that long-term intra-duodenal arginine administration may not have observable benefits on intestinal morphology or inflammatory response in rats with intestinal ischemia and reperfusion injury. Therefore, the necessity of long-term arginine supplementation for patients with intestinal ischemia and reperfusion injury remains questionable and requires further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effects of Physical Exercise on the Intestinal Mucosa of Rats Submitted to a Hypothalamic Obesity Condition.

    PubMed

    Gomes, J R; Freitas, J R; Grassiolli, S

    2016-10-01

    The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. [The effect of cytostatic therapy with vincristin sulphate on disaccarchidases of rat intestinal mucosa (author's transl)].

    PubMed

    Hartwich, G; Leicher, H; Müller, H; Domschke, W; Matzkies, F

    1976-01-01

    This report shows that appropriate doses of vincristin sulphate may decrease disaccharidase activities of intestinal mucosa. With the higher doses of the cytostatic drug, the drastic drop of enzyme activities is associated with morphological alterations of the mucosa; disacchardiase activities remain depressed at least for a couple of days even after full morphological restoration of the mucosa. Studies in man should reveal whether similar intestinal lesions occur due to therapeutic doses of vincristin sulphate.

  7. Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex-vivo: assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall.

    PubMed

    Dorkoosh, Farid A; Borchard, Gerrit; Rafiee-Tehrani, Morteza; Verhoef, J Coos; Junginger, Hans E

    2002-03-01

    The objective of this study was to investigate the potential of superporous hydrogel (SPH) and SPH composite (SPHC) polymers to enhance the transport of N-alpha-benzoyl-L-arginine ethylester (BAEE) and fluorescein isothiocyanate-dextran 4400 (FD4) across porcine intestinal epithelium ex-vivo, and to study any possible morphological damage to the epithelium by applying these polymers. In addition, the ability of these polymers to attach to the gut wall by mechanical pressure was examined by using a specifically designed centrifuge model. The transport of BAEE and FD4 across the intestinal mucosa was enhanced 2- to 3-fold by applying SPHC polymer in comparison to negative control. No significant morphological damage was observed by applying these polymers inside the intestinal lumen. Moreover, the SPH and SPHC polymers were able to attach mechanically to the intestinal wall by swelling and did not move in the intestinal lumen even when a horizontal force of 13 gms(-2) was applied. In conclusion, these polymers are appropriate vehicles for enhancing the intestinal absorption of peptide and protein drugs.

  8. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the effect of a purified granulated lysozyme, compared to antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-...

  9. Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat.

    PubMed

    Somasundaram, S; Sigthorsson, G; Simpson, R J; Watts, J; Jacob, M; Tavares, I A; Rafi, S; Roseth, A; Foster, R; Price, A B; Wrigglesworth, J M; Bjarnason, I

    2000-05-01

    The pathogenesis of NSAID-induced gastrointestinal damage is believed to involve a nonprostaglandin dependent effect as well as prostaglandin dependent effects. One suggestion is that the nonprostaglandin mechanism involves uncoupling of mitochondrial oxidative phosphorylation. To assess the role of uncoupling of mitochondrial oxidative phosphorylation in the pathogenesis of small intestinal damage in the rat. We compared key pathophysiologic events in the small bowel following (i) dinitrophenol, an uncoupling agent (ii) parenteral aspirin, to inhibit cyclooxygenase without causing a 'topical' effect and (iii) the two together, using (iv) indomethacin as a positive control. Dinitrophenol altered intestinal mitochondrial morphology, increased intestinal permeability and caused inflammation without affecting gastric permeability or intestinal prostanoid levels. Parenteral aspirin decreased mucosal prostanoids without affecting intestinal mitochondria in vivo, gastric or intestinal permeability. Aspirin caused no inflammation or ulcers. When dinitrophenol and aspirin were given together the changes in intestinal mitochondrial morphology, permeability, inflammation and prostanoid levels and the macro- and microscopic appearances of intestinal ulcers were similar to indomethacin. These studies allow dissociation of the contribution and consequences of uncoupling of mitochondrial oxidative phosphorylation and cyclooxygenase inhibition in the pathophysiology of NSAID enteropathy. While uncoupling of enterocyte mitochondrial oxidative phosphorylation leads to increased intestinal permeability and low grade inflammation, concurrent decreases in mucosal prostanoids appear to be important in the development of ulcers.

  10. Protective effect of an herbal preparation (HemoHIM) on radiation-induced intestinal injury in mice.

    PubMed

    Kim, Sung Ho; Lee, Hae June; Kim, Joong Sun; Moon, Changjong; Kim, Jong Choon; Park, Hae-Ran; Jung, Uhee; Jang, Jong Sik; Jo, Sung Kee

    2009-12-01

    The protective properties of an herbal preparation (HemoHIM) against intestinal damage were examined by evaluating its effects on jejunal crypt survival, morphological changes, and apoptosis in gamma-irradiated mice. The mice were whole-body irradiated with 12 Gy for the examination of jejunal crypt survival and any morphological changes and with 2 Gy for the detection of apoptosis and Ki-67 labeling. Irradiation was conducted using (60)Co gamma-rays. HemoHIM treatment was administered intraperitonially at a dosage of 50 mg/kg of body weight at 36 and 12 hours pre-irradiation and 30 minutes post-irradiation or orally at a dosage of 250 mg/kg of body weight/day for 7 or 11 days before necropsy. The HemoHIM-treated group displayed a significant increase in survival of jejunal crypts, when compared to the irradiation controls. HemoHIM treatment decreased intestinal morphological changes such as crypt depth, villus height, mucosal length, and basal lamina length of 10 enterocytes after irradiation. Furthermore, the administration of HemoHIM protected intestinal cells from irradiation-induced apoptosis. These results suggested that HemoHIM may be therapeutically useful to reduce intestinal injury following irradiation.

  11. Nutrient-induced intestinal adaption and its effect in obesity.

    PubMed

    Dailey, Megan J

    2014-09-01

    Obese and lean individuals respond differently to nutrients with changes in digestion, absorption and hormone release. This may be a result of differences in intestinal epithelial morphology and function driven by the hyperphagia or the type of diet associated with obesity. It is well known that the maintenance and growth of the intestine is driven by the amount of luminal nutrients, with high nutrient content resulting in increases in cell number, villi length and crypt depth. In addition, the type of nutrient appears to contribute to alterations in the morphology and function of the epithelial cells. This intestinal adaptation may be what is driving the differences in nutrient processing in lean versus obese individuals. This review describes how nutrients may be able to induce changes in intestinal epithelial cell proliferation, differentiation and function and the link between intestinal adaptation and obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of nucleotide supplementation in milk replacer on small intestinal absorptive capacity in dairy calves.

    PubMed

    Kehoe, S I; Heinrichs, A J; Baumrucker, C R; Greger, D L

    2008-07-01

    Milk replacer was supplemented with nucleotides and fed to dairy calves from birth through weaning to examine the potential for enhancing recovery of small intestinal function after enteric infection. Three treatments of 23 calves each were fed milk replacer (10% body weight/d) supplemented with no nucleotides (C), purified nucleotides (N), or nucleotides from an extract of Saccharomyces cerevisiae (S). Average daily gain, health scores, fecal dry matter, and fecal bacteria were monitored, and blood was analyzed for packed cell volume, glucose, blood urea nitrogen (BUN), and creatinine. Calves were monitored twice daily for fecal score, and 48 h after increased fecal fluidity was recorded, intestinal function was evaluated by measuring absorption of orally administered xylose (0.5 g/kg of body weight). Packed cell volume of blood was greater for treatment N for wk 2 and 5 compared with other treatment groups. Four calves per treatment were killed, and intestinal tissue was evaluated for morphology, enzyme activities, and nucleoside transporter mRNA expression. Treatment S calves had increased abundance of nucleoside transporter mRNA, numerically longer villi, and lower alkaline phosphatase than other groups. Growth measurements and plasma concentrations of glucose, BUN, creatinine, and IgG were not different between treatments; however, BUN-to-creatinine ratio was higher for treatment N, possibly indicating decreased kidney function. There were also no treatment effects on fecal dry matter and fecal bacteria population. However, N-treated calves had the highest detrimental and lowest beneficial bacteria overall, indicating an unfavorable intestinal environment. Supplementation of purified nucleotides did not improve intestinal morphology or function and resulted in higher fecal water loss and calf dehydration. Supplementation of nucleotides derived from yeast tended to increase calf intestinal function, provide a more beneficial intestinal environment, and improve intestinal morphology.

  13. Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data.

    PubMed

    Buchman, A L

    2001-07-01

    Glutamine is a nonessential amino acid that can be synthesized from glutamate and glutamic acid by glutamate-ammonia ligase. Glutamine is an important fuel source for the small intestine. It was proposed that glutamine is necessary for the maintenance of normal intestinal morphology and function in the absence of luminal nutrients. However, intestinal morphologic and functional changes related to enteral fasting and parenteral nutrition are less significant in humans than in animal models and may not be clinically significant. Therefore, it is unclear whether glutamine is necessary for the preservation of normal intestinal morphology and function in humans during parenteral nutrition. It was suggested that both glutamine-supplemented parenteral nutrition and enteral diets may pre-vent bacterial translocation via the preservation and augmentation of small bowel villus morphology, intestinal permeability, and intestinal immune function. However, it is unclear whether clinically relevant bacterial translocation even occurs in humans, much less whether there is any value in the prevention of such occurrences. Results of the therapeutic use of glutamine in humans at nonphysiologic doses indicate limited efficacy. Although glutamine is generally recognized to be safe on the basis of relatively small studies, side effects in patients receiving home parenteral nutrition and in those with liver-function abnormalities have been described. Therefore, on the basis of currently available clinical data, it is inappropriate to recommend glutamine for therapeutic use in any condition.

  14. Effects of polyphenols from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) on methotrexate-induced intestinal injury in rats.

    PubMed

    Sugiyama, Akihiko; Kimura, Hideto; Ogawa, Satoshi; Yokota, Kazushige; Takeuchi, Takashi

    2011-05-01

    The purpose of this study was to evaluate the effects of polyphenols from seed shells of Japanese horse chestnut (JHP) on methotrexate (MTX)-induced intestinal injury in rats. MTX application caused intestinal morphological injury and increase in malondialdehyde (MDA) levels, decrease in levels of glutathione (GSH) and glutathione peroxidase (GSH-Px) activities in small intestine. However, oral administration of JHP ameliorated MTX-induced intestinal injury and inhibited the increase in MDA and the decrease in GSH and GSH-Px activity in small intestine. In conclusion, our results indicated that oral administration of JHP alleviated MTX-induced intestinal injury through its antioxidant properties.

  15. [Effect of chronic intake of dietary fiber complex on the intestinal structure and function in hypercholesterolemic rats].

    PubMed

    Ma, Zhengwei; Zhang, Xizhong

    2003-07-01

    To investigate the long-term effect of dietary fiber complex (DFC) on intestinal structure and function in hypercholesterolemic rats, 60 healthy SD rats were feed with food rich in lipids and hypercholesterolemic animal models were established. The animals were randomly divided into 5 groups. Rats were fed DFC at levels of 4%, 16%, or 64% for three month in the experimental groups. Wheat fiber was used in the hypercholesterolemic control (HC) group and rats feeding on normal food were used as normal control (NC). Morphology of the small intestine, reticum and caecum were observed by light and electron microscope examination. Intestinal function was measured physically. The results showed that (1) compared with NC group, fecal weight was significantly raised in DFC group of higher level (group D and E, P < 0.05); (2) the weights of small intestine wall in D and E group were significantly higher than those of NC and HC group and weights of caecum wall in E group were significantly higher than those of NC and HC group (P < 0.05); (3) widen villi and thickened muscle layer of small intestine were observed in DFC group of higher level. No demonstrable changes in reticulum morphology in any group of animals were found under the observation of light microscope (4) microvilla becoming short and/or absent, mitochondria swelling, impairment of the integrity of the cristae were commonly observed in DFC groups. Conclusions Long-term intake of DFC composed mainly of Hippophae rhamnoides L, Bran, oat bran and guar gum at higher levels might induce some morphological changes of intestine and caecum. Therefore, DFC might be used at low level as an effective cholesterol-lowering agent.

  16. [Morphological changes of the intestine in experimental acute intestinal infection in the treatment of colloidal silver].

    PubMed

    Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N

    2012-06-01

    At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.

  17. Intestinal Disaccharidase Activity in Patients with Autism: Effect of Age, Gender, and Intestinal Inflammation

    ERIC Educational Resources Information Center

    Kushak, Rafail I.; Lauwers, Gregory Y.; Winter, Harland S.; Buie, Timothy M.

    2011-01-01

    Intestinal disaccharidase activities were measured in 199 individuals with autism to determine the frequency of enzyme deficiency. All patients had duodenal biopsies that were evaluated morphologically and assayed for lactase, sucrase, and maltase activity. Frequency of lactase deficiency was 58% in autistic children less than or equal to 5 years…

  18. Research on the traditional Chinese medicine treating gastrointestinal motility in diabetic rats by improving biomechanical remodeling and neuroendocrine regulation

    PubMed Central

    Tian, Jiaxing; Li, Min; Zhao, Jingbo; Li, Junling; Liu, Guifang; Zhen, Zhong; Cao, Yang; Gregersen, Hans; Tong, Xiaolin

    2017-01-01

    Previous studies have demonstrated that TWA, a Chinese herbal medicine, could significantly improve the symptoms of patients with diabetic gastrointestinal dysfunction. However, the specific mechanism of regulating intestinal peristalsis has not been found. This study aimed to discover TWA’s therapeutic mechanism for regulating intestinal motility. The intestinal propulsion rate of diabetic rats was significantly increased after treatment with TWA for 8 weeks. Aiming at the mechanical structure, biomechanical testing indicated that TWA can significantly decrease the no-load intestinal wall thickness, cross-sectional area, and angular spread in a zero-stress state. Notably, intestinal stress-strain curve shifted to the right, which indicated TWA can inhibit intestinal hyperplasia and hardening and improve biomechanical remodeling. Further study of the mechanism revealed that TWA significantly inhibited the expression of AGE in the villi, crypt, and muscle and RAGE in crypt and upregulated the expression of nerve regulator (PSD95, C-kit and SCF). Radioimmunoassay showed TWA treatment decreased levels of serum somatostatin and vasoactive intestinal peptide. Moreover, associations were found between the intestinal propulsion rate with the morphologic and biomechanical remodeling parameters, changes of nerve factors, and endocrine hormones. Morphologic and biomechanical remodeling of the intestinal wall are the pathologic basis of gastrointestinal dysfunction. TWA can benefit intestinal motility by improving biomechanical and morphologic remodeling and by regulating expression of neuroendocrine factors. The results showed that the effect of TWA was dose-dependent, the higher the dose, the greater is the improvement. Thus, traditional Chinese medicine might be a valuable tool for treating diabetic gastrointestinal dysfunction. PMID:28559973

  19. Dietary betaine affect duodenal histology of broilers challenged with a mixed coccidial infection.

    PubMed

    Hamidi, H; Pourreza, J; Rahimi, H

    2009-02-01

    The purpose of this research was to investigate effect of dietary betaine on intestinal morphology after an experimental coccidiosis. Hence a total of 189 male and female broiler chicks were randomly assigned to 9 floor cages. Chicks were fed a basal diet supplemented with 0, 0.6 or 1.2 g kg(-1) betaine. All birds were inoculated orally with Eimeria oocysts on day 28. Duodenal morphology parameters and lesions were scored by microscopic observation on intestine samples which were taken at day 42 of age. Adding 1.2 g kg(-1) betaine to diet diminished intestinal lesions (p < 0.05). Dietary supplementation with 0.6 or 1.2 g kg(-1) betaine significantly (p < 0.01) increased intraepithelial lymphocytes as well. Level of additive betaine had no effect on the ratio of villus height/crypt depth or villus surface area. Lamina propria of duodenum became thicker in the intestine of chickens which received more supplemental betaine via their diet. In conclusion, since the number of intraepithelial lymphocytes and thickness of lamina propria represent the condition of gut immune response, it seems that dietary betaine may immunomodulate the gastrointestinal tract of broilers. In addition, betaine effect on villus morphology measured later in life differed from what had been measured already earlier in life of the chicks.

  20. Probiotic administration modifies the milk fatty acid profile, intestinal morphology, and intestinal fatty acid profile of goats.

    PubMed

    Apás, A L; Arena, M E; Colombo, S; González, S N

    2015-01-01

    The effect of a mixture of potentially probiotic bacteria (MPPB; Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum strains) on the milk fatty acid (FA) profile, with emphasis on cis-9,trans-11 conjugated linoleic acid (CLA) in the middle stage of goat lactation, was determined. In addition, the effects of MPPB feeding on the FA profile in intestinal content and intestinal morphology in weaned goats were analyzed. The probiotic supplement was able to modify FA composition of milk and intestinal content. The unsaturated FA concentrations in milk (g of FA/L of milk) increased from 4.49 to 7.86 for oleic (18:1), from 0.70 to 1.39 for linoleic (18:2), from 0.063 to 0.187 for linolenic (18:3) acid, and from 0.093 to 0.232 for CLA. The atherogenicity index diminished 2-fold after MPPB ingestion. In the intestinal content of the weaned goats, no significant difference in saturated FA concentration compared with the control was observed. However, oleic acid, linolenic acid, CLA, and docosahexaenoic acid concentrations increased by 81, 23, 344, and 74%, respectively, after probiotic consumption. The ruminal production of CLA was increased by the MPPB. However, bacterial strains of MPPB were unable to produce CLA in culture media. By histological techniques, it was observed that the treated group had intestinally more conserved morphological structures than the control group. The results obtained in this study indicate that the MPPB administration in lactating and weaned goats allows for the production of milk with improved concentrations of beneficial compounds, and also produces a protective effect in the goat intestine. The results obtained in this study reinforce the strategy of probiotics application to enhance goat health with the production of milk with higher concentrations of polyunsaturated FA. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Effect of simulated transport stress on the rat small intestine: A morphological and gene expression study.

    PubMed

    Wan, Changrong; Yin, Peng; Xu, Xiaolong; Liu, Mingjiang; He, Shasha; Song, Shixiu; Liu, Fenghua; Xu, Jianqin

    2014-04-01

    The present study investigated the effects of simulated transport stress on morphology and gene expression in the small intestine of laboratory rats. Sprague Dawley rats were subjected to 35°C and 0.1×g on a constant temperature shaker for physiological, biochemical, morphological and microarray analysis before and after treatment. The treatment induced obvious stress responses with significant decreases in body weight (P<0.01), increases in rectal temperature, serum corticosterone (CORT), serum glucose (GLU), creatine kinase (CK) and lactate dehydrogenase (LDH) levels (P<0.01), as well as expression of Hsp27/70/90 mRNA (P<0.05; P<0.01). The rat jejunum was severely damaged and apoptotic after mimicking transport stress, which may mainly be related to cell death, oxidation reduction and hormone imbalance determined by microarray analysis. The bioinformatics analysis from the present study would provide insight into the potential mechanisms underlying transport stress-induced injury in the rat small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. EFFECTS ON THE FETAL RAT INTESTINE OF MATERNAL MALNUTRITION AND EXPOSURE TO NITROFEN (2,4-DICHLOROPHENYL-P-NITROPHENYL ETHER)

    EPA Science Inventory

    The effects of maternal protein-energy malnutrition and exposure to nitrofen on selected aspects of intestinal morphology and function were studied in the fetal rat. Pregnant rats were fed, throughout gestation, diets containing 24% or 6% casein as the sole source of protein. Red...

  3. Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs

    PubMed Central

    Wu, Miaomiao; Liao, Peng; Deng, Dun; Liu, Gang; Wen, Qingqi; Wang, Yongfei; Qiu, Wei; Liu, Yan; Wu, Xingli; Ren, Wenkai; Tan, Bie; Chen, Minghong; Xiao, Hao; Wu, Li; Li, Tiejun; Nyachoti, Charles M.; Adeola, Olayiwola; Yin, Yulong

    2014-01-01

    The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins. PMID:25405987

  4. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings.

    PubMed

    Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan

    2018-02-01

    To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.

  5. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding.

    PubMed

    Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A

    2015-05-01

    Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans. Copyright © 2015 the American Physiological Society.

  6. Protective effect of NSA on intestinal epithelial cells in a necroptosis model

    PubMed Central

    Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling

    2017-01-01

    Objective This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). Methods 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF-α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. Results In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF-α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF-α and Z-VAD-fmk. Conclusion NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD. PMID:29156831

  7. Protective effect of NSA on intestinal epithelial cells in a necroptosis model.

    PubMed

    Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling

    2017-10-17

    This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF- α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF- α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF- α and Z-VAD-fmk. NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD.

  8. Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG.

    PubMed

    Banasaz, M; Norin, E; Holma, R; Midtvedt, T

    2002-06-01

    There is increasing scientific and commercial interest in using beneficial microorganisms (i.e., probiotics) to enhance intestinal health. Of the numerous microbial strains examined, Lactobacillus rhamnosus GG has been most extensively studied. Daily intake of L. rhamnosus GG shortens the course of rotavirus infection by mechanisms that have not been fully elucidated. Comparative studies with germfree and conventional rats have shown that the microbial status of an animal influences the intestinal cell kinetics and morphology. The present study was undertaken to study whether establishment of L. rhamnosus GG as a mono-associate in germfree rats influences intestinal cell kinetics and morphology. L. rhamnosus GG was easily established in germfree rats. After 3 days of mono-association, the rate of mitoses in the upper part of the small intestine (jejunum 1) increased as much as 14 and 22% compared to the rates in germfree and conventional counterparts, respectively. The most striking alteration in morphology was an increase in the number of cells in the villi. We hypothesis that the compartmentalized effects of L. rhamnosus GG may represent a reparative event for the mucosa.

  9. Effects of Adding Clostridium sp. WJ06 on Intestinal Morphology and Microbial Diversity of Growing Pigs Fed with Natural Deoxynivalenol Contaminated Wheat

    PubMed Central

    Li, FuChang; Wang, JinQuan; Huang, LiBo; Chen, HongJu; Wang, ChunYang

    2017-01-01

    Deoxynivalenol (DON) is commonly detected in cereals, and is a threat to human and animal health. The effects of microbiological detoxification are now being widely studied. A total of 24 pigs (over four months) were randomly divided into three treatments. Treatment A was fed with a basal diet as the control group. Treatment B was fed with naturally DON-contaminated wheat as a negative control group. Treatment C was fed with a contaminated diet that also had Clostridium sp. WJ06, which was used as a detoxicant. Growth performance, relative organ weight, intestinal morphology, and the intestinal flora of bacteria and fungi were examined. The results showed that after consuming a DON-contaminated diet, the growth performance of the pigs decreased significantly (p < 0.05), the relative organ weight of the liver and kidney increased significantly (p < 0.05), and the integrity of the intestinal barrier was also impaired, though the toxic effects of the contaminated diets on growing pigs were relieved after adding Clostridium sp. WJ06. The data from MiSeq sequencing of the 16S ribosomal ribonucleic acid (rRNA) gene and internal transcribed spacer 1 (ITS1) gene suggested that the abundance of intestinal flora was significantly different across the three treatments. In conclusion, the application of Clostridium sp. WJ06 can reduce the toxic effects of DON and adjust the intestinal microecosystem of growing pigs. PMID:29186895

  10. Protective effect of genistein on radiation-induced intestinal injury in tumor bearing mice

    PubMed Central

    2013-01-01

    Background Radiation therapy is the most widely used treatment for cancer, but it causes the side effect of mucositis due to intestinal damage. We examined the protective effect of genistein in tumor-bearing mice after abdominal irradiation by evaluation of apoptosis and intestinal morphological changes. Methods Mouse colon cancer CT26 cells were subcutaneously injected at the flank of BALB/c mice to generate tumors. The tumor-bearing mice were treated with abdominal radiation at 5 and 10 Gy, and with genistein at 200 mg/kg body weight per day for 1 d before radiation. The changes in intestinal histology were evaluated 12 h and 3.5 d after irradiation. To assess the effect of the combination treatment on the cancer growth, the tumor volume was determined at sacrifice before tumor overgrowth occurred. Results Genistein significantly decreased the number of apoptotic nuclei compared with that in the irradiation group 12 h after 5 Gy irradiation. Evaluation of histological changes showed that genistein ameliorated intestinal morphological changes such as decreased crypt survival, villus shortening, and increased length of the basal lamina 3.5 d after 10 Gy irradiation. Moreover, the genistein-treated group exhibited more Ki-67-positive proliferating cells in the jejunum than the irradiated control group, and crypt depths were greater in the genistein-treated group than in the irradiated control group. The mean weight of the CT26 tumors was reduced in the group treated with genistein and radiation compared with the control group. Conclusion Genistein had a protective effect on intestinal damage induced by irradiation and delayed tumor growth. These results suggest that genistein is a useful candidate for preventing radiotherapy-induced intestinal damage in cancer patients. PMID:23672582

  11. Monosodium L-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs.

    PubMed

    Feng, Zemeng; Li, Tiejun; Wu, Chunli; Tao, Lihua; Blachier, Francois; Yin, Yulong

    2015-04-01

    The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG) is widely used as a flavour enhancer in China. Previous studies have reported that high-fat diet modifies intestinal metabolism and physiology. However, little information is available on the effects of oral MSG on intestine, and no study focus on the interaction of dietary fat and MSG for intestinal health. The aim of the present study was to evaluate the effects of MSG and dietary fat on intestinal health in growing pigs, and to try to identify possible interactions between these 2 nutrients for such effects. A total of 32 growing pigs were used and fed with 4 isonitrogenous and isocaloric diets (basal diet, high-fat diet, basal diet with 3% MSG and high fat diet with 3% MSG). Parameters related to reactive oxygen species metabolism, epithelial morphology, pro-inflammation factors and tight junction protein expression and several species of intestinal microbe were measured. Overall, dietary fat and MSG had detrimental effects on several of the physiological and inflammatory parameters measured in the proximal intestine, while exerting beneficial effects on the distal intestine in growing pigs, with generally antagonistic effects. These results may be of particular relevance for nutritional concerns in patients with intestinal diseases.

  12. The effect of chronic feeding of diacetoxyscirpenol and T-2 toxin on performance, health, small intestinal physiology and antibody production in turkey poults.

    PubMed

    Sklan, D; Shelly, M; Makovsky, B; Geyra, A; Klipper, E; Friedman, A

    2003-03-01

    1. The effects of feeding T-2 toxin or diacetoxyscirpenol (DAS) at levels up to 1 ppm for 32 d on performance, health, small intestinal physiology and immune response to enteral and parenteral immunisation were examined in young poults. 2. Slight improvement in growth was observed in some groups of poults fed T-2 or DAS mycotoxins for 32 d, with no change in feed efficiency. Feeding both T-2 and DAS resulted in oral lesions which had maximal severity after 7-15 d. 3. Mild intestinal changes were observed at 32 d but no pathological or histopathological lesions were found. Both mycotoxins altered small intestinal morphology, especially in the jejunum where villi were shorter and thinner. In addition, both DAS and T-2 mycotoxins enhanced the proportion of proliferating cells both in the crypts and along the villi. Migration rates were reduced in the jejunum of poults fed T-2 toxin but did not change in the duodenum or in poults fed DAS. 4. No significant effects of T-2 or DAS were observed on antibody production to antigens administered by enteral or parenteral routes. 5. This study indicates that tricothecene toxins at concentrations of up to 1 ppm for more than 30 d influenced small intestinal morphology but did not affect growth or antibody production.

  13. Controlling Salmonella infection in weanling pigs through water delivery of direct-fed microbials or organic acids: Part II. Effects on intestinal histology and active nutrient transport

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the effects of water-delivered direct-fed microbials (DFM) or organic acids on intestinal morphology and active nutrient absorption in weanling pigs following deliberate Salmonella infection. Pigs (n = 88) were weaned at 19 ± 2 d of age and assigned to one...

  14. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  15. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon ( Salmo salar L.).

    PubMed

    Knudsen, David; Jutfelt, Fredrik; Sundh, Henrik; Sundell, Kristina; Koppe, Wolfgang; Frøkiaer, Hanne

    2008-07-01

    Saponins are naturally occurring amphiphilic molecules and have been associated with many biological activities. The aim of the present study was to investigate whether soya saponins trigger the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.), and to examine if dietary soya saponins increase the epithelial permeability of the distal intestine in Atlantic salmon. Seven experimental diets containing different levels of soya saponins were fed to seawater-adapted Atlantic salmon for 53 d. The diets included a fishmeal-based control diet, two fishmeal-based diets with different levels of added soya saponins, one diet containing 25% lupin kernel meal, two diets based on 25% lupin kernel meal with different levels of added soya saponins, and one diet containing 25% defatted soyabean meal. The effect on intestinal morphology, intestinal epithelial permeability and faecal DM content was examined. Fish fed 25% defatted soyabean meal displayed severe enteritis, whereas fish fed 25% lupin kernel meal had normal intestinal morphology. The combination of soya saponins and fishmeal did not induce morphological changes but fish fed soya saponins in combination with lupin kernel meal displayed significant enteritis. Increased epithelial permeability was observed in fish fed 25% defatted soyabean meal and in fish fed soya saponin concentrate independent of the protein source in the feed. The study demonstrates that soya saponins, in combination with one or several unidentified components present in legumes, induce an inflammatory reaction in the distal intestine of Atlantic salmon. Soya saponins increase the intestinal epithelial permeability but do not, per se, induce enteritis.

  16. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs.

    PubMed

    Liu, Yulan; Huang, Jingjing; Hou, Yongqing; Zhu, Huiling; Zhao, Shengjun; Ding, Binying; Yin, Yulong; Yi, Ganfeng; Shi, Junxia; Fan, Wei

    2008-09-01

    This study evaluated whether arginine (Arg) supplementation could attenuate gut injury induced by Escherichia coli lipopolysaccharide (LPS) challenge through an anti-inflammatory role in weaned pigs. Pigs were allotted to four treatments including: (1) non-challenged control; (2) LPS-challenged control; (3) LPS+0.5 % Arg; (4) LPS+1.0 % Arg. On day 16, pigs were injected with LPS or sterile saline. At 6 h post-injection, pigs were killed for evaluation of small intestinal morphology and intestinal gene expression. Within 48 h of challenge, 0.5 % Arg alleviated the weight loss induced by LPS challenge (P = 0.025). In all three intestinal segments, 0.5 or 1.0 % Arg mitigated intestinal morphology impairment (e.g. lower villus height and higher crypt depth) induced by LPS challenge (P < 0.05), and alleviated the decrease of crypt cell proliferation and the increase of villus cell apoptosis after LPS challenge (P < 0.01). The 0.5 % Arg prevented the elevation of jejunal IL-6 mRNA abundance (P = 0.082), and jejunal (P = 0.030) and ileal (P = 0.039) TNF-alpha mRNA abundance induced by LPS challenge. The 1.0 % Arg alleviated the elevation of jejunal IL-6 mRNA abundance (P = 0.053) and jejunal TNF-alpha mRNA abundance (P = 0.003) induced by LPS challenge. The 0.5 % Arg increased PPARgamma mRNA abundance in all three intestinal segments (P < 0.10), and 1.0 % Arg increased duodenal PPARgamma mRNA abundance (P = 0.094). These results indicate that Arg supplementation has beneficial effects in alleviating gut mucosal injury induced by LPS challenge. Additionally, it is possible that the protective effects of Arg on the intestine are associated with decreasing the expression of intestinal pro-inflammatory cytokines through activating PPARgamma expression.

  17. A Maternal High-Energy Diet Promotes Intestinal Development and Intrauterine Growth of Offspring

    PubMed Central

    Liu, Peilin; Che, Long; Yang, Zhenguo; Feng, Bin; Che, Lianqiang; Xu, Shengyu; Lin, Yan; Fang, Zhengfeng; Li, Jian; Wu, De

    2016-01-01

    It has been suggested that maternal nutrition during gestation is involved in an offspring’s intestinal development. The aim of this study was therefore to evaluate the effects of maternal energy on the growth and small intestine development of offspring. After mating, twenty gilts (Large White (LW) breeding, body weight (BW) at 135.54 ± 0.66 kg) were randomly allocated to two dietary treatments: a control diet (CON) group and a high-energy diet (HED) group, respectively. The nutrient levels of the CON were referred to meet the nutrient recommendations by the National Research Council (NRC, 2012), while the HED was designed by adding an amount of soybean oil that was 4.6% of the total diet weight to the CON. The dietary treatments were introduced from day 1 of gestation to farrowing. At day 90 of gestation, day 1 post-birth, and day 28 post-birth, the weights of fetuses and piglets, intestinal morphology, enzyme activities, and gene and protein expressions of intestinal growth factors were determined. The results indicated that the maternal HED markedly increased the BW, small intestinal weight, and villus height of fetuses and piglets. Moreover, the activities of lactase in fetal intestine, sucrase in piglet intestine were markedly increased by the maternal HED. In addition, the maternal HED tended to increase the protein expression of insulin-like growth factor 1 receptor (IGF-1R) in fetal intestine, associated with significantly increased the gene expression of IGF-1R. In conclusion, increasing energy intake could promote fetal growth and birth weight, with greater intestinal morphology and enzyme activities. PMID:27164130

  18. In Vivo Effects of Cagaita (Eugenia dysenterica, DC.) Leaf Extracts on Diarrhea Treatment

    PubMed Central

    Lima, T. B.; Silva, O. N.; Silva, L. P.; Rocha, T. L.; Grossi-de-Sá, M. F.; Franco, O. L.; Leonardecz, E.

    2011-01-01

    Eugenia dysenterica is a plant typically found in the Cerrado biome and commonly used in popular medicine due to its pharmacological properties, which include antidiarrheal, skin healing, and antimicrobial activities. The effects of ethanolic extract, aqueous extract and infusion of E. dysenterica leaves on intestinal motility and antidiarrheal activity were evaluated using ricin oil-induced diarrhea in rats. At doses of 400 and 800 mg·Kg−1, the ethanolic extract decreased intestinal motility while the other extracts showed no significant effects. Moreover, serum levels of chloride, magnesium, and phosphorus were also measured in rats. Histopathologic and enzymatic analyses were also performed to investigate any toxic effect. Animals treated with infusion, ethanolic extract, ricin oil, and loperamide presented morphological alterations in the small intestine, such as mucosa lesion, epithelial layer damage, and partial loss and/or morphological change of villi. Furthermore, the liver showed congestion and hydropic degeneration. Serum levels of alanine aminotransferase increased significantly in all treatments, but none rose above reference values. In summary, our results suggest that compounds present in leaves of E. dysenterica may have therapeutic benefits on recovery from diarrhea despite their toxic effects. PMID:20953423

  19. Digestibility of soybean and pigeon pea seed meals and morphological intestinal alterations in pigs.

    PubMed

    Mekbungwan, Apichai; Thongwittaya, Narin; Yamauchi, Koh-En

    2004-06-01

    To compare the nutrient digestibility of soybean meal (SM) and pigeon pea seed meal (PM) as well as morphological intestinal alterations in piglets fed them, three pigs per group were randomly selected at the end of the feeding experiment for ten days. Growth performance was higher in the SM group than in the PM group (p<0.05). The digestibility of crude protein, crude fat and crude fiber was 80.6%, 23.6% and 52.4% in the SM group, while in the PM group, values of 49.8%, 23.6% and 43.2% were observed, respectively. Digestible energy was 3.26 kcal g(-1) in SM and 3.17 kcal g(-1) in PM. It was concluded that the digestibility of PM was lower than that of SM; almost half of the protein in PM was digested. Dietary treatments had no effect on length of each small intestinal segment and weight of visceral organs (small intestine, liver, heart, spleen, kidney, stomach and lung) except the decreased kidney weight in the PM group (p<0.05). The epithelial cells on the jejunal villi showed a dome-like shape in the SM group, but they were a flat shape in the PM group. The present digestion trial and histological intestinal data suggest that the intestinal digestive and absorptive functions are much more atrophied in the PM group than in the SM group, and demonstrate that histological intestinal alterations might be well related with the intestinal functions.

  20. Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection.

    PubMed

    Veldhuizen, Edwin J A; van Dijk, Albert; Tersteeg, Monique H G; Kalkhove, Stefanie I C; van der Meulen, Jan; Niewold, Theo A; Haagsman, Henk P

    2007-01-01

    Defensins are antimicrobial peptides that play an important role in the innate immune response in the intestine. Up to date, only one beta-defensin (pBD-1), has been described in pig, which was found to be expressed at low levels in the intestine. We set-up a quantitative PCR method to detect the gene expression of pBD-1 and a newly discovered porcine beta-defensin, pBD-2. Expression of pBD-1 mRNA increased from the proximal to the distal part of the intestine whereas pBD-2 expression decreased. The main gene expression sites for pBD-2 were kidney and liver, whereas pBD-1 was mainly expressed in tongue. The porcine small intestinal segment perfusion (SISP) technique was used to investigate effects of Salmonella typhimurium DT104 on intestinal morphology and pBD-1 and pBD-2 mRNA levels in vivo. The early responses were studied 2, 4 and 8 h post-infection in four separate jejunal and ileal segments. Immunohistochemistry showed invasion of the mucosa by Salmonella and changes in intestinal morphology. However, no concomitant changes in expression of either pBD-1 or pBD-2 were observed. We conclude that at least two defensins are differentially expressed in the intestine of pigs, and that expression of both defensins is not altered by S. typhimurium under these conditions.

  1. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers.

    PubMed

    Xu, Z R; Hu, C H; Xia, M S; Zhan, X A; Wang, M Q

    2003-06-01

    Two hundred forty male Avian Farms broiler chicks, 1 d of age, were randomly allocated to four treatments, each of which had five pens of 12 chicks per pen. The chicks were used to investigate the effects of fructooligosaccharide (FOS) on digestive enzyme activities and intestinal microflora and morphology. The chicks received the same basal diet based on corn-soybean meal, and FOS was added to the basal diet at 0, 2.0, 4.0, and 8.0 g/kg diet at the expense of corn. Addition of 4.0 g/kg FOS to the basal diet significantly increased average daily gain of broilers. The feed-to-gain ratios were significantly decreased for the birds fed diets with 2.0 and 4.0 g/kg FOS versus the control. Addition of 4.0 g/kg FOS enhanced the growth of Bifidobacterium and Lactobacillus, but inhibited Escherichia coli in the small intestinal and cecal digesta. Supplementation of 2.0 or 4.0 g/kg FOS to chicks significantly improved the activities of amylase compared to the control (12.80 or 14.75 vs. 8.42 Somogyi units). A significant increase in the activities of total protease was observed in 4.0 g/kg FOS-treated birds versus controls (83.91 vs. 65.97 units). Morphology data for the duodenum, jejunum, and ileum showed no significant differences for villus height, crypt depth, or microvillus height at the duodenum. By contrast, addition of 4.0 g/kg FOS significantly increased ileal villus height, jejunal and ileal microvillus height, and villus-height-to-crypt-depth ratios at the jejunum and ileum and decreased crypt depth at the jejunum and ileum. However, addition of 8.0 g/kg FOS had no significant effect on growth performance, digestive enzyme activities, intestinal microflora, or morphology.

  2. (abstract) Effects of Radiation and Oxidative Stress on Development and Morphology of Intestinal Cells

    NASA Technical Reports Server (NTRS)

    Honda, Shuji; Nelson, Gregory; Schubert, Wayne

    1993-01-01

    Intestinal cells when subjected to oxidative stress or radiation exhibit abnormal nuclear divisions observed as: 1) supernumerary cell divisions in anterior intestinal cells or 2) incomplete nuclear division and the persistence of anaphase bridges between daughter nuclei. Two oxygen sensitive mutants, mev-1 and rad-8 were observed to exhibit spontaneous supernumerary nuclear divisions at low frequency. N2 can be induced to undergo these divisions by treatment with the superoxide dismutase (SOD) inhibitor diethyl dithicarbamate or with the free radical generator methyl viologen. By contrast, the free radical generator bleomycin produces anaphase bridges in N2 intestinal nuclei at high frequency. Intestinal anaphase bridges can be induced by ionizing radiation and their formation is dependent on dose and radiation type.

  3. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers.

    PubMed

    Salehimanesh, A; Mohammadi, M; Roostaei-Ali Mehr, M

    2016-08-01

    This study was conducted to investigate the effects of probiotic (Primalac), prebiotic (TechnoMos) and synbiotic (Primalac + TechnoMos) supplementation on performance, immune responses, intestinal morphology and bacterial populations of ileum in broilers. A total of 240 one-day-old broiler chicks were randomly divided into four treatment groups which included 60 birds. Control group did not receive any treatment. The chicks in the second, third and fourth groups were fed probiotic (0.9 g/kg), prebiotic (0.9 g/kg) and probiotic (0.9 g/kg) plus probiotic (0.9 g/kg; synbiotic), respectively, at entire period. Daily feed intake, daily weight gain and feed conversion ratio were evaluated. The birds were immunized by sheep red blood cell (SRBC) on days 12 and 29 of age and serum antibody titres were measured on days 28, 35 and 42. Newcastle vaccines administered on days 9, 18 and 27 to chicks and blood samples were collected on day 42. Intestinal morphometric assessment and enumeration of intestinal bacterial populations were performed on day 42. The results indicated that consumption of probiotic, prebiotic and synbiotic had no significant effect on daily feed intake, daily body weight gain, feed conversion ratio, carcass traits, intestinal morphology and bacterial populations of ileum (p > 0.05). Consumption of prebiotic increased total and IgM anti-SRBC titres on days 28 and 42 and antibody titre against Newcastle virus disease on day 42 (p < 0.05). Synbiotic increased only total anti-SRBC on day 28 (p < 0.05). It is concluded that consumption of prebiotic increased humoral immunity in broilers. Therefore, supplementation of diet with prebiotic for improvement of humoral immune responses is superior to synbiotic supplementation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  4. Effects of dietary supplementation with a chlorella by-product on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology in broiler chickens.

    PubMed

    Kang, H K; Park, S B; Kim, C H

    2017-04-01

    This study aimed to determine the effect of different dietary levels of a Chlorella by-product (CBP) on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology of broilers. In total, 480 one-day-old broiler chickens were randomly allotted to four dietary treatments with four replicated pens consisting of 30 chicks. The basal diet was formulated to be adequate in energy and nutrients. Three additional diets were prepared by supplementing 25, 50 or 75 g/kg of CBP to the basal diet. The diets were fed to the broilers ad libitum for 35 days. Result indicated that increasing inclusion level of CBP improved BW gain (linear, p < 0.05). There was no effect of inclusion level of CBP in diets on total cholesterol, triglyceride, aspartate aminotransferase and alanine aminotransferase levels during the 35 days. Plasma IgG, IgM and IgA concentrations increased (linear, p < 0.05) with inclusion level of CBP in diets. Supplementation of CBP in the diets increased (linear, p < 0.05) the concentrations of Lactobacillus in the caecal content and decreased (linear, p < 0.05) the concentrations of Escherichia coli and Salmonella in the caecal content. Villus height increased (linear and quadratic, p < 0.05) with inclusion level of CBP in diets. Crypt depth increased (quadratic, p < 0.05) with inclusion level of CBP, and a decreased villus height: crypt depth ratio (quadratic, p < 0.05) was observed as inclusion level of CBP in diets increased. The results of the current experiment indicate that dietary supplementation of CBP improves growth performance of birds. Dietary CBP has improving Lactobacillus spp. concentrations in the gastrointestinal tract, plasma immunoglobulin concentrations and intestinal mucosal morphology. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  5. Influence of dietary fiber on luminal environment and morphology in the small and large intestine of sows.

    PubMed

    Serena, A; Hedemann, M S; Bach Knudsen, K E

    2008-09-01

    In this study, the effect of feeding different types and amounts of dietary fiber (DF) on luminal environment and morphology in the small and large intestine of sows was studied. Three diets, a low-fiber diet (LF) and 2 high-fiber diets (high fiber 1, HF1, and high fiber 2, HF2) were used. Diet LF (DF, 17%; soluble DF 4.6%) was based on wheat and barley, whereas the 2 high-fiber diets (HF1: DF, 43%; soluble DF, 11.0%; and HF2: DF, 45%; soluble DF, 7.6%) were based on wheat and barley supplemented with different coproducts from the vegetable food and agroindustry (HF1 and HF2: sugar beet pulp, potato pulp, and pectin residue; HF2: brewers spent grain, seed residue, and pea hull). The diets were fed for a 4-wk period to 12 sows (4 receiving each diet). Thereafter, the sows were killed 4 h postfeeding, and digesta and tissue samples were collected from various parts of the small and large intestine. The carbohydrates in the LF diet were well digested in the small intestine, resulting in less digesta in all segments of the intestinal tract. The fermentation of nonstarch polysaccharides in the large intestine was affected by the chemical composition and physicochemical properties. The digesta from pigs fed the LF diet provided low levels of fermentable carbohydrates that were depleted in proximal colon, whereas for pigs fed the 2 high-DF diets, the digesta was depleted of fermentable carbohydrates at more distal locations of the colon. The consequence was an increased retention time, greater DM percentage, decreased amount of material, and a decreased tissue weight after feeding the LF diet compared with the HF diets. The concentration of short-chain fatty acids was consistent with the fermentability of carbohydrates in the large intestine, but there was no effect of the dietary composition on the molar short-chain fatty acid proportions. It was further shown that feeding the diet providing the greatest amount of fermentable carbohydrates (diet HF1, which was high in soluble DF) resulted in significant morphological changes in the colon compared with the LF diet.

  6. Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition.

    PubMed

    Attia, Suzanna; Feenstra, Marjon; Swain, Nathan; Cuesta, Melina; Bandsma, Robert H J

    2017-11-01

    Malnutrition contributes significantly to death and illness worldwide and especially to the deaths of children younger than 5 years. The relation between intestinal changes in malnutrition and morbidity and mortality has not been well characterized; however, recent research indicates that the functional and morphologic changes of the intestine secondary to malnutrition itself contribute significantly to these negative clinical outcomes and may be potent targets of intervention. The aim of this review was to summarize current knowledge of experimental and clinically observed changes in the intestine from malnutrition preclinical models and human studies. Limited clinical studies have shown villous blunting, intestinal inflammation, and changes in the intestinal microbiome of malnourished children. In addition to these findings, experimental data using various animal models of malnutrition have found evidence of increased intestinal permeability, upregulated intestinal inflammation, and loss of goblet cells. More mechanistic studies are urgently needed to improve our understanding of malnutrition-related intestinal dysfunction and to identify potential novel targets for intervention.

  7. [Changes in the peritoneum of the small intestine and diaphragm in experimental portal hypertension].

    PubMed

    Khoroshaev, V A; Vorozheĭkin, V M; Baĭbekov, I M

    1991-04-01

    Diaphragm and small intestine peritoneum morphology was studied in experimental portal hypertension in rats with the help of luminescent, transmission and scanning electron microscopy techniques. Structural organizations of these peritoneum portions and performance function were different: fluid transudation realized through the small intestine peritoneum and resorption occurred via diaphragm peritoneum. Morphological signs allowed to judge about the increasing of fluid transudation in abdominal cavity and diaphragmatic resorption in early period of portal hypertension. Morphological alterations appeared in peritoneum resorption sites (pumping diaphragmatic hatchs) according to progress of portal hypertension that indicated decompensation process of peritoneal fluid absorption and led to ascites.

  8. Intestinal growth and morphology is associated with the increase in heat shock protein 70 expression in weaning piglets through supplementation with glutamine.

    PubMed

    Zhong, X; Zhang, X H; Li, X M; Zhou, Y M; Li, W; Huang, X X; Zhang, L L; Wang, T

    2011-11-01

    The objectives of this study were to determine the effects of oral Gln supplementation on growth performance, intestinal morphology, and expression of heat shock protein (Hsp) 70 in weaning piglets. A total of 65 piglets after weaning at 21 d of age (d 0) were used in this experiment. Five piglets were randomly selected and euthanized initially at d 0 to determine baseline values for the expression of Hsp70 in the small intestine. The remaining piglets were randomly assigned to 1 of 2 treatments and received 0 or 1 g of oral Gln/kg of BW every 12 h. After piglets were humanely killed at d 3, 7, and 14 postweaning, the duodenum, jejunum, and ileum of piglets were sampled to evaluate intestinal morphology and the expression and localization of Hsp70. The results indicated that oral Gln supplementation increased plasma concentrations of Gln compared with those in control piglets (P < 0.05). Average daily gain and ADFI were greater in piglets orally supplemented with Gln than in control piglets during the whole period (P < 0.05). The incidence of diarrhea in piglets orally supplemented with Gln was 24% less than (P = 0.064) that in control piglets at 8 to 14 d after weaning. The weights of the jejunum and ileum were greater in piglets orally supplemented with Gln compared with those of control piglets relative to BW on d 14 postweaning (P < 0.05). The villus height and the villus height:crypt depth ratio in the jejunum and the ileum were greater in piglets receiving oral Gln on d 14 postweaning (P < 0.05) than in control piglets. These results indicate that Gln supplementation can influence the intestinal morphology of weaned piglets. The expression of hsp70 mRNA and Hsp70 proteins in the duodenum and jejunum was greater in piglets supplemented with Gln than in control piglets (P < 0.05). However, Gln supplementation had no effect on the expression of hsp70 mRNA and Hsp70 proteins in the ileum. Moreover, the localization of Hsp70 in the cytoplasm indicated that Hsp70 has a cytoprotective role in epithelial cell function and structure. These results indicate that Gln supplementation may be beneficial for intestinal health and development and may thus mitigate diarrhea and improve growth performance. The protective mechanisms of Gln in the intestine may be associated with the increase in Hsp70 expression.

  9. Effect of feeding soybean meal and differently processed peas on intestinal morphology and functional glucose transport in the small intestine of broilers.

    PubMed

    Röhe, I; Boroojeni, F Goodarzi; Zentek, J

    2017-09-01

    Peas are locally grown legumes being rich in protein and starch. However, the broad usage of peas as a feed component in poultry nutrition is limited to anti-nutritional factors, which might impair gut morphology and function. This study investigated the effect of feeding raw or differently processed peas compared with feeding a soybean meal-based control diet (C) on intestinal morphology and nutrient transport in broilers. A total of 360 day-old broiler chicks were fed with one of the following diets: The C diet, and 3 diets containing raw peas (RP), fermented peas (FP) and enzymatically pre-digested peas (EP), each supplying 30% of dietary crude protein. After 35 d, jejunal samples of broilers were taken for analyzing histomorphological parameters, active glucose transport in Ussing chambers and the expression of genes related to glucose absorption, intestinal permeability and cell maturation. Villus length (P = 0.017) and crypt depth (P = 0.009) of EP-fed broilers were shorter compared to birds received C. The villus surface area was larger in broilers fed C compared to those fed with the pea-containing feed (P = 0.005). Glucose transport was higher for broilers fed C in comparison to birds fed with the EP diet (P = 0.044). The sodium-dependent glucose co-transporter 1 (SGLT-1) expression was down-regulated in RP (P = 0.028) and FP (P = 0.015) fed broilers. Correlation analyses show that jejunal villus length negatively correlates with the previously published number of jejunal intraepithelial T cells (P = 0.014) and that jejunal glucose transport was negatively correlated with the occurrence of jejunal intraepithelial leukocytes (P = 0.041). To conclude, the feeding of raw and processed pea containing diets compared to a soybean based diet reduced the jejunal mucosal surface area of broilers, which on average was accompanied by lower glucose transport capacities. These morphological and functional alterations were associated with observed mucosal immune reactions. Further studies are required elucidating the specific components in peas provoking such effects and whether these effects have a beneficial or detrimental impact on gut function and animal health. © 2017 Poultry Science Association Inc.

  10. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress

    PubMed Central

    Ohashi, Wakana; Kimura, Shunsuke; Iwanaga, Toshihiko; Furusawa, Yukihiro; Irié, Tarou; Izumi, Hironori; Watanabe, Takashi; Hara, Takafumi; Ohara, Osamu; Koseki, Haruhiko; Sato, Toshiro; Robine, Sylvie; Mori, Hisashi; Hattori, Yuichi; Mishima, Kenji; Ohno, Hiroshi; Hase, Koji; Fukada, Toshiyuki

    2016-01-01

    Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. PMID:27736879

  11. Effect of gravitational acceleration, hypokinesia and hypodynamia on the structure of the intestinal vascular bed

    NASA Technical Reports Server (NTRS)

    Nikitin, M. V.

    1980-01-01

    A series of experiments comparing single and combined effects of hypokinesia and gravitational acceleration on morphology of intestinal blood vessels are discussed. Results indicate that hypokinesia has a whole body nonspecific effect reflected even in an organ whose activity shows little or no change due to hypokinesia. In early hypokinetic stages blood redistribution caused anorexia, intestinal atonia, and secretory disruption. Destructive changes from further exposure include aneurisms, varicoses, extravascular movement of blood elements, and vascular wall muscle fiber degeneration. The effect of acceleration is greatest in the ventrodorsal direction. Changes due to acceleration then hypokinesia are like those due to hypokinesia alone; changes due to acceleration before and after hypokinesia are like those due to acceleration. Adaptation raises acceleration tolerance but the effects do not survive four-week hypokinesia.

  12. Supplementation of diets for lactating sows with zinc amino acid complex and gastric nutriment-intubation of suckling pigs with zinc methionine on mineral status, intestinal morphology and bacterial translocation in lipopolysaccharide-challenged weaned pigs.

    PubMed

    Metzler-Zebeli, B U; Caine, W R; McFall, M; Miller, B; Ward, T L; Kirkwood, R N; Mosenthin, R

    2010-04-01

    Sixty-four pigs from 16 sows were used to evaluate addition of zinc amino acid complex (ZnAA) to lactating sows and gastric nutriment-intubation of zinc methionine (ZnMet) to suckling pigs on mineral status, intestinal morphology and bacterial translocation after weaning. Sows were fed a barley-based diet supplying 120 ppm zinc (Zn; control) or the control diet supplemented with 240 ppm Zn from ZnAA. At birth, day-10 and day-21 (weaning) of age, pigs from each litter were nutriment-intubated with 5 ml of an electrolyte solution without or with 40 mg Zn from ZnMet. At weaning, 24 h prior to the collection of small and large intestinal lymph nodes and sections of the duodenum, jejunum and ileum, the pigs received an intramuscular injection of saline without or with 150 microg/kg body weight of Escherichia coli O26:B6 lipopolysaccharide (LPS). With the exception of a tendency (p = 0.09) for lower serum concentration of copper in pigs at weaning from ZnAA-supplemented sows, there were no differences (p > 0.1) than for pigs from control-fed sows for mineral status or intestinal morphology. Nutriment-intubation of ZnMet increased serum (p = 0.001) and liver (p = 0.003) Zn concentrations, number of goblet cells per 250 microm length of jejunal villous epithelium (p = 0.001) and tended (p = 0.06) to enhance jejunum mucosa thickness. Interactive effects (p < 0.05) for higher jejunal villi height and villi:crypt ratio and increased ileal goblet cell counts were apparent for pigs from ZnAA-supplemented sows that also received nutriment-intubation of ZnMet. Challenge with LPS increased (p = 0.05) ileal villous width. Nutriment-intubation of ZnMet decreased (p = 0.05) anaerobic bacteria colony forming unit counts in the large intestinal mesenteric lymph nodes. In conclusion, nutriment-intubation of ZnMet increased serum and liver tissue concentrations of Zn and resulted in limited improvement to intestinal morphology of weaned pigs.

  13. Effects of enteral arginine supplementation on the structural intestinal adaptation in a rat model of short bowel syndrome.

    PubMed

    Sukhotnik, Igor; Lerner, Aaron; Sabo, Edmund; Krausz, Michael M; Siplovich, Leonardo; Coran, Arnold G; Mogilner, Jorge; Shiloni, Eitan

    2003-07-01

    The nitric oxide precursor L-arginine (ARG) has been shown to influence intestinal morphology and intestinal absorptive function. The purpose of the present study was to determine the effect of enteral ARG supplementation on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Thirty male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection, SBS rats underwent 75% small bowel resection, and SBS-ARG rats underwent bowel resection and were treated with ARG given in the drinking water (2%). Parameters of intestinal adaptation, enterocyte proliferation and enterocyte apoptosis were determined on day 14 following operation. We have demonstrated that SBS-ARG animals had a lower jejunal and ileal mucosal weight, jejunal mucosal DNA and protein, ileal mucosal protein, jejunal villus height, jejunal and ileal crypt depth, and enterocyte proliferation index and a greater enterocyte apoptosis compared to SBS untreated animals. We conclude that in a rat model of SBS enteral L-arginine inhibits structural intestinal adaptation. Possible mechanism for this effect may be decreased cell proliferation and increased cell apoptosis.

  14. An enteric virus can replace the beneficial function of commensal bacteria

    PubMed Central

    Kernbauer, Elisabeth; Ding, Yi; Cadwell, Ken

    2014-01-01

    Intestinal microbial communities have profound effects on host physiology1. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined2,3. Here, we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germfree or antibiotics-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells (ILCs) observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signaling. Consistent with this observation, the IFNα receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of antibiotics-treatment in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity akin to commensal bacteria. PMID:25409145

  15. Effects of dietary oregano essential oil and vitamin E supplementation on meat quality, stress response and intestinal morphology in pigs following transport stress.

    PubMed

    Zou, Yi; Hu, Xiao Ming; Zhang, Ting; Wei, Hong Kui; Zhou, Yuan Fei; Zhou, Zhong Xin; Peng, Jian

    2017-02-14

    This study investigates the effects of dietary oregano essential oil (OEO) and vitamin E (Vit E) supplementation on meat quality, stress response and intestinal morphology in pigs following transport stress. A total of 288 finishing pigs were randomly assigned to three groups: a basal diet or a basal diet supplemented either with 200 mg/kg Vit E or 25 mg/kg OEO. After a 28-day feeding trial, total of 132 finishing pigs according diet and transport stress were assigned to one of four treatment groups: 1) control treatment without transport stress (Control group), 2) control treatment with 5-hr transport stress (Negative group), 3) Vit E treatment with 5-hr transport stress and 4) OEO treatment with 5-hr transport stress. Transport stress pigs had lower muscle 45 min pH (pHi) and higher drip loss than control pigs. Dietary OEO and Vit E supplementation significantly increased 45min pH under transport stress, and the OEO groups produced lower 24-hr drip loss values (P<0.05) than that of pigs from the negative group. The OEO-supplemented pigs showed decreased serum levels of creatine kinase (CK) and cortisol (P<0.05), and decreased Hsp 27 (heat shock protein 27) and Hsp 70 (heat shock protein 70) mRNA expression in the muscle (P<0.05). Additionally, histological analysis revealed intestinal epithelial damage in transport stress pigs that was reversed by dietary supplementation with OEO. In conclusion, supplementation with dietary OEO may be superior to supplementation with dietary Vit E in alleviating the meat quality, stress response and intestinal morphology of pigs after challenge due to transportation stress.

  16. Effects of dietary oregano essential oil and vitamin E supplementation on meat quality, stress response and intestinal morphology in pigs following transport stress

    PubMed Central

    ZOU, Yi; HU, Xiao Ming; ZHANG, Ting; WEI, Hong Kui; ZHOU, Yuan Fei; ZHOU, Zhong Xin; PENG, Jian

    2016-01-01

    This study investigates the effects of dietary oregano essential oil (OEO) and vitamin E (Vit E) supplementation on meat quality, stress response and intestinal morphology in pigs following transport stress. A total of 288 finishing pigs were randomly assigned to three groups: a basal diet or a basal diet supplemented either with 200 mg/kg Vit E or 25 mg/kg OEO. After a 28-day feeding trial, total of 132 finishing pigs according diet and transport stress were assigned to one of four treatment groups: 1) control treatment without transport stress (Control group), 2) control treatment with 5-hr transport stress (Negative group), 3) Vit E treatment with 5-hr transport stress and 4) OEO treatment with 5-hr transport stress. Transport stress pigs had lower muscle 45 min pH (pHi) and higher drip loss than control pigs. Dietary OEO and Vit E supplementation significantly increased 45min pH under transport stress, and the OEO groups produced lower 24-hr drip loss values (P<0.05) than that of pigs from the negative group. The OEO-supplemented pigs showed decreased serum levels of creatine kinase (CK) and cortisol (P<0.05), and decreased Hsp 27 (heat shock protein 27) and Hsp 70 (heat shock protein 70) mRNA expression in the muscle (P<0.05). Additionally, histological analysis revealed intestinal epithelial damage in transport stress pigs that was reversed by dietary supplementation with OEO. In conclusion, supplementation with dietary OEO may be superior to supplementation with dietary Vit E in alleviating the meat quality, stress response and intestinal morphology of pigs after challenge due to transportation stress. PMID:27916788

  17. Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia.

    PubMed

    Ramos, M A; Batista, S; Pires, M A; Silva, A P; Pereira, L F; Saavedra, M J; Ozório, R O A; Rema, P

    2017-08-01

    Probiotic administration can be a nutritional strategy to improve the immune response and growth performance of fish. The current study aimed to evaluate the effects of a probiotic blend (Bacillus sp., Pediococcus sp., Enterococcus sp., Lactobacillus sp.) as a dietary supplement on growth performance, feed utilization, innate immune and oxidative stress responses and intestinal morphology in juvenile Nile tilapia (Oreochromis niloticus). The probiotic was incorporated into a basal diet at three concentrations: 0 g/kg (A0: control), 3 g/kg (A1: 1.0×106 colony forming unit (CFU)/g) and 6 g/kg (A2: 2.3×106 CFU/g diet). After 8 weeks of probiotic feeding, weight and specific growth rate where significantly higher in fish-fed A1 diet than in fish-fed A0. Alternative complement in plasma was significantly enhanced in fish-fed A2 when compared with A0. The hepatic antioxidant indicators were not affected by probiotic supplementation. Villi height and goblet cell counts increased significantly in the intestine of fish-fed A1 and A2 diets compared with A0. The dietary probiotic supplementation was maintained until 20 weeks of feeding. Then the selected immune parameters, digestive enzymes and apparent digestibility of diets were studied. No effect of probiotic feeding was observed after that longer period supplementation. The dietary supplementation of mixed species probiotic may constitute a valuable nutritional approach towards a sustainable tilapia aquaculture. The improvement of the immune responses and intestinal morphology play an important role in increasing growth performance, nutrient absorption and disease resistance in fish, important outcomes in such a competitive and developing aquaculture sector.

  18. Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: an animal model.

    PubMed

    Hussein, Mahmoud R; Abu-Dief, Eman E; Kamel, Esam; Abou El-Ghait, Amal T; Abdulwahed, Saad Rezk; Ahmad, Mohamed H

    2008-11-01

    Roentgen irradiation can affect normal cells, especially the rapidly growing ones such as the mucosal epithelial cells of the small intestine. The small intestine is the most radiosensitive gastrointestinal organ and patients receiving radiotherapy directed to the abdomen or pelvis may develop radiation enteritis. Although roentgen rays are widely used for both imaging and therapeutic purposes, our knowledge about the morphological changes associated with radiation enteritis is lacking. This study tries to tests the hypothesis that "the intake of melatonin can minimize the morphological features of cell damage associated with radiation enteritis". We performed this investigation to test our hypothesis and to examine the possible radioprotective effects of melatonin in acute radiation enteritis. To achieve these goals, an animal model consisting of 60 Albino rats was established. The animals were divided into five groups: Group 1, non-irradiated; Group 2, X-ray irradiated (X-ray irradiation, 8 Grays); Group 3, X-ray irradiated-pretreated with solvent (ethanol and phosphate buffered saline); Group 4, non-irradiated-group treated with melatonin, and Group 5, X-ray irradiated-pretreated with melatonin. The small intestines were evaluated for gross (macroscopic), histological, morphometric (light microscopy), and ultrastructural changes (transmission electron microscopy). We found morphological variations among the non-irradiated-group, X-ray irradiated-group and X-ray irradiated-intestines of the animals pretreated with melatonin. The development of acute radiation enteritis in X-ray irradiated-group (Groups 2 and 3) was associated with symptoms of enteritis (diarrhea and abdominal distention) and histological features of mucosal injury (mucosal ulceration, necrosis of the epithelial cells). There was a significant reduction of the morphometric parameters (villous count, villous height, crypt height and villous/crypt height ratio). Moreover, the ultrastructural features of cell damage were evident including: apoptosis, lack of parallel arrangement of the microvilli, loss of the covering glycocalyx, desquamation of the microvilli, vacuolation of the apical parts of the cells, dilatation of the rough endoplasmic reticulum, and damage of the mitochondrial cristae. In the non-irradiated-group and in X-ray irradiated-intestines of the animals pretreated with melatonin (Group 5), these changes were absent and the intestinal mucosal structure was preserved. Administration of melatonin prior to irradiation can protect the intestine against X-rays destructive effects, i.e. radiation enteritis. The clinical applications of these observations await further studies.

  19. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets

    PubMed Central

    Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets. PMID:28704517

  20. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets.

    PubMed

    Wang, Chao; Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.

  1. Captopril and the intestinal response to hemorrhagic shock.

    PubMed

    Rosenfeld, L M; Cooper, H S

    1982-09-01

    In order to help clarify the role of the renin-angiotensin system in the evolution of the post-hemorrhagic circulatory shock syndrome, captopril, a potent inhibitor of the conversion of angiotensin I to angiotensin II, was infused into a hemorrhagic shock model in the cat. The hemorrhage protocol had arterial blood withdrawn until a mean arterial blood pressure (MABP) of 40 mm Hg developed. Oligemia was maintained for a period of 2.5 hr, after which time, all remaining shed blood was reinfused and the cats observed for an additional 2 hr. Coincident with the large reduction in MABP, superior mesenteric artery flow (SMAF) was similarly reduced as recorded by a noncannulating electromagnetic flow probe fitted around the artery. Post-oligemic plasma activities of cathepsin D (CD) and alkaline phosphatase (AP) were elevated 11-fold and 3-fold respectively; intestinal morphological damage was graded at 2.8 +/- 0.6 on a 0-4 scale of increasing severity (control: 0.03 +/- 0.02). Captopril was administered at an initial priming dose of 0.5 mg/kg followed by a continuous infusion of 0.5 mg/kg/hr. Improved post-reinfusion maintenance of MABP and SMAF was noted. Plasma elevations in enzyme activity were more moderate: 8-fold for CD, 1.5-fold for AP. Intestinal morphologic damage was graded at 2.5 +/- 0.3. Blockade of angiotensin II formation by captopril thus demonstrated beneficial effects on post-oligemic hemodynamic status and on the degree of cellular enzyme release without significant improvement in intestinal morphology.

  2. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine the efficacy of granulated lysozyme, compared to antibiotics, on growth performance, small intestinal morphology, and Campylobacter shedding in 10-d-old pigs. Forty-eight pigs ...

  3. Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model

    NASA Astrophysics Data System (ADS)

    Bista, Rajan K.; Uttam, Shikhar; Hartman, Douglas J.; Qiu, Wei; Yu, Jian; Zhang, Lin; Brand, Randall E.; Liu, Yang

    2012-06-01

    The development of accurate and clinically applicable tools to assess cancer risk is essential to define candidates to undergo screening for early-stage cancers at a curable stage or provide a novel method to monitor chemoprevention treatments. With the use of our recently developed optical technology--spatial-domain low-coherence quantitative phase microscopy (SL-QPM), we have derived a novel optical biomarker characterized by structure-derived optical path length (OPL) properties from the cell nucleus on the standard histology and cytology specimens, which quantifies the nano-structural alterations within the cell nucleus at the nanoscale sensitivity, referred to as nano-morphology marker. The aim of this study is to evaluate the feasibility of the nuclear nano-morphology marker from histologically normal cells, extracted directly from the standard histology specimens, to detect early-stage carcinogenesis, assess cancer risk, and monitor the effect of chemopreventive treatment. We used a well-established mouse model of spontaneous carcinogenesis--ApcMin mice, which develop multiple intestinal adenomas (Min) due to a germline mutation in the adenomatous polyposis coli (Apc) gene. We found that the nuclear nano-morphology marker quantified by OPL detects the development of carcinogenesis from histologically normal intestinal epithelial cells, even at an early pre-adenomatous stage (six weeks). It also exhibits a good temporal correlation with the small intestine that parallels the development of carcinogenesis and cancer risk. To further assess its ability to monitor the efficacy of chemopreventive agents, we used an established chemopreventive agent, sulindac. The nuclear nano-morphology marker is reversed toward normal after a prolonged treatment. Therefore, our proof-of-concept study establishes the feasibility of the SL-QPM derived nuclear nano-morphology marker OPL as a promising, simple and clinically applicable biomarker for cancer risk assessment and evaluation of chemopreventive treatment.

  4. The trophic effect of epidermal growth factor on morphological changes and polyamine metabolism in the small intestine of rats.

    PubMed

    Tsujikawa, T; Bamba, T; Hosoda, S

    1990-06-01

    This study was undertaken to evaluate the effect of epidermal growth factor (EGF) on the morphological changes and polyamine metabolism in the atrophic small intestinal mucosa of rats caused by feeding elemental diet (ED; Elental, Ajinomoto, Tokyo) for several weeks. Four-week-old Wistar male rats were given ad libitum ED (1 kcal/ml) for 4 weeks. The body weight increased to the same extent as the control group fed a pellet diet. However, the small intestine became atrophic: the mucosal wet weight of the jejunum decreased to 70%, while that of the ileum decreased to 60%. EGF (10 micrograms/kg) was subcutaneously injected into these rats every 8 hours. Ornithine decarboxylase (ODC) activities of the jejunal and ileal mucosa rose within 12 hours of the initial EGF administration. Mucosal DNA specific activities tended to increase. Next, EGF (30 micrograms/kg/day) was intraperitoneally administered with a Mini-osmotic pump for one week. The wet weight, protein and DNA contents of the ileal mucosa increased significantly compared with those of the saline administered controls, while the crypt cell production rate (CCPR) also increased. Histologically, increases in both villus height and crypt depth were confirmed. These findings indicate that EGF causes mucosal proliferation through polyamine metabolism even in the atrophic small intestine of mature rats after ED administration for 4 weeks.

  5. Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells.

    PubMed

    Kitchens, Kelly M; Foraker, Amy B; Kolhatkar, Rohit B; Swaan, Peter W; Ghandehari, Hamidreza

    2007-11-01

    To investigate the internalization and subcellular trafficking of fluorescently labeled poly (amidoamine) (PAMAM) dendrimers in intestinal cell monolayers. PAMAM dendrimers with positive or negative surface charge were conjugated to fluorescein isothiocyanate (FITC) and visualized for colocalization with endocytosis markers using confocal microscopy. Effect of concentration, generation and charge on the morphology of microvilli was observed using transmission electron microscopy. Both cationic and anionic PAMAM dendrimers internalized within 20 min, and differentially colocalized with endocytosis markers clathrin, EEA-1, and LAMP-1. Transmission electron microscopy analysis showed a concentration-, generation- and surface charge-dependent effect on microvilli morphology. These studies provide visual evidence that endocytic mechanism(s) contribute to the internalization and subcellular trafficking of PAMAM dendrimers across the intestinal cells, and that appropriate selection of PAMAM dendrimers based on surface charge, concentration and generation number allows the application of these polymers for oral drug delivery.

  6. Immunohistochemical and morphometric analysis of effects of vilon and epithalon on functional morphology of radiosensitive organs.

    PubMed

    Khavinson, V K; Yuzhakov, V V; Kvetnoi, I M; Malinin, V V; Popuchiev, V V; Fomina, N K

    2001-03-01

    Studies of the effects of vilon and epithalon on functional morphology of the thymus, spleen, and duodenum in intact rats and rats exposed to single whole-body gamma-irradiation in a dose of 6 Gy showed that vilon stimulated proliferative activity of thymocytes and enhanced proliferative potential of stem cells in the intestine, thus stimulating the postradiation recovery of critical organs. Epithalon decelerated metabolic processes in the duodenal mucosa and suppressed hemopoiesis and lymphopoiesis in the spleen.

  7. Effects of different rearing systems on growth, small intestinal morphology and selected indices of fermentation status in broilers.

    PubMed

    Li, Jianhui; Miao, Zhiqiang; Tian, Wenxia; Yang, Yu; Wang, Jundong; Yang, Ying

    2017-06-01

    A 3×2 factorial experiment was conducted to determine the effects of rearing system and stocking density on the growth performance, intestinal morphology and fermentation status of broilers. Broilers were kept on three rearing systems: floor litter rearing (FRS), plastic net rearing (NRS) and multilayer cage rearing system (CRS), each with two stocking densities (normal and high stocking densities). Results showed that on 7 to 28 days of age, body weight gain appeared as FRS > NRS > CRS. Whereas, CRS significantly enhanced the weight gain of broilers compared with the other systems subsequently. Broilers on FRS had higher counts of cecum Bifidobacteria and Lactobacilli at 28 days of age but had more Escherichia coli and less Bifidobacteria than CRS at 42 days of age. The FRS also decreased volatile fatty acid (VFA) concentration and jejunal villus height-to-crypt depth ratio at all ages. In conclusion, FRS appeared to benefit gut microorganisms during the early growing period along with high body weight gain of broilers, whereas this system might have a harmful effect on subsequent intestinal growth, as indicated by high E. coli, low Bifidobacteria count, low VFA concentration and villus height-to-crypt depth ratio along with low weight gain of broilers. © 2016 Japanese Society of Animal Science.

  8. The gut morphology of the African ice rat, Otomys sloggetti robertsi, shows adaptations to cold environments and sex-specific seasonal variation.

    PubMed

    Schwaibold, U; Pillay, N

    2003-11-01

    We studied the gut morphology of the ice rat Otomys sloggetti robertsi, a non-hibernating murid rodent endemic to the sub-alpine and alpine regions of the southern African Drakensberg and Maluti mountains. The gut structure of O. s. robertsi is well adapted for a high fibre, herbivorous diet, as is the case with other members of its subfamily Otomyinae. Despite the broad similarity in gross gut morphology with mesic- and arid-occurring otomyines, O. s. robertsi has a larger small intestine, caecum, stomach volume and parts of the colon, which we suggest are adaptations for increased energy uptake and/or poor diet quality in alpine environments. However, O. s. robertsi has a smaller larger intestine than other otomyines, perhaps because it occupies a mesic habitat. Seasonal sexual differences occurred, with females increasing dimensions of the stomach, small intestine length, caecum, and large intestine in summer. Sexual asymmetry in gut morphology may be related to increased energy requirements of females during pregnancy and lactation, indicating phenotypic plasticity in response to poor quality vegetation and a shorter growing season in alpine habitats.

  9. Intestinal morphology of the wild Atlantic salmon (Salmo salar).

    PubMed

    Løkka, Guro; Austbø, Lars; Falk, Knut; Bjerkås, Inge; Koppang, Erling Olaf

    2013-08-01

    The worldwide-industrialized production of Atlantic salmon (Salmo salar) has increased dramatically during the last decades, followed by diseases related to the on-going domestication process as a growing concern. Even though the gastrointestinal tract seems to be a target for different disorders in farmed fish, a description of the normal intestinal status in healthy, wild salmon is warranted. Here, we provide such information in addition to suggesting a referable anatomical standardization for the intestine. In this study, two groups of wild Atlantic salmon were investigated, consisting of post smolts on feed caught in the sea and of sexually mature, starved individuals sampled from a river. The two groups represent different stages in the anadromous salmon life cycle, which also are part of the production cycle of farmed salmon. Selected regions of gastrointestinal tract were subjected to morphological investigations including immunohistochemical, scanning electron microscopic, and morphometric analyses. A morphology-based nomenclature was established, defining the cardiac part of the stomach and five different regions of the Atlantic salmon intestine, including pyloric caeca, first segment of the mid-intestine with pyloric caeca, first segment of the mid-intestine posterior to pyloric caeca, second segment of the mid-intestine and posterior intestinal segment. In each of the above described regions, for both groups of fish, morphometrical measurements and regional histological investigations were performed with regards to magnitude and direction of mucosal folding as well as the composition of the intestinal wall. Additionally, immunohistochemistry showing cells positive for cytokeratins, α-actin and proliferating cell nuclear antigen, in addition to alkaline phosphatase reactivity in the segments is presented. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  10. Simian immunodeficiency virus infection of the gastrointestinal tract of rhesus macaques. Functional, pathological, and morphological changes.

    PubMed Central

    Heise, C.; Vogel, P.; Miller, C. J.; Halsted, C. H.; Dandekar, S.

    1993-01-01

    Gastrointestinal dysfunction and wasting are frequent complications of human immunodeficiency virus (HIV) infection. Nutrient malabsorption, decreased digestive enzymes and HIV transcripts have been documented in jejunal mucosa of HIV-infected patients; however, the pathogenesis of this enteropathy is not understood. Rhesus macaques infected with simian immunodeficiency virus (SIV) also exhibit diarrhea and weight loss; therefore, we investigated the use of this animal model to study HIV-associated intestinal abnormalities. A retrospective study of intestinal tissues from 15 SIV-infected macaques was performed to determine the cellular targets of the virus and examine the effect of SIV infection on jejunal mucosal morphology and function. Pathological and morphological changes included inflammatory infiltrates, villus blunting, and crypt hyperplasia. SIV-infected cells were detected by in situ hybridization in stomach, duodenum, jejunum, ileum, cecum, and colon. Using combined immunohistochemistry and in situ hybridization, the cellular targets were identified as T lymphocytes and macrophages. The jejunum of SIV-infected animals had depressed digestive enzyme activities and abnormal morphometry, suggestive of a maturational defect in proliferating epithelial cells. Our results suggest that SIV infection of mononuclear inflammatory cells in intestinal mucosa may alter development and function of absorptive epithelial cells and lead to jejunal dysfunction. Images Figure 1 Figure 2 Figure 5 PMID:8506946

  11. Doxycycline protects human intestinal cells from hypoxia/reoxygenation injury: Implications from an in-vitro hypoxia model.

