Science.gov

Sample records for intestinal mucosa barrier

  1. Effects of Probiotics on Intestinal Mucosa Barrier in Patients With Colorectal Cancer after Operation

    PubMed Central

    Liu, Dun; Jiang, Xiao-Ying; Zhou, Lan-Shu; Song, Ji-Hong; Zhang, Xuan

    2016-01-01

    Abstract Many studies have found that probiotics or synbiotics can be used in patients with diarrhea or inflammatory bowel disease for the prevention and treatment of some pathologies by improving gastrointestinal barrier function. However, there are few studies availing the use of probiotics in patients with colorectal cancer. To lay the foundation for the study of nutritional support in colorectal cancer patients, a meta-analysis has been carried out to assess the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation. To estimate the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation, a meta-analysis of randomized controlled trials has been conducted. Databases including PubMed, Ovid, Embase, the Cochrane Central Register of Controlled Trials, and the China National Knowledge Infrastructure have been searched to identify suitable studies. Stata 12.0 was used for statistical analysis, and sensitivity analysis was also conducted. Six indicators were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Ratios of lactulose to mannitol (L/M) and Bifidobacterium to Escherichia (B/E), occludin, bacterial translocation, and levels of secretory immunoglobulin A (SIgA), interleukin-6 (IL-6), and C-reactive protein (CRP) were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Seventeen studies including 1242 patients were selected for meta-analysis, including 5 English studies and 12 Chinese studies. Significant effects were found in ratios of L/M (standardized mean difference = 3.83, P = 0.001) and B/E (standardized mean difference = 3.91, P = 0.000), occludin (standardized mean difference = 4.74, P = 0.000), bacterial translocation (standardized mean difference = 3.12, P = 0.002), and levels of SIgA (standardized mean

  2. [Protective effect of ethyl pyruvate on barrier function of intestinal mucosa in dogs with septic shock].

    PubMed

    Kou, Qiu-Ye; Guan, Xiang-Dong

    2008-03-01

    To investigate the effect of ethyl pyruvate on barrier function of intestinal mucosa in dogs with septic shock. Twenty dogs with septic shock induced by lipopolysaccharides(LPS) were randomly divided into two groups. Dogs randomly received placebo (Ringer's solution, control group, n=8) or ethyl pyruvate in lactated Ringer's solution (0.05 g/kg loading dose over 10 mins, thereafter 0.05 g.kg(-1).h(-1) for 12 hours, EP treatment group, n=12). The diamine oxidase(DAO) activity and D-lactate content were detected at the 0, 8 th, 12 th and 24 th hour of septic shock. Animals were sacrificed at the 24 th hour after septic shock and the jejunal tissue was taken for histopathological examination. The levels of plasma DAO and D-lactate were significantly elevated in both groups after septic shock than those before septic shock. The changes in intestinal parameters of hemoperfusion and permeability in EP treatment group were significantly lowered than those in control group. Inflammation of small intestinal mucosa was more severe in control group than that in EP group, and the pathologic score was significantly lower in EP group(2.33+/-0.25) than that in control group(3.39+/-0.38)(P<0.05). Ethyl pyruvate can lessen intestinal permeability and protect intestinal barrier function in dogs with septic shock.

  3. Effects of alanyl-glutamine supplementation on the small intestinal mucosa barrier in weaned piglets

    PubMed Central

    Xing, Shen; Zhang, Bolin; Lin, Meng; Zhou, Ping; Li, Jiaolong; Zhang, Lin; Gao, Feng; Zhou, Guanghong

    2017-01-01

    Objective The study was to investigate the effects of alanyl-glutamine (Ala-Gln) and glutamine (Gln) supplementation on the intestinal mucosa barrier in piglets. Methods A total of 180 barrows with initial weight 10.01±0.03 kg were randomly allocated to three treatments, and each treatment consisted of three pens and twenty pigs per pen. The piglets of three groups were fed with control diet [0.62% alanine (Ala)], Ala-Gln diet (0.5% Ala-Gln), Gln diet (0.34% Gln and 0.21% Ala), respectively. Results The results showed that in comparison with control diet, dietary Ala-Gln supplementation increased the height of villi in duodenum and jejunum (p<0.05), Gln supplementation increased the villi height of jejunum (p<0.05), Ala-Gln supplementation up-regulated the mRNA expressions of epidermal growth factor receptor and insulin-like growth factor 1 receptor in jejunal mucosa (p<0.05), raised the mRNA expressions of Claudin-1, Occludin, zonula occludens protein-1 (ZO-1) and the protein levels of Occludin, ZO-1 in jejunal mucosa (p<0.05), Ala-Gln supplementation enlarged the number of goblet cells in duodenal and ileal epithelium (p<0.05), Gln increased the number of goblet cells in duodenal epithelium (p<0.05) and Ala-Gln supplementation improved the concentrations of secretory immunoglobulin A and immunoglobulin G in the jejunal mucosa (p<0.05). Conclusion These results demonstrated that dietary Ala-Gln supplementation could maintain the integrity of small intestine and promote the functions of intestinal mucosa barriers in piglets. PMID:27383799

  4. Pathways and Progress in Improving Drug Delivery through the Intestinal Mucosa and Blood-Brain Barriers

    PubMed Central

    Laksitorini, Marlyn; Prasasty, Vivitri D.; Kiptoo, Paul K.; Siahaan, Teruna J.

    2015-01-01

    One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including (a) blocking the efflux pumps to improve transcellular delivery and (b) modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers are still in the investigational stage. PMID:25418271

  5. Effects of Probiotics on Intestinal Mucosa Barrier in Patients With Colorectal Cancer after Operation: Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Liu, Dun; Jiang, Xiao-Ying; Zhou, Lan-Shu; Song, Ji-Hong; Zhang, Xuan

    2016-04-01

    Many studies have found that probiotics or synbiotics can be used in patients with diarrhea or inflammatory bowel disease for the prevention and treatment of some pathologies by improving gastrointestinal barrier function. However, there are few studies availing the use of probiotics in patients with colorectal cancer. To lay the foundation for the study of nutritional support in colorectal cancer patients, a meta-analysis has been carried out to assess the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation. To estimate the efficacy of probiotics on the intestinal mucosa barrier in patients with colorectal cancer after operation, a meta-analysis of randomized controlled trials has been conducted. Databases including PubMed, Ovid, Embase, the Cochrane Central Register of Controlled Trials, and the China National Knowledge Infrastructure have been searched to identify suitable studies. Stata 12.0 was used for statistical analysis, and sensitivity analysis was also conducted. Six indicators were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Ratios of lactulose to mannitol (L/M) and Bifidobacterium to Escherichia (B/E), occludin, bacterial translocation, and levels of secretory immunoglobulin A (SIgA), interleukin-6 (IL-6), and C-reactive protein (CRP) were chosen to evaluate probiotics in protecting the intestinal mucosa barrier in patients with colorectal cancer. Seventeen studies including 1242 patients were selected for meta-analysis, including 5 English studies and 12 Chinese studies. Significant effects were found in ratios of L/M (standardized mean difference = 3.83, P = 0.001) and B/E (standardized mean difference = 3.91, P = 0.000), occludin (standardized mean difference = 4.74, P = 0.000), bacterial translocation (standardized mean difference = 3.12, P = 0.002), and levels of SIgA (standardized mean

  6. Role of TLR4/NF-κB in Damage to Intestinal Mucosa Barrier Function and Bacterial Translocation in Rats Exposed to Hypoxia

    PubMed Central

    Luo, Han; Guo, Ping; Zhou, Qiquan

    2012-01-01

    The role of Toll-like receptor 4 (TLR4)/nuclear factor-kappa-B (NF-κB) in intestinal mucosal barrier damage and bacterial translocation under hypoxic exposure is unclear. Here, we investigated their role using an acute hypobaric hypoxia model. Adult Sprague-Dawley rats were divided into control (C), hypoxia (H), hypoxia+NF-κB inhibitor pyrrolidinedithiocarbamic acid (PDTC) (100 mg. kg) (HP), hypoxia+0.5 mg/kg lipopolysaccharide (HPL), and hypoxia+PDTC+LPS (HPL) group. Except control group, other four groups were placed in a hypobaric chamber set at 7000 m. Samples were collected at 72 h after pressure reduction. Damage in ultrastructure of the intestinal tract was examined by transmission electron microscopy and bacterial translocation was detected by cultivation. Kinetic turbidimetric assay was used to measure the serum LPS. ELISA was performed to detect TNF-α and IL-6 serum concentrations. Fluorescent quantitative RT-PCR was used to measure TLR4 mRNA levels was measured using quantitative RT-PCR and protein of NF-κB p65 was measured by western blotting. Different degrees of intestinal mucosa damage were observed in groups H and HL. The damage was significantly alleviated after blockage of the TLR4/NF-κB signaling pathway. PDTC- treatment also reversed hyoxia- and LPS-induced bacterial translocation rate and increased serum levels of LPS, TNF-α, and IL-6. TLR4 mRNA levels and NF-κB p65 expression were consistent with the serum factor results. This study suggested that TLR4 and NF-κB expression increased in rat intestinal tissues after acute hypoxia exposure. PDTC-treatment reversed TLR4 and NF-κB upregulation and alleviated damage to the intestinal tract and bacterial translocation. Thus, the TLR4/NF-κB signaling pathway may be critical to the mechanism underlying hypoxia-induced damage to intestinal barrier function and bacterial translocation. PMID:23082119

  7. [Regeneration of the gastric and intestinal mucosas].

    PubMed

    Castrup, H J

    1979-05-10

    The physiological cell renewal of gastrointestinal mucosa is regulated in man as in animal through certain mechanisms with measurable kinetic data. Pathologic mucosal alterations, metabolic disorders, pharmacological agents etc. clearly affect the regenerative processes of the gastrointestinal epithelium. Gastrin and pentagastrin stimulate the growth not only of the parietal cells, but also of the superficial epithelium of the gastric mucosa, whereas secretin does not change cell growth. Glucocorticoid steroids inhibit epithelial regeneration in all parts of the gastrointestinal tract. 5-fluorouracil has a similar effect but acts at a different site in the regeneration cycle. Epithelial cell proliferation of the gastric and intestinal mucosa is likewise inhibited in an uremic condition. In inflammatory changes in the human gastric mucosa epithelial cell hyperproliferation relative to the severity of gastritis and anomalous proliferation within regions of dysplasia can be demonstrated. Foveolary hyperplasia in Ménétrier's disease occurs on the basis of excessive hyperproliferation with displacement of regeneration zones.

  8. Intestinal Barrier and Behavior.

    PubMed

    Julio-Pieper, M; Bravo, J A

    2016-01-01

    The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses.

  9. Glutamine and intestinal barrier function.

    PubMed

    Wang, Bin; Wu, Guoyao; Zhou, Zhigang; Dai, Zhaolai; Sun, Yuli; Ji, Yun; Li, Wei; Wang, Weiwei; Liu, Chuang; Han, Feng; Wu, Zhenlong

    2015-10-01

    The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.

  10. Removal of the intestinal mucosa: photochemical approach in bladder augmentation

    NASA Astrophysics Data System (ADS)

    Haselhuhn, Gregory D.; Kropp, Kenneth A.; Keck, Rick W.; Selman, Steven H.

    1995-03-01

    Experiments were undertaken to determine whether 5-aminoleuvinic acid in combination with light could be used as an adjunct to intestinal bladder augmentation with the aim of removing intestinal mucosa with subsequent re-epithelialization of the treated segment with urothelium. Histopathologic studies of so-treated intestinal segments used in bladder augmentation demonstrate the feasibility of this approach.

  11. Cell volume regulation in goldfish intestinal mucosa.

    PubMed

    Groot, J A

    1981-11-01

    1. Ion and water content of goldfish intestinal mucosa, stripped free from muscular layers were measured under various incubation conditions. 2. Ouabain induces an increase in cation content that is electrically compensated for by chloride. The increase in solute content is accompanied by an increase in water content. 3. When extracellular chloride is partially replaced by sulphate, ouabain does induce cell shrinkage. 4. Anoxia induces a rapid increase in cell volume that is restored by oxygenation of the incubation solution. Ouabain prevents the restoration of volume. 5. It is concluded that the classical ouabain-sensitive Na/K pump participates in the maintenance of cellular volume. We suggest that the constancy in volume after ouabain poisoning as is reported for many tissues might be due to a low chloride conductance of its membranes. 6. Anisotonic media (range: 0.6-1.2 isotonicity), made by variation on mannitol concentration, induce changes in cell water content that deviates from the simplified van't Hoff equation by about 10%. No change in water content after the initial increase was found. 7. We conclude that goldfish enterocytes do not possess a mechanism for rapid volume readjustment.