    PubMed

    Hummitzsch, Lars; Zitta, Karina; Berndt, Rouven; Kott, Matthias; Schildhauer, Christin; Parczany, Kerstin; Steinfath, Markus; Albrecht, Martin

    2017-04-15

    Intestinal ischemia/reperfusion (I/R) injury is a grave clinical emergency and associated with high morbidity and mortality rates. Based on the complex underlying mechanisms, a multimodal pharmacological approach seems necessary to prevent intestinal I/R injury. The antibiotic drug doxycycline, which exhibits a wide range of pleiotropic therapeutic properties, might be a promising candidate for also reducing I/R injury in the intestine. To investigate possible protective effects of doxycycline on intestinal I/R injury, human intestinal CaCo-2 cells were exposed to doxycycline at clinically relevant concentrations. In order to mimic I/R injury, CaCo-2 were thereafter subjected to hypoxia/reoxygenation by using our recently described two-enzyme in-vitro hypoxia model. Investigations of cell morphology, cell damage, apoptosis and hydrogen peroxide formation were performed 24h after the hypoxic insult. Hypoxia/reoxygenation injury resulted in morphological signs of cell damage, elevated LDH concentrations in the respective culture media (P<0.001) and increased protein expression of proapoptotic caspase-3 (P<0.05) in the intestinal cultures. These events were associated with increased levels hydrogen peroxide (P<0.001). Preincubation of CaCo-2 cells with different concentrations of doxycycline (5µM, 10µM, 50µM) reduced the hypoxia induced signs of cell damage and LDH release (P<0.001 for all concentrations). The reduction of cellular damage was associated with a reduced expression of caspase-3 (5µM, P<0.01; 10µM, P<0.01; 50µM, P<0.05), while hydrogen peroxide levels remained unchanged. In summary, doxycycline protects human intestinal cells from hypoxia/reoxygenation injury in-vitro. Further animal and clinical studies are required to prove the protective potential of doxycycline on intestinal I/R injury under in-vivo conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging.

    PubMed

    Rosa, Eloi F; Silva, Antonio C; Ihara, Silvia S M; Mora, Oswaldo A; Aboulafia, Jeannine; Nouailhetas, Viviane L A

    2005-10-01

    Aging and aerobic exercise are two conditions known to interfere with health and quality of life, most likely by inducing oxidative stress to the organism. We studied the effects of aging on the morphological and functional properties of skeletal, cardiac, and intestinal muscles and their corresponding oxidative status in C57BL/6 mice and investigated whether a lifelong moderate exercise program would exert a protective effect against some deleterious effects of aging. As expected, aged animals presented a significant reduction of physical performance, accompanied by a decrease of gastrocnemius cross-sectional area and cardiac hypertrophy. However, most interesting was that aging dramatically interfered with the intestinal structure, causing a significant thickening of the ileum muscular layer. Senescent intestinal myocytes displayed many mitochondria with disorganized cristae and the presence of cytosolic lamellar corpuscles. Lipid peroxidation of ileum and gastrocnemius muscle, but not of the heart, increased in aged mice, thus suggesting enhanced oxidative stress. With exception of the intestinal muscle responsiveness, animals submitted to a daily session of 60 min, 5 days/wk, at 13 up to 21 m/min of moderate running in treadmill during animal life span exhibited a reversion of all the observed aging effects on intestinal, skeletal, and heart muscles. The introduction of this lifelong exercise protocol prevented the enhancement of lipid peroxidation and sarcopenia and also preserved cellular and ultracellular structures of the ileum. This is the first time that the protective effect of a lifelong regular aerobic physical activity against the deleterious effects of aging on intestinal muscle was demonstrated.

  13. Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine

    NASA Astrophysics Data System (ADS)

    Candeo, Alessia; Sana, Ilenia; Ferrari, Eleonora; Maiuri, Luigi; D'Andrea, Cosimo; Valentini, Gianluca; Bassi, Andrea

    2016-05-01

    Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.

  14. Cdx function is required for maintenance of intestinal identity in the adult.

    PubMed

    Hryniuk, Alexa; Grainger, Stephanie; Savory, Joanne G A; Lohnes, David

    2012-03-15

    The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function.

    PubMed

    Xiao, H; Tan, B E; Wu, M M; Yin, Y L; Li, T J; Yuan, D X; Li, L

    2013-10-01

    Deoxynivalenol (DON) affects animal and human health and targets the gastrointestinal tract. The objective of this study was to evaluate the ability of composite antimicrobial peptides (CAP) to repair intestinal injury in piglets challenged with DON. A total of 28 piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% composite antimicrobial peptide (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 mg/kg DON + 0.4% CAP (DON + CAP). After an adaptation period of 7 d, blood samples were collected on d 15 and 30 after the initiation of treatment for determinations of the concentrations of D-lactate and diamine oxidase. At the end of the study, all piglets were slaughtered to obtain small intestines for the determination of intestinal morphology, epithelial cell proliferation, and protein expression in the mammalian target of rapamycin (mTOR) signaling pathway. The results showed that DON increased serum concentrations of D-lactate and diamine oxidase, and these values in the CAP and DON + CAP treatments were less than those in the NC and DON treatments, respectively (P < 0.05). The villous height/crypt depth in the jejunum and ileum and the goblet cell number in the ileum in the CAP and DON + CAP treatments were greater than those in the NC and DON treatments (P < 0.05). The proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum in the DON + CAP treatment were greater than those in the DON treatment (P < 0.05). The DON decreased (P < 0.05) the relative protein expression of phosphorylated Akt (Protein Kinase B) and mTOR in the jejunal and ileal mucosa and of phosphorylated 4E-binding protein 1 (p-4EBP1) in the jejunal mucosa, whereas CAP increased (P < 0.05) the protein expression of p-4EBP1 in the jejunum. These findings showed that DON could enhance intestinal permeability, damage villi, cause epithelial cell apoptosis, and inhibit protein synthesis, whereas CAP improved intestinal morphology and promoted intestinal epithelial cell proliferation and protein synthesis, indicating that CAP may repair the intestinal injury induced by DON.

  16. The effect of diet on ontogenic development of the digestive tract in juvenile reared long snout seahorse Hippocampus guttulatus.

    PubMed

    Palma, J; Bureau, D P; Andrade, J P

    2014-06-01

    Ontogenetic development of the digestive tract and associated organs in long snout seahorse Hippocampus guttulatus juveniles was morphologically and histologically examined from the time of release from the male's pouch until 72 h after the first meal. When released from the male's pouch, juvenile seahorses are small adult replicates. This means that unlike other teleost fish larvae, the first developmental phase has already taken place, and juveniles are morphologically prepared and able to feed on live prey immediately following parturition. At this stage, the buccopharynx, oesophagus, and intestine already appear to be fully developed. The intestine is divided into the midgut and hindgut by an intestinal valve, and intestinal villi are visible in the midgut. When fed with DHA-Selco(®) enriched Artemia, H. guttulatus juveniles developed a severe condition of overinflation of the gas bladder. The continuous overinflation of the gas bladder forced air into the gut (48 h after the first meal), resulting in overinflation of both the gut and the gas bladder (72 h after the first meal), and death occurred within 120 h after the first meal. When fed natural copepods, H. guttulatus juveniles continued a normal feeding activity with no signs of intestinal disorders, and the gas bladder and intestine maintained their normal shape. This is the first study to positively associate gas bladder overinflation of juvenile seahorses with nutritionally unbalanced diets, and not to gas supersaturation alone. It is therefore necessary to develop more adequate feed and/or enrichment products to improve the survival of juvenile seahorses in captivity.

  17. Short bowel syndrome: highlights of patient management, quality of life, and survival.

    PubMed

    Kelly, Darlene G; Tappenden, Kelly A; Winkler, Marion F

    2014-05-01

    Short bowel syndrome (SBS) occurs as a result of intestinal resection, and in many patients is associated with complications, such as diarrhea, dehydration, weight loss, and nutrition deficiencies. Many individuals with SBS develop intestinal failure and require parenteral nutrition (PN) and/or intravenous (IV) fluids (PN/IV). Although PN is essential for survival, some patients with SBS who require long-term PN experience significant complications that contribute to morbidity and mortality. Consequently, therapies that decrease reliance on PN are of considerable importance. Intestinal adaptation, which results in morphologic and functional changes that increase performance of the remnant bowel, occurs spontaneously after intestinal resection. These effects can be enhanced with nutrition and pharmaceutical approaches. For example, oral or tube-fed nutrients stimulate growth and adaptation of intestinal tissues. In addition, prebiotics support growth of beneficial intestinal microbiota that produce short-chain fatty acids, which have been shown in preclinical studies to enhance intestinal structure and function. Finally, glucagon-like peptide 2 (GLP-2) is an endogenous peptide that promotes intestinal rehabilitation and improves intestinal absorption. Teduglutide, a recombinant human GLP-2 analog, has recently been approved in the United States for the treatment of adults with SBS who are dependent on PN. In pharmacodynamic and clinical studies, teduglutide has been shown to promote changes in intestinal structure, such as increases in villus height and crypt depth, and to improve intestinal absorption, as indicated by reduced PN/IV dependence. This article presents a brief overview of SBS, including effects on survival and quality of life and current treatment options.

  18. Protective effect of glutamine and arginine against soybean meal-induced enteritis in the juvenile turbot (Scophthalmus maximus).

    PubMed

    Gu, Min; Bai, Nan; Xu, Bingying; Xu, Xiaojie; Jia, Qian; Zhang, Zhiyu

    2017-11-01

    Soybean meal can induce enteritis in the distal intestine (DI) and decrease the immunity of several cultured fish species, including turbot Scophthalmus maximus. Glutamine and arginine supplementation have been used to improve immunity and intestinal morphology in fish. This study was conducted to investigate the effects of these two amino acids on the immunity and intestinal health of turbot suffering from soybean meal-induced enteritis. Turbots (initial weight 7.6 g) were fed one of three isonitrogenous and isolipidic diets for 8 weeks: SBM (control diet), with 40% soybean meal; GLN, SBM diet plus 1.5% glutamine; ARG, the SBM diet plus 1.5% arginine. Symptoms that are typical of soybean meal-induced enteritis, including swelling of the lamina propria and subepithelial mucosa and a strong infiltration of various inflammatory cells was observed in fish that fed the SBM diet. Glutamine and arginine supplementation significantly increased (1) the weight gain and feed efficiency ratio; (2) the height and vacuolization of villi and the integrity of microvilli in DI; (3) serum lysozyme activity, and the concentrations of C3, C4, and IgM. These two amino acids also significantly decreased the infiltration of leucocytes in the lamina propria and submucosa and the expression of inflammatory cytokines including il-8, tnf-α, and tgf-β. For the mucosal microbiota, arginine supplementation significantly increased microbiota community richness and diversity, and glutamine supplementation significantly increased the relative abundance of Lactobacillus and Bacillus. These results indicate that dietary glutamine and arginine improved the growth performance, feed utilization, and distal intestinal morphology, activated the innate and adaptive immune systems, changed the intestinal mucosal microbiota community, and relieved SBMIE possibly by suppression of the inflammation response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Peroxidised dietary lipids impair intestinal function and morphology of the small intestine villi of nursery pigs in a dose-dependent manner.

    PubMed

    Rosero, David S; Odle, Jack; Moeser, Adam J; Boyd, R Dean; van Heugten, Eric

    2015-12-28

    The objective of this study was to investigate the effect of increasing degrees of lipid peroxidation on structure and function of the small intestine of nursery pigs. A total of 216 pigs (mean body weight was 6·5 kg) were randomly allotted within weight blocks and sex and fed one of five experimental diets for 35 d (eleven pens per treatment with three to four pigs per pen). Treatments included a control diet without added lipid, and diets supplemented with 6 % soyabean oil that was exposed to heat (80°C) and constant oxygen flow (1 litre/min) for 0, 6, 9 and 12 d. Increasing lipid peroxidation linearly reduced feed intake (P<0·001) and weight gain (P=0·024). Apparent faecal digestibility of gross energy (P=0·001) and fat (P<0·001) decreased linearly as the degree of peroxidation increased. Absorption of mannitol (linear, P=0·097) and d-xylose (linear, P=0·089), measured in serum 2 h post gavage with a solution containing 0·2 g/ml of d-xylose and 0·3 g/ml of mannitol, tended to decrease progressively as the peroxidation level increased. Increasing peroxidation also resulted in increased villi height (linear, P<0·001) and crypt depth (quadratic, P=0·005) in the jejunum. Increasing peroxidation increased malondialdehyde concentrations (quadratic, P=0·035) and reduced the total antioxidant capacity (linear, P=0·044) in the jejunal mucosa. In conclusion, lipid peroxidation progressively diminished animal performance and modified the function and morphology of the small intestine of nursery pigs. Detrimental effects were related with the disruption of redox environment of the intestinal mucosa.

  20. Effects of dietary fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. on growth performance, digestibility, and intestinal microbiology and morphology in broiler chickens.

    PubMed

    Shang, Hong Mei; Song, Hui; Xing, Ya Li; Niu, Shu Li; Ding, Guo Dong; Jiang, Yun Yao; Liang, Feng

    2016-01-15

    The present study was undertaken to investigate the effects of fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. (HFC) on growth performance, digestibility, intestinal microbiology, and intestinal morphology in broiler chickens. A total of 600 male Arbor Acres broilers were randomly divided into five dietary treatments (20 broilers per pen with six pens per treatment): CON (basal diet), ANT (basal diet supplemented with 5 mg kg(-1) flavomycin) and HFC (basal diet supplemented with 6, 12, and 18 g kg(-1) HFC). The experimental lasted for 42 days. The results revealed that the average daily gain [linear (L), P < 0.01; quadratic (Q), P < 0.01] of broilers increased when the HFC levels increased during the starter (days 1-21), finisher (days 22-42), and the overall experiment period (days 1 to 42). In the small intestinal digesta and the caecum digesta, the Escherichia coli count (L, P < 0.05; Q, P < 0.001) decreased while the Lactobacilli count (L, P < 0.01; Q, P < 0.001) and Bifidobacteria count (L, P < 0.001; Q, P < 0.001) increased when the HFC levels increased. The crude protein digestibility of broilers (L, P < 0.01; Q, P < 0.001) increased when the HFC levels increased. In the duodenum, jejunum, and ileum of broilers, the villus height and villus height to crypt depth ratio (L, P < 0.001; Q, P < 0.001) increased when the HFC levels increased. Dietary supplementation with HFC increased gut Lactobacilli and Bifidobacteria counts and inhibited E. coli growth, improved nutrient utilisation and intestine villus structure, and thus improved the growth of broilers. © 2015 Society of Chemical Industry.

  1. Gastric intestinal metaplasia with basal gland atypia: a morphological and biologic evaluation in a large Chinese cohort.

    PubMed

    Li, Yuan; Chang, Xiaoyan; Zhou, Weixun; Xiao, Yu; Nakatsuka, Laura N; Chen, Jie; Lauwers, Gregory Y

    2013-04-01

    Gastric intestinal metaplasia can display cytoarchitectural atypia that falls short of qualifying for dysplasia but can be classified as indefinite for dysplasia. Yet few studies have evaluated the prevalence, the morphologic, and biologic characteristics of this variant. Out of a cohort of 554 biopsies with chronic atrophic gastritis and/or dysplasia, we categorized the cases as either (1) simple intestinal metaplasia; (2) intestinal metaplasia with hyperplasia; (3) intestinal metaplasia with basal gland atypia; and (4) gastric dysplasia. The relationship between the subtypes and various clinicopathologic features, mucin immunophenotypes, and biologic characteristics was evaluated. The final cohort consisted of 424 cases of simple intestinal metaplasia, 93 intestinal metaplasia with hyperplasia, 16 intestinal metaplasia with basal gland atypia, and 21 gastric dysplasia. Intestinal metaplasia with basal gland atypia had a prevalence of 2.8% and similar to gastric dysplasia, 3.7%. Both of these lesions were similar in body/fundus distribution (12.5%) and paucity of goblet cells (68.8%). Intestinal metaplasia with basal gland atypia and gastric dysplasia seem to share some biologic similarities but with a lower frequency of alpha-methylacyl-CoA racemase expression (25% versus 62%), p53 expression (6.3% versus 47.6%), and increased Ki-67 index on surface/pit and isthmus in intestinal metaplasia with basal gland atypia. Alternatively, simple intestinal metaplasia and intestinal metaplasia with hyperplasia did not differ statistically with regard to the various characteristics evaluated. We concluded that gastric intestinal metaplasia can be divided into 2 broad categories that are readily defined by cytoarchitectural and biologic characteristics. Based on the characteristics of intestinal metaplasia with basal gland atypia and in keeping with others, we confirm that this subtype could represent a preneoplastic lesion that needs further evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Characterization and evaluation of lactic acid bacteria candidates for intestinal epithelial permeability and Salmonella Typhimurium colonization in neonatal turkey poults.

    PubMed

    Yang, Y; Latorre, J D; Khatri, B; Kwon, Y M; Kong, B W; Teague, K D; Graham, L E; Wolfenden, A D; Mahaffey, B D; Baxter, M; Hernandez-Velasco, X; Merino-Guzman, R; Hargis, B M; Tellez, G

    2018-02-01

    The present study evaluated the microbiological properties of three probiotic candidate strains of lactic acid bacteria (LAB) (128; 131; CE11_2), their effect on intestinal epithelial permeability, and their ability to reduce intestinal colonization of Salmonella Typhimurium (ST) individually or as a batch culture in neonatal turkey poults. Isolates were characterized morphologically and identified using 16S rRNA sequence analyses. Each isolate was evaluated for tolerance and resistance to acidic pH, high osmotic NaCl concentrations, and bile salts in broth medium. In vitro assessment of antimicrobial activity against different enteropathogenic bacteria was determined using an overlay technique. In vitro intestinal permeability was evaluated using a stressed Caco-2 cell culture assay treated with/without the probiotic candidates. The in vivo effect of the selected LAB strains on ST cecal colonization was determined in two independent trials with neonatal turkey poults. The results obtained in this study demonstrate the tolerance of LAB candidates to pH 3, a NaCl concentration of 6.5%, and high bile salts (0.6%). All strains evaluated exhibited in vitro antibacterial activity against Salmonella Enteritidis, ST, and Campylobacter jejuni. Candidates 128 and 131 exhibited a coccus morphology and were identified as Enterococcus faecium, and bacterial strain CE11_2 exhibited clusters of cocci-shaped cells and was identified as Pediococcus parvulus. All three candidate probiotics significantly (P < 0.05) increased transepithelial electrical resistance (TEER) in Caco-2 cells following a 3-h incubation period with hydrogen peroxide compared to control and blank groups. The combination of all three candidates as a batch culture exhibited significant efficacy in controlling intestinal colonization of ST in neonatal turkey poults. Evaluation of the combination of these selected LAB strains according to performance and intestinal health parameters of chickens and turkeys are currently in process. © 2017 Poultry Science Association Inc.

  3. Effects of adding liquid DL-methionine hydroxy analogue-free acid to drinking water on growth performance and small intestinal morphology of nursery pigs.

    PubMed

    Kaewtapee, C; Krutthai, N; Poosuwan, K; Poeikhampha, T; Koonawootrittriron, S; Bunchasak, C

    2010-06-01

    This study was conducted to evaluate the effect of adding liquid DL-methionine hydroxy analogue free acid (LMA) to drinking water on growth performance, small intestinal morphology and volatile fatty acids in the caecum of nursery pigs. Twenty-four crossbred pigs (Large White x Landrace, BW approximately 18 kg) were divided into three groups with four replications of two piglets each. The piglets received drinking water without (control), with 0.05 or 0.10% LMA. The results indicated that adding LMA at 0.10% to drinking water significantly increased their weight gain, average daily feed intake (p < 0.05) and tended to improve the feed conversion ratio. Adding LMA to drinking water significantly increased their water intake and significantly reduced the pH of drinking water (p < 0.01), thus total plate count (p < 0.01) and Escherichia coli in drinking water was reduced (p < 0.05), while the total number of bacteria in the caecum was not significantly affected. Liquid DL-methionine hydroxy analogue free acid supplementation in drinking water tended to decrease pH in the stomach, duodenum, jejunum, colon and rectum. Furthermore, adding LMA at 0.10% significantly increased villous height in the duodenum, jejunum and ileum (p < 0.05), and the villous height:crypt depth ratio in the jejunum and ileum (p < 0.01) was higher, whereas acetic acid concentration in the caecum was significantly lower than in the control group. It could be concluded that adding LMA to drinking water improved growth performance of the nursery pigs because of high water quality and high nutrient utilization caused by an improvement of small intestinal morphology (not from nutritional effect of methionine source).

  4. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets.

    PubMed

    Li, Yue; Zhang, Hao; Su, Weipeng; Ying, Zhixiong; Chen, Yueping; Zhang, Lili; Lu, Zhaoxin; Wang, Tian

    2018-01-01

    The focus of recent research has been directed toward the probiotic potential of Bacillus amyloliquefaciens (BA) on the gut health of animals. However, little is known about BA's effects on piglets with intra-uterine growth retardation (IUGR). Therefore, this study investigated the effects of BA supplementation on the growth performance, intestinal morphology, inflammatory response, and microbiota of IUGR piglets. Eighteen litters of newborn piglets were selected at birth, with one normal birth weight (NBW) and two IUGR piglets in each litter (i.e., 18 NBW and 36 IUGR piglets in total). At weaning, the NBW piglet and one of the IUGR piglets were assigned to groups fed a control diet (i.e., the NBW-CON and IUGR-CON groups). The other IUGR piglet was assigned to a group fed the control diet supplemented with 2.0 g BA per kg of diet (i.e., IUGR-BA group). The piglets were thus distributed across three groups for a four-week period. IUGR reduced the growth performance of the IUGR-CON piglets compared with the NBW-CON piglets. It was also associated with decreased villus sizes, increased apoptosis rates, reduced goblet cell numbers, and an imbalance between pro- and anti-inflammatory cytokines in the small intestine. Supplementation with BA improved the average daily weight gain and the feed efficiency of the IUGR-BA group compared with the IUGR-CON group ( P  < 0.05). The IUGR-BA group exhibited increases in the ratio of jejunal villus height to crypt depth, in ileal villus height, and in ileal goblet cell density. They also exhibited decreases in the numbers of jejunal and ileal apoptotic cells and ileal proliferative cells ( P  < 0.05). Supplementation with BA increased interleukin 10 content, but it decreased tumor necrosis factor alpha level in the small intestines of the IUGR-BA piglets ( P  < 0.05). Furthermore, compared with the IUGR-CON piglets, the IUGR-BA piglets had less Escherichia coli in their jejunal digesta, but more Lactobacillus and Bifidobacterium in their ileal digesta ( P  < 0.05). Dietary supplementation with BA improves morphology, decreases inflammatory response, and regulates microbiota in the small intestines of IUGR piglets, which may contribute to improved growth performance during early life.

  5. Uptake of yeast (Saccharomyces boulardii) in normal and rotavirus treated intestine.

    PubMed Central

    Cartwright-Shamoon, J; Dickson, G R; Dodge, J; Carr, K E

    1996-01-01

    BACKGROUND: There has recently been a growing interest in the use of the non-pathogenic yeast Saccharomyces boulardii, in the treatment of gastrointestinal disorders, including diarrhoea. The full effects of administration of the yeast are not fully understood. AIMS: To investigate the morphological effects of inoculated S boulardii on mouse intestinal villi, both in control animals and those treated with rotavirus. METHODS: Seven day old BALB/c seronegative mice were intubated with either rotavirus (30 microliters orally) or S boulardii (1.5 g/kg) or both rotavirus and S boulardii administered together. Control animals were given saline only. Animals were killed by decapitation 48 hours post-treatment. The middle region of the small intestine was studied using light microscopy and transmission and scanning electron microscopy, including backscattered electron imaging. RESULTS: Animals treated with rotavirus with or without S boulardii developed severe diarrhoea and showed morphological villous changes such as stromal separation and increased epithelial vacuolation. Specimens treated with S boulardii contained yeast particles within the mucosal tissues. CONCLUSION: The administration of S boulardii did not influence the changes produced by rotavirus, but yeast particles appeared to be taken up by the villous mucosa, with the predominant route apparently being uptake between adjacent epithelial cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8991857

  6. The protective effects of Rhodiola crenulata extracts on Drosophila melanogaster gut immunity induced by bacteria and SDS toxicity.

    PubMed

    Zhu, Caixia; Guan, Fachun; Wang, Chao; Jin, Li Hua

    2014-12-01

    The aim of this study was to observe the effect of the Rhodiola crenulata extracts on gut immunity of Drosophila melanogaster. Wild-type flies fed standard cornmeal-yeast medium were used as controls. Experimental groups were supplemented with 2.5% R. crenulata aqueous extracts in standard medium. Survival rate was determined by feeding pathogenic microorganisms and toxic compounds. The levels of reactive oxygen species and dead cells were detected by dihydroethidium and 7-amino-actinomycin D staining, respectively. The expression of antimicrobial peptides was evaluated by quantitative polymerase chain reaction, and morphological change of the intestine was imaged by an Axioskop 2 plus microscope. The results demonstrate that R. crenulata increased the survival rates of adult flies and expression of antimicrobial peptide genes after pathogen or toxic compound ingestion. Moreover, decreased levels of reactive oxygen species and epithelial cell death were associated with results in improved intestinal morphology. The pharmacological action of R. crenulata from Tibet was greater than that from Sichuan. These results indicate that the R. crenulata extracts from Tibet had better pharmacological effect on D. melanogaster gut immunity after ingestion of pathogens and toxic compounds. These results may provide the pharmacological basis for prevention of inflammatory diseases of the intestine. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Effects of Ecklonia cava as fucoidan-rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs.

    PubMed

    Choi, Yohan; Hosseindoust, Abdolreza; Goel, Akshat; Lee, Suhyup; Jha, Pawan Kumar; Kwon, Ill Kyong; Chae, Byung-Jo

    2017-01-01

    In the present study, role of increasing levels of Ecklonia cava (seaweed) supplementation in diets was investigated on growth performance, coefficient of total tract apparent digestibility (CTTAD) of nutrients, serum immunoglobulins, cecal microflora and intestinal morphology of weanling pigs. A total of 200 weaned pigs (Landrace×Yorkshire×Duroc; initial body weight 7.08±0.15 kg) were randomly allotted to 4 treatments on the basis of body weight. There were 5 replicate pens in each treatment including 10 pigs of each. Treatments were divided by dietary Ecklonia cava supplementation levels (0%, 0.05%, 0.1%, or 0.15%) in growing-finishing diets. There were 2 diet formulation phases throughout the experiment. The pigs were offered the diets ad libitum for the entire period of experiment in meal form. The pigs fed with increasing dietary concentrations of Ecklonia cava had linear increase (p<0.05) in the overall average daily gain, however, there were no significant differences in gain to feed ratio, CTTAD of dry matter and crude protein at both phase I and phase II. Digestibility of gross energy was linearly improved (p<0.05) in phase II. At day 28, pigs fed Ecklonia cava had greater (linear, p<0.05) Lactobacillus spp., fewer Escherichia coli ( E. coli ) spp. (linear, p<0.05) and a tendency to have fewer cecal Clostridium spp. (p = 0.077). The total anaerobic bacteria were not affected with supplementation of Ecklonia cava in diets. Polynomial contrasts analysis revealed that villus height of the ileum exhibited a linear increase (p<0.05) in response with the increase in the level of dietary Ecklonia cava . However, villus height of duodenum and jejunum, crypt depth, villus height to crypt depth ratio of different segments of the intestine were not affected. The results suggest that Ecklonia cava had beneficial effects on the growth performance, cecal microflora, and intestinal morphology of weanling pigs.

  8. Effects of dietary supplementation of Chinese medicinal herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs.

    PubMed

    Huang, C W; Lee, T T; Shih, Y C; Yu, B

    2012-04-01

    The purpose of this study was to evaluate the effects of dietary Chinese medicinal herbs (CMH) supplementation composed of Panax ginseng, Dioscoreaceae opposite, Atractylodes macrocephala, Glycyrrhiza uralensis, Ziziphus jujube and Platycodon grandiflorum, on the performance, intestinal tract morphology and immune activity in weanling pigs. Two hundred and forty weaned pigs were assigned randomly to four dietary groups including the negative control (basal diet), 0.1% CMH, 0.3% CMH and 0.114% antibiotic (Chlortetracycline calcium Complex, Sulfathiazole and Procaine Penicillin G) supplementation groups for a 28-day feeding trial. Results indicated that both CMH supplementation groups had a better gain and feed/gain than control group (CT) during the first 2 weeks of the experimental period. The 0.3% CMH had a significant decrease in the diarrhoea score in first 10 days of experimental period when compared with other groups. The CMH supplementation groups had a higher villous height, increased lactobacilli counts in digesta of ileum and decreased coliform counts in colon compared with CT. The immune activities of polymorphonuclear leucocytes (PMNs), including the respiratory burst and Salmonella-killing ability, were significantly enhanced in CMH supplementation groups at day 7 of experiment period. The CMH and antibiotic supplementations increased the nutrient digestibility such as dietary dry matter, crude protein and gross energy in weanling pigs. In conclusion, the dietary CMH supplementation improved intestinal morphology and immune activities of PMNs, thus giving rise to nutrient digestibility and reduce diarrhoea frequency in weanling pigs. © 2011 Blackwell Verlag GmbH.

  9. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves.

    PubMed

    Kreikemeier, K K; Harmon, D L; Peters, J P; Gross, K L; Armendariz, C K; Krehbiel, C R

    1990-09-01

    Twenty (12 Holstein, 8 Longhorn cross) calves (198 kg and 7 mo old) were used in a randomized complete block design to evaluate the effects of dietary forage concentration and feed intake on carbohydrase activities and small intestinal (SI) morphology. Calves were individually fed 90% forage (alfalfa) or a 90% concentrate (50% sorghum: 50% wheat) diet at either one or two times NEm for 140 d and slaughtered; tissues and small intestinal digesta were collected. Increased feed intake increased (P less than .05) pancreatic weight, alpha-amylase and glucoamylase activities in the pancreas, SI length and SI digesta weight. Forage-fed calves gained faster (P less than .01) and had greater (P less than .05) pancreatic protein concentrations, alpha-amylase and glucoamylase activities in the pancreas and greater SI digesta alpha-amylase activities than grain-fed calves did. Increased feed intake increased (P less than .01) mucosal weight/cm small intestine only in forage-fed calves and increased (P less than .05) SI surface/volume only in grain-fed calves. Mucosal weight was greatest (P less than .05) at the terminal ileum, surface/volume was greatest (P less than .05) in the duodenum, and mucosal protein concentration was highest (P less than .05) in the SI mid-section. Mucosal lactase was higher (P less than .05) in proximal segments, whereas mucosal isomaltase was higher in middle and distal segments of the small intestine. For mucosal maltase activity, there was a feed intake x SI sampling site interaction (P less than .05) and for trehalase, a diet x feed intake x SI sampling site interaction (P less than .05). The SI distribution patterns of maltase and isomaltase were similar, as were those of trehalase and lactase. The alpha-amylase activity in the pancreas and SI morphology were influenced greatly by diet composition and feed intake by calves.

  10. EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.

    PubMed

    Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei

    2015-10-01

    Dysfunction of the intestinal barrier plays an important role in the pathological process of heatstroke. Omega-3 (or n-3) polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), help protect the intestinal mucosal barrier. This study assessed if pretreating rats with EPA or DHA could alleviate heat stress-induced damage to the intestinal barrier caused by experimental heatstroke. Male Wistar rats were pregavaged with either EPA, DHA, corn oil, or normal saline (all 1 g/kg) for 21 days before the heatstroke experiment (control rats were not exposed to heat). Experimental rats were exposed to an ambient temperature of 37°C and 60% humidity to induce heatstroke, and then they were allowed to recover at room temperature after rapid cooling. Survival time of rats was monitored after heatstroke. Horseradish peroxidase flux from the gut lumen and the level of plasma D-lactate were measured to analyze intestinal permeability at 6 h after heatstroke. Plasma endotoxin levels were determined using a limulus amoebocyte lysate assay. Expressions of the tight junction (TJ) proteins occludin and ZO-1 were analyzed by Western blot and localized by immunofluorescence microscopy. Tight junction protein morphology was observed by transmission electron microscopy. Fatty acids of ileal mucosa were analyzed using gas chromatography-mass selective detector. Eicosapentaenoic acid significantly increased survival time after heatstroke. Eicosapentaenoic acid significantly decreased intestinal permeability and plasma endotoxin levels. Eicosapentaenoic acid effectively attenuated the heatstroke-induced disruption of the intestinal structure and improved the histology score, whereas DHA was less effective, and corn oil was ineffective. Pretreatment with EPA also increased expression of occludin and ZO-1 to effectively prevent TJ disruption. Eicosapentaenoic acid pretreatment enriched itself in the membrane of intestinal cells. Our results indicate that EPA pretreatment is more effective than DHA pretreatment in attenuating heat-induced intestinal dysfunction and preventing TJ damage. Enhanced expression of TJ proteins that support the epithelial barrier integrity may be important for maintaining a functional intestinal barrier during heatstroke.

  11. Intestinal morphology adjustments caused by dietary restriction improves the nutritional status during the aging process of rats.

    PubMed

    de Oliveira Belém, Mônica; Cirilo, Carla Possani; de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Comar, Jurandir Fernando; Natali, Maria Raquel Marçal; de Almeida Araújo, Eduardo José

    2015-09-01

    During the aging process, the body's systems change structurally and loss of function can occur. Ingesting a smaller amount of food has been considered a plausible proposal for increased longevity with the quality of life. However, the effects of dietary restriction (DR) during aging are still poorly understood, especially for organs of the digestive system. This study aimed to describe the body weight, oxidative status and possible morphological changes of the intestinal wall of rats submitted to DR during the aging process (7 to 18months old). Twelve 7-month-old male Wistar rats fed ad libitum since birth were assigned to two groups: control group (CG, n=6) fed ad libitum from 7 to 18months old; and dietary restriction group (DRG, n=6) fed 50% of the amount of chow consumed by the CG from 7 to 18months old. The body weight, feed and water intake were monitored throughout the experiment. Blood, periepididymal adipose tissue (PAT) and retroperitoneal adipose tissue (RAT), and the small intestine were collected at 18months old. The blood was collected to evaluate its components and oxidative status. Sections from the duodenum and ileum were stained with HE, PAS and AB pH2.5 for morphometric analyses of the intestinal wall components, and to count intraepithelial lymphocytes (IELs), goblet cells and cells in mitosis in the epithelium. DR rats showed a reduction in weight, naso-anal length, PAT, RAT and intestinal length; however, they consumed more water. Blood parameters indicate that the DR rats remained well nourished. In addition, they showed lower lipid peroxidation. Hypertrophy of the duodenal mucosa and atrophy of the ileal mucosa were observed. The number of goblet cells and IELs was reduced, but the mitotic index remained unaltered in both duodenum and ileum. In conclusion, 50% dietary restriction for rats from 7 to 18months old contributed to improving their nutritional parameters but, to achieve this, adjustments were required in the structure of the body weight and morphology of the small intestine. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Changes in serum cytokine levels, hepatic and intestinal morphology in aflatoxin B1-induced injury: modulatory roles of melatonin and flavonoid-rich fractions from Chromolena odorata.

    PubMed

    Akinrinmade, Fadeyemi Joseph; Akinrinde, Akinleye Stephen; Amid, Adetayo

    2016-05-01

    Aflatoxins are known to produce chronic carcinogenic, mutagenic, and teratogenic effects, as well as acute inflammatory effects, especially in the gastrointestinal tract. The potentials of the flavonoid-rich extract from Chromolena odorata (FCO) and melatonin (a standard anti-oxidant and anti-inflammatory agent) against aflatoxin B1 (AFB1)-induced alterations in pro-inflammatory cytokine levels and morphology of liver and small intestines were evaluated in this study. We utilized Wistar albino rats (200-230 g) randomly divided into five groups made up of group A, control rats; group B, rats given AFB1 (2.5 mg/kg, intraperitoneal) twice on days 5 and 7; rats in groups C, D, and E were treated with melatonin (10 mg/kg, intraperitoneal) or oral doses of FCO1 (50 mg/kg) and FCO2 (100 mg/kg) for 7 days, respectively, along with AFB1 injection on days 5 and 7. Serum levels of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) were determined using commercial ELISA kits and histopathological evaluation of the liver, duodenum, and ileum were also carried out. We observed significant elevation (p < 0.05) in serum IL-1β correlating with hemorrhages and leucocytic and lymphocytic infiltration in the liver and intestines as evidences of an acute inflammatory response to AFB1 administration. All treatments yielded significant reduction (p < 0.05) in IL-1β levels, although TNF-α levels were not significantly altered in all rats that received AFB1, irrespective of the treatments. Melatonin and FCO2 produced considerable protection of hepatic tissues, although melatonin was not quite effective in protecting the intestinal lesions. Our findings suggest a modulation of cytokine expression that may, in part, be responsible for the abilities of C. odorata or melatonin in amelioration of hepatic and intestinal lesions associated with aflatoxin B1 injury.

  13. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity

    PubMed Central

    Drozdowski, Laurie A; Clandinin, M Tom; Thomson, Alan BR

    2009-01-01

    The process of intestinal adaptation (“enteroplasticity”) is complex and multifaceted. Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies, successful, reproducible clinical trials in humans are awaited. Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome, or to persons in whom nutrient absorption needs to be maximized. In this review, we consider the morphological, kinetic and membrane biochemical aspects of enteroplasticity, focus on the importance of nutritional factors, provide an overview of the many hormones that may alter the adaptive process, and consider some of the possible molecular profiles. While most of the data is derived from rodent studies, wherever possible, the results of human studies of intestinal enteroplasticity are provided. PMID:19230039

  14. Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers.

    PubMed

    Wu, Q J; Liu, N; Wu, X H; Wang, G Y; Lin, L

    2018-05-17

    The aim of this study was to investigate the protective effect of glutamine (Gln) on the intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers exposed to high ambient temperature. Three-hundred-sixty 21-d-old Arbor Acres broilers (half male and half female) were randomly allocated to 4 treatment groups in a completely randomized design, each of which included 6 replicates with 15 birds per replicate, for 21 d. The 4 treatment groups were as follows: the control group, in which birds were kept in a thermoneutral room at 22 ± 1°C (no stress, NS; fed a basal diet); the heat stress group (36 ± 1°C for 10 h/d from 08:00 to 18:00 h and 22 ± 1°C for the remaining time, heat stress (HT); fed a basal diet); and heat stress + Gln group (0.5 and 1.0% Gln, respectively). Compared to the NS group, broilers in the HT group had lower villus height (P < 0.05), higher crypt depth (P < 0.05), higher D-lactic acid and diamine oxidase (DAO) activity (P < 0.05), higher soluble intercellular adhesion molecule-1 (sICAM-1) concentration (P < 0.05), higher tumor necrosis factor (TNF)-α/interleukin (IL)-10 (P < 0.05), and lower tight junction protein expression levels (P < 0.05). Compared with birds in the HT, birds in the HT + Gln group exhibited increased villus height (P < 0.05), decreased D-lactate and DAO activity (P < 0.05), decreased sICAM-1 concentration (P < 0.05), and mediate the secretion of cytokines (P < 0.05), as well as increased zonula occludens-1 (ZO-1), claudin-1, and occludin mRNA expression levels (P < 0.05). In conclusion, these results indicate that supplementation with Gln was effective in partially ameliorating the adverse effects of heat stress on intestinal barrier function in broilers by promoting epithelial cell proliferation and renewal, modifying the function of the intestinal mucosa barrier, and regulating the secretion of cytokines.

  15. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    PubMed

    Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker's yeast.

  16. Improvement of intestinal transport, absorption and anti-diabetic efficacy of berberine by using Gelucire44/14: In vitro, in situ and in vivo studies.

    PubMed

    Sun, Jianmei; Bao, He; Peng, Yajie; Zhang, Haimin; Sun, Ya; Qi, Jiajun; Zhang, Hailong; Gao, Yang

    2018-06-10

    This study aims to evaluate the effects of Gelucire44/14 on the in vitro transport, in situ intestinal absorption, as well as in vivo antidiabetic efficacy of berberine (BBR). In the in vitro study, Gelucire44/14 (0.1%, v/v) increased the absorptive transport of BBR across the intestinal membrane of a rat and reduced the relative transport in the secretory direction, thus demonstrating its potential inhibitory effect on intestinal P-glycoprotein (P-gp). In the in situ absorption study, Gelucire44/14 (0.1%, v/v) increased BBR absorption, and this enhancing effect was more significant in the ileum than in the colon of a rat. Oral delivery of BBR with Gelucire44/14 (0.1%, v/v) to diabetic mice, compared with the BBR group, induced a significant hypoglycemic effect on day 7 and day 12 after administration. This result was well correlated with the results of the in vitro study, indicating the important contribution of the P-gp inhibitory effect of Gelucire44/14 to the improvement of the antidiabetic efficacy in vivo. In addition, Gelucire44/14 (0.1%, v/v) neither increased the levels of protein and lactate dehydrogenase in intestinal perfusion nor changed the morphology of the rat intestinal epithelium relative to those of the negative control. This finding suggested that 0.1% (v/v) Gelucire44/14 caused no apparent membrane damage to rat intestine. In conclusion, Gelucire44/14 exhibited potential for enhancing the oral absorption of BBR, thereby improving the antidiabetic efficacy of BBR. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Luminal and systemic signals trigger intestinal adaptation in the juvenile python.

    PubMed

    Secor, S M; Whang, E E; Lane, J S; Ashley, S W; Diamond, J

    2000-12-01

    Juvenile pythons undergo large rapid upregulation of intestinal mass and intestinal transporter activities upon feeding. Because it is also easy to do surgery on pythons and to maintain them in the laboratory, we used a python model to examine signals and agents for intestinal adaptation. We surgically isolated the middle third of the small intestine from enteric continuity, leaving its mesenteric nerve and vascular supply intact. Intestinal continuity was restored by an end-to-end anastomosis between the proximal and distal thirds. Within 24 h of the snake's feeding, the reanastomosed proximal and distal segments (receiving luminal nutrients) had upregulated amino acid and glucose uptakes by up to 15-fold, had doubled intestinal mass, and thereby soon achieved total nutrient uptake capacities equal to those of the normal fed full-length intestine. At this time, however, the isolated middle segment, receiving no luminal nutrients, experienced no changes from the fasted state in either nutrient uptakes or in morphology. By 3 days postfeeding, the isolated middle segment had upregulated nutrient uptakes to the same levels as the reanastomosed proximal and distal segments, but it still lacked any appreciable morphological response. These contrasting results for the reanastomosed intestine and for the isolated middle segment suggest that luminal nutrients and/or pancreatic biliary secretions are the agents triggering rapid upregulation of transporters and of intestinal mass and that systemic nerve or hormonal signals later trigger transporter regulation but no trophic response.

  18. Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli.

    PubMed

    Sayan, Harutai; Assavacheep, Pornchalit; Angkanaporn, Kris; Assavacheep, Anongnart

    2018-04-12

    Gut health improvements were monitored with respect to growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs orally supplemented with live Lactobacillus salivarius oral suspensions and challenged with F4+ enterotoxigenic Escherichia coli (ETEC). Two groups of newborn pigs from 18 multiparous sows were randomly designated as non-supplemented (control: n=114 piglets) and L. salivarius supplemented groups (treatment: n=87 piglets). Treatment pigs were orally administered with 2 ml of 109 CFU/ml L. salivarius on days 1 - 3, then they were orally administered with 5 ml of 109 CFU/ml L. salivarius on days 4 - 10, while those in control group received an equal amount of phosphate buffered saline solution (PBS). On day 24 (2 weeks post supplementation), one pig per replicate of both groups was orally administered with 108 CFU/ml F4+ ETEC, then they were euthanized on day 29 of experiment. Results revealed that pigs in treatment group had statistically significant in average daily gain (ADG), body weight and weight gain, and tended to lower diarrhea throughout the study. Numbers of Lactobacillus population in feces of treatment pigs were higher than control pigs, especially on day 10 of study. Numbers of total bacteria in intestinal contents of control pigs were also increased, but not Coliform and Lactobacillus populations. Histological examination revealed statistically significant improvement of villous height and villous/crypt ratio of duodenum, proximal jejunum and distal jejunum parts of treatment pigs better than control. Duodenal pH of treatment group was significantly decreased. Oral supplementation of live L. salivarius during the first 10 days of suckling pig promoted growth performance and guts health, reduced diarrhea incidence, and increased fecal Lactobacillus populations, and improved intestinal morphology.

  19. The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition.

    PubMed

    Dierick, N A; Decuypere, J A; Degeyter, I

    2003-02-01

    In search for an alternative for nutritional antimicrobials in piglet feeding, the effects of adding whole Cuphea seeds, as a natural source of medium chain fatty acids (MCFA), with known antimicrobial effects, and an exogenous lipase to a weaner diet were studied. The foregut flora, the gut morphology, some digestive parameters and the zootechnical performance of weaned piglets were investigated. Thirty newly weaned piglets, initial weight 7.0 +/- 0.4 kg, were divided according to litter, sex and weight in two groups (control diet; Cuphea + lipase diet). The Cuphea seeds (lanceolata and ignea) (50 g kg(-1)) were substituted for soybean oil (15 g kg(-1)), Alphacell (25 g kg(-1)) and soy protein isolate (10 g kg(-1)) in the control diet. Also 500 mg kg(-1) microbial lipase was added to the Cuphea diet. The piglets were weighted individually on days 0, 3. 7, 14 and 16. Feed intake was recorded per pen during days 0 to 3, 3 to 7, 7 to 14 and 14 to 16. On day 7 five piglets of each experimental group were euthanized for counting the gastric and small intestinal gut flora and for gut morphology at two sites of the small intestine (proximal, distal). The results indicate a trend towards improved performances parameters by feeding Cuphea + lipase. The enzymic released MCFA (1.7 g kg(-1) fresh gastric contents) tended to decrease the number of Coliforms in the proximal small intestine, but increased the number in the stomach and distal small intestine. With Culphea, the number of Streptococci was significantly lower in small intestine, but not in the stomach, while the number of Lactobacilli was significantly lower in the distal small intestine and tended to be lower in the stomach and proximal small intestine. No differences between the diets were noted for the total anaerobic microbial load in the stomach or in the gut. Feeding Cuphea + lipase resulted in a significantly greater villus height (distal small intestine) and a lesser crypt depth (proximal and distal small intestine) and greater villus/crypt ratio depth (proximal and distal small intestine). The intra-epithelial lymphocyte (IEL) counts per 100 enterocytes were significantly decreased in the proximal small intestine and tended to decrease in the distal small intestine by feeding the Cuphea + lipase diet. Both phenomena are indicative for a more healthy and better functional state of the mucosa. Present results are in line with foregoing research, showing that manipulation of the gut ecosystem by the enzymic in situ released MCFA in the stomach and foregut can result in improved performances of the piglets, which makes the concept a potential alternative for in-feed nutritional antibiotics.

  20. Effects of dietary stachyose on growth performance, digestive enzyme activities and intestinal morphology of juvenile turbot ( Scophthalmus maximus L)

    NASA Astrophysics Data System (ADS)

    Hu, Haibin; Zhang, Yanjiao; Mai, Kangsen; Ai, Qinghui; Xu, Wei; Zhang, Wenbing; Li, Yanxian; Liu, Jintao

    2015-10-01

    A 12-week feeding trial was conducted to evaluate the effects of dietary stachyose on the growth performance, digestive enzymes activities and intestinal structures of juvenile turbot ( Scophthalmus maximus L). Five isonitrogenous (49.58% crude protein) and isolipidic (10.50% crude lipid) diets were formulated to contain 0 (Control), 0.625% (S-0.625), 1.25% (S-1.25), 2.5% (S-2.5) and 5% (S-5) stachyose, respectively. With the increase of stachyose level, the growth performance and feed utilization of turbot, such as the specific growth rate, final mean body weight, weight gain rate and feed efficiency, increased significantly ( P< 0.05) and then stabilized. The feed intake of fish fed S-5 was significantly higher ( P< 0.05) than that of fish in other groups. The activities of trypsin, intestinal caseinolytic, stomach and intestinal amylase were significantly influenced by stachyose ( P<0.05). The highest values of trypsin and intestinal caseinolytic activities were observed in group S-1.25, while the highest activity of stomach amylase and the lowest activity of intestine amylase were observed in group S-5. No lesion or damage was found on the distal intestine structures of fish from all treatments, while the height of simple folds in the distal intestine was significantly increased ( P< 0.05) when 1.25% or 2.5% stachyose was added in the diets. These results indicated that moderate level of stachyose (1.25%) improves the growth performance, feed utilization, digestive enzyme activities and the distal intestine structures of juvenile turbot.

  1. Hepatocyte Paraffin 1 Antigen as a Biomarker for Early Diagnosis of Barrett Esophagus

    PubMed Central

    Jeung, Jennifer A.; Coran, Justin J.; Liu, Chen; Cardona, Diana M.

    2013-01-01

    We evaluated hepatocyte paraffin 1 (HepPar1) antigen expression, a sensitive marker of small intestinal differentiation, in combination with morphologic features to demonstrate intestinal differentiation in cases equivocal for Barrett esophagus (BE). Clinicopathologic features and HepPar1 expression were recorded for 54 BE cases, 45 consistent with reflux esophagitis (RE) cases, and 65 “suspicious” for BE (SBE) cases. The SBE category included RE cases with 2 or more morphologic changes associated with BE or metaplastic reaction to injury (eg, multilayered epithelium, squamous islands, goblet cell mimickers, pancreatic metaplasia). HepPar1 was expressed in all 54 BE cases, 4 of 45 RE cases, and 24 of 65 SBE cases. In SBE cases, 2 or more morphologic changes were associated with HepPar1 expression in 37% of cases (24/65), 3 or more features in 59% (13/22), and 4 or more features in 100% (4/4) (P ≤ .004). The combination of certain morphologic changes and HepPar1 expression in clinically suspicious distal esophageal biopsy cases without goblet cells supports the presence of evolving intestinal metaplasia. PMID:22180484

  2. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier.

    PubMed

    De Vos, M; Huygelen, V; Van Raemdonck, G; Willemen, S; Fransen, E; Van Ostade, X; Casteleyn, C; Van Cruchten, S; Van Ginneken, C

    2014-08-01

    To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets.

  3. Distribution of immunoglobulin G antibody secretory cells in small intestine of Bactrian camels (Camelus bactrianus).

    PubMed

    Zhang, Wang-Dong; Wang, Wen-Hui; Jia, Shuai

    2015-08-25

    To explore the morphological evidence of immunoglobulin G (IgG) participating in intestinal mucosal immunity, 8 healthy adult Bactrian camels used. First, IgG was successfully isolated from their serum and rabbit antibody against Bactrian camels IgG was prepared. The IgG antibody secretory cells (ASCs) in small intestine were particularly observed through immumohistochemical staining, then after were analyzed by statistical methods. The results showed that the IgG ASCs were scattered in the lamina propria (LP) and some of them aggregated around of the intestinal glands. The IgG ASCs density was the highest from middle segment of duodenum to middle segment of jejunum, and then in ended segment of jejunum and initial segment of ileum, the lowest was in initial segment of duodenum, in middle and ended segment of ileum. It was demonstrated that the IgG ASCs mainly scattered in the effector sites of the mucosal immunity, though the density of IgG ASCs was different in different segment of small intestine. Moreover, this scatted distribution characteristic would provide a morphology basis for research whether IgG form a full-protection and immune surveillance in mucosal immunity homeostasis of integral intestine.

  4. Emodin protects mice against radiation-induced mortality and intestinal injury via inhibition of apoptosis and modulation of p53.

    PubMed

    Wang, Jing; Zhang, Yue; Zhu, Qiuzhen; Liu, Yulan; Cheng, Hao; Zhang, Yuefan; Li, Tiejun

    2016-09-01

    The aim of this study was to explore the protective effect of emodin, a plant-derived anthraquinone, against gamma radiation-induced mortality and intestinal injury in mice, and to investigate the radioprotective molecular mechanism. C57BL/6 male mice were pre-treated with emodin for 7days via oral gavage before gamma radiation. We found that pretreatment with emodin prolonged mice survival time after 9Gy total body irradiation (TBI). Mice were sacrificed at 1 week after 7Gy TBI, we found that emodin attenuated intestinal morphological changes and increased villus height, crypt numbers, and reduced villus and crypt apoptosis as well as inhibited the expression of p53. MTT assay, flow cytometry, Hoechst 33258 staining, real-time PCR, and Western blotting indicated that emodin pretreatment can effectively increase human umbilical venous endothelial cells (HUVECs) viability and attenuate cell apoptosis; it also inhibited the expression of p53, Bax, and Caspase3 in HUVECs after irradiation. In summary, these results suggest the potential of emodin as an effective radioprotectant against radiation-induced intestinal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The endogenous preproglucagon system is not essential for gut growth homeostasis in mice.

    PubMed

    Wismann, Pernille; Barkholt, Pernille; Secher, Thomas; Vrang, Niels; Hansen, Henrik B; Jeppesen, Palle Bekker; Baggio, Laurie L; Koehler, Jacqueline A; Drucker, Daniel J; Sandoval, Darleen A; Jelsing, Jacob

    2017-07-01

    The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice. We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor ( Glp1r ), GLP-2 receptor ( Glp2r ), and preproglucagon ( Gcg ) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG). Comparison of Glp1r , Glp2r , and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r -/- mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology. The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent.

  6. Effects of dietary glutamine and arginine supplementation on performance, intestinal morphology and ascites mortality in broiler chickens reared under cold environment.

    PubMed

    Abdulkarimi, Rahim; Shahir, Mohammad Hossien; Daneshyar, Mohsen

    2017-06-26

    An experiment was conducted to evaluate the effects of dietary glutamine (Gln) and arginine (Arg) supplementation on performance, intestinal morphology and ascites mortality in broilers. A total of 675 day old chicks were randomly allocated to 9 experimental groups in a 3×3 factorial arrangement based on a completely randomized design with 5 replicates of 15 chicks. Three levels of dietary Gln (0, 0.5 and 1%) and Arg (100, 130% and 160% of Ross recommendation) supplementation were used in ascites inducing condition (15±1 ˚C) from 7 to 42 days of age. Dietary supplementation of Gln increased body weight gain (BWG) during grower, finisher and total periods (P<0.05) and increased feed intake during total period. Ascites mortality was decreased by Gln supplementation (P<0.05). Gln supplementation increased the villus height (VH) and crypt depth (CD) in duodenum and jejunum, and decreased the muscular layer in jejunum and ileum segments (P<0.05). Arg supplementation decreased CD in duodenum and jejunum and increased ileum villus width (VW), villus height /crypt depth ratio (VH/CD) in duodenum and jejunum and also muscular layer in duodenum, jejunum and ileum (P<0.05). Both Gln and Arg increased the goblet cell number (GCN) in duodenum whereas Gln supplementation decreased GCN in jejunum and ileum (P<0.05). The Gln×Arg interaction were observed for VH, VW, CD, VH/CD, muscular and serous layer thickness. It was concluded that dietary 0.5% Gln along with 130% Arg of Ross requirement, improve the intestinal morphology and performance and hence decrease the ascites mortality in broiler chickens with cold induced ascites.

  7. Early intestinal growth and development in poultry.

    PubMed

    Lilburn, M S; Loeffler, S

    2015-07-01

    While there are many accepted "facts" within the field of poultry science that are in truth still open for discussion, there is little debate with respect to the tremendous genetic progress that has been made with commercial broilers and turkeys (Havenstein et al., 2003, 2007). When one considers the changes in carcass development in poultry meat strains, these genetic "improvements" have not always been accompanied by correlated changes in other physiological systems and this can predispose some birds to developmental anomalies (i.e. ascites; Pavlidis et al., 2007; Wideman et al., 2013). Over the last decade, there has been increased interest in intestinal growth/health as poultry nutritionists have attempted to adopt new approaches to deal with the broader changes in the overall nutrition landscape. This landscape includes not only the aforementioned genetic changes but also a raft of governmental policies that have focused attention on the environment (phosphorus and nitrogen excretion), consumer pressure on the use of antibiotics, and renewable biofuels with its consequent effects on ingredient costs. Intestinal morphology has become a common research tool for assessing nutritional effects on the intestine but it is only one metric among many that can be used and histological results can often be interpreted in a variety of ways. This study will address the broader body of research on intestinal growth and development in commercial poultry and will attempt to integrate the topics of the intestinal: microbial interface and the role of the intestine as an immune tissue under the broad umbrella of intestinal physiology. © 2015 Poultry Science Association Inc.

  8. Exogenous glucagon-like peptide-2 improves outcomes of intestinal adaptation in a distal-intestinal resection neonatal piglet model of short bowel syndrome.

    PubMed

    Suri, Megha; Turner, Justine M; Sigalet, David L; Wizzard, Pamela R; Nation, Patrick N; Ball, Ron O; Pencharz, Paul B; Brubaker, Patricia L; Wales, Paul W

    2014-10-01

    Endogenous glucagon-like peptide-2 (GLP-2) levels and intestinal adaptation are reduced in distal-intestinal resection animal models of short bowel syndrome (SBS) that lack remnant ileum. We hypothesized that exogenous GLP-2 would improve intestinal adaptation in a distal-intestinal resection neonatal piglet model of SBS. In all, 35 piglets were randomized to 2 treatment and 3 surgical groups: control (sham), 75% mid-intestinal resection (JI), and 75% distal-intestinal resection (JC). Parenteral nutrition (PN) commenced on day 1 and was weaned as enteral nutrition (EN) advanced. IV GLP-2 (11 nmol/kg/d) or saline was initiated on day 2. Piglets were maintained for 14 d. Clinical, functional, morphological, and histological outcomes were obtained. JC-GLP-2 piglets had fewer days on PN (10.0 ± 0.6 vs. 13.8 ± 0.2), more days on EN (4.0 ± 0.6 vs. 0.2 ± 0.2), a higher percentage of EN at termination (92 ± 5 vs. 52 ± 10%), fewer days of diarrhea (8.0 ± 0.7 vs. 12.3 ± 0.4), increased intestinal length (19 ± 4 vs. -5 ± 3%), and deeper jejunal crypts (248 ± 21 vs. 172 ± 12 μm), compared with saline piglets. GLP-2 therapy improves clinical, morphological, and histological outcomes of intestinal adaptation in a distal-intestinal resection model of SBS. Since this anatomical subtype represents the majority of clinical cases of neonatal SBS, these results support a potential role for GLP-2 therapy in pediatric SBS.

  9. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    PubMed

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    PubMed

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  11. E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine.

    PubMed

    Ren, Xiaomeng; Zhu, Yanyan; Gamallat, Yaser; Ma, Shenhao; Chiwala, Gift; Meyiah, Abdo; Xin, Yi

    2017-10-01

    Our research group previously isolated and identified a strain of pathogenic Escherichia coli from clinical samples called E. coli O124 K72. The present study was aimed at determining the potential effects of E. coli O124 K72 on intestinal barrier functions and structural proteins integrity in guinea pig. Guinea pigs were grouped into three groups; control (CG); E. coli O124 K72 (E. coli); and probiotics Lactobacillus rhamnosus (LGG). Initially, we create intestinal dysbiosis by giving all animals Levofloxacin for 10days, but the control group (CG) received the same volume of saline. Then, the animals received either E. coli O124 K72 (E. coli) or Lactobacillus rhamnosus (LGG) according to their assigned group. E. coli O124 K72 treatment significantly affected colon morphology and distorted intestinal barrier function by up-regulating Claudin2 and down-regulating Occludin. In addition, E. coli upregulated the mRNA expression of MUC1, MUC2, MUC13 and MUC15. Furthermore, suspected tumor was found in the E. coli treated animals. Our results suggested that E. coli O124 K72 strain has adverse effects on intestinal barrier functions and is capable of altering integrity of structural proteins in guinea pig model while at same time it may have a role in colon carcinogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Effect of dietary zinc on morphological characteristics and apoptosis related gene expression in the small intestine of Bama miniature pigs.

    PubMed

    Zhou, Xin; Li, Yansen; Li, Zhaojian; Cao, Yun; Wang, Fei; Li, ChunMei

    2017-04-01

    To investigate the effects of dietary zinc (Zn) on small intestinal mucosal epithelium, 6-month-old male Bama miniature pigs were randomly allocated into three groups and treated with three levels of Zn (Control, T1, and T2 diet supplemented with 0, 50, and 1500mg/kg Zn, respectively, as zinc sulfate) for 38days. The samples of small intestine tissues, serum, and feces were collected. The results showed that Zn concentrations of small intestine in the T2 group were higher than those in the control and T1 groups (p<0.05). In the T2 group, the pharmacological dose of dietary Zn treatment caused marked damage to the small intestinal epithelium. The expression of Bax, cleaved caspase-3, and caspase-8 were increased in the duodenum and the jejunum of the T2 group (p<0.05). The mRNA transcript levels of BAX, CYCS and CASP3 genes were upregulated in the duodenum and the jejunum of the T2 group. We concluded that a diet with a pharmacological dose of Zn increased the accumulation of Zn and the expression of Bax, cleaved caspase-3, and caspase-8, which might activate the apoptosis and lead to the marked injury of porcine small intestinal epithelium. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Choline deficiency impairs intestinal lipid metabolism in the lactating rat.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Lewis, Erin D; Leonard, Kelly-Ann; Goruk, Sue; Curtis, Jonathan M; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Jacobs, René L

    2015-10-01

    Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Jinhong Tablet Reduces Damage of Intestinal Mucosal Barrier in Rats with Acute Biliary Infection via Bcl-2/Bax mRNA and Protein Regulation

    PubMed Central

    Wang, YongQi; Xie, Jinkun; Zhang, Xuelin; Gu, Honggang

    2017-01-01

    Objective To explore the effects and mechanism of Jinhong Tablet on intestinal mucosal barrier function and SIRS in rats with acute biliary infection. Methods 36 SD male rats were divided into three groups: sham operation (control), acute biliary infection (ABI) model, and Jinhong Tablet (Jinhong) group. Jinhong group were force-fed with Jinhong Tablet, while the other two groups received oral saline. At days 3 and 5, morphological changes of intestinal mucosa were assessed. Serum diamine oxidase (DAO), D-lactate, and endotoxin levels were measured. And the genes bcl-2 and bax in intestinal tissues were tested by real-time PCR and Western blotting. Results Intestinal damage was significantly less severe in Jinhong group compared with ABI group, as indicated by Chiu's scoring, TUNEL analysis, and serum DAO, D-lactic acid, and endotoxin levels. Additionally, the expression of bax mRNA and protein was decreased and the ratio of bcl-2/bax mRNA and protein was increased compared with ABI group. Conclusion Jinhong Tablet had a positive intervention on acute biliary infection through improving inflammation and intestinal mucosal barrier, inhibiting excessive apoptosis of intestinal epithelial cells via bax and bcl-2 gene, and protein regulation. PMID:29234407

  15. Long-term culture-induced phenotypic difference and efficient cryopreservation of small intestinal organoids by treatment timing of Rho kinase inhibitor.

    PubMed

    Han, Sung-Hoon; Shim, Sehwan; Kim, Min-Jung; Shin, Hye-Yun; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Lee, Seung Bum; Park, Sunhoo

    2017-02-14

    To investigate a suitable long-term culture system and optimal cryopreservation of intestinal organoid to improve organoid-based therapy by acquiring large numbers of cells. Crypts were isolated from jejunum of C57BL/6 mouse. Two hundred crypts were cultured in organoid medium with either epidermal growth factor/Noggin/R-spondin1 (ENR) or ENR/CHIR99021/VPA (ENR-CV). For subculture, organoids cultured on day 7 were passaged using enzyme-free cell dissociation buffer (STEMCELL Technologies). The passage was performed once per week until indicated passage. For cryopreservation, undissociated and dissociated organoids were resuspended in freezing medium with or without Rho kinase inhibitor subjected to different treatment times. The characteristics of intestinal organoids upon extended passage and freeze-thaw were analyzed using EdU staining, methyl thiazolyl tetrazolium assay, qPCR and time-lapse live cell imaging. We established a three-dimensional culture system for murine small intestinal organoids using ENR and ENR-CV media. Both conditions yielded organoids with a crypt-villus architecture exhibiting Lgr5 + cells and differentiated intestinal epithelial cells as shown by morphological and biochemical analysis. However, during extended passage (more than 3 mo), a comparative analysis revealed that continuous passaging under ENR-CV conditions, but not ENR conditions induced phenotypic changes as observed by morphological transition, reduced numbers of Lgr5 + cells and inconsistent expression of markers for differentiated intestinal epithelial cell types. We also found that recovery of long-term cryopreserved organoids was significantly affected by the organoid state, i.e ., whether dissociation was applied, and the timing of treatment with the Rho-kinase inhibitor Y-27632. Furthermore, the retention of typical morphological characteristics of intestinal organoids such as the crypt-villus structure from freeze-thawed cells was observed by live cell imaging. The maintenance of the characteristics of intestinal organoids upon extended passage is mediated by ENR condition, but not ENR-CV condition. Identified long-term cryopreservation may contribute to the establishment of standardized cryopreservation protocols for intestinal organoids for use in clinical applications.

  16. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil.

    PubMed

    Huang, Lin; Ma, Xian-Yong; Jiang, Zong-Yong; Hu, You-Jun; Zheng, Chun-Tian; Yang, Xue-Fen; Wang, Li; Gao, Kai-Guo

    To investigate the effect of glycitein, a synthetic soybean isoflavone (ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets were assigned to three treatments. The control group was fed a basal diet containing fresh fish oil, and the other two groups received the same diet except for the substitution with the same dosage of oxidized fish oil alone or with ISF (oxidized fish oil plus ISF). After 21 d of feeding, supplementation of oxidized fish oil increased the levels of malondialdehyde (MDA), oxidized glutathione (GSSG), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), nuclear factor κ B (NF-κB), inducible nitric oxide synthase (iNOS), NO, and Caspase-3 in jejunal mucosa, and decreased the villous height in duodenum and the levels of secretory immunoglobulin A (sIgA) and IL-4 in the jejunal mucosa compared with supplementation with fresh oil. The addition of oxidized fish oil plus ISF partially alleviated this negative effect. The addition of oxidized fish oil plus ISF increased the villous height and levels of sIgA and IL-4 in jejunal mucosa, but decreased the levels of IL-1β and IL-2 in jejunal mucosa (P<0.05) compared with oxidized fish oil. Collectively, these results show that dietary supplementation of ISF could partly alleviate the negative effect of oxidized fish oil by improving the intestinal morphology as well as the antioxidant capacity and immune function in young piglets.

  17. Cryptosporidium meleagridis in an Indian ring-necked parrot (Psittacula krameri).

    PubMed

    Morgan, U M; Xiao, L; Limor, J; Gelis, S; Raidal, S R; Fayer, R; Lal, A; Elliot, A; Thompson, R C

    2000-03-01

    To perform a morphological and genetic characterisation of a Cryptosporidium infection in an Indian ring-necked parrot (Psittacula krameri) and to compare this with C meleagridis from a turkey. Tissue and intestinal sections from an Indian ring-necked parrot were examined microscopically for Cryptosporidium. The organism was also purified from the crop and intestine, the DNA extracted and a portion of the 18S rDNA gene amplified, sequenced and compared with sequence and biological information obtained for C meleagridis from a turkey as well as sequence information for other species of Cryptosporidium. Morphological examination of tissue sections from an Indian ring-necked parrot revealed large numbers of Cryptosporidium oocysts attached to the apical border of enterocytes lining the intestinal tract. Purified Cryptosporidium oocysts measured about 5.1 x 4.5 microns, which conformed morphologically to C meleagridis. The sequence obtained from this isolate was identical to sequence information obtained from a C meleagridis isolate from a turkey. Cryptosporidium meleagridis was detected in an Indian ring-necked parrot using morphological and molecular methods. This is the first time that this species of Cryptosporidium has been reported in a non-galliform host and extends the known host range of C meleagridis.

  18. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut.

    PubMed

    Nerurkar, Nandan L; Mahadevan, L; Tabin, Clifford J

    2017-02-28

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth-driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution.

  19. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut

    PubMed Central

    Nerurkar, Nandan L.; Mahadevan, L.; Tabin, Clifford J.

    2017-01-01

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth–driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution. PMID:28193855

  20. Maintenance of Distal Intestinal Structure in the Face of Prolonged Fasting: A Comparative Examination of Species From Five Vertebrate Classes.

    PubMed

    McCue, Marshall D; Passement, Celeste A; Meyerholz, David K

    2017-12-01

    It was recently shown that fasting alters the composition of microbial communities residing in the distal intestinal tract of animals representing five classes of vertebrates [i.e., fishes (tilapia), amphibians (toads), reptiles (leopard geckos), birds (quail), and mammals (mice)]. In this study, we tested the hypothesis that the extent of tissue reorganization in the fasted distal intestine was correlated with the observed changes in enteric microbial diversity. Segments of intestine adjacent to those used for the microbiota study were examined histologically to quantify cross-sectional and mucosal surface areas and thicknesses of mucosa, submucosa, and tunica muscularis. We found no fasting-induced differences in the morphology of distal intestines of the mice (3 days), quail (7 days), or geckos (28 days). The toads, which exhibited a general increase in phylogenetic diversity of their enteric microbiota with fasting, also exhibited reduced mucosal circumference at 14 and 21 days of fasting. Tilapia showed increased phylogenetic diversity of their enteric microbiota, and showed a thickened tunica muscularis at 21 days of fasting; but this morphological change was not related to microbial diversity or absorptive surface area, and thus, is unlikely to functionally match the changes in their microbiome. Given that fasting caused significant increases and reductions in the enteric microbial diversity of mice and quail, respectively, but no detectable changes in distal intestine morphology, we conclude that reorganization is not the primary factor shaping changes in microbial diversity within the fasted colon, and the observed modest structural changes are more related to the fasted state. Anat Rec, 300:2208-2219, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Comparative effect of cane syrup and natural honey on abdominal viscera of growing male and female rats.

    PubMed

    Ajibola, Abdulwahid; Chamunorwa, Joseph P; Erlwanger, Kennedy H

    2013-04-01

    The high intake of refined sugars, mainly fructose has been implicated in the epidemiology of metabolic diseases in adults and children. With an aim to determine whether honey can substitute refined sugars without adverse effect, the long-term effects of natural honey and cane syrup have been compared on visceral morphology in growing rats fed from neonatal age. Honey increased the caecum and pancreas weights in male rats, which could enhance enzymatic activities of pancreas and digestive functions by intestinal microflora of caecum. Unlike honey, cane syrup caused fatty degenerations in the liver of both male and female rats. Honey enhanced intestinal villi growth, and did not cause pathology in the rodents' abdominal viscera, suggesting potential nutritional benefit as substitution for refined sugars in animal feed.

  2. Functional morphology of digestion in the stomachless, piscivorous needlefishes Tylosurus gavialoides and Strongylura leiura ferox (Teleostei: Beloniformes).

    PubMed

    Manjakasy, Jennifer M; Day, Ryan D; Kemp, Anne; Tibbetts, Ian R

    2009-10-01

    Belonidae are unusual in that they are carnivorous but lack a stomach and have a straight, short gut. To develop a functional morphological model for this unusual system the gut contents and alimentary tract morphology of Tylosurus gavialoides and Strongylura leiura ferox were investigated. The posterior orientation of the majority of the pharyngeal teeth supports the swallowing of whole large prey, but not their mastication. Mucogenic cells are abundant in the mucosa lining, particularly the esophagus, and their secretions are likely to protect the gut lining from damage while lubricating passage of the prey. Esophagus, anterior intestine, posterior intestine, and rectum all have highly reticulate mucosae. The anterior three gut sections are distensible to accommodate the passage of prey. However, following ingestion large prey are passed to the highly distensible posterior intestine where they rest head first against the ileorectal valve. Alimentary pH ranges from neutral to weakly acidic. Fish prey is digested head first with the head being largely digested while the remainder of the body is still intact. The nondistensibility of the rectum and the small aperture provided by the ileorectal valve suggest the products of intestinal digestion are either small particulates or fluids that pass into rectum where they are absorbed. 2009 Wiley-Liss, Inc.

  3. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker’s Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast

    PubMed Central

    Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker’s yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker’s yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker’s yeast. PMID:26696403

  4. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers.

    PubMed

    Baurhoo, B; Ferket, P R; Zhao, X

    2009-11-01

    The effects of 2 levels of mannanoligosaccharide (MOS) in feed were compared with antibiotic growth promoters on growth performance, intestinal morphology, cecal and litter microbial populations, and carcass parameters in broilers raised in a sanitary environment. Dietary treatments included: 1) antibiotic growth promoter-free diet (control), 2) VIRG (diet 1 + 16.5 mg/kg of virginiamycin), 3) BACT (diet 1 + 55 mg/kg of bacitracin), 4) LMOS (diet 1 + 0.2% MOS), and 5) HMOS (diet 1 + 0.5% MOS). Birds were randomly assigned to 3 replicate pens/treatment (n = 55/pen). Body weight and feed intake were recorded weekly throughout 38 d. At d 14, 24, and 34, a 1-cm segment of duodenum, jejunum, and ileum was used in morphological analysis (n = 9 birds/d per treatment). At the same bird ages, cecal contents were assayed for lactobacilli, bifidobacteria, Salmonella, Campylobacter, and Escherichia coli, whereas litter was analyzed for Salmonella, Campylobacter, and E. coli. Carcass yields (breast fillet and tenders, thigh, drumstick, and wing) were determined at d 38. Body weight, feed conversion, and carcass yields did not differ among treatments. In contrast to birds fed VIRG or BACT, LMOS and HMOS consistently increased (P < 0.05) villi height and goblet cell number per villus in all intestinal segments at d 24 and 34. Bifidobacteria concentrations were higher (P < 0.05) in LMOS- and HMOS-fed birds at all time points. Birds and litter from all treatments were free of Salmonella. At d 14 and 24, cecal E. coli and Campylobacter counts were not different among treatments. In comparison to birds fed control, at d 34, BACT, LMOS, and HMOS significantly reduced (P < 0.05) cecal E. coli concentrations, whereas Campylobacter counts were reduced (P < 0.05) by VIRG, BACT, and LMOS. Litter bacterial counts were not altered by dietary treatments. In conclusion, under conditions of this study, MOS conferred intestinal health benefits to chickens by improving its morphological development and microbial ecology. But, there were no additional benefits of the higher MOS dosage.

  5. Small intestinal function and dietary status in dermatitis herpetiformis.

    PubMed Central

    Gawkrodger, D J; McDonald, C; O'Mahony, S; Ferguson, A

    1991-01-01

    Small intestinal morphology and function were assessed in 82 patients with dermatitis herpetiformis, 51 of whom were taking a normal diet and 31 a gluten free diet. Methods used were histopathological evaluation of jejunal mucosal biopsy specimens, quantitation of intraepithelial lymphocytes, cellobiose/mannitol permeability test, tissue disaccharidase values, serum antigliadin antibodies, and formal assessment of dietary gluten content by a dietician. There was no correlation between dietary gluten intake and the degree of enteropathy in the 51 patients taking a normal diet, whereas biopsy specimens were normal in 24 of the 31 patients on a gluten free diet, all previously having been abnormal. Eighteen patients on gluten containing diets had normal jejunal histology and in seven of these all tests of small intestinal morphology and function were entirely normal. Intestinal permeability was abnormal and serum antigliadin antibodies were present in most patients with enteropathy. Studies of acid secretion in seven patients showed that hypochlorhydria or achlorhydria did not lead to abnormal permeability in the absence of enteropathy. This study shows that a combination of objective tests of small intestinal architecture and function will detect abnormalities in most dermatitis herpetiformis patients, including some with histologically normal jejunal biopsy specimens. Nevertheless there is a small group in whom all conventional intestinal investigations are entirely normal. PMID:2026337

  6. Primary peri-anal adenocarcinoma of intestinal type - a new proposed entity.

    PubMed

    Gill, Pelvender S; Wong, Newton A C S

    2018-02-21

    The currently recognised subtypes of anal canal/peri-anal adenocarcinoma are those arising from low rectal mucosa or columnar cuff, fistula-related tumours and anal gland carcinoma. This report presents two examples of a hitherto undescribed subtype of peri-anal adenocarcinoma with an intestinal phenotype. A 74-year-old man had a peri-anal tumour locally excised, whereas a 73-year-old female underwent an abdominoperineal resection for peri-anal Paget's disease with an underlying carcinoma. Neither patient had a history of perineal fistulae, Crohn's disease or previous gastrointestinal neoplasia, and neither showed clinical, radiological or endoscopic evidence of another abdominal or pelvic tumour. Both resection specimens contained adenocarcinoma, which were similar in demonstrating an intestinal morphology and CDX2 immunopositivity. The man has shown a disease-free outcome thus far, but the woman has suffered with nodal and pelvic recurrence within a few months of surgery. The name 'primary peri-anal adenocarcinoma of intestinal type' is proposed for this previously unrecognised subtype of perineal neoplasia. Awareness of its distinct existence - by recognising its intestinal morphology and immunophenotype while excluding metastasis from the intestinal tract - should help to collate data to determine its specific prognosis and to formulate its best management. © 2018 John Wiley & Sons Ltd.

  7. Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis

    PubMed Central

    Matsuura, Kazuo; Shi, Yun-Bo

    2012-01-01

    Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development. PMID:23071801

  8. Comparative Effects of Triflusal, S-Adenosylmethionine, and Dextromethorphan over Intestinal Ischemia/Reperfusion Injury

    PubMed Central

    Cámara-Lemarroy, Carlos R.; Guzmán-de la Garza, Francisco J.; Cordero-Pérez, Paula; Alarcón-Galván, Gabriela; Torres-Gonzalez, Liliana; Muñoz-Espinosa, Linda E.; Fernández-Garza, Nancy E.

    2011-01-01

    Ischemia/reperfusion (I/R) is a condition that stimulates an intense inflammatory response. No ideal treatment exists. Triflusal is an antiplatelet salicylate derivative with anti-inflammatory effects. S-adenosylmethionine is a metabolic precursor for glutathione, an endogenous antioxidant. Dextromethorphan is a low-affinity N-methyl-D-aspartate receptor inhibitor. There is evidence that these agents modulate some of the pathways involved in I/R physiopathology. Intestinal I/R was induced in rats by clamping the superior mesenteric artery for 60 minutes, followed by 60 minutes of reperfusion. Rats either received saline or the drugs studied. At the end of the procedure, serum concentrations of tumor necrosis factor-alpha (TNF-alpha), malonaldehyde (MDA), and total antioxidant capacity (TAC) were determined and intestinal morphology analyzed. I/R resulted in tissue damage, serum TNF-alpha and MDA elevations, and depletion of TAC. All drugs showed tissue protection. Only triflusal reduced TNF-alpha levels. All drugs lowered MDA levels, but only triflusal and S-adenosylmethionine maintained the serum TAC. PMID:22125445

  9. Rapid cooling after acute hyperthermia alters intestinal tissue morphology and increases the systemic inflammatory response in pigs

    USDA-ARS?s Scientific Manuscript database

    Acute hyperthermia can result in mortality if recovery is not appropriately managed. The study objective was to determine the effects of heatstroke recovery methods on the physiological response in pigs. In four repetitions, 36 male pigs (88.7 ± 1.6 kg BW) were exposed to thermoneutral conditions (T...

  10. A morphological study of the pacemaker cells of the aganglionic intestine in Hirschsprung's disease utilizing ls/ls model mice.

    PubMed

    Taniguchi, Kan; Matsuura, Kimio; Matsuoka, Takanori; Nakatani, Hajime; Nakano, Takumi; Furuya, Yasuo; Sugimoto, Takeki; Kobayashi, Michiya; Araki, Keijiro

    2005-06-01

    Hirschsprung's disease is a congenital aganglionic neural disorder of the segmental distal intestine characterized by unsettled pathogenesis. The relationship between Hirschsprung's disease and pacemaker cells (PMC), which almost corresponds to that of the interstitial cells of Cajal (ICC), was morphologically observed at the level of the intermuscular layer corresponding to Auerbach's plexus using ls/ls mice. These mice are an ideal model because of their large intestinal aganglionosis and gene abnormalities, which are similar to the human form of the disease. Immunostaining using anti-c-kit receptor antibody (ACK2), a marker of PMC, applied to whole-mount muscle-layer specimens, revealed the presence of c-kit immunopositive multipolar cells with many cytoplasmic processes in normal mice. For ls/ls mice, however, there were significantly fewer processes. The average number of processes per positive cell of 2.5 for the aganglionic large intestine was fewer than 3.5 for the large and small intestine of normal mice, indicating the inability to form connections between nerves and PMC in the aganglionic intestine. For normal mice with an Auerbach's plexus, the process attachment of ICC to the Auerbach's plexus was observed by scanning electron microscopy. However, for ls/ls mice no attachment to the intermuscular nerve without Auerbach's plexus was found, although transmission electron microscopy showed no difference in the cell structure and organelles of the c-kit immunopositive cells between the normal and ls/ls mice. These findings suggest that in the aganglionic intestine of Hirschsprung's disease, aplasia of enteric ganglia induces secondary disturbances during the normal development of intestinal PMC.

  11. Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats.

    PubMed

    Goldstein, Jorge; Morris, Winston E; Loidl, César Fabián; Tironi-Farinati, Carla; Tironi-Farinatti, Carla; McClane, Bruce A; Uzal, Francisco A; Fernandez Miyakawa, Mariano E

    2009-09-18

    Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.

  12. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury

    PubMed Central

    Zahs, Anita; Bird, Melanie D.; Ramirez, Luis; Turner, Jerrold R.; Choudhry, Mashkoor A.

    2012-01-01

    Laboratory evidence suggests that intestinal permeability is elevated following either binge ethanol exposure or burn injury alone, and this barrier dysfunction is further perturbed when these insults are combined. We and others have previously reported a rise in both systemic and local proinflammatory cytokine production in mice after the combined insult. Knowing that long myosin light-chain kinase (MLCK) is important for epithelial barrier maintenance and can be activated by proinflammatory cytokines, we examined whether inhibition of MLCK alleviated detrimental intestinal responses seen after ethanol exposure and burn injury. To accomplish this, mice were given vehicle or a single binge ethanol exposure followed by a sham or dorsal scald burn injury. Following injury, one group of mice received membrane permeant inhibitor of MLCK (PIK). At 6 and 24 h postinjury, bacterial translocation and intestinal levels of proinflammatory cytokines were measured, and changes in tight junction protein localization and total intestinal morphology were analyzed. Elevated morphological damage, ileal IL-1β and IL-6 levels, and bacterial translocation were seen in mice exposed to ethanol and burn injury relative to either insult alone. This increase was not seen in mice receiving PIK after injury. Ethanol-exposed and burn-injured mice had reduced zonula occludens protein-1 and occludin localization to the tight junction relative to sham-injured mice. However, the observed changes in junctional complexes were not seen in our PIK-treated mice following the combined insult. These data suggest that MLCK activity may promote morphological and inflammatory responses in the ileum following ethanol exposure and burn injury. PMID:22790598

  13. In vitro effects of anthelmintics on the histochemistry of Haemonchus contortus and Trichuris globulosa.

    PubMed

    Kaur, M; Sood, M L

    1996-12-01

    In vitro incubation of Haemonchus contortus (RUD., 1803) and Trichuris globulosa (v. LINSTOW, 1901) were proformed for 10-12 h in Tyrode's solution and 10 and 50 micrograms/ml concentrations each of albendazole (ABZ), fenbendazole (FBZ), thiophenate (TP), dl-tetramisole and oxyclozanide (TO), dl-tetramisole HCI (TMS) and levamisole HCI (LMS) to study morphological and histochemical alterations. The major structural changes observed after treatment with all the drugs were vacuolation in the intestine of H. contortus except with TP treatment and disruption of the epithelium in T. globulosa except with TMS treatment. The other major alteration in T. globulosa was the loss of muscle striations after TP, TO, TMS and LMS treatments. All the six anthelmintics reduced the quantity of neutral mucopolysaccharides in the intestine of H. contortus and T. globulosa except with TMS and LMS treatments in the latter. Acidic mucopolysaccharides detected in the microvilli of the intestine of H. contortus were lost after TO and ABZ treatments. The loss of lipids from the intestine was evident after TO, ABZ, FBZ and TP treatments in H. contortus and by all the drugs in T. globulosa. LMS treatment caused accumulation of very large lipid droplets in the intestine of H. contortus.

  14. Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota

    PubMed Central

    Ma, Ning; Wu, Yi; Xie, Fei; Du, Kexin; Wang, Yuan; Shi, Linxin; Ji, Linbao; Liu, Tianyi; Ma, Xi

    2017-01-01

    The effects of dimethyl fumarate (DMF) on mycotoxins and animal growth performance are well documented. However, its mechanism of anti-mildew effects is still unknown. The current study investigated how DMF detoxified the mycotoxin and improved the growth performance using BALB/c mice model, especially its effects on intestinal barrier function and gut micro-ecology. Our study also compared with the ultraviolet radiation (UR) treatment, a traditional anti-mildew control (TC). The results indicated that the DMF treatment had a lower contents of mycotoxin, better growth performance and improved mucosal morphology (P < 0.05), accompanied with the decreased intestinal permeability and the tighter gut barrier. Moreover, the efficiency of DMF was better than TC (P < 0.05). 16S rRNA gene sequence analysis revealed that the richness and diversity of bacteria was increased in DMF treatment. The most abundant OTUs belonged to Firmicutes and Bacteroidetes, and their changes in DMF were more moderate than the TC group, suggesting a more stable micro-ecology and the positive impact of DMF on the biodiversity of intestine. Specifically, the increased abundance of bacteria producing short-chain fatty acids (SCFAs), such as Gemella, Roseburia, Bacillus and Bacteroides in DMF group and prebiotics such as Lactobacillus in TC group, suggested a more healthier microbial composition and distribution. These findings supported that DMF had significant effects on animal's growth performance and intestinal barrier function by modulating the pathway of nutrient absorption and increasing the diversity and balance of gut microbes, which also illuminate that DMF is more efficient than traditional anti-mildew method. PMID:28574825

  15. Simultaneous quadruple modal nonlinear optical imaging for gastric diseases diagnosis and characterization

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Zheng, Wei; Lin, Jian; Huang, Zhiwei

    2015-03-01

    We report the development of a unique simultaneous quadruple-modal nonlinear optical microscopy (i.e., stimulated Raman scattering (SRS), second-harmonic generation (SHG), two-photon excitation fluorescence (TPEF), and third-harmonic generation (THG)) platform for characterization of the gastric diseases (i.e., gastritis, intestinal metaplasia (IM), intestinal type adenocarcinoma). SRS highlights the goblet cells found in IM. SHG images the distribution of collagen in lamina propria. Collagen is found to aggregate for intestinal type adenocarcinoma. TPEF reveals the cell morphology and can reflect the damage inside glands caused by the diseases. THG visualizes the nuclei with high spatial resolution, which facilitates the identification of neutrophils that are usually used as a feature of inflammation. This work shows that the co-registration of quadruple-modal images can be an effective means for diagnosis and characterization of gastric diseases at the cellular and molecular levels.

  16. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model

    PubMed Central

    Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci

    2015-01-01

    Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI. PMID:26030918

  17. The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model.

    PubMed

    Sun, Bo; Hu, Chen; Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci

    2015-01-01

    Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.

  18. Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Bond, Tanner; Ghandehari, Hamidreza

    2015-12-01

    Intestinal permeability of PAMAM dendrimers has been observed, giving rationale for their use in oral drug delivery as potential carriers of associated molecules. This study assessed the apparent permeability coefficients (Papp) of dendrimers across isolated rat intestinal regional mucosae, along with estimation of the maximum non-toxic concentration. Caco-2 monolayers were also used to assess the comparative Papp values between isolated mucosae and cell culture models. Concentrations from 0.1 to 10 mM of anionic and cationic dendrimers were tested in mucosae to assess their Papp, membrane TEER, [(14)C]-mannitol Papp, and histology. 0.1 mM concentrations of dendrimers were assessed over 120 min in Caco-2 cell monolayers as concentrations above that were cytotoxic. Jejunal transport of dendrimers was higher than transport in colonic epithelium. Monolayer Papp values of dendrimers were comparable to those of jejunal mucosae. Mucosae exposed to dendrimer concentrations of 10 mM for 120 min caused significant reduction in TEER and changes in tissue morphology; however, G3.5 was the only analogue that caused significant TEER reduction and morphological changes at 1 mM concentrations. Transport in jejunal mucosae appears to be the greatest indicating that the small intestinal will be the most likely region to target for oral drug delivery using PAMAM dendrimers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: A hypothesis linking quantum effects of light on serotonin and auxin.

    PubMed

    Tonello, Lucio; Gashi, Bekim; Scuotto, Alessandro; Cappello, Glenda; Cocchi, Massimo; Gabrielli, Fabio; Tuszynski, Jack A

    2018-01-01

    Living organisms tend to find viable strategies under ambient conditions that optimize their search for, and utilization of, life-sustaining resources. For plants, a leading role in this process is performed by auxin, a plant hormone that drives morphological development, dynamics, and movement to optimize the absorption of light (through branches and leaves) and chemical "food" (through roots). Similarly to auxin in plants, serotonin seems to play an important role in higher animals, especially humans. Here, it is proposed that morphological and functional similarities between (i) plant leaves and the animal/human brain and (ii) plant roots and the animal/human gastro-intestinal tract have general features in common. Plants interact with light and use it for biological energy, whereas, neurons in the central nervous system seem to interact with bio-photons and use them for proper brain function. Further, as auxin drives roots "arborescence" within the soil, similarly serotonin seems to facilitate enteric nervous system connectivity within the human gastro-intestinal tract. This auxin/serotonin parallel suggests the root-branches axis in plants may be an evolutionary precursor to the gastro-intestinal-brain axis in humans. Finally, we hypothesize that light might be an important factor, both in gastro-intestinal dynamics and brain function. Such a comparison may indicate a key role for the interaction of light and serotonin in neuronal physiology (possibly in both the central nervous system and the enteric nervous system), and according to recent work, mind and consciousness.

  20. Production of digestive enzymes along the gut of the giant keyhole limpet Megathura crenulata (Mollusca: Vetigastropoda).

    PubMed

    Martin, Gary G; Martin, Alanna; Tsai, Whitney; Hafner, John C

    2011-11-01

    The esophagus and intestine form the longest regions of the digestive tract in the giant keyhole limpet and are lined by epithelial cells sharing a common morphology and releasing materials into the gut lumen by apocrine secretion. The purpose of this study was to determine if these morphologically similar regions release similar digestive enzymes and compare their contributions to digestive enzymes released from other regions of the gut. Principal component analysis of enzymes detected by the API ZYM system for 19 enzymes plus EnzChek assays for protease, α-amylase, lipase, cellulase, and lysozyme identify four distinct regions of the gut: 1) crystalline style and style sac, 2) digestive gland, 3) salivary glands, and 4) esophagus and intestine. Heterogeneity in enzymatic activity was observed in regions of the gut with similar cell morphology (middle and posterior esophagus and intestine) as well as regions with different cell morphology (salivary glands, digestive gland and crystalline style). Enzyme activity in each of these regions is compared to other gastropods, in particular the abalone. Although much of the length of the digestive tract is lined by a morphologically similar epithelium, different regions of the alimentary tract produce a different suite of enzymes which may contribute to the digestive process. These data will help enhance our limited understanding of the digestive physiology of Megathura crenulata and lead to improvement of its culture for clinical research. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Histological damage and inflammatory response elicited by Monobothrium wageneri (Cestoda) in the intestine of Tinca tinca (Cyprinidae)

    PubMed Central

    2011-01-01

    Background Among the European cyprinids, tench, Tinca tinca (L.), and the pathological effects their cestodes may effect, have received very little or no attention. Most literature relating to Monobothrium wageneri Nybelin, 1922, a common intestinal cestode of tench, for example, has focused on aspects of its morphology rather than on aspects of the host-parasite interaction. Results Immunopathological and ultrastructural studies were conducted on the intestines of 28 tench, collected from Lake Piediluco, of which 16 specimens harboured tight clusters of numerous M. wageneri attached to the intestinal wall. The infection was associated with the degeneration of the mucosal layer and the formation of raised inflammatory swelling surrounding the worms. At the site of infection, the number of granulocytes in the intestine of T. tinca was significantly higher than the number determined 1 cm away from the site of infection or the number found in uninfected fish. Using transmission electron microscopy, mast cells and neutrophils were frequently observed in close proximity to, and inside, the intestinal capillaries; often these cells were in contact with the cestode tegument. At the host-parasite interface, no secretion from the parasite's tegument was observed. Intense degranulation of the mast cells was seen within the submucosa and lamina muscularis, most noticeably at sites close to the tegument of the scolex. In some instances, rodlet cells were encountered in the submucosa. In histological sections, hyperplasia of the mucous cells, notably those giving an alcian blue positive reaction, were evident in the intestinal tissues close to the swelling surrounding the worms. Enhanced mucus secretion was recorded in the intestines of infected tench. Conclusions The pathological changes and the inflammatory cellular response induced by the caryophyllidean monozoic tapeworm M. wageneri within the intestinal tract of an Italian population of wild tench is reported for the first time. PMID:22152408

  2. Protein metabolism in the small intestine during cancer cachexia and chemotherapy in mice.

    PubMed

    Samuels, S E; Knowles, A L; Tilignac, T; Debiton, E; Madelmont, J C; Attaix, D

    2000-09-01

    The impact of cancer cachexia and chemotherapy on small intestinal protein metabolism and its subsequent recovery was investigated. Cancer cachexia was induced in mice with colon 26 adenocarcinoma, which is a small and slow-growing tumor characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C6H12ClN3O4S). Both healthy mice and tumor-bearing mice were given a single i.p. injection of cystemustine (20 mg/kg) 3 days after the onset of cachexia. Cancer cachexia led to a reduced in vivo rate of protein synthesis in the small intestine relative to healthy mice (-13 to -34%; P < 0.05), resulting in a 25% loss of protein mass (P < 0.05), and decreased villus width and crypt depth (P < 0.05). In treated mice, acute cytotoxicity of chemotherapy did not promote further wasting of small intestinal protein mass, nor did it result in further damage to intestinal morphology. In contrast, mucosal damage and a 17% reduction in small intestinal protein mass (P < 0.05) were evident in healthy mice treated with cystemustine, suggesting that the effects of chemotherapy on the small intestine in a state of cancer cachexia are not additive, which was an unexpected finding. Complete and rapid recovery of small intestinal protein mass in cured mice resulted from an increase in the rate of protein synthesis compared with healthy mice (23-34%; P < 0.05). Northern hybridizations of mRNA encoding components of the major proteolytic systems suggested that proteolysis may not have mediated intestinal wasting or recovery. A major clinical goal should be to design methods to improve small intestinal protein metabolism before the initiation of chemotherapy.

  3. ADAM10 Regulates Notch Function in Intestinal Stem Cells of Mice

    PubMed Central

    Tsai, Yu-Hwai; VanDussen, Kelli L.; Sawey, Eric T.; Wade, Alex W.; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G.; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C.; Samuelson, Linda C.; Dempsey, Peter J.

    2014-01-01

    BACKGROUND & AIMS ADAM10 is a cell surface sheddase that regulates physiological processes including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. METHODS We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10f/f mice) and conditional (Vil-CreER;Adam10f/f and Lgr5-CreER;Adam10f/f mice) deletion of ADAM10. We performed cell lineage tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26NICD) or mice with intestine-specific disruption of Notch (Rosa26DN-MAML), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26NICD and Rosa26DN-MAML mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage tracing experiments showed that ADAM10 is required for survival of Lgr5+ crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. CONCLUSIONS ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. PMID:25038433

  4. Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway.

    PubMed

    Li, Zhiling; Gao, Ming; Yang, Bingchang; Zhang, Huali; Wang, Kangkai; Liu, Zuoliang; Xiao, Xianzhong; Yang, Mingshi

    2018-07-01

    Sepsis is commonly associated with excessive stimulation of host immune system and result in multi-organ failure dysfunction. Naringin has been reported to exhibit a variety of biological effects. The present study aimed to investigate the protective effect of naringin on sepsis-induced injury of intestinal barrier function in vivo and in vitro. Mice were randomly divided into 4 groups named sham (n = 20), CLP + vehicle (n = 20), CLP + NG (30 mg/kg) (n = 20) and CLP + NG (60 mg/kg) (n = 20) groups. Sepsis was induced by cecal ligation and puncture (CLP). H&E staining and transmission electron microscopy (TEM) were performed to observe intestinal mucosal morphology. ELISA was used to determine the intestinal permeability and inflammatory response in vivo and in vitro. Western blot and RhoA activity assay were performed to determine the levels of tight junction proteins and the activation of indicated signaling pathways. MTT assay was used to determine cell viability. Naringin improved survival rate of CLP mice and alleviated sepsis-induced intestinal mucosal injury. Furthermore, naringin improved impaired intestinal permeability and inhibited the release of TNF-α and IL-6, while increased IL-10 level in CLP mice and lipopolysaccharide (LPS)-stimulated MODE-K cells in a dose-dependent manner. Naringin increased the expression of tight junction proteins ZO-1 and claudin-1 via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro. Naringin improved sepsis-induced intestinal injury via RhoA/ROCK/NF-κB/MLCK/MLC signaling pathway in vivo and in vitro. Copyright © 2018. Published by Elsevier Masson SAS.

  5. Roux-en-Y Gastric Bypass Surgery Suppresses Hepatic Gluconeogenesis and Increases Intestinal Gluconeogenesis in a T2DM Rat Model.

    PubMed

    Yan, Yong; Zhou, Zhou; Kong, Fanzhi; Feng, Suibin; Li, Xuzhong; Sha, Yanhua; Zhang, Guangjun; Liu, Haijun; Zhang, Haiqing; Wang, Shiguang; Hu, Cheng; Zhang, Xueli

    2016-11-01

    Roux-en-Y gastric bypass (RYGB) is an effective surgical treatment for type 2 diabetes mellitus (T2DM). The present study aimed to investigate the effects of RYGB on glucose homeostasis, lipid metabolism, and intestinal morphological adaption, as well as hepatic and intestinal gluconeogenesis. Twenty adult male T2DM rats induced by high-fat diet and low dose of streptozotocin were randomly divided into sham and RYGB groups. The parameters of body weight, food intake, glucose tolerance, insulin sensitivity, and serum lipid profiles were assessed to evaluate metabolic changes. Intestinal sections were stained with hematoxylin and eosin (H&E) for light microscopy examination. The messenger RNA (mRNA) and protein expression levels of key regulatory enzymes of gluconeogenesis [phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase)] were determined through reverse-transcription PCR (RT-PCR) and Western blotting, respectively. RYGB induced significant improvements in glucose tolerance and insulin sensitivity, along with weight loss and decreased food intake. RYGB also decreased serum triglyceride (TG) and free fatty acid (FFA) levels. The jejunum and ileum exhibited a marked increase in the length and number of intestinal villi after RYGB. The RYGB group exhibited downregulated mRNA and protein expression levels of PEPCK and G6Pase in the liver and upregulated expression of these enzymes in the jejunum and ileum tissues. RYGB ameliorates glucose and lipid metabolism accompanied by weight loss and calorie restriction. The small intestine shows hyperplasia and hypertrophy after RYGB. Meanwhile, our study demonstrated that the reduced hepatic gluconeogenesis and increased intestinal gluconeogenesis may contribute to improved glucose homeostasis after RYGB.

  6. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions.

    PubMed

    Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin

    2014-05-01

    There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.

  7. Diet and gut morphology of male mallards during winter in North Dakota

    USGS Publications Warehouse

    Olsen, R.E.; Cox, R.R.; Afton, A.D.; Ankney, C.D.

    2011-01-01

    A free-ranging Mallard (Anas platyrhynchos) population was investigated during winter (December-January 1996-1999) below the Garrison Dam, North Dakota, USA, to relate diet to gut morphology variation in males. Four explanatory variables (fish consumption, male age, winter, and body size) were evaluated as to whether they influenced five response variables associated with gut characteristics of Mallards. Response variables were lower gastro-intestinal tract mass (LGIT), dry liver mass, dry gizzard mass, small intestine length, and ceca length. Diets of Mallards were comprised primarily of Rainbow Smelt (Osmerus mordax) and concomitantly variation in gizzard mass was small. LGIT mass of juveniles was larger than that of adults, greater for those that consumed fish, and greater during the coldest and snowiest winter. Liver mass and small intestine length of Mallards that consumed fish were greater than those that did not. Mallards may maintain lengthy intestines to increase digestive efficiency. Gut size variation was not entirely attributable to dietary composition but also influenced by body size and environmental conditions such that over-winter survival is maximized.

  8. Disease surveillance of Atlantic herring: molecular characterization of hepatic coccidiosis and a morphological report of a novel intestinal coccidian

    USGS Publications Warehouse

    Friend, Sarah E; Lovey, J; Hershberger, Paul

    2016-01-01

    Surveillance for pathogens of Atlantic herring, including viral hemorrhagic septicemia virus (VHSV),Ichthyophonus hoferi, and hepatic and intestinal coccidians, was conducted from 2012 to 2016 in the NW Atlantic Ocean, New Jersey, USA. Neither VHSV nor I. hoferi was detected in any sample. Goussia clupearum was found in the livers of 40 to 78% of adult herring in varying parasite loads; however, associated pathological changes were negligible. Phylogenetic analysis based on small subunit 18S rRNA gene sequences placed G. clupearum most closely with other extraintestinal liver coccidia from the genus Calyptospora, though the G. clupearum isolates had a unique nucleotide insertion between 604 and 729 bp that did not occur in any other coccidian species. G. clupearum oocysts from Atlantic and Pacific herring were morphologically similar, though differences occurred in oocyst dimensions. Comparison of G. clupearum genetic sequences from Atlantic and Pacific herring revealed 4 nucleotide substitutions and 2 gaps in a 1749 bp region, indicating some divergence in the geographically separate populations. Pacific G. clupearum oocysts were not directly infective, suggesting that a heteroxenous life cycle is likely. Intestinal coccidiosis was described for the first time from juvenile and adult Atlantic herring. A novel intestinal coccidian species was detected based on morphological characteristics of exogenously sporulated oocysts. A unique feature in these oocysts was the presence of 3 long (15.1 ± 5.1 µm, mean ±SD) spiny projections on both ends of the oocyst. The novel morphology of this coccidian led us to tentatively name this parasite G. echinata n. sp.

  9. Effect of morphological changes in feather follicles of chicken carcasses after defeathering and chilling on the degree of skin contamination by Campylobacter species

    PubMed Central

    LATT, Khin Maung; URATA, Ayaka; SHINKI, Taisuke; SASAKI, Satomi; TANIGUCHI, Takako; MISAWA, Naoaki

    2017-01-01

    Campylobacter jejuni and C. coli are the leading causes of enteric infections in many developed countries. Healthy chickens are considered to act as reservoirs of campylobacters, as the organisms colonize the intestinal tract. Once infected birds enter a processing plant, contamination of chicken carcasses with campylobacters occurs over the entire skin during defeathering and evisceration due to leakage of crop and/or intestinal contents. Although the role of feather follicles in the contamination of chicken carcasses by campylobacters during processing is still debatable, it has been considered that the microorganisms would be entrapped and retained in the follicles due to the morphological changes resulting from defeathering and chilling. In the present study, we observed the morphology of feather follicles in chicken carcasses after defeathering and chilling. A total of 3,133 feather follicles were examined for morphological changes before and after chilling. Shortly after defeathering, most (91.5%) of the follicles were closed, whereas after chilling they were either closed (85.5%) or open (6%), although a small proportion of enlarged follicles became smaller or closed (2.6%). Moreover, 5.9% of the follicles that were slightly open became further enlarged after chilling. Furthermore, the proportion of enlarged feather follicles that became closed after chilling showed no discernible relationship with the degree of campylobacter contamination in different areas of the carcass skin, suggesting that campylobacters may not be confined to feather follicles as a result of the morphological changes attributable to defeathering and chilling. PMID:29151444

  10. Effect of morphological changes in feather follicles of chicken carcasses after defeathering and chilling on the degree of skin contamination by Campylobacter species.

    PubMed

    Latt, Khin Maung; Urata, Ayaka; Shinki, Taisuke; Sasaki, Satomi; Taniguchi, Takako; Misawa, Naoaki

    2018-01-01

    Campylobacter jejuni and C. coli are the leading causes of enteric infections in many developed countries. Healthy chickens are considered to act as reservoirs of campylobacters, as the organisms colonize the intestinal tract. Once infected birds enter a processing plant, contamination of chicken carcasses with campylobacters occurs over the entire skin during defeathering and evisceration due to leakage of crop and/or intestinal contents. Although the role of feather follicles in the contamination of chicken carcasses by campylobacters during processing is still debatable, it has been considered that the microorganisms would be entrapped and retained in the follicles due to the morphological changes resulting from defeathering and chilling. In the present study, we observed the morphology of feather follicles in chicken carcasses after defeathering and chilling. A total of 3,133 feather follicles were examined for morphological changes before and after chilling. Shortly after defeathering, most (91.5%) of the follicles were closed, whereas after chilling they were either closed (85.5%) or open (6%), although a small proportion of enlarged follicles became smaller or closed (2.6%). Moreover, 5.9% of the follicles that were slightly open became further enlarged after chilling. Furthermore, the proportion of enlarged feather follicles that became closed after chilling showed no discernible relationship with the degree of campylobacter contamination in different areas of the carcass skin, suggesting that campylobacters may not be confined to feather follicles as a result of the morphological changes attributable to defeathering and chilling.

  11. Capability of different non-nutritive feed additives on improving productive and physiological traits of broiler chicks fed diets with or without aflatoxin during the first 3 weeks of life.

    PubMed

    Attia, Y A; Allakany, H F; Abd Al-Hamid, A E; Al-Saffar, A A; Hassan, R A; Mohamed, N A

    2013-08-01

    An experiment was conducted to determine whether some non-nutritive feed additives (NNFA) could block the adverse effects of aflatoxin (AF) on growth performance and physiological parameters of Cobb broilers throughout the period from 1 to 21 day of age. There were eight treatments consisting of two levels of AF at 0 and 200 ppb and four NNFA within each AF level. These additives included mannan oligosaccharides (MOS) at 2 g/kg diet, hydrated sodium calcium aluminosilicate (HSCAS) at 2 g/kg diet and Lactobacillus acidophilus (Lac) at 2 g/kg diet. At 21 day of age, five chickens of each treatment were slaughtered to study dressing percentage and relative weight of inner organs and glands. AF had a significant negative effect on body weight gain (BWG), and feed intake, while impairing feed conversion ratio (FCR). Aflatoxin significantly increased percentage liver, lymphocyte (%), monocyte (%), serum triglyceride level, and the aspartate aminotransferase (AST), and alanine aminotransferase (ALT), concentrations while decreasing dressing percentage, intestinal percentage, white blood cells (WBCs), red blood cells (RBCs), haemoglobin (Hgb), packed cell volume (PCV), heterophil (%), heterophil/lymphocyte ratio, total serum protein and serum albumin. Aflatoxin adversely affected the morphology of the liver, bursa and the thymus. There was a significant interaction between AF and NNFA on the relative weights of liver, heart and intestine. Lac completely blocked the negative effects of AF on the percentage liver and the heart and partially on the intestine. In conclusion, Lac was most effective in reversing the adverse effects of AF on growth and FCR and on the percentage, functions and morphology of the liver. Hydrated sodium calcium aluminosilicate also improved the economic traits of broilers but was less effective than Lac and more effective than MOS. © 2012 Blackwell Verlag GmbH.

  12. Influence of an organic acid blend and essential oil blend, individually or in combination, on growth performance, carcass parameters, apparent digestibility, intestinal microflora and intestinal morphology of broilers.

    PubMed

    Basmacioğlu-Malayoğlu, H; Ozdemir, P; Bağriyanik, H A

    2016-04-01

    This study aimed to evaluate the influence of an organic acid (OA) and essential oil (EO) blends, individually or in combination, on growth performance, carcass parameters, apparent digestibility, intestinal microflora and intestinal morphology of broilers. A total of 480 one-d-old male Ross 308 chicks were randomly assigned to 4 treatments consisting of 4 replicates each (n = 30 birds in each replicate). Dietary treatments consisted of a basal diet (control), and basal diet supplemented with 2 g/kg OA blend (OAB), 300 mg/kg EO blend (EOB), or with 2 g/kg OA and 300 mg/kg EO blend (OAB-EOB) for 42 d. The dietary supplementation with EO blend or in combination with OA blend increased body weight gain and improved feed efficiency as compared to control. Dietary treatments had no significant effects on feed consumption or relative organ weights of broilers. The OAB diet increased carcass yield compared to the control diet but the lowest carcass yield occurred with the OAB-EOB combination. Birds fed on EOB and OAB-EOB diets had lower ileum Escherichia coli counts than birds fed on the control diet. There was no significant effect of treatments on apparent digestibility at 16-21 d but the EOB and OAB-EOB diets increased apparent digestibility of dry matter and crude protein during the finisher period (d 37-42) compared to the control diet. Birds fed on the EOB and OAB-EOB diets had greater villus height in the ileum at 21 and 42 d of age and had lower crypt depth in the ileum at 42 d of age than birds given the control diet. In conclusion, beneficial effects of the use of EO blend individually or in combination with the OA blend were observed but the OA blend alone was ineffective. Furthermore, the use of the combination of OA and EO was more effective, in some respects, than their individual use.

  13. Effect of Vanadium and Tea Polyphenols on Intestinal Morphology, Microflora and Short-Chain Fatty Acid Profile of Laying Hens.

    PubMed

    Yuan, Z H; Wang, J P; Zhang, K Y; Ding, X M; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W

    2016-12-01

    Vanadium (V) is a trace element which can induce dysfunction of gastro-intestine and egg quality deterioration of laying hens. This study was conducted to determine the effect of tea polyphenols (TP) on intestinal morphology, microflora, and short-chain fatty acid (SCFA) profile of laying hens fed vanadium containing diets. A total of 120 Lohman laying hens (67-week-old) were randomly divided into 4 groups with 6 replicates and 5 birds each for a 35-day feeding trial. The dietary treatments were as follows: (1) control (CON), fed a basal diet; (2) vanadium treatment (V10), CON +10 mg V/kg; (3) TP treatment 1 (TP1): V10 + 600 mg TP/kg; (4) TP treatment 2 (TP2): V10 + 1000 mg TP/kg. Fed 10 mg V/kg diets to laying hens did not affect the cecum flora diversity index (H), degree of homogeneity (EH), and richness (S), but hens fed TP2 diet decreased the H, EH, and S (P < 0.05). The cecum butyrate acid concentration was lower in V10 treatment and higher in TP2 treatment (P < 0.05). Addition of 10 mg/kg V resulted in an increased (P < 0.01) duodenal cell apoptosis rate, and 1000 mg/kg TP supplementation overcame (P < 0.01) this reduction effect induced by vanadium. The results indicated that supplementation of 10 mg/kg vanadium increased duodenal cell apoptosis and reduced cecum butyrate acid content. Addition of 1000 mg/kg TP increased the SCFA production to affect cecum flora ecology and protected the duodenal cell from excess apoptosis caused by vanadium.

  14. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens.

    PubMed

    Jazi, V; Boldaji, F; Dastar, B; Hashemi, S R; Ashayerizadeh, A

    2017-08-01

    1. This experiment was conducted to evaluate the effects of replacing dietary cottonseed meal (CSM) or fermented cottonseed meal (FCSM) for soya bean meal (SBM) on growth performance, carcass characteristics, gastrointestinal microbial populations, and intestinal morphology of broiler chickens. 2. CSM was fermented with Bacillus subtilis, Aspergillus niger and A. oryzae for 7 d. A total of 300 one-d-old male Ross 308 broiler chickens were used in a 42-d experiment in which the birds were randomly allotted to one of 5 dietary treatments (containing 0%, 10% and 20% CSM or FCSM) in a completely randomised design. Birds were reared on litter floor and had free access to feed and water during the experiment. 3. Results indicated that the fermentation process significantly reduced crude fibre and free gossypol, while it increased crude protein content and lactic acid bacteria (LAB) count in CSM. 4. The use of FCSM instead of CSM significantly improved growth performance of broilers. The abdominal fat yield in treatments containing FCSM was significantly lower than in the other treatments. The increase in the population of LAB in the crop and decrease in the population of coliforms in the ileum of birds fed on diets containing FCSM were more significant than in other birds. Villi in the duodenum and jejunum of the birds fed on diets containing FCSM were significantly higher than for the other experimental groups. 5. The positive effects of diets containing FCSM on growth performance and intestinal health of broiler chickens showed that this processed source of protein can serve as an appropriate alternative for SBM in diets for broiler chickens.

  15. Effects of the inclusion of a Bacillus direct-fed microbial on performance parameters, bone quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles

    PubMed Central

    Latorre, J. D.; Hernandez-Velasco, X.; Vicente, J. L.; Wolfenden, R.; Hargis, B. M.; Tellez, G.

    2017-01-01

    Abstract Distillers dried grains with solubles (DDGS) have increasingly been used in poultry diets as a consequence of rising grain costs. Some, but not all, sources of DDGS have a variable compositional value, and a high inclusion of this by-product could be considered a risk factor for presentation of enteric diseases. Presently, 2 experiments were conducted using a starter corn-soybean diet (zero to 7 d) and a corn-DDGS-soybean grower diet (8 to 28 d) with or without inclusion of a Bacillus-direct-fed microbial (DFM). In both experiments, day-of-hatch chicks were randomly assigned to 2 different groups: control group without DFM or Bacillus-DFM group, containing 106 spores/g of feed. In each experiment, 8 pens of 20 chicks (n = 160/group) were used. Performance parameters of BW, BW gain (BWG), feed intake (FI), and feed conversion (FCR) were evaluated in each growth phase. Additionally, in experiment 2, intestinal samples were collected to determine duodenal and ileal morphology (n = 8/group), as well as the microbiota population of total lactic acid bacteria (TLAB), total Gram-negative bacteria (TGNB), and total anaerobic bacteria (TAB) on d 28 (n = 16/group). Furthermore, both tibias were evaluated for bone strength and bone composition (n = 16/group). In both experiments BW, BWG, and FCR were improved by the DFM when compared to the control group (P < 0.05). In experiment 2, chickens supplemented with the DFM had less TGNB in the foregut intestinal segment and higher TLAB counts in both foregut and hindgut sections (P < 0.05). In addition significant increases in tibia breaking strength and bone mineralization were observed in the DFM group when compared with the control. In the case of intestinal morphology, DFM dietary inclusion increased villus height (VH), villus width, villus area, muscular thickness, and the VH to crypt depth ratio (VH:CD) in both duodenum and ileum sections. Results of the present study suggest that consumption of a selected Bacillus-DFM producing a variable set of enzymes could contribute to enhanced performance, intestinal microbial balance, and bone quality in broiler chickens consuming a grower diet that contains corn-DDGS. PMID:28419329

  16. Effect of early dietary energy restriction and phosphorus level on subsequent growth performance, intestinal phosphate transport, and AMPK activity in young broilers

    PubMed Central

    Miao, Zhiqiang; Zhang, Guixian; Zhang, Junzhen; Yang, Yu

    2017-01-01

    We aimed to determine the effect of low dietary energy on intestinal phosphate transport and the possible underlying mechanism to explain the long-term effects of early dietary energy restriction and non-phytate phosphorus (NPP). A 2 × 3 factorial experiment, consisting of 2 energy levels and 3 NPP levels, was conducted. Broiler growth performance, intestinal morphology in 0–21 days and 22–35 days, type IIb sodium-phosphate co-transporter (NaPi-IIb) mRNA expression, adenylate purine concentrations in the duodenum, and phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α) activity in 0–21 days were determined. The following results were obtained. (1) Low dietary energy (LE) induced a high feed conversion ratio (FCR) and significantly decreased body weight gain in young broilers, but LE induced significantly higher compensatory growth in low NPP (LP) groups than in the high or medium NPP groups (HP and MP). (2) LE decreased the villus height (VH) in the intestine, and LE-HP resulted in the lowest crypt depth (CD) and the highest VH:CD ratio in the initial phase. However, in the later period, the LE-LP group showed an increased VH:CD ratio and decreased CD in the intestine. (3) LE increased ATP synthesis and decreased AMP:ATP ratio in the duodenal mucosa of chickens in 0–21 days, and LP diet increased ATP synthesis and adenylate energy charges but decreased AMP production and AMP:ATP ratio. (4) LE led to weaker AMPK phosphorylation, higher mTOR phosphorylation, and higher NaPi-IIb mRNA expression. Thus, LE and LP in the early growth phase had significant compensatory and interactive effect on later growth and intestinal development in broilers. The effect might be relevant to energy status that LE leads to weaker AMPK phosphorylation, causing a lower inhibitory action toward mTOR phosphorylation. This series of events stimulates NaPi-IIb mRNA expression. Our findings provide a theoretical basis and a new perspective on intestinal phosphate transport regulation, with potential applications in broiler production. PMID:29240752

  17. Effects of anatomy and diet on gastrointestinal pH in rodents.

    PubMed

    Kohl, Kevin D; Stengel, Ashley; Samuni-Blank, Michal; Dearing, M Denise

    2013-04-01

    The pH of the gastrointestinal tract can have profound influences on digestive processes. Rodents exhibit wide variation in both stomach morphology and dietary strategies, both of which may influence gut pH. Various rodent species have evolved bilocular (or semi-segmented) stomachs that may allow for more microbial growth compared to unilocular (single-chambered) stomachs. Additionally, herbivory has evolved multiple times in rodents. The high dietary fiber typical of an herbivorous diet is known to induce secretion of bicarbonate in the gut. We predicted that stomach segmentation might facilitate the separation of contents in the proximal chamber from that of the gastric stomach, facilitating a chemical environment suitable to microbial growth. To investigate the effect of stomach anatomy and diet on gut pH, several species of rodent with varying stomach morphology were fed either a high or low-fiber diet for 7 days, and pH of the proximal stomach, gastric stomach, small intestine, and cecum were measured. We discovered that rodents with bilocular stomach anatomy maintained a larger pH gradient between the proximal and gastric stomach compartments, and were able to achieve a lower absolute gastric pH compared to those with unilocular stomachs. Dietary fiber increased the pH of the small intestine, but not in any other gut regions. The stomach pH data supports the century old hypothesis that bilocular stomach anatomy creates an environment in the proximal stomach that is suitable for microbial growth. Additionally, the alkaline small intestinal pH on a high fiber diet may enhance digestion. Copyright © 2013 Wiley Periodicals, Inc.

  18. Evaluation of the prebiotic, Previda, on performance characteristics, intestinal microbial community, immune function and intestinal tract morphology of Altantic salmon (Salmo salar)

    USDA-ARS?s Scientific Manuscript database

    Research into the use of non-nutritive feed supplements to enhance growth and disease resistance has increased due to concerns about antibiotics and their residues. The use of prebiotics, supplements that stimulate the growth of beneficial bacteria, is increasing in aquafeeds. This study examined ...

  19. Evaluation of the prebiotic, previda, on performance characteristics, intestinal microbial community, immune function and intestinal tract morphology of atlantic salmon (Salmo salar)

    USDA-ARS?s Scientific Manuscript database

    Research into the use of non-nutritive feed supplements to enhance growth and disease resistance has increased due to concerns about antibiotics and their residues. The use of prebiotics, supplements that stimulate the growth of beneficial bacteria, is increasing in aquafeeds. This study examined th...

  20. Subclinical exocrine pancreatic dysfunction resulting from decreased cholecystokinin secretion in the presence of intestinal villous atrophy.

    PubMed

    Nousia-Arvanitakis, Sanda; Fotoulaki, Maria; Tendzidou, Kyriaki; Vassilaki, Constantina; Agguridaki, Christina; Karamouzis, Michael

    2006-09-01

    The aim of this study was to evaluate the concept that pancreatic dysfunction in patients having gluten sensitivity (celiac disease [CD]) or cow's milk protein enteropathy (CMPE) may result from the lack of pancreatic enzyme stimulation in the absence or decrease of cholecystokinin (CCK) secretion caused by villous atrophy. The following parameters were measured: plasma CCK in response to a fatty meal and human pancreatic fecal elastase in 24 patients with CD while on gluten-free diet and after gluten provocation and in 12 patients with CMPE at diagnosis and after a 6-month period of cow's milk-free diet. Intestinal mucosa morphology was examined by small bowel biopsy. Sixty-three controls having no organic gastrointestinal problems were investigated once at the time of diagnostic evaluation. Fasting CCK, obtained at a time when patients with CD or CMPE had normal intestinal mucosa, was significantly different from postprandial and comparable to that of the control group. Fasting CCK obtained from patients with villous atrophy was also statistically different, but not significantly, from the postprandial. Fasting and postprandial plasma CCK and fecal pancreatic elastase values from patients having normal intestinal mucosa were significantly higher than those obtained from patients with villous atrophy. Significant correlation of intestinal mucosa morphology and CCK with fecal elastase concentration was documented. Exocrine pancreatic dysfunction in individuals having villous atrophy may be the consequence of decreased CCK secretion. Cholecystokinin and pancreatic secretion is restored to normal, with intestinal mucosa regeneration.

  1. Effects of dietary live and heat-inactive baker's yeast on growth, gut health, and disease resistance of Nile tilapia under high rearing density.

    PubMed

    Ran, Chao; Huang, Lu; Hu, Jun; Tacon, Philippe; He, Suxu; Li, Zhimin; Wang, Yibing; Liu, Zhi; Xu, Li; Yang, Yalin; Zhou, Zhigang

    2016-09-01

    In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Protein source and nutrient density in the diets of male broilers from 8 to 21 d of age: Effects on small intestine morphology.

    PubMed

    Wang, X; Peebles, E D; Morgan, T W; Harkess, R L; Zhai, W

    2015-01-01

    In a companion study, high amino acid (AA) or apparent metabolizable energy (AME) densities in the diets of broilers from 8 to 21 d of age were found to improve feed conversion. A total of 1,120 male Ross×Ross 708 chicks were randomly allocated to 80 pens (8 treatments, 10 replications per treatment, 14 chicks per pen). A 2×2×2 factorial arrangement of treatments was used to investigate the interaction among the protein source (high distillers dried grains with solubles diet [hDDGS] or high meat and bone meal diet [hMBM]), AA density (moderate or high), and AME density (2,998 or 3,100 kcal/kg) of diets on small intestine morphology. Duodenum, jejunum, and ileum samples from 2 chicks per pen were collected and measured individually at 21 d. Jejunum sections were processed for histological analysis. Chicks fed hDDGS diets exhibited longer small intestines than did chicks fed hMBM diets. Particularly, when chicks were fed high AA density diets, jejuna were longer in groups fed hDDGS diets than groups fed hMBM diets. Dietary treatments did not affect jejunum villus height, width, area, crypt depth, villus to crypt ratio, goblet cell size, or cell density. In birds fed diets containing a moderate AA and a high AME density, jejunum muscle layers of chicks fed hDDGS diets were thicker than those fed hMBM diets. Chicks exhibited a lower feed conversion ratio (FCR) and a higher BW gain when their crypts were shorter. In conclusion, an hDDGS diet may facilitate small intestine longitudinal growth in broilers, which may subsequently improve dietary nutrient absorption. In addition, broiler chicks with shallow intestinal crypts exhibited better growth performance. © 2014 Poultry Science Association Inc.

  3. The in vitro biological properties of Mg-Zn-Sr alloy and superiority for preparation of biodegradable intestinal anastomosis rings

    PubMed Central

    Liu, Ling; Li, Nianfeng; Lei, Ting; Li, Kaimo; Zhang, Yangde

    2014-01-01

    Background Magnesium (Mg) alloy is a metal-based biodegradable material that has received increasing attention in the field of clinical surgery, but it is currently seldom used in intestinal anastomosis. This study was conducted to comprehensively assess a ternary magnesium (Mg)-zinc (Zn)-strontium (Sr) alloy’s biological superiorities as a preparation material for intestinal anastomosis ring. Material/Methods Mouse L-929 fibroblasts were cultured with Mg-Zn-Sr alloy extract and compared with both positive (0.64% phenol) and negative (original broth culture) controls. The cell morphology of different groups was examined using microscopy, and a cytotoxicity assessment was performed. Fresh anticoagulated human blood was mixed with Mg-Zn-Sr alloy extract and compared with both positive (distilled water) and negative (normal saline) controls. The absorbance of each sample at 570 nm was used to calculate the Mg-Zn-Sr alloy hemolysis ratio in order to test the Mg alloy’s blood compatibility. Bacterial cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were added to Mg-Zn-Sr alloy block samples and compared with positive (Ceftazidime), negative (316LSS stainless steel), and blank controls. The broth cultures were sampled to compare their bacterial colony counts so as to evaluate the antibacterial properties of the Mg-Zn-Sr alloy. The Mg-Zn-Sr alloy was surface-coated with a layer of poly(lactic-co-glycolic acid) carrying everolimus. The surface morphology and degradability of the coating were examined so as to demonstrate feasibility of coating, which can release the drug evenly. Results The experiments proved that Mg-Zn-Sr alloy has good biocompatible, antibacterial, and drug-loaded coating performances, which are lacking in existing intestinal anastomosis devices/materials. Conclusions The Mg-Zn-Sr alloy increases biocompatibility, and yields a safer and better therapeutic effect; therefore, it is a novel biomaterial that is feasible for use when preparing biodegradable intestinal anastomosis rings. PMID:24957079

  4. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects.

    PubMed

    Wang, Mei; Xie, Tingting; Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin's poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets.

  5. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects

    PubMed Central

    Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin’s poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets. PMID:26674103

  6. Biological Effects of Protracted Exposure to Ionizing Radiation: Review, Analysis, and Model Development

    DTIC Science & Technology

    1991-11-01

    dynamics, physiological changes, morphologi- cal changes, cell/tissue damage and recovery mechanisms, and existing radiobiological injury and recovery...humans and the ferret. The gut injury model (GIM) is a three-compartment hierarchial- type tissue model to simulate radiation-induced changes in the...Prodromal Symptoms Diarrhea Gastrointestinal Symptoms Dose Rate Cell Survival Intestinal Injury Fatigability Cell Damage Cell Repair Cell Proliferation

  7. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet.

    PubMed

    Ren, M; Zhang, S H; Zeng, X F; Liu, H; Qiao, S Y

    2015-12-01

    As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.

  8. Effect of egg storage duration and brooding temperatures on chick growth, intestine morphology and nutrient transporters.

    PubMed

    Yalcin, S; Gursel, I; Bilgen, G; Horuluoglu, B H; Gucluer, G; Izzetoglu, G T

    2017-10-01

    The effects of egg storage duration (ESD) and brooding temperature (BT) on BW, intestine development and nutrient transporters of broiler chicks were investigated. A total of 396 chicks obtained from eggs stored at 18°C for 3 days (ESD3-18°C) or at 14°C for 14 days (ESD14-14°C) before incubation were exposed to three BTs. Temperatures were initially set at 32°C, 34°C and 30°C for control (BT-Cont), high (BT-High) and low (BT-Low) BTs, respectively. Brooding temperatures were decreased by 2°C each at days 2, 7, 14 and 21. Body weight was measured at the day of hatch, 2, 7, 14, 21, 28 and 42. Cloacal temperatures of broilers were recorded from 1 to 14 days. Intestinal morphology and gene expression levels of H+-dependent peptide transporter (PepT1) and Na-dependent glucose (SGLT1) were evaluated on the day of hatch and 14. Cloacal temperatures of chicks were affected by BTs from days 1 to 8, being the lowest for BT-Low chicks. BT-High resulted in the heaviest BWs at 7 days, especially for ESD14-14°C chicks. This result was consistent with longer villus and larger villus area of ESD14-14°C chicks at BT-High conditions. From 14 days to slaughter age, BT had no effect on broiler weight. ESD3-18°C chicks were heavier than ESD14-14°C chicks up to 28 days. The PepT1 and SGLT1 expression levels were significantly higher in ESD3-18°C chicks than ESD14-14°C on the day of hatch. There was significant egg storage by BT interaction for PepT1 and SGLT1 transporters at day 14. ESD14-14°C chicks had significantly higher expression of PepT1 and SGLT1 at BT-Low than those at BT-Cont. ESD14-14°C chicks upregulated PepT1 gene expression 1.15 and 1.57-fold at BT-High and BT-Low, respectively, compared with BT-Cont, whereas PepT1 expression was downregulated 0.67 and 0.62-fold in ESD3-18°C chicks at BT-High and BT-Low. These results indicated that pre-incubation egg storage conditions and BTs affected intestine morphology and PepT1 and SGLT1 nutrient transporters expression in broiler chicks.

  9. Effects of dietary coarsely ground corn and litter type on broiler live performance, litter characteristics, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and intestinal morphology.

    PubMed

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Auttawong, S; Brake, J

    2015-03-01

    The objectives of this study were to evaluate the effects of the dietary inclusion of 2 coarsely ground corn (CC) levels (0 or 50%) in diets of broilers reared on 2 litter types (new wood shavings or used litter) on live performance, litter characteristics, gastrointestinal tract (GIT) development, apparent ileal digestibility (AID) of energy and nitrogen (N), and intestinal morphology. No interaction effects between CC level and litter type were observed on live performance. No litter effect was observed on live performance. Dietary inclusion of 50% CC increased BW at 35 d (P<0.01) and improved cumulative feed conversion ratio (FCR) at 35 and 49 d of age (P<0.01). The 50% CC treatment increased absolute and relative gizzard weight (P<0.01) and decreased jejunum unit weight (g/cm) (P<0.01). The new litter treatment (litter N) increased absolute and relative proventriculus weight (P<0.05) but did not affect gizzard weight. An interaction effect between CC level and litter type was observed for litter N, where the 50% CC treatment reduced litter N regardless of litter type (P<0.01), but litter N was reduced by new litter only among birds fed 0% CC (P<0.05). The 50% CC inclusion increased litter pH (P<0.05) and improved the AID of energy and N by 6.8% (P<0.01) and 3.5% (P<0.05), respectively. The 50% CC treatment increased jejunum villi tip width (P<0.05) and villi surface area (P<0.01), and decreased the muscularis layer thickness (P<0.01), whereas new litter increased jejunum villi and ileum villi height (P<0.05), jejunum villi surface area (P<0.01), and the ratio of jejunum villi height to crypt depth (P<0.01). This study showed that birds fed pelleted and screened diets containing 50% CC exhibited improved BW, FCR, and AID of energy and N, in conjunction with altered morphology of the GIT and intestinal mucosa. Litter type affected some GIT traits and functions but did not affect live performance. © 2015 Poultry Science Association Inc.

  10. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia

    PubMed Central

    Stairs, Doug B.; Kong, Jianping; Lynch, John P.

    2018-01-01

    Intestinal metaplasia is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric intestinal metaplasia and Barrett’s esophagus. In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intetinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric intestinal metaplasia as well as in Barrett’s esophagus. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We will review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric intestinal metaplasia and Barrett’s esophagus. PMID:21075347

  11. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.

    PubMed

    Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko

    2008-08-01

    Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.

  12. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    USDA-ARS?s Scientific Manuscript database

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  13. Redescription and molecular characterization of Anoplocephala manubriata, Railliet et al., 1914 (Cestoda: Anoplocephalidae) from a Sri Lankan wild elephant (Elephas maximus).

    PubMed

    Perera, K U E; Wickramasinghe, Susiji; Perera, B V P; Bandara, K B A T; Rajapakse, R P V J

    2017-06-01

    The present work provides a detailed morphological and molecular description of Anoplocephala manubriata in elephants. Adult worms were recovered during an autopsy of a wild elephant in Elephant Transit Home, Udawalawe, Sri Lanka. Necropsy findings revealed a severe cestode infection in the small intestine. These tapeworms were tightly attached to the intestinal mucosae, resulted in hyperemic thickened intestinal mucosae, variable size irregular well-demarcated multifocal ulcerative regions sometimes covered with necrotic membranes and variable size, diffuse, well-demarcated raised nodular masses were evident in the small intestine. The article provides an account of the biology of A. manubriata and a comparative analysis of the morphology and morphometrics of Anoplocephala species that occur in different hosts. Phylogenetic analysis of the second internal transcribed spacer region (ITS-2), a portion of the 28S region and cytochrome oxidase subunit 1 (COX1) genes revealed that A. manubriata is closely associated with Anoplocephala species in horse in comparison to other Anoplocephalines. This study will enhance the current knowledge in taxonomy of elephant tapeworms and contribute to future phylogenetic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The morphology and histopathology of Nephridiacanthus major (Acanthocephala: Oligacanthorhynchidae) from hedgehogs in Iran.

    PubMed

    Heckmann, Richard A; Amin, Omar M; Halajian, Ali; El-Naggar, Atif M

    2013-02-01

    The morphology of Nephridiacanthus major (Bremser 1811 in Westrumb 1821) Golvan, 1962 collected from the long-eared hedgehog Hemiechinus auritus (Gmelin 1770) and the Eastern European hedgehog Erinaceus concolor Martin, 1838 (Erinaceidae) is described using SEM for the first time. This acanthocephalan was previously described from hedgehogs in Europe, Asia, and Africa. Measurements of specimens from Iran, Bulgaria, Germany, Central Asia, Morocco, and Egypt show considerable variations in the size of the trunk, proboscis, proboscis hooks and receptacle, and eggs. The SEM studies add new perspectives to its morphology. Features observed for the first time include the near terminal position and shape of the female gonopore and orifice, among others. Histopathological studies for this species are reported for the first time. Tissue sections show extensive damage near the proboscis with hemorrhaging and formation of collagenous connective tissue, compression of the intestinal mucosa, obstruction of intestinal lumen, and extensive necrosis of host epithelial tissue.

  15. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets.

    PubMed

    Biagia, Giacomo; Cipollini, Irene; Paulicks, Brigitte R; Roth, Franz X

    2010-04-01

    Tannins are natural polyphenolic compounds that can reduce digestibility of dietary protein but also display antibacterial effects. The present study investigated, in vitro and in vivo, the effect of different levels of tannins (using a chestnut wood extract containing 75% tannins) on growth performance, intestinal microbiota and wall morphology in piglets. During a 24 h in vitro caecal fermentation, the utilisation of tannins at 0.75, 1.5, 3, and 6 g/l significantly reduced total gas production and concentrations of ammonia and volatile fatty acids and increased viable counts of enterococci and coliforms. When fed to piglets at 1.13, 2.25, and 4.5 g/kg, tannins significantly improved feed efficiency and reduced caecal concentrations of ammonia, iso-butyric, and iso-valeric acid. Viable counts of lactobacilli tended to be increased by tannins in the jejunum, while bacterial caecal counts were not affected. Depth of ileal crypts tended to decrease in piglets fed tannins at 2.25 and 4.5 g/kg. The present study showed that feeding weaned piglets with a tannin-rich wood extract can result in improved feed efficiency and reduction of intestinal bacterial proteolytic reactions. The growth-enhancing effect that tannins had on enterococci and coliforms under in vitro conditions deserves further investigation.

  16. Morphological and functional changes after benzalkonium chloride treatment of the small intestinal Thiry-Vella loop in rats.

    PubMed

    Móricz, K; Gyetvai, B; Bárdos, G

    1998-08-01

    The aim of this work was to study the effects of benzalkonium chloride (BAC) treatment on the small intestine and its functioning in rats surgically prepared with Thiry-Vella intestinal loop. The loops were treated with either BAC, which ablated much of the myenteric plexus and extrinsic innervation, or with physiological saline (SAL). In vivo drinking experiments were performed to examine the effect on fluid intake and behavioral indices of distending the loop with a balloon. Spontaneous motility and its changes induced by acetylcholine (ACh) and histamine (His) were studied on isolated stripes in vitro. Finally, samples from the loops were examined histologically. Though reduction of the cell number was less than expected and no differences of the thickness of the muscular layer between the two groups was observed, BAC treatment altered the pattern of spontaneous activity and also the sensitivity to ACh and His in isolated stripes. In vivo distension of the SAL-treated loops reduced fluid intake and produced signs of aversivity; these effects were absent in the BAC-treated group. Our results show that despite the differences in the degree of ablation from those obtained by others, BAC treatment can be used to study the mechanisms underlying the effects of the enteral stimuli on the behavior.

  17. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium

    PubMed Central

    Bastide, Pauline; Darido, Charbel; Pannequin, Julie; Kist, Ralf; Robine, Sylvie; Marty-Double, Christiane; Bibeau, Frédéric; Scherer, Gerd; Joubert, Dominique; Hollande, Frédéric; Blache, Philippe; Jay, Philippe

    2007-01-01

    The HMG-box transcription factor Sox9 is expressed in the intestinal epithelium, specifically, in stem/progenitor cells and in Paneth cells. Sox9 expression requires an active β-catenin–Tcf complex, the transcriptional effector of the Wnt pathway. This pathway is critical for numerous aspects of the intestinal epithelium physiopathology, but processes that specify the cell response to such multipotential signals still remain to be identified. We inactivated the Sox9 gene in the intestinal epithelium to analyze its physiological function. Sox9 inactivation affected differentiation throughout the intestinal epithelium, with a disappearance of Paneth cells and a decrease of the goblet cell lineage. Additionally, the morphology of the colon epithelium was severely altered. We detected general hyperplasia and local crypt dysplasia in the intestine, and Wnt pathway target genes were up-regulated. These results highlight the central position of Sox9 as both a transcriptional target and a regulator of the Wnt pathway in the regulation of intestinal epithelium homeostasis. PMID:17698607

  18. Primary intestinal lymphangiectasia diagnosed by double-balloon enteroscopy and treated by medium-chain triglycerides: a case report.

    PubMed

    Lai, Yu; Yu, Tao; Qiao, Xiao-Yu; Zhao, Li-Na; Chen, Qi-Kui

    2013-01-14

    Primary intestinal lymphangiectasia is a disorder characterized by exudative enteropathy resulting from morphologic abnormalities of the intestinal lymphatics. Intestinal lymphangiectasia can be primary or secondary, so the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A double-balloon enteroscopy and biopsy, as well as the pathology can be used to confirm the diagnosis of intestinal lymphangiectasia. A polymeric diet containing medium-chain triglycerides and total parenteral nutrition may be a useful therapy. A 17-year-old girl of Mongoloid ethnicity was admitted to our hospital with a history of diarrhea and edema. She was diagnosed with protein-losing enteropathy caused by intestinal lymphangiectasia. This was confirmed by a double-balloon enteroscopy and multi-dot biopsy. After treatment with total parenteral nutrition in hospital, which was followed by a low-fat and medium-chain triglyceride diet at home, she was totally relieved of her symptoms. Intestinal lymphangiectasia can be diagnosed with a double-balloon enteroscopy and multi-dot biopsy, as well as the pathology of small intestinal tissue showing edema of the submucosa and lymphangiectasia. Because intestinal lymphangiectasia can be primary or secondary, the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A positive clinical response to the special diet therapy, namely a low-fat and medium-chain triglyceride diet, can further confirm the diagnosis of primary intestinal lymphangiectasia.

  19. Morphologic aspects of Tetratrichomonas didelphidis isolated from opossums Didelphis marsupialis and Lutreolina crassicaudata.

    PubMed

    Tasca, T; De Carli, G A; Glock, L; Jeckel-Neto, E A

    2001-02-01

    Tetratrichomonas didelphidis (Hegner & Ratcliffe, 1927) Andersen & Reilly, 1965 is a flagellate protozoan found in the intestine, cecum, and colon of Didelphis marsupialis. The parasitic protozoa used in this study was found and isolated in the intestine of opossums in Pavlova starch-containing medium in Florianópolis, State of Santa Catarina, Brazil, from D. marsupialis and Lutreolina crassicaudata. The strains were cultivated in Diamond medium without maltose and with starch solution, pH 7.5 at 28 degrees C. The specimens were stained by the Giemsa method and Heidenhain's iron hematoxylin. The light microscopy study of the trophozoites revealed the same morphologic characteristics as specimens previously described.

  20. Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition.

    PubMed

    Garas, Lydia C; Feltrin, Cristiano; Hamilton, M Kristina; Hagey, Jill V; Murray, James D; Bertolini, Luciana R; Bertolini, Marcelo; Raybould, Helen E; Maga, Elizabeth A

    2016-02-01

    Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of five worldwide. However, the underlying mechanisms are not well understood necessitating an appropriate animal model to answer fundamental questions and conduct translational research into optimal interventions. One potential intervention is milk from livestock that more closely mimics human milk by increased levels of bioactive components that can promote a healthy intestinal epithelium. We tested the ability of cow milk and milk from transgenic cows expressing human lactoferrin at levels found in human milk (hLF milk) to mitigate the effects of malnutrition at the level of the intestine in a pig model of malnutrition. Weaned pigs (3 weeks old) were fed a protein and calorie restricted diet for five weeks, receiving cow, hLF or no milk supplementation daily from weeks 3-5. After three weeks, the restricted diet induced changes in growth, blood chemistry and intestinal structure including villous atrophy, increased ex vivo permeability and decreased expression of tight junction proteins. Addition of both cow and hLF milk to the diet increased growth rate and calcium and glucose levels while promoting growth of the intestinal epithelium. In the jejunum hLF milk restored intestinal morphology, reduced permeability and increased expression of anti-inflammatory IL-10. Overall, this pig model of malnutrition mimics salient aspects of the human condition and demonstrates that cow milk can stimulate the repair of damage to the intestinal epithelium caused by protein and calorie restriction with hLF milk improving this recovery to a greater extent.

  1. Flaxseed Oil Attenuates Intestinal Damage and Inflammation by Regulating Necroptosis and TLR4/NOD Signaling Pathways Following Lipopolysaccharide Challenge in a Piglet Model.

    PubMed

    Zhu, Huiling; Wang, Haibo; Wang, Shuhui; Tu, Zhixiao; Zhang, Lin; Wang, Xiuying; Hou, Yongqing; Wang, Chunwei; Chen, Jie; Liu, Yulan

    2018-05-01

    Flaxseed oil is a rich source of α-linolenic acid (ALA), which is the precursor of the long-chain n-3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). This study investigates the protective effect of flaxseed oil against intestinal injury induced by lipopolysaccharide (LPS). Twenty-four weaned pigs were used in a 2 × 2 factorial experiment with dietary treatment (5% corn oil vs 5% flaxseed oil) and LPS challenge (saline vs LPS). On day 21 of the experiment, pigs were administrated with LPS or saline. At 2 h and 4 h post-administration, blood samples were collected. After the blood harvest at 4 h, all piglets were slaughtered and intestinal samples were collected. Flaxseed oil supplementation led to the enrichment of ALA, EPA, and total n-3 PUFAs in intestine. Flaxseed oil improved intestinal morphology, jejunal lactase activity, and claudin-1 protein expression. Flaxseed oil downregulated the mRNA expression of intestinal necroptotic signals. Flaxseed oil also downregulated the mRNA expression of intestinal toll-like receptors 4 (TLR4) and its downstream signals myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), and nucleotide-binding oligomerization domain proteins 1, 2 (NOD1, NOD2) and its adapter molecule, receptor-interacting protein kinase 2 (RIPK2). These results suggest that dietary addition of flaxseed oil enhances intestinal integrity and barrier function, which is involved in modulating necroptosis and TLR4/NOD signaling pathways. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Gross morphology and histology of the alimentary tract of the convict cichlid Amatitlania nigrofasciata.

    PubMed

    Hopperdietzel, C; Hirschberg, R M; Hünigen, H; Wolter, J; Richardson, K; Plendl, J

    2014-11-01

    The primary objectives of this study were to document the macroscopic and histological structure of the alimentary tract (AT) of the convict cichlid Amatitlania nigrofasciata, because there are no data available for this omnivorous freshwater fish of the family Cichlidae. The morphology of the AT of A. nigrofasciata resembles that of related species. While having morphological criteria of the AT typical of most omnivorous fishes, such as a blind sac stomach and medium length intestine, A. nigrofasciata also has some structural peculiarities: the oesophagus is lined by a uniform stratified squamous epithelial layer with interspersed goblet cells along its entire length. Additionally, it has well-developed layers of the tunica muscularis including muscle fibre bundles that ascend into its mucosal folds. Occasionally, taste buds are present. In the transitional area between oesophagus and stomach, a prominent torus-like closure device is present. The mucosa of the stomach cannot be divided into different regions according to mucosal and morphological properties. The simple pattern of intestinal loops of A. nigrofasciata has few variations, irrespective of sex, mass and length of the individual fish. The first segment of the intestine is characterized by the largest mucososerosal ratio and the most complex mucosal surface architecture. A distinction of midgut and hindgut was not possible in A. nigrofasciata due to lack of defining structural components as described for other fish species. © 2014 The Fisheries Society of the British Isles.

  3. Tissue reactions to modern suturing material in colorectal surgery.

    PubMed

    Molokova, O A; Kecherukov, A I; Aliev, F Sh; Chernov, I A; Bychkov, V G; Kononov, V P

    2007-06-01

    Morphological changes in the wall of the large intestine were studied after its manual suturing by a double-row interrupted suture with modern suture threads. Light and scanning electron microscopy showed "fuse properties" and "sawing effect" of polyfilament twisted threads (e.g. vicryl). Monofilament threads were free from these drawbacks and therefore were preferable. Metal elastic threads on the basis of titanium-nickelide alloys caused no inflammatory changes in tissues.

  4. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus.

    PubMed

    Xia, Yun; Lu, Maixin; Chen, Gang; Cao, Jianmeng; Gao, Fengying; Wang, Miao; Liu, Zhigang; Zhang, Defeng; Zhu, Huaping; Yi, Mengmeng

    2018-05-01

    The present study aimed to evaluate the individual and combined effects of Lactobacillus rhamnosus (LR) JCM1136 and Lactococcus lactis subsp. lactis (LL) JCM5805 on the growth, intestinal microbiota, intestinal morphology, immune response and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). A total of 720 apparently healthy juvenile Nile tilapia (0.20 ± 0.05 g) were randomly divided into four equal groups. Fish were fed with a basal diet (CK) supplemented with JCM1136 (LR), JCM5805 (LL), and JCM1136 + JCM5805 (LR+LL) at 1 × 10 8  CFU/g basal diet for 6 weeks, followed by a basal diet for 1 week. After 6 weeks of feeding, the LL treatment significantly increased the growth and feed utilization of Nile tilapia when compared with the CK. Light microscopy and transmission electron microscopy images of the midgut revealed that probiotic supplementation significantly increased gut microvilli length and microvilli density compared to CK. The transcript levels of several key immune-related genes in the mid-intestine and liver of fish were analyzed by means of quantitative polymerase chain reaction (qPCR) at the end of the sixth week. The results showed the following: when compared to CK group, fish in LR had significantly increased transcript levels of IFN-γ, lyzc, hsp70 and IL-1β in the intestine; LL fish showed significantly increased expressions of TNF-α, IFN-γ, lyzc, hsp70 and IL-1β in the intestine and liver; and intestine lyzc, hsp70 and IL-1β and liver TNF-α, IFN-γ, hsp70 and IL-1β were significantly increased in LR+LL fish. Following a 6-week period of being fed probiotics or a control diet, the tilapia were challenged with an intraperitoneal injection of 20 μl of the pathogenic Streptococcus agalactiae (WC1535) (1 × 10 5  CFU/ml). The survival rates of the probiotic-fed groups were significantly higher than that of the CK group, and the LL group had the highest survival rate. High-throughput sequencing revealed a significantly higher presence of JCM5805 in the guts of LL fish during the period of probiotic application, but this was no longer detected in all LL samples 1 week post cessation of probiotic administration. Cessation of probiotic administration led to disorders of individual gut microbes within the LR and LL groups. Statistical analysis (LEfSe) demonstrated that three phyla, namely, Bacteroidetes, Fusobacteria and Actinobacteria were enriched in the CK group, while the abundance of Proteobacteria was greater in the probiotic-fed fish. At the genus level, Plesiomonas, which includes potential pathogens of fish, were significantly decreased in the probiotic-fed groups. In contrast, a significant increase of Rhizobium and Achromobacter, which can produce a variety of enzymes with cellulolytic and pectolytic activity, were observed in fish fed with probiotics, indicating that dietary probiotics were helpful in the propagation of some probiotic bacteria. Our data revealed that JCM1136 and JCM5805, as a feed additive at 10 8  CFU/g feed, could improve intestinal morphology, enhance immune status and disease resistance, and affect the gut microbiota of tilapia; thus, these additives could be used as probiotics for juvenile Nile tilapia. JCM5805 was more effective than JCM1136 or the mixture of the two for promoting the growth, enhancing the immune status and disease resistance of tilapia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of honey on bacterial translocation and intestinal morphology in obstructive jaundice

    PubMed Central

    Gencay, Cem; Kilicoglu, Sibel Serin; Kismet, Kemal; Kilicoglu, Bulent; Erel, Serap; Muratoglu, Sabahattin; Sunay, Asli Elif; Erdemli, Esra; Akkus, Mehmet Ali

    2008-01-01

    AIM: To evaluate the effects of honey on bacterial translocation and intestinal villus histopathology in experimental obstructive jaundice. METHODS: Thirty Wistar-Albino rats were randomly divided into three groups each including 10 animals: group I, sham-operated; group II, ligation and section of the common bile duct (BDL); group III, bile duct ligation followed by oral supplementation of honey (BDL + honey) 10 g/kg per day. Liver, blood, spleen, mesenteric lymph nodes, and ileal samples were taken for microbiological, light and transmission electrone microscopic examination. RESULTS: Although the number of villi per centimeter and the height of the mucosa were higher in sham group, there was no statistically significant difference between sham and BDL + honey groups (P > 0.05). On the other hand, there was a statistically significant difference between BDL group and other groups (P < 0.05). The electron microscopic changes were also different between these groups. Sham and honey groups had similar incidence of bacterial translocation (P > 0.05). BDL group had significantly higher rates of bacterial translocation as compared with sham and honey groups. Bacterial translocation was predominantly detected in mesenteric lymph nodes. CONCLUSION: Supplementation of honey in presence of obstructive jaundice ameliorates bacterial translocation and improves ileal morphology. PMID:18528939

  6. Essential oils--their antimicrobial activity against Escherichia coli and effect on intestinal cell viability.

    PubMed

    Fabian, Dusan; Dusan, Fabian; Sabol, Marián; Marián, Sabol; Domaracká, Katarína; Katarína, Domaracká; Bujnáková, Dobroslava; Dobroslava, Bujnáková

    2006-12-01

    Essential oils are known to possess antimicrobial activity against a wide spectrum of bacteria. The main objective of this study was to evaluate possible harmful effects of four commonly used essential oils and their major components on intestinal cells. Antimicrobial activity of selected plant extracts against enteroinvasive Escherichia coli was dose dependent. However, doses of essential oils with the ability to completely inhibit bacterial growth (0.05%) showed also relatively high cytotoxicity to intestinal-like cells cultured in vitro. Lower doses of essential oils (0.01%) had only partial antimicrobial activity and their damaging effect on Caco-2 cells was only modest. Cell death assessment based on morphological and viability staining followed by fluorescence microscopy showed that essential oils of cinnamon and clove and their major component eugenol had almost no cytotoxic effect at lower doses. Although essential oil of oregano and its component carvacrol slightly increased the incidence of apoptotic cell death, they showed extensive antimicrobial activity even at lower concentrations. Relatively high cytotoxicity was demonstrated by thyme oil, which increased both apoptotic and necrotic cell death incidence. In contrast, its component thymol showed no cytotoxic effect as well as greatly-reduced ability to inhibit visible growth of the chosen pathogen in the doses used. On the other hand, the addition of all essential oils and their components at lower doses, with the exception of thyme oil, to bacterial suspension significantly reduced the cytotoxic effect of E. coli on Caco-2 cells after 1h culture. In conclusion, it is possible to find appropriate doses of essential oils showing both antimicrobial activity and very low detrimental effect on intestinal cells.

  7. Acute oral dose of sodium nitrite induces redox imbalance, DNA damage, metabolic and histological changes in rat intestine.

    PubMed

    Ansari, Fariheen Aisha; Ali, Shaikh Nisar; Arif, Hussain; Khan, Aijaz Ahmed; Mahmood, Riaz

    2017-01-01

    Industrialization and unchecked use of nitrate/nitrite salts for various purposes has increased human exposure to high levels of sodium nitrite (NaNO2) which can act as a pro-oxidant and pro-carcinogen. Oral exposure makes the gastrointestinal tract particularly susceptible to nitrite toxicity. In this work, the effect of administration of a single acute oral dose of NaNO2 on rat intestine was studied. Animals were randomly divided into four groups and given single doses of 20, 40, 60 and 75 mg NaNO2/kg body weight. Untreated animals served as the control group. An NaNO2 dose-dependent decline in the activities of brush border membrane enzymes, increase in lipid peroxidation, protein oxidation, hydrogen peroxide levels and decreased thiol content was observed in all treated groups. The activities of various metabolic and antioxidant defense enzymes were also altered. NaNO2 induced a dose-dependent increase in DNA damage and DNA-protein crosslinking. Histopathological studies showed marked morphological damage in intestinal cells. The intestinal damage might be due to nitrite-induced oxidative stress, direct action of nitrite anion or chemical modification by reaction intermediates.

  8. Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes.

    PubMed

    Petrovsky, Roman; Krohne, Georg; Großhans, Jörg

    2018-03-01

    The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. ADAM10 regulates Notch function in intestinal stem cells of mice.

    PubMed

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Antigenic specificity and morphologic characteristics of Chlamydia trachomatis, strain SFPD, isolated from hamsters with proliferative ileitis.