  12. Effect of toll-like receptor 3 agonist poly I:C on intestinal mucosa and epithelial barrier function in mouse models of acute colitis

    PubMed Central

    Zhao, Hong-Wei; Yue, Yue-Hong; Han, Hua; Chen, Xiu-Li; Lu, Yong-Gang; Zheng, Ji-Min; Hou, Hong-Tao; Lang, Xiao-Meng; He, Li-Li; Hu, Qi-Lu; Dun, Zi-Qian

    2017-01-01

    AIM To investigate potential effects of poly I:C on mucosal injury and epithelial barrier disruption in dextran sulfate sodium (DSS)-induced acute colitis. METHODS Thirty C57BL/6 mice were given either regular drinking water (control group) or 2% (w/v) DSS drinking water (model and poly I:C groups) ad libitum for 7 d. Poly I:C was administrated subcutaneously (20 μg/mouse) 2 h prior to DSS induction in mice of the poly I:C group. Severity of colitis was evaluated by disease activity index, body weight, colon length, histology and myeloperoxidase (MPO) activity, as well as the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 17 (IL-17) and interferon-γ (IFN-γ). Intestinal permeability was analyzed by the fluorescein isothiocyanate labeled-dextran (FITC-D) method. Ultrastructural features of the colon tissue were observed under electron microscopy. Expressions of tight junction (TJ) proteins, including zo-1, occludin and claudin-1, were measured by immunohistochemistry/immunofluorescence, Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS DSS caused significant damage to the colon tissue in the model group. Administration of poly I:C dramatically protected against DSS-induced colitis, as demonstrated by less body weight loss, lower disease activity index score, longer colon length, colonic MPO activity, and improved macroscopic and histological scores. It also ameliorated DSS-induced ultrastructural changes of the colon epithelium, as observed under scanning electron microscopy, as well as FITC-D permeability. The mRNA and protein expressions of TJ protein, zo-1, occludin and claudin-1 were also found to be significantly enhanced in the poly I:C group, as determined by immunohistochemistry/immunofluorescence, Western blot and RT-qPCR. By contrast, poly I:C pretreatment markedly reversed the DSS-induced up-regulated expressions of the inflammatory cytokines TNF-α, IL-17 and IFN

  13. Peptide hydrolase activities of the mucosa of human small intestine

    PubMed Central

    Heizer, William D.; Laster, Leonard

    1969-01-01

    Few studies have been published on peptide hydrolase activities of human small intestine mucosa. We developed methods to screen tissue extracts for such enzymes and to quantitate hydrolase activities for dipeptides containing the aromatic amino acid L-phenylalanine. The screening procedure indicated glycyl-L-proline hydrolase activity was reduced in biopsy specimens from patients with flattened intestinal mucosa. To explore this further, we established optimal assay conditions for hydrolase activities (a) glycyl-L-proline, (b) L-phenylalanyl-L-proline, (c) L-alanyl-L-phenylalanine, and (d) L-phenylalanylglycine. Biopsy specimens from patients with various intestinal disorders, but without flattened mucosa, and from three patients with flattened mucosa, showed a disproportionate reduction in activities (a) and (b), with the reduction being significantly more marked in the latter patients. We suggest that intestinal imidopeptide hydrolase activities, such as (a) and (b), are sensitive to changes in intestinal disease generally, particularly to the altered physiology associated with flattening of the mucosa, and are secondary to, rather than a cause of, the intestinal pathology. Our finding that intestinal alkaline phosphatase activity tended to parallel imidopeptide hydrolase activity, and that activity (a) was partially localized to the particulate fraction of mucosal homogenate, suggested that imidopeptide hydrolase activities may be located in the microvilli of the intestinal epithelium and that, like alkaline phosphatase activity, they may be reduced in flattened mucosae, in part at least because of the pathologic changes in the microvilli. In our studies of control subjects we did not detect peptide hydrolase activity deficiency analogous to asymptomatic disaccharidase deficiency. Images PMID:5765024

  14. Effects of n-3 PUFAs on Intestinal Mucosa Innate Immunity and Intestinal Microbiota in Mice after Hemorrhagic Shock Resuscitation

    PubMed Central

    Tian, Feng; Gao, Xuejin; Zhang, Li; Wang, Xinying; Wan, Xiao; Jiang, Tingting; Wu, Chao; Bi, Jingcheng; Lei, Qiucheng

    2016-01-01

    n-3 polyunsaturated fatty acids (PUFAs) can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR). However, the effects of n-3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n-3 PUFAs and HSR + n-6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n-3 and n-6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n-3 PUFAs had an advantage over n-6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n-3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n-3 PUFAs to patients recovering from ischemia-reperfusion. PMID:27690096

  15. Glucose metabolism in the mucosa of the small intestine

    PubMed Central

    Srivastava, L. M.; Hübscher, G.

    1966-01-01

    1. The occurrence of five enzymes of the pentose phosphate pathway in cell-free preparations of the mucosa of rat small intestine is described. These enzymes were found to be localized mainly in the supernatant fraction (6240000g-min.). 2. The properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were studied with respect to Km values for substrates and NADP+, pH optima and the effects of p-chloromercuribenzoate and palmitoyl-CoA. Higher total and specific activities of these two dehydrogenases were noted in the proximal half of the small intestine of the rat than in the distal half. 3. The specific activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the mucosa of the small intestine of the rat, cat, rabbit and guinea pig were compared. 4. In the rat the specific activities of ribose 5-phosphate isomerase, transketolase and transaldolase were higher in the supernatant fractions from the intestinal mucosa than in those from the liver. 5. The role of the pentose phosphate pathway is discussed in relation to the metabolism of hexose phosphates in the intestinal mucosa. PMID:4382012

  16. Interactions between ingested kaolinite and the intestinal mucosa in rat: proteomic and cellular evidences.

    PubMed

    Reichardt, François; Habold, Caroline; Chaumande, Bertrand; Ackermann, Alain; Ehret-Sabatier, Laurence; Le Maho, Yvon; Angel, Fabielle; Liewig, Nicole; Lignot, Jean-Hervé

    2009-02-01

    Although some of the effects of clay ingestion by humans and animals, such as gastrointestinal wellness and the increase in food efficiency are well known, the underlying mechanisms are not yet fully understood. Therefore, the interactions between the intestinal mucosa and kaolinite particles and their effects on mucosal morphology were observed using light microscopy (LM), transmission electron microscopy (TEM), conventional (CSEM) and environmental (ESEM) scanning electron microscopy combined with an EDX micro-analysis system. Kaolinite consumption, given with free access to rats, varied considerably from one animal to the other but was regular through time for each individual. Some kaolinite particles appeared chemically dissociated in the lumen and within the mucus barrier. Aluminium (Al) originating from ingested clay and present in the mucus layer could directly cross the intestinal mucosa. A significant increase in the thickness of the villi with large vacuoles at the base of the mucosal cells and a decrease in the length of enterocyte microvilli characterized complemented animals. The proteomic analyses of the intestinal mucosa of complemented rats also revealed several modifications in the expression level of cytoskeleton proteins. In summary, kaolinite particles ingested as food complement interact with the intestinal mucosa and modify nutrient absorption. However, these data, together with the potential neurotoxicity of Al, need further investigation.

  17. Dosimetry Model for Radioactivity Localized to Intestinal Mucosa

    SciTech Connect

    Fisher, Darrell R.; Rajon, Didier; Breitz, Hazel B.; Goris, Michael L.; Bolch, Wesley E.; Knox, Susan J.

    2004-06-30

    This paper provides a new model for calculating radiation absorbed dose to the full thickness of the small and large intestinal walls, and to the mucosal layers. The model was used to estimate the intestinal radiation doses from yttrium-90-labeled-DOTA-biotin binding to NR-LU-10-streptavidin in patients. We selected model parameters from published data and observations and used the model to calculate energy absorbed fractions using the EGS4 radiation transport code. We determined the cumulated 90Y activity in the small and large intestines of patients from gamma camera images and calculated absorbed doses to the mucosal layer and to the whole intestinal wall. The mean absorbed dose to the wall of the small intestine was 16.2 mGy/MBq (60 cGy/mCi) administered from 90Y localized in the mucosa and 70 mGy/MBq (260 cGy/mCi) to the mucosal layer within the wall. Doses to the large intestinal wall and to the mucosa of the large intestine were lower than those for small intestine by a factor of about 2.5. These doses are greater by factors of about 5 to 6 than those that would have been calculated using the standard MIRD models that assume the intestinal activity is in the bowel contents. The specific uptake of radiopharmaceuticals in mucosal tissues may lead to dose-related intestinal toxicities. Tissue dosimetry at the sub-organ level is useful for better understanding intestinal tract radiotoxicity and associated dose-response relationships.

  18. Scap is required for sterol synthesis and crypt growth in intestinal mucosa[S

    PubMed Central

    McFarlane, Matthew R.; Cantoria, Mary Jo; Linden, Albert G.; January, Brandon A.; Liang, Guosheng; Engelking, Luke J.

    2015-01-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap−) in which tamoxifen-inducible Cre-ERT2, a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap− mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap− mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. PMID:25896350

  19. Intestinal perfusion of dietary levels of aluminium: association with the mucosa.

    PubMed Central

    Powell, J J; Ainley, C C; Evans, R; Thompson, R P

    1994-01-01

    An aluminium (93 microM) sulphate solution freshly adjusted to pH 7.0 was perfused through the rat small bowel to mimic the reported physiological conditions that follow dietary aluminium ingestion. One third of this aluminium was taken up from the perfusate, but > 90% of this was then recovered from the intestinal mucus/mucosa and most (> 70%) from the distal third of the small bowel. The fresh perfusate was shown by ultrafiltration to contain largely particulate/colloidal aluminium-hydroxide, and this probably adhered to intestinal mucus which may be an important barrier to the gastrointestinal absorption of aluminium. Images Figure 1 Figure 2 PMID:7926905

  20. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    USDA-ARS?s Scientific Manuscript database

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These includ...

  1. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    USDA-ARS?s Scientific Manuscript database

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include ...

  2. Helminths and intestinal barrier function.

    PubMed

    McKay, Derek M; Shute, Adam; Lopes, Fernando

    2017-01-02

    Approximately one-sixth of the worlds' population is infected with helminths and this class of parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts' epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic (mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with knowledge of mobilization of immune reactions and effector cells in response to helminth parasites and how these impact intestinal barrier function. The interaction of helminth-host and helminth-host-bacteria is an important determinant of gut form and function and precisely defining these interactions will radically alter our understanding of normal gut physiology and pathophysiological reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and idiopathic auto-inflammatory disease.

  3. ORGANIZATION, BARRIER FUNCTION AND ANTIMICROBIAL LIPIDS OF THE ORAL MUCOSA

    PubMed Central

    Dawson, Deborah V.; Drake, David R.; Hill, Jennifer R.; Brogden, Kim A.; Fischer, Carol L.; Wertz, Philip W.

    2013-01-01

    Synopsis As one moves from the skin across the vermilion region of the lip and into the oral cavity the oral mucosa is encountered. The oral mucosa consists of connective tissue known as the lamina propria covered by a stratified squamous epithelium. In the regions of the hard palate and gingiva the epithelium is keratinized like the epidermis. In the buccal region, the floor of the mouth and the underside of the tongue the epithelium is nonkeratinized. The epithelium on the dorsum of the tongue is a specialized epithelium but can be approximated as a mosaic of keratinized and nonkeratinized epithelia. The nonkeratinized epithelial regions do not produce a stratum corneum. Nuclei with intact DNA are retained in the superficial cells. In all regions the outer portions of the epithelium provides a protective permeability barrier, which varies regionally. Antimicrobial lipids at the surfaces of the oral mucosa are an integral part of innate immunity. PMID:23320785

  4. Intestinal barriers to bacteria and their toxins

    SciTech Connect

    Walker, R.I.; Owen, R.L. )

    1990-01-01

    Immunologic and nonimmunologic processes work together to protect the host from the multitude of microorganisms residing within the intestinal lumen. Mechanical integrity of the intestinal epithelium, mucus in combination with secretory antibody, antimicrobial metabolites of indigenous microorganisms, and peristalsis each limit proliferation and systemic dissemination of enteric pathogens. Uptake of microorganisms by Peyer's patches and other intestinal lymphoid structures and translocation circumvent the mucosal barrier, especially in immunosuppressed individuals. Improved understanding of the composition and limitation of the intestinal barrier, coupled with advances in genetic engineering of immunogenic bacteria, development of oral delivery systems, and immunomodulators, now make enhancement of mucosal barriers feasible. 32 references.

  5. Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors.

    PubMed

    Jensen, Stina Rikke; Schoof, Erwin M; Wheeler, Sarah E; Hvid, Henning; Ahnfelt-Rønne, Jonas; Hansen, Bo Falck; Nishimura, Erica; Olsen, Grith Skytte; Kislinger, Thomas; Brubaker, Patricia L

    2017-08-01

    The goal of the present study was to determine whether loss of the insulin receptor alters the molecular landscape of the intestinal mucosa, using intestinal-epithelial insulin receptor knockout (IE-irKO) mice and both genetic (IRfl/fl and Villin-cre) controls. Quantitative proteomic analysis by liquid chromatography mass spectrometry was applied to jejunal and colonic mucosa from mice fed a normal chow diet and mice fed a Western diet (WD). Jejunal mucosa from IE-irKO mice demonstrated alterations in all intestinal cell lineages: Paneth, goblet, absorptive, and enteroendocrine cells. Only goblet and absorptive cells were affected in the colon. Also, a marked effect of WD consumption was found on the gut proteome. A substantial reduction was detected in Paneth cell proteins with antimicrobial activity, including lysozyme C-1, angiogenin-4, cryptdin-related sequence 1C-3 and -2, α-defensin 17, and intelectin-1a. The key protein expressed by goblet cells, mucin-2, was also reduced in the IE-irKO mice. Proteins involved in lipid metabolism, including aldose reductase-related protein 1, 15-hydroxyprostaglandin dehydrogenase, apolipoprotein A-II, and pyruvate dehydrogenase kinase isozyme 4, were increased in the mucosa of WD-fed IE-irKO mice compared with controls. In contrast, expression of the nutrient-responsive gut hormones, glucose-dependent insulinotropic polypeptide and neurotensin, was reduced in the jejunal mucosa of IE-irKO mice, and the expression of proteins of the P-type adenosine triphosphatases and the solute carrier-transporter family was reduced in the colon of WD-fed IE-irKO mice. In conclusion, IE-irKO mice display a distinct molecular phenotype, suggesting a biological role of insulin and its receptor in determining differentiated cell specificity in the intestinal epithelium. Copyright © 2017 Endocrine Society.

  6. Research Advance in Intestinal Mucosal Barrier and Pathogenesis of Crohn's Disease

    PubMed Central

    Dou, Chuan-zi; Guan, Xin; Wu, Huan-gan

    2016-01-01

    To date, the etiology and pathogenesis of Crohn's disease (CD) have not been fully elucidated. It is widely accepted that genetic, immune, and environment factors are closely related to the development of CD. As an important defensive line for human body against the environment, intestinal mucosa is able to protect the homeostasis of gut bacteria and alleviate the intestinal inflammatory and immune response. It is evident that the dysfunction of intestinal mucosa barriers plays a crucial role in CD initiation and development. Yet researches are insufficient on intestinal mucosal barrier's action in the prevention of CD onset. This article summarizes the research advances about the correlations between the disorders of intestinal mucosal barriers and CD. PMID:27651792

  7. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  8. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  9. Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro.

    PubMed Central

    Hicks, S; Candy, D C; Phillips, A D

    1996-01-01

    Organ cultures of small- and large-intestinal mucosa from children were used to examine the interactions of enteroaggregative Escherichia coli (EAEC) with human intestine. Mucosae from patients aged between 3 and 190 months were cultured with five EAEC strains isolated from infants with diarrhea in the United Kingdom and with two well-described prototype EAEC strains, 17-2 and 221. The prototype strains adhered to jejunal, ileal, and colonic mucosae. The wild-type strains also adhered to this tissue but showed a variable pattern of adhesion: two adhered to all intestinal levels, one adhered to jejunum and ileum, one adhered to ileum only, and one adhered to ileum and colon. Adherence was in an aggregative or stacked-brick pattern, resembling that seen on HEp-2 cells. Electron microscopy of infected small intestinal mucosa revealed bacteria in association with a thick mucus layer above an intact enterocyte brush border, which contained extruded cell fragments. This mucus layer was not present on controls. EAEC adherence to colonic mucosa was associated with cytotoxic effects including microvillous vesiculation (but without evidence of an attaching/effacing lesion), enlarged crypt openings, the presence of intercrypt crevices, and increased epithelial cell extrusion. These results demonstrate that in vitro organ culture of intestinal mucosa from children can be used to investigate EAEC pathogenesis in childhood directly. EAEC strains appear able to colonize many regions of the gastrointestinal tract, without overt changes to small intestinal mucosa but with cytotoxic effects on colonic mucosa. PMID:8890236

  10. [THE INTESTINAL BARRIER, THE MICROBIOTA, MICROBIOME].

    PubMed

    Mar'yanovich, A T

    2016-01-01

    The review examined modern condition of development directions physiology of digestion, like structure and function of the intestinal barrier, the microbiota of the digestive tract in its relations with the microorganism.

  11. Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa

    SciTech Connect

    Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

    1986-03-01

    There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

  12. Influence of surface-active food additives on the integrity and permeability of rat intestinal mucosa.

    PubMed

    Tagesson, C; Edling, C

    1984-11-01

    The influence of two surface-active food additives on the integrity and permeability of rat ileal mucosa has been studied. We determined the activity of N-acetyl-beta-glucosaminidase, a lysosomal enzyme, in the rat intestinal lumen after deposition of polyoxyethylene (20) sorbitan monostearate (polysorbate 60; Tween 60) or polyoxyethylene (20) sorbitan monooleate (polysorbate 80; Tween 80) in a section of ligated, cannulated gut. We also determined the activities of N-acetyl-beta-glucosaminidase, alkaline phosphatase, 5'-nucleotidase and phospholipase A2 in mixtures of isolated mucosal cells and polysorbate 60 or polysorbate 80. The activity of N-acetyl-beta-glucosaminidase was increased in the luminal contents of the cannulated gut 15 min after deposition of either polysorbate 60 or polysorbate 80 (10 mg/ml fluid instilled into gut). It was also increased in mixtures of mucosal cells and polysorbate 60 or polysorbate 80 (0.1-10 mg/ml). In contrast, the activities of alkaline phosphatase and 5'-nucleotidase were unaffected and that of phospholipase A2 was decreased by the presence of either polysorbate. These findings indicated that polysorbate 60 and polysorbate 80 released lysosomal enzymes from the intestinal mucosal cells and that these agents might damage the intestinal mucosa and increase its permeability. We therefore determined the intestinal permeability to sodium fluorescein in the absence and presence of polysorbate 60 or 80 and found that the permeability was slightly increased in the presence of either of the compounds at concentrations of 10 mg/ml fluid instilled into gut. It is possible therefore that surface-active food additives might impair the function of the mucosal barrier and increase the permeability of the gut to potentially toxic and pathogenic molecules.

  13. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function.

    PubMed

    McKenna, Lindsay B; Schug, Jonathan; Vourekas, Anastassios; McKenna, Jaime B; Bramswig, Nuria C; Friedman, Joshua R; Kaestner, Klaus H

    2010-11-01

    Whereas the importance of microRNA (miRNA) for the development of several tissues is well established, its role in the intestine is unknown. We aimed to quantify the complete miRNA expression profile of the mammalian intestinal mucosa and to determine the contribution of miRNAs to intestinal homeostasis using genetic means. We determined the miRNA transcriptome of the mouse intestinal mucosa using ultrahigh throughput sequencing. Using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), we identified miRNA-messenger RNA target relationships in the jejunum. We employed gene ablation of the obligatory miRNA-processing enzyme Dicer1 to derive mice deficient for all miRNAs in intestinal epithelia. miRNA abundance varies dramatically in the intestinal mucosa, from 1 read per million to 250,000. Of the 453 miRNA families identified, mmu-miR-192 is the most highly expressed in both the small and large intestinal mucosa, and there is a 53% overlap in the top 15 expressed miRNAs between the 2 tissues. The intestinal epithelium of Dicer1(loxP/loxP);Villin-Cre mutant mice is disorganized, with a decrease in goblet cells, a dramatic increase in apoptosis in crypts of both jejunum and colon, and accelerated jejunal cell migration. Furthermore, intestinal barrier function is impaired in Dicer1-deficient mice, resulting in intestinal inflammation with lymphocyte and neutrophil infiltration. Our list of miRNA-messenger RNA targeting relationships in the small intestinal mucosa provides insight into the molecular mechanisms behind the phenotype of Dicer1 mutant mice. We have identified all intestinal miRNAs and shown using gene ablation of Dicer1 that miRNAs play a vital role in the differentiation and function of the intestinal epithelium. Copyright © 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Exercise, intestinal barrier dysfunction and probiotic supplementation.

    PubMed

    Lamprecht, Manfred; Frauwallner, Anita

    2012-01-01

    Athletes exposed to high-intensity exercise show an increased occurrence of gastrointestinal (GI) symptoms like cramps, diarrhea, bloating, nausea, and bleeding. These problems have been associated with alterations in intestinal permeability and decreased gut barrier function. The increased GI permeability, a so-called 'leaky gut', also leads to endotoxemia, and results in increased susceptibility to infectious and autoimmune diseases, due to absorption of pathogens/toxins into tissue and the bloodstream. Key components that determine intestinal barrier function and GI permeability are tight junctions, protein structures located in the paracellular channels between epithelial cells of the intestinal wall. The integrity of tight junctions depends on sophisticated interactions between the gut residents and their expressed substances, the intestinal epithelial cell metabolism and the activities of the gut-associated lymphoid tissue. Probiotic supplements are an upcoming group of nutraceuticals that could offer positive effects on athlete's gut and entire health. Some results demonstrate promising benefits for probiotic use on the athlete's immune system. There is also evidence that probiotic supplementation can beneficially influence intestinal barrier integrity in acute diseases. With regard to exercise-induced GI permeability problems, there is still a lack of studies with appropriate data and a gap to understand the underlying mechanisms to support such health beneficial statements implicitly. This article refers (i) to exercise-induced intestinal barrier dysfunction, (ii) provides suggestions to estimate increased gut barrier permeability in athletes, and (iii) discusses the potential of probiotic supplementation to counteract an exercise-induced leaky gut.

  15. Nutritional Keys for Intestinal Barrier Modulation

    PubMed Central

    De Santis, Stefania; Cavalcanti, Elisabetta; Mastronardi, Mauro; Jirillo, Emilio; Chieppa, Marcello

    2015-01-01

    The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier. PMID:26697008

  16. A novel method for the culture and polarized stimulation of human intestinal mucosa explants.

    PubMed

    Tsilingiri, Katerina; Sonzogni, Angelica; Caprioli, Flavio; Rescigno, Maria

    2013-05-01

    Few models currently exist to realistically simulate the complex human intestine's micro-environment, where a variety of interactions take place. Proper homeostasis directly depends on these interactions, as they shape an entire immunological response inducing tolerance against food antigens while at the same time mounting effective immune responses against pathogenic microbes accidentally ingested with food. Intestinal homeostasis is preserved also through various complex interactions between the microbiota (including food-associated beneficial bacterial strains) and the host, that regulate the attachment/degradation of mucus, the production of antimicrobial peptides by the epithelial barrier, and the "education" of epithelial cells' that controls the tolerogenic or immunogenic phenotype of unique, gut-resident lymphoid cells' populations. These interactions have been so far very difficult to reproduce with in vitro assays using either cultured cell lines or peripheral blood mononuclear cells. In addition, mouse models differ substantially in components of the intestinal mucosa (mucus layer organization, commensal bacteria community) with respect to the human gut. Thus, studies of a variety of treatments to be brought in the clinics for important stress-related or pathological conditions such as irritable bowel syndrome, inflammatory bowel disease or colorectal cancer have been difficult to carry out. To address these issues, we developed a novel system that enables us to stimulate explants of human intestinal mucosa that retain their in situ conditioning by the host microbiota and immune response, in a polarized fashion. Polarized apical stimulation is of great importance for the outcome of the elicited immune response. It has been repeatedly shown that the same stimuli can produce completely different responses when they bypass the apical face of the intestinal epithelium, stimulating epithelial cells basolaterally or coming into direct contact with lamina

  17. Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease

    PubMed Central

    Forsyth, Christopher B.; Shannon, Kathleen M.; Kordower, Jeffrey H.; Voigt, Robin M.; Shaikh, Maliha; Jaglin, Jean A.; Estes, Jacob D.; Dodiya, Hemraj B.; Keshavarzian, Ali

    2011-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha–synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and

  18. Digestion of gliadin peptides by intestinal mucosa from control or coeliac children.

    PubMed

    Carchon, H; Serrus, M; Eggermont, E

    1979-01-01

    Gliadin, subsequently treated with pepsin, trypsin and pancreatic extract was further digested by small-intestinal mucosal homogenates from 10 control or 8 coeliac children. The amino acids liberated in the incubation mixture were measured and corrected for mucosal damage. In accordance with the data from the literature on adults, the total amount of amino acids released from gliadin peptides by the intestinal mucosa from children with active coeliac disease is significantly lower than that by the mucosa from control subjects. Qualitatively, however, no significant differences for the individual amino acids are observed with the exception of glutamine and proline, so that damaged coeliac mucosa liberates relatively more glutamine but less proline.

  19. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats

    PubMed Central

    van Ampting, Marleen TJ; Schonewille, Arjan J; Vink, Carolien; Brummer, Robert Jan M; Meer, Roelof van der; Bovee-Oudenhoven, Ingeborg MJ

    2009-01-01

    Background Glutathione, the main antioxidant of intestinal epithelial cells, is suggested to play an important role in gut barrier function and prevention of inflammation-related oxidative damage as induced by acute bacterial infection. Most studies on intestinal glutathione focus on oxidative stress reduction without considering functional disease outcome. Our aim was to determine whether depletion or maintenance of intestinal glutathione changes susceptibility of rats to Salmonella infection and associated inflammation. Rats were fed a control diet or the same diet supplemented with buthionine sulfoximine (BSO; glutathione depletion) or cystine (glutathione maintenance). Inert chromium ethylenediamine-tetraacetic acid (CrEDTA) was added to the diets to quantify intestinal permeability. At day 4 after oral gavage with Salmonella enteritidis (or saline for non-infected controls), Salmonella translocation was determined by culturing extra-intestinal organs. Liver and ileal mucosa were collected for analyses of glutathione, inflammation markers and oxidative damage. Faeces was collected to quantify diarrhoea. Results Glutathione depletion aggravated ileal inflammation after infection as indicated by increased levels of mucosal myeloperoxidase and interleukin-1β. Remarkably, intestinal permeability and Salmonella translocation were not increased. Cystine supplementation maintained glutathione in the intestinal mucosa but inflammation and oxidative damage were not diminished. Nevertheless, cystine reduced intestinal permeability and Salmonella translocation. Conclusion Despite increased infection-induced mucosal inflammation upon glutathione depletion, this tripeptide does not play a role in intestinal permeability, bacterial translocation and diarrhoea. On the other hand, cystine enhances gut barrier function by a mechanism unlikely to be related to glutathione. PMID:19374741

  20. [Effects of different nutritional support routes on the intestinal mucosa mucosainjury and renovation in burned rats].

    PubMed

    Peng, X; Wang, S; Tao, L

    2000-08-01

    To compare the effects of different nutritional support routes on the intestinal mucosa in burned rats. Wistar rats inflicted with 30% TBSA full thickness burns were employed as the model and randomly divided into three groups: burn with enteral nutrition (EN), burn with parenteral nutrition (PN), and normal control (C). Solutions for intravenous and oral application with same volume, calorie, nitrogen and other nutrients were administered to rats in PN and EN groups, respectively. The plasma diamine oxidase (DAO) activity, the intestinal mucosa change of proliferating cell nuclear antigen (PCNA), of transmembrane electric potential difference (PD), of intestinal trefoil factor and their correlation analysis (ITF) were observed. Plasma DAO activity increased obviously and PD, PCNA values, ITF content were much lower in EN, PN groups than those in C group. The ITF content, the values of PD and PCNA in EN were much higher than those in PN group, while DAO activity in EN group was obviously lower than that in PN group. In addition, ITF content was significantly negatively correlated to plasma DAO activity, and obviously positively correlated to PCNA and PD values. It is suggested that intestinal mucosa injury was much more severe in PN group than that in EN group. Postburn intestine mucosa mucosal structural injury was related to the evident decrease of synthesis and secretion of ITF. Enteral nutrition might slow down the decrement of ITF, which could explain why EN was superior to PN in terms of decreasing intestinal mucosal injury and enhancing intestinal renovation.

  1. Intussusception caused by heterotopic gastric mucosa in small intestine: a case report.

    PubMed

    Anand, Priyanka; Singh, Sompal; Sarin, Namrata

    2017-09-12

    Intestinal intussusception is the most frequent cause of small bowel obstruction in children between the ages of 2 months and 5 years and often remains idiopathic in etiology, even after surgery. On microscopic examination, in intussusception normal mucosa is noted but in a few cases heterotopic tissue can be seen. Heterotopic gastric mucosa in the small intestine is extremely rare except for its occurrence in remnants of Meckel's diverticulum. In view of the rarity of this condition, we report a case of ectopic gastric mucosa in the small intestine that was not associated with remnants of vitelline duct. A 6-year-old boy of Indo-Aryan ethnicity from India presented with episodes of acute abdominal pain and distension with vomiting and non-passage of stools. On ultrasonography intussusception was suspected. A laparotomy was done and the ileal segment (tip of intussusception) was sent for histopathological examination. On histopathology, sections from the tip of intussusception showed extensive gastric metaplasia of the mucosa. A definitive diagnosis of heterotopic gastric mucosa is established by histopathological examination and it is important to differentiate heterotopia, which is a developmental anomaly, from metaplasia, which is an acquired condition. Heterotopic gastric mucosa is usually clinically silent and surgical intervention can be considered in patients with complications such as gastrointestinal hemorrhage and intestinal obstruction.