    PubMed

    Fox, J G; Stills, H F; Paster, B J; Dewhirst, F E; Yan, L; Palley, L; Prostak, K

    1993-10-01

    Profound diarrhea associated with proliferating intestinal cells containing intraepithelial campylobacter-like organisms (ICLO) occurs in a variety of mammalian hosts, particularly swine and hamsters. Recently, intracellular bacteria were isolated from proliferative intestinal tissue of hamsters and propagated in intestine cell line 407. Oral inoculation of hamsters with cell culture lysates containing these organisms reproduced the disease in susceptible hamsters. In the present study, an intracellular bacterium from the INT 407 cell line was shown by a variety of techniques to be a member of the genus Chlamydia and has been designated Chlamydia sp. strain SFPD. McCoy cells infected with Chlamydia sp. strain SFPD demonstrated bright fluorescent-stained intracytoplasmic inclusions when examined with fluorescein-labeled species-specific C. trachomatis monoclonal antibodies. The organism also reacted to fluorescein-labeled polyclonal but not monoclonal ICLO "omega" antisera. Ultrastructural examination of the Chlamydia sp. strain SFPD from McCoy cells revealed electrondense elementary bodies and a less electron-dense reticulate-like body that was circular; both features are consistent in morphology to developmental forms of Chlamydia and do not conform to ICLO morphology. Molecular studies, 16S ribosomal sequence analysis, and sequencing of the outer membrane protein confirmed that the isolate is a C. trachomatis closely related to the mouse pneumonitis strain of C. trachomatis.

  11. [Morphology of III stage larvae of Angiostrongylus cantonensis in Pomacea canaliculata].

    PubMed

    Zhang, Chao-Wei; Zhou, Xiao-Nong; Lv, Shan; Zhang, Yi; Liu, He-Xiang

    2008-06-30

    To observe the morphologic characteristics of III stage larvae of Angiostrongylus cantonensis from Pomacea canaliculata. P. canaliculata, the intermediate host snail of A. cantonensis, was infected with I stage larvae of A. cantonensis in laboratory. After 61 days, III stage larvae of A. cantonensis were harvested from snail's lungs and muscle of head-foot, followed by HE stain to observe morphological characteristics. The whole body of III stage larva was curling with obtuse head. Its pharyngeal canal extends from the buccal hole on the top of the head to the intestines at the pharyngeal intestine joint place, with apex cauda and clear anal tube. The tegument of the III stage larva was eosin-stained, with a transparent sheath outside of tegument. Some of the larvae cauda showed in circular cylinder, and some larvae presented ventral gland with two very short uterine which used to be the feature only showed in early IV stage larva. Morphologically characteristics of the III stage larvae is helpful to better understand the life-cycle and the control of A. cantonensis.

  12. Intestinal metaplasia in Barrett's oesophagus: An essential factor to predict the risk of dysplasia and cancer development.

    PubMed

    Salemme, Marianna; Villanacci, Vincenzo; Cengia, Gianpaolo; Cestari, Renzo; Missale, Guido; Bassotti, Gabrio

    2016-02-01

    To date, there is still uncertainty on the role of specialized intestinal metaplasia in the carcinogenic process of Barrett's oesophagus (BE); this fact seems of importance for planning adequate surveillance programs. To predict the risk of progression towards dysplasia/cancer based on typical morphological features by evaluating the importance of intestinal metaplasia in BE patients. 647 cases with a histological diagnosis of BE, referred to the Endoscopy Unit of a tertiary centre between 2000 and 2012 were retrospectively identified, and divided into two groups according to the presence/absence of intestinal metaplasia. For each patient, all histological reports performed during a follow-up of 4-8 years were analyzed. Overall, 537 cases (83%) with intestinal metaplasia and 110 cases (17%) without intestinal metaplasia were included. During the follow-up period, none of the patients without intestinal metaplasia developed dysplasia/cancer nor progressed to metaplasia, whereas 72 patients with intestinal metaplasia (13.4%) showed histological progression of the disease. The histological identification of intestinal metaplasia seems to be an essential factor for the progression towards dysplasia and cancer in BE patients. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  13. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets

    PubMed Central

    Long, Lina; Chen, Jiashun; Zhang, Yonggang; Liang, Xiao

    2017-01-01

    The aim of this study was to compare the effect of dietary supplementation with low dose of porous and nano zinc oxide (ZnO) on weaning piglets, and to evaluate the possibility of using them as an alternative to high dose of regular ZnO. Piglets were randomly allocated into four treatment groups fed with four diets: (1) basal diet (NC), (2) NC+ 3000 mg/kg ZnO (PC), (3) NC + 500 mg/kg porous ZnO (HiZ) and (4) NC + 500 mg/kg nano ZnO (ZNP). The result showed that piglets in HiZ group had less diarrhea than ZNP group (P < 0.05). Besides, there was no significant difference between PC, HiZ and ZNP groups in terms of serum malondialdeyhde (MDA) concentration and glutathione peroxidase (GSH-Px) activity (P > 0.05). Analysis of trace metal elements revealed that piglets fed with high dose of regular ZnO had the highest Zn level in kidney (P < 0.05), which may induce kidney stone formation. Additionally, a decrease in ileal crypt depth was observed in PC, HiZ and ZNP group, suggesting an effective protection against intestinal injury. Results of mRNA analysis in intestine showed that ZNP supplementation had better effects on up-regulated trefoil factor 3 (TFF3) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in duodenum and jejunum than HiZ did (P < 0.05), implying that nano ZnO may possess higher anti-inflammatory capacity than porous ZnO. In conclusion, dietary supplementation with low dose of porous and nano ZnO had similar (even better) effect on improving growth performance and intestinal morphology, reducing diarrhea and intestinal inflammatory as high dose of regular ZnO in weaning piglets. Compared with nano ZnO, porous ZnO had better performance on reducing diarrhea but less effect on up-regulation of intestinal TFF3 and Nrf2. PMID:28792520

  14. Primary intestinal lymphangiectasia diagnosed by double-balloon enteroscopy and treated by medium-chain triglycerides: a case report

    PubMed Central

    2013-01-01

    Introduction Primary intestinal lymphangiectasia is a disorder characterized by exudative enteropathy resulting from morphologic abnormalities of the intestinal lymphatics. Intestinal lymphangiectasia can be primary or secondary, so the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A double-balloon enteroscopy and biopsy, as well as the pathology can be used to confirm the diagnosis of intestinal lymphangiectasia. A polymeric diet containing medium-chain triglycerides and total parenteral nutrition may be a useful therapy. Case presentation A 17-year-old girl of Mongoloid ethnicity was admitted to our hospital with a history of diarrhea and edema. She was diagnosed with protein-losing enteropathy caused by intestinal lymphangiectasia. This was confirmed by a double-balloon enteroscopy and multi-dot biopsy. After treatment with total parenteral nutrition in hospital, which was followed by a low-fat and medium-chain triglyceride diet at home, she was totally relieved of her symptoms. Conclusion Intestinal lymphangiectasia can be diagnosed with a double-balloon enteroscopy and multi-dot biopsy, as well as the pathology of small intestinal tissue showing edema of the submucosa and lymphangiectasia. Because intestinal lymphangiectasia can be primary or secondary, the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A positive clinical response to the special diet therapy, namely a low-fat and medium-chain triglyceride diet, can further confirm the diagnosis of primary intestinal lymphangiectasia. PMID:23316917

  15. Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens.

    PubMed

    Giannenas, Ilias; Bonos, Eleftherios; Skoufos, Ioannis; Tzora, Athina; Stylianaki, Ioanna; Lazari, Diamanto; Tsinas, Anastasios; Christaki, Efterpi; Florou-Paneri, Panagiota

    2018-06-06

    1. This feeding trial investigated the effects of herbal feed additives on performance of broiler chickens, jejunal and caecal microbiota, jejunal morphology, and meat chemical composition and oxidative stability during refrigerated storage. 2. In a 42 days trial, 320 one-day-old broiler chickens were randomly allocated to four groups with four replicate pens each containing 20 chicks. The control group was fed maize-soybean-based diets. The diets of the other three groups were supplemented with herbal feed additives: HRB1 with Stresomix TM (0.5 g/kg feed); HRB2 with Ayucee TM (1.0 g/kg feed); HRB3 with Salcochek Pro TM (1.0 g/kg feed). The GC/MS analysis of the feed additives showed that the major components of HRB1 were β-caryophyllene (14.4%) and menthol (9.8%); HRB2 were n-hexadecanoic acid (14.22%) and β-caryophyllene (14.4%) and HRB3 were menthol (69.6%) and clavicol methyl ether (13.9%). 3. Intestinal samples were taken at 42 d to determine bacterial populations (total aerobe counts, Lactobacilli, and Escherichia coli) and perform gut morphology analysis. Meat samples were analysed for chemical composition and oxidative stability under storage. 4. The HRB1 group had improved (P<0.05) body weight gain and tended to have improved (0.05≤P<0.10) feed conversion ratio, compared to the control group. Jejunum lactic acid bacteria counts were increased (P<0.001) in groups HRB1 and HRB3, compared to the control group, whereas caecal lactic acid bacteria counts tended to increase (0.05≤ P< 0.10) in group HRB1, compared to the control group. Breast meat fat content tended to be lower (0.05≤ P< 0.10) in group HRB1. Meat oxidative stability was improved (P<0.001) and jejunum villus height, crypt depth and goblet cells numbers were increased (P<0.001) in all three herbal supplemented groups, compared to the control. 5. In conclusion, herbal feed additives may be able to improve both growth performance and antioxidant activity of broiler chickens, based on their phenolic compound content.

  16. Evaluating the behavior, growth performance, immune parameters, and intestinal morphology of weaned piglets after simulated transport and heat stress when antibiotics are eliminated from the diet or replaced with L-glutamine

    USDA-ARS?s Scientific Manuscript database

    Study objectives were to evaluate the effects of post-weaning transport during heat stress (HS) and thermoneutral (TN) conditions when dietary antibiotics are removed or replaced with a nutraceutical. Sixty mixed sex piglets from 10 sows (n = 6 piglets/sow) were weaned (18.8 ± 0.8 d of age) and then...

  17. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    PubMed

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no significant toxicity below 800 μg/ml sodium caprate and water-soluble chitosan at different concentrations. In pharmacokinetics study, water-soluble chitosan at dosage of 50mg/kg improved the bioavailability of FTA in weeping forsythia extract to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with weeping forsythia extract with water-soluble chitosan at dosage of 50 mg/kg prevented PC12 cell damage upon H₂O₂ stimulation better than that of control. All findings above suggested that water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antioxidant activity in vivo in weeping forsythia extract. Copyright © 2012 Elsevier GmbH. All rights reserved.

  18. Comparative morphology of the alimentary tract and its glandular derivatives of captive bustards

    PubMed Central

    BAILEY, T. A.; MENSAH-BROWN, E. P.; SAMOUR, J. H.; NALDO, J.; LAWRENCE, P.; GARNER, A.

    1997-01-01

    This study describes the gross anatomy of the alimentary tract of Houbara Bustards (Chlamydotis undulata macqueenii), Kori Bustards (Ardeotis kori), Rufous-crested Bustards (Eupodotis ruficrista) and White-bellied Bustards (Eupodotis senegalensis) maintained in captivity by the National Avian Research Center in the United Arab Emirates. The morphology of the alimentary tract and the proportions of each region were similar in all 4 species. The length of the oesophagus, combined proventriculus and ventriculus, small intestine, and large intestine formed 24.2–28.4%, 7.3–9.7%, 40.5–55.1% and 9.1–14.7% of the total alimentary tract length respectively. Neither crop nor oesophageal enlargement was observed in the birds examined in this study, although male Kori Bustards possessed a saccus oralis in the oropharyngeal cavity. Oesophagi, proventriculi, ventriculi, caeca and large intestine were well developed in all species. The small intestine was shorter than that of other avian herbivores and granivores when compared on a bodyweight basis. The well differentiated stomachs and well developed caeca of the bustards examined in this study are characteristic of omnivores. Analysis of the mean lengths of the alimentary tract components and weight of the liver and pancreas showed sexual dimorphism in cases where male and female data were available for direct comparison. PMID:9418995

  19. Morphohistology of the Digestive Tract of the Damsel Fish Stegastes fuscus (Osteichthyes: Pomacentridae)

    PubMed Central

    Canan, Bhaskara; do Nascimento, Wallace Silva; da Silva, Naisandra Bezerra; Chellappa, Sathyabama

    2012-01-01

    This study investigated the morphohistology of the digestive tract and the mean intestinal coefficient of the damsel fish Stegastes fuscus captured from the tidal pools of Northeastern Brazil. The wall of the digestive tract of S. fuscus is composed of the tunica mucosa, tunica muscularis, and tunica serosa. The esophagus is short with sphincter and thick distensible wall with longitudinally folded mucosa. Mucous glands are predominant, and the muscular layer of the esophagus presented striated fibers all along its extension. The transition region close to the stomach shows plain and striated muscular fibers. Between the stomach and intestine, there are three pyloric caeca. The intestine is long and thin with four folds around the stomach. The anterior intestine presents folds similar to those of pyloric caeca. The estimated mean intestinal coefficient and characteristics of the digestive system of S. fuscus present morphological adequacy for both herbivorous and omnivorous feeding habits. PMID:22547996

  20. Morphological, ultrastructural, and molecular characterization of intestinal tetratrichomonads isolated from non-human primates in southeastern Brazil.

    PubMed

    Dos Santos, Caroline Spitz; de Jesus, Vera Lúcia Teixeira; McIntosh, Douglas; Carreiro, Caroline Cunha; Batista, Lilian Cristina Oliveira; do Bomfim Lopes, Bruno; Neves, Daniel Marchesi; Lopes, Carlos Wilson Gomes

    2017-09-01

    Non-human primates are our closest relatives and represent an interesting model for comparative parasitological studies. However, research on this topic particularly in relation to intestinal parasites has been fragmentary and limited mainly to animals held in captivity. Thus, our knowledge of host-parasite relationships in this species-rich group of mammals could be considered rudimentary. The current study combined morphological, ultrastructural, and molecular analyses to characterize isolates of intestinal tetratrichomonads recovered from the feces of three species of South American, non-human primates. Fecal samples were collected from 16 animals, representing 12 distinct species. Parabasalid-like organisms were evident in five samples (31%) of feces: two from Alouatta sara, two from Callithrix penicillata, and one from Sapajus apella. The five samples presented morphologies consistent with the description of Tetratrichomonas sp., with four anterior flagella of unequal length, a well-developed undulating membrane, and a long recurrent flagellum. Sequencing of the ITS1-5.8S rRNA-ITS2 region demonstrated that the isolates from A. sara, and C. penicillata were closely related and highly similar to isolates of Tetratrichomonas brumpti, recovered previously from tortoises (Geochelone sp.). The flagellate recovered from S. apella demonstrated a similar morphology to those of the other isolates, however, sequence analysis showed it to be identical to an isolate of Tetratrichomonas sp. recovered from white-lipped peccaries (Tayassu pecari). The findings of this study extend and enhance our knowledge of parasitism of non-human primates by members of the genus Tetratrichomonas and indicate that the host range of these parasites is broader than previously believed.

  1. Lessons learned: Optimization of a murine small bowel resection model

    PubMed Central

    Taylor, Janice A.; Martin, Colin A.; Nair, Rajalakshmi; Guo, Jun; Erwin, Christopher R.; Warner, Brad W.

    2008-01-01

    Background/Purpose Central to the use of murine models of disease is the ability to derive reproducible data. The purpose of this study was to determine factors contributing to variability in our murine model of small bowel resection (SBR). Methods Male C57Bl/6 mice were randomized to sham or 50% SBR. The effect of housing type (pathogen-free versus standard housing), nutrition (reconstituted powder versus tube feeding formulation), and correlates of intestinal morphology with gene expression changes were investigated Multiple linear regression modeling or one-way ANOVA was used for data analysis. Results Pathogen-free mice had significantly shorter ileal villi at baseline and demonstrated greater villus growth after SBR compared to mice housed in standard rooms. Food type did not affect adaptation. Gene expression changes were more consistent and significant in isolated crypt cells that demonstrated adaptive growth when compared with crypts that did not deepen after SBR. Conclusion Maintenance of mice in pathogen-free conditions and restricting gene expression analysis to individual animals exhibiting morphologic adaptation enhances sensitivity and specificity of data derived from this model. These refinements will minimize experimental variability and lead to improved understanding of the complex process of intestinal adaptation. PMID:18558176

  2. Role of autophagy and its molecular mechanisms in mice intestinal tract after severe burn.

    PubMed

    Zhang, Duan Y; Qiu, Wei; Jin, PeiS; Wang, Peng; Sun, Yong

    2017-10-01

    Severe burn can lead to hypoxia/ischemia of intestinal mucosa. Autophagy is the process of intracellular degradation, which is essential for cell survival under stresses, such as hypoxia/ischemia and nutrient deprivation. The present study was designed to investigate whether there were changes in intestinal autophagy after severe burn in mice and further to explore the effect and molecular mechanisms of autophagy on intestinal injury. This study includes three experiments. Kunming species mice were subjected to 30% total body surface area third-degree burn. First, we determined protein of LC3 (light chain 3), beclin-1, and cleaved-caspase3 by Western blotting and immunohistochemical (paraffin) staining to investigate whether there were changes in intestinal autophagy after severe burn in mice. Then, changes of the status of enteric damage postburn were measured by observing intestinal mucosa morphology under a magnifier, hematoxylin and eosin staining, enzyme-linked immunosorbent assay, Western blotting under the condition that the intestinal autophagy was respectively activated by rapamycin and inhibited by 3-methyladenine. Finally, protein of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, LC3-II and beclin-1 were assayed, and mice were treated with compound C before burn. The protein of LC3 and beclin-1 were observed at 1 hour postburn and increased to peak-point at 24 hours, reaching the normal level at 96 hours. The cleaved caspase-3 expression increased at 1 hour postburn, but the peak point occurred at 12 hours and had dropped to normal level at 72 hours. In addition, rapamycin enhanced intestinal autophagy and alleviated burn-induced gut damage, while 3-methyladenine showed the against behavior. The AMPK/mTOR pathway which was inhibited decreased the expression of phosphorylated AMPK, LC3-II, and beclin-1, increasing the expression of phosphorylated mTOR. Intestinal autophagy is activated and response to intestinal apoptosis after serious burn, which alleviated burn-induced intestinal injury. The AMPK/mTOR pathway may involve in the activation of burn-induced autophagy. Therapeutic/care management, levels of evidence are not applicable to some studies, such as in vitro work, animal models, cadaver studies.

  3. Mitigation of heat stress-related complications by a yeast fermentate product.

    PubMed

    Giblot Ducray, Henri Alexandre; Globa, Ludmila; Pustovyy, Oleg; Reeves, Stuart; Robinson, Larry; Vodyanoy, Vitaly; Sorokulova, Iryna

    2016-08-01

    Heat stress results in a multitude of biological and physiological responses which can become lethal if not properly managed. It has been shown that heat stress causes significant adverse effects in both human and animals. Different approaches have been proposed to mitigate the adverse effects caused by heat stress, among which are special diet and probiotics. We characterized the effect of the yeast fermentate EpiCor (EH) on the prevention of heat stress-related complications in rats. We found that increasing the body temperature of animals from 37.1±0.2 to 40.6±0.2°C by exposure to heat (45°C for 25min) resulted in significant morphological changes in the intestine. Villi height and total mucosal thickness decreased in heat-stressed rats pre-treated with PBS in comparison with control animals not exposed to the heat. Oral treatment of rats with EH before heat stress prevented the traumatic effects of heat on the intestine. Changes in intestinal morphology of heat-stressed rats, pre-treated with PBS resulted in significant elevation of lipopolysaccharides (LPS) level in the serum of these animals. Pre-treatment with EH was effective in the prevention of LPS release into the bloodstream of heat-stressed rats. Our study revealed that elevation of body temperature also resulted in a significant increase of the concentration of vesicles released by erythrocytes in rats, pre-treated with PBS. This is an indication of a pathological impact of heat on the erythrocyte structure. Treatment of rats with EH completely protected their erythrocytes from this heat-induced pathology. Finally, exposure to heat stress conditions resulted in a significant increase of white blood cells in rats. In the group of animals pre-treated with EH before heat stress, the white blood cell count remained the same as in non-heated controls. These results showed the protective effect of the EH product in the prevention of complications, caused by heat stress. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Effect of dietary seaweed extracts and fish oil supplementation in sows on performance, intestinal microflora, intestinal morphology, volatile fatty acid concentrations and immune status of weaned pigs.

    PubMed

    Leonard, S G; Sweeney, T; Bahar, B; Lynch, B P; O'Doherty, J V

    2011-02-01

    A 2x2 factorial experiment (ten sows per treatment) was conducted to investigate the effect of maternal dietary supplementation with a seaweed extract (SWE; 0 v. 10·0 g/d) and fish oil (FO; 0 v. 100 g/d) inclusion from day 109 of gestation until weaning (day 26) on pig performance post-weaning (PW) and intestinal morphology, selected microflora and immune status of pigs 9 d PW. The SWE contained laminarin (10 %), fucoidan (8 %) and ash (82 %) and the FO contained 40 % EPA and 25 % DHA. Pigs weaned from SWE-supplemented sows had higher daily gain (P=0·063) between days 0 and 21 PW and pigs weaned from FO-supplemented sows had higher daily gain (P<0·05) and gain to feed ratio (P<0·01) between days 7 and 14 PW. There was an interaction between maternal SWE and FO supplementation on caecal Escherichia coli numbers (P<0·05) and the villous height to crypt depth ratio in the ileum (P<0·01) and jejunum (P<0·05) in pigs 9 d PW. Pigs weaned from SWE-supplemented sows had lower caecal E. coli and a higher villous height to crypt depth ratio in the ileum and jejunum compared with non-SWE-supplemented sows (P<0·05). There was no effect of SWE on E. coli numbers and villous height to crypt depth ratio with FO inclusion. Maternal FO supplementation induced an increase in colonic mRNA abundance of IL-1α and IL-6 (P<0·05), while SWE supplementation induced an increase in ileal TNF-α (P<0·01) and colonic TFF3 mRNA expression (P<0·05). In conclusion, these results demonstrate that SWE and FO supplementation to the maternal diet influenced the gastrointestinal environment and performance of the weaned pig.

  5. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.

    PubMed

    Alaraby, Mohamed; Hernández, Alba; Annangi, Balasubramanyam; Demir, Esref; Bach, Jordi; Rubio, Laura; Creus, Amadeu; Marcos, Ricard

    2015-01-01

    Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.

  6. Effects of different yeast cell wall supplements added to maize- or wheat-based diets for broiler chickens.

    PubMed

    Morales-López, R; Auclair, E; Van Immerseel, F; Ducatelle, R; García, F; Brufau, J

    2010-06-01

    1. Three experiments were carried out to study the effects of two experimental yeast cell wall (YCW) supplements, one from the yeast extract industry and the other from the brewery industry, added to maize or wheat based-diets, on performance and intestinal parameters of broiler chickens (Ross 308). 2. In the first and second experiments, a completely randomised block design with 4 experimental treatments was used: T-1) Negative control, no additives T-2) Positive control, avilamycin group (10 mg/kg feed), T-3) Yeast extract-YCW (500 mg/kg), and T-4) Brewery-YCW (500 mg/kg feed). There were 6 replicates of 20 (experiment 1) and 22 (experiment 2) chicks per treatment. 3. In experiment 1 (wheat based diets), yeast extract-YCW increased BW and daily feed intake (42 d). The effects were comparable to those of avilamycin. In experiment 2 (maize based diet), avilamycin, yeast extract-YCW and brewery-YCW treatments improved the feed conversion ratio with respect to the negative control group (0 to 14 d). 4. At 24 d, in both experiments, the ileal nutrient digestibility and ileal bacterial counts were not affected by any experimental treatment. In maize diets, lower intestinal viscosity was obtained with avilamycin, yeast extract-YCW and brewery-YCW than with the negative control. In wheat diets, yeast extract-YCW and brewery-YCW reduced intestinal viscosity. 5. A third experiment was conducted to study the effect of yeast extract-YCW on animal performance, intestinal mucosa morphology and intestinal viscosity. A 2 x 2 factorial arrangement of treatments was used; one factor was the dietary yeast extract-YCW supplementation (0 or 500 mg/kg feed) and the other the cereal in the diet (maize or wheat). 6. At 43 d, the heaviest BW was in chickens fed on yeast extract-YCW compared to those given the negative control. At 22 d, yeast extract-YCW increased villus height, mucus thickness and number of goblet cells with respect to negative control. 7. Results of these experiments suggest that supplementation of yeast extract-YCW to broiler chicken diets increased animal performance by favouring intestinal mucosal development.

  7. Gene expression analyses of the small intestine of pigs in the ex-evacuation zone of the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Morimoto, Motoko; Kato, Ayaka; Kobayashi, Jin; Okuda, Kei; Kuwahara, Yoshikazu; Kino, Yasushi; Abe, Yasuyuki; Sekine, Tsutomu; Fukuda, Tomokazu; Isogai, Emiko; Fukumoto, Manabu

    2017-11-15

    After the accident at the Fukushima Daiichi Nuclear Power Plant, radioactive contaminants were released over a widespread area. Monitoring the biological effects of radiation exposure in animals in the ex-evacuation zone should be continued to understand the health effects of radiation exposure in humans. The present study aimed to clarify the effects of radiation by investigating whether there is any alteration in the morphology and gene expressions of immune molecules in the intestine of pigs and inobuta (wild boar and domestic pig hybrid) in the ex-evacuation zone in 2012. Gene expression analysis was performed in small intestine samples from pigs, which were collected from January to February 2012, in the ex-evacuation zone. Pigs lived freely in this zone, and their small intestine was considered to be affected by the dietary intake of radioactive contaminants. Several genes were selected by microarray analysis for further investigation using real-time polymerase chain reaction. IFN-γ, which is an important inflammatory cytokine, and TLR3, which is a pattern recognize receptor for innate immune system genes, were highly elevated in these pigs. The expressions of the genes of these proteins were associated with the radiation level in the muscles. We also examined the alteration of gene expressions in wild boars 5 years after the disaster. The expression of IFN-γ and TLR3 remained high, and that of Cyclin G1, which is important in the cell cycle, was elevated. We demonstrated that some changes in gene expression occurred in the small intestine of animals in the ex-evacuation zone after radiation. It is difficult to conclude that these alterations are caused by only artificial radionuclides from the Fukushima Daiichi Nuclear Power Plant. However, the animals in the ex-evacuation zone might have experienced some changes owing to radioactive materials, including contaminated soil, small animals, and insects. We need to continue monitoring the effects of long-term radiation exposure in living things.

  8. Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs.

    PubMed

    Peng, X; Hu, L; Liu, Y; Yan, C; Fang, Z F; Lin, Y; Xu, S Y; Li, J; Wu, C M; Chen, D W; Sun, H; Wu, D; Che, L Q

    2016-11-01

    The objective of this study was to determine if a moderate or high reduction of dietary CP, supplemented with indispensable amino acids (IAA), would affect growth, intestinal morphology and immunological parameters of pigs. A total of 40 barrows (initial BW=13.50±0.50 kg, 45±2 day of age) were used in a completely randomized block design, and allocated to four dietary treatments containing CP levels at 20.00%, 17.16%, 15.30% and 13.90%, respectively. Industrial AA were added to meet the IAA requirements of pigs. After 4-week feeding, blood and tissue samples were obtained from pigs. The results showed that reducing dietary CP level decreased average daily gain, plasma urea nitrogen concentration and relative organ weights of liver and pancreas (P<0.01), and increased feed conversion ratio (P<0.01). Pigs fed the 13.90% CP diet had significantly lower growth performance than that of pigs fed higher CP at 20.00%, 17.16% or 15.30%. Moreover, reducing dietary CP level decreased villous height in duodenum (P<0.01) and crypt depth in duodenum, jejunum and ileum (P<0.01). The reduction in the dietary CP level increased plasma concentrations of methionine, alanine (P<0.01) and lysine (P<0.05), and decreased arginine (P<0.05). Intriguingly, reducing dietary CP level from 20.00% to 13.90% resulted in a significant decrease in plasma concentration of IgG (P<0.05), percentage of CD3+T cells of the peripheral blood (P<0.01), also down-regulated the mRNA abundance of innate immunity-related genes on toll-like receptor 4, myeloid differentiation factor 88 (P<0.01) and nuclear factor kappa B (P<0.05) in the ileum. These results indicate that reducing dietary CP level from 20.00% to 15.30%, supplemented with IAA, had no significant effect on growth performance and had a limited effect on immunological parameters. However, a further reduction of dietary CP level up to 13.90% would lead to poor growth performance and organ development, associated with the modifications of intestinal morphology and immune function.

  9. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    NASA Astrophysics Data System (ADS)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  10. Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response.

    PubMed

    Samal, Lipismita; Chaturvedi, Vishwa Bandhu; Saikumar, Guttula; Somvanshi, Ramesh; Pattanaik, Ashok Kumar

    2015-06-01

    Many studies have been conducted using purified prebiotics such as inulin or fructooligosaccharides (FOS) as nutraceuticals, but there is very little information available on the prebiotic potential of raw products rich in inulin and FOS, such as Jerusalem artichoke (JA; Helianthus tuberosus L.). The present experiment aimed to evaluate the prebiotic effects of JA tubers in rats. Seventy-two Wistar weanling rats divided into four groups were fed for 12 weeks on a basal diet fortified with pulverized JA tubers at 0 (control), 20, 40 and 60 g kg(-1) levels. Enhanced cell-mediated immunity in terms of skin indurations (P = 0.082) and CD4+ T-lymphocyte population (P = 0.002) was observed in the JA-supplemented groups compared with the control group. Blood haemoglobin (P = 0.017), glucose (P = 0.001), urea (P = 0.004) and calcium (P = 0.048) varied favourably upon inclusion of JA. An increasing trend (P = 0.059) in the length of large intestine was apparent in the JA-fed groups. The tissue mass of caecum (P = 0.069) and colon (P = 0.003) was increased in the JA-supplemented groups, accompanied by higher (P = 0.007) caecal crypt depth. The pH and ammonia concentrations of intestinal digesta decreased and those of lactate and total volatile fatty acids increased in the JA-fed groups. The results suggest that JA had beneficial effects on immunity, blood metabolites, intestinal morphometry and hindgut fermentation of rats. © 2014 Society of Chemical Industry.

  11. Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expression in the Colon of Weaned Piglets

    PubMed Central

    Liu, Ping; Pieper, Robert; Rieger, Juliane; Vahjen, Wilfried; Davin, Roger; Plendl, Johanna; Meyer, Wilfried; Zentek, Jürgen

    2014-01-01

    The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea. PMID:24609095

  12. Evaluation of architectural and histopathological biomarkers in the intestine of brown trout (Salmo trutta Linnaeus, 1758) challenged with environmental pollution.

    PubMed

    Barišić, Josip; Filipović Marijić, Vlatka; Mijošek, Tatjana; Čož-Rakovac, Rozelindra; Dragun, Zrinka; Krasnići, Nesrete; Ivanković, Dušica; Kružlicová, Dáša; Erk, Marijana

    2018-06-14

    In the present study novel histopathological approach, using fish intestine as a sensitive bioindicator organ of pollution impact in the freshwater ecosystem, was proposed. Histopathological alterations were compared between native brown trout (Salmo trutta Linnaeus, 1758) from the reference (Krka River spring) and pollution impacted location (influence of technological/municipal wastewaters and agricultural runoff near the Town of Knin) of the karst Krka River in Croatia. In brown trout from both locations, severe parasitic infestation with acanthocephalan species Dentitruncus trutae was found, enabling evaluation of acanthocephalan infestation histopathology, which indicated parasite tissue reaction in a form of inflammatory, necrotic and hyperplastic response that extended throughout lamina epithelialis mucosae, lamina propria, and lamina muscularis mucosae. New semi-quantitative histological approach was proposed in order to foresee alterations classified in three reaction patterns: control tissue appearance, moderate (progressive) tissue impairment and severe (regressive and inflammatory) tissue damage. The most frequent progressive alteration was hyperplasia of epithelium on the reference site, whereas the most frequent regressive alterations were atrophy and necrosis seen on the polluted site. Furthermore, histopathological approach was combined with micromorphological and macromorphological assessment as an additional indicator of pollution impact. Among 15 observed intestinal measures, two biomarkers of intestinal tissue damage were indicated as significant, height of supranuclear space (hSN) and number of mucous cells over 100 μm fold distance of intestinal mucosa (nM), which measures were significantly lower in fish from polluted area compared to the reference site. Obtained results indicated that combined histological and morphological approach on fish intestinal tissue might be used as a valuable biological tool for assessing pollution impact on aquatic organisms. Therefore, semi quantitative scoring and multiparametric morphological assessment of intestinal tissue lesion magnitude should become a common approach to handle environmental pollution impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. [Intestinal polyp of the umbilical cord].

    PubMed

    Guschmann, M; Janda, J; Wenzelides, K; Vogel, M

    2002-02-01

    The morphology, pathogenesis, complications and differential diagnosis of an intestinal polyp of the umbilical cord are presented. The polyp were detected postnatal on the umbilical cord in an healthy male newborn. The presents of intestinal tissue upon the umbilical cord ist possible about the persistence from remnants of the ductus omphalomesentericus with prolapse and differentiation of the intestinal cells. The ductus omphalomesentericus is a tubular structure, a communication between the developing embryonic gut and the yolk sac, forming during the early embryonic life. Obliteration of the omphalomesenteric duct is usually complete by the 10(th) week of gestation. Various portions of the duct may persist, however, giving rise to polyps, fistulas or cysts of the umbilical cord with potentially dangerous clinical consequences. Other tumors of the umbilical cord are myxoma, angioma and teratoma are differential diagnosis.

  14. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on small intestinal morphology of turkeys.

    PubMed

    Girish, C K; Smith, T K

    2008-06-01

    An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on morphometric indices of duodenum, jejunum, and ileum in turkeys. The possible preventative effect of a polymeric glucomannan mycotoxin adsorbent (GMA) was also determined. Three hundred 1-d-old male turkey poults were fed wheat, corn, and soybean meal-based starter (0 to 3 wk), grower (4 to 6 wk), developer (7 to 9 wk), and finisher (10 to 12 wk) diets formulated with control grains, contaminated grains, and contaminated grains + 0.2% GMA. Morphometric indices were measured at the end of each growth phase and included villus height (VH), crypt depth, villus width, thicknesses of submucosa and muscularis, villus-to-crypt ratio, and apparent villus surface area (AVSA). At the end of the starter phase, feedborne mycotoxins significantly decreased the VH in the duodenum, and supplementation of the contaminated diet with GMA prevented this effect. The feeding of contaminated grains also reduced (P < 0.05) VH and AVSA in jejunum, whereas none of the variables were affected in the ileum. Villus width and AVSA of duodenum, VH, and AVSA of jejunum and submucosa thickness of ileum were significantly reduced when birds were fed contaminated grains at the end of the grower phase, and supplementation with GMA prevented these effects in jejunum and ileum. No effects of diets were seen on morphometric variables at the end of the developer and finisher phases. It was concluded that consumption of grains naturally contaminated with Fusarium mycotoxins results in adverse effects on intestinal morphology during early growth phases of turkeys, and GMA can prevent many of these effects.

  15. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  16. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. lactis 200 on its interaction capacity with the gut.

    PubMed

    Burns, Patricia; Reinheimer, Jorge; Vinderola, Gabriel

    2011-10-01

    In a previous work, bile-salt-resistant derivatives were obtained from non-intestinal lactobacilli. The aim of this work was to investigate the impact of bile adaptation of Lactobacillus delbrueckii subsp. lactis 200 on morphology, surface properties, in vivo interaction capacity with the gut and ability to activate the gut immune response. Electron microscopy studies, growth kinetics in the presence of bovine and porcine bile, the capacity to deconjugate bile acids, hydrophobicity, autoaggregation and co-aggregation capacities were studied for the parental strain and its bile-resistant derivative in vitro. Additionally, survival in intestinal fluid, the interaction with the gut and the immunomodulating capacities were studied in mice. Bile salt adaptation conferred upon the adapted strain a higher capacity to withstand physiological concentrations of bile salts and greater survival capacity in intestinal fluid. However, bile salt exposure reduced cell hydrophobicity, autoaggregation and adhesion capacities, resulting in reduced persistence in the intestinal lumen and delayed capacity to activate the gut immune response. Insight into the effects of bile salts upon the interaction and immunomodulating capacity of lactobacilli with the gut is provided, relating in vitro and in vivo results. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis.

    PubMed

    Chen, Tao; Li, Qiang; Guo, Lina; Yu, Li; Li, Zhenyan; Guo, Huixin; Li, Haicheng; Zhao, Meigui; Chen, Liang; Chen, Xunxun; Zhong, Qiu; Zhou, Lin; Wu, Ting

    2016-01-01

    To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. High Incubation Temperature and Threonine Dietary Level Improve Ileum Response Against Post-Hatch Salmonella Enteritidis Inoculation in Broiler Chicks

    PubMed Central

    de Oliveira, Heraldo Bezerra; Campos, Danila Barreiro; Guerra, Ricardo Romão; Costa, Fernando Guilherme Perazzo

    2015-01-01

    This study assessed the effect of both embryonic thermal manipulation and dietary threonine level on the response of broilers inoculated with Salmonella Enteritidis, considering bacterial counts in the cecal contents, intestinal morphology, mucin and heat shock protein 70 gene expression, body weight and weight gain. Thermal manipulation was used from 11 days of incubation until hatch, defining three treatments: standard (37.7°C), continuous high temperature (38.7°C) and continuous low temperature (36.7°C). After hatch, chicks were distributed according to a 3x2+1 factorial arrangement (three temperatures and two threonine levels and one sham-inoculated control). At two days of age, all chicks were inoculated with Salmonella Enteritidis, except for the sham-inoculated control group. There was no interaction between the factors on any analyses. High temperature during incubation was able to reduce colonization by Salmonella Enteritidis in the first days, reducing both Salmonella counts and the number of positive birds. It also increased mucin expression and decreased Hsp70 expression compared with other inoculated groups. High temperature during incubation and high threonine level act independently to reduce the negative effects associated to Salmonella Enteritidis infection on intestinal morphology and performance, with results similar to sham-inoculated birds. The findings open new perspectives for practical strategies towards the pre-harvest Salmonella control in the poultry industry. PMID:26131553

  19. Effect of increasing levels of apparent metabolizable energy on laying hens in barn system.

    PubMed

    Kang, Hwan Ku; Park, Seong Bok; Jeon, Jin Joo; Kim, Hyun Soo; Park, Ki Tae; Kim, Sang Ho; Hong, Eui Chul; Kim, Chan Ho

    2018-04-12

    This experiment was to investigate the effect of increasing levels of apparent metabolizable energy (AMEn) on the laying performance, egg quality, blood parameter, blood biochemistry, intestinal morphology, and apparent total tract digestibility (ATTD) of energy and nutrients in diets fed to laying hens. A total of three-hundred twenty 33-week-old Hy-Line Brown laying hens (Gallus domesticus) were evenly assigned to four experimental diets of 2,750, 2,850, 2,950, and 3,050 kcal AMEn/kg in floor with deep litter of rice hulls. There were four replicates of each treatment, each consisting of 20 birds in a pen. AMEn intake was increased (linear, p < 0.05) with inclusion level of AMEn in diets increased. Feed intake and feed conversion ratio were improved (linear, p < 0.01), but hen-day egg production tended to be increased as increasing level of AMEn in diets increased. During the experiment, leukocyte concentration and blood biochemistry (total cholesterol, triglyceride, glucose, total protein, calcium, asparate aminotransferase (AST), and alanine transferase (ALT) were not influenced by increasing level of AMEn in diets. Gross energy and ether extract were increased (linear, p < 0.01) with inclusion level of AMEn in diets increased. Laying hens fed high AMEn diet (i.e., 3,050 kcal/kg in the current experiment) tended to overconsume energy with a positive effect on feed intake, feed conversion ratio, nutrient digestibility, and intestinal morphology but not in egg production and egg mass.

  20. Effects of rye inclusion in grower diets on immune competence-related parameters and performance in broilers.

    PubMed

    van Krimpen, M M; Torki, M; Schokker, D

    2017-09-01

    An experiment was conducted to investigate the effects of dietary inclusion of rye, a model ingredient to increase gut viscosity, between 14 and 28 d of age on immune competence-related parameters and performance of broilers. A total of 960 day-old male Ross 308 chicks were weighed and randomly allocated to 24 pens (40 birds per pen), and the birds in every 8 replicate pens were assigned to 1 of 3 experimental diets including graded levels, 0%, 5%, and 10% of rye. Tested immune competence-related parameters were composition of the intestinal microbiota, genes expression in gut tissue, and gut morphology. The inclusion of 5% or 10% rye in the diet (d 14 to 28) resulted in decreased performance and litter quality, but in increased villus height and crypt depth in the small intestine (jejunum) of the broilers. Relative bursa and spleen weights were not affected by dietary inclusion of rye. In the jejunum, no effects on number and size of goblet cells, and only trends on microbiota composition in the digesta were observed. Dietary inclusion of rye affected expression of genes involved in cell cycle processes of the jejunal enterocyte cells, thereby influencing cell growth, cell differentiation and cell survival, which in turn were consistent with the observed differences in the morphology of the gut wall. In addition, providing rye-rich diets to broilers affected the complement and coagulation pathways, which among others are parts of the innate immune system. These pathways are involved in eradicating invasive pathogens. Overall, it can be concluded that inclusion of 5% or 10% rye to the grower diet of broilers had limited effects on performance. Ileal gut morphology, microbiota composition of jejunal digesta, and gene expression profiles of jejunal tissue, however, were affected by dietary rye inclusion level, indicating that rye supplementation to broiler diets might affect immune competence of the birds. © 2017 Poultry Science Association Inc.

  1. Improvement of Intestinal Absorption of Forsythoside A and Chlorogenic Acid by Different Carboxymethyl Chitosan and Chito-oligosaccharide, Application to Flos Lonicerae - Fructus Forsythiae Herb Couple Preparations

    PubMed Central

    Zhou, Wei; Wang, Haidan; Zhu, Xuanxuan; Shan, Jinjun; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2013-01-01

    The current study aims to investigate the effect of chitosan derivatives on the intestinal absorption and bioavailabilities of forsythoside A (FTA) and Chlorogenic acid (CHA), the major active components in Flos Lonicerae - Fructus Forsythiae herb couple. Biopharmaceutics and pharmacokinetics properties of the two compounds have been characterized in vitro, in situ as well as in rats. Based on the identified biopharmaceutics characteristics of the two compounds, the effect of chitosan derivatives as an absorption enhancer on the intestinal absorption and pharmacokinetics of FTA and CHA in pure compound form as well as extract form were investigated in vitro, in situ and in vivo. Both FTA and CHA demonstrated very limited intestinal permeabilities, leading to oral bioavailabilities being only 0.50% and 0.13% in rats, respectively. Results from both in vitro, in situ as well as in vivo studies consistently indicated that Chito-oligosaccharide (COS) at dosage of 25 mg/kg could enhance intestinal permeabilities significantly as well as the in vivo bioavailabilities of both FTA and CHA than CMCs in Flos Lonicerae - Fructus Forsythiae herb couple preparations, and was safe for gastrointestine from morphological observation. Besides, treatment with Flos Lonicerae - Fructus Forsythiae herb couple preparations with COS at the dosage of 25 mg/kg prevented MDCK damage after influenza virus propagation, which was significantly better than control. The current findings not only identified the usefulness of COS for the improved delivery of Flos Lonicerae - Fructus Forsythiae preparations but also demonstrated the importance of biopharmaceutical characterization in the dosage form development of traditional Chinese medicine. PMID:23675483

  2. Effect of a pore-forming protein derived from Flammulina velutipes on the Caco-2 intestinal epithelial cell monolayer.

    PubMed

    Narai, Asako; Watanabe, Hirohito; Iwanaga, Toshihiko; Tomita, Toshio; Shimizu, Makoto

    2004-11-01

    We have previously found a transepithelial electrical resistance (TEER)-decreasing protein derived from Flammulina velutipes, which was revealed to be identical to flammutoxin (FTX) that is known as a hemolytic pore-forming protein. This protein induced a rapid decrease in TEER and parallel increase in paracellular permeability in the intestinal epithelial Caco-2 cell monolayer without any cytotoxicity. An immunoblotting analysis revealed that the FTX-induced decrease in TEER was accompanied by the formation of a high-molecular-weight complex on the surface of Caco-2 cells. Intracellular Ca(2+) imaging showed that exposure to FTX caused a rapid Ca(2+) influx. It was observed by electron microscopy that FTX induced swelling of microvilli and expansion of the cellular surface. Staining with fluorescent phalloidin showed a marked change to filamentous actin in the FTX-treated cells. These results suggest that TEER reduction could sensitively detect small membrane pore formation by FTX in the intestinal epithelium which causes a morphological alteration and disruption of the paracellular barrier function.

  3. Effects of lactadherin on plasma D-lactic acid and small intestinal MUC2 and claudin-1 expression levels in rats with rotavirus-induced diarrhea

    PubMed Central

    XU, RUI; LEI, YI-HUI; SHI, JUN; ZHOU, YI-JUN; CHEN, YING-WEI; HE, ZHEN-JUAN

    2016-01-01

    The aim of the present study was to investigate the effects of lactadherin on plasma D-lactic acid and small intestinal mucin (MUC) 2 and claudin-1 expression levels in rats with diarrhea induced by rotavirus (RV) infection. A total of 75 seven-day-old healthy Sprague-Dawley rats were randomly divided into the following five groups: Control (C), RV infection (RVI), lactadherin before rotavirus infection (LBRI), lactadherin after rotavirus infection (LARI), and blank (B). On day 4 of artificial feeding, the rats in groups RVI, LBRI and LARI were intragastric administered 1×106 PFU RV; whereas the rats in groups C and B were intragastrically administered an equal volume of maintenance solution from the RV supernatant and normal saline, respectively. In the LBRI and LARI groups, rats received daily intragastric administration of 0.25 mg lactadherin for three days prior to and following infection with RV, respectively. The course of diarrheal symptoms was observed in each group and samples were collected on days 1, 4, and 7 post-infection in order to determine the mucosal morphology, plasma D-lactic acid levels and the expression levels of MUC2 and the intracellular junction protein, claudin-1, in the small intestine. On day 4 post-infection, the rats in group RVI demonstrated severely damaged small intestines and typical diarrheal characteristics, as detected by light microscopy; whereas rats in groups LBRI and LARI demonstrated intact small intestinal villi with partial vacuolation of epithelial cells and changes in the position of their nuclei. Electron microscopy demonstrated that the rats in the RVI group had sparse, shortened, disordered intestinal microvilli and widened intercellular junctions; whereas those in groups LBRI and LARI had long intestinal microvilli sparser compared with groups B and C and slightly widened intercellular junctions. Plasma D-lactic acid levels were increased in groups RVI, LBRI and LARI, as compared with groups B and C, and the greatest levels were detected in the RVI group on days 1, 4 and 7 post-infection. In addition to maintaining intestinal permeability, lactadherin enhanced the expression levels of MUC2 and reduced the expression of claudin-1; therefore, further protecting the intestinal epithelial barrier, which may contribute to the prevention and treatment of diarrhea induced by infection with RV. PMID:26998017

  4. Effects of lactadherin on plasma D-lactic acid and small intestinal MUC2 and claudin-1 expression levels in rats with rotavirus-induced diarrhea.

    PubMed

    Xu, Rui; Lei, Yi-Hui; Shi, Jun; Zhou, Yi-Jun; Chen, Ying-Wei; He, Zhen-Juan

    2016-03-01

    The aim of the present study was to investigate the effects of lactadherin on plasma D-lactic acid and small intestinal mucin (MUC) 2 and claudin-1 expression levels in rats with diarrhea induced by rotavirus (RV) infection. A total of 75 seven-day-old healthy Sprague-Dawley rats were randomly divided into the following five groups: Control (C), RV infection (RVI), lactadherin before rotavirus infection (LBRI), lactadherin after rotavirus infection (LARI), and blank (B). On day 4 of artificial feeding, the rats in groups RVI, LBRI and LARI were intragastric administered 1×106 PFU RV; whereas the rats in groups C and B were intragastrically administered an equal volume of maintenance solution from the RV supernatant and normal saline, respectively. In the LBRI and LARI groups, rats received daily intragastric administration of 0.25 mg lactadherin for three days prior to and following infection with RV, respectively. The course of diarrheal symptoms was observed in each group and samples were collected on days 1, 4, and 7 post-infection in order to determine the mucosal morphology, plasma D-lactic acid levels and the expression levels of MUC2 and the intracellular junction protein, claudin-1, in the small intestine. On day 4 post-infection, the rats in group RVI demonstrated severely damaged small intestines and typical diarrheal characteristics, as detected by light microscopy; whereas rats in groups LBRI and LARI demonstrated intact small intestinal villi with partial vacuolation of epithelial cells and changes in the position of their nuclei. Electron microscopy demonstrated that the rats in the RVI group had sparse, shortened, disordered intestinal microvilli and widened intercellular junctions; whereas those in groups LBRI and LARI had long intestinal microvilli sparser compared with groups B and C and slightly widened intercellular junctions. Plasma D-lactic acid levels were increased in groups RVI, LBRI and LARI, as compared with groups B and C, and the greatest levels were detected in the RVI group on days 1, 4 and 7 post-infection. In addition to maintaining intestinal permeability, lactadherin enhanced the expression levels of MUC2 and reduced the expression of claudin-1; therefore, further protecting the intestinal epithelial barrier, which may contribute to the prevention and treatment of diarrhea induced by infection with RV.

  5. Effect of different levels of raw and heated grass pea seed (Lathyrus sativus) on nutrient digestibility, intestinal villus morphology and growth performance of broiler chicks.

    PubMed

    Riasi, A; Mahdavi, A H; Bayat, E

    2015-10-01

    This study aimed to investigate chemical composition and effect of different levels (0%, 10% and 20%) of raw grass pea (RGP) and heat-treated (120 °C for 30 min) grass pea seed (HGP) on nutrient digestibility, dressing percentage, relative internal organ weights, intestinal villous morphology and broiler chicks' performance. A total number of 200 day-old male chicks were raised under similar condition for 10 days. On day 11, chicks were randomly assigned to five dietary treatments and four replicates of 10 birds each. The result of chemical analysis indicated that Iranian grass pea seed has low levels of total and condensed tannin, and it may be considered as a good source of protein (36.1%) and energy (17.09 kJ GE/g). Heat treatment reduced (p < 0.05) the total and condensed tannin to 21% and 78% respectively. Grass peas seed had higher levels of nitrogen-free extract, P, Na, Mg and Zn than soya bean meal. The apparent digestibility of gross energy and lipid was affected (p < 0.01) by the treatment diets, and it was the lowest after feeding 20% of HGP (p < 0.05). The relative weight of breast and pancreas (p < 0.05) was affected by treatments. Percentage weight of breast and pancreas increased (p < 0.05) after feeding high levels (20%) of RGP and HGP. Substitution of 20% of RGP and HGP increased the duodenal crypt depth (p < 0.05); however, it had no suppressive effect on villus height as the absorptive surface of intestine. The feed conversion ratio was not affected by the treatments in the total experimental period. This study showed that, although the high level of grass pea seed caused a remarkable increase in the relative weight of pancreas and decreased the apparent digestibility of gross energy and lipid, it had beneficial effect on breast relative weight. It seems that heat processing is not effective method for improving quality of Iranian grass pea seed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  6. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity.

    PubMed

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.

  7. Adenosine protects Sprague Dawley rats from high-fat diet and repeated acute restraint stress-induced intestinal inflammation and altered expression of nutrient transporters.

    PubMed

    Lee, C Y

    2015-04-01

    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  8. Alligators and Crocodiles Have High Paracellular Absorption of Nutrients, But Differ in Digestive Morphology and Physiology.

    PubMed

    Tracy, Christopher R; McWhorter, Todd J; Gienger, C M; Starck, J Matthias; Medley, Peter; Manolis, S Charlie; Webb, Grahame J W; Christian, Keith A

    2015-12-01

    Much of what is known about crocodilian nutrition and growth has come from animals propagated in captivity, but captive animals from the families Crocodilidae and Alligatoridae respond differently to similar diets. Since there are few comparative studies of crocodilian digestive physiology to help explain these differences, we investigated young Alligator mississippiensis and Crocodylus porosus in terms of (1) gross and microscopic morphology of the intestine, (2) activity of the membrane-bound digestive enzymes aminopeptidase-N, maltase, and sucrase, and (3) nutrient absorption by carrier-mediated and paracellular pathways. We also measured gut morphology of animals over a larger range of body sizes. The two species showed different allometry of length and mass of the gut, with A. mississippiensis having a steeper increase in intestinal mass with body size, and C. porosus having a steeper increase in intestinal length with body size. Both species showed similar patterns of magnification of the intestinal surface area, with decreasing magnification from the proximal to distal ends of the intestine. Although A. mississippiensis had significantly greater surface-area magnification overall, a compensating significant difference in gut length between species meant that total surface area of the intestine was not significantly different from that of C. porosus. The species differed in enzyme activities, with A. mississippiensis having significantly greater ability to digest carbohydrates relative to protein than did C. porosus. These differences in enzyme activity may help explain the differences in performance between the crocodilian families when on artificial diets. Both A. mississippiensis and C. porosus showed high absorption of 3-O methyl d-glucose (absorbed via both carrier-mediated and paracellular transport), as expected. Both species also showed surprisingly high levels of l-glucose-uptake (absorbed paracellularly), with fractional absorptions as high as those previously seen only in small birds and bats. Analyses of absorption rates suggested a relatively high proportional contribution of paracellular (i.e., non-mediated) uptake to total uptake of nutrients in both species. Because we measured juveniles, and most paracellular studies to date have been on adults, it is unclear whether high paracellular absorption is generally high within crocodilians or whether these high values are specific to juveniles. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus.

    PubMed

    Wu, Y B; Ravindran, V; Thomas, D G; Birtles, M J; Hendriks, W H

    2004-02-01

    1. The aim of the present study was to examine the influence of microbial phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digesta viscosity, digestive tract measurements and gut morphology in broilers fed on wheat-soy diets containing adequate phosphorus (P). The wheat-soy basal diet was formulated to contain 4.5 g/kg non-phytate P and the experimental diets were formulated by supplementing the basal diet with xylanase (1000 xylanase units/kg diet), phytase (500 phytase units/kg diet) or a combination of phytase and xylanase. 2. Supplemental phytase improved the weight gains and feed efficiency by 17.5 and 2.9%, respectively. Corresponding improvements due to the addition of xylanase were 16.5 and 4.9%, respectively. The combination of phytase and xylanase caused no further improvements in broiler performance. 3. Individual additions of xylanase or phytase resulted in numerical improvements in apparent metabolisable energy (AME), but the differences were not significant. The combination of the two enzymes significantly increased AME. Addition of xylanase and the combination of the two enzymes reduced the viscosity of digesta in all sections of the intestine. Phytase supplementation reduced digesta viscosity in the duodenum and ileum, but not in the jejunum. 4. Enzyme supplementation lowered the relative weight and length of the small intestine. Additions of xylanase and phytase reduced the relative weight of the small intestine by 15.5 and 11.4%, respectively, while the corresponding reductions in the relative length of the small intestine were 16.5 and 14.1%, respectively. The combination of phytase and xylanase had no further effects on the relative weight and length of the small intestine compared with the xylanase group. 5. The addition of phytase increased villus height in the duodenum and decreased the number of goblet cells in the jejunum compared with those on the unsupplemented basal diet. Xylanase supplementation tended to increase goblet cell numbers in the duodenum and decreased crypt depth in thejejunum. The combination of phytase and xylanase increased villus height in the ileum and crypt depth in thejejunum and ileum. 6. In summary, the present results showed that the addition of a microbial phytase, produced by solid state fermentation and containing significant activities of beta-glucanase and xylanase, was as effective as xylanase in improving the performance of broiler chickens fed on wheat-based diets containing adequate levels of P. Improved performance with enzyme supplementation was generally associated with reduced digesta viscosity, increased AME, and reduced relative weight and length of small intestine.

  10. Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs

    PubMed Central

    2013-01-01

    An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it. PMID:24359581

  11. Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs.

    PubMed

    Almeida, Juliana Abranches Soares; Liu, Yanhong; Song, Minho; Lee, Jeong Jae; Gaskins, H Rex; Maddox, Carol Wolfgang; Osuna, Orlando; Pettigrew, James Eugene

    2013-12-20

    An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it.

  12. Abdominal Manual Therapy Repairs Interstitial Cells of Cajal and Increases Colonic c-Kit Expression When Treating Bowel Dysfunction after Spinal Cord Injury

    PubMed Central

    Zhang, Wenyi; Zhu, Zhaojin; Xie, Bin; Yu, Jun

    2017-01-01

    Background This study aimed to evaluate the therapeutic effects of abdominal manual therapy (AMT) on bowel dysfunction after spinal cord injury (SCI), investigating interstitial cells of Cajal (ICCs) and related c-kit expression. Methods Model rats were divided as SCI and SCI with drug treatment (intragastric mosapride), low-intensity (SCI + LMT; 50 g, 50 times/min), and high-intensity AMT (SCI + HMT; 100 g, 150 times/min). After 14 days of treatment, weight, improved Basso-Beattie-Bresnahan (BBB) locomotor score, and intestinal movement were evaluated. Morphological structure of spinal cord and colon tissues were examined. Immunostaining, RT-PCR, and western blot were used to assess c-kit expression. Results In SCI rats, AMT could not restore BBB, but it significantly increased weight, shortened time to defecation, increased feces amounts, and improved fecal pellet traits and colon histology. AMT improved the number, distribution, and ultrastructure of colonic ICCs, increasing colonic c-kit mRNA and protein levels. Compared with the SCI + Drug and SCI + LMT groups, the SCI + HMT group showed better therapeutic effect in improving intestinal transmission function and promoting c-kit expression. Conclusions AMT is an effective therapy for recovery of intestinal transmission function. It could repair ICCs and increase c-kit expression in colon tissues after SCI, in a frequency-dependent and pressure-dependent manner. PMID:29349063

  13. Effects of dietary supplementation of red pepper (Schinus terebinthifolius Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs.

    PubMed

    Cairo, Pedro Leon Gomes; Gois, Franz Dias; Sbardella, Maicon; Silveira, Hebert; de Oliveira, Roberto Maciel; Allaman, Ivan Bezerra; Cantarelli, Vinicius Souza; Costa, Leandro Batista

    2018-01-01

    Many strategies, such as the antibiotic growth promoters, have been developed to improve intestinal health and performance of newly weaned piglets. Natural products such as essential oils have been scientifically recognized as growth enhancer feed additives for weanling pigs, replacing the antibiotics. Therefore, it has been hypothesized that Brazilian red pepper could replace performance-enhancing antibiotics also in weanling pig diets. However, one experiment was conducted to determine the effects of dietary Brazilian red pepper essential oil or antimicrobial growth promoter on intestinal health and growth performance of weanling pigs. No effects of treatments were observed on performance and organ weights (P > 0.05). Overall, both additives [red pepper essential oil (RPEO) or antibiotic (ANT)] increased gut Lactobacillus counts compared to negative control, as well as reduced villi density (P < 0.05). Animals fed diets containing 1.5 g kg -1 RPEO presented the lowest incidence of diarrhea (P < 0.05). Our findings suggested that essential oil from Brazilian red pepper or chlorohydroxyquinoline added in weanling pig diets affect gut microbiota and histology without affecting performance and organ weights. In addition, there was an indication that high doses of essential oil could reduce the incidence of diarrhea. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Intestinal parasites in First World War German soldiers from "Kilianstollen", Carspach, France.

    PubMed

    Le Bailly, Matthieu; Landolt, Michaël; Mauchamp, Leslie; Dufour, Benjamin

    2014-01-01

    Paleoparasitological investigations revealed the presence of intestinal helminths in samples taken from the abdominal cavities of two German soldiers, recovered in the First World War site named "Kilianstollen" in Carspach, France. Eggs from roundworm, whipworm, tapeworm and capillariids were identified. The morphological and morphometrical comparison, followed by statistical analyses, showed that the Carspach capillariid eggs are similar to rodent parasites. Poor sanitary conditions in the trenches, the lack of knowledge of parasites, and the widespread presence of commensal animals, can explain the occurrence of such parasites in human intestines. This study is the second dealing with 20th century human samples. It confirms the presence of intestinal worms in First World War German soldiers. In this case study, the application of statistics to precise measurements facilitated the diagnosis of ancient helminth eggs and completed the microscopic approach.

  15. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  16. The formation of intestinal organoids in a hanging drop culture.

    PubMed

    Panek, Malgorzata; Grabacka, Maja; Pierzchalska, Malgorzata

    2018-01-25

    Recently organoids have become widely used in vitro models of many tissue and organs. These type of structures, originated from embryonic or adult mammalian intestines, are called "mini guts". They organize spontaneously when intestinal crypts or stem cells are embedded in the extracellular matrix proteins preparation scaffold (Matrigel). This approach has some disadvantages, as Matrigel is undefined (the concentrations of growth factors and other biologically active components in it may vary from batch to batch), difficult to handle and expensive. Here we show that the organoids derived from chicken embryo intestine are formed in a hanging drop without embedding, providing an attractive alternative for currently used protocols. Using this technique we obtained compact structures composed of contiguous organoids, which were generally similar to chicken organoids cultured in Matrigel in terms of morphology and expression of intestinal epithelial markers. Due to the simplicity, high reproducibility and throughput capacity of hanging drop technique our model may be applied in various studies concerning the gut biology.

  17. [Endoscopical features of precancer changes of the stomach in patients with chronic gastric erosions and biliary tract disease].

    PubMed

    Solovĭova, H A

    2012-01-01

    Frequency of the precancer changes of the stomach, diagnosed by using zoom-endoscopy, NBI, chromoscopy, in the three groups of patients: with gastric erosions and biliary tract diseases, with gastric erosions and duodenal ulcer disease, with gastric erosions and chronic gastritis is compared in the article. It is shown, that patients with gastric erosions and biliary tract diseases are characterized by bigger spreading of precancer changes: atrophy, intestinal metaplasia with predominant smalluently intestine in gastric body, intestine metaplasia in antral part of the stomach is revealed more freq in these category of patients. A strong correlation between endoscopical and morphological methods of investigation was demonstrated.

  18. Proteomic analysis of rainbow trout (Oncorhynchus mykiss) intestinal epithelia: physiological acclimation to short-term starvation.

    PubMed

    Baumgarner, Bradley L; Bharadwaj, Anant S; Inerowicz, Dorota; Goodman, Angela S; Brown, Paul B

    2013-03-01

    The intestinal epithelia form the first line of defense against harmful agents in the gut lumen of most monogastric vertebrates, including teleost fishes. Previous investigations into the effect of starvation on the intestinal epithelia of teleost fishes have focused primarily on changes in morphological characteristics and targeted molecular analysis of specific enzymes. The goal of this study was to use a comprehensive approach to help reveal how the intestinal epithelia of carnivorous teleost fishes acclimate to short-term nutrient deprivation. We utilized two-dimensional gel electrophoresis (2-DE) to conduct the proteomic analysis of the mucosal and epithelial layer of the anterior gut intestinal tract (GIT) from satiation fed vs. 4 week starved rainbow trout (Oncorhynchus mykiss). A total of 40 proteins were determined to be differentially expressed and were subsequently picked for in-gel trypsin digestion. Peptide mass fingerprint analysis was conducted using matrix assisted laser desorption time-of-flight/time-of-flight. Nine of the 11 positively identified proteins were directly related to innate immunity. The expression of α-1 proteinase inhibitor decreased in starved vs. fed fish. Also, the concentration of one leukocyte elastase inhibitor (LEI) isomer decreased in starved fish, though the concentration of another LEI isomer increased in due to starvation. In addition, starvation promoted an increased concentration of the important xenobiotic-transporter p-glycoprotein. Finally, starvation resulted in a significant increase in type II keratin E2. Overall, our results indicate that starvation promoted a reduced capacity to inhibit enzymatic stress but increased xenobiotic resistance and paracellular permeability of epithelial cells in the anterior intestine of rainbow trout. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition

    PubMed Central

    Pierre, Joseph F.; Neuman, Joshua C.; Brill, Allison L.; Brar, Harpreet K.; Thompson, Mary F.; Cadena, Mark T.; Connors, Kelsey M.; Busch, Rebecca A.; Heneghan, Aaron F.; Cham, Candace M.; Jones, Elaina K.; Kibbe, Carly R.; Davis, Dawn B.; Groblewski, Guy E.; Kudsk, Kenneth A.

    2015-01-01

    Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis. PMID:26185331

  20. Fish innate immunity against intestinal helminths.

    PubMed

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei).

    PubMed

    Tzuc, Jaqueline Tuyub; Escalante, Diana Rendíz; Rojas Herrera, Rafael; Gaxiola Cortés, Gabriela; Ortiz, Maria Leticia Arena

    2014-01-01

    Bacteria capable of producing different extracellular enzymes of potential relevance in digestive processes were isolated from the stomach, hepatopancreas and intestine of Pacific white shrimp Litopenaeus vannamei. A total of 64 strains with proteolytic activity were isolated and grouped into 16 clusters based on morphological characteristics: 4 groups were isolated from the intestine; 5 from the hepatopancreas; and 7 from the stomach. Molecular methods (16S rRNA gene amplification and sequencing) and phenotypic criteria (Gram stain, catalase and oxidase tests, cell and colony morphology) were used to identify strains, which corresponded to Pseudoalteromonas and Vibrio genera. These genera are reported to form part of the digestive tract microbial community in shrimp. Both genera were isolated from all three tested tissues. One member of each morphologic group was selected for analysis of the presence of amylases, lipases/esterases and chitinases. Most of the strains had all the tested enzymes, indicating that the L. vannamei digestive tract microbiotic flora includes groups which have the potential to contribute to the degradation of dietary components.

  2. Effects of breeder age and egg weight on morphological changes in the small intestine of chicks during the hatch window.

    PubMed

    Yalçin, S; Izzetoğlu, G T; Aktaş, A

    2013-01-01

    1. The objective of the study was to investigate the effects of breeder age and egg weight on hatching performance and morphological changes in segments of the small intestine of broiler chicks during a 21 h hatch window. 2. Eggs from Ross broiler breeder flocks aged 29 (young) and 48 weeks (old) were classified as light (LE) or heavy (HE) and incubated at the same conditions. At 475 h of incubation, eggs were checked every 3 h to determine time of external pipping and hatching. The first 42 chicks to emerge from each group were weighed and chick length was measured and 14 chicks from each group were sampled to collect residual yolk and intestine segments. The rest of chicks were placed back in the incubator and chick weight and length were measured individually at 9, 15 and 21 h after chicks hatched. At the end of 21 h, 14 chicks from each group were sampled again and the same procedure was followed. 3. The HE chicks pipped and hatched later than LE, regardless of breeder age. From hatch to the end of the hatch window, chick weight, but not yolk-free chick weight, gradually reduced. Relative residual yolk weight of chicks from both egg weights was similar at hatch, however, yolk sac utilisation was higher for LE chicks during the 21 h post-hatch period. At hatch, jejunum and ileum villus development was very similar for HE and LE chicks but greater development was observed for villus area with an increase in the jejunum villus length, width and goblet cell numbers in HE chicks. 4. The longest jejunum villus and the widest duodenum and jejunum villus were obtained for HE chicks from old breeders indicating that HE chicks from old breeders would have a greater surface area for nutrient absorption.

  3. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens.

    PubMed

    Biasato, I; De Marco, M; Rotolo, L; Renna, M; Lussiana, C; Dabbou, S; Capucchio, M T; Biasibetti, E; Costa, P; Gai, F; Pozzo, L; Dezzutto, D; Bergagna, S; Martínez, S; Tarantola, M; Gasco, L; Schiavone, A

    2016-12-01

    Insects are currently being considered as a novel protein source for animal feeds, because they contain a large amount of protein. The larvae of Tenebrio molitor (TM) have been shown to be an acceptable protein source for broiler chickens in terms of growth performance, but till now, no data on histological or intestinal morphometric features have been reported. This study has had the aim of evaluating the effects of dietary TM inclusion on the performance, welfare, intestinal morphology and histological features of free-range chickens. A total of 140 medium-growing hybrid female chickens were free-range reared and randomly allotted to two dietary treatments: (i) a control group and (ii) a TM group, in which TM meal was included at 75 g/kg. Each group consisted of five pens as replicates, with 14 chicks per pen. Growth performance, haematological and serum parameters and welfare indicators were evaluated, and the animals were slaughtered at the age of 97 days. Two birds per pen (10 birds/treatment) were submitted to histological (liver, spleen, thymus, bursa of Fabricius, kidney, heart, glandular stomach and gut) and morphometric (duodenum, jejunum and ileum) investigations. The inclusion of TM did not affect the growth performance, haematological or serum parameters. The morphometric and histological features were not significantly affected either, thus suggesting no influence on nutrient metabolization, performance or animal health. Glandular stomach alterations (chronic flogosis with epithelial squamous metaplasia) were considered paraphysiological in relation to free-range farming. The observed chronic intestinal flogosis, with concomitant activation of the lymphoid tissue, was probably due to previous parasitic infections, which are very frequently detected in free-range chickens. In conclusion, the findings of this study show that yellow mealworm inclusion does not affect the welfare, productive performances or morphological features of free-range chickens, thus confirming that TM can be used safely in poultry diets. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  4. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    PubMed

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P < 0.05) and led to vacuole-like cell death in intestinal porcine epithelial cells. These adverse effects of L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P < 0.05), whereas those for p-ERK1/2 were reduced (P < 0.05). Collectively, excessive L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  5. Prebiotic inulin supplementation modulates the immune response and restores gut morphology in Giardia duodenalis-infected malnourished mice.

    PubMed

    Shukla, Geeta; Bhatia, Ruchika; Sharma, Anuj

    2016-11-01

    Malnutrition induces a state of growth retardation and immunologic depression, enhancing the host susceptibility to various infections. In the present study, it was observed that prebiotic supplementation either prior or simultaneously with Giardia infection in malnourished mice significantly reduced the severity of giardiasis and increased the body and small intestine mass, along with increased lactobacilli counts in faeces compared with malnourished-Giardia-infected mice. More specifically, prebiotic supplementation significantly increased the levels of anti-giardial IgG and IgA antibodies and anti-inflammatory cytokines IL-6 and IL-10 and reduced the pro-inflammatory cytokine TNF-α, along with increased levels of nitric oxide in both the serum and intestinal fluid of malnourished-prebiotic-Giardia-infected mice compared with malnourished-Giardia-infected mice. Histopathology and scanning electron microscopy of the small intestine also revealed less cellular and mucosal damage in the microvilli of prebiotic-supplemented malnourished-Giardia-infected mice compared with severely damaged mummified and blunted villi of malnourished-Giardia-infected mice. This is the first study to report that prebiotic supplementation modulated the gut morphology and improved the immune status even in malnourished-Giardia-infected mice.

  6. Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

    PubMed Central

    Lei, Xinjian; Piao, Xiangshu; Ru, Yingjun; Zhang, Hongyu; Péron, Alexandre; Zhang, Huifang

    2015-01-01

    The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein. PMID:25557820

  7. Acute Aerobic Swimming Exercise Induces Distinct Effects in the Contractile Reactivity of Rat Ileum to KCl and Carbachol

    PubMed Central

    Araujo, Layanne C. da Cunha; de Souza, Iara L. L.; Vasconcelos, Luiz H. C.; Brito, Aline de Freitas; Queiroga, Fernando R.; Silva, Alexandre S.; da Silva, Patrícia M.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.

    2016-01-01

    Aerobic exercise promotes short-term physiological changes in the intestinal smooth muscle associated to the ischemia-reperfusion process; however, few studies have demonstrated its effect on the intestinal contractile function. Thus, this work describes our observations regarding the influence of acute aerobic swimming exercise in the contractile reactivity, oxidative stress, and morphology of rat ileum. Wistar rats were divided into sedentary (SED) and acutely exercised (EX-AC) groups. Animals were acclimated by 10, 10, and 30 min of swimming exercise in intercalated days 1 week before exercise. Then they were submitted to forced swimming for 1 h with a metal of 3% of their body weight attached to their body. Animals were euthanized immediately after the exercise section and the ileum was suspended in organ baths for monitoring isotonic contractions. The analysis of lipid peroxidation was performed in order to determinate the malondialdehyde (MDA) levels as a marker of oxidative stress, and intestinal smooth muscle morphology by histological staining. Cumulative concentration-response curves to KCl were altered in the EX-AC with an increase in both its efficacy and potency (Emax = 153.2 ± 2.8%, EC50 = 1.3 ± 0.1 × 10−2 M) compared to the SED group (Emax = 100%, EC50 = 1.8 ± 0.1 × 10−2 M). Interestingly, carbachol had its efficacy and potency reduced in the EX-AC (Emax = 67.1 ± 1.4%, EC50 = 9.8 ± 1.4 × 10−7 M) compared to the SED group (Emax = 100%, EC50 = 2.0 ± 0.2 × 10−7 M). The exercise did not alter the MDA levels in the ileum (5.4 ± 0.6 μ mol/mL) in the EX-AC compared to the SED group (8.4 ± 1.7 μ mol/mL). Moreover, neither the circular nor the longitudinal smooth muscle layers thickness were modified by the exercise (66.2 ± 6.0 and 40.2 ± 2.6 μm, respectively), compared to the SED group (61.6 ± 6.4 and 34.8 ± 3.7 μm, respectively). Therefore, the ileum sensitivity to contractile agents is differentially altered by the acute aerobic swimming exercise, without affecting the oxidative stress and the morphology of ileum smooth muscle. PMID:27047389

  8. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice.

    PubMed

    Rogala, Allison R; Schoenborn, Alexi A; Fee, Brian E; Cantillana, Viviana A; Joyce, Maria J; Gharaibeh, Raad Z; Roy, Sayanty; Fodor, Anthony A; Sartor, R Balfour; Taylor, Gregory A; Gulati, Ajay S

    2018-02-07

    Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M ( IRGM ) is an established risk allele in CD. We have shown previously that conventionally raised (CV) mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs) and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1 -/- mice were rederived into specific pathogen-free (SPF) and germ-free (GF) conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1 -/- mice. Remarkably, in contrast to CV mice, SPF Irgm1 -/- mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1 -/- mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1 -/- mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1 -/- mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1 -/- mice as a model to elucidate host-environment interactions that regulate mucosal homeostasis and intestinal inflammatory responses. Defining such interactions will be essential for developing novel preventative and therapeutic strategies for human CD. © 2018. Published by The Company of Biologists Ltd.

  9. Magnolol pretreatment prevents sepsis-induced intestinal dysmotility by maintaining functional interstitial cells of Cajal.

    PubMed

    Miao, Bin; Zhang, Shuwen; Wang, Hong; Yang, Tiecheng; Zhou, Deshan; Wang, Bao-en

    2013-08-01

    The purpose of this study was to investigate the mechanism by which magnolol treatment prevents lipopolysaccharide (LPS)-induced septic dysmotility in mice. Sepsis was induced by intravenous tail vein injection of LPS (4 mg/kg body weight). Animals were divided into three groups: the magnolol-treated septic group, the placebo-treated septic group, and the control group. Intestinal transit and circular smooth muscle contraction were measured 12 h after LPS injection, and immunocytochemisty was performed to study the morphology of interstitial cells of Cajal (ICCs). Stem cell factor (SCF) expression and c-kit phosphorylation were determined by Western blot analysis, and the mRNA levels of inducible NO synthase (iNOS) were determined by RT-PCR. Nitric oxide (NO) content, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration were detected using commercial kits. Intestinal transit and muscular contractility were significantly lower in the LPS-treated group than in the control group. Immunocytochemical experiments showed that the total number of ICCs, and the total and average lengths of the ICC processes were significantly decreased in the LPS-treated group compared with those in the control group. In LPS-treated animals, magnolol pretreatment significantly accelerated intestinal transit, increased circular muscle contraction, and prevented ICC morphology changes. Phosphorylation of c-kit and expression of SCF were significantly downregulated in LPS-treated animals compared with control animals. Magnolol pretreatment prevented sepsis-induced decreases in c-kit phosphorylation and SCF expression in LPS-treated animals. Magnolol pretreatment prevented the sepsis-induced increase in NO concentration, iNOS expression, and MDA concentration, and decrease in SOD activity in LPS-treated animals. Our results suggest that magnolol treatment prevents sepsis-induced intestinal dysmotility by regulating SCF/c-kit and NO signaling to maintain functional ICCs.

  10. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice.

    PubMed

    Lu, Peng; Bar-Yoseph, Fabiana; Levi, Liora; Lifshitz, Yael; Witte-Bouma, Janneke; de Bruijn, Adrianus C J M; Korteland-van Male, Anita M; van Goudoever, Johannes B; Renes, Ingrid B

    2013-01-01

    Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha'-palmitate), the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate), the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha'-palmitate fat (HAPF) diet and high beta-palmitate fat (HBPF) diet on colitis development in Muc2 deficient (Muc2(-/-)) mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. Muc2(-/-) mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2(-/-) mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg) cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1), genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2(-/-) mice by inducing an immunosuppressive Treg cell response.