  2. Intestinal REG3 Lectins Protect Against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation

    PubMed Central

    Wang, Lirui; Fouts, Derrick E.; Stärkel, Peter; Hartmann, Phillipp; Chen, Peng; Llorente, Cristina; DePew, Jessica; Moncera, Kelvin; Ho, Samuel B.; Brenner, David A.; Hooper, Lora V.; Schnabl, Bernd

    2016-01-01

    Summary Approximately half of all deaths from liver cirrhosis, the 10th leading cause of mortality in the United States, are related to alcohol use. Chronic alcohol consumption is accompanied by intestinal dysbiosis and bacterial overgrowth, yet little is known about the factors that alter the microbial composition or their contribution to liver disease. We previously associated chronic alcohol consumption with lower intestinal levels of the antimicrobial-regenerating islet-derived (REG)-3 lectins. Here, we demonstrate that intestinal deficiency in REG3B or REG3G increases numbers of mucosa-associated bacteria and enhances bacterial translocation to the mesenteric lymph nodes and liver, promoting the progression of ethanol-induced fatty liver disease toward steatohepatitis. Overexpression of Reg3g in intestinal epithelial cells restricts bacterial colonization of mucosal surfaces, reduces bacterial translocation, and protects mice from alcohol-induced steatohepatitis. Thus, alcohol appears to impair control of the mucosa-associated microbiota, and subsequent breach of the mucosal barrier facilitates progression of alcoholic liver disease. PMID:26867181

  3. Survival, Intestinal Mucosa Adhesion, and Immunomodulatory Potential of Lactobacillus plantarum Strains.

    PubMed

    Santarmaki, Valentini; Kourkoutas, Yiannis; Zoumpopoulou, Georgia; Mavrogonatou, Eleni; Kiourtzidis, Mikis; Chorianopoulos, Nikos; Tassou, Chrysoula; Tsakalidou, Effie; Simopoulos, Constantinos; Ypsilantis, Petros

    2017-09-01

    Survival during transit through the gastrointestinal track, intestinal mucosa adhesion, and a potential immunomodulatory effect of Lactobacillus plantarum strains 2035 and ACA-DC 2640 were investigated in a rat model. According to microbiological and multiplex PCR analysis, both strains were detected in feces 24 h after either single-dose or daily administration for 7 days. Intestinal mucosa adhesion of L. plantarum 2035 was noted in the large intestine at 24 h after single-dose administration, while it was not detected at 48 h. Daily dosing, prolonged detection of the strain up to 48 h post-administration, and expanded adhesion to the small intestine. Adhesion of L. plantarum ACA-DC 2640 to the intestinal mucosa after single-dose administration was prolonged and more extended compared to L. plantarum 2035. Daily dosing increased both the levels and the rate of positive cultures of the strains compared to those of the single-dose scheme. In addition, both strains increased total IgG while decreased IgM and IgA serum levels. In conclusion, L. plantarum 2035 and L. plantarum ACA-DC 2640 survived transit through the gastrointestinal track, exhibited transient distinct adhesion to the intestinal mucosa and modulated the systemic immune response.

  4. Effects of intestinal mucosal blood flow and motility on intestinal mucosa.

    PubMed

    Wang, Yan-Bin; Liu, Jing; Yang, Zhao-Xu

    2011-02-07

    To investigate the role of intestinal mucosal blood flow (IMBF) and motility in the damage of intestinal mucosal barrier in rats with traumatic brain injury. Sixty-four healthy male Wistar rats were divided randomly into two groups: traumatic brain injury (TBI) group (n=32), rats with traumatic brain injury; and control group (n=32), rats with sham-operation. Each group was divided into four subgroups (n=8) as 6, 12, 24 and 48 h after operation. Intestinal motility was measured by the propulsion ratio of a semi-solid colored marker (carbon-ink). IMBF was measured with the laser-Doppler technique. Endotoxin and D-xylose levels in plasma were measured to evaluate the change of intestinal mucosal barrier function following TBI. The level of endotoxin was significantly higher in TBI group than in the control group at each time point (0.382±0.014 EU/mL vs 0.102±0.007 EU/mL, 0.466±0.018 EU/mL vs 0.114±0.021 EU/mL, 0.478±0.029 EU/mL vs 0.112±0.018 EU/mL and 0.412±0.036 EU/mL vs 0.108±0.011 EU/mL, P<0.05). D-xylose concentrations in plasma in TBI group were significantly higher than in the control group (6.68±2.37 mmol/L vs 3.66±1.07 mmol/L, 8.51±2.69 mmol /L vs 3.15±0.95 mmol/L, 11.68±3.24 mmol/L vs 3.78±1.12 mmol/L and 10.23±2.83 mmol/L vs 3.34±1.23 mmol/ L, P<0.05). The IMBF in TBI group was significantly lower than that in the control group (38.5±2.8 PU vs 45.6±4.6 PU, 25.2±3.1 PU vs 48.2±5.3 PU, 21.5±2.7 PU vs 44.9±2.8 PU, 29. 4±3.8 PU vs 46.7±3.2 PU) (P<0.05). Significant decelerations of intestinal propulsion ratio in TBI groups were found compared with the control group (0.48%±0.06% vs 0.62%±0.03%, 0.37%±0.05% vs 0.64%±0.01%, 0.39%±0.07% vs 0.63%±0.05% and 0.46%±0.03% vs 0.65%±0.02%) (P<0.05). The intestinal mucosal permeability is increased obviously in TBI rats. Decrease of intestinal motility and IMBF occur early in TBI, both are important pathogenic factors for stress-related damage of the intestinal mucosal barrier in TBI.

  5. Selective culturing of swine gastrointestinal bacteria on substrates simulating the intestinal mucosa

    USDA-ARS?s Scientific Manuscript database

    Many gastrointestinal (GI) microbes are in intimate contact with the host tissues, and characterizing these tissue-associated communities is important for elucidating their role in animal and human health. The GI mucosa is an environment distinct from the intestinal lumen and is covered by a mucus l...

  6. Cryptosporidium, chronic diarrhoea and the proximal small intestinal mucosa.

    PubMed Central

    Phillips, A D; Thomas, A G; Walker-Smith, J A

    1992-01-01

    The association between Cryptosporidium, chronic diarrhoea and a proximal small intestinal mucosal enteropathy was reviewed over a six and a half year period. One hundred and twenty three children with cryptosporidiosis and no clinical evidence of immune deficiency were identified. 50% of children excreting only Cryptosporidium had chronic diarrhoea. Most cases (63%) of chronic diarrhoea occurred in the first two years of life. A mild to moderate enteropathy was present in all nine children undergoing a small intestinal biopsy and seven showed the presence of Cryptosporidium adhering to villous epithelium. All patients eventually recovered spontaneously. Cryptosporidium is a cause of chronic diarrhoea and a proximal small intestinal mucosal enteropathy in children without immune deficiency. Screening for the parasite should be part of the investigative procedures in children with chronic diarrhoea. Images Figure 4 PMID:1398230

  7. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions.

    PubMed

    Lyte, Mark; Vulchanova, Lucy; Brown, David R

    2011-01-01

    Psychological stress has profound effects on gastrointestinal function, and investigations over the past few decades have examined the mechanisms by which neural and hormonal stress mediators act to modulate gut motility, epithelial barrier function and inflammatory states. With its cellular diversity and large commensal bacterial population, the intestinal mucosa and its overlying mucous environment constitute a highly interactive environment for eukaryotic host cells and prokaryotic bacteria. The elaboration of stress mediators, particularly norepinephrine, at this interface influences host cells engaged in mucosal protection and the bacteria which populate the mucosal surface and gut lumen. This review will address growing evidence that norepinephrine and, in some cases, other mediators of the adaptation to stress modulate mucosal interactions with enteric bacteria. Stress-mediated changes in this delicate interplay may shift the microbial colonization patterns on the mucosal surface and alter the susceptibility of the host to infection. Moreover, changes in host-microbe interactions in the digestive tract may also influence ongoing neural activity in stress-responsive brain areas.

  8. Immunoproteomic to identify antigens in the intestinal mucosa of Crohn's disease patients.

    PubMed

    Zhou, Zheng; Liu, Haiyan; Gu, Guosheng; Wang, Gefei; Wu, Wenyong; Zhang, Changle; Ren, Jianan

    2013-01-01

    Incidences of Crohn disease (CD) have increased significantly in the last decade. Immunoproteomics are a promising method to identify biomarkers of different diseases. In the present study, we used immunoproteomics to study proteins of intestinal mucosal lesions and neighboring normal intestinal mucosa of 8 CD patients. Reactive proteins were validated by Western blotting. Approximately 50 protein spots localized in the 4 to 7 pI range were detected on two-dimensional electrophoresis gels, and 6 differentially expressed protein spots between 10 and 100 kDa were identified. Reactive proteins were identified as prohibitin, calreticulin, apolipoprotein A-I, intelectin-1, protein disulfide isomerase, and glutathione s-transferase Pi. Western blotting was conducted on the intestinal mucosa of another 4 CD patients to validate the reactive proteins. We found that intestinal mucosal lesions had high levels of prohibitin expression. Glutathione s-transferase expression was detected in 100% of the intestinal mucosa examined. Thus, we report 6 autoantigens of CD, including 3 new and 3 previously reported autoantigens. Intelectin-1, protein disulfide isomerase, and glutathione-s-transferases may be used as biomarkers for CD pathogenesis.

  9. Immunoproteomic to Identify Antigens in the Intestinal Mucosa of Crohn's Disease Patients

    PubMed Central

    Gu, Guosheng; Wang, Gefei; Wu, Wenyong; Zhang, Changle; Ren, Jianan

    2013-01-01

    Incidences of Crohn disease (CD) have increased significantly in the last decade. Immunoproteomics are a promising method to identify biomarkers of different diseases. In the present study, we used immunoproteomics to study proteins of intestinal mucosal lesions and neighboring normal intestinal mucosa of 8 CD patients. Reactive proteins were validated by Western blotting. Approximately 50 protein spots localized in the 4 to 7 pI range were detected on two-dimensional electrophoresis gels, and 6 differentially expressed protein spots between 10 and 100 kDa were identified. Reactive proteins were identified as prohibitin, calreticulin, apolipoprotein A-I, intelectin-1, protein disulfide isomerase, and glutathione s-transferase Pi. Western blotting was conducted on the intestinal mucosa of another 4 CD patients to validate the reactive proteins. We found that intestinal mucosal lesions had high levels of prohibitin expression. Glutathione s-transferase expression was detected in 100% of the intestinal mucosa examined. Thus, we report 6 autoantigens of CD, including 3 new and 3 previously reported autoantigens. Intelectin-1, protein disulfide isomerase, and glutathione-s-transferases may be used as biomarkers for CD pathogenesis. PMID:24358121

  10. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  11. Metabolism of heme and bilirubin in rat and human small intestinal mucosa.

    PubMed Central

    Hartmann, F; Bissell, D M

    1982-01-01

    Formation of heme, bilirubin, and bilirubin conjugates has been examined in mucosal cells isolated from the rat upper small intestine. Intact, viable cells were prepared by enzymatic dissociation using a combined vascular and luminal perfusion and incubated with an isotopically labeled precursor, delta-amino-[2,3-3H]levulinic acid. Labeled heme and bile pigment were formed with kinetics similar to those exhibited by hepatocytes. Moreover, the newly formed bilirubin was converted rapidly to both mono- and diglucuronide conjugates. In addition, cell-free extracts of small intestinal mucosa from rats or humans exhibited a bilirubin-UDP-glucuronyl transferase activity that was qualitatively similar to that present in liver. The data suggest that the small intestinal mucosa normally contributes to bilirubin metabolism. PMID:6806320

  12. Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo

    PubMed Central

    Troost, Freddy J; van Baarlen, Peter; Lindsey, Patrick; Kodde, Andrea; de Vos, Willem M; Kleerebezem, Michiel; Brummer, Robert-Jan M

    2008-01-01

    Background There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. Results One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. Conclusion Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine. PMID:18681965

  13. Effects of psychological stress on small intestinal motility and bacteria and mucosa in mice

    PubMed Central

    Wang, Shao-Xuan; Wu, Wan-Chun

    2005-01-01

    AIM: To investigate the effects of psychological stress on small intestinal motility and bacteria and mucosa in mice, and to explore the relationship between small intestinal dysfunction and small intestinal motility and bacteria and mucosa under psychological stress. METHODS: Sixty mice were randomly divided into psychological stress group and control group. Each group were subdivided into small intestinal motility group (n = 10), bacteria group (n = 10), and D-xylose administered to stomach group (n = 10). An animal model with psychological stress was established housing the mice with a hungry cat in separate layers of a two-layer cage. A semi-solid colored marker (carbon-ink) was used for monitoring small intestinal transit. The proximal small intestine was harvested under sterile condition and processed for quantitation for aerobes (Escherichia coli) and anaerobes (Lactobacilli). The quantitation of bacteria was expressed as log10(colony forming units/g). D-xylose levels in plasma were measured for estimating the damage of small intestinal mucosa. RESULTS: Small intestinal transit was inhibited (39.80±9.50% vs 58.79±11.47%, P<0.01) in mice after psychological stress, compared with the controls. Psychological stress resulted in quantitative alterations in the aerobes (E. coli). There was an increase in the number of E. coli in the proximal small intestinal flora (1.78±0.30 log10(CFU/g) vs 1.37±0.21 log10(CFU/g), P<0.01), and there was decrease in relative proportion of Lactobacilli and E. coli of stressed mice (0.53±0.63 vs 1.14±1.07, P<0.05), while there was no significant difference in the anaerobes (Lactobacilli) between the two groups (2.31±0.70 log10(CFU/g) vs 2.44±0.37 log10(CFU/g), P>0.05). D-xylose concentrations in plasma in psychological stress mice were significantly higher than those in the control group (2.90±0.89 mmol/L vs 0.97±0.33 mmol/L, P<0.01). CONCLUSION: Small intestinal dysfunction under psychological stress may be related to the

  14. Bile reflux and intestinal metaplasia in gastric mucosa.

    PubMed Central

    Sobala, G M; O'Connor, H J; Dewar, E P; King, R F; Axon, A T; Dixon, M F

    1993-01-01

    AIM: To determine associations between enterogastric bile reflux and gastric mucosal pathology. METHOD: A retrospective study using fasting gastric juice bile acid measurements and antral or prestomal biopsy specimens from 350 patients, 66 of whom had previously undergone surgery that either bypassed or disrupted the pyloric sphincter. RESULTS: Bile reflux was positively associated with reactive gastritis and negatively with Helicobacter pylori density. After stratification for previous surgery, age, and H pylori status, the histological feature most strongly associated with bile reflux was intestinal metaplasia, including all its subtypes. The prevalence of intestinal metaplasia was greatest in patients with both H pylori infection and high bile acid concentrations. Bile reflux was also positively associated with the severity of glandular atrophy, chronic inflammation, lamina propria oedema and foveolar hyperplasia. CONCLUSIONS: Bile reflux is a cause of reactive gastritis. It modifies the features of H pylori associated chronic gastritis. The changes are not confined to patients who have had surgery to their stomachs. The positive associations with atrophy and intestinal metaplasia have implications for models of gastric carcinogenesis. Images PMID:8463417

  15. Misoprostol in the intestinal lumen protects against radiation injury of the mucosa of the small bowel

    SciTech Connect

    Delaney, J.P.; Bonsack, M.E.; Felemovicius, I. )

    1994-03-01

    Systemically administered misoprostol, a PGE analog, has been shown to be an intestinal radioprotector. The purpose of this study was to determine if administration of misoprostol into the intestinal lumen can also reduce the severity of acute radiation enteritis. The rat small bowel was operatively exteriorized and segmented by means of suture ties. The remainder of the intestine and the rat were shielded in a lead box. Misoprostol was introduced into the lumen in various doses. After 30 min exposure to misoprostol, the isolated, exteriorized, segmented bowel was subjected to 11 Gy X irradiation. Five days later the animals were sacrificed and the intestines harvested for evaluation. Surviving crypt numbers per circumference and mucosal height were the criteria used for quantification of damage. Mucosa exposed to misoprostol at the time of radiation delivery showed significantly increased crypt numbers and mucosal height compared to adjacent saline-filled intestine. 24 refs., 2 figs., 2 tabs.

  16. Subversion of human intestinal mucosa innate immunity by a Crohn's disease-associated E. coli.

    PubMed

    Jarry, A; Crémet, L; Caroff, N; Bou-Hanna, C; Mussini, J M; Reynaud, A; Servin, A L; Mosnier, J F; Liévin-Le Moal, V; Laboisse, C L

    2015-05-01

    Adherent-invasive Escherichia coli (AIEC), associated with Crohn's disease, are likely candidate contributory factors in the disease. However, signaling pathways involved in human intestinal mucosa innate host response to AIEC remain unknown. Here we use a 3D model of human intestinal mucosa explant culture to explore the effects of the AIEC strain LF82 on two innate immunity platforms, i.e., the inflammasome through evaluation of caspase-1 status, and NFκB signaling. We showed that LF82 bacteria enter and survive within a few intestinal epithelial cells and macrophages, without altering the mucosa overall architecture. Although 4-h infection with a Salmonella strain caused crypt disorganization, caspase-1 activation, and mature IL-18 production, LF82 bacteria were unable to activate caspase-1 and induce IL-18 production. In parallel, LF82 bacteria activated NFκB signaling in epithelial cells through IκBα phosphorylation, NFκBp65 nuclear translocation, and TNFα secretion. In addition, NFκB activation was crucial for the maintenance of epithelial homeostasis upon LF82 infection. In conclusion, here we decipher at the whole-mucosa level the mechanisms of the LF82-induced subversion of innate immunity that, by maintaining host cell integrity, ensure intracellular bacteria survival.

  17. Dietary cholecalciferol and phosphorus influence intestinal mucosa phytase activity in broiler chicks.

    PubMed

    Onyango, E M; Asem, E K; Adeola, O

    2006-10-01

    1. The role of cholecalciferol and phosphorus in the regulation of intestinal mucosa phytase was investigated in broiler chicks. 2. A total of 144 7-d-old male broiler chicks were grouped by weight into 6 blocks of 4 cages with 6 broiler chicks per cage. Four maize-soybean meal-based mash diets were randomly assigned to cages within each block. The 4 diets consisted of cholecalciferol at 0 or 75 microg/kg and total phosphorus at 3.6 or 7.0 g/kg in a 2 x 2 factorial arrangement. The birds were given the experimental diets for 12 d under conditions which excluded ultraviolet light. 3. Broiler chicks fed on diets with the higher concentration of cholecalciferol had higher Vmax and Km of the mucosa phytase, weight gain, feed intake, feed efficiency and percentage tibia ash, higher ileal digestibility of dry matter, energy, phosphorus (P) and calcium (Ca), and increased retention of dry matter, nitrogen, P, Ca and energy. 4. Broiler chicks receiving diets with the higher P concentration showed lower Vmax and Km of the intestinal mucosa phytase but greater weight gain, feed intake, feed efficiency and percentage tibia ash, higher ileal digestibility of dry matter, energy, P and nitrogen, and increased retention of dry matter, energy, nitrogen and Ca. 5. In conclusion, both dietary P and cholecalciferol influenced the activity of intestinal mucosa phytase.

  18. Influence of microcystin-LR on the activity of membrane enzymes in rat intestinal mucosa.

    PubMed

    Moreno, I M; Mate, A; Repetto, G; Vázquez, C M; Cameán, A M

    2003-12-01

    The objective of the present study was to evaluate the effects of microcystin-LR (MCLR) on the activity of membrane enzymes from intestinal mucosa. In addition, serum chemistry and peroxidative status of both serum and intestinal homogenate were evaluated after treatment with MCLR. Wistar rats were treated with intraperitoneal injection of either 100 microg pure MCLR/Kg body weight or saline solution. A significant increase in liver weight and altered serum enzyme activities were found in MCLR-treated rats, indicating damage to the liver in these rats, as previously suggested. A higher specific activity of sucrase (1.5-fold) was observed after the administration of MCLR, whereas other intestinal apical membrane enzymes, such as lactase, maltase and alkaline phosphatase were not modified by the treatment. The specific activities of acid phosphatase and succinate dehydrogenase, markers for lysosomal and mitochondrial membranes, respectively, were also increased (32% and 60%, respectively) in treated rats. The analysis of lipid peroxidation showed that the peroxidative status was increased in both serum and intestinal mucosa from MCLR-treated rats, reflecting an excess production of oxygen free radicals induced by this cyanobacterial toxin. In conclusion, this study shows that acute exposure to MCLR affects the intestinal physiology by modifying the intestinal peroxidation status as well as the activity of membrane enzymes.

  19. Compartmentalised expression of meprin in small intestinal mucosa: enhanced expression in lamina propria in coeliac disease.

    PubMed

    Lottaz, Daniel; Buri, Caroline; Monteleone, Giovanni; Rösmann, Sandra; Macdonald, Thomas T; Sanderson, Ian R; Sterchi, Erwin E

    2007-03-01

    Epithelial cells in the human small intestine express meprin, an astacin-like metalloprotease, which accumulates normally at the brush border membrane and in the gut lumen. Therefore, meprin is targeted towards luminal components. In coeliac disease patients, peptides from ingested cereals trigger mucosal inflammation in the small intestine, disrupting epithelial cell differentiation and function. Using in situ hybridisation on duodenal tissue sections, we observed a marked shift of meprin mRNA expression from epithelial cells, the predominant expression site in normal mucosa, to lamina propria leukocytes in coeliac disease. Meprin thereby gains access to the substrate repertoire present beneath the epithelium.

  20. Effects of corn replacement by sorghum in broiler diets on performance and intestinal mucosa integrity.

    PubMed

    Torres, K A A; Pizauro, J M; Soares, C P; Silva, T G A; Nogueira, W C L; Campos, D M B; Furlan, R L; Macari, M

    2013-06-01

    The effect of replacing corn with low-tannin sorghum on broiler performance, carcass yield, integrity of mucosa of small intestine segments, and activity of membrane enzymes of the jejunum is investigated. A total of 594 male Cobb-500 broiler chicks were randomly assigned to 3 dietary treatments: 100% corn (control), 50% corn replacement with low-tannin sorghum (low sorghum), and 100% corn replacement with low-tannin sorghum (high sorghum). Body weight gain, feed consumption, feed conversion, and carcass yield were determined at 7, 21, and 42 d, and segments of the small intestine were collected. Feed conversion and weight gain were impaired at d 42 in broilers fed the high-sorghum diet, but no differences were observed for carcass yield among the treatments (P > 0.05). Crypt cell mitotic index of the jejunum and ileum at d 21 and 42 was lower in broilers fed the control diet than in those fed low- and high-sorghum diets (P < 0.05). Aminopeptidase activity was higher in broilers fed the control diet than in those fed low- and high-sorghum diets irrespective of age (P < 0.05). Conversely, intestinal alkaline phosphatase activity in the small intestine did not differ among the dietary treatments (P > 0.05). Our results indicate that 50% corn replacement with low-tannin sorghum is suitable for broiler diets, whereas 100% corn replacement with low-tannin sorghum had negative effects on the intestinal mucosa and performance of broilers at 42 d.

  1. The influence of gut function on lymphoid cell populations in the intestinal mucosa of lambs.

    PubMed Central

    Reynolds, J D; Morris, B

    1983-01-01

    The number and type of lymphoid cells in the intestinal mucosa of lambs change during the first weeks after birth. The influence of gut function on these changes was examined by comparing the evolution of lymphoid cell populations in normal ileum with that in lengths of ileum which had been isolated surgically from the functional intestinal tract of the lamb before birth. The isolated lengths of ileum had a normal blood and nerve supply and they remained healthy throughout a period of at least 2 years, although they did not have a normal histological development. In comparison with normal ileum, the villi of the isolated ileal segments were much smaller and there were many fewer intraepithelial lymphocytes; the lamina propria had significantly fewer lymphocytes than the functional ileum and only a few plasma cells. When isolated ileal segments were reconnected into the intestinal tract after having been isolated from it for 1-3 months, the histology of the mucosa reverted to that of the normal gut, with the same number and types of lymphoid cells. Radiolabelled lymphoblasts collected from intestinal lymph and injected intravenously accumulated to only a small extent in isolated segments of ileum compared with either the normal or the reconnected segments of ileum. This suggested that the paucity of lymphocytes in the mucosa of the isolated segments was due to a reduced extravasation of these cells there. The influence which the gut contents exert on the lymphoid cell population in the mucosa is probably associated with antigenic stimulation but may also be related to other factors concerned in the normal digestive functions of the gut. Images Figure 1 Figure 2 Figure 3 PMID:6862523

  2. Effect of cholera enterotoxin on carbohydrate metabolism in the liver and small intestinal mucosa of rabbits

    SciTech Connect

    Vengrov, P.R.; Cherkasova, T.D.; Yurkiv, V.A.; Pokrovskii, V.I.

    1987-09-01

    The effect of cholera enterotoxin injected in vivo on glucose formation from alanine, and also on glucose-6-phosphatase activity in the liver and mucosa of the small intestine was studied. L-(2,3-/sup 3/H)-alanine was added to the incubation medium. Chromatograms were developed with 5% AgNO/sub 3/ with the addition of an aqueous solution of ammonia. The quantity of radioactive glucose was determined in a scintillation counter.

  3. [The x-ray microanalysis of the mucosa of the rat small intestine].

    PubMed

    Pogorelov, A G; Matys, Iu V

    1990-01-01

    A rat small intestine mucosa is shown to accumulate significant amount of potassium and chloride. There was found a correlation between the content of these chemical elements and glycoprotein compartmentalization in goblet cell secret, brush border of enterocytes and a mucus layer. In this connection a role of mucus glycoproteins in membrane digestion is discussed. For preparation of samples the cryotechniques of electron microscopy are used.

  4. The role of immunomodulators on intestinal barrier homeostasis in experimental models.

    PubMed

    Andrade, Maria Emília Rabelo; Araújo, Raquel Silva; de Barros, Patrícia Aparecida Vieira; Soares, Anne Danieli Nascimento; Abrantes, Fernanda Alves; Generoso, Simone de Vasconcelos; Fernandes, Simone Odília Antunes; Cardoso, Valbert Nascimento

    2015-12-01

    The intestinal epithelium is composed of specialized epithelial cells that form a physical and biochemical barrier to commensal and pathogenic microorganisms. However, dysregulation of the epithelial barrier function can lead to increased intestinal permeability and bacterial translocation across the intestinal mucosa, which contributes to local and systemic immune activation. The increase in these parameters is associated with inflammatory bowel disease, physical exercise under heat stress, intestinal obstruction, ischemia, and mucositis, among other conditions. Lately, there has been growing interest in immunomodulatory nutrients and probiotics that can regulate host immune and inflammatory responses and possibly restore the intestinal barrier. Immunomodulators such as amino acids (glutamine, arginine, tryptophan, and citrulline), fatty acids (short-chain and omega-3 fatty acids and conjugated linoleic acids), and probiotics (Bifidobacterium, Saccharomyces, and Lactobacillus) have been reported in the literature. Here, we review the critical roles of immunomodulatory nutrients in supporting gut barrier integrity and function. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. A proteomic adaptation of small intestinal mucosa in response to dietary protein limitation.

    PubMed

    Qin, Chunfu; Qiu, Kai; Sun, Wenjuan; Jiao, Ning; Zhang, Xin; Che, Lianqiang; Zhao, Haiyi; Shen, Hexiao; Yin, Jingdong

    2016-11-14

    Dietary protein limitation (PL) is not only beneficial to human health but also applied to minimize nitrogen excretion in livestock production. However, the impact of PL on intestinal physiology is largely unknown. In this study, we identified 5275 quantitative proteins using a porcine model in which pigs suffered PL. A total of 202 proteins |log2 fold-change| > 1 were taken as differentially expressed proteins and subjected to functional and pathway enrichment analysis to reveal proteomic alterations of the jejunal mucosa. Combining with the results of western blotting analysis, we found that protein/carbohydrate digestion, intestinal mucosal tight junction and cell adhesion molecules, and the immune response to foreign antigens were increased in the jejunal mucosa of the pigs upon PL. In contrast, amino acid transport, innate and auto immunity, as well as cell proliferation and apoptosis were reduced. In addition, the expression of functional proteins that involved in DNA replication, transcription and mRNA splicing as well as translation were altered in the jejunal mucosa in response to PL. Furthermore, PL may reduce amino acid transport and cell proliferation through the depression of mTOR pathway. This study provides new insights into the molecular mechanisms underlying the small intestinal response to PL.

  6. A proteomic adaptation of small intestinal mucosa in response to dietary protein limitation

    PubMed Central

    Qin, Chunfu; Qiu, Kai; Sun, Wenjuan; Jiao, Ning; Zhang, Xin; Che, Lianqiang; Zhao, Haiyi; Shen, Hexiao; Yin, Jingdong

    2016-01-01

    Dietary protein limitation (PL) is not only beneficial to human health but also applied to minimize nitrogen excretion in livestock production. However, the impact of PL on intestinal physiology is largely unknown. In this study, we identified 5275 quantitative proteins using a porcine model in which pigs suffered PL. A total of 202 proteins |log2 fold-change| > 1 were taken as differentially expressed proteins and subjected to functional and pathway enrichment analysis to reveal proteomic alterations of the jejunal mucosa. Combining with the results of western blotting analysis, we found that protein/carbohydrate digestion, intestinal mucosal tight junction and cell adhesion molecules, and the immune response to foreign antigens were increased in the jejunal mucosa of the pigs upon PL. In contrast, amino acid transport, innate and auto immunity, as well as cell proliferation and apoptosis were reduced. In addition, the expression of functional proteins that involved in DNA replication, transcription and mRNA splicing as well as translation were altered in the jejunal mucosa in response to PL. Furthermore, PL may reduce amino acid transport and cell proliferation through the depression of mTOR pathway. This study provides new insights into the molecular mechanisms underlying the small intestinal response to PL. PMID:27841298

  7. Rebamipide protects small intestinal mucosal injuries caused by indomethacin by modulating intestinal microbiota and the gene expression in intestinal mucosa in a rat model.

    PubMed

    Kurata, Satoshi; Nakashima, Takako; Osaki, Takako; Uematsu, Naoya; Shibamori, Masafumi; Sakurai, Kazushi; Kamiya, Shigeru

    2015-01-01

    The effect of rebamipide, a mucosal protective drug, on small intestinal mucosal injury caused by indomethacin was examined using a rat model. Indomethacin administration (10 mg/kg, p.o.) induced intestinal mucosal injury was accompanied by an increase in the numbers of intestinal bacteria particularly Enterobacteriaceae in the jejunum and ileum. Rebamipide (30 and 100 mg/kg, p.o., given 5 times) was shown to inhibit the indomethacin-induced small intestinal mucosal injury and decreased the number of Enterococcaceae and Enterobacteriaceae in the jejunal mucosa to normal levels. It was also shown that the detection rate of segmented filamentous bacteria was increased by rebamipide. PCR array analysis of genes related to inflammation, oxidative stress and wound healing showed that indomethacin induced upregulation and downregulation of 14 and 3 genes, respectively in the rat jejunal mucosa by more than 5-fold compared to that of normal rats. Rebamipide suppressed the upregulated gene expression of TNFα and Duox2 in a dose-dependent manner. In conclusion, our study confirmed that disturbance of intestinal microbiota plays a crucial role in indomethacin-induced small intestinal mucosal injury, and suggests that rebamipide could be used as prophylaxis against non-steroidal anti-inflammatory drugs -induced gastrointestinal mucosal injury, by modulating microbiota and suppressing mucosal inflammation in the small intestine.