  11. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    PubMed Central

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID:23502354

  12. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells

    PubMed Central

    Moorefield, Emily C.; Andres, Sarah F.; Blue, R. Eric; Van Landeghem, Laurianne; Mah, Amanda T.; Santoro, M. Agostina; Ding, Shengli

    2017-01-01

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFPLow), activatable reserve IESC and enteroendocrine cells (Sox9-EGFPHigh), Sox9-EGFPSublow progenitors, and Sox9-EGFPNegative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFPLow IESC and Sox9-EGFPHigh cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging. PMID:28854151

  13. COLOSTRO NONI administration effects on epithelial cells turn-over, inflammatory events and integrity of intestinal mucosa junctional systems.

    PubMed

    Cardani, D

    2014-03-01

    In this work we evaluated the possibility for dietary supplement COLOSTRO NONI to be used as preventive and therapeutic agent in various diseases characterized by altered intestinal homeostasis with changes in the composition of the microbiota, alteration of the morphology and functionality, and also inflammation of the epithelium. Cellular activity of COLOSTRO NONI has been tested in an in vitro model of intestinal epithelium based on Caco-2 cell line. We tested the ability of COLOSTRO NONI to stimulate cellular turnover evaluating cell growth rate with WST-1 proliferation assay. We also tested the ability of COLOSTRO NONI to increase the gene expression of Interleukin-8 (IL-8) with a Real Time PCR assay. IL-8 is a fundamental chemotactic factor involved in inflammatory phenomena and in the control of tissue homeostasis. COLOSTRO NONI is able to stimulate cell turnover in the proposed in vitro model and demonstrates active in increasing the gene expression of IL-8. Both aspects observed are fundamental for the establishment of mechanisms to repair tissue damage. Obtained results indicate that COLOSTRO NONI could find clinical application in treatment of gastrointestinal disorders characterized by impairment of proper intestinal permeability, in inflammatory bowel diseases, in dysenteric diseases, in gastritis and in forms of pathological alteration of the mucous layer as celiac disease and gluten sensitivity.

  14. Influence of graded inclusion of white lupin (Lupinus albus) meal on performance, nutrient digestibility and intestinal morphology of broiler chickens.

    PubMed

    Kaczmarek, S A; Hejdysz, M; Kubiś, M; Rutkowski, A

    2016-06-01

    The aim of this study was to investigate the effect of white lupin (Lupinus albus) meal (WLM) addition on the intestinal viscosity, bird performance, nutrient utilisation and villi morphology of growing broiler chicks. The experiment was conducted with 480 broiler chicks divided into 6 dietary treatments, including a maize-soybean meal control diet (CON) and 5 experimental diets containing 100, 150, 200, 250 and 300 g/kg WLM. During the period from d 0 to 35, birds fed on 200 or higher WLM/kg were characterised by lower body weight gain and feed intake than CON. The use of 150 g of WLM/kg increased feed conversion ratio (FCR) compared to CON treatment. Apparent metabolisable energy corrected to zero N balance (AMEN) and apparent ileal digestibility of dry matter, ether extract, crude protein and starch, linearly decreased as WLM increased from 0 to 300 g/kg. There was a quadratic effect of WLM dose on sialic acid excretion. A strong negative linear correlation was found between the excretion of sialic acid and AMEN. The viscosity of ileal digesta was linearly increased as WLM increased. The effect of WLM dose on ileum villus height (VH) was linear, while that on ileum villus area (VA) was quadratic. Both parameters decreased as WLM increased from 0 to 300 g/kg. In conclusion, the use of over 150 g/kg of WLM in broiler diets depressed performance results. However, depression of nutrient utilisation was only observed when 250 or 300 g/kg of WLM was used.

  15. Effects of β-Glucans Ingestion on Alveolar Bone Loss, Intestinal Morphology, Systemic Inflammatory Profile, and Pancreatic β-Cell Function in Rats with Periodontitis and Diabetes

    PubMed Central

    Silva, Viviam de O.; Lobato, Raquel V.; Orlando, Débora R.; Borges, Bruno D.B.; de Sousa, Raimundo V.

    2017-01-01

    This study aimed to evaluate the effects of β-glucan ingestion (Saccharomyces cerevisiae) on the plasmatic levels of tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), alveolar bone loss, and pancreatic β-cell function (HOMA-BF) in diabetic rats with periodontal disease (PD). Besides, intestinal morphology was determined by the villus/crypt ratio. A total of 48 Wistar rats weighing 203 ± 18 g were used. Diabetes was induced by the intraperitoneal injection of streptozotocin (80 mg/kg) and periodontal inflammation, by ligature. The design was completely randomized in a factorial scheme 2 × 2 × 2 (diabetic or not, with or without periodontitis, and ingesting β-glucan or not). The animals received β-glucan by gavage for 28 days. Alveolar bone loss was determined by scanning electron microscopy (distance between the cementoenamel junction and alveolar bone crest) and histometric analysis (bone area between tooth roots). β-glucan reduced plasmatic levels of TNF-α in diabetic animals with PD and of IL-10 in animals with PD (p < 0.05). β-glucan reduced bone loss in animals with PD (p < 0.05). In diabetic animals, β-glucan improved β-cell function (p < 0.05). Diabetic animals had a higher villus/crypt ratio (p < 0.05). In conclusion, β-glucan ingestion reduced the systemic inflammatory profile, prevented alveolar bone loss, and improved β-cell function in diabetic animals with PD. PMID:28906456

  16. Magnolol and Honokiol Attenuate Apoptosis of Enterotoxigenic Escherichia Coli-Induced Intestinal Epithelium by Maintaining Secretion and Absorption Homeostasis and Protecting Mucosal Integrity.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Li, Chengjian; Xiao, Wenjun; Tan, Zhiliang

    2018-05-21

    BACKGROUND The cortex of Magnolia officinalis has long been used as an element of traditional Chinese medicine for the treatment of anxiety, chronic bronchitis, and gastrointestinal dysfunction. This study aimed to elucidate the underlying mechanism of its functional ingredients (magnolol and honokiol) in modifying the secretion and absorption homeostasis and protecting mucosal integrity in an Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mouse model. MATERIAL AND METHODS This study established a diarrhea mouse model infected by ETEC at a dosage of 0.02 ml/g live body weight (BW) in vivo. Magnolol or honokiol was followed by an intraperitoneal administration at dosages of 100, 300, and 500 mg/kg BW according to a 3×3 factorial arrangement. The useful biomarkers for evaluating the integrity of intestinal tract and histologic injury were analyzed and morphological development (including villus height, crypt depth, and ratio of villus height to crypt depth) and the expressions of inflammatory cytokines were determined by real-time PCR. RESULTS The results showed that magnolol and honokiol (500 mg/kg BW) reduced the concentrations of NO, DAO, and DLA, and iNOS activity, and the mRNA expressions of the interferon gamma (IFN-γ) and interleukin 10 (IL-10), and inhibited intestinal epithelial cell apoptosis. Magnolol and honokiol (300 mg/kg BW) elongated the villus height and crypt depth and decreased the number of goblet cells and the ratio of villus height to crypt depth. CONCLUSIONS The current results indicate that magnolol and honokiol enhance the intestinal anti-inflammatory capacities, elongate the villus height and crypt depth, and reduce goblet cell numbers to inhibit the intestinal epithelium apoptosis and effectively protect the intestinal mucosa. These results show that magnolol and honokiol protect the intestinal mucosal integrity and regulate gastrointestinal dysfunction.

  17. Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring.

    PubMed

    McCormack, Ursula M; Curião, Tânia; Wilkinson, Toby; Metzler-Zebeli, Barbara U; Reyer, Henry; Ryan, Tomas; Calderon-Diaz, Julia A; Crispie, Fiona; Cotter, Paul D; Creevey, Christopher J; Gardiner, Gillian E; Lawlor, Peadar G

    2018-01-01

    Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring's intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia , respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from highly feed-efficient pigs did not recapitulate the highly efficient phenotype in the offspring and, in fact, had detrimental effects on lifetime growth. Although these findings may not be wholly attributable to microbiota transplantation, as antibiotic and purgative were also part of the regime in sows, similar effects were also seen in offspring, in which these interventions were not used. Nonetheless, additional work is needed to unravel the effects of each component of the FMT regime and to provide additional mechanistic insights. This may lead to the development of an FMT procedure with practical applications for the improvement of FE in pigs, which could in turn improve the profitability of pig production.

  18. Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring

    PubMed Central

    2018-01-01

    ABSTRACT Previous studies suggest a link between intestinal microbiota and porcine feed efficiency (FE). Therefore, we investigated whether fecal microbiota transplantation (FMT) in sows and/or neonatal offspring, using inocula derived from highly feed-efficient pigs, could improve offspring FE. Pregnant sows were assigned to control or FMT treatments and the subsequent offspring to control treatment, FMT once (at birth), or FMT four times (between birth and weaning). FMT altered sow fecal and colostrum microbiota compositions and resulted in lighter offspring body weight at 70 and 155 days of age when administered to sows and/or offspring. This was accompanied by FMT-associated changes within the offspring’s intestinal microbiota, mostly in the ileum. These included transiently higher fecal bacterial diversity and load and numerous compositional differences at the phylum and genus levels (e.g., Spirochaetes and Bacteroidetes at high relative abundances and mostly members of Clostridia, respectively), as well as differences in the abundances of predicted bacterial pathways. In addition, intestinal morphology was negatively impacted, duodenal gene expression altered, and serum protein and cholesterol concentrations reduced due to FMT in sows and/or offspring. Taken together, the results suggest poorer absorptive capacity and intestinal health, most likely explaining the reduced body weight. An additive effect of FMT in sows and offspring also occurred for some parameters. Although these findings have negative implications for the practical use of the FMT regime used here for improving FE in pigs, they nonetheless demonstrate the enormous impact of early-life intestinal microbiota on the host phenotype. IMPORTANCE Here, for the first time, we investigate FMT as a novel strategy to modulate the porcine intestinal microbiota in an attempt to improve FE in pigs. However, reprogramming the maternal and/or offspring microbiome by using fecal transplants derived from highly feed-efficient pigs did not recapitulate the highly efficient phenotype in the offspring and, in fact, had detrimental effects on lifetime growth. Although these findings may not be wholly attributable to microbiota transplantation, as antibiotic and purgative were also part of the regime in sows, similar effects were also seen in offspring, in which these interventions were not used. Nonetheless, additional work is needed to unravel the effects of each component of the FMT regime and to provide additional mechanistic insights. This may lead to the development of an FMT procedure with practical applications for the improvement of FE in pigs, which could in turn improve the profitability of pig production. PMID:29577087

  19. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  20. Therapeutic Effects of Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition. PMID:24984001

  1. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    PubMed

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  2. Pancreatic Digestive Enzyme Blockade in the Intestine Increases Survival After Experimental Shock

    PubMed Central

    DeLano, Frank A.; Hoyt, David B.; Schmid-Schönbein, Geert W.

    2015-01-01

    Shock, sepsis, and multiorgan failure are associated with inflammation, morbidity, and high mortality. The underlying pathophysiological mechanism is unknown, but evidence suggests that pancreatic enzymes in the intestinal lumen autodigest the intestine and generate systemic inflammation. Blocking these enzymes in the intestine reduces inflammation and multiorgan dysfunction. We investigated whether enzymatic blockade also reduces mortality after shock. Three rat shock models were used here: hemorrhagic shock, peritonitis shock induced by placement of cecal material into the peritoneum, and endotoxin shock. One hour after initiation of hemorrhagic, peritonitis, or endotoxin shock, animals were administered one of three different pancreatic enzyme inhibitors—6-amidino-2-naphtyl p-guanidinobenzoate di-methanesulfate, tranexamic acid, or aprotinin—into the lumen of the small intestine. In all forms of shock, blockade of digestive proteases with protease inhibitor attenuated entry of digestive enzymes into the wall of the intestine and subsequent autodigestion and morphological damage to the intestine, lung, and heart. Animals treated with protease inhibitors also survived in larger numbers than untreated controls over a period of 12 weeks. Surviving animals recovered completely and returned to normal weight within 14 days after shock. The results suggest that the active and concentrated digestive enzymes in the lumen of the intestine play a central role in shock and multi-organ failure, which can be treated with protease inhibitors that are currently available for use in the clinic. PMID:23345609

  3. Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring123

    PubMed Central

    Meyer, Allison M; Caton, Joel S

    2016-01-01

    Small-intestinal growth and function are critical for optimal animal growth and health and play a major role in nutrient digestion and absorption, energy and nutrient expenditure, and immunological competence. During fetal and perinatal development, the small intestine is affected by the maternal environment and nutrient intake. In ruminants, altered small-intestinal mass, villi morphology, hypertrophy, hyperplasia, vascularity, and gene expression have been observed as a result of poor gestational nutrition or intrauterine growth restriction. Although many of these data come from fetal stages, data have also demonstrated that nutrition during mid- and late gestation affects lamb small-intestinal growth, vascularity, digestive enzyme activity, and gene expression at 20 and 180 d of age as well. The small intestine is known to be a highly plastic tissue, changing with nutrient intake and physiological state even in adulthood, and the maternal small intestine adapts to pregnancy and advancing gestation. In ruminants, the growth, vascularity, and gene expression of the maternal small intestine also adapt to the nutritional plane and specific nutrient intake such as high selenium during pregnancy. These changes likely alter both pre- and postnatal nutrient delivery to offspring. More research is necessary to better understand the role of the offspring and maternal small intestines in whole-animal responses to developmental programming, but programming of this plastic tissue seems to play a dynamic role in gestational nutrition impacts on the whole animal. PMID:27180380

  4. Niche specificity of two Glypthelmins (Trematoda) congeners infecting Leptodactylus chaquensis (Anura: Leptodactylidae) from Argentina.

    PubMed

    Hamann, M I; Kehr, A I; González, C E

    2009-08-01

    Sixty-five specimens of the frog Leptodactylus chaquensis were infected by 2 Glypthelmins species (Glypthelmins repandum: 41%, and Glypthelmins palmipedis: 38%) in the small intestine. This study was designed to determine the site specificity of both species along the length of the small intestine by analyzing the distribution, niche overlap, morphological characteristics, and population dynamics. The location of G. palmipedis is very restricted, with the core infection site in the anterior small intestine. In contrast, G. repandum can be characterized as having an expanded niche within the small intestine. In single infections and with different intensities, individuals of both parasitic species showed preference for the anterior small intestine. In concurrent infections and with different intensities, the distribution of G. palmipedis did not change when G. repandum was present; however, displacement of G. repandum toward the middle of the small intestine was observed. Glypthelmins species used the same microhabitat and presumably the same food resource and were generally found to overlap more than expected by chance. This finding suggests the possibility of different feeding mechanisms given by differences in their pharynx size by 37%. Also, the coexistence of these could be associated with the differentiation of realized niches.

  5. [Study on the biological characteristic of Blastocystis hominis: morphology, mode of reproduction and the relation to bacteria].

    PubMed

    Qiao, Ji-ying; Zhang, Xu; Wei, Zhi-chao; Yang, Jun-hua; Li, Ya-qing; Zhang, Rong

    2006-11-01

    To observe the reproductive modes of Blastocystis hominis and study the relation between this protozoa and bacteria. Using the Iodine and Haematoxylin staining, the morphology of B. h from patients and RPMI 1640 medium were observed. The B. h positive mucous diarrheal specimens were cultured and identified any possible known pathogenic intestinal bacteria. B. h and colibacillus were co-cultured to observe the interaction between them. Four modes of reproduction for B. h were confirmed: binary fission, endodyogeny, multiple fission and budding. The fact that there was no other intestinal pathogens in half of the B. h positive specimens suggested B. h may cause disease independently. B. h and colibacillus were restrained each other. B. h reproduces in at least four modes. B. h could be a pathogen and its pathogenesis may be related to micro-ecological changes.

  6. A structure-based approach for colon gland segmentation in digital pathology

    NASA Astrophysics Data System (ADS)

    Ben Cheikh, Bassem; Bertheau, Philippe; Racoceanu, Daniel

    2016-03-01

    The morphology of intestinal glands is an important and significant indicator of the level of the severity of an inflammatory bowel disease, and has also been used routinely by pathologists to evaluate the malignancy and the prognosis of colorectal cancers such as adenocarcinomas. The extraction of meaningful information describing the morphology of glands relies on an accurate segmentation method. In this work, we propose a novel technique based on mathematical morphology that characterizes the spatial positioning of nuclei for intestinal gland segmentation in histopathological images. According to their appearance, glands can be divided into two types: hallow glands and solid glands. Hallow glands are composed of lumen and/or goblet cells cytoplasm, or filled with abscess in some advanced stages of the disease, while solid glands are composed of bunches of cells clustered together and can also be filled with necrotic debris. Given this scheme, an efficient characterization of the spatial distribution of cells is sufficient to carry out the segmentation. In this approach, hallow glands are first identified as regions empty of nuclei and surrounded by thick layers of epithelial cells, then solid glands are identified by detecting regions crowded of nuclei. First, cell nuclei are identified by color classification. Then, morphological maps are generated by the mean of advanced morphological operators applied to nuclei objects in order to interpret their spatial distribution and properties to identify candidates for glands central-regions and epithelial layers that are combined to extract the glandular structures.

  7. Effect of High Dietary Tryptophan on Intestinal Morphology and Tight Junction Protein of Weaned Pig.

    PubMed

    Tossou, Myrlene Carine B; Liu, Hongnan; Bai, Miaomiao; Chen, Shuai; Cai, Yinghua; Duraipandiyan, Veeramuthu; Liu, Hongbin; Adebowale, Tolulope O; Al-Dhabi, Naif Abdullah; Long, Lina; Tarique, Hussain; Oso, Abimbola O; Liu, Gang; Yin, Yulong

    2016-01-01

    Tryptophan (Trp) plays an essential role in pig behavior and growth performances. However, little is known about Trp's effects on tight junction barrier and intestinal health in weaned pigs. In the present study, twenty-four (24) weaned pigs were randomly assigned to one of the three treatments with 8 piglets/treatments. The piglets were fed different amounts of L-tryptophan (L-Trp) as follows: 0.0%, 0.15, and 0.75%, respectively, named zero Trp (ZTS), low Trp (LTS), and high Trp (HTS), respectively. No significant differences were observed in average daily gain (ADG), average daily feed intake (ADFI), and gain: feed (G/F) ratio between the groups. After 21 days of the feeding trial, results showed that dietary Trp significantly increased (P < 0.05) crypt depth and significantly decreased (P < 0.05) villus height to crypt depth ratio (VH/CD) in the jejunum of pig fed HTS. In addition, pig fed HTS had higher (P < 0.05) serum diamine oxidase (DAO) and D-lactate. Furthermore, pig fed HTS significantly decreased mRNA expression of tight junction proteins occludin and ZO-1 but not claudin-1 in the jejunum. The number of intraepithelial lymphocytes and goblet cells were not significantly different (P > 0.05) between the groups. Collectively, these data suggest that dietary Trp supplementation at a certain level (0.75%) may negatively affect the small intestinal structure in weaned pig.

  8. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    PubMed Central

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  9. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard.

    PubMed

    Kohl, Kevin D; Brun, Antonio; Magallanes, Melisa; Brinkerhoff, Joshua; Laspiur, Alejandro; Acosta, Juan Carlos; Bordenstein, Seth R; Caviedes-Vidal, Enrique

    2016-06-15

    While herbivory is a common feeding strategy in a number of vertebrate classes, less than 4% of squamate reptiles feed primarily on plant material. It has been hypothesized that physiological or microbial limitations may constrain the evolution of herbivory in lizards. Herbivorous lizards exhibit adaptations in digestive morphology and function that allow them to better assimilate plant material. However, it is unknown whether these traits are fixed or perhaps phenotypically flexible as a result of diet. Here, we maintained a naturally omnivorous lizard, Liolaemus ruibali, on a mixed diet of 50% insects and 50% plant material, or a plant-rich diet of 90% plant material. We compared parameters of digestive performance, gut morphology and function, and gut microbial community structure between the two groups. We found that lizards fed the plant-rich diet maintained nitrogen balance and exhibited low minimum nitrogen requirements. Additionally, lizards fed the plant-rich diet exhibited significantly longer small intestines and larger hindguts, demonstrating that gut morphology is phenotypically flexible. Lizards fed the plant-rich diet harbored small intestinal communities that were more diverse and enriched in Melainabacteria and Oscillospira compared with mixed diet-fed lizards. Additionally, the relative abundance of sulfate-reducing bacteria in the small intestine significantly correlated with whole-animal fiber digestibility. Thus, we suggest that physiological and microbial limitations do not sensu stricto constrain the evolution of herbivory in lizards. Rather, ecological context and fitness consequences may be more important in driving the evolution of this feeding strategy. © 2016. Published by The Company of Biologists Ltd.

  10. Natural history of experimental intestinal atresia: morphologic and ultrastructural study.

    PubMed

    Baglaj, S M; Czernik, J; Kuryszko, J; Kuropka, P

    2001-09-01

    The aim of this study was to evaluate a natural history of congenital intestinal atresia (IA) in the chick embryo and to assess the type and nature of changes in the intestine at various developmental stages. Chick embryos underwent operative induction of IA on the 12th day of incubation. The procedure consisted of electrocoagulation of the mesenteric vessels supplying a 7- to 8-mm intestinal segment. The embryos were subjected to macroscopic examination, histologic and ultrastructural studies of the preatretic and postatretic bowel using the light microscope, scanning, and transmission electron microscopes. All investigations were performed in an experimental group (operated embryos), in a control group, and in a sham-operated group on the 15th, 17th, 19th, and 21st day of incubation. The original technique of an iatrogenic "vascular event" proved to be effective because IA developed in 96% of embryos surviving the procedure. The affected portion of the bowel underwent progressive necrosis, and signs of bowel obstruction could be observed 48 hours after operation. Cord atresia (type II) developed in 81% of embryos. Histologic investigations showed progressive thinning of mucosa, flattening of mucosal folds, and epithelial detachment within the intestine proximal to atresia. There was only mild hypertrophy of the muscular layers. All these pathomorphologic changes were of rapidly progressive nature until the 17th day of incubation. Later, the rate of distension of preatretic bowel and histologic changes were less. Ultrastructural investigation of the proximal bowel showed progressive flattening of the enterocytes associated with their apical bulging, widening of the intercellular spaces, and microvilli atrophy. Surprisingly, at days 19 and 21 of incubation, signs of induction of adaptive mechanisms with partial restoration of near-normal microvilli pattern were observed. Study of natural history of experimental IA indicates that histologic and ultrastructural lesions of the bowel are of dynamic nature and are not only the effect of pathologic intraluminal pressure. Copyright 2001 by W.B. Saunders Company.

  11. Histomorphological studies of broiler chicken fed diets supplemented with either raw or enzyme treated dandelion leaves and fenugreek seeds

    PubMed Central

    Qureshi, Saim; Banday, Mohammed Tufail; Shakeel, Irfan; Adil, Sheikh; Mir, Masood Saleem; Beigh, Yasir Afzal; Amin, Umar

    2016-01-01

    Aim: Herbal plants and their derived products are extensively used particularly in many Asian, African, and other countries of the world as they are considered as ideal feed additives because of their non-residual effect and ability to influence the ecosystem of gastrointestinal microbiota in a positive way. Further, the enzymatic treatment of these herbs helps in their efficient utilization by the host. Dandelion leaves and fenugreek seeds have been reported to have positive effect in terms of improving the performance of broiler chicken, but not much literature is available regarding their effect on gut histomorphology; therefore, the present study was conducted to explore the effect of these herbs either alone or in combination with or without enzyme treatment on histomorphology of liver and small intestine of broiler chicken. Materials and Methods: To achieve the envisaged objective, 273-day-old commercial broiler chicks were procured from a reputed source and reared together until 7 days of age. On the 7th day, the chicks were individually weighed, distributed randomly into 7 groups of 3 replicates with 13 chicks each. Birds in the control group were fed diets without additives (T1). The other six treatment groups were fed the basal diet supplemented with 0.5% dandelion leaves (T2), 1% fenugreek seeds (T3), combination of 0.5% dandelion leaves and 1% fenugreek seeds (T4), enzyme treated dandelion leaves 0.5% (T5), enzyme treated fenugreek seeds 1% (T6), and combination of enzyme treated dandelion leaves (0.5%) and (1%) fenugreek seeds (T7). The histomorphological study of liver and small intestines was conducted among different treatment groups. Results: The results revealed the hepato-protective nature of both dandelion leaves and fenugreek seeds either alone or in combination with or without enzyme treatment when compared with the control group. Moreover, the histomorphological findings of jejunum revealed the beneficial effect of dandelion leaves, fenugreek seeds and enzymes on the intestinal mucosa in terms of cellular infiltration, architecture of villi, villus height/crypt depth ratio, thereby improving the intestinal health. Conclusion: The dandelion leaves and fenugreek seeds have hepato-protective nature and beneficial effect on the intestinal morphology particularly when included along with enzymes in the diet of broiler chicken. PMID:27057110

  12. Life cycle of Hammondia hammondi (Apicomplexa: Sarcocystidae) in cats

    USDA-ARS?s Scientific Manuscript database

    Hammondia hammondi and Toxoplasma gondii are feline coccidian that are morphologically, antigenically, and phylogenitically related. Both parasites multiply asexually and sexually in feline intestinal enterocytes but H. hammondi remains confined to enterocytes whereas T. gondii also parasitizes extr...

  13. Consumption of Diet Containing Free Amino Acids Exacerbates Colitis in Mice

    PubMed Central

    Souza, Adna Luciana; Fiorini Aguiar, Sarah Leão; Gonçalves Miranda, Mariana Camila; Lemos, Luisa; Freitas Guimaraes, Mauro Andrade; Reis, Daniela Silva; Vieira Barros, Patrícia Aparecida; Veloso, Emerson Soares; Carvalho, Toniana Gonçalves; Ribeiro, Fabiola Mara; Ferreira, Enio; Cara, Denise Carmona; Gomes-Santos, Ana Cristina; Faria, Ana Maria Caetano

    2017-01-01

    Dietary proteins can influence the maturation of the immune system, particularly the gut-associated lymphoid tissue, when consumed from weaning to adulthood. Moreover, replacement of dietary proteins by amino acids at weaning has been shown to impair the generation of regulatory T cells in the gut as well as immune activities such as protective response to infection, induction of oral and nasal tolerance as well as allergic responses. Polymeric and elemental diets are used in the clinical practice, but the specific role of intact proteins and free amino acids during the intestinal inflammation are not known. It is plausible that these two dietary nitrogen sources would yield distinct immunological outcomes since proteins are recognized by the immune system as antigens and amino acids do not bind to antigen-recognition receptors but instead to intracellular receptors such as mammalian target of rapamycin (mTOR). In this study, our aim was to evaluate the effects of consumption of an amino acid-containing diet (AA diet) versus a control protein-containing diet in adult mice at steady state and during colitis development. We showed that consumption of a AA diet by adult mature mice lead to various immunological changes including decrease in the production of serum IgG as well as increase in the levels of IL-6, IL-17A, TGF-β, and IL-10 in the small and large intestines. It also led to changes in the intestinal morphology, to increase in intestinal permeability, in the number of total and activated CD4+ T cells in the small intestine as well as in the frequency of proliferating cells in the colon. Moreover, consumption of AA diet during and prior to development of dextran sodium sulfate-induced colitis exacerbated gut inflammation. Administration of rapamycin during AA diet consumption prevented colitis exacerbation suggesting that mTOR activation was involved in the effects triggered by the AA diet. Therefore, our study suggests that different outcomes can result from the use of diets containing either intact proteins or free amino acids such as elemental, semielemental, and polymeric diets during intestinal inflammation. These results may contribute to the design of nutritional therapeutic intervention for inflammatory bowel diseases. PMID:29209321

  14. Arginine metabolism and its protective effects on intestinal health and functions in weaned piglets under oxidative stress induced by diquat.

    PubMed

    Zheng, Ping; Yu, Bing; He, Jun; Yu, Jie; Mao, Xiangbing; Luo, Yuheng; Luo, Junqiu; Huang, Zhiqing; Tian, Gang; Zeng, Qiufeng; Che, Lianqiang; Chen, Daiwen

    2017-06-01

    The intestine plays key roles in maintaining body arginine (Arg) homoeostasis. Meanwhile, the intestine is very susceptible to reactive oxygen species. In light of this, the study aimed to explore the effects of Arg supplementation on intestinal morphology, Arg transporters and metabolism, and the potential protective mechanism of Arg supplementation in piglets under oxidative stress. A total of thirty-six weaned piglets were randomly allocated to six groups with six replicates and fed a base diet (0·95 % Arg,) or base diet supplemented with 0·8 % and 1·6 % l-Arg for 1 week, respectively. Subsequently, a challenge test was conducted by intraperitoneal injection of diquat, an initiator of radical production, or sterile saline. The whole trial lasted 11 d. The diquat challenge significantly decreased plasma Arg concentration at 6 h after injection (P<0·05), lowered villus height in the jejunum and ileum (P<0·05) as well as villus width and crypt depth in the duodenum, jejunum and ileum (P<0·05). Oxidative stress significantly increased cationic amino acid transporter (CAT)-1, CAT-2 and CAT-3, mRNA levels (P<0·05), decreased arginase II (ARGII) and inducible nitric oxide synthase mRNA levels, and increased TNF- α mRNA level in the jejunum (P<0·05). Supplementation with Arg significantly decreased crypt depth (P<0·05), suppressed CAT-1 mRNA expression induced by diquat (P<0·05), increased ARGII and endothelial nitric oxide synthase mRNA levels (P<0·05), and effectively relieved the TNF- α mRNA expression induced by diquat in the jejunum (P<0·05). It is concluded that oxidative stress decreased Arg bioavailability and increased expression of inflammatory cytokines in the jejunum, and that Arg supplementation has beneficial effects in the jejunum through regulation of the metabolism of Arg and suppression of inflammatory cytokine expression in piglets.

  15. Customization of biliopancreatic limb length to modulate and sustain antidiabetic effect of gastric bypass surgery.

    PubMed

    Pal, A; Rhoads, D B; Tavakkoli, A

    2018-02-01

    Although Roux-en-Y Gastric Bypass (RYGB) remains the most effective treatment for obesity and type 2 diabetes (T2D), many patients fail to achieve remission, or relapse. Increasing intestinal limb lengths of RYGB may improve outcomes, but the mechanistic basis for this remains unclear. We hypothesize biliopancreatic (BP) limb length modulates the antidiabetic effect of RYGB. Rats underwent RYGB with a 20-cm (RYGB-20cm) or 40-cm (RYGB-40cm) BP limb and were compared with control animals. After 2 and 4 wk, portal and systemic blood was sampled during intestinal glucose infusion. Portosystemic gradient was used to calculate intestinal glucose utilization (G util ), absorption (G absorp ), and hormone secretion. Intestinal morphology and gene expression were assessed. At 2 wk, G absorp progressively decreased with increasing BP limb length; this pattern persisted at 4 wk. G util increased ≈70% in both RYGB-20cm and -40cm groups at 2 wk. At 4 wk, G util progressively increased with limb length. Furthermore, Roux limb weight, and expression of hexokinase and preproglucagon, exhibited a similar progressive increase. At 4 wk, glucagon-like peptide-1 and -2 levels were higher after RYGB-40cm, with associated increased secretion. We conclude that BP limb length modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. Early postoperatively, a longer BP limb reduces G absorp . Later, G util , Roux limb hypertrophy, hormone secretion, and hormone levels are increased with longer BP limb. Sustained high incretin levels may prevent weight regain and T2D relapse. These data provide the basis for customizing BP limb length according to patient characteristics and desired metabolic effect. NEW & NOTEWORTHY Biliopancreatic limb length in gastric bypass modulates multiple antidiabetic mechanisms, analogous to the dose-response relationship of a drug. With a longer biliopancreatic limb, Roux limb hypertrophy, increased glucose utilization, reduced glucose absorption, and sustained high incretin levels may prevent weight regain and diabetes relapse.

  16. GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity.

    PubMed

    Amato, Antonella; Baldassano, Sara; Mulè, Flavia

    2016-05-01

    Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show impaired postprandial glucose tolerance and hepatic insulin resistance (by increased gluconeogenesis). Moreover, GLP2 acts as a beneficial factor for glucose metabolism in mice with high-fat diet-induced obesity. Thus, the aim of this review is to update and summarize current knowledge about the role of GLP2 in the control of glucose homeostasis and to discuss how this molecule could exert protective effects against the onset of related obesity type 2 diabetes. © 2016 Society for Endocrinology.

  17. Regulation of dietary glutamine on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Lan, Ying; Ye, Zhi; Wen, Bin

    2016-03-01

    The present study examined the effects of dietary glutamine (Gln) on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka). The specific growth rate, intestinal morphology, activity of digestive enzymes, activity and gene expression of lysozyme and antioxidative enzymes of the sea cucumbers were determined after feeding 5 experimental diets with additions of increasing levels of Gln (at 0%, 0.4%, 0.8%,1.2% and 1.6%, respectively) for 60 days. We discovered that the specific growth rate of the sea cucumbers in 0.4%, 0.8% and 1.2% groups increased 35.3%, 27.3% and 24.1%, respectively, compared to the control (0%) group with significant differences. Dietary Gln can improve the intestinal function of the sea cucumbers by increasing the activities of trypsin and lipase in the intestine and the villus height and villus density of the intestine, eventhough significant differences were not observed in some groups. 0.4%-0.8% of dietary Gln can significantly increase the activity of lysozyme (LSZ) in the coelomic fluid of the sea cucumbers. Significant improvements were observed on the SOD activity in coelomic fluid of the sea cucumbers fed diets supplemented with 0.4%-1.6% of Gln compared to the control group. Similarly, the CAT activity in coelomic fluid of the sea cucumbers significantly increased in 0.8%, 1.2% and 1.6% groups compared to the control and 0.4% groups. Change pattern of the activity of CAT was consistent with the change pattern of the expression of CAT gene, indicating the dietary Gln can up-regulate the expression of CAT gene and consequently promote the secretion of CAT. However, the down-regulation of the expression of SOD gene by dietary Gln were observed in almost all of the treatment groups, which is in contrast with the change pattern of the activity of SOD, indicating the negative feedback regulation of the secretion of SOD on the expression of SOD gene. In summary, the suitable supplementation levels of Gln in diets of sea cucumber A. japonicus are 0.4%-0.8%, based on the effectiveness of dietary Gln on the growth, intestinal function, immunity and antioxidant capacity of the sea cucumbers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of supplementation of multi-microbe probiotic product on growth performance, apparent digestibility, cecal microbiota and small intestinal morphology of broilers.

    PubMed

    Kim, J S; Ingale, S L; Kim, Y W; Kim, K H; Sen, S; Ryu, M H; Lohakare, J D; Kwon, I K; Chae, B J

    2012-08-01

    The present study investigated the effect of inclusion of multi-microbe probiotic product on growth performance, apparent digestibility of nutrients, cecal microbiota and small intestinal morphology in broilers. Four hundred days-old Ross chicks were randomly allotted to five treatments on the basis of body weight (BW). Each treatment had four replicates of 20 chicks in each. Experimental diets were fed in two phases, starter (day 0-21) and finisher (day 22-35). Dietary treatments were; basal diet without any antimicrobial (NC), basal diet added with 20 mg Avilamycin/kg of diet (PC), 10(7) cfu multi-microbe probiotic/kg of diet (P1), 10(8) cfu multi-microbe probiotic/kg of diet (P2), and 10(9) cfu multi-microbe probiotic/kg of diet (P3). Overall BW gain and feed conversion ratio were better (p < 0.05) for treatments PC, P2 and P3 compared with NC and P1, with P1 being better (p < 0.05) than NC. Overall feed intake in treatments PC, P1, P2 and P3 were greater (p < 0.05) than NC. Apparent digestibility of dry matter and crude protein were greater (p < 0.05) in treatments PC, P2 and P3 compared with NC, with P1 being intermediate and not different form NC, PC, P2 and P3. At d 21 and 35, treatments PC, P1, P2 and P3 showed lower (p < 0.05) cecal Clostridium and Coliforms count in relation to NC. Moreover, cecal Clostridium (d 21) and Coliforms (d 21 and 35) count were lower (p < 0.05) in treatment PC in relation to P1; with P2 and P3 being intermediate and not different from PC. However, there was no effect of dietary treatments on cecal total anaerobic bacteria and Bifidobacterium spp. count. The villus height of duodenum in treatment PC was greater (p < 0.05) than NC, with P1, P2 and P3 being intermediate. Villus height of ileum in treatment PC was greater (p < 0.05) than in treatments P1 and NC, whereas it remained comparable among treatments PC, P2 and P3. Villus height to crypt depth ratio of ileum was greater (p < 0.05) for treatment PC, P2 and P3 compared with that in P1 and NC. It is concluded that multi-microbe probiotic inclusion at 10(8) and 10(9) cfu/kg diet had beneficial effects on broilers growth performance, apparent digestibility of nutrients and intestinal morphology and can be used as replacement to antibiotics growth promoter in broiler nutrition. © 2011 Blackwell Verlag GmbH.

  19. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice

    PubMed Central

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-01-01

    AIM: To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. METHODS: Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. RESULTS: L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P < 0.05; BDL + IBD vs BDL + IBD + L. plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P < 0.05), and particularly enhanced the expression and phosphorylation of TJ proteins in the experimental obstructive jaundice (BDL vs BDL + L. plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P < 0.05). The protective effect of L. plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P < 0.05). CONCLUSION: L. plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway. PMID:22912548

  20. Effects of Lactobacillus plantarum on gut barrier function in experimental obstructive jaundice.

    PubMed

    Zhou, Yu-Kun; Qin, Huan-Long; Zhang, Ming; Shen, Tong-Yi; Chen, Hong-Qi; Ma, Yan-Lei; Chu, Zhao-Xin; Zhang, Peng; Liu, Zhi-Hua

    2012-08-14

    To investigate the mechanisms of Lactobacillus plantarum (L. plantarum) action on gut barrier in preoperative and postoperative experimental obstructive jaundice in rats. Forty rats were randomly divided into groups of sham-operation, bile duct ligation (BDL), BDL + L. plantarum, BDL + internal biliary drainage (IBD), and BDL + IBD + L. plantarum. Ten days after L. plantarum administration, blood and ileal samples were collected from the rats for morphological examination, and intestinal barrier function, liver function, intestinal oxidative stress and protein kinase C (PKC) activity measurement. The distribution and expression of the PKC and tight junction (TJ) proteins, such as occludin, zonula occludens-1, claudin-1, claudin-4, junction adhesion molecule-A and F-actin, were examined by confocal laser scanning microscopy, immunohistochemistry, Western blotting, real-time fluorescent quantitative polymerase chain reaction assay. L. plantarum administration substantially restored gut barrier, decreased enterocyte apoptosis, improved intestinal oxidative stress, promoted the activity and expression of protein kinase (BDL vs BDL + L. plantarum, 0.295 ± 0.007 vs 0.349 ± 0.003, P < 0.05; BDL + IBD vs BDL + IBD + L. plantarum, 0.407 ± 0.046 vs 0.465 ± 0.135, P < 0.05), and particularly enhanced the expression and phosphorylation of TJ proteins in the experimental obstructive jaundice (BDL vs BDL + L. plantarum, 0.266 ± 0.118 vs 0.326 ± 0.009, P < 0.05). The protective effect of L. plantarum was more prominent after internal biliary drainage ( BDL + IBD vs BDL + IBD + L. plantarum, 0.415 ± 0.105 vs 0.494 ± 0.145, P < 0.05). L. plantarum can decrease intestinal epithelial cell apoptosis, reduce oxidative stress, and prevent TJ disruption in biliary obstruction by activating the PKC pathway.

  1. Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs

    PubMed Central

    Paim, Francine C.; Kandasamy, Sukumar; Alhamo, Moyasar A.; Fischer, David D.; Langel, Stephanie N.; Deblais, Loic; Kumar, Anand; Chepngeno, Juliet; Shao, Lulu; Huang, Huang-Chi; Candelero-Rueda, Rosario A.; Rajashekara, Gireesh

    2017-01-01

    ABSTRACT Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children. PMID:28261667

  2. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium.

    PubMed

    Shao, Yujing; Guo, Yuming; Wang, Zhong

    2013-07-01

    This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P < 0.001), villus height/crypt depth ratio (P < 0.05), and the number of goblet cells (P < 0.001) in the jejunum at 14 d postinfection (dpi), but significantly increased the number of intestinal secretory IgA (sIgA)-expressing cells at 14 dpi (P < 0.01) and total sIgA levels in the jejunum at 7 (P < 0.05) and 14 dpi (P < 0.01) compared with the unchallenged birds (NC). Dietary β-1,3/1,6-glucan supplementation not only significantly increased villus height, villus height/crypt depth ratio, and the number of goblet cells (P < 0.01), but also increased the number of sIgA-expressing cells (P < 0.05) and sIgA content in the jejunum at 14 dpi (P < 0.01) in birds challenged with Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P < 0.05) on cecal Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P < 0.01) compared with that of the NC group, whereas β-1,3/1,6-glucan supplementation significantly increased claudin-1 and occludin mRNA expression (P < 0.01) at 14 dpi in the jejunum of the Salmonella Typhimurium-infected birds in comparison with the PC group. Our results indicate that dietary β-1,3/1,6-glucan can alleviate intestinal mucosal barrier impairment in broiler chickens challenged with Salmonella Typhimurium.

  3. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk.

    PubMed

    Limbu, Samwel M; Zhou, Li; Sun, Sheng-Xiang; Zhang, Mei-Ling; Du, Zhen-Yu

    2018-06-01

    Antibiotics used globally to treat human and animal diseases exist ubiquitously in the environment at low doses because of misuse, overdose and poor absorption after ingestion, coupled with their high-water solubility and degradation resistance. However, the systemic chronic effects of exposure to low environmental concentrations of antibiotics (LECAs) and legal aquaculture doses of antibiotics (LADAs) in fish and their human health risk are currently unknown. To investigate the in vivo chronic effects of exposure to LECAs and LADAs using oxytetracycline (OTC) and sulfamethoxazole (SMZ) in Nile tilapia (Oreochromis niloticus) and their human health risk. Twenty O. niloticus weighing 27.73 ± 0.81 g were exposed to water containing LECAs (OTC at 420 ng/L and SMZ at 260 ng/L) and diets supplemented with LADAs (OTC 80 mg/kg/day and SMZ 100 mg/kg/day) for twelve weeks. General physiological functions, metabolic activities, intestinal and hepatic health were systemically evaluated. The possible human health risks of the consumption of the experimental Nile tilapia fillets in adults and children were assessed by using risk quotient. After exposure, we observed retarded growth performance accompanied by reduced nutrients digestibility, feed efficiency, organ indices, and lipid body composition in treated fish. Antibiotics distorted intestinal morphological features subsequently induced microbiota dysbiosis and suppressed intestinal tight junction proteins. Exposure of fish to LECAs and LADAs induced oxidative stress, suppressed innate immunity, stimulated inflammatory and detoxification responses, concomitantly inhibited antioxidant capacity and caused lipid peroxidation in intestine and liver organs. Both LECAs and LADAs enhanced gluconeogenesis, inhibited lipogenesis and fatty acid beta oxidation in intestine and liver organs. The exposure of fish to LECAs and LADAs induced anaerobic glycolytic pathway and affected intestinal fat catabolism in intestine while halted aerobic glycolysis, increased hepatic fat catabolism, and induced DNA damage in liver. The hazard risk quotient in children for fish treated with OTCD was >1 indicating human health risk. Overall, both LECAs and LADAs impair general physiological functions, nutritional metabolism, and compromise fish immune system. Consumption of fish fed with legal OTC provokes health risk in children. Global stringent prohibition policy for use of antibiotics in aquaculture production and strategies to limit their release into the environment are urgently required to protect human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ulcerative enteritis in Homarus americanus: case report and molecular characterization of intestinal aerobic bacteria of apparently healthy lobsters in live storage.

    PubMed

    Battison, Andrea L; Després, Béatrice M; Greenwood, Spencer J

    2008-10-01

    An intermoult male American lobster, Homarus americanus, with severe intestinal lesions was encountered while collecting samples of aerobic intestinal bacteria from lobsters held in an artificial sea-water recirculation aquarium system. Grossly, the intestine was firm, thickened, and white. Histologic examination revealed a severe, diffuse, ulcerative enteritis which spared the chitin-lined colon, somewhat similar to hemocytic enteritis of shrimp. The bacterial isolates from this lobster were compared to 11 other lobsters lacking gross intestinal lesions. Two organisms, one identified as Vibrio sp. and another most similar to an uncultured proteobacterium (98.9%), clustering with Rhanella and Serratia species using 16S rDNA PCR, were isolated from the intestines of the 11, grossly normal, lobsters and the affected lobster. An additional two intestinal isolates were cultured only from the lobster with ulcerative enteritis. One, a Flavobacterium, similar to Lutibacter litoralis (99.3%), possibly represented a previously described commensal of the distal intestine. The second, a Vibrio sp., was unique to the affected animal. While the etiology of the ulcerative enteritis remains undetermined, this report represents the first description of gross and histologic findings in H. americanus of a condition which has morphologic similarities to hemocytic enteritis of shrimp. An additional observation was a decrease in the number of intestinal isolates recovered from the 11 apparently healthy lobsters compared to that previously reported for recently harvested lobster. More comprehensive studies of the relationship between the health of lobsters, gut microbial flora and the husbandry and environment maintained within holding units are warranted.

  5. Division of Chinese soft-shelled turtle intestine with molecular markers is slightly different from the morphological and histological observation.

    PubMed

    Zhang, Zuobing; Song, Ruxin; Xing, Xiao; Wang, Lan; Niu, Cuijuan

    2018-01-01

    The Chinese soft-shelled turtle (Pelodiscus sinensis) is a commercially important species in Asian countries. Knowledge of its nutritional requirements and physiology is essential for determining the appropriate content of the feed for this animal. However, the lack of functional characterization of the intestine of this turtle limits the understanding of its absorption and utilization of nutritional materials. To solve this problem, this work utilized anatomical and histological methods to characterize 9 segments sampled along the anterior-posterior axis of the intestine. Furthermore, 9 genes, which have been well documented in the intestine division of mammals and fish, were employed to functionally characterize the 9 sampled segments. Our results suggest that regions covering from the starting site to S3 (position at 29.9% of the total length from the starting of the intestine) are the equivalent of mammalian dedumonen, and those covering S4 (40.2%) and S5 (65.4%), posterior to S8 (92.7%), are the equivalent of the mammalian ileum and the large intestine, respectively. As to the region spaning S6 (81.3%) and S7 (87.3%), its functional equivalent (small intestine or large intestine) may be variable and depends on the functional genes. This molecular characterization in relation to the division of the intestine of Chinese soft-shelled turtle may contribute to the understanding of the nutritional physiology of the turtle, and promote Chinese soft-shelled turtle production. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  6. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity

    PubMed Central

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Background: Forsythoside A (FTA), one of the main active ingredients in Shuang–Huang–Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. Materials and Methods: In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. Results: The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Conclusion: Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL. PMID:24695554

  7. Ontogeny and distribution of alkaline and acid phosphatases in the digestive system of California halibut larvae (Paralichthys californicus).

    PubMed

    Zacarias-Soto, Magali; Barón-Sevilla, Benjamín; Lazo, Juan P

    2013-10-01

    Studies aimed to assess the digestive physiology of marine fish larvae under culture conditions are important to further understand the functional characteristics and digestive capacities of the developing larvae. Most studies to date concentrate on intestinal lumen digestion and little attention to the absorption process. Thus, the objectives of this study were to histochemically detect and quantify some of the enzymes responsible for absorption and intracellular digestion of nutrients in the anterior and posterior intestine of California halibut larvae. Alkaline and acid phosphatases were detected from the first days post-hatch (dph). Alkaline phosphatase maintained a high level of activity during the first 20 dph in both intestinal regions. Thereafter, a clear intestinal regionalization of the activity was observed with the highest levels occurring in the anterior intestine. Acid phosphatase activity gradually increased in both intestinal regions during development, and a regionalization of the activity was not observed until late in development, once the ocular migration began. Highest levels were observed in the anterior intestine at the end of metamorphosis concomitant with the stomach development. The results from this study show some morphological and physiological changes are occurring during larval development and a clear regionalization of the absorption process as the larvae develops. These ontological changes must be considered in the elaboration of diets according to the digestive capacity of the larvae.

  8. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat.

    PubMed

    Oltean, M; Joshi, M; Björkman, E; Oltean, S; Casselbrant, A; Herlenius, G; Olausson, M

    2012-08-01

    Rapidly progressing mucosal breakdown limits the intestinal preservation time below 10 h. Recent studies indicate that intraluminal solutions containing polyethylene glycol (PEG) alleviate preservation injury of intestines stored in UW-Viaspan. We investigated whether a low-sodium PEG solution is beneficial for intestines stored in histidine-tryptophane-ketoglutarate (HTK) preservation solution. Rat intestines used as control tissue (group 1) were perfused with HTK, groups 2 and 3 received either a customized PEG-3350 (group 2) or an electrolyte solution (group 3) intraluminally before cold storage. Tissue injury, brush-border maltase activity, zonula occludens-1 (ZO-1) and claudin-3 expression in the tight junctions (TJ) were analyzed after 8, 14 and 20 h. We measured epithelial resistance and permeability (Ussing chamber) after 8 and 14 h. Group 2 had superior morphology while maltase activity was similar in all groups. TJ proteins rapidly decreased and decolocalized in groups 1 3; these negative events were delayed in group 2, where colocalization persisted for about 14 h. Intestines in group 2 had higher epithelial resistance and lower permeability than the other groups. These results suggest that a customized PEG solution intraluminally reduces the intestinal preservation injury by improving several major epithelial characteristics without negatively affecting the brush-border enzymes or promoting edema. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Comparative study of the digestive system of three species of tinamou. I. Crypturellus tataupa, Nothoprocta cinerascens, and Nothura maculosa (Aves: tinamidae).

    PubMed

    Chikilian, M; De Speroni, N B

    1996-04-01

    The morphology and histology, as well as the cytochemistry of complex carbohydrates, of the digestive system of Crypturellus tataupa (tataupa tinamou), Nothoprocta cinerascens (brushland tinamou), and Nothura maculosa (spotted tinamou) are described. The general morphology of the digestive system of these birds follows the basic model of the avian alimentary canal, although statistical analysis shows that the lengths of the organs are significantly different among the species. From cephalic to caudal regions the alimentary tract consists of esophagus, ingluvies or crop, proventriculus or glandular stomach, ventriculus or muscular stomach, small intestine, well-developed ceca, and rectum. Histologically, each section of the tract consists of four primary tissue layers: mucosa, submucosa, muscularis, and adventitia. Variations are found in the thickness of the esophageal epithelium, which shows the highest value in C. tataupa. In the proventriculus, the depth of the compound glands is greatest in N. cinerascens. The villi of the epithelial cells in the small intestine are most extensively developed in C. tataupa. Heterogeneity of mucins is detected not only in the surface coat of the alimentary tract but in the cellular content of the glands as well. Comparisons with the morphology of the digestive system of closely related and more advanced birds are made, and the possible relationship between morphological and cytochemical variation and the diet is discussed.

  10. Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae)

    PubMed Central

    2013-01-01

    Background One of the most widely accepted ecomorphological relationships in vertebrates is the negative correlation between intestinal length and proportion of animal prey in diet. While many fish groups exhibit this general pattern, other clades demonstrate minimal, and in some cases contrasting, associations between diet and intestinal length. Moreover, this relationship and its evolutionary derivation have received little attention from a phylogenetic perspective. This study documents the phylogenetic development of intestinal length variability, and resultant correlation with dietary habits, within a molecular phylogeny of 28 species of terapontid fishes. The Terapontidae (grunters), an ancestrally euryhaline-marine group, is the most trophically diverse of Australia’s freshwater fish families, with widespread shifts away from animal-prey-dominated diets occurring since their invasion of fresh waters. Results Description of ontogenetic development of intestinal complexity of terapontid fishes, in combination with ancestral character state reconstruction, demonstrated that complex intestinal looping (convolution) has evolved independently on multiple occasions within the family. This modification of ontogenetic development drives much of the associated interspecific variability in intestinal length evident in terapontids. Phylogenetically informed comparative analyses (phylogenetic independent contrasts) showed that the interspecific differences in intestinal length resulting from these ontogenetic developmental mechanisms explained ~65% of the variability in the proportion of animal material in terapontid diets. Conclusions The ontogenetic development of intestinal complexity appears to represent an important functional innovation underlying the extensive trophic differentiation seen in Australia’s freshwater terapontids, specifically facilitating the pronounced shifts away from carnivorous (including invertebrates and vertebrates) diets evident across the family. The capacity to modify intestinal morphology and physiology may also be an important facilitator of trophic diversification during other phyletic radiations. PMID:23441994

  11. Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release.

    PubMed

    García-Guzmán, Perla; Medina-Torres, Luis; Calderas, Fausto; Bernad-Bernad, María Josefa; Gracia-Mora, Jesús; Mena, Baltasar; Manero, Octavio

    2018-07-01

    In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    PubMed

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  13. Foodborne Intestinal Flukes in Southeast Asia

    PubMed Central

    Shin, Eun-Hee; Lee, Soon-Hyung; Rim, Han-Jong

    2009-01-01

    In Southeast Asia, a total of 59 species of foodborne intestinal flukes have been known to occur in humans. The largest group is the family Heterophyidae, which constitutes 22 species belonging to 9 genera (Centrocestus, Haplorchis, Heterophyes, Heterophyopsis, Metagonimus, Procerovum, Pygidiopsis, Stellantchasmus, and Stictodora). The next is the family Echinostomatidae, which includes 20 species in 8 genera (Artyfechinostomum, Acanthoparyphium, Echinochasmus, Echinoparyphium, Echinostoma, Episthmium, Euparyphium, and Hypoderaeum). The family Plagiorchiidae follows the next containing 5 species in 1 genus (Plagiorchis). The family Lecithodendriidae includes 3 species in 2 genera (Phaneropsolus and Prosthodendrium). In 9 other families, 1 species in 1 genus each is involved; Cathaemaciidae (Cathaemacia), Fasciolidae (Fasciolopsis), Gastrodiscidae (Gastrodiscoides), Gymnophallidae (Gymnophalloides), Microphallidae (Spelotrema), Neodiplostomidae (Neodiplostomum), Paramphistomatidae (Fischoederius), Psilostomidae (Psilorchis), and Strigeidae (Cotylurus). Various types of foods are sources of human infections. They include freshwater fish, brackish water fish, fresh water snails, brackish water snails (including the oyster), amphibians, terrestrial snakes, aquatic insects, and aquatic plants. The reservoir hosts include various species of mammals or birds.The host-parasite relationships have been studied in Metagonimus yokogawai, Echinostoma hortense, Fasciolopsis buski, Neodiplostomum seoulense, and Gymnophalloides seoi; however, the pathogenicity of each parasite species and host mucosal defense mechanisms are yet poorly understood. Clinical aspects of each parasite infection need more clarification. Differential diagnosis by fecal examination is difficult because of morphological similarity of eggs. Praziquantel is effective for most intestinal fluke infections. Continued efforts to understand epidemiological significance of intestinal fluke infections, with detection of further human cases, are required. PMID:19885337

  14. Influence of Development and Dietary Phospholipid Content and Composition on Intestinal Transcriptome of Atlantic Salmon (Salmo salar)

    PubMed Central

    De Santis, Christian; Taylor, John F.; Martinez-Rubio, Laura; Boltana, Sebastian; Tocher, Douglas R.

    2015-01-01

    The inclusion of intact phospholipids in the diet is essential during larval development and can improve culture performance of many fish species. The effects of supplementation of dietary phospholipid from marine (krill) or plant (soy lecithin) sources were investigated in Atlantic salmon, Salmo salar. First feeding fry were fed diets containing either krill oil or soybean lecithin supplying phospholipid at 2.6%, 3.2%, 3.6% and 4.2% of diet. Fish were sampled at ~ 2.5 g (~1,990°day post fertilization, dpf) and ~10 g (2,850°dpf). By comparison of the intestinal transcriptome in specifically chosen contrasts, it was determined that by 2,850°dpf fish possessed a profile that resembled that of mature and differentiated intestinal cell types with a number of changes specific to glycerophospholipid metabolism. It was previously shown that intact phospholipids and particularly phosphatidylcholine are essential during larval development and that this requirement is associated with the inability of enterocytes in young fry to endogenously synthesize sufficient phospholipid for the efficient export of dietary lipid. In the immature phase (~1,990°dpf), the dietary phospholipid content as well as its class composition impacted on several biochemical and morphological parameters including growth, but these differences were not associated with differences in intestinal transcriptomes. The results of this study have made an important contribution to our understanding of the mechanisms associated with lipid transport and phospholipid biosynthesis in early life stages of fish. PMID:26488165

  15. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C.

    PubMed

    Cario, Elke; Gerken, Guido; Podolsky, Daniel K

    2004-07-01

    Protein kinase C (PKC) has been implicated in regulation of intestinal epithelial integrity in response to lumenal bacteria. Intestinal epithelial cells (IECs) constitutively express Toll-like receptor (TLR)2, which contains multiple potential PKC binding sites. The aim of this study was to determine whether TLR2 may activate PKC in response to specific ligands, thus potentially modulating barrier function in IECs. TLR2 agonist (synthetic bacterial lipopeptide Pam(3)CysSK4, peptidoglycan)-induced activation of PKC-related signaling cascades were assessed by immunoprecipitation, Western blotting, immunofluorescence, and kinase assays-combined with functional transfection studies in the human model IEC lines HT-29 and Caco-2. Transepithelial electrical resistance characterized intestinal epithelial barrier function. Stimulation with TLR2 ligands led to activation (phosphorylation, enzymatic activity, translocation) of specific PKC isoforms (PKCalpha and PKCdelta). Phosphorylation of PKC by TLR2 ligands was blocked specifically by transfection with a TLR2 deletion mutant. Ligand-induced activation of TLR2 greatly enhanced transepithelial resistance in IECs, which was prevented by pretreatment with PKC-selective antagonists. This effect correlated with apical tightening and sealing of tight junction (TJ)-associated ZO-1, which was mediated via PKC in response to TLR2 ligands, whereas morphologic changes of occludin, claudin-1, or actin cytoskeleton were not evident. Downstream the endogenous PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS), but not transcriptional factor activator protein-1 (AP-1), was activated significantly on stimulation. The present study provides evidence that PKC is an essential component of the TLR2 signaling pathway with the physiologic consequence of directly enhancing intestinal epithelial integrity through translocation of ZO-1 on activation.

  16. Effects of glutamine supplementation on gut barrier, glutathione content and acute phase response in malnourished rats during inflammatory shock.

    PubMed

    Belmonte, Liliana; Coëffier, Moïse; Le Pessot, Florence; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre

    2007-05-28

    To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 +/- 1.05 vs 1.72 +/- 0.46 mumol/g tissue, P<0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal alpha1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model.

  17. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour.

    PubMed

    O'Malley, Dervla; Julio-Pieper, Marcela; Gibney, Sinead M; Dinan, Timothy G; Cryan, John F

    2010-03-01

    Stress and anxiety are important causal and exacerbating factors in functional gastro-intestinal (GI) disorders such as irritable bowel syndrome. Stress affects GI motility, faecal transit and visceral pain sensitivity. Additionally, permeability and function of the gut epithelium, which acts as a barrier between the external environment and the body's internal milieu is altered by stress. However, the effects of an enhanced stress response on colonic morphology require further investigation. We have used two animal models of stress and anxiety, the maternally separated (MS) and Wistar Kyoto (WKY) rats to examine colonic morphology. These rats exhibit increased anxiety behaviours, visceral hypersensitivity and increased stress-induced defecation in the open field arena. At a morphological level, increased mucus secretion and an associated elevation in the number of mucosal goblet cells was observed in the high anxiety rats. Additionally, the mucosal layer was flattened in MS and WKY rats, a finding indicative of mild mucosal damage. Furthermore, the muscular layer of the distal colon in these animals was thickened, an observation that may have implications for faecal transit and visceral pain perception. This study provides evidence of altered colonic function and morphology in two animal models with a heightened response to stress.

  18. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    PubMed Central

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  19. Immune parameters in the intestine of wild and reared unvaccinated and vaccinated Atlantic salmon (Salmo salar L.).

    PubMed

    Løkka, Guro; Austbø, Lars; Falk, Knut; Bromage, Erin; Fjelldal, Per Gunnar; Hansen, Tom; Hordvik, Ivar; Koppang, Erling Olaf

    2014-11-01

    Forming a barrier to the outside world, the gut mucosa faces the challenge of absorbing nutrients and fluids while initiating immune reactions towards potential pathogens. As a continuation to our previous publication focusing on the regional intestinal morphology in wild caught post smolt and spawning Atlantic salmon, we here investigate selected immune parameters and compare wild, reared unvaccinated and vaccinated post smolts. We observed highest transcript levels for most immune-related genes in vaccinated post smolts followed by reared unvaccinated and finally wild post smolts, indicating that farming conditions like commercial feed and vaccination might contribute to a more alerted immune system in the gut. In all groups, higher levels of immune transcripts were observed in the second segment of mid-intestine and in the posterior segment. In the life stages and conditions investigated here, we found no indication of a previously suggested population of intestinal T cells expressing MHC class II nor RAG1 expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of dietary supplementation of organic acids and phytase on performance and intestinal histomorphology of broilers.

    PubMed

    Mohammadagheri, Nasibeh; Najafi, Ramin; Najafi, Gholamreza

    2016-01-01

    The present experiment was conducted to evaluate the effects of organic acids and phytase enzyme supplementation on performance and intestinal histomorphology of broilers. The experiment was done in a factorial arrangement 2 × 2 × 2 based on completely randomized design with eight treatments, five replicates with 12 chicks in each until 42 days of age. Diets included natural vinegar (0 and 2%), citric acid (CA; 0.00 and 1.00%) and phytase enzyme (PHY; 0.00 and 500 FTU phytase per kg of feed). One bird from each treatment replicate was randomly selected and slaughtered to evaluate the small intestinal morphology on 42 days of age. Analysis of results showed that vinegar increased feed consumption and body weight gain in total experimental period ( p ˂ 0.05), while CA significantly decreased feed consumption on 0-14 days of age ( p ˂ 0.05). No effect was observed on performance in interaction of organic acids together and with PHY group ( p > 0.05). In duodenum CA increased the villus height and width ( p ˂ 0.05) and PHY enzyme increased villus width ( p ˂ 0.05) and decreased crypt depth ( p ˂ 0.05). On the other hand, CA along with PHY significantly decreased crypt depth ( p ˂ 0.05). In jejunum PHY alone and in combination with vinegar increased the goblet cells numbers ( p ˂ 0.05), whereas vinegar significantly increased the goblet cells numbers in ileum ( p ˂ 0.05). The muscular thickness in duodenum, jejunum, and ileum was not affected among different treatment groups. The results showed that supplementation of organic acids and phytase together in this experiment, with no negative effects on each other, improved their effects on some parameters.

  1. Bacterial translocation and intestinal injury in experimental necrotizing enterocolitis model.

    PubMed

    Ciftci, I; Ozdemir, M; Aktan, M; Aslan, K

    2012-01-01

    To study the occurrence of bacterial translocation and to assess the impact of breastfeeding on bacterial translocation in the animal model of necrotizing enterocolitis. A total of 20 neonate Sprague-Dawley rats were enrolled in the study. Rats were randomly allocated into either control or study group just after birth. Ten newborn rats in the control group were left with their mother to be breast-fed. In contrary, necrotizing enterocolitis group consisted of neonates that were separated from their mothers, housed in an incubator and were gavaged with a special rodent formula three times daily. Survival rates, weight changes, and morphologic scoring obtained after microscopic evaluation were determined as microbiologic evaluation criteria. All the rats in the control group survived, while 1 (10 %) rat died in the necrotizing enterocolitis group. Mortality rates of the two groups were similar. All the formula-fed animals in the necrotizing enterocolitis group had significant weight loss compared to the breast milk-fed rats in the control group (p<0.05). A total of 7 (70 %) and 2 (20 %) E. coli growths were identified in the bowel lumen, liver, and spleen of necrotizing enterocolitis and control groups, respectively. This difference was statistically significant. In peritoneal smear cultures, a total of 3 (30 %) growths were detected in the necrotizing enterocolitis group and 1 (10 %) growth in the control group. As the result of a disturbance in the intestinal flora and impairment of the intestinal barrier in necrotizing enterocolitis, microrganisms in the bowel pass through the intestinal barrier and reach the liver and the spleen via the hematogenous route. This condition is closely related to the impairment of physiological and functional features of the intestinal barrier and is independent from the degree of intestinal injury. Bacterial translocation should be remembered in cases suspected of necrotizing enterocolitis, and a rapid and effective treatment algorithm should be applied in such circumstances (Tab. 3, Fig. 3, Ref. 21). Full Text in PDF www.elis.sk.

  2. Alginate/polymethacrylate copolymer microparticles for the intestinal delivery of enzymes.

    PubMed

    Scocca, Sarah; Faustini, Massimo; Villani, Simona; Munari, Eleonora; Conte, Ubaldo; Russo, Vincenzo; Riccardi, Alessia; Vigo, Daniele; Torre, Maria Luisa

    2007-04-01

    Proteins administered orally must pass through the gastric environment in order to reach their site of absorption in the intestine. How to protect these exogenously administered proteins from the damaging effects of gastric acid and pepsin proteolytic activity, which often induce irreversible structural and functional alterations to the molecules, is an intriguing challenge. Another problem is the physical and chemical instability of proteins during some technological processes, which often involve the use of organic solvents or high temperatures. In this study we investigated the use of alginate microparticles containing one of two enzymes, an enteric polymer and a lyoprotectant for the intestinal delivery of proteins. The two enzymes tested in this protein delivery system were lactate dehydrogenase and alpha-amylase: the former was chosen because of its sensitivity to denaturation, the latter for its relevance in nutrition and medicine. A sodium alginate aqueous solution containing the enteric polymer, a lyoprotectant and the enzyme was either extruded or sprayed into a calcium chloride solution, with the resultant formation of beads and microspheres which were freeze-dried. About 90% of the enzyme activity was maintained during the process of loading the proteins into the microparticles and the subsequent freeze-drying process. The stability of the encapsulated enzyme in an acid medium and the enzymatic activity in an intestinal environment were then investigated by a dissolution test. This consisted of exposing the microparticles to simulated gastric fluid (pH 1.2) for 2 hours and to simulated intestinal fluid (pH 7.5+/-0.1) for 1 hour. The morphology of the microparticles did not change in the acid environment, whereas they completely dissolved within 3 min in the simulated intestinal fluid. Residual enzymatic activity after the test remained satisfactory for both enzymes. In conclusion, these microparticle systems offer promise for applications in human and veterinary medicine as well as in human and animal nutrition.

  3. Krüppel-like factor 5 is essential for maintenance of barrier function in mouse colon.

    PubMed

    Liu, Yang; Chidgey, Martyn; Yang, Vincent W; Bialkowska, Agnieszka B

    2017-11-01

    Krüppel-like factor 5 (KLF5) is a member of the zinc finger family of transcription factors that regulates homeostasis of the intestinal epithelium. Previous studies suggested an indispensable role of KLF5 in maintaining intestinal barrier function. In the current study, we investigated the mechanisms by which KLF5 regulates colonic barrier function in vivo and in vitro. We used an inducible and a constitutive intestine-specific Klf5 knockout mouse models ( Villin-CreER T2 ;Klf5 fl/fl designated as Klf5 ΔIND and Villin-Cre;Klf5 fl/fl as Klf5 ΔIS ) and studied an inducible KLF5 knockdown in Caco-2 BBe cells using a lentiviral Tet-on system (Caco-2 BBe KLF5ΔIND ). Specific knockout of Klf5 in colonic tissues, either inducible or constitutive, resulted in increased intestinal permeability. The phenotype was accompanied by a significant reduction in Dsg2 , which encodes desmoglein-2, a desmosomal cadherin, at both mRNA and protein levels. Transmission electron microscopy showed alterations of desmosomal morphology in both KLF5 knockdown Caco-2 BBe cells and Klf5 knockout mouse colonic tissues. Inducible knockdown of KLF5 in Caco-2BBe cells grown on Transwell plates led to impaired barrier function as evidenced by decreased transepithelial electrical resistance and increased paracellular permeability to fluorescein isothiocyanate-4 kDa dextran. Furthermore, DSG2 was significantly decreased in KLF5 knockdown cells, and DSG2 overexpression partially rescued the impaired barrier function caused by KLF5 knockdown. Electron microscopy studies demonstrated altered desmosomal morphology after KLF5 knockdown. In combination with chromatin immunoprecipitation analysis and promoter study, our data show that KLF5 regulates intestinal barrier function by mediating the transcription of DSG2 , a gene encoding a major component of desmosome structures. NEW & NOTEWORTHY The study is original research on the direct function of a Krüppel-like factor on intestinal barrier function, which is commonly exerted by cell junctions, including tight junctions, adherens junctions, and desmosomes. Numerous previous studies were focused on tight junctions and adherens junctions. However, this study provided a new perspective on how the intestinal barrier function is regulated by KLF5 through DSG2, a component of desmosome complexes. Copyright © 2017 the American Physiological Society.

  4. Lactose intolerance and intestinal villi morphology in Thai people.

    PubMed

    Thong-Ngam, D; Suwangool, P; Prempracha, J; Tangkijvanich, P; Vivatvekin, B; Sriratanabun, A

    2001-08-01

    To study the relationship of lactose intolerance and intestinal villi morphology in Thai people. Subjects for this study were patients with functional dyspepsia who had no history of milk allergy and underwent gastroduodenoscopy. Two mucosal biopsy specimens were taken from beyond the distal end of the second part of the duodenum. The specimens were carefully orientated and were graded according to the following scheme: group I: finger shaped villi; group II: mixed finger and leaf shaped villi; group III: clubbing or blunting shaped villi. All subjects were tested for lactose malabsorption by breath hydrogen analysis after consuming 50 gram lactose. Breath hydrogen concentration was analyzed in samples collected intermittently by end-expiratory technique. A rise in breath hydrogen concentration of 20 PPM over baseline was considered evidence of lactose malabsorption. The twenty-five subjects were twenty females (80.0%) and five males (20.0%) who ranged in age from 18 to 53 years (mean 31 +/- 8.29). Sixteen subjects belonged to the finger shaped villi group (64.0%), five to the mixed finger and leaf shaped villi, group (20.0%) and four to the clubbing or blunting shaped villi group (16.0%). Results of breath hydrogen excretion test identified the prevalence of lactose intolerance in 68 per cent of the subjects: 15/16 (93.75%) of group I; 1/5 (20.0%) of group II and 1/4 (25%) of group III respectively (P<0.001). The symptom of diarrhea after lactose loading was correlated well in patients who had positive breath hydrogen analysis. As shown in this study, the lactose intolerance is not related to intestinal villi morphology. It is implied that primary lactase deficiency is more common in Thai people than secondary lactase deficiency.

  5. Intestinal Alterations, Basal Hematology, and Biochemical Parameters in Adolescent Rats Fed Different Sources of Dietary Copper.

    PubMed

    Tomaszewska, Ewa; Dobrowolski, Piotr; Kwiecień, Małgorzata

    2016-05-01

    Copper (Cu) is required for basically all biochemical and physiological processes in the body. The aim was to evaluate the effects of different sources of dietary copper on jejunal epithelium histomorphometry in adolescent rats. Male rats at the age of 5 weeks were used in the 12-week experiment. The control group was fed with standard diet providing the required Cu level (5 mg/kg body weight (bw) per day) in an inorganic form (sulfate) covered 100 % of daily demand, and the other three groups were supplemented with Cu-glycine complex covered 50, 75, and 100 % daily demand. Basal hematological and plasma biochemical analyses as well as histomorphometric examinations of the jejunal epithelium and liver were performed. Cu given in the organic form in 100 % of daily demand depressed the muscular and submucosa layer and the crypt depth (P < 0.05) without an influence of the innervation of the jejunum. In turn, organic Cu given in 75 % of daily demand did not influence the intestinal morphology in adult rats. Dietary organic Cu given to rats covering the daily demand in 50 or 75 % appears to be less harmful with regard to the intestinal epithelium than when administered in 100 % of daily demand.

  6. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

    PubMed Central

    Khodaverdi, Elham; Honarmandi, Reza; Alibolandi, Mona; Baygi, Roxana Rafatpanah; Hadizadeh, Farzin; Zohuri, Gholamhossein

    2014-01-01

    Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM) was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF) and simulated intestine fluid (SIF), respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs. PMID:24967062

  7. Protective effects of silymarin on epirubicin-induced mucosal barrier injury of the gastrointestinal tract.

    PubMed

    Sasu, Alciona; Herman, Hildegard; Mariasiu, Teodora; Rosu, Marcel; Balta, Cornel; Anghel, Nicoleta; Miutescu, Eftimie; Cotoraci, Coralia; Hermenean, Anca

    2015-10-01

    Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the protective effects of silymarin on epirubicin-induced mucosal barrier injury in CD-1 mice. Immunohistochemical activity of both pro-apoptotic Bax and anti-apoptotic Bcl-2 markers, together with p53, cyt-P450 expression and DNA damage analysis on stomach, small intestine and colon were evaluated. Our results indicated stronger expression for cyt P450 in all analyzed gastrointestinal tissues of Epi group, which demonstrate intense drug detoxification. Bax immunopositivity was intense in the absorptive enterocytes and lamina connective cells of the small intestine, surface epithelial cells of the stomach and also in the colonic epithelium and lamina concomitant with a decreased Bcl-2 expression in all analyzed tissues. Epirubicin-induced gastrointestinal damage was verified by a goblet cell count and morphology analysis on histopathological sections stained for mucins. In all analyzed tissues, Bax immunopositivity has been withdrawn by highest dose of silymarin concomitant with reversal of Bcl-2 intensity at a level comparable with control. p53 expression was found in all analyzed tissues and decreased by high dose of silymarin. Also, DNA internucleosomal fragmentation was observed in the Epi groups for all analyzed tissues was almost suppressed at 100 mg/kg Sy co-treatment. Histological aspect and goblet cell count were restored at a highest dose of Sy for both small and large intestine. In conclusion, our findings suggest that silymarin may prevent cellular damage of epirubicin-induced toxicity and was effective in reducing the severity indicators of gastrointestinal mucositis in mice.

  8. Distinguishing Intestinal Lymphoma From Inflammatory Bowel Disease in Canine Duodenal Endoscopic Biopsy Samples.

    PubMed

    Carrasco, V; Rodríguez-Bertos, A; Rodríguez-Franco, F; Wise, A G; Maes, R; Mullaney, T; Kiupel, M

    2015-07-01

    Inflammatory bowel disease (IBD) and intestinal lymphoma are intestinal disorders in dogs, both causing similar chronic digestive signs, although with a different prognosis and different treatment requirements. Differentiation between these 2 conditions is based on histopathologic evaluation of intestinal biopsies. However, an accurate diagnosis is often difficult based on histology alone, especially when only endoscopic biopsies are available to differentiate IBD from enteropathy-associated T-cell lymphoma (EATL) type 2, a small cell lymphoma. The purpose of this study was to evaluate the utility of histopathology; immunohistochemistry (IHC) for CD3, CD20, and Ki-67; and polymerase chain reaction (PCR) for antigen receptor rearrangement (T-cell clonality) in the differential diagnosis of severe IBD vs intestinal lymphoma. Endoscopic biopsies from 32 dogs with severe IBD or intestinal lymphoma were evaluated. The original diagnosis was based on microscopic examination of hematoxylin and eosin (HE)-stained sections alone followed by a second evaluation using morphology in association with IHC for CD3 and CD20 and a third evaluation using PCR for clonality. Our results show that, in contrast to feline intestinal lymphomas, 6 of 8 canine small intestinal lymphomas were EATL type 1 (large cell) lymphomas. EATL type 2 was uncommon. Regardless, in dogs, intraepithelial lymphocytes were not an important diagnostic feature to differentiate IBD from EATL as confirmed by PCR. EATL type 1 had a significantly higher Ki-67 index than did EATL type 2 or IBD cases. Based on the results of this study, a stepwise diagnostic approach using histology as the first step, followed by immunophenotyping and determining the Ki67 index and finally PCR for clonality, improves the accuracy of distinguishing intestinal lymphoma from IBD in dogs. © The Author(s) 2014.

  9. Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance, intestinal morphology and gut microflora in broilers.