  8. Rebamipide protects small intestinal mucosal injuries caused by indomethacin by modulating intestinal microbiota and the gene expression in intestinal mucosa in a rat model

    PubMed Central

    Kurata, Satoshi; Nakashima, Takako; Osaki, Takako; Uematsu, Naoya; Shibamori, Masafumi; Sakurai, Kazushi; Kamiya, Shigeru

    2015-01-01

    The effect of rebamipide, a mucosal protective drug, on small intestinal mucosal injury caused by indomethacin was examined using a rat model. Indomethacin administration (10 mg/kg, p.o.) induced intestinal mucosal injury was accompanied by an increase in the numbers of intestinal bacteria particularly Enterobacteriaceae in the jejunum and ileum. Rebamipide (30 and 100 mg/kg, p.o., given 5 times) was shown to inhibit the indomethacin-induced small intestinal mucosal injury and decreased the number of Enterococcaceae and Enterobacteriaceae in the jejunal mucosa to normal levels. It was also shown that the detection rate of segmented filamentous bacteria was increased by rebamipide. PCR array analysis of genes related to inflammation, oxidative stress and wound healing showed that indomethacin induced upregulation and downregulation of 14 and 3 genes, respectively in the rat jejunal mucosa by more than 5-fold compared to that of normal rats. Rebamipide suppressed the upregulated gene expression of TNFα and Duox2 in a dose-dependent manner. In conclusion, our study confirmed that disturbance of intestinal microbiota plays a crucial role in indomethacin-induced small intestinal mucosal injury, and suggests that rebamipide could be used as prophylaxis against non-steroidal anti-inflammatory drugs -induced gastrointestinal mucosal injury, by modulating microbiota and suppressing mucosal inflammation in the small intestine. PMID:25834302

  9. Establishment and evaluation of an experimental rat model for high-altitude intestinal barrier injury.

    PubMed

    Luo, Han; Zhou, Dai-Jun; Chen, Zhang; Zhou, Qi-Quan; Wu, Kui; Tian, Kun; Li, Zhi-Wei; Xiao, Zhen-Liang

    2017-02-01

    In the present study an experimental high-altitude intestinal barrier injury rat model was established by simulating an acute hypoxia environment, to provide an experimental basis to assess the pathogenesis, prevention and treatment of altitude sickness. A total of 70 healthy male Sprague-Dawley rats were divided into two groups: Control group (group C) and a high-altitude hypoxia group (group H). Following 2 days adaptation, the rats in group H were exposed to a simulated 4,000-m, high-altitude hypoxia environment for 3 days to establish the experimental model. To evaluate the model, bacterial translocation, serum lipopolysaccharide level, pathomorphology, ultrastructure and protein expression in rats were assessed. The results indicate that, compared with group C, the rate of bacterial translocation and the apoptotic index of intestinal epithelial cells were significantly higher in group H (P<0.01). Using a light microscope it was determined that the intestinal mucosa was thinner in group H, there were fewer epithelial cells present and the morphology was irregular. Observations with an electron microscope indicated that the intestinal epithelial cells in group H were injured, the spaces among intestinal villi were wider, the tight junctions among cells were open and lanthanum nitrate granules (from the fixing solution) had diffused into the intestinal mesenchyme. The expression of the tight junction protein occludin was also decreased in group H. Therefore, the methods applied in the present study enabled the establishment of a stable, high-altitude intestinal barrier injury model in rats.

  10. Establishment and evaluation of an experimental rat model for high-altitude intestinal barrier injury

    PubMed Central

    Luo, Han; Zhou, Dai-Jun; Chen, Zhang; Zhou, Qi-Quan; Wu, Kui; Tian, Kun; Li, Zhi-Wei; Xiao, Zhen-Liang

    2017-01-01

    In the present study an experimental high-altitude intestinal barrier injury rat model was established by simulating an acute hypoxia environment, to provide an experimental basis to assess the pathogenesis, prevention and treatment of altitude sickness. A total of 70 healthy male Sprague-Dawley rats were divided into two groups: Control group (group C) and a high-altitude hypoxia group (group H). Following 2 days adaptation, the rats in group H were exposed to a simulated 4,000-m, high-altitude hypoxia environment for 3 days to establish the experimental model. To evaluate the model, bacterial translocation, serum lipopolysaccharide level, pathomorphology, ultrastructure and protein expression in rats were assessed. The results indicate that, compared with group C, the rate of bacterial translocation and the apoptotic index of intestinal epithelial cells were significantly higher in group H (P<0.01). Using a light microscope it was determined that the intestinal mucosa was thinner in group H, there were fewer epithelial cells present and the morphology was irregular. Observations with an electron microscope indicated that the intestinal epithelial cells in group H were injured, the spaces among intestinal villi were wider, the tight junctions among cells were open and lanthanum nitrate granules (from the fixing solution) had diffused into the intestinal mesenchyme. The expression of the tight junction protein occludin was also decreased in group H. Therefore, the methods applied in the present study enabled the establishment of a stable, high-altitude intestinal barrier injury model in rats. PMID:28352318

  11. Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice

    PubMed Central

    Cheng, Yijun; Wei, Yongxu; Yang, Wenlei; Cai, Yu; Chen, Bin; Yang, Guoyuan; Shang, Hanbing; Zhao, Weiguo

    2016-01-01

    Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier dysfunction post-ICH and its possible underlying mechanisms are still unknown. This study was designed to investigate whether ghrelin administration attenuates intestinal barrier dysfunction in experimental ICH using an intrastriatal autologous blood infusion mouse model. Our data showed that treatment with ghrelin markedly attenuated intestinal mucosal injury at both histomorphometric and ultrastructural levels post-ICH. Ghrelin reduced ICH-induced intestinal permeability according to fluorescein isothiocyanate conjugated-dextran (FITC-D) and Evans blue extravasation assays. Concomitantly, the intestinal tight junction-related protein markers, Zonula occludens-1 (ZO-1) and claudin-5 were upregulated by ghrelin post-ICH. Additionally, ghrelin reduced intestinal intercellular adhesion molecule-1 (ICAM-1) expression at the mRNA and protein levels following ICH. Furthermore, ghrelin suppressed the translocation of intestinal endotoxin post-ICH. These changes were accompanied by improved survival rates and an attenuation of body weight loss post-ICH. In conclusion, our results suggest that ghrelin reduced intestinal barrier dysfunction, thereby reducing mortality and weight loss, indicating that ghrelin is a potential therapeutic agent in ICH-induced intestinal barrier dysfunction therapy. PMID:27929421

  12. Berberine Reduces Uremia-Associated Intestinal Mucosal Barrier Damage.

    PubMed

    Yu, Chao; Tan, Shanjun; Zhou, Chunyu; Zhu, Cuilin; Kang, Xin; Liu, Shuai; Zhao, Shuang; Fan, Shulin; Yu, Zhen; Peng, Ai; Wang, Zhen

    2016-11-01

    Berberine is one of the main active constituents of Rhizoma coptidis, a traditional Chinese medicine, and has long been used for the treatment of gastrointestinal disorders. The present study was designed to investigate the effects of berberine on the intestinal mucosal barrier damage in a rat uremia model induced by the 5/6 kidney resection. Beginning at postoperative week 4, the uremia rats were treated with daily 150 mg/kg berberine by oral gavage for 6 weeks. To assess the intestinal mucosal barrier changes, blood samples were collected for measuring the serum D-lactate level, and terminal ileum tissue samples were used for analyses of intestinal permeability, myeloperoxidase activity, histopathology, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity. Berberine treatment resulted in significant decreases in the serum D-lactate level, intestinal permeability, intestinal myeloperoxidase activity, and intestinal mucosal and submucosal edema and inflammation, and the Chiu's scores assessed for intestinal mucosal injury. The intestinal MDA level was reduced and the intestinal SOD activity was increased following berberine treatment. In conclusion, berberine reduces intestinal mucosal barrier damage induced by uremia, which is most likely due to its anti-oxidative activity. It may be developed as a potential treatment for preserving intestinal mucosal barrier function in patients with uremia.

  13. Intestinal mucosa in diabetes: synthesis of total proteins and sucrase-isomaltase

    SciTech Connect

    Olsen, W.A.; Perchellet, E.; Malinowski, R.L.

    1986-06-01

    The effects of insulin deficiency on nitrogen metabolism in muscle and liver have been extensively studied with recent in vivo demonstration of impaired protein synthesis in rats with streptozotocin-induced diabetes. Despite the significant contribution of small intestinal mucosa to overall protein metabolism, the effect of insulin deficiency on intestinal protein synthesis have not been completely defined. The authors studied the effects of streptozotocin-induced diabetes on total protein synthesis by small intestinal mucosa and on synthesis of a single enzyme protein of the enterocyte brush-border membrane sucrase-isomaltase. They used the flood-dose technique to minimize the difficulties of measuring specific radioactivity of precursor phenylalanine and determined incorporation into mucosal proteins and sucrase-isomaltase 20 min after injection of the labeled amino acid. Diabetes did not alter mucosal mass as determined by weight and content of protein and DNA during the 5 days after injection of streptozotocin. Increased rates of sucrase-isomaltase synthesis developed beginning on day 3, and those of total protein developed on day 5. Thus intestinal mucosal protein synthesis is not an insulin-sensitive process.

  14. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation.

    PubMed

    Boegh, Marie; García-Díaz, María; Müllertz, Anette; Nielsen, Hanne Mørck

    2015-09-01

    The mucus lining of the gastrointestinal tract epithelium is recognized as a barrier to efficient oral drug delivery. Recently, a new in vitro model for assessment of drug permeation across intestinal mucosa was established by applying a biosimilar mucus matrix to the surface of Caco-2 cell monolayers. The aim of the present study was to gain more insight into the steric and interactive barrier properties of intestinal mucus by studying the permeation of peptides and model compounds across the biosimilar mucus as well as across porcine intestinal mucus (PIM). As PIM disrupted the Caco-2 cell monolayers, a cell-free mucus barrier model was implemented in the studies. Both the biosimilar mucus and the PIM reduced the permeation of the selected peptide drugs to varying degrees illustrating the interactive properties of both mucus matrices. The reduction in peptide permeation was decreased depending on the cationicity and H-bonding capacity of the permeant clearly demonstrated by using the biosimilar mucus, whereas the larger inter sample variation of the PIM matrix obstructed similarly clear conclusions. Thus, for mechanistic studies of permeation across mucus and mucosa the biosimilar mucus offers a relevant and reproducible alternative to native mucus. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair.

    PubMed

    Luissint, Anny-Claude; Parkos, Charles A; Nusrat, Asma

    2016-10-01

    The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Inflammation and the Intestinal Barrier: Leukocyte–Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair

    PubMed Central

    Luissint, Anny-Claude; Parkos, Charles A.; Nusrat, Asma

    2017-01-01

    The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte–epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation. PMID:27436072

  17. IBD Candidate Genes and Intestinal Barrier Regulation

    PubMed Central

    McCole, Declan F.

    2015-01-01

    Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn’s disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn’s disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution. PMID:25215613

  18. A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids.

    PubMed

    Lehr, C M; Bouwstra, J A; Boddé, H E; Junginger, H E

    1992-01-01

    The possible role of surface energy thermodynamics in mucoadhesion was investigated with Polycarbophil and pig intestinal mucosa. In separate experiments, the surface energy parameters of the substrate (mucosa) and the adhesive (polymer film) were determined by contact angle measurements on captive air/octane bubbles in three physiologically relevant test fluids (isotonic saline, artificial gastric fluid, and artificial intestinal fluid). Whereas the swollen Polycarbophil films were relatively hydrophilic as indicated by small water contact angles (22, 23, and 16 degrees), the water contact angles measured on mucosal tissue were significantly larger (61, 48, and 57 degrees). Hence, mucus was found to possess an appreciable hydrophobicity. The measured adhesive performance (force of detachment) between Polycarbophil and pig small intestinal mucosa was highest in nonbuffered saline medium, intermediate in gastric fluid, and minimal in intestinal fluid. In agreement with this trend, the mismatch in surface polarities between substrate and adhesive, calculated from the contact angle data, increased in the same order.

  19. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury.

    PubMed

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2009-08-14

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.

  20. Epithelia: Understanding the Cell Biology of Intestinal Barrier Dysfunction.

    PubMed

    Hu, Daniel J-K; Jasper, Heinrich

    2017-03-06

    Barrier dysfunction in the intestine is a common characteristic of aging organisms. A recent study provides new insight into the cell biology of this phenomenon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Role of antimicrobial peptides (AMP) and pattern recognition receptors (PRR) in the intestinal mucosa homeostasis].

    PubMed

    Lapis, Károly

    2009-11-22

    Homeostasis and integrity of bowel mucosa is assured by well controlled mechanical, biochemical and immunological mechanisms. First line of defense is presented by the antimicrobial peptides (AMP), which form a continuous layer on the bowel surface, produced by intestinal specific (Paneth) and non-specific epithelial cells. AMPs have a significant antimicrobial, antifungal and antiviral, as well as immunomodulatory effects. Next line of defense is the pattern recognition receptors (PRR), which allows identifying conservative molecular patterns of different pathogens, and starts antimicrobial and inflammatory mechanisms through gene-expression induction. We review the most recent knowledge and studies concerning these mechanisms.

  2. Modulation of the Interaction of Enteric Bacteria with Intestinal Mucosa by Stress-Related Catecholamines.

    PubMed

    Stevens, Mark P

    2016-01-01

    Stress associated with parturition, transport or mixing has long been correlated with enhanced faecal excretion of diarrhoeal zoonotic pathogens in animals such as Salmonella enterica and Escherichia coli. It may also predispose humans to infection and/or be associated with more severe outcomes. One possible explanation for this phenomenon is the ability of enteric bacterial pathogens to sense and respond to host stress-related catecholamines. This article reviews evidence of the ability of catecholamine hormones to modulate interactions between Gram-negative diarrhoeal pathogens and intestinal mucosa, as well as the molecular mechanisms that may be at work.

  3. They Must Hold Tight: Junction Proteins, Microbiota And Immunity In Intestinal Mucosa.

    PubMed

    Castoldi, Angela; Favero de Aguiar, Cristhiane; Moraes-Vieira, Pedro Manoel; Olsen Saraiva Câmara, Niels

    2015-01-01

    Homeostasis of the immune system depends on several factors. The gastrointestinal tract plays an important role in maintaining our immune system. With this aim, the intestinal immune system interacts with epithelial barrier molecules, especially tight junction proteins, that are key molecules involved in controlling paracellular permeability to increase the protection barrier against external antigens or possibly to respond to commensal microorganisms. During intestinal inflammatory diseases, the expression of innate immune receptors in intestinal epithelial cells and infiltration of immune cells are related, but it is still unclear how the immune system induces modulation of paracellular permeability. In this review, we provide an overview of the understanding of how the immune system modulates the expression of tight junctions to maintain the mucosal immune system.

  4. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    PubMed Central

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented

  5. T cell receptor repertoire in the peripheral blood and intestinal mucosa of coeliac patients.

    PubMed Central

    Lahat, N; Ben-Nun, A; Cohen, L; Kinarty, A; Lerner, A

    1995-01-01

    The alpha beta and gamma delta T cell receptor (TCR) repertoire in the peripheral blood and intestinal mucosa of six coeliac and six age-matched controls was analysed by reverse transcription and polymerase chain reaction (PCR). No TCR alpha and gamma delta restriction was observed in coeliacs and controls. However, V gamma 3 was expressed only in coeliac peripheral and intestinal T cells. V delta 2 was strongly expressed in coeliacs and scarcely transcribed in control cells. The unique expression of these gamma delta TCR in coeliac patients suggests that V gamma 3 and perhaps V delta 2 TCR-bearing lymphocytes may play a role in the pathogenesis of coeliac disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7664488

  6. Evidence of an anti-apoptotic effect of qinghuobaiduyin on intestinal mucosa following burn injury

    PubMed Central

    ZHU, JIE; WANG, PING; HE, QUANYONG; ZHOU, JIANDA; LUO, CHENGQUN

    2013-01-01

    Burn injuries are common in wartime and in times of peace. The prevention and therapy of ischemia-reperfusion injury to the organs, in particular the intestine, during the burn shock and recovery process has become a popular yet challenging area of research. Studies concerning the apoptosis of the cells of the burned intestinal mucosa have gained considerable attention. Qinghuobaiduyin (QHBDY) is a traditional Chinese medicine that has been used as a clinical prescription since 1995 to treat burn patients due to its opsonization function in the immune system and favorable clinical therapeutic effect. The aim of this study was to investigate the effect of QHBDY on the apoptosis of intestinal mucosa following burn injury. An animal model was constructed comprising severely burned rats that were treated with various dosages of QHBDY. Tissues from the small intestine were collected to investigate the apoptosis rate by TUNEL assay and the protein expression levels of heat shock protein 70 (Hsp70) and caspase-3 by immunohistochemistry. In addition, IEC-18 cells treated with QHBDY and burn serum were investigated. The cell apoptosis rate was analyzed by flow cytometry (FCM), the protein expression levels of Hsp70 were measured by western blot analysis and caspase-3 activity was analyzed by a colorimetric assay. The results showed that in animal experiments, compared with the burned group, the apoptosis rates in the treatment group was decreased, the protein expression level of Hsp70 was increased while Caspase-3 was decreased. In cell experiments, after treatment with QHBDY, the cell apoptosis rate was lower than that of the burn serum group. In addition, Hsp70 protein expression was upregulated and caspase-3 activity was decreased. QHBDY may play an important role in the prevention of apoptosis at the whole animal and cellular levels. PMID:24255668

  7. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins

    PubMed Central

    Xiao, Lan; Rao, Jaladanki N.; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-01-01

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs. PMID:26680741

  8. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins.

    PubMed

    Xiao, Lan; Rao, Jaladanki N; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-02-15

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.

  9. The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa.

    PubMed

    Linardi, R L; Stokes, A M; Andrews, F M

    2013-02-01

    Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo.

  10. Regeneration of the intestinal mucosa in Eimeria and E. Coli challenged broilers supplemented with amino acids.

    PubMed

    Gottardo, E T; Prokoski, K; Horn, D; Viott, A D; Santos, T C; Fernandes, J I M

    2016-05-01

    The aim of this study was to evaluate the regeneration of the intestinal mucosa in Eimeria and E. coli challenged broilers supplemented with glutamine, arginine, and threonine. Six hundred male broilers at one d of age from the Cobb strain were utilized. The design was completely randomized using a 2×3 factorial design (unchallenged and challenged and 3 diets). A commercial diet was used as a control and 2 other diets were formulated with glutamine (1.5 and 3% Aminogut®), arginine (1 and 2% L-Arginine), and threonine (1 and 2% L-threonine). The animals that consumed diets supplemented with amino acids presented better (P<0.05) feed conversion in the period from one to 42 d of age. The ability of cell proliferation and the villus:crypt ratio in response to enteric challenge were greater (P<0.05) for broilers that received diets supplemented with amino acids. High levels of amino acids in the experimental feeds reflected in greater protein levels in poultry house litter, and they did not interfere with ammonia production. The supplementation of diets with trophic amino acids can positively contribute to the regeneration and proliferation of the intestinal mucosa in broilers and to the maintenance of zootechnical performance when submitted to enteric challenges.

  11. Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium.

    PubMed

    Luo, Jianjie; Zheng, Aijuan; Meng, Kun; Chang, Wenhuan; Bai, Yingguo; Li, Ke; Cai, Huiyi; Liu, Guohua; Yao, Bin

    2013-10-08

    Probiotics are supplemented to animal diet to support a well-balanced gut microbiota, finally contributing to improved health. The molecular mechanism of probiotics in animal intestine improvement is yet unclear. We investigated the production parameters, gut morphology and microbiota, and mucosal proteome of Arbor Acres broilers (Gallus gallus) supplemented with Enterococcus faecium by performing denaturing gradient gel electrophoresis, quantitative real-time PCR, two-dimensional fluorescence difference gel electrophoresis, and mass spectrometry. E. faecium supplementation promoted the development of immune organs and gut microvilli and enlarged the gut microbial diversity and population. However, it had no effects on daily weight gain and feed intake, and slightly enhanced feed conversion ratio. A total of 42 intestinal mucosal proteins were found to be differentially abundant. Four of them are related to intestinal structure and may extend the absorptive surface area. Of 17 differential proteins related to immune and antioxidant systems, only six are abundant in the broilers fed E. faecium, indicating that these chickens employ less nutrients and energy to deal with immune and antioxidant stresses. These findings have important implications for understanding the probiotic mechanisms of E. faecium on broiler intestine. Probiotic supplementation to animal diet is closely related with improved health. The objective of this study is to determine the molecular mechanisms of probiotic E. faecium achieving its biological mission in the gut of Arbor Acres broilers (G. gallus). E. faecium supplementation did not improve daily weight gain and feed intake; however, it had effects on immune organ and gut microvillus development, and gut microbial diversity and population. Quantitative proteomic analysis of the intestinal mucosa of broilers treated with E. faecium identified 42 intestinal mucosal proteins related to substance metabolism, immune and antioxidant systems, and

  12. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome.

    PubMed

    Dothel, Giovanni; Barbaro, Maria Raffaella; Boudin, Hélène; Vasina, Valentina; Cremon, Cesare; Gargano, Luciana; Bellacosa, Lara; De Giorgio, Roberto; Le Berre-Scoul, Catherine; Aubert, Philippe; Neunlist, Michel; De Ponti, Fabrizio; Stanghellini, Vincenzo; Barbara, Giovanni

    2015-05-01

    Mediators released by the intestinal mucosa of patients with irritable bowel syndrome (IBS) affect the function of enteric and extrinsic sensory nerves, which can contribute to the development of symptoms. Little is known about the effects of mucosal mediators on intestinal neuroplasticity. We investigated how these mediators affect the phenotypes of colonic mucosa nerve fibers, neuron differentiation, and fiber outgrowth. We analyzed mucosal biopsy samples collected from 101 patients with IBS and 23 asymptomatic healthy individuals (controls). We measured levels of neuronal-specific enolase, growth-associated protein 43, nerve growth factor (NGF), and tyrosine kinase receptor A (NTRK1) by immunohistochemistry and enzyme-linked immunosorbent assay. Primary rat enteric neurons and human SH-SY5Y cells were incubated with supernatants from the mucosal biopsies and analyzed by morphometric and polymerase chain reaction analyses. Compared with mucosal tissues of controls, mucosa from patients with IBS had a significant increase in the area of lamina propria occupied by neuronal-specific enolase-positive (57.7% increase) and growth-associated protein 43-positive fibers (56.1% increase) and staining density of NGF (89.3% increase) (P < .05 for all). Levels of NGF protein were also increased in tissues from patients with IBS vs controls (18% increase; P = .16) along with levels of NTRK1 (64% increase; P < .05). Mucosal supernatants from tissues of patients with IBS induced higher levels of neuritogenesis in primary culture of enteric neurons, compared with controls, and more NGF-dependent neuronal sprouting in SH-SY5Y cells. Nerve fiber density and sprouting, as well as expression of NGF and NTRK1, are significantly increased in mucosal tissues of patients with IBS. Mucosal mediators participate to these neuroplastic changes. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Pharmaceutical drugs supporting regeneration of small-intestinal mucosa severely damaged by ionizing radiation in mice

    PubMed Central

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Akashi, Makoto

    2013-01-01

    Accidental exposure of the abdomen to high-dose radiation leads to severe consequences initiated by disruption of the mucosa in the small intestine. Therapeutic options are limited, even though various treatments have been investigated, particularly in the field of regenerative therapy. In order to identify readily available treatment methods, we included several current pharmaceutical drugs, for which the clinical trials have already been completed, in tests on mice that had undergone severe mucosal damage by radiation. The drugs were injected into mice 24 h after exposure to 15.7 Gy X-rays. The effects of the drugs on the damaged mucosa of the small intestine were evaluated using early regeneration indices [the expression of c-myb mRNA, and proliferation of epithelial cells in the form of microcolonies (MCs) by Days 4 and 5 post-irradiation] and the survival rate of the mice. Enhancement of mucosal regeneration at Day 4 (c-myb: P < 0.01, MC: P < 0.05) and improvement of the survival rate (P < 0.05) were observed when a clinical dose of gonadotropin, a stimulator of androgen, was injected. Similarly, a clinical dose of thiamazole (which prevents secretion of thyroid hormone) stimulated mucosal growth by Day 5 (c-myb: P < 0.01, MC: P < 0.05) and also improved the survival rate (P < 0.05). The nonclinical drugs histamine and high-dose octreotide (a growth hormone antagonist) also gave significant survival-enhancing benefits (P < 0.01 and P < 0.05, respectively). These results can be used to construct therapeutic programs and applied in various experimental studies to control the regeneration of damaged mucosa. PMID:23728323

  14. Human Intestinal Barrier Function in Health and Disease

    PubMed Central

    König, Julia; Wells, Jerry; Cani, Patrice D; García-Ródenas, Clara L; MacDonald, Tom; Mercenier, Annick; Whyte, Jacqueline; Troost, Freddy; Brummer, Robert-Jan

    2016-01-01

    The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed. PMID:27763627

  15. Claudins, dietary milk proteins, and intestinal barrier regulation.

    PubMed

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. © 2013 International Life Sciences Institute.

  16. Intestinal metaplasia of the stomach and esophagus: an immunohistochemical study of 60 cases including comparison with normal and inflamed intestinal mucosa.

    PubMed

    Chlumská, Alena; Mukenšnabl, Petr; Mareček, Petr; Zámečník, Michal

    2014-07-01

    Recently, a new classification of intestinal metaplasia (IM) using immunohistochemical mucin markers was proposed. Two following types of IM were defined: (1) a mixed gastric and intestinal type also called incomplete IM; (2) a purely intestinal type, also called complete IM. We present a series of 30 cases of gastric IM and 30 cases of IM of the esophagus, using this new classification. In all gastric cases, IM developed in the mucus-neck region in the form of incomplete IM. Toward the mucosa surface, it matured gradually into complete IM. This maturation showed a gradual reduction of both foveolar mucin MUC5AC and pyloric gland mucin MUC6. In two of 30 cases, IM was of the incomplete hyperproliferative type. In one case, focal high-grade adenomatous dysplasia was found in the incomplete IM. In the esophageal cases, IM was found in inflamed cardiac-type mucosa, and it was usually of the incomplete type, with almost diffuse positivity for MUC5AC and with rare positivity of MUC6. The goblet cells and some cylindrical cells expressed intestinal mucin MUC2. The proliferation was higher than in the complete IM, and in one case, focal low grade adenomatous dysplasia was found. In addition, we examined the expression of mucins in normal and inflamed intestinal mucosa. These cases included 50 duodenal biopsies, 50 biopsies from the ileum, and 50 biopsies from the colon. The inflamed cases included celiac disease, Crohn's disease, and ulcerative colitis. Some goblet cells of the normal intestinal mucosa expressed both MUC2 and MUC5AC. More numerous MUC5AC+ goblet cells were found in the inflamed intestinal mucosa. In the duodenal and small intestinal mucosa, even the MUC6 positivity of a few goblet or cylindrical cells was found. In sum, our results indicate that incomplete IM is an initial step of the metaplastic process. It can mature into complete IM, or alternatively, it can develop dysplasia or adenocarcinoma. In addition, we found that gastric-type mucins are also

  17. EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.

    PubMed

    Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei

    2015-10-01

    Dysfunction of the intestinal barrier plays an important role in the pathological process of heatstroke. Omega-3 (or n-3) polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), help protect the intestinal mucosal barrier. This study assessed if pretreating rats with EPA or DHA could alleviate heat stress-induced damage to the intestinal barrier caused by experimental heatstroke. Male Wistar rats were pregavaged with either EPA, DHA, corn oil, or normal saline (all 1 g/kg) for 21 days before the heatstroke experiment (control rats were not exposed to heat). Experimental rats were exposed to an ambient temperature of 37°C and 60% humidity to induce heatstroke, and then they were allowed to recover at room temperature after rapid cooling. Survival time of rats was monitored after heatstroke. Horseradish peroxidase flux from the gut lumen and the level of plasma D-lactate were measured to analyze intestinal permeability at 6 h after heatstroke. Plasma endotoxin levels were determined using a limulus amoebocyte lysate assay. Expressions of the tight junction (TJ) proteins occludin and ZO-1 were analyzed by Western blot and localized by immunofluorescence microscopy. Tight junction protein morphology was observed by transmission electron microscopy. Fatty acids of ileal mucosa were analyzed using gas chromatography-mass selective detector. Eicosapentaenoic acid significantly increased survival time after heatstroke. Eicosapentaenoic acid significantly decreased intestinal permeability and plasma endotoxin levels. Eicosapentaenoic acid effectively attenuated the heatstroke-induced disruption of the intestinal structure and improved the histology score, whereas DHA was less effective, and corn oil was ineffective. Pretreatment with EPA also increased expression of occludin and ZO-1 to effectively prevent TJ disruption. Eicosapentaenoic acid pretreatment enriched itself in the membrane of intestinal cells. Our results

  18. Gliadin-dependent cytokine production in a bidimensional cellular model of celiac intestinal mucosa.

    PubMed

    Vincentini, Olimpia; Maialetti, Francesca; Gonnelli, Elena; Silano, Marco

    2015-11-01

    The downstream cascade of the inflammatory response to gliadin in celiac intestinal mucosa encompasses the early activation of the innate immunity that triggers the adaptive response. Therefore, the in vitro study of the pathogenic mechanism of celiac disease (CD) on enterocytes alone or mucosal T lymphocytes alone does not fully consider all the aspects of gliadin-dependent inflammation. Although the in vitro culture of specimens of intestinal mucosa obtained from celiac patients is the gold standard for the study of CD, this technique presents several technical challenges and the bioptic specimens are not easily available. So, in this paper, we described the gliadin-dependent cytokine production in a bidimensional cellular system, which is able to mimic both the innate and the adaptive steps of the mucosal immune response of CD. In the upper compartment, the intestinal epithelial cells are grown on a filter, and in the lower compartment, the mononuclear cells isolated from peripheral blood of celiac patients are cultured. Cells were apically exposed to the toxic gliadin peptide p31-43 for 3 h and then with the immunodominant gliadin fragment pα-9 for 21 h. The incubation with gliadin peptides resulted in increased levels of IL-15, INF-γ, IL-6, tumor necrosis factor (TNF)-α, IL-1β, and CCL 2, 3 and 4 in the basal supernatants, with respect to cells exposed to medium alone. The p31-43-driven epithelial priming of mucosal response consists of transglutaminase (TG2)-mediated deamidation of the immunostimulatory gliadin peptides, as demonstrated by the inhibition of pα-9 activity, when the system is exposed to blocking anti-TG2 antibody.