    PubMed

    Liu, Yanli; Yang, Xin; Xin, Hongliang; Chen, Si; Yang, Chengbo; Duan, Yulan; Yang, Xiaojun

    2017-09-01

    This experiment was conducted to investigate the effects of protected essential oils and organic acids mixture on poultry feeding. A total of 450 1-day-old Cobb 500 chicks were randomly allotted into three treatments with six replicates. Birds were offered a basal diet (C), basal diet with 0.15 g/kg enramycin premix (A) and basal diet with 0.30 g/kg protected essential oils and organic acids mixture product (P). The results showed that protected essential oils and organic acids mixture supplementation reduced average daily feed intake and ratio of feed to gain (F/G) at 22-42 days of age, and F/G during 1-42 days of age also declined (P < 0.05). Product supplementation improved spleen index, villus height and crypt depth of the jejunum at 42 days when compared with the control (P < 0.05). In addition, secretory immunoglobulin A level of ileal mucosa and trypsin and chymotrypsin activities of intestinal tract were higher in the P treatment. Bacterial sequence analysis of the intestinal tract revealed that protected essential oils and organic acids mixture supplementation changed gut microflora mainly in Lactobacillus. These data suggested that dietary mixture of organic acids and essential oils addition could be used in the poultry industry as an antibiotic growth promoter alternative. © 2017 Japanese Society of Animal Science.

  10. Effect of High Dietary Tryptophan on Intestinal Morphology and Tight Junction Protein of Weaned Pig

    PubMed Central

    Tossou, Myrlene Carine B.; Bai, Miaomiao; Chen, Shuai; Cai, Yinghua; Duraipandiyan, Veeramuthu; Liu, Hongbin; Adebowale, Tolulope O.; Al-Dhabi, Naif Abdullah; Long, Lina; Tarique, Hussain; Oso, Abimbola O.; Liu, Gang; Yin, Yulong

    2016-01-01

    Tryptophan (Trp) plays an essential role in pig behavior and growth performances. However, little is known about Trp's effects on tight junction barrier and intestinal health in weaned pigs. In the present study, twenty-four (24) weaned pigs were randomly assigned to one of the three treatments with 8 piglets/treatments. The piglets were fed different amounts of L-tryptophan (L-Trp) as follows: 0.0%, 0.15, and 0.75%, respectively, named zero Trp (ZTS), low Trp (LTS), and high Trp (HTS), respectively. No significant differences were observed in average daily gain (ADG), average daily feed intake (ADFI), and gain: feed (G/F) ratio between the groups. After 21 days of the feeding trial, results showed that dietary Trp significantly increased (P < 0.05) crypt depth and significantly decreased (P < 0.05) villus height to crypt depth ratio (VH/CD) in the jejunum of pig fed HTS. In addition, pig fed HTS had higher (P < 0.05) serum diamine oxidase (DAO) and D-lactate. Furthermore, pig fed HTS significantly decreased mRNA expression of tight junction proteins occludin and ZO-1 but not claudin-1 in the jejunum. The number of intraepithelial lymphocytes and goblet cells were not significantly different (P > 0.05) between the groups. Collectively, these data suggest that dietary Trp supplementation at a certain level (0.75%) may negatively affect the small intestinal structure in weaned pig. PMID:27366740

  11. Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs.

    PubMed

    Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A

    2016-07-01

    Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs.

  12. The Impact of the Fusarium Mycotoxin Deoxynivalenol on the Health and Performance of Broiler Chickens

    PubMed Central

    Awad, Wageha A.; Hess, Michael; Twarużek, Magdalena; Grajewski, Jan; Kosicki, Robert; Böhm, Josef; Zentek, Jürgen

    2011-01-01

    The aim of the present experiment was to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on morphometric indices of jejunum and to follow the passage of deoxynivalenol (DON) through subsequent segments of the digestive tract of broilers. A total of 45 1-d-old broiler chickens (Ross 308 males) were randomly allotted to three dietary treatments (15 birds/treatment): (1) control diet; (2) diet contaminated with 1 mg DON/kg feed; (3) diet contaminated with 5 mg DON/kg feed for five weeks. None of the zootechnical traits (body weight, body weight gain, feed intake, and feed conversion) responded to increased DON levels in the diet. However, DON at both dietary levels (1 mg and 5 mg DON/kg feed) significantly altered the small intestinal morphology. In the jejunum, the villi were significantly (P < 0.01) shorter in both DON treated groups compared with the controls. Furthermore, the dietary inclusion of DON decreased (P < 0.05) the villus surface area in both DON treated groups. The absolute or relative organ weights (liver, heart, proventriculus, gizzard, small intestine, spleen, pancreas, colon, cecum, bursa of Fabricius and thymus) were not altered (P > 0.05) in broilers fed the diet containing DON compared with controls. DON and de-epoxy-DON (DOM-1) were analyzed in serum, bile, liver, feces and digesta from consecutive segments of the digestive tract (gizzard, cecum, and rectum). Concentrations of DON and its metabolite DOM-1 in serum, bile, and liver were lower than the detection limits of the applied liquid chromatography coupled with mass spectrometry (LC-MS/MS) method. Only about 10 to 12% and 6% of the ingested DON was recovered in gizzard and feces, irrespective of the dietary DON-concentration. However, the DON recovery in the cecum as percentage of DON-intake varied between 18 to 22% and was not influenced by dietary DON-concentration. Interestingly, in the present trial, DOM-1 did not appear in the large intestine and in feces. The results indicate that deepoxydation in the present study hardly occurred in the distal segments of the digestive tract, assuming that the complete de-epoxydation occurs in the proximal small intestine where the majority of the parent toxin is absorbed. In conclusion, diets with DON contamination below levels that induce a negative impact on performance could alter small intestinal morphology in broilers. Additionally, the results confirm that the majority of the ingested DON quickly disappears through the gastrointestinal tract. PMID:22174646

  13. Anti-mouse CD52 monoclonal antibody ameliorates intestinal epithelial barrier function in interleukin-10 knockout mice with spontaneous chronic colitis.

    PubMed

    Wang, Honggang; Dong, Jianning; Shi, Peiliang; Liu, Jianhui; Zuo, Lugen; Li, Yi; Gong, Jianfeng; Gu, Lili; Zhao, Jie; Zhang, Liang; Zhang, Wei; Zhu, Weiming; Li, Ning; Li, Jieshou

    2015-02-01

    Intestinal inflammation causes tight junction changes and death of epithelial cells, and plays an important role in the development of Crohn's disease (CD). CD52 monoclonal antibody (CD52 mAb) directly targets the cell surface CD52 and is effective in depleting mature lymphocytes by cytolytic effects in vivo, leading to long-lasting changes in adaptive immunity. The aim of this study was to investigate the therapeutic effect of CD52 mAb on epithelial barrier function in animal models of IBD. Interleukin-10 knockout mice (IL-10(-/-) ) of 16 weeks with established colitis were treated with CD52 mAb once a week for 2 weeks. Severity of colitis, CD4(+) lymphocytes and cytokines in the lamina propria, epithelial expression of tight junction proteins, morphology of tight junctions, tumour necrosis factor-α (TNF-α)/TNF receptor 2 (TNFR2) mRNA expression, myosin light chain kinase (MLCK) expression and activity, as well as epithelial apoptosis in proximal colon were measured at the end of the experiment. CD52 mAb treatment effectively attenuated colitis associated with decreased lamina propria CD4(+) lymphocytes and interferon-γ/IL-17 responses in colonic mucosa in IL-10(-/-) mice. After CD52 mAb treatment, attenuation of colonic permeability, increased epithelial expression and correct localization of tight junction proteins (occludin and zona occludens protein-1), as well as ameliorated tight junction morphology were observed in IL-10(-/-) mice. CD52 mAb treatment also effectively suppressed the epithelial apoptosis, mucosa TNF-α mRNA expression, epithelial expression of long MLCK, TNFR2 and phosphorylation of MLC. Our results indicated that anti-CD52 therapy may inhibit TNF-α/TNFR2-mediated epithelial apoptosis and MLCK-dependent tight junction permeability by depleting activated T cells in the gut mucosa. © 2014 John Wiley & Sons Ltd.

  14. Side-Effects of Irinotecan (CPT-11), the Clinically Used Drug for Colon Cancer Therapy, Are Eliminated in Experimental Animals Treated with Latex Proteins from Calotropis procera (Apocynaceae).

    PubMed

    de Alencar, Nylane Maria Nunes; da Silveira Bitencourt, Flávio; de Figueiredo, Ingrid Samantha Tavares; Luz, Patrícia Bastos; Lima-Júnior, Roberto César P; Aragão, Karoline Sabóia; Magalhães, Pedro Jorge Caldas; de Castro Brito, Gerly Anne; Ribeiro, Ronaldo Albuquerque; de Freitas, Ana Paula Fragoso; Ramos, Marcio Viana

    2017-02-01

    Intestinal mucositis (IM) is the critical side effect of irinotecan (CPT-11), which is the front-line drug used for the treatment of colorectal cancer. This study aimed to evaluate the effectiveness of latex proteins (LP) from Calotropis procera to prevent IM and diarrhea in animals. Swiss mice were treated daily with saline or LP (1, 5, or 50 mg/kg, i.v.) 24 h prior to CTP-11 (75 mg/kg/4 days, i.p) and for additional 6 days. Animal survival, body weight variation, and diarrhea were registered. After animal sacrifice (day 7 post first injection of CPT-11), intestinal samples were collected to study morphology and inflammatory parameters. Animals given LP exhibited improved parameters (survival, body weight, and absence of diarrhea) as compared with the CPT-11 control. The severity of IM observed in animals given CPT-11 was reduced in animals treated with LP. Treatment with LP also prevented the reduction in the villus/crypt ratio promoted by CPT-11. The rise in MPO activity and pro-inflammatory cytokines, over-contractility of the smooth muscle, and diarrhea were all abrogated in LP-treated mice. Markedly reduced immunostaining intensity for COX-2, TNF-α, IL-1β, iNOS, and NF-κB was observed in the intestinal tissue of animals treated with LP. The side-effects of CPT-11 were eliminated by LP treatment in experimental animals and improved clinical parameters characteristic of IM All known biochemical pathogenesis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs.

    PubMed

    Fiesel, Anja; Gessner, Denise K; Most, Erika; Eder, Klaus

    2014-09-04

    Feeding polyphenol-rich plant products has been shown to increase the gain:feed ratio in growing pigs. The reason for this finding has not yet been elucidated. In order to find the reasons for an increase of the gain:feed ratio, this study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GSGME) or spent hops (SH), on gut morphology, apparent digestibility of nutrients, microbial composition in faeces and the expression of pro-inflammatory genes in the intestine of pigs. Pigs fed GSGME or SH showed an improved gain:feed ratio in comparison to the control group (P < 0.10 for GSGME, P < 0.05 for SH). Villus height:crypt depth ratio in duodenum and jejunum as well as apparent total tract digestibility of nutrients were unchanged in the groups receiving GSGME or SH in comparison to the control group. However, the groups receiving GSGME or SH revealed an increased faecal pH value, lower levels of volatile fatty acids and lower counts of Streptococcus spp. and Clostridium Cluster XIVa in the faecal microbiota (P < 0.05). Moreover, both treatment groups had a lower expression of various pro-inflammatory genes in duodenum, ileum and colon than the control group (P < 0.05). The present study suggests that dietary plant products rich in polyphenols are able to improve the gain:feed ratio in growing pigs. It is assumed that an alteration in the microbial composition and anti-inflammatory effects of the polyphenol-rich plant products in the intestine might contribute to this effect.

  16. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model.

    PubMed

    Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine; Chelikani, Prasanth K; Zheng, Huiyuan; Berthoud, Hans-Rudolph; Holst, Jens J; Sigalet, David L

    2010-05-01

    The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions, and systemic enteric hormones on intestinal adaptation in short bowel syndrome. Male rats (350-400 g; n = 8/group) underwent sham or GRYB with pair feeding and were observed for 14 days. Weight and serum hormonal levels (glucagon-like peptide-2 [GLP-2], PYY) were quantified. Adaptation was assessed by intestinal morphology and crypt cell kinetics in each intestinal limb of the bypass and the equivalent points in the sham intestine. Mucosal growth factors and expression of transporter proteins were measured in each limb of the model. The GRYB animals lost weight compared to controls and exhibited significant adaptive changes with increased bowel width, villus height, crypt depth, and proliferation indices in the alimentary and common intestinal limbs. Although the biliary limb did not adapt at the mucosa, it did show an increased bowel width and crypt cell proliferation rate. The bypass animals had elevated levels of systemic PYY and GLP-2. At the mucosal level, insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) increased in all limbs of the bypass animals, whereas keratinocyte growth factor (KGF) and epidermal growth factor (EGF) had variable responses. The expression of the passive transporter of glucose, GLUT-2, expression was increased, whereas GLUT-5 was unchanged in all limbs of the bypass groups. Expression of the active mucosal transporter of glucose, SGLT-1 was decreased in the alimentary limb. Adaptation occurred maximally in intestinal segments stimulated by nutrients. Partial adaptation in the biliary limb may reflect the effects of systemic hormones. Mucosal content of IGF-1, bFGF, and EGF appear to be stimulated by systemic hormones, potentially GLP-2, whereas KGF may be locally regulated. Further studies to examine the relationships between the factors controlling nutrient-induced adaptation are suggested. Direct contact with nutrients appears to be the most potent factor in inducing mucosal adaptation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Avian Follicular and Interdigitating Dendritic Cells: Isolation and Morphologic, Phenotypic, and Functional Analyses

    USDA-ARS?s Scientific Manuscript database

    An antiserum against Eimeria tenella sporozoites was used to localize and isolate Ag-binding cells in intestinal cecal tonsils of parasite-infected chickens. Based on their tissue localization, ultrastructural features, and expression of surface markers, two subpopulations of cells were isolated, C...

  18. Intestinal disease of scattered mirror carp Cyprinus carpio caused by Thelohanellus kitauei and notes on the morphology and phylogeny of the myxosporean from Sichuan Province, southwest China

    NASA Astrophysics Data System (ADS)

    Ye, Lingtong; Lu, Mingmiao; Quan, Keyan; Li, Wenxiang; Zou, Hong; Wu, Shangong; Wang, Jiangyong; Wang, Guitang

    2017-05-01

    The mass mortality of pond-reared scattered mirror carp, Cyprinus carpio, caused by Thelohanellus kitauei, occurred at fish farms in Sichuan Province, southwest China. Morphological and molecular analyses were supplemented with histological evaluation of infected tissues to better understand the route of infection and the pathological effects of T. kitauei on the fish host. The intestine of the diseased host was full of large cysts of the myxosporean. The cysts range from 2 cm to 3.6 cm in diameter. Histopathology indicated that T. kitaue i first invaded the submucosa of the host intestine and then moved into the mucosa layers with the development of their spores, finally entering into the enteric cavity of the hosts after the disruption of mucosa layers. The pyriform spores of T. kitauei were surrounded by the transparent spore sheath, measuring 25.98 μm±0.95 μm in body length, 8.72 μm±0.51 μm in body width, and 7.86 μm±0.26 μm in body thickness. The single polar capsule was pyriform, measuring 14.73 μm±0.92 μm in length and 6.82 μm±0.45 μm in width, with eight to 10 turns of filament coils winding inside. Phylogenetic analysis based on the 18S small-subunit ribosomal DNA sequences indicated that minimal genetic differences were present between T. kitauei samples from South Korea and from China. Close affinity was found between the genus Thelohanellus and Myxobolus. Additionally, two polar capsule nuclei were found at the anterior end of the single polar capsule in spores of T. kitauei stained with hematoxylin and eosin, which suggested the separation of the genus Thelohanellus from Myxobolus.

  19. Morphoelastic control of gastro-intestinal organogenesis: Theoretical predictions and numerical insights

    NASA Astrophysics Data System (ADS)

    Balbi, V.; Kuhl, E.; Ciarletta, P.

    2015-05-01

    With nine meters in length, the gastrointestinal tract is not only our longest, but also our structurally most diverse organ. During embryonic development, it evolves as a bilayered tube with an inner endodermal lining and an outer mesodermal layer. Its inner surface displays a wide variety of morphological patterns, which are closely correlated to digestive function. However, the evolution of these intestinal patterns remains poorly understood. Here we show that geometric and mechanical factors can explain intestinal pattern formation. Using the nonlinear field theories of mechanics, we model surface morphogenesis as the instability problem of constrained differential growth. To allow for internal and external expansion, we model the gastrointestinal tract with homogeneous Neumann boundary conditions. To establish estimates for the folding pattern at the onset of folding, we perform a linear stability analysis supplemented by the perturbation theory. To predict pattern evolution in the post-buckling regime, we perform a series of nonlinear finite element simulations. Our model explains why longitudinal folds emerge in the esophagus with a thick and stiff outer layer, whereas circumferential folds emerge in the jejunum with a thinner and softer outer layer. In intermediate regions like the feline esophagus, longitudinal and circumferential folds emerge simultaneously. Our model could serve as a valuable tool to explain and predict alterations in esophageal morphology as a result of developmental disorders or certain digestive pathologies including food allergies.

  20. Morphological and molecular characterization of Pratylenchoides persicus n. sp. (Nematoda: Merliniidae) and additional data on two other species of the genus from Iran.

    PubMed

    Azizi, Kourosh; Eskandari, Ali; Karegar, Akbar; Ghaderi, Reza; Elsen, Sven VAN DEN; Holterman, Martijn; Helder, Johannes

    2016-12-09

    Some nematologists recently placed the genus Pratylenchoides, ("Lesion Nematode-like") in the family Merliniidae. To investigate Pratylenchoides species diversity and their relationships with other Merliniidae genera, specimens were collected from various habitats in the northern and northwestern provinces of Iran. The morphological and molecular study yielded three species of the genus Pratylenchoides, including P. persicus n. sp. This new species is characterized by having lip region rounded or slightly flattened anteriorly with four or five fine but distinct annuli, pharyngeal glands off-set or slightly overlapping the intestine dorsally, all three gland nuclei located anterior to the pharyngo-intestinal valve and tail cylindrical with truncate to low rounded terminus. Morphologically, P. persicus n. sp. can be distinguished from the most closely related species, P. heathi by having shorter body and stylet length in females and males, as well as a shorter tail with different terminus in females. Pratylenchoides laticauda and P. cf. nevadensis are reported from Iran for the first time. Phylogenetic analysis based on the D2/D3 region of the large subunit of ribosomal DNA revealed Pratylenchoides as a monophyletic genus, and it supports the delineation of the new species, P. persicus n. sp.

  1. Ontogeny of intestinal safety factors: lactase capacities and lactose loads.

    PubMed

    O'Connor, T P; Diamond, J

    1999-03-01

    We measured intestinal safety factors (ratio of a physiological capacity to the load on it) for lactose digestion in developing rat pups. Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1). Both capacities increased significantly with age in suckling pups as a result of increasing intestinal mass and maintenance of mass-specific activities. The youngest pups examined (5 days) had surprisingly high safety factors of 8-13 for both lactase and SGLT-1, possibly because milk contains lactase substrates other than lactose; it also, however, suggests that their intestinal capacities were being prepared to meet future demands rather than just current ones. By day 10 (and also at day 15), increased lactose loads resulted in lower safety factors of 4-6, values more typical of adult intestines. The safety factor of SGLT-1 in day 30 (weanling) and day 100 (adult) rats was only approximately 1.0. This was initially unexpected, because most adult intestines maintain a modest reserve capacity beyond nutrient load values, but postweaning rats appear to use hindgut fermentation, assessed by gut morphology and hydrogen production assays, as a built-in reserve capacity. The series capacities of lactase and SGLT-1 varied in concert with each other over ontogeny and as lactose load was manipulated by experimental variation in litter size.

  2. Role of serotonin in the intestinal mucosal epithelium barrier in weaning mice undergoing stress-induced diarrhea.

    PubMed

    Dong, Yulan; Wang, Zixu; Qin, Zhuoming; Cao, Jing; Chen, Yaoxing

    2018-02-01

    Stress-induced diarrhea is a frequent and challenging threat to humans and domestic animals. Serotonin (5-HT) has been shown to be involved in the pathological process of stress-induced diarrhea. However, the role of 5-HT in stress-induced diarrhea remains unclear. A stress-induced diarrhea model was established in 21-day-old ICR weaning mice through an intragastric administration of 0.25 mL of 0.4 g/mL folium sennae and restraint of the hind legs with adhesive tape for 4 h to determine whether 5-HT regulates the mucosal barrier to cause diarrhea. Mice with decreased levels of 5-HT were pretreated with an intraperitoneal injection of 300 mg/kg p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor. After 5 days of treatment, the stress level, body weight and intestinal mucosal morphology indexes were measured. Compared to the controls, the mice with stress-induced diarrhea displayed a stress reaction, with increased corticosterone levels, as well as increased 5-HT-positive cells. However, the mice with stress-induced diarrhea exhibited decreased body weights, villus height to crypt depth ratios (V/C), and Occludin and Claudin1 expression. The PCPA injection reversed these effects in mice with different degrees of stress-induced diarrhea. Based on these findings, inhibition of 5-HT synthesis relieved the stress response and improved the health of the intestinal tract, including both the intestinal absorption capacity, as determined by the villus height and crypt depth, and the mucosal barrier function, as determined by the tight junction proteins of epithelial cell.

  3. Effects of a charcoal powder-wood vinegar compound solution in piglets for raw pigeon pea seed meal.

    PubMed

    Mekbungwan, A; Yamauchi, K; Sakaida, T; Buwjoom, T

    2008-03-01

    Histological intestinal villus alterations were studied in piglets fed a raw pigeon pea meal (PM) diet including a powder mixture of amorphous charcoal carbon and wood vinegar compound solution (CWVC). Twenty-eight male castrated piglets were divided into seven dietary groups of four piglets each. The control group was fed raw PM supplemented to the basal diet (178 g/kg crude protein, 4.23 kcal/g gross energy) at 0 g/kg (CONT), 200 g/kg (PM200) and 400 g/kg (PM400). The treatment groups were fed CWVC in both PM200 and PM400 diet groups at levels of 10 g/kg and 30 g/kg (PM200 + CWVC10, PM200 + CWVC30, PM400 + CWVC10 and PM400 + CWVC30). With increasing dietary PM levels, daily feed intake tended to increase. In contrast, daily body-weight gain tended to decrease, significantly in the PM400 group (P < 0.05), resulting in a significant decrease of feed efficiency in PM groups (P < 0.05). Body-weight gain and feed efficiency were higher in the CWVC groups compared with the PM groups. The duodenum and ileum were longer (P < 0.05) in the PM400 group than in CONT, but were similar to CONT in CWVC groups. The liver was heavier (P < 0.05), whereas the weights of the heart, kidney and stomach were decreased in the CWVC groups than in other groups. Most values for the intestinal villus height, cell area and cell mitosis number were lower in PM groups than those in CONT (P < 0.05) for each intestinal segment; however, these values were higher in CWVC groups than in PM groups (P < 0.05). The epithelial cells on the duodenal villus surface of the PM200 group showed cell morphology almost similar to CONT. However, the PM400 group had a smooth villus surface due to the presence of flat cells. The epithelial cells of the CWVC groups were protuberated, resulting in a much rougher surface than CONT. The current growth performance and histological intestinal alterations in piglets fed PM and PM + CWVC diets demonstrate that the intestinal features might be atrophied by feeding PM, resulting in decreased growth performance. CWVC might prevent the harmful effects of PM dietary toxins on intestinal function, resulting in a normal growth performance.

  4. Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: loading, enzyme-trigger release and cell uptake.

    PubMed

    Barbieri, Stefano; Sonvico, Fabio; Como, Caterina; Colombo, Gaia; Zani, Franca; Buttini, Francesca; Bettini, Ruggero; Rossi, Alessandra; Colombo, Paolo

    2013-05-10

    Tamoxifen citrate (TAM), an anticancer drug with amphiphilic properties, was loaded in lecithin/chitosan nanoparticles (LCN) with a view to oral administration. The influence of tamoxifen loading on the physico-chemical properties of nanoparticles was studied. Size, surface charge and morphological properties of tamoxifen-loaded nanoparticles (LCN-TAM) were assessed. The increase in the tamoxifen amount in the LCN-TAM preparation up to 60 mg/100 ml maintained the positive zeta potential value of about +45 mV. A statistically significant decrease in particle size was observed for TAM amounts between 5 and 20mg. A strong influence of loaded tamoxifen on the structure of lecithin/chitosan nanoparticles was observed, supported by the quantification of free chitosan and morphological analysis. A loading of tamoxifen in nanoparticles of around 19% was obtained. The release of the drug from the LCN-TAM colloidal dispersion was measured, showing that tamoxifen citrate was released very slowly in simulated gastro-intestinal fluids without enzymes. When enzymes able to dismantle the nanoparticle structure were added to the dissolution medium, drug release was triggered and continued in a prolonged manner. Tamoxifen-loaded nanoparticles showed cytotoxicity towards MCF-7 cells comparable to that obtained with tamoxifen citrate solution, but the rate of this toxic effect was dependent on drug release. Caco-2 cells, used as a model of the intestinal epithelium, were shown to take up the TAM loaded nanoparticles extensively. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. [Morphologic study of the intestine in an experimental model of amnioinfusion in fetal rabbits with gastroschisis].

    PubMed

    Muñoz, M E; Albert, A; Juliá, V; Sancho, M A; Grande, C; Martínez, A; Morales, L

    2002-10-01

    An experimental model of serial amnioinfusion has been developed in fetal rabbits with gastroschisis, using an intraamniotic catheter connected to a subcutaneous port. Fetuses of 4 groups were compared 7 days after surgery: group A: gastroschisis and daily amnioinfusion through an implanted catheter; group C: gastroschisis and blind amniotic catheter; group G: gastroschisis without catheter; group O: nonoperated fetuses. Survival rate, fetal body weight, lung weight, intestinal weight and length were determined. Computer aided morphometric analysis was performed, in which intestinal diameter, thickness and villi length were measured. Amniotic fluid samples were recovered along the experimental period. Intestinal length was significantly shorter and had a significantly thicker wall than nonoperated fetuses; we found no other morphometric differences between gastroschisis treated with amnioinfusion (group A) and the other gastroschisis groups (C and G). Amnioinfusion did not affect fetal survival rate; the amniotic catheter alone did not cause pulmonary hypoplasia due to significant amniotic leak. The physiological decrease in amniotic volume towards the end of gestation has not been modified by this regime of amnioinfusion.

  6. Short bowel syndrome in infants: the critical role of luminal nutrients in a management program.

    PubMed

    Roy, Claude C; Groleau, Véronique; Bouthillier, Lise; Pineault, Marjolain; Thibault, Maxime; Marchand, Valérie

    2014-07-01

    Short bowel syndrome develops when the remnant mass of functioning enterocytes following massive resections cannot support growth or maintain fluid-electrolyte balance and requires parenteral nutrition. Resection itself stimulates the intestine's inherent ability to adapt morphologically and functionally. The capacity to change is very much related to the high turnover rate of enterocytes and is mediated by several signals; these signals are mediated in large part by enteral nutrition. Early initiation of enteral feeding, close clinical monitoring, and ongoing assessment of intestinal adaptation are key to the prevention of irreversible intestinal failure. The length of the functional small bowel remnant is the most important variable affecting outcome. The major objective of intestinal rehabilitation programs is to achieve early oral nutritional autonomy while maintaining normal growth and nutrition status and minimizing total parenteral nutrition related comorbidities such as chronic progressive liver disease. Remarkable progress has been made in terms of survivability and quality of life, especially in the context of coordinated multidisciplinary programs, but much work remains to be done.

  7. Characterization of newly established bovine intestinal epithelial cell line.

    PubMed

    Miyazawa, Kohtaro; Hondo, Tetsuya; Kanaya, Takashi; Tanaka, Sachi; Takakura, Ikuro; Itani, Wataru; Rose, Michael T; Kitazawa, Haruki; Yamaguchi, Takahiro; Aso, Hisashi

    2010-01-01

    Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.

  8. Effect of black cumin seeds on growth performance, nutrient utilization, immunity, gut health and nitrogen excretion in broiler chickens.

    PubMed

    Kumar, Pawan; Patra, Amlan Kumar; Mandal, Guru Prasad; Samanta, Indranil; Pradhan, Saktipada

    2017-08-01

    Use of antibiotic growth promoters (AB) as feed additives in broiler chickens poses risks due to cross-resistance amongst pathogens and residues in tissues. The aim of this study was to evaluate the effect of dietary supplementation of black cumin seeds (BCS) as a natural growth promoter in chickens on nutrient utilization, intestinal microbiota and morphology, immunity, antioxidant status, protein deposition in muscles and nitrogen excretion. Broiler chickens were fed BCS at 0, 5, 10 and 20 g kg -1 diet. Body weight gain tended to increase (P = 0.10) and daily feed intake increased quadratically with increasing concentrations of BCS in the diets. Supplementation of BCS resulted in a tendency to decrease feed conversion efficiency on days 28-42. Metabolizability of nutrients increased linearly with increasing doses of BCS. Protein deposition in thigh and breast muscles was increased and nitrogen excretion was reduced by BCS and AB compared with the control (CON). Intestinal morphology in the duodenum, jejunum and ileum was not generally affected by BCS. Counts of total bacteria, Escherichia coli, Lactobacillus spp. and Clostridium spp. were not affected by BCS and AB compared with CON, but Salmonella spp. decreased linearly (P = 0.05) with increasing doses of BCS. Antibody titers against Newcastle disease virus on day 35 increased quadratically (P < 0.001) with increasing doses of BCS. Concentrations of glucose and triglyceride in blood were not affected by BCS. Concentrations of cholesterol decreased linearly while the concentration of total protein increased linearly with increasing doses of BCS. The use of dietary BCS may improve growth performance, immunity and nutrient utilization in broiler chickens. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides.

    PubMed

    Shang, Yue; Regassa, Alemu; Kim, Ji Hyuk; Kim, Woo Kyun

    2015-12-01

    This study was conducted to examine the effects of fructooligosaccharide (FOS) supplementation on growth performance, lymphoid organ weight, intestinal morphology, and immunological status in broilers (n=180) challenged with Salmonella Enteritidis lipopolysaccharides (LPS). Birds were randomly assigned into a 3×2 factorial arrangement that included 1) 3 dietary treatments from d one to 21: positive control (PC), wheat-corn-soybean meal based diet contained antibiotics (virginiamycin and monensin); negative control (NC), as PC without antibiotics; and NC+FOS, as NC supplemented with 0.5% FOS, and 2) 2 intraperitoneal injections: 2 mg/kg Salmonella Enteritidis LPS or sterile phosphate buffered saline (PBS) on d 21. Growth performance and relative lymphoid organ weight were not significantly different among the treatments. Villus height, crypt depth, and total mucosa thickness were significantly increased (P<0.05) in the ileum of broiler chickens fed NC+FOS when compared to PC and NC. Birds in NC+FOS treatment had reduced heterophil but increased monocyte count when compared to NC (P<0.05). Significant diet×challenge interaction was observed on natural IgY levels (P<0.0001), and a significant dietary effect was observed on specific IgY levels in chickens fed NC+FOS (P=0.003). Supplementation of FOS also increased the expression of interleukin (IL)-1ß, -10, and interferon (IFN)-γ mRNA in the ileum of the birds. In summary, Salmonella Enteritidis LPS challenge established significant differences in the immune responses in broiler chickens. FOS supplementation increased ileal mucosa thickness and elevated the expressions of certain cytokine genes. It also led to the alteration of leukocyte compositions and serum IgY levels in response to LPS challenge, suggesting FOS supplementation may be effective to induce protective outcomes in gut health and immunity of broiler chickens. © 2015 Poultry Science Association Inc.

  10. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut.

    PubMed

    Wisselink, H J; Cornelissen, J B W J; Mevius, D J; Smits, M A; Smidt, H; Rebel, J M J

    2017-09-01

    Animal health benefits from a stable intestinal homeostasis, for which proper development and functioning of the intestinal microbiota and immune system are essential. It has been established that changes in microbial colonization in early life (the first 2 wk post hatch) impacts the functioning of the adult gut and the associated crosstalk between microbiota and intestinal mucosal cells. The aim of the present study was to study the effect of the administration of antibiotics later in life (d 15 to 20 post hatch) on microbiota and immune parameters. For this purpose, chickens received from 15 d post hatch during 5 d amoxicillin or enrofloxacin through their drinking water. Before and at 6, 16, and 27 d after start of the administration of antibiotics, the composition of the microbiota in the jejunum was determined using a 16S ribosomal RNA gene-targeted DNA microarray, the CHICKChip. At 6 d after the start of the administration of the antibiotics, the composition and diversity of the microbiota were affected significantly (P < 0.05), but this change was small and observed only temporarily since differences disappeared at 16 d after initiating treatment with amoxillin and at 27 d after starting treatment with enrofloxacin. Intestinal morphology and development were not visibly affected since there were no differences between villus/crypt ratios and numbers of PAS+ and PCNA+ cells in the duodenum and jejunum at any time point. At 16 d after the start of antibiotic administration, the number of CD4+ T-cells and CD8+ T-cells in the duodenum was lower compared to the control animals; however, this difference was not significant. At some time points, significant differences (P < 0.05) were observed among the groups to locally expressed IL-8, IL-1β, IFN-γ, IL-2, and IL-4 mRNA. However, this effect was not long lasting, as differences that were observed at 16 d after starting the treatment had disappeared at 27 d after treatment was started. The results of this study indicate that later in the broiler's life, antibiotics only temporarily affect intestinal microbial and immune parameters. © 2017 Poultry Science Association Inc.

  11. Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides.

    PubMed

    Guerreiro, Inês; Couto, Ana; Pérez-Jiménez, Amalia; Oliva-Teles, Aires; Enes, Paula

    2015-12-28

    The effects of short-chain fructo-oligosaccharides (scFOS) and xylo-oligosaccharides (XOS) on gut morphology and hepatic oxidative status were studied in European sea bass juveniles weighing 60 g. Fish were fed diets including fishmeal (FM diets) or plant feedstuffs (PF diets; 30 FM:70 PF) as main protein sources (control diets). Four other diets were formulated similar to the control diets but including 1 % scFOS or 1 % XOS. At the end of the trial, fish fed PF-based diets presented histomorphological alterations in the distal intestine, whereas only transient alterations were observed in the pyloric caeca. Comparatively to fish fed FM-based diets, fish fed PF diets had higher liver lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) activities, and lower glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase activities. In fish fed the PF diets, prebiotic supplementation decreased SOD activity and XOS supplementation further decreased CAT activity. In fish fed the FM diets, XOS supplementation promoted a reduction of all antioxidant enzyme activities. Overall, dietary XOS and scFOS supplementation had only minor effects on gut morphology or LPO levels. However, dietary XOS reduced antioxidant enzymatic activity in both PF and FM diets, which indicate a positive effect on reduction of hepatic reactive oxygen species production.

  12. Histomorphometry and macroscopic intestinal lesions in broilers infected with Eimeria acervulina.

    PubMed

    Assis, R C L; Luns, F D; Beletti, M E; Assis, R L; Nasser, N M; Faria, E S M; Cury, M C

    2010-03-25

    This study aimed at measuring intestinal villi and assessing the intestinal absorptive area in broilers infected with Eimeria acervulina under different treatments to control coccidiosis. The experiment was divided into two stages, carried out in successive housings, raised in the same environment (or aviary). In the first stage, on 25 May 2008, fifty 12-day-old birds were orally inoculated with 3 x 10(3) oocysts of E. acervulina. In the second stage, on July 2008, other 50 birds were allocated on litter contaminated by the feces of birds on the first housing (natural infection by oocysts present in the reused litter). The experiment was arranged in a complete randomized design with five treatments and three replicates of 10 chicks per treatment. Broiler chicks were housed at 1 day of age and autopsies were performed at 21 days of age. Three 2-cm-long segments of the duodenum were excised from each bird and fixed in 10% buffered formalin. A total of 30 slides were prepared for each treatment, totaling 150 evaluated histological sections using H&E staining. Villus morphology was carried out by the HL Image 97 software. The intestinal absorptive area was calculated and macroscopic lesions were classified according to standard lesion scores. Results showed that intestinal villus measurements and absorptive area are directly affected by E. acervulina and that there is direct and positive correlation between the macro and microscopic findings observed in intestinal coccidiosis. E. acervulina causes shortening of villi and reduction in the intestinal absorptive area, affecting broiler growth. The prevention method of litter fermentation during the interval between housings and oral administration of Diclazuril can reduce the severity of intestinal lesions by E. acervulina in broilers impairing oocyst virulence or viability.

  13. A Critical Role for Monocytes/Macrophages During Intestinal Inflammation-associated Lymphangiogenesis

    PubMed Central

    Becker, Felix; Kurmaeva, Elvira; Gavins, Felicity N. E.; Stevenson, Emily V.; Navratil, Aaron R.; Jin, Long; Tsunoda, Ikuo; Orr, A. Wayne; Alexander, Jonathan S.; Ostanin, Dmitry V.

    2016-01-01

    Background Inflammation-associated lymphangiogenesis (IAL) is frequently observed in inflammatory bowel diseases. IAL is believed to limit inflammation by enhancing fluid and immune cell clearance. Although monocytes/macrophages (MΦ) are known to contribute to intestinal pathology in inflammatory bowel disease, their role in intestinal IAL has never been studied mechanistically. We investigated contributions of monocytes/MΦ to the development of intestinal inflammation and IAL. Methods Because inflammatory monocytes express CC chemokine receptor 2 (CCR2), we used CCR2 diphtheria toxin receptor transgenic (CCR2.DTR) mice, in which monocytes can be depleted by diphtheria toxin injection, and CCR2−/− mice, which have reduced circulating monocytes. Acute or chronic colitis was induced by dextran sodium sulfate or adoptive transfer of CD4+CD45RBhigh T cells, respectively. Intestinal inflammation was assessed by flow cytometry, immunofluorescence, disease activity, and histopathology, whereas IAL was assessed by lymphatic vessel morphology and density. Results We demonstrated that intestinal MΦ expressed vascular endothelial growth factor-C/D. In acute colitis, monocyte-depleted mice were protected from intestinal injury and showed reduced IAL, which was reversed after transfer of wild-type monocytes into CCR2−/− mice. In chronic colitis, CCR2 deficiency did not attenuate inflammation but reduced IAL. Conclusions We propose a dual role of MΦ in (1) promoting acute inflammation and (2) contributing to IAL. Our data suggest that intestinal inflammation and IAL could occur independently, because IAL was reduced in the absence of monocytes/MΦ, even when inflammation was present. Future inflammatory bowel disease therapies might exploit promotion of IAL and suppression of MΦ independently, to restore lymphatic clearance and reduce inflammation. PMID:26950310

  14. Egg storage duration and hatch window affect gene expression of nutrient transporters and intestine morphological parameters of early hatched broiler chicks.

    PubMed

    Yalcin, S; Gursel, I; Bilgen, G; Izzetoglu, G T; Horuluoglu, B H; Gucluer, G

    2016-05-01

    In recent years, researchers have given emphasis on the differences in physiological parameters between early and late hatched chicks within a hatch window. Considering the importance of intestine development in newly hatched chicks, however, changes in gene expression of nutrient transporters in the jejunum of early hatched chicks within a hatch window have not been studied yet. This study was conducted to determine the effects of egg storage duration before incubation and hatch window on intestinal development and expression of PepT1 (H+-dependent peptide transporter) and SGLT1 (sodium-glucose co-transporter) genes in the jejunum of early hatched broiler chicks within a 30 h of hatch window. A total of 1218 eggs obtained from 38-week-old Ross 308 broiler breeder flocks were stored for 3 (ES3) or 14 days (ES14) and incubated at the same conditions. Eggs were checked between 475 and 480 h of incubation and 40 chicks from each egg storage duration were weighed; chick length and rectal temperature were measured. The chicks were sampled to evaluate morphological parameters and PepT1 and SGLT1 expression. The remaining chicks that hatched between 475 and 480 h were placed back in the incubator and the same measurements were conducted with those chicks at the end of hatch window at 510 h of incubation. Chick length, chick dry matter content, rectal temperature and weight of small intestine segments increased, whereas chick weight decreased during the hatch window. The increase in the jejunum length and villus width and area during the hatch window were higher for ES3 than ES14 chicks. PepT1 expression was higher for ES3 chicks compared with ES14. There was a 10.2 and 17.6-fold increase in PepT1 and SGLT1 expression of ES3 chicks at the end of hatch window, whereas it was only 2.3 and 3.3-fold, respectively, for ES14 chicks. These results suggested that egg storage duration affected development of early hatched chicks during 30 h of hatch window. It can be concluded that the ES14 chicks would be less efficiently adapted to absorption process for carbohydrates and protein than those from ES3 at the end of the hatch window.

  15. Effects of glutamine supplementation on gut barrier, glutathione content and acute phase response in malnourished rats during inflammatory shock

    PubMed Central

    Belmonte, Liliana; Coëffier, Moïse; Pessot, Florence Le; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre

    2007-01-01

    AIM: To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. METHODS: Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. RESULTS: Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 ± 1.05 vs 1.72 ± 0.46 μmol/g tissue, P < 0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal α1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. CONCLUSION: Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model. PMID:17569119

  16. Propolis reduces bacterial translocation and intestinal villus atrophy in experimental obstructive jaundice

    PubMed Central

    Sabuncuoglu, Mehmet Zafer; Kismet, Kemal; Kilicoglu, Sibel Serin; Kilicoglu, Bulent; Erel, Serap; Muratoglu, Sabahattin; Sunay, Asli Elif; Erdemli, Esra; Akkus, Mehmet Ali

    2007-01-01

    AIM: To investigate the effects of propolis on bacterial translocation and ultrastructure of intestinal morphology in experimental obstructive jaundice. METHODS: Thirty Wistar-Albino male rats were randomly divided into three groups, each including 10 animals: groupI, sham-operated; group II, ligation and division of the common bile duct (BDL); group III, BDL followed by oral supplementation of propolis 100 mg/kg per day. Liver, blood, spleen, mesenteric lymph nodes, and ileal samples were taken for microbiological, light and transmission electron microscopic examination on postoperative 7th d after sacrification. RESULTS: The mean number of villi per centimeter and mean mucosal height of the propolis group were significantly different in the BDL group (P = 0.001 and 0.012, respectively). The electron microscopic changes were also different between these groups. Sham and BDL + propolis groups had similar incidence of bacterial translocation (BT). The BDL group had significantly higher rates of BT as compared with sham and BDL + propolis groups. BT was predominantly detected in MLNs and the most commonly isolated bacteria was Escherichia coli. CONCLUSION: Propolis showed a significant protective effect on ileal mucosa and reduced bacterial translocation in the experimental obstructive jaundice model. Further studies should be carried out to explain the mechanisms of these effects. PMID:17876893

  17. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community.

    PubMed

    Xiao, J X; Alugongo, G M; Chung, R; Dong, S Z; Li, S L; Yoon, I; Wu, Z H; Cao, Z J

    2016-07-01

    The aim of this study was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) in the calf starter and milk on ruminal fermentation, gastrointestinal morphology, and microbial community in the first 56 d of life. Thirty Holstein bull calves were randomly assigned to 1 of 3 groups: a texturized calf starter containing 0 (CON), 0.5, or 1% SCFP (XPC, Diamond V, Cedar Rapids, IA) of dry matter from d 4 to 56. In addition, the XPC-supplemented calves were fed with 1 g/d SCFP (SmartCare, Diamond V, Cedar Rapids, IA) in milk from d 2 to 30. All calves were fed 4 L of colostrum within 1 h of birth and were subsequently fed milk twice daily until weaned on d 56. Rumen fluid was collected by an esophageal tube 4 h after the morning feeding on d 28 and 56 to determine ruminal pH, ammonia-N, and volatile fatty acids concentrations. On d 56, 15 (5 per treatment) calves were harvested and slaughter weight, gastrointestinal morphology parameters, and bacteria community were recorded. Papilla length, width, and surface area were measured from 5 locations within the rumen. Villus height, width, surface area, crypt depth, and villus height-to-crypt depth ratio were measured in the duodenum, jejunum, and ileum. Next-generation sequencing technology was used to test the microbial community of the rumen and duodenum samples on d 28 and 56. Data were analyzed by MIXED procedure in SAS (SAS Institute Inc., Cary, NC) with contrast statements to declare CON versus all SCFP and 0.5 versus 1% SCFP in starter grains. Ruminal pH, ammonia-N, and total volatile fatty acids were not altered by SCFP. However, the supplemented groups exhibited higher ruminal butyrate concentrations coinciding with higher Butyrivibrio and lower Prevotella richness than CON group. Supplementation of SCFP increased papilla length in the rumen. In the small intestine, SCFP reduced crypt depth of jejunum, and increased villus height-to-crypt depth ratio in all segments of the small intestine, especially when supplemented at a higher dosage in the starter. In conclusion, Saccharomyces cerevisiae fermentation products improved gastrointestinal morphology, possibly due to increased Butyrivibrio and decreased Prevotella richness of the rumen fluid, which resulted in an increase in butyrate production, and the effect was slightly greater with the higher dosage of SCFP in the starter. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Morphofunctional changes underlying intestinal dysmotility in diabetic RIP-I/hIFNβ transgenic mice

    PubMed Central

    Domènech, Anna; Pasquinelli, Gianandrea; De Giorgio, Roberto; Gori, Alessandra; Bosch, Fàtima; Pumarola, Martí; Jiménez, Marcel

    2011-01-01

    The pathogenetic mechanisms underlying gastrointestinal dysmotility in diabetic patients remain poorly understood, although enteric neuropathy, damage to interstitial cells of Cajal (ICC) and smooth muscle cell injury are believed to play a role. The aim of this study was to investigate the morphological and functional changes underlying intestinal dysmotility in RIP-I/hIFNβ transgenic mice treated with multiple very low doses of streptozotocin (20 mg/kg, i.p., 5 days). Compared with vehicle-treated mice, streptozotocin-treated animals developed type 1 diabetes mellitus, with sustained hyperglycaemia for 3.5 months, polyphagia, polydipsia and increased faecal output without changes in faecal water content (metabolic cages). Diabetic mice had a longer intestine, longer ileal villi and wider colonic crypts (conventional microscopy) and displayed faster gastric emptying and intestinal transit. Contractility studies showed selective impaired neurotransmission in the ileum and mid-colon of diabetic mice. Compared with controls, the ileal and colonic myenteric plexus of diabetic mice revealed ultrastructural features of neuronal degeneration and HuD immunohistochemistry on whole-mount preparations showed 15% reduction in neuronal numbers. However, no immunohistochemical changes in apoptosis-related markers were noted. Lower absolute numbers of neuronal nitric oxide synthase- and choline acetyltransferase-immunopositive neurons and enhanced vasoactive intestinal polypeptide and substance P immunopositivity were observed. Ultrastructural and immunohistochemical analyses did not reveal changes in the enteric glial or ICC networks. In conclusion, this model of diabetic enteropathy shows enhanced intestinal transit associated with intestinal remodelling, including neuroplastic changes, and overt myenteric neuropathy. Such abnormalities are likely to reflect neuroadaptive and neuropathological changes occurring in this diabetic model. PMID:22050417

  19. Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes.

    PubMed

    Sgorla, Débora; Almeida, Andreia; Azevedo, Claudia; Bunhak, Ÿlcio Jose; Sarmento, Bruno; Cavalcanti, Osvaldo Albuquerque

    2016-09-10

    The aim of this work was to develop and characterize new hyaluronic acid-based responsive materials for film coating of solid dosage forms. Crosslinking of hyaluronic acid with trisodium trimetaphosphate was performed under controlled alkaline aqueous environment. The films were produced through casting process by mixing crosslinked or bare biopolymer in aqueous dispersion of ethylcellulose, at different proportions. Films were further characterized regarding morphology by scanning electron microscopy, robustness by permeation to water vapor transmission, and ability to hydrate in simulated gastric and intestinal physiological fluids. The safety and biocompatibility of films were assessed against Caco-2 and HT29-MTX intestinal cells. The permeation to water vapor transmission was favored by increasing hyaluronic acid content in the final formulation. When in simulated gastric fluid, films exhibited lower hydration ability compared to more extensive hydration in simulated intestinal fluids. Simultaneously, in simulated intestinal fluids, films partially lost weight, revealing ability for preventing drug release at gastric pH, but tailoring the release at higher intestinal pH. The physiochemical characterization suggests thermal stability of films and physical interaction between compounds of formulation. Lastly, cytotoxicity tests demonstrated that films and individual components of the formulations, when incubated for 4h, were safe for intestinal cells Overall, these evidences suggest that hyaluronic acid-based responsive films, applied as coating material of oral solid dosage forms, can prevent the premature release of drugs in harsh stomach conditions, but control the release it in gastrointestinal tract distal portion, assuring safety to intestinal mucosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity.

    PubMed

    Deng, Liandong; Dong, Hongxu; Dong, Anjie; Zhang, Jianhua

    2015-11-01

    Efficient oral administration of anticancer agents requires a nanocarrier to long survive in the stomach, effectively penetrate across the small intestine, tightly retain the drug during bloodstream and quickly release drug in tumor cells. Herein a kind of dual pH-sensitive polyelectrolyte complex nanoparticles (CNPs) was developed by employing electrostatic interaction between positively charged chitosan (CS) and negative poly (L-glutamic acid) grafted polyethylene glycol-doxorubicin conjugate nanoparticles (PG-g-PEG-hyd-DOX NPs) with acid-labile hydrazone linkages. The obtained NPs and CNPs were characterized for their morphology, particle size, ζ-potential, pH-sensitivity under the simulated physiological conditions, drug release, as well as in vivo antitumor activity and biodistribution. The results indicated that CNPs can remain intact structure in pH range from 3.0 to 6.5. After detaching CS layer due to the pH-induced deprotonation with increasing pH to 7.4 in the mucus layer of the small intestine, the inner NPs would be released and effectively absorbed into blood circulation via opening the tight junctions by CS. PG-g-PEG-hyd-DOX NPs with demonstrated long-circulating properties can be accumulated in the tumor via EPR effect and dump the drug within tumor cells by acid-cleavage of hydrazone bonds between PG-g-PEG and DOX, achieving high therapeutic efficacy and low systemic toxicity. These results suggest that the design presented here, combining the functions of the gastrointestinal pH-sensitive electrostatic complex and intracellular acid-sensitive macromolecular prodrugs NPs, can sequentially overcome the biological barriers of oral anticancer drug delivery, which thus provides a promising nanomedicine platform for oral chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fractionation of the Gulf toadfish intestinal precipitate organic matrix reveals potential functions of individual proteins.

    PubMed

    Schauer, Kevin L; Grosell, Martin

    2017-06-01

    The regulatory mechanisms behind the production of CaCO 3 in the marine teleost intestine are poorly studied despite being essential for osmoregulation and responsible for a conservatively estimated 3-15% of annual oceanic CaCO 3 production. It has recently been reported that the intestinally derived precipitates produced by fish as a byproduct of their osmoregulatory strategy form in conjunction with a proteinaceous matrix containing nearly 150 unique proteins. The individual functions of these proteins have not been the subject of investigation until now. Here, organic matrix was extracted from precipitates produced by Gulf toadfish (Opsanus beta) and the matrix proteins were fractionated by their charge using strong anion exchange chromatography. The precipitation regulatory abilities of the individual fractions were then analyzed using a recently developed in vitro calcification assay, and the protein constituents of each fraction were determined by mass spectrometry. The different fractions were found to have differing effects on both the rate of carbonate mineral production, as well as the morphology of the crystals that form. Using data collected from the calcification assay as well as the mass spectrometry experiments, individual calcification promotional indices were calculated for each protein, giving the first insight into the functions each of these matrix proteins may play in regulating precipitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Eiichi; Hosokawa, Masaya; Faculty of Human Sciences, Tezukayama Gakuin University, Osaka

    2011-01-07

    Research highlights: {yields} Exogenous GIP inhibits intestinal motility through a somatostatin-mediated pathway. {yields} Exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility. {yields} The GIP-receptor-mediated action in intestine does not involve in GLP-1-mediated pathway. -- Abstract: Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic {beta} cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucosemore » absorption in vivo was measured by single-pass perfusion method. Incorporation of [{sup 14}C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [{sup 14}C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.« less

  3. Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs.

    PubMed

    Yoon, Jung Ho; Ingale, Santosh Laxman; Kim, Jin Soo; Kim, Kwang Hyun; Lohakare, Jayant; Park, Yoon Kyung; Park, Jun Cheol; Kwon, Ill Kyong; Chae, Byung Jo

    2013-02-01

    The increase in drug-resistant bacteria and the ban on antibiotic growth promoters worldwide make the search for novel means of preventing bacterial infection and promoting growth performance imperative. In this sense, antimicrobial peptides are thought to be ideal candidates owing to their antimicrobial properties, broad spectrum of activity and low propensity for development of bacterial resistance. The aim of the present study was to investigate the effect of dietary supplementation with antimicrobial peptide-P5 (AMP-P5) on weanling pig nutrition. A total of 240 weanling pigs were allotted to four treatments on the basis of initial body weight. There were four replicates in each treatment, with 15 pigs per replicate. Dietary treatments were negative control (NC, basal diet without antimicrobial), positive control (PC, basal diet + 1.5 g kg(-1) apramycin), basal diet with 40 mg kg(-1) AMP-P5 (P5-40) and basal diet with 60 mg kg(-1) AMP-P5 (P5-60). Pigs fed the PC or P5-60 diet showed improved (P < 0.05) overall growth performance, apparent total tract digestibility of dry matter, crude protein and gross energy and reduced (P < 0.05) faecal and intestinal coliforms compared with pigs fed the NC diet. The results obtained in this study indicate that dietary supplementation with 60 mg kg(-1) AMP-P5 has the potential to improve the growth performance and apparent total tract digestibility of nutrients and reduce coliforms in weanling pigs. Copyright © 2012 Society of Chemical Industry.

  4. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats

    PubMed Central

    da Rosa, Carlos Vinicius D.; Azevedo, Silvia C. S. F.; Bazotte, Roberto B.; Peralta, Rosane M.; Buttow, Nilza C.; Pedrosa, Maria Montserrat D.; de Godoi, Vilma A. F.; Natali, Maria Raquel M.

    2015-01-01

    We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a whole. Thus, we can conclude that local differences in absorption and metabolism could explain the differences between the supplementation with L-glutamine or GDP. PMID:26659064

  5. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats.

    PubMed

    da Rosa, Carlos Vinicius D; Azevedo, Silvia C S F; Bazotte, Roberto B; Peralta, Rosane M; Buttow, Nilza C; Pedrosa, Maria Montserrat D; de Godoi, Vilma A F; Natali, Maria Raquel M

    2015-01-01

    We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a whole. Thus, we can conclude that local differences in absorption and metabolism could explain the differences between the supplementation with L-glutamine or GDP.

  6. Radiofrequency-induced small bowel thermofusion: an ex vivo study of intestinal seal adequacy using mechanical and imaging modalities.

    PubMed

    Arya, Shobhit; Hadjievangelou, Nancy; Lei, Su; Kudo, Hiromi; Goldin, Robert D; Darzi, Ara W; Elson, Daniel S; Hanna, George B

    2013-09-01

    Bipolar radiofrequency (RF) induced tissue fusion is believed to have the potential to seal and anastomose intestinal tissue thereby providing an alternative to current techniques which are associated with technical and functional complications. This study examines the mechanical and cellular effects of RF energy and varying compressive pressures when applied to create ex vivo intestinal seals. A total of 299 mucosa-to-mucosa fusions were formed on ex vivo porcine small bowel segments using a prototype bipolar RF device powered by a closed-loop, feedback-controlled RF generator. Compressive pressures were increased at 0.05 MPa intervals from 0.00 to 0.49 MPa and RF energy was applied for a set time period to achieve bowel tissue fusion. Seal strength was subsequently assessed using burst pressure and tensile strength testing, whilst morphological changes were determined through light microscopy. To further identify the subcellular tissue changes that occur as a result of RF energy application, the collagen matrix in the fused area of a single bowel segment sealed at an optimal pressure was examined using transmission electron microscopy (TEM). An optimal applied compressive pressure range was observed between 0.10 and 0.25 MPa. Light microscopy demonstrated a step change between fused and unfused tissues but was ineffective in distinguishing between pressure levels once tissues were sealed. Non uniform collagen damage was observed in the sealed tissue area using TEM, with some areas showing complete collagen denaturation and others showing none, despite the seal being complete. This finding has not been described previously in RF-fused tissue and may have implications for in vivo healing. This study shows that both bipolar RF energy and optimal compressive pressures are needed to create strong intestinal seals. This finding suggests that RF fusion technology can be effectively applied for bowel sealing and may lead to the development of novel anastomosis tools.

  7. Effect of a direct-fed microbial (Primalac) on structure and ultrastructure of small intestine in turkey poults.

    PubMed

    Rahimi, S; Grimes, J L; Fletcher, O; Oviedo, E; Sheldon, B W

    2009-03-01

    The effects of dietary supplementation of the direct-fed microbial (DFM) Primalac in mash or crumbled feed on histological and ultrastructural changes of intestinal mucosa was determined in 2 populations of poults; 1 with and 1 without a Salmonella spp. challenge. Three hundred thirty-six 1-d-old female Large White turkey poults were randomly distributed into 8 treatment groups with 6 replicates of 7 poults in each pen. The poults were placed on 1 of 4 dietary treatments in a 2 x 2 x 2 factorial arrangement (mash or crumble feed, with or without DFM, not-challenged or challenged at 3 d of age). The DFM groups were fed a Primalac-supplemented diet from d 1 until the last day of the experiment (d 21). At 3 d of age, 50% of the poults were challenged with 1 mL of 10(10) cfu/ mL of Salmonella spp. (Salmonella enterica serovar Typhimurium, Salmonella Heidelberg, and Salmonella Kentucky) by oral gavage. The inoculated poults were housed in a separate room from nonchallenged controls. Feed and water were provided ad libitum for all birds. At d 21, 1 poult per pen (total of 6 poults per treatment) was randomly selected and killed humanely by cervical dislocation. After necropsy, the small intestine was removed, and tissue samples from duodenum, jejunum, and ileum were taken for light and electron microscopic evaluation. The DFM birds showed increased goblet cell (GC) numbers, total GC area, GC mean size, mucosal thickness, and a greater number of segmented filamentous bacteria compared with controls. Changes in intestinal morphology as observed in this study support the concept that poultry gut health and function, and ultimately bird performance, can be improved by dietary supplementation with DFM products such as Primalac as used in this study.

  8. Morphological and metabolic adjustments in the small intestine to energy demands of growth, storage, and fasting in the first annual cycle of a hibernating lizard (Tupinambis merianae).

    PubMed

    do Nascimento, Lucas Francisco R; da Silveira, Lilian Cristina; Nisembaum, Laura Gabriela; Colquhoun, Alison; Abe, Agusto S; Mandarim-de-Lacerda, Carlos Alberto; de Souza, Silvia Cristina R

    2016-05-01

    Seasonal plasticity in the small intestine of neonatal tegu lizards was investigated using morphometry and analysis of enzymes involved in supplying energy to the intestinal tissue. In the autumn, the intestinal mass (Mi) was 1.0% of body mass and the scaling exponent b=0.92 indicated that Mi was larger in smaller neonates. During arousal from dormancy Mi was 23% smaller; later in spring, Mi increased 60% in relation to the autumn and the exponent b=0.14 indicated that the recovery was disproportionate in smaller tegus. During the autumn, the intestinal villi were greatly elongated; by midwinter, the Hv, SvEp, and VvEp were smaller than during the autumn (59%, 54%, 29%) and were restored to autumn levels during spring. In the active tegus, the maximum activity (Vmax) of enzymes indicated that the enterocytes can obtain energy from different sources, and possess gluconeogenic capacity. During winter, the Vmax of CS, HOAD, GDH, PEPCK was 40-50% lower in relation to the autumn and spring, while the Vmax of HK, PK, LDH, AST was unchanged. The hypoglycemia and the mucosal atrophy/ischemia during winter would prevent the enterocytes from using glucose, whereas they could slowly oxidize fatty acids released from body stores and amino acids from the tissue proteolysis to satisfy their needs of energy. Contrastingly, starvation during spring caused severe mass loss (50%); the tissue protein and the VvEp and VvLP did not change while the thickness of the muscular layer increased 51%, which suggested different effects along the length of the organ. In addition, the Vmax of the glycolytic enzymes was lower, indicating that a regulatory mechanism would spare blood glucose for vital organs during unanticipated food restriction. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers.

    PubMed

    Wang, X; Farnell, Y Z; Peebles, E D; Kiess, A S; Wamsley, K G S; Zhai, W

    2016-06-01

    Effects of commercial antimicrobials and the individual and combinational use of commercial prebiotics and probiotics in feed from d zero to 41 on the growth performance, small intestine size, jejunal morphology, and ileal resident bacteria population of broiler chickens were determined. A total of 1,040 one-day-old male Ross × Ross 708 broilers were randomly distributed to 80 floor pens (5 treatments, 16 replications per treatment, 13 chicks per pen). Five dietary treatments were employed: 1) a corn soybean-meal basal diet (served as a negative control diet, NC); 2) a basal diet supplemented with a commercial prebiotic product (Pre); 3) a basal diet supplemented with a probiotic product containing Bacillus subtilis spores (Pro); 4) a basal diet supplemented with both prebiotic and probiotic products (Pre + Pro); and 5) a basal diet supplemented with commercial antimicrobials (served as a positive control diet, PC). At d 14, Pre diets improved the relative level of Lactobacillus in ileal mucosa as compared to NC, Pro, or PC diets (P = 0.045) without improving broiler BW. Broilers fed PC diets exhibited the highest BW gain from d 15 to 27, the lowest duodenum, jejunum, and ileum relative weights as percentage of BW at d 27, and the highest breast weight at d 42 (P = 0.026, 0.035, 0.002, 0.025, and 0.035, respectively). Broilers fed Pro or Pre + Pro diets exhibited higher BW gain from d 28 to 41 (P = 0.005) and higher overall BW gain from d zero to 41 (P = 0.039) than those fed other diets. Dietary treatments did not affect jejunal morphology or ileal resident Escherichia coli level at any age. From our results, including spores of Bacillus subtilis in feed may stimulate growth at a later age and may facilitate broilers in reaching their target weight sooner. Therefore, probiotics are recommended as potential alternatives to antimicrobials in chicken diets, especially in grower and finisher feed. © 2016 Poultry Science Association Inc.

  10. Bt-maize (MON810) and Non-GM Soybean Meal in Diets for Atlantic Salmon (Salmo salar L.) Juveniles – Impact on Survival, Growth Performance, Development, Digestive Function, and Transcriptional Expression of Intestinal Immune and Stress Responses

    PubMed Central

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C.; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health. PMID:24923786

  11. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses.

    PubMed

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health.

  12. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    PubMed

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  13. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia)

    NASA Astrophysics Data System (ADS)

    van Geel, Bas; Fisher, Daniel C.; Rountrey, Adam N.; van Arkel, Jan; Duivenvoorden, Joost F.; Nieman, Aline M.; van Reenen, Guido B. A.; Tikhonov, Alexei N.; Buigues, Bernard; Gravendeel, Barbara

    2011-12-01

    Intestinal samples from the one-month-old Siberian mammoth calf 'Lyuba' were studied using light microscopy and ancient DNA to reconstruct its palaeo-environment and diet. The palynological record indicates a 'mammoth steppe'. At least some pollen of arboreal taxa was reworked, and thus the presence of trees on the landscape is uncertain. In addition to visual comparison of 11 microfossil spectra, a PCA analysis contributed to diet reconstruction. This yielded two clusters: one of samples from the small intestine and the other of large-intestine samples, indicating compositional differences in food remains along the intestinal tract, possibly reflecting different episodes of ingestion. Based on observed morphological damage we conclude that the cyperaceous plant remains and some remains of dwarf willows were originally eaten by a mature mammoth, most likely Lyuba's mother. The mammoth calf probably unintentionally swallowed well-preserved mosses and mineral particles while eating fecal material deposited on a soil surface covered with mosses. Coprophagy may have been a common habit for mammoths, and we therefore propose that fecal material should not be used to infer season of death of mammoths. DNA sequences of trnL and rbcL genes amplified from ancient DNA extracted from intestinal samples confirmed and supplemented plant identifications based on microfossils and macro-remains. Results from different extraction methods and barcoding markers complemented each other and show the value of longer protocols in addition to fast and commercially available extraction kits.

  14. Intestinal metaplasia in Barrett's oesophagus may be an epiphenomenon rather than a preneoplastic condition, and CDX2-positive cardiac-type epithelium is associated with minute Barrett's tumour.

    PubMed

    Watanabe, Gen; Ajioka, Yoichi; Takeuchi, Manabu; Annenkov, Alexey; Kato, Takashi; Watanabe, Kaori; Tani, Yusuke; Ikegami, Kikuo; Yokota, Yoko; Fukuda, Mutsumi

    2015-01-01

    Although intestinal-type epithelium in Barrett's oesophagus has been traditionally recognized as having a distinct malignant potential, whether this also holds true for cardiac-type epithelium remains controversial. The aim of this study was to identify a type of epithelium that is highly associated with Barrett's tumour. We analysed tumours and the corresponding background mucosa with special regard to tumour size in 40 cases of superficial Barrett's tumour by using immunohistochemical staining for CDX2, CD10, MUC2, MUC5AC, and MUC6. Intestinal metaplasia in tumour-adjacent mucosa was not associated with tumour size, but was significantly correlated with the extent of Barrett's oesophagus (P < 0.001). The majority (69.2%, 9/13) of small tumours (≤10 mm) had no intestinal metaplasia in adjacent non-neoplastic mucosae. Minute (≤5 mm) tumours were significantly associated with a gastric immunophenotype (P < 0.001). Purely gastric-immunophenotype tumour cells expressed CDX2, and cardiac-type epithelium adjacent to small tumours also showed low-level CDX2 expression. Our data suggest that intestinal metaplasia in Barrett's oesophagus is an epiphenomenon rather than a preneoplastic condition, and that CDX2-positive cardiac-type epithelium is highly associated with minute Barrett's tumour. Further prospective studies are needed to evaluate the risk of malignancy of cardiac-type epithelium with regard to sub-morphological intestinalization. © 2014 The Authors. Histopathology published by John Wiley & Sons Ltd.

  15. Pathophysiology of avian intestinal ion transport.

    PubMed

    Nighot, Meghali; Nighot, Prashant

    2018-06-01

    The gut has great importance for the commercial success of poultry production. Numerous ion transporters, exchangers, and channels are present on both the apical and the basolateral membrane of intestinal epithelial cells, and their differential expression along the crypt-villus axis within the various intestinal segments ensures efficient intestinal absorption and effective barrier function. Recent studies have shown that intensive production systems, microbial exposure, and nutritional management significantly affect intestinal physiology and intestinal ion transport. Dysregulation of normal intestinal ion transport is manifested as diarrhoea, malabsorption, and intestinal inflammation resulting into poor production efficiency. This review discusses the basic mechanisms involved in avian intestinal ion transport and the impact of development during growth, nutritional and environmental alterations, and intestinal microbial infections on it. The effect of intestinal microbial infections on avian intestinal ion transport depends on factors such as host immunity, pathogen virulence, and the mucosal organisation of the particular intestinal segment.

  16. Biomphalaria straminea (Mollusca: Planorbidae) as an intermediate host of Drepanocephalus spp. (Trematoda: Echinostomatidae) in Brazil: a morphological and molecular study

    USDA-ARS?s Scientific Manuscript database

    Species of trematodes belonging to the genus Drepanocephalus are intestinal parasites of piscivorous birds, primarily cormorants (Phalachrocorax spp.), and are widely reported in the Americas. During a 4-year malacological study conducted on an urban lake in Brazil, 27-collar-spined echinostome cerc...

  17. Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.

    PubMed

    Seifert, P; Spitznas, M

    1999-06-01

    This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.

  18. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139

    PubMed Central

    Watnick, Paula I.; Lauriano, Crystal M.; Klose, Karl E.; Croal, Laura; Kolter, Roberto

    2010-01-01

    Summary Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine. PMID:11136445

  19. Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis.

    PubMed

    Dagle, John M; Sabel, Jaime L; Littig, Jennifer L; Sutherland, Lillian B; Kolker, Sandra J; Weeks, Daniel L

    2003-10-15

    The experimental manipulation of early embryologic events, resulting in the misexpression of the homeobox transcription factor pitx2, is associated with subsequent defects of laterality in a number of vertebrate systems. To clarify the role of one pitx2 isoform, pitx2c, in determining the left-right axis of amphibian embryos, we examined the heart and gut morphology of Xenopus laevis embryos after attenuating pitx2c mRNA levels using chemically modified antisense oligonucleotides. We demonstrate that the partial depletion of pitx2c mRNA in these embryos results in alteration of both cardiac morphology and intestinal coiling. The most common cardiac abnormality seen was a failure of rightward migration of the outflow tract, while the most common intestinal laterality phenotype seen was a full reversal in the direction of coiling, each present in 23% of embryos injected with the pitx2c antisense oligonucleotide. An abnormality in either the heart or gut further predisposed to a malformation in the other. In addition, a number of other cardiac anomalies were observed after pitx2c mRNA attenuation, including abnormalities of atrial septation, extracellular matrix restriction, relative atrial-ventricular chamber positioning, and restriction of ventricular development. Many of these findings correlate with cardiac defects previously reported in pitx2 null and hypomorphic mice, but can now be assigned specifically to attenuation of the pitx2c isoform in Xenopus.

  20. Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells

    PubMed Central

    Radtke, Andrea L.; Lay, Margarita K.; Hjelm, Brooke E.; Bolick, Alice N.; Sarker, Shameema S.; Atmar, Robert L.; Kingsley, David H.; Arntzen, Charles J.; Estes, Mary K.; Nickerson, Cheryl A.

    2013-01-01

    Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication. PMID:23622517

  1. Cardiolipins Act as a Selective Barrier to Toll-Like Receptor 4 Activation in the Intestine

    PubMed Central

    Coats, Stephen R.; Hashim, Ahmed; Paramonov, Nikolay A.; Curtis, Michael A.

    2016-01-01

    ABSTRACT Intestinal homeostasis mechanisms must protect the host intestinal tissue from endogenous lipopolysaccharides (LPSs) produced by the intestinal microbiota. In this report, we demonstrate that murine intestinal fecal lipids effectively block Toll-like receptor 4 (TLR4) responses to naturally occurring Bacteroidetes sp. LPS. Cardiolipin (CL) represents a significant proportion of the total intestinal and fecal lipids and, furthermore, potently antagonizes TLR4 activation by reducing LPS binding at the lipopolysaccharide binding protein (LBP), CD14, and MD-2 steps of the TLR4 signaling pathway. It is further demonstrated that intestinal lipids and CL are less effective at neutralizing more potent Enterobacteriaceae-type LPS, which is enriched in feces obtained from mice with dextran sodium sulfate (DSS)-treated inflammatory bowel disease. The selective inhibition of naturally occurring LPS structures by intestinal lipids may represent a novel homeostasis mechanism that blocks LPS activation in response to symbiotic but not dysbiotic microbial communities. IMPORTANCE The guts of animals harbor a variety of Gram-negative bacteria associated with both states of intestinal health and states of disease. Environmental factors, such as dietary habits, can drive the microbial composition of the host animal's intestinal bacterial community toward a more pathogenic state. Both beneficial and harmful Gram-negative bacteria are capable of eliciting potentially damaging inflammatory responses from the host intestinal tissues via a lipopolysaccharide (LPS)-dependent pathway. Physical mucosal barriers and antibodies produced by the intestinal immune system protect against the undesired inflammatory effects of LPS, although it is unknown why some bacteria are more effective at overcoming the protective barriers than others. This report describes the discovery of a lipid-type protective barrier in the intestine that reduces the deleterious effects of LPSs from beneficial bacteria but is less effective in dampening the inflammatory effects of LPSs from harmful bacteria, providing a novel mechanistic insight into inflammatory intestinal disorders. PMID:27208127

  2. Description of a new species Fuhrmannetta jurubatensis n. sp. (Cestoda, Davaineidae) from Cerradomys goytaca Tavares, Pessôa & Gonçalves, 2011 (Rodentia, Cricetidae).

    PubMed

    Oliveira, L C; Oliveira, F C R; Ederli, N B

    2017-10-04

    A new species of cestode of the genus Fuhrmannetta found in the small intestine of Cerradomys goytaca is described herein, named Fuhrmannetta jurubatensis n. sp. Rodents were collected from the sand-plains areas of the northern coast of the State of Rio de Janeiro, Brazil. Morphological analyses were conducted by light and scanning electron microscopy. From the morphological analysis and a comparison with the known species of the genus, F. jurubatensis n. sp. can be identified by a combination of morphological and morphometrical characteristics, including strobila length, number and length of rostellar hooks, position of the genital pore and the number of eggs per uterine capsule.

  3. New approaches for morphological diagnosis of bovine Eimeria species: a study on a subtropical organic dairy farm in Brazil.

    PubMed

    Florião, Mônica Mateus; Lopes, Bruno do Bomfim; Berto, Bruno Pereira; Lopes, Carlos Wilson Gomes

    2016-03-01

    Bovine eimeriosis or coccidiosis is an intestinal disease caused by Eimeria spp. which is related to gastrointestinal disorders and, in some cases, death. The current work aimed to identify and provide detailed morphological characteristic features of the different Eimeria spp. parasites of crossbred cows of a subtropical organic dairy farm in Brazil, offering tools for the diagnosis of bovine eimeriosis. Eimeria auburnensis, Eimeria bovis, Eimeria bukidnonensis, Eimeria canadensis, Eimeria cylindrica, Eimeria ildefonsoi, and Eimeria zuernii were identified. The application of line regressions and ANOVA provided a means for the identification of these species. Finally, the current work proposes a dichotomous key to assist in the morphologic identification of bovine Eimeria spp. oocysts.

  4. Effect of differently structured and processed feedstuffs on diverse parameters of ethology and digestibility of growing rabbits and their influence on morphological structures in small intestine.

    PubMed

    Lang, Caroline; Hinchliffe, David; Brendle, Julia; Weirichl, Carmen; Hoy, Steffen

    2016-01-01

    The influence of different feedstuffs on parameters of digestion and ethology in growing rabbits (duration and number of feed intake, needed masticatory movements, pH value in stomach and small intestine, dry matter content of stomach chyme, level of destruction of cell structures in small intestine) was analysed. 384 five weeks old rabbits were fed with one of three feedstuffs: pellets (mean fibre length = 3 mm), fibre blocks (mean fibre length = 40 mm) and hay-oat-beat-ration (length of hay fibre ≥ 70 mm). The masticatory movements and duration for uptake 0.1 g of feedstuffs were measured in a special observation box. Rabbits in group cages were observed by 24 h video recording and duration and numbers of feed intakes were documented. After 8 weeks rabbits were slaughtered and pH values measured in stomach chyme (and dry matter content) and small intestine. Samples of them were taken and histologically examined (total length of villi and crypts, width of villi and degree of destruction determined by scores from 0 [= no destruction] to 3 [= severe destruction of villi]). Pellets lead to a faster feed intake with a lower number of masticatory movements. This equates a minor feeding time per feed intake and a higher amount of feedstuff in a shorter time. The dry matter content in stomach chyme increases and pH value was significantly higher there, but lower in duodenum. They also showed a significantly higher degree of destruction of villi, a shorter length and a larger width of villi than others.

  5. Epstein-Barr virus in inflammatory bowel disease: the spectrum of intestinal lymphoproliferative disorders.

    PubMed

    Nissen, Loes H C; Nagtegaal, Iris D; de Jong, Dirk J; Kievit, Wietske; Derikx, Lauranne A A P; Groenen, Patricia J T A; van Krieken, J Han J M; Hoentjen, Frank

    2015-05-01

    Inflammatory bowel disease (IBD) patients on thiopurine therapy are at increased risk of Epstein-Barr virus (EBV)-associated lymphomas. This virus is frequently detected in the intestinal mucosa of IBD patients and may cause a wide spectrum of lymphoproliferations similar to post-transplantation lymphoproliferative disorders (PTLDs). We aimed to assess whether histological aberrations aid in predicting EBV presence and to correlate histological assessment and EBV load with disease outcome in IBD. We included all IBD patients from our centre who underwent EBV testing of intestinal biopsies between January 2004 and October 2013. All biopsies were classified according to the WHO PTLD classification and the EBV load was scored per high-power field (HPF). Clinical data were collected from patient charts. Reported clinical outcomes included colectomy, need for chemotherapy and mortality. Our cohort included 58 patients: 28 were EBV-positive and 30 EBV-negative. An atypical infiltrate was seen more frequently in EBV-positive than in EBV-negative patients (57.1 versus 3.3%; p < 0.001). A high EBV load occurred more frequently in EBV-positive patients undergoing colectomy than in EBV-positive patients without colectomy (50.0 versus 10.0%; p = 0.048). Monomorphic lymphoproliferative disorders, including two overt lymphomas, were present in 10 patients. Reduction of immunosuppression resulted in histological normalization and loss of EBV expression in seven of eight non-lymphoma patients. The presence of atypical infiltrate in the intestinal mucosa of IBD patients warrants EBV testing. Reduction of immunosuppression is an effective strategy to achieve morphological normalization and loss of EBV. Lymphoproliferation related to IBD appears to have less aggressive clinical behaviour than PTLDs. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhong-Ze; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showedmore » that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.« less

  7. [Intestinal disorder of anaerobic bacteria aggravates pulmonary immune pathological injury of mice infected with influenza virus].

    PubMed

    Wu, Sha; Yan, Yuqi; Zhang, Mengyuan; Shi, Shanshan; Jiang, Zhenyou

    2016-04-01

    To investigate the relationship between the intestinal disorder of anaerobic bacteria and influenza virus infection, and the effect on pulmonary inflammatory cytokines in mice. Totally 36 mice were randomly divided into normal control group, virus-infected group and metronidazole treatment group (12 mice in each group). Mice in the metronidazole group were administrated orally with metronidazole sulfate for 8 days causing anaerobic bacteria flora imbalance; then all groups except the normal control group were treated transnasally with influenza virus (50 μL/d FM1) for 4 days to establish the influenza virus-infected models. Their mental state and lung index were observed, and the pathological morphological changes of lung tissues, caecum and intestinal mucosa were examined by HE staining. The levels of interleukin 4 (IL-4), interferon γ (IFN-γ), IL-10 and IL-17 in the lung homogenates were determined by ELISA. Compared with the virus control group, the metronidazole group showed obviously increased lung index and more serious pathological changes of the lung tissue and appendix inflammation performance. After infected by the FM1 influenza virus, IFN-γ and IL-17 of the metronidazole group decreased significantly and IL-4 and IL-10 levels were raised, but there was no statistically difference between the metronidazole and virus control groups. Intestinal anaerobic bacteria may inhibit the adaptive immune response in the lungs of mice infected with FM1 influenza virus through adjusting the lung inflammatory factors, affect the replication and clean-up time of the FM1 influenza virus, thus further aggravating pulmonary immune pathological injury caused by the influenza virus infection.

  8. Effect of feeding a milk replacer to early-weaned pigs on growth, body composition, and small intestinal morphology, compared with suckled littermates.

    PubMed

    Zijlstra, R T; Whang, K Y; Easter, R A; Odle, J

    1996-12-01

    Feeding of milk replacer to early-weaned pigs was evaluated in two experiments. In Exp. 1, 18 litters of pigs were either weaned conventionally (d 21), split-weaned and fed milk replacer plus starter diet (d 14 and 21), or weaned and fed milk replacer plus starter diet (d 21). Split weaning combined with feeding a milk replacer increased ADG 22% from d 14 and d 28 compared to conventional weaning (P < .05). Feeding a milk replacer plus starter diet after weaning increased ADG 30% between d 21 and 28 compared to conventional weaning (P < .01). In Experiment 2, four litters of 12 pigs each were divided at d 18 into six heavy and six light pigs and randomized across sow-suckled, milk replacer, or starter diet groups. After 1 wk, pigs fed milk replacer weighed 20% more (P < .001), contained 10% more protein (P < .01) and 17% more fat (P < .05), and had 74% longer villi in the proximal small intestine (P < .001) than suckled pigs. In contrast, pigs fed starter diet weighed 19% less (P < .001), contained 20% less protein and fat (P < .001), and had 28% shorter villi in the proximal small intestine (P < .05) than suckled pigs. Therefore, milk replacer feeding the 1st wk after weaning stimulates pig development, both locally in the small intestine and on a whole-body basis, most likely by an increased energy and nutrient intake. Suckling beyond 18 d postnatally inhibits pigs to reach maximal potential weight gain. In conclusion, milk replacer feeding might be beneficial to reach maximal pig weight gain at weaning.

  9. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet.

    PubMed

    Andriamihaja, Mireille; Davila, Anne-Marie; Eklou-Lawson, Mamy; Petit, Nathalie; Delpal, Serge; Allek, Fadhila; Blais, Anne; Delteil, Corine; Tomé, Daniel; Blachier, François

    2010-11-01

    Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transfer of proteins from the small to the large intestine, there is little information on the consequences of the use of such diets on the composition of large intestine content and on epithelial cell morphology and metabolism. Rats were fed for 15 days with either a normoproteic (NP, 14% protein) or a hyperproteic isocaloric diet (HP, 53% protein), and absorptive colonocytes were observed by electron microscopy or isolated for enzyme activity studies. The colonic luminal content was recovered for biochemical analysis. Absorbing colonocytes were characterized by a 1.7-fold reduction in the height of the brush-border membranes (P = 0.0001) after HP diet consumption when compared with NP. This coincided in the whole colon content of HP animals with a 1.8-fold higher mass content (P = 0.0020), a 2.2-fold higher water content (P = 0.0240), a 5.2-fold higher protease activity (P = 0.0104), a 5.5-fold higher ammonia content (P = 0.0008), and a more than twofold higher propionate, valerate, isobutyrate, and isovalerate content (P < 0.05). The basal oxygen consumption of colonocytes was similar in the NP and HP groups, but ammonia was found to provoke a dose-dependent decrease of oxygen consumption in the isolated absorbing colonocytes. The activity of glutamine synthetase (which condenses ammonia and glutamate) was found to be much higher in colonocytes than in small intestine enterocytes and was 1.6-fold higher (P = 0.0304) in colonocytes isolated from HP animals than NP. Glutaminase activity remained unchanged. Thus hyperproteic diet ingestion causes marked changes both in the luminal environment of colonocytes and in the characteristics of these cells, demonstrating that hyperproteic diet interferes with colonocyte metabolism and morphology. Possible causal relationships between energy metabolism, reduced height of colonocyte brush-border membranes, and reduced water absorption are discussed.

  10. Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens.

    PubMed

    Boontiam, W; Jung, B; Kim, Y Y

    2017-03-01

    The purpose of this research was to investigate the effects of dietary lysophospholipid (LPL) supplementation on low-energy, crude protein, and selected amino acids on growth performance, intestinal morphology, blood metabolites, inflammatory response, and carcass traits in broiler chickens. A total of 300 one-day-old male chicks (Ross 308) were assigned to 5 treatments, with 6 replications of 10 birds each in a completely randomized design. The 5 treatments were: positive control (PC) without LPL supplementation and adequate in all nutrients, negative control (NC) without LPL, and reduced 150 kcal/kg of metabolizable energy and reduced 5 to 6% of crude protein and selected amino acids including Lys, Met, Thr, and Trp in a calculated amount relative to the PC, NC + 0.05% LPL (LPL05), NC + 0.10% LPL (LPL10), and NC + 0.15% LPL (LPL15). Feeding LPL linearly improved growth performance, feed conversion ratio, ether extract, and protein digestibility. LPL supplementation on low-energy and nitrogenous diets showed significant enhancements in metabolic profiles of blood glucose, protein utilization, and immune system functions. These improvements influenced carcass composition, especially in relative weights of pancreas and breast muscle. In contrast, LPL addition showed no significant effects on relative weights of immune organs, gizzard, and abdominal fat. The NC birds were more susceptible to inflammation via modulating the secretion of interleukin-1 (IL-1) and increasing crypt depth in the jejunal and duodenal segments. However, the inclusion of 0.05% LPL to the NC diet could alleviate inflammation with increased jejunal villi height, ratio of villi height to crypt depth, and decreased IL-1 level. Overall, LPL promotes growth performance, nutrient utilization, gut health, anti-inflammation, and muscle yields when applied to diets of broiler chickens with lower levels of energy, crude protein, and selected amino acids.

  11. Further description of Cruzia tentaculata (Rudolphi, 1819) Travassos, 1917 (Nematoda: Cruzidae) by light and scanning electron microscopy.

    PubMed

    Adnet, F A O; Anjos, D H S; Menezes-Oliveira, A; Lanfredi, R M

    2009-04-01

    Species of Cruzia are parasites of the large intestine of marsupials, reptiles, amphibians, and mammalians. Cruzia tentaculata specimens were collected from the large intestine of Didelphis marsupialis (Mammalia: Didelphidae) from Colombia (new geographical record) and from Brazil and analyzed by light and scanning electron microscopy. The morphology of males and females by light microscopy corroborated most of the previous description and the ultrastructure by scanning electron microscopy evidence: the topography of the cuticle, deirids, amphids, phasmids in both sexes, a pair of papillae near the vulva opening, and the number and location of male caudal papillae, adding new features for species identification only observed by this technique.

  12. Inducible Intestine-specific Deletion Of Krüppel-Like Factor 5 Is Characterized By A Regenerative Response In Adult Mouse Colon

    PubMed Central

    Nandan, Mandayam O.; Ghaleb, Amr M.; Liu, Yang; Bialkowska, Agnieszka B.; McConnell, Beth B.; Shroyer, Kenneth R.; Robine, Sylvie

    2014-01-01

    Krüppel-like factor 5 (KLF5) is a pro-proliferative transcriptional regulator primarily expressed in the intestinal crypt epithelial cells. Constitutive intestine-specific deletion of Klf5 is neonatal lethal suggesting a crucial role for KLF5 in intestinal development and homeostasis. We have previously shown Klf5 to play an active role regulating intestinal tumorigenesis. Here we examine the effect of inducible intestine-specific deletion of Klf5 in adult mice. Klf5 is lost from the intestine beginning at day 3 after the start of a 5-day treatment with the inducer tamoxifen. Although the mice have no significant weight loss or lethality, the colonic tissue shows signs of epithelial distress starting at day 3 following induction. Accompanying the morphological changes is a significant loss of proliferative crypt epithelial cells as revealed by BrdU or Ki67 staining at days 3 & 5 after start of tamoxifen. We also observed a loss of goblet cells from the colon and Paneth cells from the small intestine upon induced deletion of Klf5. In addition, loss of Klf5 from the colonic epithelium is accompanied by a regenerative response that coincides with an expansion in the zone of Sox9 expression along the crypt axis. At day 11, both proliferation and Sox9 expression return to baseline levels. Microarray and quantitative PCR analyses reveal an upregulation of several regeneration-associated genes (Reg1A, Reg3G and Reg3B) and down-regulation of many Klf5 targets (Ki-67, cyclin B, Cdc2 and cyclin D1). Sox9 and Reg1A protein levels are also increased upon Klf5 loss. Lentiviral-mediated knockdown of KLF5 and exogenous expression of KLF5 in colorectal cancer cell lines confirm that Sox9 expression is negatively regulated by KLF5. Furthermore, ChIP assays reveal a direct association of KLF5 with both the Sox9 and Reg1A promoters. We have shown that disruption of epithelial homeostasis due to Klf5 loss from the adult colon is followed by a regenerative response led by Sox9 and the Reg family of proteins. Our study demonstrates that adult mouse colonic tissue undergoes acute physiological changes to accommodate the loss of Klf5 withstanding epithelial damage further signifying importance of Klf5 in colonic homeostasis. PMID:24440658

  13. In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery.

    PubMed

    Liu, Dongyun; Kobayashi, Taku; Russo, Steven; Li, Fengling; Plevy, Scott E; Gambling, Todd M; Carson, Johnny L; Mumper, Russell J

    2013-01-01

    Peptide and protein drugs have become the new generation of therapeutics, yet most of them are only available as injections, and reports on oral local intestinal delivery of peptides and proteins are quite limited. The aim of this work was to develop and evaluate a water-in-oil (w/o) microemulsion system in vitro and in vivo for local intestinal delivery of water-soluble peptides after oral administration. A fluorescent labeled peptide, 5-(and-6)-carboxytetramethylrhodamine labeled HIV transactivator protein TAT (TAMRA-TAT), was used as a model peptide. Water-in-oil microemulsions consisting of Miglyol 812, Capmul MCM, Tween 80, and water were developed and characterized in terms of appearance, viscosity, conductivity, morphology, and particle size analysis. TAMRA-TAT was loaded and its enzymatic stability was assessed in modified simulated intestinal fluid (MSIF) in vitro. In in vivo studies, TAMRA-TAT intestinal distribution was evaluated using fluorescence microscopy after TAMRA-TAT microemulsion, TAMRA-TAT solution, and placebo microemulsion were orally gavaged to mice. The half-life of TAMRA-TAT in microemulsion was enhanced nearly three-fold compared to that in the water solution when challenged by MSIF. The treatment with TAMRA-TAT microemulsion after oral administration resulted in greater fluorescence intensity in all intestine sections (duodenum, jejunum, ileum, and colon) compared to TAMRA-TAT solution or placebo microemulsion. The in vitro and in vivo studies together suggested TAMRA-TAT was better protected in the w/o microemulsion in an enzyme-containing environment, suggesting that the w/o microemulsions developed in this study may serve as a potential delivery vehicle for local intestinal delivery of peptides or proteins after oral administration.

  14. Intrauterine Growth Restriction Impairs Small Intestinal Mucosal Immunity in Neonatal Piglets

    PubMed Central

    Dong, Li; Zhong, Xiang; Ahmad, Hussain; Li, Wei; Wang, Yuanxiao; Zhang, Lili

    2014-01-01

    Intrauterine growth restriction (IUGR) is a very common problem in both piglet and human neonate populations. We hypothesized that IUGR neonates have impaired intestinal mucosal immunity from birth. Using neonatal piglets as IUGR models, immune organ weights, the weight and length of the small intestine (SI), intestinal morphology, intraepithelial immune cell numbers, levels of cytokines and immunoglobulins, and the relative gene expression of cytokines in the SI were investigated. IUGR neonatal piglets were observed to have lower absolute immune organ weight and SI length, decreased relative weights of the thymus, spleen, mesenteric lymph node, and thinner but longer SIs. Damaged and jagged villi, shorter microvilli, presence of autophagosomes, swelled mitochondria, and decreased villus surface areas were also found in the SIs of IUGR neonatal piglets. We also found a smaller number of epithelial goblet cells and lymphocytes in the SIs of IUGR neonates. In addition, we detected reduced levels of the cytokines TNF-α and IFN-γ and decreased gene expression of cytokines in IUGR neonates. In conclusion, IUGR was shown to impair the mucosal immunity of the SI in neonatal piglets, and the ileum was the major site of impairment. PMID:24710659

  15. Canine gastrointestinal physiology: Breeds variations that can influence drug absorption.

    PubMed

    Oswald, Hayley; Sharkey, Michele; Pade, Devendra; Martinez, Marilyn N

    2015-11-01

    Although all dogs belong to Canis lupus familiaris, the physiological diversity resulting from selective breeding can lead to wide interbreed variability in drug pharmacokinetics (PK) or in oral drug product performance. It is important to understand this diversity in order to predict the impact of drug product formulation attributes on in vivo dissolution and absorption characteristics across the canine population when the dog represents the targeted patient population. Based upon published information, this review addresses breed differences in gastrointestinal (GI) physiology and discusses the in vivo implications of these differences. In addition to the importance of such information for understanding the variability that may exist in the performance of oral dosage forms in dogs for the purpose of developing canine therapeutics, an appreciation of breed differences in GI physiology can improve our prediction of oral drug formulation performance when we extrapolate bioavailability results from the dog to the humans, and vice versa. In this literature review, we examine reports of breed associated diversity in GI anatomy and morphology, gastric emptying time (GET), oro-cecal transit time (OCTT), small intestinal transit time (SITT), large intestinal transit time (LITT), intestinal permeability, sodium/potassium fecal concentrations, intestinal flora, and fecal moisture content. Published by Elsevier B.V.

  16. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium.

    PubMed

    Miyoshi, Hiroyuki; VanDussen, Kelli L; Malvin, Nicole P; Ryu, Stacy H; Wang, Yi; Sonnek, Naomi M; Lai, Chin-Wen; Stappenbeck, Thaddeus S

    2017-01-04

    Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE 2 ) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE 2 -Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE 2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury. © 2016 The Authors.

  17. Interactions between the intestinal microbiota and innate lymphoid cells

    PubMed Central

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  18. Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features.

    PubMed

    Margolskee, Elizabeth; Jobanputra, Vaidehi; Lewis, Suzanne K; Alobeid, Bachir; Green, Peter H R; Bhagat, Govind

    2013-01-01

    Enteropathy-associated T-cell lymphomas (EATL) are rare and generally aggressive types of peripheral T-cell lymphomas. Rare cases of primary, small intestinal CD4+ T-cell lymphomas with indolent behavior have been described, but are not well characterized. We describe morphologic, phenotypic, genomic and clinical features of 3 cases of indolent primary small intestinal CD4+ T-cell lymphomas. All patients presented with diarrhea and weight loss and were diagnosed with celiac disease refractory to a gluten free diet at referring institutions. Small intestinal biopsies showed crypt hyperplasia, villous atrophy and a dense lamina propria infiltrate of small-sized CD4+ T-cells often with CD7 downregulation or loss. Gastric and colonic involvement was also detected (n = 2 each). Persistent, clonal TCRβ gene rearrangement products were detected at multiple sites. SNP array analysis showed relative genomic stability, early in disease course, and non-recurrent genetic abnormalities, but complex changes were seen at disease transformation (n = 1). Two patients are alive with persistent disease (4.6 and 2.5 years post-diagnosis), despite immunomodulatory therapy; one died due to bowel perforation related to large cell transformation 11 years post-diagnosis. Unique pathobiologic features warrant designation of indolent small intestinal CD4+ T-cell lymphoma as a distinct entity, greater awareness of which would avoid misdiagnosis as EATL or an inflammatory disorder, especially celiac disease.

  19. Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets.

    PubMed

    Liu, Wen-Chao; Kim, In-Ho

    2017-03-01

    This experiment was conducted to evaluate dietary xylanase supplementation in broilers wheat-based diets on performance and functional digestive parameters including ileal digesta viscosity, apparent ileal digestibility, intestinal morphology and microflora, digestive enzyme activities, and excreta odor content. A total of 600 1-day-old Ross 308 male broilers with an initial average BW of 45 ± 0.6 g were randomly allotted into 4 treatments with 10 replicate pens per treatment and 15 broilers in each pen for 35 d. The 4 dietary treatments were wheat-based diets and supplemented with 0, 1,875, 3,750, and 5,625 XU/kg xylanase. Xylanase supplementation improved (linear, P < 0.05) the body weight gain and decreased (linear, P < 0.05) the feed conversion ratio during d 1 to 18 and for the duration of the experiment. Dietary supplementation of xylanase led to a decrease (linear, P < 0.01) in ileal digesta viscosity. The apparent ileal digestibility of dry matter (DM), crude protein (CP), gross energy, and most amino acids (with the exception of Ile, Phe, Asp, Glu, and Pro) were increased (linear, P < 0.05) by xylanase supplementation. Increasing the dietary xylanase levels improved (linear, P < 0.05) the villus height and the ratio of villus height to crypt depth of the duodenum, jejunum, and ileum. In addition, inclusion of xylanase increased (linear, P < 0.05) the Lactobacillus numbers in the ileum and cecum, while decreased the ileal E. coli counts (linear, P < 0.01) and cecal E. coli populations (linear, P < 0.01; quadratic, P < 0.05). There were no significant differences (P > 0.05) in trypsin, amylase, and protease activities of small intestine among dietary treatments. Furthermore, xylanase supplementation reduced excreta NH3 (linear, P < 0.05; quadratic, P < 0.05) and total mercaptan (R.SH) (linear, P < 0.01) concentration. Taken together, dietary xylanase supplementation in broilers wheat-based diets had beneficial effects on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and microflora balance. Furthermore, the xylanase could reduce the ileal digesta viscosity and excreta odor contents. © 2016 Poultry Science Association Inc.

  20. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profilesmore » and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation.« less

  1. [Complex estimation of proliferative activity of epithelial cells of the large intestine damaged by polyps and cancer].

    PubMed

    Nalieskina, L A; Zabarko, L B; Polishchuk, L Z; Oliĭnichenko, G P; Zakhartseva, L M; Koshel', K V

    2001-01-01

    Peculiarities of mitotic regime and expression of proliferating cell nuclear antigen were investigated in 18 polyps and 35 cases of colorectal cancer. Direct relationship between spectrum and degree of manifestation of proliferative activity, level of morphological malignant tumors and accumulation of oncopathology in the patient pedigrees was established.

  2. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine if lysozyme in nursery diets improved growth performance and gastrointestinal health of pigs weaned from the sow at 24 d of age. Two replicates of 96 pigs (192 total 96 males,...

  3. Protective effect of metronidazole on uncoupling mitochondrial oxidative phosphorylation induced by NSAID: a new mechanism.

    PubMed

    Leite, A Z; Sipahi, A M; Damião, A O; Coelho, A M; Garcez, A T; Machado, M C; Buchpiguel, C A; Lopasso, F P; Lordello, M L; Agostinho, C L; Laudanna, A A

    2001-02-01

    The pathogenesis of non-steroidal anti-inflammatory drug (NSAID) enteropathy is complex. It involves uncoupling of mitochondrial oxidative phosphorylation which alters the intercellular junction and increases intestinal permeability with consequent intestinal damage. Metronidazole diminishes the inflammation induced by indomethacin but the mechanisms remain speculative. A direct effect on luminal bacteria has traditionally been thought to account for the protective effect of metronidazole. However, a protective effect of metronidazole on mitochondrial oxidative phosphorylation has never been tested. To assess the protective effect of metronidazole on mitochondrial uncoupling induced by indomethacin and also on the increased intestinal permeability and macroscopic damage. The protective effect of metronidazole was evaluated in rats given indomethacin; a macroscopic score was devised to quantify intestinal lesions, and intestinal permeability was measured by means of (51)Cr-ethylenediaminetetraacetic acid. The protective effect of metronidazole against mitochondrial uncoupling induced by indomethacin was assessed using isolated coupled rat liver mitochondria obtained from rats pretreated with metronidazole or saline. Metronidazole significantly reduced the macroscopic intestinal damage and increase in intestinal permeability induced by indomethacin; furthermore, at the mitochondrial level, it significantly reduced the increase in oxygen consumption in state 4 induced by indomethacin and caused less reduction of the respiratory control rate. Our study confirmed the beneficial effects of metronidazole on intestinal damage and intestinal permeability, and demonstrated, for the first time, a direct protective effect of metronidazole on uncoupling of mitochondrial oxidative phosphorylation caused by NSAIDs.

  4. Everolimus for Primary Intestinal Lymphangiectasia With Protein-Losing Enteropathy.

    PubMed

    Ozeki, Michio; Hori, Tomohiro; Kanda, Kaori; Kawamoto, Norio; Ibuka, Takashi; Miyazaki, Tatsuhiko; Fukao, Toshiyuki

    2016-03-01

    Primary intestinal lymphangiectasia (PIL), also known as Waldmann's disease, is an exudative enteropathy resulting from morphologic abnormalities in the intestinal lymphatics. In this article, we describe a 12-year-old boy with PIL that led to protein-losing enteropathy characterized by diarrhea, hypoalbuminemia associated with edema (serum albumin level: 1.0 g/dL), and hypogammaglobulinemia (serum IgG level: 144 mg/dL). Severe hypoalbuminemia, electrolyte abnormalities, and tetany persisted despite a low-fat diet and propranolol. Everolimus (1.6 mg/m(2)/day) was added to his treatment as an antiangiogenic agent. With everolimus treatment, the patient's diarrhea resolved and replacement therapy for hypoproteinemia was less frequent. Hematologic and scintigraphy findings also improved (serum albumin level: 2.5 g/dL). There were no adverse reactions during the 12-month follow-up. To the best of our knowledge, this is the first report of everolimus use in a patient with PIL. Copyright © 2016 by the American Academy of Pediatrics.

  5. Coinfection of a bearded dragon, Pogona vitticeps, with adenovirus- and dependovirus-like viruses.

    PubMed

    Jacobson, E R; Kopit, W; Kennedy, F A; Funk, R S

    1996-05-01

    Four neonate bearded dragons, Pogona vitticeps, from two collections became ill and died. Multiple tissues were collected and processed for light microscopy. In hematoxylin and eosin-stained sections of liver of one lizard, numerous basophilic intranuclear inclusions were observed. In three lizards, intranuclear inclusions were primarily seen within enterocytes in the small intestine. A portion of paraffin-embedded liver of one lizard and small intestine of a second lizard were removed, deparaffinized, and examined by electron microscopy. For the most part, inclusions in the liver consisted of nonenveloped viral particles 60-66 nm in diameter. Smaller nonenveloped virions 15-17 nm in diameter were occasionally seen in association with these particles. In the intestine, inclusions consisted only of 60-70 nm particles. Based on morphology and location, the larger particles were consistent with an adenovirus. Based on size and presence within nuclei of host cells coinfected with the adenovirus-like virus, the smaller viral agent was consistent with members of the genus Dependovirus.

  6. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  7. Preventive effects of royal jelly against anaphylactic response in a murine model of cow's milk allergy.

    PubMed

    Guendouz, Malika; Haddi, Abir; Grar, Hadria; Kheroua, Omar; Saidi, Djamel; Kaddouri, Hanane

    2017-12-01

    Royal jelly (RJ) has long been used to promote human health. The current study investigated the preventive effects of RJ against the development of a systemic and intestinal immune response in mice allergic to cow's milk proteins. Balb/c mice treated orally for seven days with RJ at doses of 0.5, 1 and 1.5 g/kg were sensitized intraperitoneally with β-lactoglobulin (β-Lg). Serum IgG and IgE anti-β-Lg were determined by an enzyme-linked immunosorbent assay (ELISA). Plasma histamine levels, symptom scores and body temperature were determined after in vivo challenge to β-Lg. Jejunums were used for assessment of local anaphylactic responses by an ex vivo study in Ussing chambers and morphologic changes by histological analysis. RJ significantly decreased serum IgG (31.15-43.78%) and IgE (64.28-66.6%) anti-β-Lg and effectively reduced plasma histamine level (66.62-67.36%) (p < 0.001) at all the doses tested. Additionally, no clinical symptoms or body temperature drops were observed in RJ-pretreated mice. Interestingly, RJ significantly reduced (p < 0.001) intestinal dysfunction by abolishing the secretory response (70.73-72.23%) induced by sensitization and prevented length aberrations of jejunal villi by 44.32-59.01% (p < 0.001). We speculate that using RJ may help prevent systemic and anaphylactic response in allergic mice. These effects may be related to its inhibitory effects on the degranulation of mast cells.

  8. Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs

    PubMed Central

    Brundige, Dottie R.; Maga, Elizabeth A.; Klasing, Kirk C.

    2009-01-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health. PMID:19847666

  9. Consumption of pasteurized human lysozyme transgenic goats' milk alters serum metabolite profile in young pigs.

    PubMed

    Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D

    2010-08-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats' milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats' milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.

  10. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model

    PubMed Central

    Ognik, Katarzyna; Fotschki, Bartosz; Zduńczyk, Zenon

    2018-01-01

    The aim of the study was to investigate the effect of two forms (CuCO3 (CuS); and Cu nanoparticles (CuNP)) and dosages (standard 6.5 mg/kg (H), half of the standard (L)) of additional dietary Cu administered to growing rats on gastrointestinal and hepatic function and morphology. Copper in the form of CuNP vs CuS caused lower Cu faecal/urinal excretion and increased Cu accumulation in the brain tissue. Hepatic high-grade hydropic degeneration and necrotic lesions were observed only in the CuNP-H animals. In the lower gut, the dietary application of CuNP stifled bacterial enzymatic activity of caecal gut microbiota and resulted in lower SCFA production. That diminishing effect of CuNP on caecal microbiota activity was accompanied by a relative increase in the secretion of glycoside hydrolases by bacterial cells. The results showed that in comparison to Cu from CuCO3, Cu nanoparticles to a greater extent were absorbed from the intestine, accumulated in brain tissue, exerted antimicrobial effect in the caecum, and at higher dietary dose caused damages in the liver of rats. PMID:29758074

  11. Differentiation of epithelial cells to M cells in response to bacterial colonization on the follicle-associated epithelium of Peyer's patch in rat small intestine.

    PubMed

    Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2006-10-01

    To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.

  12. [Effects of glucagon-like peptide 2 on the adaptation of residual small bowel in a rat model of short bowel syndrome].

    PubMed

    Wu, Guo-Hao; Chen, Ji; Li, Hang; Wu, Zhao-Han

    2006-09-01

    To investigate the effects of glucagon-like peptide 2 (GLP-2) on the morphology and functional adaptation of the residual small bowel in rat model of short bowel syndrome. Twenty rats with 75% of the midjejunoileum removed were randomly divided into two groups, and received intra-peritoneal injection of GLP-2(250 micro*gd*kg-1*d-1) or subcutaneous injection saline(0.5 ml, twice one day) after operation. On postoperative day 6, the morphological changes of the residual jejunum and ileum, the expression of proliferating cell nuclear antigen(PCNA), and the mRNA expressions of Na-D-glucose cotransporters (SGLT1) and peptide cotransporters (PEPT1) were determined. The intestinal glucose absorption data per unit length as well as per unit weight of ileum were measured by in vivo circulatory perfusion experiment. The morphological parameters of the residual gut such as the thickness of mucosa, height of villus, depth of crypt, and PCNA positive index were significantly higher, while the apoptosis rate per unit of mucosal square was significantly lower in GLP-2 treatment group than those in the control group. The expressions of mRNA SGTLl and PEPT1 in the residual ileum were significantly higher than those in the control group. There was no significant difference in glucose absorption rate per gram of mucosal wet weight between the two groups (P > 0.05). GLP-2 could improve morphological and functional adaptation of the residual small bowel by stimulating enterocyte proliferation and decreasing enterocyte apoptosis in short bowel syndrome.

  13. The effect of Daikenchuto on postoperative intestinal motility in patients with right-side colon cancer.

    PubMed

    Yamada, Takeshi; Matsumoto, Satoshi; Matsuda, Michihiro Koizumi Akihisa; Shinji, Seiichi; Yokoyama, Yasuyuki; Takahashi, Goro; Iwai, Takuma; Takeda, Kouki; Ohta, Keiichiro; Uchida, Eiji

    2017-07-01

    Daikenchuto (DKT) has a stimulant effect on intestinal motility and reportedly has a positive effect on postoperative intestinal motility in patients with sigmoid colon cancer. In this study, we investigated the effects of DKT in patients with right-side colon cancer. This retrospective study included 88 patients with right-side colon cancer. We orally administered 7.5 g of DKT in the DKT group and did not administer any DKT to patients in the no-DKT group. All patients ingested radiopaque markers 2 h before surgery, which were used to assess intestinal motility. The postoperative intestinal motility was radiologically assessed by counting the numbers of residual markers in the large and small intestines. The DKT and no-DKT groups showed no marked differences in the total number of residual markers or number of residual markers in the small intestine. However, in the elderly subgroup, the total number of residual markers in the DKT group was significantly less than in the no-DKT group. Although DKT had some small effect on the postoperative intestinal motility for most patients, it may have positive effects in elderly patients.

  14. Effect of gamma radiation on the growth, survival, hematology and histological parameters of rainbow trout (Oncorhynchus mykiss) larvae.

    PubMed

    Oujifard, Amin; Amiri, Roghayeh; Shahhosseini, Gholamreza; Davoodi, Reza; Moghaddam, Jamshid Amiri

    2015-08-01

    Effects of low (1, 2.5 and 5Gy) and high doses (10, 20 and 40Gy) of gamma radiation were examined on the growth, survival, blood parameters and morphological changes of the intestines of rainbow trout (Oncorhynchus mykiss) larvae (103±20mg) after 12 weeks of exposure. Negative effects of gamma radiation on growth and survival were observed as radiation level and time increased. Changes were well documented at 10 and 20Gy. All the fish were dead at the dose of 40Gy. In all the treatments, levels of red blood cells (RBC), hematocrit (HCT) and hemoglobin (HB) were significantly (P<0.05) declined as the irradiation levels increased, whereas the amount of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) did not change. No significant differences (P>0.05) were found in the levels of white blood cells (WBC), lymphocytes and monocytes. Destruction of the intestinal epithelium cells was indicated as the irradiation levels increased to 1Gy and above. The highest levels of growth, survival, specific growth rate (SGR), condition factor (CF) and protein efficiency rate (PER) were obtained in the control treatment. The results showed that gamma rays can be a potential means for damaging rainbow trout cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of vasoactive intestinal peptide and pancreatic polypeptide in rabbit intestine.

    PubMed Central

    Camilleri, M; Cooper, B T; Adrian, T E; Bloom, S R; Chadwick, V S

    1981-01-01

    The effects of porcine vasoactive intestinal peptide (VIP) and bovine pancreatic polypeptide (PP) on jejunal, ileal, and colonic fluid transport were studied in the rabbit. VIP produced secretion in the small intestine (jejunum greater than ileum) but did not affect absorption in the colon. PP had no secretory effects in jejunum, ileum, or colon. The small intestinal secretion induced by VIP was not associated with raised cAMP concentrations in the mucosa; this suggests that the secretory effects of VIP in vivo are mediated by a mechanism other than stimulation of adenylate cyclase. PMID:6257593

  16. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.

    PubMed

    Nakamura, Koji; Murray, Robert J; Joseph, Jeffrey I; Peppas, Nicholas A; Morishita, Mariko; Lowman, Anthony M

    2004-03-24

    Hydrogels of poly(methacrylic acid-g-ethylene glycol) were prepared using different reaction water contents in order to vary the network mesh size, swelling behavior and insulin loading/release kinetics. Gels prepared with greater reaction solvent contents swelled to a greater degree and had a larger network mesh size. All of the hydrogels were able to incorporate insulin and protected it from release in acidic media. At higher pH (7.4), the release rates increased with reaction solvent content. Using a closed loop animal model, all of the insulin loaded formulations produced significant insulin absorption in the upper small intestine combined with hypoglycemic effects. In these studies, bioavailabilities ranged from 4.6% to 7.2% and were dependent on reaction solvent content.

  17. Effects of activity, genetic selection and their interaction on muscle metabolic capacities and organ masses in mice.

    PubMed

    Kelly, Scott A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Garland, Theodore

    2017-03-15

    Chronic voluntary exercise elevates total daily energy expenditure and food consumption, potentially resulting in organ compensation supporting nutrient extraction/utilization. Additionally, species with naturally higher daily energy expenditure often have larger processing organs, which may represent genetic differences and/or phenotypic plasticity. We tested for possible adaptive changes in organ masses of four replicate lines of house mice selected (37 generations) for high running (HR) compared with four non-selected control (C) lines. Females were housed with or without wheel access for 13-14 weeks beginning at 53-60 days of age. In addition to organ compensation, chronic activity may also require an elevated aerobic capacity. Therefore, we also measured hematocrit and both citrate synthase activity and myoglobin concentration in heart and gastrocnemius. Both selection (HR versus C) and activity (wheels versus no wheels) significantly affected morphological and biochemical traits. For example, with body mass as a covariate, mice from HR lines had significantly higher hematocrit and larger ventricles, with more myoglobin. Wheel access lengthened the small intestine, increased relative ventricle and kidney size, and increased skeletal muscle citrate synthase activity and myoglobin concentration. As compared with C lines, HR mice had greater training effects for ventricle mass, hematocrit, large intestine length and gastrocnemius citrate synthase activity. For ventricle and gastrocnemius citrate synthase activity, the greater training was quantitatively explainable as a result of greater wheel running (i.e. 'more pain, more gain'). For hematocrit and large intestine length, differences were not related to amount of wheel running and instead indicate inherently greater adaptive plasticity in HR lines. © 2017. Published by The Company of Biologists Ltd.

  18. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    PubMed

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  19. Effect of chronic intake of liquid nutrition on stomach and duodenum morphology.

    PubMed

    Vrabcova, Michaela; Mikuska, Livia; Vazan, Rastislav; Miko, Michal; Varga, Ivan; Mravec, Boris

    2016-05-01

    Changes in the quantity and/or quality of food intake have been shown to be associated with morphological and functional alterations of the gastrointestinal system. To examine this, we investigated the effect of chronic liquid nutrition intake (Fresubin) on stomach and duodenum morphology in Wistar rats fed liquid nutrition during different developmental periods. We used four groups of rats: a) control group (CON) fed pelleted chow for 130days; b) liquid nutrition group (LN) fed liquid nutrition for 130days; c) liquid nutrition juvenile group (LNJ) fed liquid nutrition for 70days and then pelleted food for 60days; d) liquid nutrition adult group (LNA) fed pelleted chow for 70days and then liquid nutrition for 60days. We found that LN and LNA rats showed a significant reduction of empty stomach mass compared to CON animals, while stomach and duodenal longitudinal muscle layer thickness did not differ between groups. Villus height was increased only in LNA animals, while villus width was increased in both LN and LNA rats. Crypt depth was reduced in LNJ. However, liquid nutrition intake did not affect villus height/crypt depth ratio, nor number of goblet cells. We found that chronic intake of liquid nutrition affects some morphological parameters of the stomach and duodenum but these changes were not homogenous between experimental groups. Interestingly, transition from liquid nutrition to solid food reversed the alterations of stomach weight as well as villus width induced by intake of liquid nutrition in LNA rats. Our data indicate that morphological and functional changes in the gastrointestinal system induced by qualitative and quantitative changes in food intake are at least partially reversible. Therefore, specific diets may be used potentially as adjuvant treatment for modulating the progression of gastrointestinal diseases by affecting stomach and small intestine morphology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Proteomics Analysis of the Adhesion Activity of Lactobacillus acidophilus ATCC 4356 Upon Growth in an Intestine-Like pH Environment.

    PubMed

    Wu, Zhen; Wang, Gang; Wang, Wenwen; Pan, Daodong; Peng, Liuyang; Lian, Liwei

    2018-03-01

    Many health effects of Lactobacillus acidophilus are desirable among these the adhesion ability is vital to enhance the possibility of colonization and stabilization associated with the gut mucosal barrier. In this study, the growth characteristics and the adhesion activity of L. acidophilus in the intestine-like pH environment (pH 7.5) are identified. The number of bacteria adhering to the HT-29 cells is found with a gradual increase trend (pH 5.5-7.5). This also leads to the morphological changes of L. acidophilus after exposure to different pH environments. Furthermore, with the help of the isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis, 207 proteins are detected differentially expressed at pH of 7.5. The use of GO analysis and KEGG analysis indicates three essential pathways related to the cell envelope peptide-glycan biosynthesis, carbohydrate metabolism, and amino acid metabolism are obviously changed. Adhesion related surface protein fmtB and PrtP are upregulated in pH 7.5 group. While the moonlight proteins like pyruvate kinase, which binds specifically to the mucin layer and inhibits the adhesive activity of L. acidophilus, is found downregulated. These results could be useful to understand the adhesion mechanism of L. acidophilus adapting for the gut mucosal barrier in the intestinal environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of semielemental diet containing whey peptides on Peyer's patch lymphocyte number, immunoglobulin A levels, and intestinal morphology in mice.

    PubMed

    Moriya, Tomoyuki; Fukatsu, Kazuhiko; Noguchi, Midori; Nishikawa, Makoto; Miyazaki, Hiromi; Saitoh, Daizoh; Ueno, Hideki; Yamamoto, Junji

    2018-02-01

    Enteral nutrition (EN) is the gold standard of nutritional therapy for critically ill or severely injured patients, because EN promotes gut and hepatic immunity, thereby preventing infectious complications as compared with parenteral nutrition. However, there are many EN formulas with different protein and fat contents. Their effects on gut-associated lymphoid tissue remain unclear. Recently, semielemental diets (SEDs) containing whey peptides as a nitrogen source have been found to be beneficial in patients with malabsorption or pancreatitis. Herein, we examined the influences of various dietary formulations on gut immunity to clarify the advantages of SEDs over elemental diets. Forty-four male Institute of Cancer Research mice were randomized to four groups: chow (CH: n = 5), intragastric total parenteral nutrition (IG-TPN: n = 13), elemental diet (ED: n = 13), and SED (n = 13). The CH group received CH diet ad libitum, whereas the IG-TPN, ED (Elental, Ajinomoto, Japan), and SED (Peptino, Terumo, Japan) groups were given their respective diets for 5 day via gastrostomy. After 5 days, the mice were killed to obtain whole small intestines. Peyer's patch (PP) lymphocytes were harvested and counted. Their subpopulations were evaluated by flow cytometry. Immunoglobulin A (IgA) levels in intestinal and respiratory tract washings were measured with enzyme-linked immunosorbent assay. Villous height (VH) and crypt depth in the distal intestine were measured by light microscopy. SED increased the PP cell number and intestinal or respiratory IgA levels to those of CH mice, while ED partially restored these parameters. The IG-TPN group showed the lowest PP cell number and IgA levels among the four groups. VH was significantly greater in the CH than in the other groups. VH in the ED and SED groups also exceeded in the IG-TPN group, while being similar in these two groups. No significant crypt depth differences were observed among the four groups. SED administration can be recommended for patients unable tolerate complex enteral diets or a normal diet in terms of not only absorption and tolerability but also maintenance of gut immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Accumulative effect of food residues on intestinal gas production.

    PubMed

    Mego, M; Accarino, A; Malagelada, J-R; Guarner, F; Azpiroz, F

    2015-11-01

    As mean transit time in the colon is longer than the interval between meals, several consecutive meal loads accumulate, and contribute to colonic biomass. Our aim was to determine the summation effect of fermentable food residues on intestinal gas production. In eight healthy subjects, the volume of endogenous intestinal gas produced in the intestine over a 4-h period was measured by means of a wash-out technique, using an exogenous gas infusion into the jejunum (24 mL/min) and collection of the effluent via a rectal Foley catheter. The exogenous gas infused was labeled (5% SF6 ) to calculate the proportion of endogenous intestinal gas evacuated. In each subject, four experiments were performed ≥1 week apart combining a 1-day high- or low-flatulogenic diet with a test meal or fast. Basal conditions: on the low-flatulogenic diet, intestinal gas production during fasting over the 4-h study period was 609 ± 63 mL. Effect of diet: during fasting, intestinal gas production on the high-flatulogenic diet was 370 ± 146 mL greater than on the low-flatulogenic diet (p = 0.040). Effect of test meal: on the low-flatulogenic diet, intestinal gas production after the test meal was 681 ± 114 mL greater than during fasting (p = 0.001); a similar effect was observed on the high-flatulogenic diet (599 ± 174 mL more intestinal gas production after the test meal than during fasting; p = 0.021). Our data demonstrate temporal summation effects of food residues on intestinal gas production. Hence, intestinal gas production depends on pre-existing and on recent colonic loads of fermentable foodstuffs. © 2015 John Wiley & Sons Ltd.

  3. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.; O’Flaherty, Sarah; Goh, Yong Jun; Carroll, Ian; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components. PMID:28713337

  4. A Comparison of Molecular and Histopathological Changes in Mouse Intestinal Tissue Following Whole-Body Proton- or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Mangala, Lingegowda; Zhang, Ye; Hamilton, Stanley; Wu, Honglu

    2010-01-01

    There are many consequences following exposure to the space radiation environment which can adversely affect the health of a crew member. Acute radiation syndrome (ARS) involving nausea and vomiting, damage to radio-sensitive tissue such as the blood forming organs and gastrointestinal tract, and cancer are some of these negative effects. The space radiation environment is ample with protons and contains gamma rays as well. Little knowledge exists to this point, however, regarding the effects of protons on mammalian systems; conversely several studies have been performed observing the effects of gamma rays on different animal models. For the research presented here, we wish to compare our previous work looking at whole-body exposure to protons using a mouse model to our studies of mice experiencing whole-body exposure to gamma rays as part of the radio-adaptive response. Radio-adaptation is a well-documented phenomenon in which cells exposed to a priming low dose of radiation prior to a higher dose display a reduction in endpoints like chromosomal aberrations, cell death, micronucleus formation, and more when compared to their counterparts receiving high dose-irradiation only. Our group has recently completed a radio-adaptive experiment with C57BL/6 mice. For both this study and the preceding proton research, the gastrointestinal tract of each animal was dissected four hours post-irradiation and the isolated small intestinal tissue was fixed in formalin for histopathological examination or snap-frozen in liquid nitrogen for RNA isolation. Histopathologic observation of the tissue using standard H&E staining methods to screen for morphologic changes showed an increase in apoptotic lesions for even the lowest doses of 0.1 Gy of protons and 0.05 Gy of gamma rays, and the percentage of apoptotic cells increased with increasing dose. A smaller percentage of crypts showed 3 or more apoptotic lesions in animals that received 6 Gy of gamma-irradiation compared to mice receiving only 2 Gy of protons. Tissue of the gastrointestinal tract was also homogenized and RNA was isolated for cDNA synthesis and real-time PCR analysis. Inspecting apoptotic lesions of the duodenum of the small intestine as an endpoint of damage did not reveal a radio-adaptive response in C57BL/6 mice at the four hour time point. Results of gene expression changes showed consistent up or down regulation of a number of genes for all of the exposure doses that may play a role in proton-induced apoptosis. Preliminary results of gene expression alterations as a result of gamma-irradiation revealed a wealth of genes involved in oxidative stress and antioxidant defense processes being up- or down-regulated only at the highest exposure dose of 6 Gy and the combined dose of 5 cGy with 6 Gy. Those animals undergoing only 5 cGy of gamma-irradiation showed very little modification of gene expression. Taken together these results lead us to conclude that protons cause more severe morphologic damage to the duodenum of the small intestine at a dose of 2 Gy than a higher dose of 6 Gy of gamma rays to the same organ. Both protons and gamma rays lead to significant variation in gene expression at high doses in the small intestine and these changes may provide insight into the mechanism of injury seen in the gastrointestinal tract following radiation exposure. Astronauts experiencing prolonged exposure to protons in the low Earth orbit and in deep space, and experiencing acute exposure to protons from solar particle events, may face biological consequences that will impact a mission s success. We will continue this work by studying, quantifying, and comparing damage due to protons and gamma rays in the small intestine as well as other organs in a time-dependent manner.

  5. Preparation and characterization of the graft copolymer of chitosan with poly[rosin-(2-acryloyloxy)ethyl ester].

    PubMed

    Duan, Wengui; Chen, Chunhong; Jiang, Linbin; Li, Guang Hua

    2008-09-05

    Graft copolymerization of rosin-(2-acryloyloxy)ethyl ester (RAEE) onto chitosan (Cts) was carried out under microwave irradiation using potassium persulfate as an initiator. The structures, morphology, and thermal properties of the Cts graft copolymer (Cts-g-PRAEE) were characterized by means of FT-IR, XRD, SEM, and TG. Also, Cts and Cts-g-PRAEE copolymer were used as carriers of fenoprofen calcium (FC), and their controlled release behavior in artificial intestinal juice were studied. The results show that the rate of release of fenoprofen calcium from the carrier of Cts-g-PRAEE copolymer becomes very slower than that of Cts in artificial intestinal juice. Copyright © 2008. Published by Elsevier Ltd.

  6. Morphological and molecular differentiation of Parastrigea (Trematoda: Strigeidae) from Mexico, with the description of a new species.

    PubMed

    Hernández-Mena, David Iván; García-Prieto, Luís; García-Varela, Martín

    2014-04-01

    Parastrigea plataleae n. sp. (Digenea: Strigeidae) is described from the intestine of the roseate spoonbill Platalea ajaja (Threskiornithidae) from four localities on the Pacific coast of Mexico. The new species is mainly distinguished from the other 18 described species of Parastrigea based on the ratio of its hindbody length to forebody length. A principal component analysis (PCA) of 16 morphometric traits for 15 specimens of P. plataleae n. sp., five of Parastrigea cincta and 11 of Parastrigea diovadena previously recorded in Mexico, clearly shows three clusters, which correspond to the three species. DNA sequences of the internal transcribed spacers (ITSs) of ribosomal DNA and the mitochondrial gene cytochrome c oxidase subunit I (cox 1) were used to corroborate this morphological distinction. The genetic divergence estimated among P. plataleae n. sp., P. cincta and P. diovadena ranged from 0.5 to 1.48% for ITSs and from 9.31 to 11.47% for cox 1. Maximum parsimony (MP) and maximum likelihood (ML) analyses were performed on the combined datasets (ITSs+cox 1) and on each dataset alone. All of the phylogenetic analyses indicated that the specimens from the roseate spoonbill represent a clade with strong bootstrap support. The morphological evidence and the genetic divergence in combination with the reciprocal monophyly in all of the phylogenetic trees support the hypothesis that the digeneans found in the intestines of roseate spoonbills represent a new species. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Morphological and functional alterations of small intestine in chronic pancreatitis.

    PubMed

    Gubergrits, Natalya B; Linevskiy, Yuri V; Lukashevich, Galina M; Fomenko, Pavel G; Moroz, Tatyana V; Mishra, Tapan

    2012-09-10

    The small intestine in chronic pancreatitis has not been investigated yet thoroughly. It would be important to understand fat metabolism in the course of this disease and could be explained if the small intestine has some pathological conditions and, due to this reason, pancreatic enzyme substitution does not work in all patients. To investigate the pathophysiology of small intestine in chronic pancreatitis and to show the reason why in some cases pancreatic enzyme substitution does not work properly. In the process of the study 33 chronic pancreatitis patients have been examined. The control group includes 30 subjects without chronic pancreatitis similar for age, sex and alcohol consumption to the patients with chronic pancreatitis patients. Aspiration biopsy of jejunum mucosa followed by histological examination and investigation of intestinal enzymes by aspiration has been performed. Metabolism at membranic level has been studied by enzymatic activity of amylase and lipase in the small intestine. Production of enzymes (monoglyceride lipase, lactase, saccharase, maltase, glycyl-l-leucine dipeptidase) promoting metabolism in enterocytes has been estimated as to their activity in homogenates of jejunum mucosa samples. Participation of mucosa in intestinal digestion has been assessed by alkaline phosphatase activity in a secretory chyme from proximal portion of jejunum. Absorptive capacity of jejunum was evaluated by D-xylose test results. DNA, lysozyme, immunoglobulin contents of chyme have also been calculated and bacteriological study of chyme has been also performed. Secondary enteritis, accompanied by moderate dystrophic changes of mucous membrane, thinning of limbus, and decrease of Paneth cell mitotic index, was found to occur in chronic pancreatitis patients. Enteritis is followed by changes in enzymatic processes in the sphere of membrane and intestinal digestion, decrease of absorption, accelerated desquamation of epithelium, fall in local immunity and development of bacterial overgrowth syndrome. Existence of secondary enteritis and bacterial overgrowth syndrome validates lack of enzyme replacement therapy efficacy in some chronic pancreatitis patients with pancreatic insufficiency. To optimize treatment in such cases it is important to perform small intestine decontamination and escalate enzyme preparation dosage.

  8. Trematodes Recovered in the Small Intestine of Stray Cats in the Republic of Korea

    PubMed Central

    Chai, Jong-Yil; Bahk, Young Yil

    2013-01-01

    In 2005, we reported the infection status of 438 stray cats with various species of intestinal helminths, including nematodes (4 species), trematodes (23 species), and cestodes (5 species) in the Republic of Korea. However, morphologic details of each helminth species have not been provided. In the present study, we intended to describe morphologic details of 13 trematode species which were either new fauna of cats (10 species) or new fauna of not only cats but also all animal hosts (3 species). The worms were fixed in 10% neutral buffered formalin under a cover slip pressure, stained with Semichon's acetocarmine, and then observed using a light microscope equipped with a micrometer. The 13 subjected species included members of the Heterophyidae (Stellantchasmus falcatus, Stictodora fuscata, Stictodora lari, Centrocestus armatus, Procerovum varium, and Cryptocotyle concava), Echinostomatidae (Echinostoma hortense, Echinostoma revolutum, Echinochasmus japonicus, and Stephanoprora sp.), Diplostomidae (Neodiplostomum seoulense), Plagiorchiidae (Plagiorchis muris), and Dicrocoeliidae (Eurytrema pancreaticum). By the present study, Cryptocotyle sp. and Neodiplostomum sp. recored in our previous study were identified as C. concava and N. seoulense, respectively. Three species, P. varium, C. concava, and Stephanoprora sp., are new trematode fauna in Korea. PMID:23467726

  9. Serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats.

    PubMed

    Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana

    2006-09-11

    The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.

  10. Morphological features of an endangered Japanese strain of Cyprinus carpio: reconstruction based on seven SNP markers.

    PubMed

    Atsumi, K; Song, H Y; Senou, H; Inoue, K; Mabuchi, K

    2017-03-01

    Morphological analyses of 183 specimens of Japanese common carp Cyprinus carpio (171 from Lake Biwa and 12 from nursery ponds) using genetic hybrid indices demonstrated that the typical native Japanese strain of C. carpio has a more elongate body, more branched dorsal-fin rays, fewer and shorter gill rakers, more developed pneumatic bulb, more coiled pneumatic duct, longer posterior swimbladder and shorter intestine than the typical introduced C. carpio. These results provide a basis for a better understanding of the ecological characteristics and taxonomic status of the endangered Japanese strain of C. carpio. © 2016 The Fisheries Society of the British Isles.

  11. Effect of Vilon and Epithalon on glucose and glycine absorption in various regions of small intestine in aged rats.

    PubMed

    Khavinson, V Kh; Egorova, V V; Timofeeva, N M; Malinin, V V; Gordova, L A; Gromova, L V

    2002-05-01

    Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly) administered orally for 1 month improved transport characteristics of the small intestine in aged rats. Vilon enhanced passive glucose accumulation in the serous fluid in inverted sac made from the distal region of the small intestine, while Epithalon enhanced this process in the medial region. Vilon stimulated active glucose accumulation in the serous sac of the medial small intestine, Epithalon - in the proximal and distal small intestinal segments. Glycine absorption increased only in the proximal intestinal segment under the effect of Epithalon.

  12. Survival after total body irradiation: Effects of irradiation of exteriorized small intestine. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.

    1993-12-31

    Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes inmore » small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.« less

  13. Human intestinal anisakiosis due to consumption of raw salmon.

    PubMed

    Couture, Christian; Measures, Lena; Gagnon, Joël; Desbiens, Christine

    2003-08-01

    Anisakiosis is a parasitic infection that follows consumption of raw or insufficiently pickled, salted, smoked, or cooked wild marine fish infected with Anisakis sp. larvae. We report a case of intestinal anisakiosis in a 50-year-old man from Quebec who presented with abdominal pain and peripheral eosinophilia after eating raw wild-caught salmon from the Pacific Ocean off Canada. Abdominal CT scan showed bowel distension proximal to a segmental jejunal wall thickening, which was resected. The jejunum segment showed a localized area of serositis with mucosal edema and a submucosal abscess rich in eosinophils surrounding a parasite consistent with the third larval stage of Anisakis sp. Diagnostic morphologic characteristics included an unpaired excretory gland (renette cell), Y-shaped lateral epidermal cords, no apparent reproductive system, and a ventriculus (glandular esophagus). These features and the absence of lateral alae excluded Ascaris sp. The absence of ventricular appendage and intestinal cecum excluded other anisakids of the genera Pseudoterranova and Contracaecum. As the popularity of eating raw fish is growing in North America, anisakiosis may be diagnosed more frequently in surgical specimens. This parasitic infection should be considered in the differential diagnosis of acute abdominal syndromes and eosinophilic infiltrates of the stomach, small intestine, colon, omentum, and mesentery, especially with a history of raw marine fish consumption.

  14. Human intestinal mucosal mast cells: expanded population in untreated coeliac disease.

    PubMed Central

    Strobel, S; Busuttil, A; Ferguson, A

    1983-01-01

    Previous retrospective studies of intestinal mucosal mast cells in coeliac disease have given divergent results, and we have recently reported that inappropriate methodology could account for these discrepancies. In this prospective study, mucosal mast cell counts were performed in Carnoy fixed, peroral jejunal biopsy specimens from patients with coeliac disease, both untreated and treated with a gluten-free diet; and from controls (mainly irritable bowel syndrome). Mean mucosal mast cell count in 27 control subjects was 146/mm2, SD 29. Significantly higher values were obtained in untreated coeliac disease (mean 243, SD 41, p less than 0.001) returning to the normal range in coeliacs treated with a gluten-free diet with normal jejunal biopsy morphology. In seven patients mucosal mast cell counts were performed in multiple jejunal biopsies, and these showed that mucosal mast cell distribution was not patchy. There was no evidence of degranulation of intestinal mucosal mast cells under the conditions of routine biopsy (overnight fast). An increase in mucosal mast cells in untreated coeliac disease may be one explanation for the high number of IgE positive stained cells in the intestinal mucosa that has been reported by some authors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6826106

  15. Surgical Anatomy of the Gastrointestinal Tract and Its Vasculature in the Laboratory Rat

    PubMed Central

    Vdoviaková, Katarína; Petrovová, Eva; Maloveská, Marcela; Krešáková, Lenka; Teleky, Jana; Elias, Mario Zefanias Joao; Petrášová, Darina

    2016-01-01

    The aim of this study was to describe and illustrate the morphology of the stomach, liver, intestine, and their vasculature to support the planning of surgical therapeutic methods in abdominal cavity. On adult Wistar rats corrosion casts were prepared from the arterial system and Duracryl Dental and PUR SP were used as a casting medium and was performed macroscopic anatomical dissection of the stomach, liver, and intestine was performed. The rat stomach was a large, semilunar shaped sac with composite lining. On the stomach was very marked fundus, which formed a blind sac (saccus cecus). The rat liver was divided into six lobes, but without gall bladder. Intestine of the rat was simple, but cecum had a shape as a stomach. The following variations were observed in the origin of the cranial mesenteric artery. On the corrosion cast specimens we noticed the presence of the anastomosis between middle colic artery (a. colica media) and left colic artery (a. colica sinistra). We investigated the second anastomosis between middle colic artery and left colic artery. The results of this study reveal that the functional anatomical relationship between the rat stomach, liver and intestine is important for the development of surgical research in human and veterinary medicine. PMID:26819602

  16. Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora.

    PubMed

    Sun, Qingshen; Shi, Yue; Wang, Fuying; Han, Dequan; Lei, Hong; Zhao, Yao; Sun, Quan

    2015-01-01

    To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.

  17. Effects of lysolecithin supplementation in low-energy diets on growth performance, nutrient digestibility, viscosity and intestinal morphology of broilers.

    PubMed

    Papadopoulos, G A; Poutahidis, T; Chalvatzi, S; Di Benedetto, M; Hardas, A; Tsiouris, V; Georgopoulou, I; Arsenos, G; Fortomaris, P D

    2018-04-01

    1. The study aimed to investigate the effect of lysolecithin supplementation in low-energy diets on growth, nutrient digestibility and intestinal mucosa characteristics of broilers. 2. A total of 800 one-d-old Ross 308 broiler chickens were assigned to 4 dietary treatments consisting of 10 replicates of 20 broilers each. Broilers were fed with 4 different diets: (i) HE: positive control group broilers received a diet with unaltered energy; (ii) LE: negative control group broilers received a diet with lower energy of about 0.27 MJ/kg; (iii) LElys500: broilers received a diet similar to LE supplemented with 500 g/tn lysolecithin product (Lysoforte Booster Dry TM ); and (iv) LElys300: broilers received a diet similar to LE supplemented with 300 g/tn lysolecithin product. The experimental period was 42 d. 3. Body weight gain in treatments HE was higher than LE during the overall experimental period, while LElys500 and LElys300 had intermediate values. Feed conversion ratio was lower in HE and LElys500 than LE group, while the LElys300 had intermediate values. Fat digestibility was improved in both LElys 500 and LElys300 compared to the HE group. Apparent metabolisable energy (AMEn) was higher in HE, LElys500 and LElys300 than LE. Ileum viscosity at 42 d was also affected, being higher in LE group compared to HE. At 28 d mucosal thickness was lower both in LElys500 and LElys300 compared to HE and LE, while no difference occurred between treatment proliferation patterns of duodenal epithelial cells. 4. These findings indicated that lysolecithin supplementation at 500 g/tn of feed in low-energy diets maintained broiler performance. Supplementation of reformulated low-energy diets induced an increase in digesta viscosity. Lysolecithin supplementation resulted in variable alterations in the duodenum mucosal morphology.

  18. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2014-07-30

    Brain-derived neurotrophic factor (BDNF) is produced by developing and mature gastrointestinal (GI) tissues that are heavily innervated by autonomic neurons and may therefore control their development or function. To begin investigating this hypothesis, we compared the morphology, distribution, and density of intraganglionic laminar endings (IGLEs), the predominant vagal GI afferent, in mice with reduced intestinal BDNF (INT-BDNF(-/-)) and controls. Contrary to expectations of reduced development, IGLE density and longitudinal axon bundle number in the intestine of INT-BDNF(-/-) mice were increased, but stomach IGLEs were normal. INT-BDNF(-/-) mice also exhibited increased vagal sensory neuron numbers, suggesting that their survival was enhanced. To determine whether increased intestinal IGLE density or other changes to gut innervation in INT-BDNF(-/-) mice altered feeding behavior, meal pattern and microstructural analyses were performed. INT-BDNF(-/-) mice ate meals of much shorter duration than controls, resulting in reduced meal size. Increased suppression of feeding in INT-BDNF(-/-) mice during the late phase of a scheduled meal suggested that increased satiation signaling contributed to reduced meal duration and size. Furthermore, INT-BDNF(-/-) mice demonstrated increases in total daily intermeal interval and satiety ratio, suggesting that satiety signaling was augmented. Compensatory responses maintained normal daily food intake and body weight in INT-BDNF(-/-) mice. These findings suggest a target organ-derived neurotrophin suppresses development of that organ's sensory innervation and sensory neuron survival and demonstrate a role for BDNF produced by peripheral tissues in short-term controls of feeding, likely through its regulation of development or function of gut innervation, possibly including augmented intestinal IGLE innervation. Copyright © 2014 the authors 0270-6474/14/3410379-15$15.00/0.

  19. Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent

    PubMed Central

    Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim

    2016-01-01

    Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565

  20. Differentiation of a murine intestinal epithelial cell line (MIE) toward the M cell lineage.

    PubMed

    Kanaya, Takashi; Miyazawa, Kohtaro; Takakura, Ikuro; Itani, Wataru; Watanabe, Kouichi; Ohwada, Shyuichi; Kitazawa, Haruki; Rose, Michael T; McConochie, Huw R; Okano, Hideyuki; Yamaguchi, Takahiro; Aso, Hisashi

    2008-08-01

    M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.

  1. Molecular identification and real-time quantitative PCR (qPCR) for rapid detection of Thelohanellus kitauei, a Myxozoan parasite causing intestinal giant cystic disease in the Israel carp.

    PubMed

    Seo, Jung Soo; Jeon, Eun Ji; Kim, Moo Sang; Woo, Sung Ho; Kim, Jin Do; Jung, Sung Hee; Park, Myoung Ae; Jee, Bo Young; Kim, Jin Woo; Kim, Yi-Cheong; Lee, Eun Hye

    2012-06-01

    Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.

  2. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    PubMed

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  3. Intestinal anti-inflammatory activity of apigenin K in two rat colitis models induced by trinitrobenzenesulfonic acid and dextran sulphate sodium.

    PubMed

    Mascaraque, Cristina; González, Raquel; Suárez, María Dolores; Zarzuelo, Antonio; Sánchez de Medina, Fermín; Martínez-Augustin, Olga

    2015-02-28

    Flavonoids are polyphenolic compounds that are widespread in nature, and consumed as part of the human diet in significant amounts. The aim of the present study was to test the intestinal anti-inflammatory activity of apigenin K, a soluble form of apigenin, in two models of rat colitis, namely the trinitrobenzenesulfonic acid (TNBS) model and the dextran sulphate sodium (DSS) model. Apigenin K (1, 3 and 10 mg/kg; by the oral route; n 4-6 per group) was administered as a pre-treatment to rats with TNBS and DSS colitis, and colonic status was checked by macroscopic and biochemical examination. Apigenin K pre-treatment resulted in the amelioration of morphological signs and biochemical markers in the TNBS model. The results demonstrated a reduction in the inflamed area, as well as lower values of score and colonic weight:length ratio compared with the TNBS group. Myeloperoxidase (MPO) activity was reduced by 30 % (P< 0·05). Moreover, apigenin K pre-treatment ameliorated morphological signs and biochemical markers in the DSS model. Thus, macroscopic damage was significantly reduced and the colonic weight:length ratio was lowered by approximately 10 %, while colonic MPO and alkaline phosphatase activities were decreased by 35 and 21 %, respectively (P< 0·05). Apigenin K pre-treatment also tended to normalise the expression of a number of colonic inflammatory markers (e.g. TNF-α, transforming growth factor-β, IL-6, intercellular adhesion molecule 1 or chemokine (C-C motif) ligand 2). In conclusion, apigenin K is found to have anti-inflammatory effects in two preclinical models of inflammatory bowel disease.

  4. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    PubMed

    Latorre, Eva; Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Alcalde, Ana I; Mesonero, José E

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.

  5. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation

    PubMed Central

    Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Mesonero, José E.

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system. PMID:28033388

  6. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  7. Optimal Solution Volume for Luminal Preservation: A Preclinical Study in Porcine Intestinal Preservation.

    PubMed

    Oltean, M; Papurica, M; Jiga, L; Hoinoiu, B; Glameanu, C; Bresler, A; Patrut, G; Grigorie, R; Ionac, M; Hellström, M

    2016-03-01

    Rodent studies suggest that luminal solutions alleviate the mucosal injury and prolong intestinal preservation but concerns exist that excessive volumes of luminal fluid may promote tissue edema. Differences in size, structure, and metabolism between rats and humans require studies in large animals before clinical use. Intestinal procurement was performed in 7 pigs. After perfusion with histidine-tryptophan-ketoglutarate (HTK), 40-cm-long segments were cut and filled with 13.5% polyethylene glycol (PEG) 3350 solution as follows: V0 (controls, none), V1 (0.5 mL/cm), V2 (1 mL/cm), V3 (1.5 mL/cm), and V4 (2 mL/cm). Tissue and luminal solutions were sampled after 8, 14, and 24 hours of cold storage (CS). Preservation injury (Chiu score), the apical membrane (ZO-1, brush-border maltase activity), and the electrolyte content in the luminal solution were studied. In control intestines, 8-hour CS in HTK solution resulted in minimal mucosal changes (grade 1) that progressed to significant subepithelial edema (grade 3) by 24 hours. During this time, a gradual loss in ZO-1 was recorded, whereas maltase activity remained unaltered. Moreover, variable degrees of submucosal edema were observed. Luminal introduction of high volumes (2 mL/mL) of PEG solution accelerated the development of the subepithelial edema and submucosal edema, leading to worse histology. However, ZO-1 was preserved better over time than in control intestines (no luminal solution). Maltase activity was reduced in intestines receiving luminal preservation. Luminal sodium content decreased in time and did not differ between groups. This PEG solution protects the apical membrane and the tight-junction proteins but may favor water absorption and tissue (submucosal) edema, and luminal volumes >2 mL/cm may result in worse intestinal morphology. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis.

    PubMed

    Pham, Bao Tung; van Haaften, Wouter Tobias; Oosterhuis, Dorenda; Nieken, Judith; de Graaf, Inge Anne Maria; Olinga, Peter

    2015-04-01

    Intestinal fibrosis (IF) is a major complication of inflammatory bowel disease. IF research is limited by the lack of relevant in vitro and in vivo models. We evaluated precision-cut intestinal slices (PCIS) prepared from human, rat, and mouse intestine as ex vivo models mimicking the early-onset of (human) IF. Precision-cut intestinal slices prepared from human (h), rat (r), and mouse (m) jejunum, were incubated up to 72 h, the viability of PCIS was assessed by ATP content and morphology, and the gene expression of several fibrosis markers was determined. The viability of rPCIS decreased after 24 h of incubation, whereas mPCIS and hPCIS were viable up to 72 h of culturing. Furthermore, during this period, gene expression of heat shock protein 47 and plasminogen activator inhibitor 1 increased in all PCIS in addition to augmented expression of synaptophysin in hPCIS, fibronectin (Fn2) and TGF-β1 in rPCIS, and Fn2 and connective tissue growth factor (Ctgf) in mPCIS. Addition of TGF-β1 to rPCIS or mPCIS induced the gene expression of the fibrosis markers Pro-collagen1a1, Fn2, and Ctgf in both species. However, none of the fibrosis markers was further elevated in hPCIS. We successfully developed a novel ex vivo model that can mimic the early-onset of fibrosis in the intestine using human, rat, and mouse PCIS. Furthermore, in rat and mouse PCIS, TGF-β1 was able to even further increase the gene expression of fibrosis markers. This indicates that PCIS can be used as a model for the early-onset of IF. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Ex Vivo and In Situ Evaluation of 'Dispelling-Wind' Chinese Medicine Herb-Drugs on Intestinal Absorption of Chlorogenic Acid.

    PubMed

    Zhai, Lixiang; Shi, Jun; Xu, Weitong; Heinrich, Michael; Wang, Jianying; Deng, Wenji

    2015-12-01

    This study aims to investigate the additive or synergistic effects and mechanism of intestinal absorption of extracts from two commonly used 'dispelling-wind' TCM botanical drugs [roots of Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (RAD) and Saposhnikovia divaricata (Turcz.) Schischk. (RSD)] using chlorogenic acid as a marker substance. Ex vivo everted intestinal sac and in situ single pass perfusion methods using rats were employed to investigate the effects of two TCM botanical drugs extracts on the intestinal absorption of chlorogenic acid. Both the extracts of RAD and RSD showed synergistic properties on the intestinal absorption of chlorogenic acid. The verapamil (a P-gp inhibitor) and intestinal dysbacteriosis model induced by norfloxacin increased the P(app) and K(a) of intestinal absorption of chlorogenic acid. These synergistic effects on intestinal absorption in a rat model can be correlated with the inhibition of P-gp and regulation of gut microbiota. This experimental approach has helped to better understand changes in the absorption of chlorogenic acid under different conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  11. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    PubMed Central

    Gupta, Pankaj; Debi, Uma; Sinha, Saroj Kant; Prasad, Kaushal Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract (GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence, a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities. PMID:25170399

  12. Morphology of certain viruses of Salmonid fishes. II. In vivo studies of infectious Hematopoietic Necrosis Virus

    USGS Publications Warehouse

    Amend, Donald F.; Chambers, Velma C.

    1970-01-01

    Juvenile sockeye salmon (Oncorhynchus nerka) were injected with the infectious hematopoietic necrosis (IHN) virus, and tissue samples from the anterior kidney, spleen, liver, intestine, and pyloric caeca of moribund fish were prepared for electron microscopy. Bullet-shaped virus particles measuring 158 × 90 mμ were observed in the hematopoietic tissues of the anterior kidney and spleen. Virus particles were also observed in the outer connective tissues of the pancreas or pyloric caeca, or both. No virus was found in the intestine or liver. The healthy appearance of erythrocytes, reticular cells, and endothelial cells in necrotic areas of the spleen and anterior kidney, and the absence of lymphocytes in these areas, suggested that lymphocytes might be one source of the virus.

  13. Endemic tropical sprue in Rhodesia.

    PubMed

    Thomas, G; Clain, D J

    1976-11-01

    The existence of tropical sprue in Africa is controversial. In this paper we present 31 cases seen in Rhodesia over a 15 month period. They have the clinical features, small intestinal morphology, malabsorption pattern, and treatment response of tropical sprue. Other causes of malabsorption, and primary malnutrition, have been excluded. The severity of the clinical state and intestinal malabsorption distinguish these patients from those we have described with tropical enteropathy. The previous work on tropical sprue in Africa is reviewed and it is apparent that, when it has been adequately looked for, it has been found. It is clear that the question of tropical sprue in Africa must be re-examined and that it existence may have hitherto been concealed by the assumption that primary malnutrition is responsible for the high prevalence of deficiency states.

  14. Natural Tissue Microenvironmental Conditions Modulate Adhesive Material Performance

    PubMed Central

    Oliva, Nuria; Shitreet, Sagi; Abraham, Eytan; Stanley, Butch; Edelman, Elazer R.; Artzi, Natalie

    2015-01-01

    We designed and optimized tissue-responsive adhesive materials by matching material and tissue properties. A two-component material based on dextran aldehyde and dendrimer amine provides a cohesive gel through aldehyde–amine cross-linking and an adhesive interface created by a dextran aldehyde-selective reaction with tissue amines. By altering aldehyde–amine chemistry, we examined how variations in tissue surfaces (serosal amine density in the duodenum, jejunum, and ileum) affect interactions with adhesive materials of varied compositions (aldehyde content). Interestingly, the same adhesive formulation reacts differentially with the three regions of the small intestine as a result of variation in the tissue amine density along the intestinal tract, affecting the tissue–material interfacial morphology, adhesion strength, and adhesive mechanical properties. Whereas tissues provide chemical anchors for interaction with materials, we were able to tune the adhesion strength for each section of the small intestine tissue by altering the adhesive formulation using a two-component material with flexible variables aimed at controlling the aldehyde/amine ratio. This tissue-specific approach should be applied to the broad spectrum of biomaterials, taking into account specific microenvironmental conditions in material design. PMID:23046479

  15. Regulation of intestinal health by branched-chain amino acids.

    PubMed

    Zhou, Hua; Yu, Bing; Gao, Jun; Htoo, John Khun; Chen, Daiwen

    2018-01-01

    Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans. © 2017 Japanese Society of Animal Science.

  16. Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens.

    PubMed

    Sun, Yajing; Rajput, Imran Rashid; Arain, Muhammad Asif; Li, Yanfei; Baloch, Dost Muhammad

    2017-08-01

    The present study evaluated the effects of Saccharomyces boulardii on duodenal digestive enzymes, morphology and cytokine induction response in broiler chicken. A total of 200 birds were allotted into two groups (n = 100) and each group divided into five replications (n = 20). The control group was fed basal diet in addition to antibiotic (virginiamycin 20 mg/kg), and treatment group received (1 × 10 8  colony-forming units/kg feed) S. boulardii in addition to basal diet lasting for 72 days. The results compared to control group revealed that adenosine triphosphatase, gamma glutamyl transpeptidase, lipase and trypsin activities were higher, while, no significant improvement was observed in amylase activities in the duodenum of the treatment group. Moreover, morphological findings showed that villus height, width and number of goblet cells markedly increased. Additionally, transmission electron microscopy visualized that villus height, width and structural condensation significantly increased in the treatment group. The immunohistological observations showed increased numbers of immunoglobulin A (IgA)-positive cells in the duodenum of the treatment group. Meanwhile, cytokine production levels of tumor necrosis factor-α, interleukin (IL)-10, transforming growth factor-β and secretory IgA markedly increased, and IL-6 statistically remained unchanged as compared to the control group. These findings illustrated that initial contact of S. boulardii to the duodenum has significant impact in improving enzymatic activity, intestinal morphology and cytokine response in broiler chicken. © 2016 Japanese Society of Animal Science.

  17. Effect of raw legume diets on intestinal absorption of D-galactose by chick.

    PubMed

    Lasheras, B; Bolufer, J; Cenarruzabeitia, M N; Lluch, M; Larralde, J

    1980-03-01

    The effect of four raw legume diets on the intestinal absorption of D-galactose and oxygen consumption were studied in chick. Field beans (Vicia faba), soybeans (Glycine soja), bitter vetch (Vicia ervilia), and navy beans (Phaseolus vulgaris), were used. The intestinal absorption was determined by both in vivo and in vitro techniques. In vivo, only navy beans and soybeans inhibit intestinal transport of D-galactose, while in vitro all the diets do. Oxygen consumption by intestinal rings increases in chicks fed on bitter vetch diet.

  18. Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor: A Model for Better Understanding Childhood Undernutrition

    PubMed Central

    Baxter, Mikayla F. A.; Latorre, Juan D.; Koltes, Dawn A.; Dridi, Sami; Greene, Elizabeth S.; Bickler, Stephen W.; Kim, Jae H.; Merino-Guzman, Ruben; Hernandez-Velasco, Xochitl; Anthony, Nicholas B.; Bottje, Walter G.; Hargis, Billy M.; Tellez, Guillermo

    2018-01-01

    This article is the first in a series of manuscripts to evaluate nutritional rehabilitation in chickens as a model to study interventions in children malnutrition (Part 1: Performance, Bone Mineralization, and Intestinal Morphometric Analysis). Inclusion of rye in poultry diets induces a nutritional deficit that leads to increased bacterial translocation, intestinal viscosity, and decreased bone mineralization. However, it is unclear the effect of diet on developmental stage or genetic strain. Therefore, the objective was to determine the effects of a rye diet during either the early or late phase of development on performance, bone mineralization, and intestinal morphology across three diverse genetic backgrounds. Modern 2015 (Cobb 500) broiler chicken, 1995 Cobb broiler chicken, and the Giant Jungle Fowl were randomly allocated into four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial (corn–corn); (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet (rye–corn); (3) a malnutrition rye-diet that was fed throughout the trial (rye–rye); and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase (corn–rye). At 10 days of age, chicks were weighed and diets were switched in groups 2 and 4. At day 20 of age, all chickens were weighed and euthanized to collect bone and intestinal samples. Body weight, weight gain, and bone mineralization were different across diet, genetic line, age and all two- and three-way interactions (P < 0.05). Overall, Jungle Fowl were the most tolerant to a rye-based diet, and both the modern and 1995 broilers were significantly affected by the high rye-based diet. However, the 1995 broilers consuming the rye-based diet appeared to experience more permanent effects when compared with the modern broiler. The results of this study suggest that chickens have a great potential as a nutritional rehabilitation model in human trials. The 1995 broilers line was an intermediate genetic line between the fast growing modern line and the non-selected Jungle Fowl line, suggesting that it would be the most appropriate model to study for future studies. PMID:29629373

  19. Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor: A Model for Better Understanding Childhood Undernutrition.

    PubMed

    Baxter, Mikayla F A; Latorre, Juan D; Koltes, Dawn A; Dridi, Sami; Greene, Elizabeth S; Bickler, Stephen W; Kim, Jae H; Merino-Guzman, Ruben; Hernandez-Velasco, Xochitl; Anthony, Nicholas B; Bottje, Walter G; Hargis, Billy M; Tellez, Guillermo

    2018-01-01

    This article is the first in a series of manuscripts to evaluate nutritional rehabilitation in chickens as a model to study interventions in children malnutrition (Part 1: Performance, Bone Mineralization, and Intestinal Morphometric Analysis). Inclusion of rye in poultry diets induces a nutritional deficit that leads to increased bacterial translocation, intestinal viscosity, and decreased bone mineralization. However, it is unclear the effect of diet on developmental stage or genetic strain. Therefore, the objective was to determine the effects of a rye diet during either the early or late phase of development on performance, bone mineralization, and intestinal morphology across three diverse genetic backgrounds. Modern 2015 (Cobb 500) broiler chicken, 1995 Cobb broiler chicken, and the Giant Jungle Fowl were randomly allocated into four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial (corn-corn); (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet (rye-corn); (3) a malnutrition rye-diet that was fed throughout the trial (rye-rye); and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase (corn-rye). At 10 days of age, chicks were weighed and diets were switched in groups 2 and 4. At day 20 of age, all chickens were weighed and euthanized to collect bone and intestinal samples. Body weight, weight gain, and bone mineralization were different across diet, genetic line, age and all two- and three-way interactions ( P  < 0.05). Overall, Jungle Fowl were the most tolerant to a rye-based diet, and both the modern and 1995 broilers were significantly affected by the high rye-based diet. However, the 1995 broilers consuming the rye-based diet appeared to experience more permanent effects when compared with the modern broiler. The results of this study suggest that chickens have a great potential as a nutritional rehabilitation model in human trials. The 1995 broilers line was an intermediate genetic line between the fast growing modern line and the non-selected Jungle Fowl line, suggesting that it would be the most appropriate model to study for future studies.

  20. The Digestive Tract and Derived Primordia Differentiate by Following a Precise Timeline in Human Embryos Between Carnegie Stages 11 and 13.

    PubMed

    Ueno, Saki; Yamada, Shigehito; Uwabe, Chigako; Männer, Jörg; Shiraki, Naoto; Takakuwa, Tetsuya

    2016-04-01

    The precise mechanisms through which the digestive tract develops during the somite stage remain undefined. In this study, we examined the morphology and precise timeline of differentiation of digestive tract-derived primordia in human somite-stage embryos. We selected 37 human embryos at Carnegie Stage (CS) 11-CS13 (28-33 days after fertilization) and three-dimensionally analyzed the morphology and positioning of the digestive tract and derived primordia in all samples, using images reconstructed from histological serial sections. The digestive tract was initially formed by a narrowing of the yolk sac, and then several derived primordia such as the pharynx, lung, stomach, liver, and dorsal pancreas primordia differentiated during CS12 (21-29 somites) and CS13 (≥ 30 somites). The differentiation of four pairs of pharyngeal pouches was complete in all CS13 embryos. The respiratory primordium was recognized in ≥ 26-somite embryos and it flattened and then branched at CS13. The trachea formed and then elongated in ≥ 35-somite embryos. The stomach adopted a spindle shape in all ≥ 34-somite embryos, and the liver bud was recognized in ≥ 27-somite embryos. The dorsal pancreas appeared as definitive buddings in all but three CS13 embryos, and around these buddings, the small intestine bent in ≥ 33-somite embryos. In ≥ 35-somite embryos, the small intestine rotated around the cranial-caudal axis and had begun to form a primitive intestinal loop, which led to umbilical herniation. These data indicate that the digestive tract and derived primordia differentiate by following a precise timeline and exhibit limited individual variations. © 2016 Wiley Periodicals, Inc.

  1. Gastroschisis in the rat model is associated with a delayed maturation of intestinal pacemaker cells and smooth muscle cells.

    PubMed

    Midrio, P; Faussone-Pellegrini, M S; Vannucchi, M G; Flake, A W

    2004-10-01

    A pacemaker system is required for peristalsis generation. The interstitial cells of Cajal (ICC) are considered the intestinal pacemaker, and are identified by expression of the c-kit gene--encoded protein. Gastroschisis is characterized by a severe gastrointestinal dysmotility in newborns. In spite of this clinical picture, few studies have focused on smooth muscle cells (SMC) morphology and none on ICC. Therefore, their morphology has been studied in fetuses at term in the rat model of gastroschisis. At 18.5 day's gestation (E18.5), 10 rat fetuses were killed, 10 underwent surgical creation of gastroschisis, and 10 underwent manipulation only. The small intestine of the latter 2 groups was harvested at E21.5. Specimens were processed for H&E, c-kit and actin (alpha smooth muscle antibody [alpha-SMA]) immunohistochemistry, and transmission electron microscopy (TEM). In the controls, SMC were c-kit+ and alpha-SMA+, with labeling intensity increasing by age. At E21.5, some cells around the Auerbach's plexus were more intensely c-kit+, and differentiating ICC were seen under TEM at this level. Gastroschisis fetuses had no c-kit+ cells referable to ICC. In the more damaged loops, SMC were very faintly c-kit+ and alpha-SMA+. Under TEM, there were few differentiated SMC and no presumptive ICC. In the less-damaged loops, SMC were faintly c-kit+ and alpha-SMA+ and had ultrastructural features intermediate between those of E18.5 and E21.5 controls; ICC were very immature. ICC and SMC differentiation is delayed in gastroschisis with the most damaged loops showing the most incomplete picture. These findings might help in understanding the delayed onset of peristalsis and the variable time-course of the recover seen in babies affected by gastroschisis.

  2. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses.

    PubMed

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka; Marycz, Krzysztof

    2017-08-03

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.

  3. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses

    PubMed Central

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka

    2017-01-01

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)—the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs’ and IECs’ morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome. PMID:28771165

  4. Soyabean glycinin depresses intestinal growth and function in juvenile Jian carp (Cyprinus carpio var Jian): protective effects of glutamine.

    PubMed

    Jiang, Wei-Dan; Hu, Kai; Zhang, Jin-Xiu; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2015-11-28

    This study investigated the effects of glycinin on the growth, intestinal oxidative status, tight junction components, cytokines and apoptosis signalling factors of fish. The results showed that an 80 g/kg diet of glycinin exposure for 42 d caused poor growth performance and depressed intestinal growth and function of juvenile Jian carp (Cyprinus carpio var. Jian). Meanwhile, dietary glycinin exposure induced increases in lipid peroxidation and protein oxidation; it caused reductions in superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities; and it increased MnSOD, CuZnSOD, GPx1b and GPx4a mRNA levels, suggesting an adaptive mechanism against stress in the intestines of fish. However, dietary glycinin exposure decreased both the activity and mRNA levels of nine isoforms of glutathione-S-transferase (GST) (α, μ, π, ρ, θ, κ, mGST1, mGST2 and mGST3), indicating toxicity to this enzyme activity and corresponding isoform gene expressions. In addition, glycinin exposure caused partial disruption of intestinal cell-cell tight junction components, disturbances of cytokines and induced apoptosis signalling in the distal intestines>mid intestines>proximal intestines of fish. Glycinin exposure also disturbed the mRNA levels of intestinal-related signalling factors Nrf2, Keap1a, Keap1b, eleven isoforms of protein kinase C and target of rapamycin/4E-BP. Interestingly, glutamine was observed to partially block those negative influences. In conclusion, this study indicates that dietary glycinin exposure causes intestinal oxidative damage and disruption of intestinal physical barriers and functions and reduces fish growth, but glutamine can reverse those negative effects in fish. This study provides some information on the mechanism of glycinin-induced negative effects.

  5. [Research progress of relationship between diabetes and intestinal epithelial tight junction barrier and intervetion of berberine].

    PubMed

    Qin, Xin; Dong, Hui; Lu, Fu-Er

    2016-06-01

    Intestinal tight junction is an important part of the small intestinal mucosa barrier. It plays a very significant role in maintaining the intestinal mucosal permeability and integrity, preventing the bacterial endotoxin and toxic macromolecular substances into the body so as to keep a stable internal environment. Numerous studies have shown that intestinal mucosal barrier dysfunction is closely related to the development of diabetes. Therefore, protecting intestinal tight junction and maintaining the mucosal barrier have great significance in the prevention and treatment of diabetes. The effect of berberine in diabetes treatment is obvious. However, the pharmacological study found that the bioavailability of berberine is extremely low. Some scholars put forward that the major site of pharmaceutical action of berberine might be in the gut. Studies have shown that berberine could regulate the intestinal flora and intestinal hormone secretion, protect the intestinal barrier, inhibit the absorption of glucose, eliminate the intestinal inflammation and so on. Recently studies have found that the hypoglycemic effect of berberine is likely to relate with the influence on intestinal tight junction and the protection of mucosal barrier. Here is the review about the association between intestinal tight junction barrier dysfunction and diabetes, and the related hypoglycemic mechanism of berberine. Copyright© by the Chinese Pharmaceutical Association.

  6. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis

    PubMed Central

    Xu, Xin; Jia, Xiaoyue; Mo, Longyi; Liu, Chengcheng; Zheng, Liwei; Yuan, Quan; Zhou, Xuedong

    2017-01-01

    Postmenopausal osteoporosis (PMO) is a prevalent metabolic bone disease characterized by bone loss and structural destruction, which increases the risk of fracture in postmenopausal women. Owing to the high morbidity and serious complications of PMO, many efforts have been devoted to its prophylaxis and treatment. The intestinal microbiota is the complex community of microorganisms colonizing the gastrointestinal tract. Probiotics, which are dietary or medical supplements consisting of beneficial intestinal bacteria, work in concert with endogenous intestinal microorganisms to maintain host health. Recent studies have revealed that bone loss in PMO is closely related to host immunity, which is influenced by the intestinal microbiota. The curative effects of probiotics on metabolic bone diseases have also been demonstrated. The effects of the intestinal microbiota on bone metabolism suggest a promising target for PMO management. This review seeks to summarize the critical effects of the intestinal microbiota and probiotics on PMO, with a focus on the molecular mechanisms underlying the pathogenic relationship between bacteria and host, and to define the possible treatment options. PMID:28983411

  7. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    PubMed

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Stimulation of Murine Intestinal Secretion by Daily Genistein Injections: Gender-dependent Differences

    PubMed Central

    Al-Nakkash, Layla; Batia, Lyn; Bhakta, Minoti; Peterson, Amity; Hale, Nathan; Skinner, Ryan; Sears, Steven; Jensen, Jesse

    2011-01-01

    Background/Aims The effect of daily injections with genistein (naturally occurring phytoestrogen) on intestinal chloride (Cl−) secretion was measured with Ussing chamber short circuit current (Isc, μA/cm2), in C57BL/6J male and female mice, using 600 mg/kg genistein/day (600G), 300 mg/kg genistein/day (300G), 150 mg/kg genistein/day (150G) or genistein-free vehicle control (0G) for 1- or 2-weeks. Methods and Results Injecting with 600G elicited significant increases in basal Isc in females after 1-week (ñ70 μA/cm2, n=15, p < 0.05) and in males after 2-weeks (ñ80 μA/cm2, n=5, p < 0.05) compared to their 0G counterparts. Chloride-free ringer significantly reduced basal Isc by 65% in 600G males and 72% in 600G females, suggesting that Cl− was the major anion comprising the genistein-stimulated secretion. The forskolin-stimulated (10 μM) Isc was significantly inhibited by the CFTR chloride channel inhibitors, glibenclamide (500 μM) and CFTRinh-172 (100 μM) in 600G males and females, suggesting some contribution by genistein-dependent CFTR-mediated Cl− secretion. We found no associated changes in intestinal morphology, nor change in total CFTR protein with 600G. There was a 5% increase in apical/subapical ratio in 600G males compared to controls (no change in females). Conclusion These data suggest that male and female mice both exhibit increased Cl- secretion with 600G, however, the mechanisms mediating this are gender-dependent. PMID:21865731

  9. Biomechanical remodeling of obstructed guinea pig jejunum

    PubMed Central

    Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans

    2010-01-01

    Data on morphological and biomechanical remodeling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days respectively. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10 cmH20. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner. PMID:20189575

  10. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization.

    PubMed

    Zhang, Hongyu; Wang, Yi; Vasilescu, Steven; Gu, Zhibin; Sun, Tao

    2017-05-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25mm/s; normal loading: 0.4N) and adhesion test (preloading: 0.5N; hoisting speed: 2.5×10 -3 mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9mN vs 26.7mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1d, 3d, and 5d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Occult progression by Apc-deficient intestinal crypts as a target for chemoprevention

    PubMed Central

    Liskay, R.Michael

    2014-01-01

    Although Apc mutation is widely considered an initiating event in colorectal cancer, little is known about the earliest stages of tumorigenesis following sporadic Apc loss. Therefore, we have utilized a novel mouse model that facilitates the sporadic inactivation of Apc via frameshift reversion of Cre in single, isolated cells and subsequently tracks the fates of Apc-deficient intestinal cells. Our results suggest that consistent with Apc being a ‘gatekeeper’, loss of Apc early in life during intestinal growth leads to adenomas or increased crypt fission, manifested by fields of mutant but otherwise normal-appearing crypts. In contrast, Apc loss occurring later in life has minimal consequences, with mutant crypts being less prone to either increased crypt fission or adenoma formation. Using the stem cell-specific Lgr5-CreER mouse, we generated different sized fields of Apc-deficient crypts via independent recombination events and found that field size correlates with progression to adenoma. To evaluate this early stage prior to adenoma formation as a therapeutic target, we examined the chemopreventive effects of sulindac on Apc-deficient occult crypt fission. We found that sulindac treatment started early in life inhibits the morphologically occult spread of Apc-deficient crypts and thus reduces adenoma numbers. Taken together these results suggest that: (i) earlier Apc loss promotes increased crypt fission, (ii) a field of Apc-deficient crypts, which can form via occult crypt fission or independent neighboring events, is an important intermediate between loss of Apc and adenoma formation and (iii) normal-appearing Apc-deficient crypts are potential unappreciated targets for cancer screening and chemoprevention. PMID:23996931

  12. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis.

    PubMed

    Antonissen, Gunther; Croubels, Siska; Pasmans, Frank; Ducatelle, Richard; Eeckhaut, Venessa; Devreese, Mathias; Verlinden, Marc; Haesebrouck, Freddy; Eeckhout, Mia; De Saeger, Sarah; Antlinger, Birgit; Novak, Barbara; Martel, An; Van Immerseel, Filip

    2015-09-23

    Fumonisins (FBs) are mycotoxins produced by Fusarium fungi. This study aimed to investigate the effect of these feed contaminants on the intestinal morphology and microbiota composition, and to evaluate whether FBs predispose broilers to necrotic enteritis. One-day-old broiler chicks were divided into a group fed a control diet, and a group fed a FBs contaminated diet (18.6 mg FB1+FB2/kg feed). A significant increase in the plasma sphinganine/sphingosine ratio in the FBs-treated group (0.21 ± 0.016) compared to the control (0.14 ± 0.014) indicated disturbance of the sphingolipid biosynthesis. Furthermore, villus height and crypt depth of the ileum was significantly reduced by FBs. Denaturing gradient gel electrophoresis showed a shift in the microbiota composition in the ileum in the FBs group compared to the control. A reduced presence of low-GC containing operational taxonomic units in ileal digesta of birds exposed to FBs was demonstrated, and identified as a reduced abundance of Candidatus Savagella and Lactobaccilus spp. Quantification of total Clostridium perfringens in these ileal samples, previous to experimental infection, using cpa gene (alpha toxin) quantification by qPCR showed an increase in C. perfringens in chickens fed a FBs contaminated diet compared to control (7.5 ± 0.30 versus 6.3 ± 0.24 log10 copies/g intestinal content). After C. perfringens challenge, a higher percentage of birds developed subclinical necrotic enteritis in the group fed a FBs contaminated diet as compared to the control (44.9 ± 2.22% versus 29.8 ± 5.46%).

  13. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis).

    PubMed

    Szakiel, Anna; Ruszkowski, Dariusz; Grudniak, Anna; Kurek, Anna; Wolska, Krystyna I; Doligalska, Maria; Janiszowska, Wirginia

    2008-11-01

    The antibacterial and antiparasitic activities of free oleanolic acid and its glucosides and glucuronides isolated from marigold (Calendula officinalis) were investigated. The MIC of oleanolic acid and the effect on bacterial growth were estimated by A600 measurements. Oleanolic acid's influence on bacterial survival and the ability to induce autolysis were measured by counting the number of cfu. Cell morphology and the presence of endospores were observed under electron and light microscopy, respectively. Oleanolic acid inhibited bacterial growth and survival, influenced cell morphology and enhanced the autolysis of Gram-positive bacteria suggesting that bacterial envelopes are the target of its activity. On the other hand, glycosides of oleanolic acid inhibited the development of L3 Heligmosomoides polygyrus larvae, the infective stage of this intestinal parasitic nematode. In addition, both oleanolic acid and its glycosides reduced the rate of L3 survival during prolonged storage, but only oleanolic acid glucuronides affected nematode infectivity. The presented results suggest that oleanolic acid and its glycosides can be considered as potential therapeutic agents.

  14. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model.

    PubMed

    Zhang, Yu-Sheng; Li, Ye; Wang, Yan; Sun, Shi-Yue; Jiang, Tao; Li, Cong; Cui, Shu-Xiang; Qu, Xian-Jun

    2016-05-01

    Naringin is a natural dietary flavonoid compound. We aimed to evaluate the effects of naringin on intestinal tumorigenesis in the adenomatous polyposis coli multiple intestinal neoplasia (Apc (Min/+)) mouse model. Apc (Min/+) mice were given either naringin (150 mg/kg) or vehicle by p.o. gavage daily for 12 consecutive weeks. Mice were killed with ether, and blood samples were collected to assess the concentrations of IL-6 and PGE2. Total intestines were removed, and the number of polyps was examined. Tissue samples of intestinal polyps were subjected to the assays of histopathology, immunohistochemical analysis and Western blotting analysis. Apc (Min/+) mice fed with naringin developed less and smaller polyps in total intestines. Naringin prevented intestinal tumorigenesis without adverse effects. Histopathologic analysis revealed the reduction of dysplastic cells and dysplasia in the adenomatous polyps. The treatments' effects might arise from its anti-proliferation, induction of apoptosis and modulation of GSK-3β and APC/β-catenin signaling pathways. Naringin also exerted its effects on tumorigenesis through anti-chronic inflammation. Naringin prevented intestinal tumorigenesis likely through a collection of activities including anti-proliferation, induction of apoptosis, modulation of GSK-3β and APC/β-catenin pathways and anti-inflammation. Naringin is a potential chemopreventive agent for reducing the risk of colonic cancers.

  15. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1{beta} effect and increase in the transepithelial passage of commensal bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator ofmore » intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1{beta}), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1{beta} on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects.« less

  17. Morphological and molecular data reveal a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from Dormitator maculatus in the Gulf of Mexico.

    PubMed

    Pinacho-Pinacho, Carlos Daniel; Sereno-Uribe, Ana L; García-Varela, Martín

    2014-12-01

    Neoechinorhynchus (Neoechinorhynchus) mexicoensis sp. n. is described from the intestine of Dormitator maculatus (Bloch 1792) collected in 5 coastal localities from the Gulf of Mexico. The new species is mainly distinguished from the other 33 described species of Neoechinorhynchus from the Americas associated with freshwater, marine and brackish fishes by having smaller middle and posterior hooks and possessing a small proboscis with three rows of six hooks each, apical hooks longer than other hooks and extending to the same level as the posterior hooks, 1 giant nucleus in the ventral body wall and females with eggs longer than other congeneric species. Sequences of the internal transcribed spacer (ITS) and the large subunit (LSU) of ribosomal DNA including the domain D2+D3 were used independently to corroborate the morphological distinction among the new species and other congeneric species associated with freshwater and brackish water fish from Mexico. The genetic divergence estimated among congeneric species ranged from 7.34 to 44% for ITS and from 1.65 to 32.9% for LSU. Maximum likelihood and Bayesian inference analyses with each dataset showed that the 25 specimens analyzed from 5 localities of the coast of the Gulf of Mexico parasitizing D. maculatus represent an independent clade with strong bootstrap support and posterior probabilities. The morphological evidence, plus the monophyly in the phylogenetic analyses, indicates that the acanthocephalans collected from intestine of D. maculatus from the Gulf of Mexico represent a new species, herein named N. (N.) mexicoensis sp. n. Copyright © 2014. Published by Elsevier Ireland Ltd.

  18. The effect of inulin and wheat bran on intestinal health and microbiota in the early life of broiler chickens.

    PubMed

    Li, Bing; Leblois, Julie; Taminiau, Bernard; Schroyen, Martine; Beckers, Yves; Bindelle, Jérôme; Everaert, Nadia

    2018-05-26

    Inulin and wheat bran were added to the starter diets of broiler chickens to investigate the potential of these ingredients to improve the host's health and growth performance, as well as the underlying mechanisms of their effects. A total of 960 1-day-old chicks were assigned to 4 treatments: control (CON), 2% inulin (IN), 10% wheat bran (WB), and 10% wheat bran +2% inulin (WB+IN). On day 11, 6 chicks per treatment were euthanized. A general linear model procedure with Tukey's multiple range test was performed to compare a series of parameters between treatments. The WB-containing treatments improved BW on day 7, day 11, day 35, and BW gain until day 11 (P < 0.05), but only the WB+IN treatment showed a lower feed conversion ratio than the CON treatment (P = 0.011). Furthermore, the WB+IN treatment showed the highest villus height in the jejunum and ileum (P < 0.05), and the highest jejunal ratio villus height/crypt depth (P = 0.035). The concentration of acetate in the ceca was higher in the CON treatment compared to the IN treatment (P = 0.040). The IN treatment increased the concentration (P = 0.003) and ratio (P = 0.004) of iso-butyrate compared to the WB+IN and the CON treatments (P < 0.05). A clustering result exhibited similar intestinal microbiota profiles in the chicks receiving the IN and the WB+IN diets (P > 0.05), but these profiles were different from those found in chicks receiving the WB and the CON diets (P < 0.05). In conclusion, wheat bran and the combination of wheat bran and inulin ameliorated the growth performance and gut morphology of the starter chicks, which resulted in a higher BW until day 35. Inulin, on the other hand, had a greater ability to influence the microbiota profile. The beneficial results found in relation to BW and gut morphology during the starter period suggested a synergistic effect of inulin and wheat bran.

  19. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. In vitro fermentability and physicochemical properties of fibre substrates and their effect on bacteriological and morphological characteristics of the gastrointestinal tract of newly weaned piglets.

    PubMed

    Van Nevel, Christian J; Dierick, Noel A; Decuypere, Jaak A; De Smet, Stefaan M

    2006-12-01

    Fermentability of fibre has a great impact on the bacterial flora along the gastrointestinal tract of newly weaned piglets. Therefore, this parameter was determined by incubating in vitro different fibre substrates (chicory roots, sugar beet pulp, wheat bran and corn cobs) with contents of jejunum or caecum sampled from slaughtered pigs. Incubating with small intestinal contents, lactic acid was the only fermentation product. Fermentability was highest for chicory roots, followed by wheat bran and sugar beet pulp, while corn cobs were not fermented. Based on SCFA formed in the incubations with caecal contents, ranking of the fermentability of the fibre substrates was in the same order. The effect of adding different fibre substrates to diets of newly weaned piglets on bacteriological and morphological aspects of the gastrointestinal tract was also investigated. In Experiment 1 three groups of five piglets, weaned at four weeks of age, received a control feed (C), C supplemented with corn cobs (50 g/kg) or with chicory roots (20 g/kg). In Experiment 2, diet C was supplemented with sugar beet pulp (120 g/kg) or with wheat bran (75 g/kg). After three weeks animals were euthanized and digesta were sampled from stomach, proximal and distal jejunum, caecum and colon. Furthermore, mucosal scrapings were prepared and tissue samples were taken from jejunum, caecum and colon. Viscosity was determined for jejunal, caecal and colon contents. Corn cobs in the feed increased the number of total bacteria, lactobacilli and bifidobacteria in the stomach and proximal duodenum, while a decreased count of streptococci in distal jejunum contents was noted. Chicory roots increased the counts of Escherichia coli in the distal jejunum and on the mucosa, while sugar beet pulp decreased the number of lactobacilli on the mucosa only. Wheat bran seemed to increase the count of E. coli in jejunal digesta and on the mucosa, and also the number of lactobacilli in the stomach and jejunum. Bifidobacterial numbers were increased but only in the proximal part of the jejunum. Fibre substrates affected the concentration of lactate and SCFA in different parts of the intestinal tract. Feeding corn cobs increased villus length in the proximal jejunum by 13%. The number of intra-epithelial lymphocytes in the villous epithelium of proximal and distal jejunum was decreased by corn cobs and chicory roots supplementation while beet pulp and wheat bran had the opposite effect. In Experiment 1, apoptotic index of the mucosa of the distal jejunum was very low and decreased when corn cobs were fed. Mitotic index in the crypts was only affected by the wheat bran diet and a small decrease was noted. It was concluded that the fermentability of fibre was not an ideal criterion for predicting its effects on the flora. The effect of fibres on viscosity of digesta was negligible probably explaining the lack of clear and consistent influences on the intestinal mucosa.

  1. Measurement of intestinal edema using an impedance analyzer circuit.

    PubMed

    Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S

    2007-03-01

    Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.

  2. Protective effects of osthole, a natural derivative of coumarin, against intestinal ischemia-reperfusion injury in mice.

    PubMed

    Dong, Wenpeng; Zhang, Zhen; Liu, Zhengjun; Liu, Hao; Wang, Xianyue; Bi, Shenghui; Wang, Xiaowu; Ma, Tao; Zhang, Weida

    2013-06-01

    Intestinal ischemia/reperfusion (I/R) injury is considered to be associated with high morbidity and mortality rates. Osthole, a natural derivative of coumarin, has been shown to exert a variety of pharmacological and therapeutic effects under physiological and pathological conditions. In the present study, to investigate the protective effects of osthole against intestinal I/R injury, various doses of osthole (5, 10, 25 and 50 mg/kg) were pre-administered to mice subjected to intestinal I/R injury. A dose-dependent increase in the survival rate was observed in the osthole-treated mice. Pre-treatment with osthole (50 mg/kg) attenuated the destruction of epithelial cells within the villi induced by intestinal I/R injury, and suppressed oxidative stress, neutrophil infiltration and modulated nitric oxide (NO) levels. Moreover, the increased IκBα phosphorylation and nuclear factor (NF)-κB nuclear translocation induced by I/R injury were significantly decreased following pre-treatment with osthole. Taken together, our data demonstrate that osthole exerts protective effects against intestinal I/R injury in mice by suppressing oxidative stress, neutrophil infiltration and NO levels, partly through the inhibition of NF-κB nuclear translocation. Hence, the findings of the present study provide insight into the mechanisms through which osthole exerts its protective effects against intestinal I/R injury.

  3. Inhibitory effect and mechanism of acarbose combined with gymnemic acid on maltose absorption in rat intestine

    PubMed Central

    Luo, Hong; Wang, Le Feng; Imoto, Toshiaki; Hiji, Yasutake

    2001-01-01

    AIM: To compare the combinative and individual effect of acarbose and gymnemic acid (GA) on maltose absorption and hydrolysis in small intestine to determine whether nutrient control in diabetic care can be improved by combination of them. METHODS: The absorption and hydrolysis of maltose were studied by cyclic perfusion of intestinal loops in situ and motility of the intestine was recorded with the intestinal ring in vitro using Wistar rats. RESULTS: The total inhibitory rate of maltose absorption was improved by the combination of GA (0.1 g/L-1.0 g/L) and acarbose (0.1 mmol/L-2.0 mmol/L) throughout their effective duration (P < 0.05, U test of Mann-Whitney), although the improvement only could be seen at a low dosage during the first hour. With the combination, inhibitory duration of acarbose on maltose absorption was prolonged to 3 h and the inhibitory effect onset of GA was fastened to 15 min. GA suppressed the intestinal mobility with a good correlation (r = 0.98) to the inhibitory effect of GA on maltose absorption and the inhibitory effect of 2 mmol/L (high dose) acarbose on maltose hydrolysis was dual modulated by 1 g/L GA in vivo indicating that the combined effects involved the functional alteration of intestinal barriers. CONCLUSION: There are augmented effects of acarbose and GA, which involve pre-cellular and paracellular barriers. Diabetic care can be improved by employing the combination. PMID:11819725

  4. Investigation of Morphological and Functional Changes in the Small Intestine With Pancreatic Disease.

    PubMed

    Nakamura, Yosuke; Itoh, Akihiro; Kawashima, Hiroki; Ohno, Eizaburo; Itoh, Yuya; Hiramatsu, Takeshi; Sugimoto, Hiroyuki; Sumi, Hajime; Hayashi, Daijuro; Kuwahara, Takamichi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ohmiya, Naoki; Katano, Yoshiaki; Ishigami, Masatoshi; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi; Hirooka, Yoshiki

    2015-11-01

    The aim of this study was to investigate the relationship between pancreas and small intestine evaluating the endoscopic and histopathologic findings of the proximal small intestine in pancreatic diseases. Fifty patients (18 patients with chronic pancreatitis, 17 patients with pancreatic cancer, 15 control subjects) underwent enteroscopy using a prototype enteroscope. The villous height of the jejunum on bioptic specimens was measured, and the mean values of the villi were compared among the 3 groups. Exocrine function was calculated by the pancreatic function diagnostic test, and the correlation between the recovery rate of p-aminobenzoic acid and the villous height was assessed. Finally, the distribution of the K cells secreting glucose-dependent insulinotropic polypeptide and the L cells secreting glucagon-like peptide 1 in the duodenum and jejunum was investigated using immunohistochemistry for glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1. The mean villous height in chronic pancreatitis (328 ± 67 μm) was significantly lower than that in pancreatic cancer (413 ± 57 μm) and control subjects (461 ± 97 μm) (P = 0.004 and P < 0.0001, respectively). A positive correlation was found between the recovery rate of p-aminobenzoic acid and the villous height (r = 0.52, P = 0.0001). The presence of K and L cells was verified in the duodenum and the jejunum. Close relationship between pancreas and small intestine was demonstrated.

  5. Associations of intestinal helminth infections with health parameters of spring-migrating female lesser scaup (Aythya affinis) in the upper Midwest, USA.

    PubMed

    Conner England, J; Levengood, Jeffrey M; Osborn, Josh M; Yetter, Aaron P; Suski, Cory D; Cole, Rebecca A; Hagy, Heath M

    2018-06-01

    Thousands of lesser scaup (Aythya affinis) die during spring and fall migrations through the upper Midwest, USA, from infections with Cyathocotyle bushiensis and Sphaeridiotrema spp. (Class: Trematoda) after ingesting infected intermediate hosts, such as non-native faucet snails (Bithynia tentaculata). The lesser scaup is a species of conservation concern and is highly susceptible to these infections. We collected female lesser scaup from spring migratory stopover locations throughout Illinois and Wisconsin and assessed biochemical and morphological indicators of health in relation to intestinal helminth loads. Helminth species diversity, total trematode abundance, and the infection intensities of the trematodes C. bushiensis and Sphaeridiotrema spp. were associated with percent body fat, blood metabolites, hematological measures, and an index of foraging habitat quality. Helminth diversity was negatively associated with percent body fat, albumin concentrations, and monocytes, whereas glucose concentrations displayed a slight, positive association. Total trematode abundance was negatively associated with blood concentrations of non-esterified fatty acids and albumin. Infections of C. bushiensis were positively related to basophil levels, whereas Sphaeridiotrema spp. infection intensity was negatively associated with packed cell volume and foraging habitat quality. Thus, commonly measured health metrics may indicate intestinal parasite infections and help waterfowl managers understand overall habitat quality. Intestinal parasitic loads offer another plausible mechanism underlying the spring condition hypothesis.

  6. Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.

    PubMed

    Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo

    2017-08-15

    Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mechanisms of calcium transport in small intestine. Overall review of the contract, September 1, 1972--March 1, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLuca, H.F.

    1976-01-01

    Progress is reported in the following areas of research: role of high molecular weight protein in calcium transport in vitamin D deficient chicks; subcellular localization of 1,25-(OH)/sub 2/D/sub 3/; receptor proteins for 1,25-(OH)/sub 2/D/sub 3/; effects of high calcium diet, strontium diet, EHDP, and parathyroidectomy on intestinal calcium transport in chicks; effects of analogs of 1,25-(OH)/sub 2/D/sub 3/ on intestinal calcium transport; discrimination by chicks against vitamin D/sub 2/ compounds by metabolism; effects of extract of Solanum malacoxylan on intestinal calcium absorption in nephrectomized rats; and role of vitamin D in phosphate transport reactions in the intestine. (HLW)

  8. Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat

    PubMed Central

    González, Raquel; Sánchez de Medina, Fermin; Martínez-Augustin, Olga; Nieto, Ana; Gálvez, Julio; Risco, Severiano; Zarzuelo, Antonio

    2004-01-01

    Diosmectite is a natural silicate effectively used in the treatment of infectious diarrhoea. Its antidiarrhoeal properties involve adsorption of toxins and bacteria and modifications of the rheological characteristics of gastrointestinal mucus. Hence, the aim of this study was to test the intestinal anti-inflammatory activity of diosmectite. Diosmectite (500 mg kg−1 day−1, p.o.) was administered as a post-treatment to rats with chronic trinitrobenzene sulphonic acid colitis. Colonic status was checked 1 and 2 weeks after colitis induction by macroscopic, histological and biochemical examination. Diosmectite post-treatment resulted in amelioration of the morphological signs (intestinal weight, macroscopic damage, necrosed area, histology) and biochemical markers (myeloperoxidase activity, glutathione levels, MUC2 expression, inducible nitric oxide synthase and interleukin-1β (IL-1β) and leukotriene B4 synthesis), as well as in the reduction of the severity of diarrhoea. The effect of the clay was comparable to that of sulphasalazine (50 mg kg−1 day−1). Diosmectite exhibited a dose-dependent capacity to adsorb proteins in vitro as well as a dose-dependent inhibitory effect on the basolateral secretion of IL-8 by lipopolysaccharide (LPS)-stimulated HT29 cells. Diosmectite had a dose-dependent inhibitory effect on IL-1β production by LPS-stimulated THP-1 cells. The effect of diosmectite on MUC2 was post-transcriptional, since mRNA levels were unaffected. However, diosmectite is able to upregulate MUC2 mRNA levels in HT29-MTX cells. Diosmectite has anti-inflammatory activity administered as a post-treatment. Possible mechanisms include adsorption of luminal antigens, increase of colonic mucin levels and possibly a direct modulatory action of cytokine production by mucosal cells. PMID:14993105

  9. Effects of cholera toxin on human colon carcinoma cell lines.

    PubMed

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  11. Efficacy, safety and mechanism of HP-β-CD-PEI polymers as absorption enhancers on the intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Zhang, Hailong; Huang, Xiaoyan; Zhang, Yongjing; Gao, Yang

    2017-03-01

    Oral bioavailability of some hydrophilic therapeutic macromolecules was very poor, thus leading to their limited application in clinic. To investigate the efficacy, safety and mechanism of HP-β-CD-PEI polymers on the intestinal absorption of some poorly absorbable drugs in rats. Effects of HP-β-CD-PEI polymers on the intestinal absorptions of drugs were investigated by an in situ closed loop method in rats. The safety of HP-β-CD-PEI polymer was evaluated by measurement of lactate dehydrogenase (LDH) activity and amount of protein released from rat intestinal perfusate. The absorption enhancing mechanisms were explored by the measurement of zeta potential, transepithelial electrical resistance (TEER) and in vitro transport of FD4 (a paracellular marker) across rat intestinal membranes, respectively. HP-β-CD-PEI polymers, especially HP-β-CD-PEI 1800 , demonstrated excellent absorption enhancing effects on drug absorption in a concentration-dependent manner and the enhancing effect was more efficient in the small intestine than that in the large intestine. Five percent (w/v) HP-β-CD-PEI 1800 obviously decreased the TEER, accompanied with increase in the intestinal transport of FD4, indicating that absorption enhancing actions of HP-β-CD-PEI polymers were possibly performed by loosening tight junctions of intestinal epithelium cells, thereby increasing drug permeation via a paracellular pathway. A good liner relationship between absorption enhancing effects of HP-β-CD-PEI polymers and their zeta potentials suggested the contribution of positive charge on the surface of these polymers to their absorption enhancing effects. HP-β-CD-PEI polymers might be potential and safe absorption enhancers for improving oral delivery of poorly absorbable macromolecules including peptides and proteins.

  12. Gastrointestinal Nutrient Infusion Site and Eating Behavior: Evidence for A Proximal to Distal Gradient within the Small Intestine?

    PubMed

    Alleleyn, Annick M E; van Avesaat, Mark; Troost, Freddy J; Masclee, Adrian A M

    2016-02-26

    The rapidly increasing prevalence of overweight and obesity demands new strategies focusing on prevention and treatment of this significant health care problem. In the search for new and effective therapeutic modalities for overweight subjects, the gastrointestinal (GI) tract is increasingly considered as an attractive target for medical and food-based strategies. The entry of nutrients into the small intestine activates so-called intestinal "brakes", negative feedback mechanisms that influence not only functions of more proximal parts of the GI tract but also satiety and food intake. Recent evidence suggests that all three macronutrients (protein, fat, and carbohydrates) are able to activate the intestinal brake, although to a different extent and by different mechanisms of action. This review provides a detailed overview of the current evidence for intestinal brake activation of the three macronutrients and their effects on GI function, satiety, and food intake. In addition, these effects appear to depend on region and length of infusion in the small intestine. A recommendation for a therapeutic approach is provided, based on the observed differences between intestinal brake activation.

  13. Effects of microalgae Chlorella species crude extracts on intestinal adaptation in experimental short bowel syndrome.

    PubMed

    Kerem, Mustafa; Salman, Bulent; Pasaoglu, Hatice; Bedirli, Abdulkadir; Alper, Murat; Katircioglu, Hikmet; Atici, Tahir; Percin, E Ferda; Ofluoglu, Ebru

    2008-07-28

    To evaluate the effects of chlorella crude extract (CCE) on intestinal adaptation in rats subjected to short bowel syndrome (SBS). Wistar rats weighing 230-260 g were used in the study. After anesthesia a 75% small bowel resection was performed. Rats were randomized and divided into groups. Control group (n = 10): where 5% dextrose was given through a gastrostomy tube, Enteral nutrition (EN) group (n = 10): Isocaloric and isonitrogen EN (Alitraq, Abbott, USA), study group (n = 10): CCE was administrated through a gastrostomy tube. Rats were sacrificed on the fifteenth postoperative day and blood and tissue samples were taken. Histopathologic evaluation, intestinal mucosal protein and DNA levels, intestinal proliferation and apoptosis were determined in intestinal tissues, and total protein, albumin and citrulline levels in blood were studied. In rats receiving CCE, villus lengthening, crypt depth, mucosal DNA and protein levels, intestinal proliferation, and serum citrulline, protein and albumin levels were found to be significantly higher than those in control group. Apoptosis in CCE treated rats was significantly reduced when compared to EN group rats. CCE has beneficial effects on intestinal adaptation in experimental SBS.

  14. Effects of canola meal pellet conditioning temperature and time on ruminal and intestinal digestion, hourly effective degradation ratio, and potential nitrogen to energy synchronization in dairy cows.

    PubMed

    Huang, Xuewei; Khan, Nazir A; Zhang, Xuewei; Yu, Peiqiang

    2015-12-01

    The increase in bio-oil production in North America has resulted in millions of tonnes of co-products: canola meal and carinata meal. Little research has been conducted to determine the effect of pellet conditioning temperature, time, and their interaction on processing-induced changes in nutrient digestibility in the rumen and intestine (in vitro) of dairy cattle. The objectives of this study were to investigate the effects of conditioning temperature (70, 80, and 90°C), time (50 and 75 s), and their interaction (temperature × time) during the pelleting of canola meal on (1) rumen degradation kinetics and effective rumen degradability of dry matter, crude protein (CP), and neutral detergent fiber; (2) intestinal digestibility of rumen-undegradable protein (RUP); and (3) hourly effective rumen degradation ratio and potential N to energy synchronization in dairy cattle. The results showed that the temperature and duration of pellet conditioning significantly altered the degradation characteristics of nutrients in the rumen. Pelleting increased CP degradation in the rumen, and CP digestion site was shifted to the rumen rather than to the small intestine. When conditioning temperature was set 80°C, the rumen degradation of CP and neutral detergent fiber was highest, but postrumen digestion was lowest. With respect to intestinal digestion, the available CP for intestinal digestion became less because of reduced RUP supply to the small intestine. The pelleting process tended to significantly affect the intestinal digestibility of RUP. However, the total digestible CP content of canola meal was not affected. In conclusion, pelleting induced changes in rumen and intestinal digestion profiles, and altered the potential N to energy synchronization and hourly effective rumen degradation ratio of canola meal in dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Effects of dietary energy and lipase levels on nutrient digestibility, digestive physiology and noxious gas emission in weaning pigs.

    PubMed

    Liu, Jingbo; Cao, S C; Liu, J; Pu, J; Chen, L; Zhang, H F

    2018-05-31

    This study was conducted to evaluate the effect of dietary energy and lipase supplementation on growth performance, nutrient digestibility, serum profiles, intestinal morphology, small intestinal digestive enzyme activities, biochemical index of intestinal development and noxious gas emission in weaning pigs. A total of 240 weaning pigs [(Yorkshire×Landrace)×Duroc)] with an average BW of 7.3 ± 0.12 kg were used in this 28-d experiment. Weaning pigs were randomly allocated to 4 dietary treatments in a 2 × 2 factorial arrangement with 2 levels of energy (NE = 2,470 kcal/kg for low energy diet and 2,545 kcal/kg for basal diet) and 2 levels of lipase (0 and 1.5 U/g of lipase) according to BW and sex. There were 6 replications (pens) per treatment and 10 pigs per pen (5 barrows and 5 gilts). Weaning pigs fed the low energy diet had lower (p<0.05) G:F throughout the experiment, apparent digestibility of DM, N, EE, and GE during d 0 to 14, ADG during d 15 to 28, lipase activity in duodenum and ileum and protein/DNA in jejunum (p<0.05), respectively. Lipase supplementation had no effect on growth performance but affected apparent nutrient digestibility (p<0.05) on d 14 and enhanced lipase activity in the duodenum and ileum and protease activity in duodenum and jejunum of pigs (p<0.05) fed the low energy diet. Lipase reduced serum low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG), NH3 production (p<0.05) from the feces. The low energy diet decreased G:F throughout the experiment and nutrient digestibility during d 0 to 14 as well as lipase activity in duodenum and ileum. Lipase supplementation increased nutrient digestibility during d 0 to 14 and exerted beneficial effects on lipase activity in duodenum and ileum as well as protease activity in duodenum and jejunum, while reduced serum LDL-C, TG and fecal NH3.

  16. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB.

    PubMed

    Turan, Inci; Sayan Ozacmak, Hale; Ozacmak, V Haktan; Barut, Figen; Ozacmak, I Diler

    2018-06-01

    Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Possibility as monosaccharide laxative of rare sugar alcohols.

    PubMed

    Oosaka, Kazumasa

    2009-05-01

    Allitol, D-talitol and L-iditol are sugar alcohols that are rare in nature. Due to their previous rarity, little is known about the laxative effects of these rare sugar alcohols. Therefore, reliable data on the laxative effect that these sugar alcohols cause in experimental animals could help to evaluate the effectiveness of new monosaccharide laxative drugs. To investigate the laxative effect of rare sugar alcohols, the study was designed to observe the diarrhea that occurred after oral administration of these sugar alcohols in mice. Moreover, to investigate the influence on intestinal function of rare sugar alcohols, the study was designed to examine small intestine transit and the luminal water content. Results indicated that rare sugar alcohols have a laxative effect in mice. Diarrhea started at a dose of 4.95 g/kg of rare sugar alcohols. There was a statistically significant laxative effect for D-talitol and L-iditol at a dose of 9.9 g/kg as compared to vehicle. Moreover, rare sugar alcohols significantly increased the small intestinal transit and the luminal water content of the small intestine and cecum in mice as compared to each vehicle. Overall, L-iditol greatly changes the function of intestine. In conclusion, rare sugar alcohols increase water content in small intestine and accelerate small intestine transit. These results support laxative effect of rare sugar alcohols. Therefore, rare sugar alcohols may be useful as monosaccharide laxatives and may be used to treat constipation.

  18. Mechanical Intestinal Obstruction in a Porcine Model: Effects of Intra-Abdominal Hypertension. A Preliminary Study

    PubMed Central

    Sánchez-Margallo, F. M.; Latorre, R.; López-Albors, O.; Wise, R.; Malbrain, M. L. N. G.; Castellanos, G.

    2016-01-01

    Introduction Mechanical intestinal obstruction is a disorder associated with intra-abdominal hypertension and abdominal compartment syndrome. As the large intestine intraluminal and intra-abdominal pressures are increased, so the patient’s risk for intestinal ischaemia. Previous studies have focused on hypoperfusion and bacterial translocation without considering the concomitant effect of intra-abdominal hypertension. The objective of this study was to design and evaluate a mechanical intestinal obstruction model in pigs similar to the human pathophysiology. Materials and Methods Fifteen pigs were divided into three groups: a control group (n = 5) and two groups of 5 pigs with intra-abdominal hypertension induced by mechanical intestinal obstruction. The intra-abdominal pressures of 20 mmHg were maintained for 2 and 5 hours respectively. Hemodynamic, respiratory and gastric intramucosal pH values, as well as blood tests were recorded every 30 min. Results Significant differences between the control and mechanical intestinal obstruction groups were noted. The mean arterial pressure, cardiac index, dynamic pulmonary compliance and abdominal perfusion pressure decreased. The systemic vascular resistance index, central venous pressure, pulse pressure variation, airway resistance and lactate increased within 2 hours from starting intra-abdominal hypertension (p<0.05). In addition, we observed increased values for the peak and plateau airway pressures, and low values of gastric intramucosal pH in the mechanical intestinal obstruction groups that were significant after 3 hours. Conclusion The mechanical intestinal obstruction model appears to adequately simulate the pathophysiology of intestinal obstruction that occurs in humans. Monitoring abdominal perfusion pressure, dynamic pulmonary compliance, gastric intramucosal pH and lactate values may provide insight in predicting the effects on endorgan function in patients with mechanical intestinal obstruction. PMID:26849559

  19. Inhibitory Effects and Sympathetic Mechanisms of Distension in the Distal Organs on Small Bowel Motility and Slow Waves in Canine.

    PubMed

    Song, Jun; Yin, Jieyun; Chen, Jiande D Z

    2015-12-01

    Rectal distension (RD) is known to induce intestinal dysmotility. Few studies were performed to compare effects of RD, colon distension (CD) and duodenal distension (DD) on small bowel motility. This study aimed to investigate effects and underlying mechanisms of distensions in these regions on intestinal motility and slow waves. Eight dogs chronically implanted with a duodenal fistula, a proximal colon fistula, and intestinal serosal electrodes were studied in six sessions: control, RD, CD, DD, RD + guanethidine, and CD + guanethidine. Postprandial intestinal contractions and slow waves were recorded for the assessment of intestinal motility. The electrocardiogram was recorded for the assessment of autonomic functions. (1) Isobaric RD and CD suppressed intestinal contractions (contractile index: 6.0 ± 0.4 with RD vs. 9.9 ± 0.9 at baseline, P = 0.001, 5.3 ± 0.2 with CD vs. 7.7 ± 0.8 at baseline, P = 0.008). Guanethidine at 3 mg/kg iv was able to partially block the effects. (2) RD and CD reduced the percentage of normal intestinal slow waves from 92.1 ± 2.8 to 64.2 ± 3.4 % (P < 0.001) and from 90 ± 2.7 to 69.2 ± 3.7 % (P = 0.01), respectively. Guanethidine could eliminate these inhibitory effects. (3) DD did not induce any changes in small intestinal contractions and slow waves (P > 0.05). (4) The spectral analysis of the heart rate variability showed that both RD and CD increased sympathetic activity (LF) and reduced vagal activity (HF) (P < 0.05). Isobaric RD and CD could inhibit postprandial intestinal motility and impair intestinal slow waves, which were mediated via the sympathetic pathway. However, DD at a site proximal to the measurement site did not seem to impair small intestinal contractions or slow waves.

  20. Curcumin Suppresses Intestinal Fibrosis by Inhibition of PPARγ-Mediated Epithelial-Mesenchymal Transition

    PubMed Central

    Jiang, Bin; Wang, Hui; Shen, Cunsi; Chen, Hao

    2017-01-01

    Intestinal fibrotic stricture is a major complication of Crohn's disease (CD) and epithelial-to-mesenchymal transition (EMT) is considered as an important contributor to the formation of intestinal fibrosis by increasing extracellular matrix (ECM) proteins. Curcumin, a compound derived from rhizomes of Curcuma, has been demonstrated with a potent antifibrotic effect. However, its effect on intestinal fibrosis and the potential mechanism is not completely understood. Here we found that curcumin pretreatment significantly represses TGF-β1-induced Smad pathway and decreases its downstream α-smooth muscle actin (α-SMA) gene expression in intestinal epithelial cells (IEC-6); in contrast, curcumin increases expression of E-cadherin and peroxisome proliferator-activated receptor γ (PPARγ) in IEC-6. Moreover, curcumin promotes nuclear translocation of PPARγ and the inhibitory effect of curcumin on EMT could be reversed by PPARγ antagonist GW9662. Consistently, in the rat model of intestinal fibrosis induced by 2,4,5-trinitrobenzene sulphonic acid (TNBS), oral curcumin attenuates intestinal fibrosis by increasing the expression of PPARγ and E-cadherin and decreasing the expression of α-SMA, FN, and CTGF in colon tissue. Collectively, these results indicated that curcumin is able to prevent EMT progress in intestinal fibrosis by PPARγ-mediated repression of TGF-β1/Smad pathway. PMID:28203261

  1. Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs

    PubMed Central

    Feng, Ze-Meng; Li, Tie-Jun; Wu, Li; Xiao, Ding-Fu; Blachier, Francois; Yin, Yu-Long

    2015-01-01

    Background The Chinese have been undergone rapid transition to a high-fat diet-consuming lifestyle, while monosodium L-glutamate (MSG) is widely used as a daily food additive. It has been reported that fat alters the composition of intestinal microbiota. However, little information is available on the effects of oral MSG on intestinal microbiota, and no study was done focusing on the interaction effect of fat and MSG with respect to intestinal microbiota. The present study thus aimed to determine the effects of MSG and/or fat on intestinal microbiota, and also to identify possible interactions between these two nutrients. Methods Four iso-nitrogenous and iso-caloric diets were provided to growing pigs. The microbiota from jejunum, ileum, cecum, and colon were analyzed. Results Our results show that both MSG and fat clearly increased the intestinal microbiota diversity. MSG and fat modified the composition of intestinal microbiota, particularly in the colon. Both MSG and fat promoted the colonization of microbes related to energy extraction in gastrointestinal tract via different ways. MSG promoted the colonization of Faecalibacterium prausnitzii and Roseburia, while fat increased the percentage of Prevotella in colon and other intestinal segments. Conclusion Our results will help to understand how individual or combined dietary changes modify the microbiota composition to prevent obesity. PMID:25791341

  2. Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs.

    PubMed

    Feng, Ze-Meng; Li, Tie-Jun; Wu, Li; Xiao, Ding-Fu; Blachier, Francois; Yin, Yu-Long

    2015-01-01

    The Chinese have been undergone rapid transition to a high-fat diet-consuming lifestyle, while monosodium L-glutamate (MSG) is widely used as a daily food additive. It has been reported that fat alters the composition of intestinal microbiota. However, little information is available on the effects of oral MSG on intestinal microbiota, and no study was done focusing on the interaction effect of fat and MSG with respect to intestinal microbiota. The present study thus aimed to determine the effects of MSG and/or fat on intestinal microbiota, and also to identify possible interactions between these two nutrients. Four iso-nitrogenous and iso-caloric diets were provided to growing pigs. The microbiota from jejunum, ileum, cecum, and colon were analyzed. Our results show that both MSG and fat clearly increased the intestinal microbiota diversity. MSG and fat modified the composition of intestinal microbiota, particularly in the colon. Both MSG and fat promoted the colonization of microbes related to energy extraction in gastrointestinal tract via different ways. MSG promoted the colonization of Faecalibacterium prausnitzii and Roseburia, while fat increased the percentage of Prevotella in colon and other intestinal segments. Our results will help to understand how individual or combined dietary changes modify the microbiota composition to prevent obesity.

  3. Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic.

    PubMed

    Hamajima, Hiroshi; Matsunaga, Haruka; Fujikawa, Ayami; Sato, Tomoya; Mitsutake, Susumu; Yanagita, Teruyoshi; Nagao, Koji; Nakayama, Jiro; Kitagaki, Hiroshi

    2016-01-01

    The Japanese traditional cuisine, Washoku, considered to be responsible for increased longevity among the Japanese, comprises various foods fermented with the non-pathogenic fungus Aspergillus oryzae (koji). We have recently revealed that koji contains an abundant amount of glycosylceramide. Intestinal microbes have significant effect on health. However, the effects of koji glycosylceramide on intestinal microbes have not been studied. Glycosylceramide was extracted and purified from koji. C57BL/6N mice were fed a diet containing 1 % purified koji glycosylceramide for 1 week. Nutritional parameters and faecal lipid constituents were analyzed. The intestinal microbial flora of mice on this diet was investigated. Ingested koji glycosylceramide was neither digested by intestinal enzymes nor was it detected in the faeces, suggesting that koji glycosylceramide was digested by the intestinal microbial flora. Intestinal microbial flora that digested koji glycosylceramide had an increased ratio of Blautia coccoides. Stimulation of B. coccoides growth by pure koji glycosylceramide was confirmed in vitro. Koji functions as a prebiotic for B. coccoides through glycosylceramide. Since there are many reports of the effects of B. coccoides on health, an increase in intestinal B. coccoides by koji glycosylceramide might be the connection between Japanese cuisine, intestinal microbial flora, and longevity.

  4. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity.

    PubMed

    Cazorla, Silvia I; Maldonado-Galdeano, Carolina; Weill, Ricardo; De Paula, Juan; Perdigón, Gabriela D V

    2018-01-01

    The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus . Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  5. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    PubMed Central

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  6. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide.

    PubMed

    Shi, Hongjie; Chang, Yaoguang; Gao, Yuan; Wang, Xiong; Chen, Xin; Wang, Yuming; Xue, Changhu; Tang, Qingjuan

    2017-09-20

    Cyclophosphamide (cy) is a widely used cancer drug. Many researchers have focused on the prevention and alleviation of its side effects, particularly damage to the intestinal mucosal barrier. In this study, we examined the effects of fucoidan, isolated from Acaudina molpadioides, on mice with intestinal mucosal damage induced by cyclophosphamide. Our results showed that fucoidan intervention could relieve injury such as decreasing inflammation and increasing the expression of tight junction proteins, and 50 kDa fucoidan significantly increased the abundance of short chain fatty acid (SCFA) producer Coprococcus, Rikenella, and Butyricicoccus (p < 0.05, p < 0.001, and p < 0.05, respectively) species within the intestinal mucosa compared with the cyclophosphamide group, as determined by 16S rDNA gene high-throughput sequencing. In addition, SCFAs, particularly propionate, butyrate, and total SCFAs, were increased in the feces, and SCFA receptors were upregulated in the small intestine. The protective effects of fucoidan on cyclophosphamide treatment may be associated with gut microflora, and 50 kDa fucoidan had superior effects. Therefore, fucoidan may have applications as an effective supplement to protect against intestinal mucosal barrier damage during chemotherapy.

  7. Relation between reflux of bile acids into the stomach and gastric mucosal atrophy, intestinal metaplasia in biopsy specimens.

    PubMed

    Matsuhisa, Takeshi; Tsukui, Taku

    2012-05-01

    During endoscopic examinations we collected fluid in the stomach that included reflux fluid from the duodenum, and assessed the effect of quantitatively determined bile acids on glandular atrophy and intestinal metaplasia using biopsy specimens. A total of 294 outpatients were enrolled in this study. Total bile acid concentration was measured by an enzyme immunoassay. Glandular atrophy and intestinal metaplasia scores were graded according to the Updated Sydney System. An effect of refluxed bile acids on atrophy and intestinal metaplasia was shown in the high-concentration reflux group in comparison with the control group. However, when the odds ratios (ORs) were calculated according to whether Helicobacter pylori (H. pylori) infection was present, no significant associations were shown between reflux bile acids and atrophy in either the H. pylori-positive cases or -negative cases. The same was true for intestinal metaplasia in the H. pylori-positive cases, whereas intestinal metaplasia was more pronounced in the high-concentration reflux group in the H. pylori-negative cases (OR 2.4, 95%CI 1.1-5.6). We could not clarify the effect of the reflux of bile acids into the stomach in the progression of atrophy. High-concentration bile acids had an effect on the progression of intestinal metaplasia in the H. pylori-negative cases.

  8. Effects of Functional Oils on Coccidiosis and Apparent Metabolizable Energy in Broiler Chickens

    PubMed Central

    Murakami, A. E.; Eyng, C.; Torrent, J.

    2014-01-01

    The objective of the present study was to investigate the effects of a mixture of functional oils (Essential, Oligo Basics Agroind. Ltda) on performance response of chickens challenged with coccidiosis and the determination of apparent metabolizable energy (AME), nitrogen-corrected apparent metabolizable energy (AMEn), the coefficients of protein and ether extract digestibility and intestinal morphology of broilers fed with diets containing Essential. In Exp. 1, a completely randomized design (CRD) was used, with one control diet without Essential inclusion with coccidiosis (Eimeria acervulina, Eimeria maxima, and Eimeria tenella) challenged birds and two different inclusion rates of Essential (1.5 kg/ton and 2 kg/ton) with coccidiosis-challenged and non-challenged birds for each inclusion rate, using 10 replicates and 50 birds per experimental unit. After 7 d of coccidiosis challenge, the livability was approximately 10% lower (p<0.05) for the control group. Intestinal lesion scores were lower (p<0.05) in the anterior intestine and the cecum for the chickens supplemented. Feed efficiency and growth rate were improved in birds supplemented with Essential (p<0.05) before the coccidiosis challenge and during the first 7 d post infection. In Exp. 2, a CRD was used, with one control diet without Essential inclusion and one diet with inclusion of Essential (1.5 kg/ton), using nine replications and 33 chicks per pen. The diets with Essential yielded approximately 4% higher AME (p = 0.003) and AMEn (p = 0.001). Essential supplementation increased villus height in the jejunum on d 14 (p<0.05). Villus height:crypt depth ratio for the supplemented birds was larger (p<0.05) in the jejunum on d 7, larger (p<0.05) in the jejunum and ileum on d 14. In conclusion, these functional oils improved the energy utilization and the livability and decreased lesions caused by coccidiosis in supplemented birds. PMID:25050040

  9. Butter feeding enhances TNF-alpha production from macrophages and lymphocyte adherence in murine small intestinal microvessels.

    PubMed

    Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi

    2007-11-01

    Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.

  10. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells.

    PubMed

    Bribi, Noureddine; Algieri, Francesca; Rodriguez-Nogales, Alba; Vezza, Teresa; Garrido-Mesa, Jose; Utrilla, María Pilar; Del Mar Contreras, María; Maiza, Fadila; Segura-Carretero, Antonio; Rodriguez-Cabezas, Maria Elena; Gálvez, Julio

    2016-08-15

    Fumaria capreolata L. (Papaveraceae) is a botanical drug used in North Africa for its gastro-intestinal and anti-inflammatory properties. It is characterized for the presence of several alkaloids that could be responsible for some of its effects, including an immunomodulatory activity. To test in vivo the intestinal anti-inflammatory properties of the total alkaloid fraction extracted from the aerial parts of F. capreolata (AFC), and to evaluate its effects on an intestinal epithelial cell line. AFC was chemically characterized by liquid chromatography coupled to diode array detection and high resolution mass spectrometry. Different doses of AFC (25, 50 and 100mg/kg) were assayed in the DNBS model of experimental colitis in mice, and the colonic damage was evaluated both histologically and biochemically. In addition, in vitro experiments were performed with this alkaloid fraction on the mouse intestinal epithelial cell line CMT93 stimulated with LPS. The chemical analysis of AFC revealed the presence of 23 alkaloids, being the most abundants stylopine, protopine and coptisine. Oral administration of AFC produced a significant inhibition of the release and the expression of IL-6 and TNF-α in the colonic tissue. It also suppressed in vivo the transcription of other pro-inflammatory mediators such as IL-1β, iNOS, IL-12 and IL-17. Furthermore, AFC showed an immunomodulatory effect in vitro since it was able to inhibit the mRNA expression of IL-6, TNF-α and ICAM-1. Moreover, the beneficial effect of AFC in the colitic mice could also be associated with the normalization of the expression of MUC-2 and ZO-1, which are important for the intestinal epithelial integrity. The present study suggests that AFC, containing 1.3% of stylopine and 0.9% of protopine, significantly exerted intestinal anti-inflammatory effects in an experimental model of mouse colitis. This fact could be related to a modulation of the intestinal immune response and a restoration of the intestinal epithelial function. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Montmorillonite-Alginate Composites as a Drug delivery System: Intercalation and In vitro Release of Diclofenac sodium

    PubMed Central

    Kevadiya, B. D.; Patel, H. A.; Joshi, G. V.; Abdi, S. H. R.; Bajaj, H. C.

    2010-01-01

    Diclofenac sodium and alginate was intercalated into montmorillonite to form uniform sized beads by gelation method. The structure and surface morphology of the synthesized composite beads were characterized by powdered X-ray diffraction, Fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. Diclofenac release kinetics of the composite in simulated intestinal fluid medium (pH 7.4) and effect of montmorillonite content on the in vitro release of diclofenac from diclofenac-montmorillonite-alginate composites bead was investigated by UV/Vis spectrophotometer. Diclofenac encapsulation efficiency in the montmorillonite-alginate composites bead increases with an increase in the montmorillonite content. The control release of diclofenac from diclofenac-montmorillonite-alginate composites beads was observed to be better as compared to diclofenac-alginate beads. PMID:21969745

  12. Photonic monitoring of chitosan nanostructured alginate microcapsules for drug release

    NASA Astrophysics Data System (ADS)

    Khajuria, Deepak Kumar; Konnur, Manish C.; Vasireddi, Ramakrishna; Roy Mahapatra, D.

    2015-02-01

    By using a novel microfluidic set-up for drug screening applications, this study examines delivery of a novel risedronate based drug formulation for treatment of osteoporosis that was developed to overcome the usual shortcomings of risedronate, such as its low bioavailability and adverse gastric effects. Risedronate nanoparticles were prepared using muco-adhesive polymers such as chitosan as matrix for improving the intestinal cellular absorption of risedronate and also using a gastric-resistant polymer such as sodium alginate for reducing the gastric inflammation of risedronate. The in-vitro characteristics of the alginate encapsulated chitosan nanoparticles are investigated, including their stability, muco-adhesiveness, and Caco-2 cell permeability. Fluorescent markers are tagged with the polymers and their morphology within the microcapsules is imaged at various stages of drug release.

  13. VESGEN Mapping of Bioactive Protection against Intestinal Inflammation: Application to Human Spaceflight and ISS Experiments

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P. A.; Chen, X.; Kelly, C. P.; Reinecker, H. C.

    2011-01-01

    Challenges to successful space exploration and colonization include adverse physiological reactions to micro gravity and space radiation factors. Constant remodeling of the microvasculature is critical for tissue preservation, wound healing, and recovery after ischemia. Regulation of the vascular system in the intestine is particularly important to enable nutrient absorption while maintaining barrier function and mucosal defense against micro biota. Although tremendous progress has been made in understanding the molecular circuits regulating neovascularization, our knowledge of the adaptations of the vascular system to environmental challenges in the intestine remains incomplete. This is in part because of the lack of methods to observe and quantify the complex processes associated with vascular responses in vivo. Developed by GRC as a mature beta version, pre-release research software, VESsel GENeration Analysis (VESGEN) maps and quantifies the fractal-based complexity of vascular branching for novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and microvascular remodeling. Here we demonstrate that VESGEN can be used to characterize the dynamic vascular responses to acute intestinal inflammation and mucosal recovery from in vivo confocal microscopic 3D image series. We induced transient intestinal inflammation in mice by DSS treatment and investigated whether the ability of the pro biotic yeast Saccharomyces boulardii (Sb) to protect against intestinal inflammation was due to regulation of vascular remodeling. A primary characteristic of inflammation is excessive neovascularization (angiogenesis) resulting in fragile vessels prone to bleeding. Morphological parameters for triplicate specimens revealed that Sb treatment greatly reduced the inflammatory response of vascular networks by an average of 78%. This resulted from Sb inhibition of vascular endothelial growth factor receptor signaling, a major angiogenesis signaling pathway. It needs to be determined whether pro biotic yeast represents a promising approach to GI protection in space. GRC performed only the VESGEN post-testing analysis.

  14. Identification, localization and morphology of APUD cells in gastroenteropancreatic system of stomach-containing teleosts

    PubMed Central

    Pan, Qian Sheng; Fang, Zhi Ping; Huang, Feng Jie

    2000-01-01

    AIM: To identify the type localization and morphology of APUD endocrine cells in the gastroenteropancreatic (GEP) system of stomach-containing teleosts, and study APUD endocrine system in the stomach, intestine and pancreas of fish species. METHODS: Two kinds of immunocytochemical (ICC) techniques of the streptavidin biotin-peroxidase complex (SABC) and streptavidin-peroxidase (S-P) method were used. The identification, localization and morphology of APUD endocrine cells scattered in the mucosa of digestive tract, intermuscular nerve plexus and glandular body of northern snakehead (Channa argus), ricefield eel (Monopterus albus), yellow catfish (Pelteobagrus ful vidraco), mandarinfish (Siniperca chuatsi), largemouth bass (Micropterus salmoides), oriental sheatfish (Silurus asotus), freshwater pomfret (Colossoma brachypomum) and nile tilapia (Tilapia nilotica) were investigated with 8 kinds of antisera. RESULTS: The positive reaction of 5-hydroxytryptamine (5-HT) immunoreactive endocrine (IRE) cells was found in the digestive tract and glandular body of 8 fish species in different degree. Only a few gastrin (GAS)-IRE cells were seen in C. argus, M. albus and P. fulvidraco. Glucagon (GLU)-IRE cells were not found in the digestive tract and glandular body but existed in pancreatic island of most fish species. The positive reaction of growth hormone (GH)-IRE cells was found only in pancreatic island of S. Chuatsi and S. Asotus, no positive reaction in the other 6 fish species. Somatostatin (SOM), calcitonin (CAL), neurofilament (NF) and insulin (INS)-IRE cells in the stomach, intestine and pancreas of 8 kinds of fish were different in distribution and types. The distribution of all 8 APUD cells was the most in gastrointestinal epithelium mucosa and then in digestive glands. The positive reaction of SOM- and 5-HT-IRE cells was found in intermuscular nerve plexus of intestine of P. fulvidraco and S.chuatsi. Only GH-IRE cells were densely scattered in the pancreatic islands of S. chuatsi and S. asotus, and odd distribution in the pancreas of S. asotus. SOM-IRE cells were distributed in the pancreatic islands of S. asotus, C. Brachypomum and T. nilotica. There were INS-IRE cells in the pancreatic islands of S. chuatsi and S. asolus. Eight kinds of APUD cells had longer cell body and cytoplasmic process when they were located in the gastrointestinal epithelium, and had shorter cell body and cytoplasmic process in the gastric gland, and irregular shape in the esophagus and pancreatic island. CONCLUSION: Eight kinds of IRE cells were identified in the GEP system of stomach-containing teleosts. These endocrine cells were scattered in gastrointestinal mucosa, intermuscular nerve plexus, gland body, pancreatic gland and islands under APUD system. CAL- and GH-IRE cells in the pancreatic islands of fishes showed functional diversity for these two hormones. Their morphological feature provides evidence of endocrine-paracrine and endocrine-exocrine acting mode. This research can morphologically prove that the GEP endocrine system of fish (the lowest vertebrate) is almost the same as of mammal and human. PMID:11819706

  15. Digestive tract morphology of the Neotropical piscivorous fish Cichla kelberi (Perciformes: Cichlidae) introduced into an oligotrophic Brazilian reservoir.

    PubMed

    dos Santos, Alejandra Filippo Gonzalez Neves; dos Santos, Luciano Neves; Araújo, Francisco Gerson

    2011-09-01

    Despite being one of the most well-known cichlid fish of importance to artisanal and sport fishing, and among the largest fishes in the Neotropics, data on digestive tract anatomy of peacock basses (Cichla spp.) are largely lacking, especially for non-native populations. In this paper, we describe for the first time the digestive tract morphology of Cichla kelberi, a voracious piscivore that was introduced in the 1950s into an oligotrophic and physically low-complex impoundment in Brazil. Peacock basses were collected between 1994 and 2002 in Lajes Reservoir, through gillnets (25 to 55mm mesh; 20-50 x 2m), seines (10 x 2.5m; 8.0mm mesh), cast nets and angling. All the fishes were kept on ice in the field and then transferred to the laboratory, where they were identified, measured, weighed and dissected for digestive tract analyses. The Index of Relative Importance-IRI was calculated for diet characterization while linear and non-linear regressions were performed to assess growth patterns of four morphological characters related to feeding (e.g. mouth width, mouth height, stomach length and intestine length) and the number of gill rakers during the C. kelberi ontogeny. Most digestive tract structures were directly related to the piscivorous diet of C. kelberi, indicating that peacock bass is a diurnal, bathypelagic and gape-size limited predator that feeds largely on shallow-water prey species within the littoral zone. Mouth width and height grew allometrically (b > 1) with the size of peacock bass, broadening the size range in which prey can be eaten, but especially for predators smaller than -400mm of total length. Differently, stomach and intestine lengths increased isometrically (b = 1), which could constrain prey consumption for adult C. kelberi, especially those at advanced stages of gonadal maturation. The presence of longer-drawn, sharp and furcated gill rakers in C. kelberi may be related to increased prey retention in the resource-limited Lajes Reservoir, but further studies are necessary whether such features are randomly triggered by genetic or phenotypic anomalies, or effectively bring ecological advantages to the predator. In addition to contribute to improve the current biological knowledge on peacock basses, our results can be also useful to further comparisons on whether those morphological features related to feeding will change with transitions on prey consumption by C. kelberi and/or with the particular conditions of the invaded ecosystem.

  16. A new microsporidium Percutemincola moriokae gen. nov., sp. nov. from Oscheius tipulae: A novel model of microsporidia-nematode associations.

    PubMed

    Nishikori, Kenji; Setiamarga, Davin H E; Tanji, Takahiro; Kuroda, Eisuke; Shiraishi, Hirohisa; Ohashi-Kobayashi, Ayako

    2018-04-17

    Here, we describe a new microsporidium Percutemincola moriokae gen. nov., sp. nov., which was discovered in the intestinal and hypodermal cells of a wild strain of the nematode Oscheius tipulae that inhabits in the soil of Morioka, Iwate Prefecture, Japan. The spores of Pe. moriokae had an average size of 1.0 × 3.8 µm and 1.3 × 3.2 µm in the intestine and hypodermis, respectively, and electron microscopy revealed that they exhibited distinguishing features with morphological diversity in the hypodermis. Isolated spores were able to infect a reference strain of O. tipulae (CEW1) through horizontal transmission but not the nematode Caenorhabditis elegans. Upon infection, the spores were first observed in the hypodermis and then in the intestine the following day, suggesting a unique infectious route among nematode-infective microsporidia. Molecular phylogenetic analysis grouped this new species with the recently identified nematode-infective parasites Enteropsectra and Pancytospora forming a monophyletic sister clade to Orthosomella in clade IV, which also includes human pathogens such as Enterocytozoon and Vittaforma. We believe that this newly discovered species and its host could have application as a new model in microsporidia-nematode association studies.

  17. The effects of 18β-glycyrrhetinic acid and glycyrrhizin on intestinal absorption of paeoniflorin using the everted rat gut sac model.

    PubMed

    He, Rui; Xu, Yongsong; Peng, Jingjing; Ma, Tingting; Li, Jing; Gong, Muxin

    2017-01-01

    Paeoniflorin (PF), the main active component of Shaoyao-Gancao-tang, possesses significantly antinociceptive effects and many other pharmacological activities. However, its poor intestinal absorption results in low bioavailability. Therefore, enhancing PF absorption plays a vital role in exerting its therapeutic effect. Shaoyao combined with Gancao exhibited a synergistic effect. The enhancement of PF absorption through the interaction of its constituents in intestinal absorption would be greatly implicated. The present study aimed at investigating the effects of glycyrrhizin, the main constituent of Gancao, and its main metabolite, 18β-glycyrrhetinic acid (18β-GA), on the intestinal absorptive behavior of PF, and the role of P-glycoprotein (P-gp) in PF absorption using the in vitro everted rat gut sac model. The results demonstrated that 1 mM of 18β-GA significantly increased PF absorption in both the jejunum and the ileum, while 100 μM of 18β-GA only promoted the ileum absorption and had no obvious effect on the jejunum absorption. The effect of glycyrrhizin on intestinal PF absorption was related to concentrations. One mM of glycyrrhizin significantly increased PF absorption in the jejunum after 45 min and in the ileum after 90 min. But 100 μM of glycyrrhizin had an inhibitory effect in the jejunum and no effect in the ileum before 60 min. Moreover, verapamil, the well-known P-gp inhibitor, could significantly enhance the PF absorption. In conclusion, the influence of 18β-GA and glycyrrhizin on the PF absorption was related to concentrations and intestinal segments. This might be involved in the intervention of efflux transport of PF mediated by intestinal P-gp.

  18. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat

    PubMed Central

    Hung, Yu-Han; Carreiro, Alicia L.; Buhman, Kimberly K.

    2017-01-01

    Enterocytes, the absorptive cells of the small intestine, mediate efficient absorption of dietary fat (triacylglycerol, TAG). The digestive products of dietary fat are taken up by enterocytes, re-esterified into TAG, and packaged on chylomicrons (CMs) for secretion into blood or temporarily stored within cytoplasmic lipid droplets (CLDs). Altered enterocyte TAG distribution impacts susceptibility to high fat diet associated diseases, but molecular mechanisms directing TAG toward these fates are unclear. Two enzymes, acyl CoA: diacylglycerol acyltransferase 1 (Dgat1) and Dgat2, catalyze the final, committed step of TAG synthesis within enterocytes. Mice with intestine-specific overexpression of Dgat1 (Dgat1Int) or Dgat2 (Dgat2Int), or lack of Dgat1 (Dgat1−/−), were previously found to have altered intestinal TAG secretion and storage. We hypothesized that varying intestinal Dgat1 and Dgat2 levels alters TAG distribution in subcellular pools for CM synthesis as well as the morphology and proteome of CLDs. To test this we used ultrastructural and proteomic methods to investigate intracellular TAG distribution and CLD-associated proteins in enterocytes from Dgat1Int, Dgat2Int, and Dgat1−/− mice 2 hours after a 200 μl oral olive oil gavage. We found that varying levels of intestinal Dgat1 and Dgat2 altered TAG pools involved in CM assembly and secretion, the number or size of CLDs present in enterocytes, and the enterocyte CLD proteome. Overall, these results support a model where Dgat1 and Dgat2 function coordinately to regulate the process of dietary fat absorption by preferentially synthesizing TAG for incorporation into distinct subcellular TAG pools in enterocytes. PMID:28249764

  19. Mitochondrial DNA polymerase editing mutation, PolgD257A, disturbs stem-progenitor cell cycling in the small intestine and restricts excess fat absorption.

    PubMed

    Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo

    2012-05-01

    Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.

  20. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat.

    PubMed

    Hung, Yu-Han; Carreiro, Alicia L; Buhman, Kimberly K

    2017-06-01

    Enterocytes, the absorptive cells of the small intestine, mediate efficient absorption of dietary fat (triacylglycerol, TAG). The digestive products of dietary fat are taken up by enterocytes, re-esterified into TAG, and packaged on chylomicrons (CMs) for secretion into blood or temporarily stored within cytoplasmic lipid droplets (CLDs). Altered enterocyte TAG distribution impacts susceptibility to high fat diet associated diseases, but molecular mechanisms directing TAG toward these fates are unclear. Two enzymes, acyl CoA: diacylglycerol acyltransferase 1 (Dgat1) and Dgat2, catalyze the final, committed step of TAG synthesis within enterocytes. Mice with intestine-specific overexpression of Dgat1 (Dgat1 Int ) or Dgat2 (Dgat2 Int ), or lack of Dgat1 (Dgat1 -/- ), were previously found to have altered intestinal TAG secretion and storage. We hypothesized that varying intestinal Dgat1 and Dgat2 levels alters TAG distribution in subcellular pools for CM synthesis as well as the morphology and proteome of CLDs. To test this we used ultrastructural and proteomic methods to investigate intracellular TAG distribution and CLD-associated proteins in enterocytes from Dgat1 Int , Dgat2 Int , and Dgat1 -/- mice 2h after a 200μl oral olive oil gavage. We found that varying levels of intestinal Dgat1 and Dgat2 altered TAG pools involved in CM assembly and secretion, the number or size of CLDs present in enterocytes, and the enterocyte CLD proteome. Overall, these results support a model where Dgat1 and Dgat2 function coordinately to regulate the process of dietary fat absorption by preferentially synthesizing TAG for incorporation into distinct subcellular TAG pools in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

Top