  19. Reversibility of the curdlan feeding effects on the morphological structure of intestinal mucosa in rats.

    PubMed

    Tetsuguchi, M; Yamashita, Y; Katayama, M; Sugawa-Katayama, Y

    1998-10-01

    We reported in the previous paper that rats fed a curdlan diet showed significant increases in the weight of the cecum and its contents, a decrease in fecal wet weight, a retardation in the transit time of the gastrointestinal tract and morphological changes of the ileal and cecal mucosal surface when compared with the rats fed a cellulose diet. In the present study, we intended to learn if the curdlan effects on the morphological structure of intestinal mucosa were reversible. When rats were fed on the curdlan diet for 2 weeks followed by a cellulose diet for another 2 weeks, the cecum and cecal contents were not different from those of the cellulose group. The transit time of the gastrointestinal tract of the curdlan-followed-by-cellulose group was shorter than that of the curdlan group, whereas it was longer than that of the cellulose group. In scanning electron micrographs, the ileal villi of the curdlan-followed-by-cellulose group were normal, as in the cellulose group. However, their ileal and cecal microvilli were similar to those of the curdlan group, that is, the microvilli were crowded and more tightly packed, and some appeared to have been squeezed out. From these results, it was concluded that the effects of the curdlan feeding were only partially reversible, but the effects on the surface structure of intestinal mucosa were still sustained even after curdlan feeding of 2 weeks was discontinued. This might result from response to the high viscosity of the intestinal contents remaining after discontinuation of the curdlan.

  20. A paediatric tube and capsule for suction biopsy of the small intestinal mucosa designed for direct nasogastric intubation

    PubMed Central

    Schneider, R. E.; Chang, R.

    1971-01-01

    The use of a modified paediatric tube and capsule for suction biopsy of the mucosa of the small intestine is discussed. The tube is small in diameter and can be introduced through the nose without local trauma and with minimal discomfort. The intubation technique was followed in 72 instances to obtain suction biopsies from the proximal mucosa of the small intestine in protein-calorie malnourished children, and the results obtained with this instrument are also presented. ImagesFig. 1Fig. 2 PMID:5112174

  1. Salmonella Interaction with and Passage through the Intestinal Mucosa: Through the Lens of the Organism

    PubMed Central

    Hallstrom, Kelly; McCormick, Beth A.

    2011-01-01

    Salmonella enterica serotypes are invasive enteric pathogens spread through fecal contamination of food and water sources, and represent a constant public health threat around the world. The symptoms associated with salmonellosis and typhoid disease are largely due to the host response to invading Salmonella, and to the mechanisms these bacteria employ to survive in the presence of, and invade through the intestinal mucosal epithelia. Surmounting this barrier is required for survival within the host, as well as for further dissemination throughout the body, and subsequent systemic disease. In this review, we highlight some of the major hurdles Salmonella must overcome upon encountering the intestinal mucosal epithelial barrier, and examine how these bacteria surmount and exploit host defense mechanisms. PMID:21747800

  2. Hyperthermia induces injury to the intestinal mucosa in the mouse: evidence for an oxidative stress mechanism

    PubMed Central

    Oliver, S. R.; Phillips, N. A.; Novosad, V. L.; Bakos, M. P.; Talbert, E. E.

    2012-01-01

    Loss of the intestinal barrier is critical to the clinical course of heat illness, but the underlying mechanisms are still poorly understood. We tested the hypothesis that conditions characteristic of mild heatstroke in mice are associated with injury to the epithelial lining of the intestinal tract and comprise a critical component of barrier dysfunction. Anesthetized mice were gavaged with 4 kDa FITC-dextran (FD-4) and exposed to increasing core temperatures, briefly reaching 42.4°C, followed by 30 min recovery. Arterial samples were collected to measure FD-4 concentration in plasma (in vivo gastrointestinal permeability). The small intestines were then removed to measure histological evidence of injury. Hyperthermia resulted in a ≈2.5-fold elevation in plasma FD-4 and was always associated with significant histological evidence of injury to the epithelial lining compared with matched controls, particularly in the duodenum. When isolated intestinal segments from control animals were exposed to ≥41.5°C, marked increases in permeability were observed within 60 min. These changes were associated with release of lactate dehydrogenase, evidence of protein oxidation via carbonyl formation and histological damage. Coincubation with N-acetylcysteine protected in vitro permeability during hyperthermia and reduced histological damage and protein oxidation. Chelation of intracellular Ca2+ to block tight junction opening during 41.5°C exposure failed to reduce the permeability of in vitro segments. The results demonstrate that hyperthermia exposure in mouse intestine, at temperatures at or below those necessary to induce mild heatstroke, cause rapid and substantial injury to the intestinal lining that may be attributed, in part, to oxidative stress. PMID:22237593

  3. Regionalization of pIgR expression in the mucosa of mouse small intestine.

    PubMed

    Reséndiz-Albor, Aldo A; Reina-Garfias, Humberto; Rojas-Hernández, Saúl; Jarillo-Luna, Adriana; Rivera-Aguilar, Víctor; Miliar-García, Angel; Campos-Rodríguez, Rafael

    2010-01-18

    Few reports exist on the differences in cell populations or immunological functions between the proximal and distal segments of the small intestine (SI). In the current contribution we analyzed the expression of the polymeric immunoglobulin receptor (pIgR) and alpha chains as well as the density of IgA-producing cells from the proximal and distal intestinal segments from Balb/c mice. Furthermore, by using real-time RT-PCR we quantified the expression of cytokines (TNF-alpha, IFN-gamma, IL-4 and TGF-beta), Toll-like receptor-4 (TLR-4), and the glucocorticoid receptor (GR) involved in pIgR expression in intestinal epithelial cells (IEC). In this study, for the first time it has been demonstrated that the expression of the pIgR as well as alpha chain was greater in the proximal than the distal segment of the small intestine of normal mice. Moreover, we found striking differences in the expression of cytokines at the different intestinal compartments. Whereas the expression of TNF-alpha, IFN-gamma and TGF-beta was higher in lamina propria lymphocytes (LPL) of the distal than proximal segment, it was higher in IEC of the proximal than distal segment. In contrast, the expression of the gene for IL-4 was higher in the LPL of the proximal segment and the IEC of the distal segment. Although the overall expression of TNF-alpha, IL-4, IFN-gamma and TGF-beta was higher in the whole mucosa of the distal than proximal segment, we propose that cytokines produced by epithelial cells (TNF-alpha, IFN-gamma and TGF-beta) autocrinally up-regulate the expression of mRNA for the pIgR. Finally the expression of the GR was higher in the proximal segment, while the expression of the gene for TLR-4 was significantly higher in the IEC of the distal than proximal segment. The higher expression of pIgR found in the proximal segment is probably related to the effect on epithelial cells of the higher production of TNF-alpha, IFN-gamma and TGF-beta, as well as the higher expression of the

  4. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications.

    PubMed

    Natividad, Jane M M; Verdu, Elena F

    2013-03-01

    Mammals and their intestinal microbiota peacefully coexist in a mutualistic relationship. Commensal bacteria play an active role in shaping and modulating physiological processes in the host, which include, but are not restricted to, the immune system and the intestinal barrier. Both play a crucial role in containing intestinal bacteria and other potentially noxious luminal antigens within the lumen and mucosal compartment. Although mutualism defines the relationship between the host and the intestinal microbiota, disruptions in this equilibrium may promote disease. Thus, alterations in gut microbiota (dysbiosis) have been linked to the recent increased expression of obesity, allergy, autoimmunity, functional and inflammatory disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). In this article, we review the evidence supporting a role of gut microbiota in regulating intestinal barrier function. We discuss the hypothesis that microbial factors can modulate the barrier in ways that can prevent or promote gastrointestinal disease. A better understanding of the role of the intestinal microbiota in maintaining a functional intestinal barrier may help develop targeted strategies to prevent and treat disease.

  5. Effects of curdlan and gellan gum on the surface structure of intestinal mucosa in rats.

    PubMed

    Tetsuguchi, M; Nomura, S; Katayama, M; Sugawa-Katayama, Y

    1997-10-01

    The effects of curdlan and gellan gum on the gastrointestinal function were studied, and the morphological structure of the intestinal mucosal surface was observed by scanning electron microscopy of rats fed curdlan and gellan gum diets for four weeks. The rats fed the curdlan diet showed a significant increase in the weight of the cecum and its contents and a decrease in fecal weight as compared to the rats fed a cellulose diet. On the other hand, the rats fed the gellan gum diet showed a weight loss in cecal contents and weight gain in colonic contents. The transit time of the gastrointestinal tract was extended by curdlan supplementation whereas it was shortened by gellan gum supplementation. The surface structures of the ileal and cecal mucosa were markedly abnormal in the rats fed the curdlan diet: the microvilli were tightly packed and had fallen out at places. In the gellan gum-fed rats, the tops of the ileal and cecal microvilli adhered to one another and were covered with their contents. There was no difference in the surface structure of colonic mucosa among the cellulose, curdlan and gellan gum diet groups.

  6. Proteome analysis of the macroscopically affected colonic mucosa of Crohn’s disease and intestinal tuberculosis

    PubMed Central

    Rukmangadachar, Lokesh A.; Makharia, Govind K.; Mishra, Asha; Das, Prasenjit; Hariprasad, Gururao; Srinivasan, Alagiri; Gupta, Siddhartha Datta; Ahuja, Vineet; Acharya, Subrat K.

    2016-01-01

    Differentiation between intestinal tuberculosis (ITB) and Crohn’s disease (CD) is challenging in geographical regions where both these diseases are prevalent. There is a need of biomarkers for differentiation between these two disorders. Colonic biopsies from inflamed mucosa of treatment-naive patients with ITB, CD and controls were used for analysis. Protein extracted from biopsies was digested with trypsin and resulting peptides were labeled with iTRAQ reagents. The peptides were subsequently analyzed using LC-MS/MS for identification and quantification. Gene ontology annotation for proteins was analyzed in PANTHER. Validation experiments were done for six differentially expressed proteins using immunohistochemistry. 533 proteins were identified and 241 proteins were quantified from 5 sets of iTRAQ experiments. While 63 were differentially expressed in colonic mucosa of patients with CD and ITB in at least one set of iTRAQ experiment, 11 proteins were differentially expressed in more than one set of experiments. Six proteins used for validation using immunohistochemistry in a larger cohort of patients; none of them however was differentially expressed in patients with ITB and CD. There are differentially expressed proteins in tissue proteome of CD and ITB. Further experiments are required using a larger cohort of homogeneous tissue samples. PMID:26988818

  7. Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. Subcellular localization and temperature stability.

    PubMed

    Wakabayashi, Y; Henslee, J G; Jones, M E

    1983-03-25

    The demonstration of the ornithine biosynthesis from glutamate in cell-free homogenates of rat intestinal mucosa by Ross, G., Dunn, D., and Jones, M.E. (1978) Biochem. Biophys. Res. Commun. 85, 140-147 suggested that this tissue might have the capacity to convert glutamate to pyrroline-5-carboxylate (P5C). We have shown in the preceding paper (Wakabayashi, Y., and Jones, M.E. (1983) J. Biol. Chem. 258, 3865-3872) that this is the case. The intracellular distribution of the P5C-synthesizing activity was investigated utilizing a newly developed procedure for subcellular fractionation of the rat intestinal mucosa. We found that the activity resided in the mitochondrial fraction as characterized by marker enzymes and an electron micrograph. The mitochondrial membrane fraction, freed of the soluble matrix and intermembrane space enzymes, retained all of the P5C-synthesizing activity. Addition of the soluble fraction to the membrane fraction did not affect the activity. P5C synthase, the name we have chosen for the protein(s) that catalyzes P5C synthesis from glutamate when ATP and NADPH are present, is susceptible to thermal inactivation in the presence of detergent. By lowering the incubation temperature to or below 20 degrees C, one can obtain a linear production of P5C with respect to time and protein concentration. Lower incubation temperatures are recommended for routine assay of this enzyme(s). Addition of 30% glycerol to the incubation mixture resulted in a linear formation of P5C with time at 30 degrees C; this and other data suggest that polyhydroxylic compounds may protect this protein against denaturation. Preliminary experiments suggest that P5C synthase can be extracted from a mitochondrial membrane in the presence of detergent, a high salt concentration, and glycerol. The possibility that the enzyme(s) is located in the inner mitochondrial membrane is discussed.

  8. High-throughput sequencing reveals differing immune responses in the intestinal mucosa of two inbred lines afflicted with Necrotic enteritis

    USDA-ARS?s Scientific Manuscript database

    We investigated the necrotic enteritis (NE)-induced transcripts of immune-related genes in the intestinal mucosa of two highly inbred White Leghorn chicken lines, line 6.3 and line 7.2, which share the same MHC haplotype and show different levels of NE susceptibility using high-throughput RNA sequen...

  9. Intestinal barrier integrity and function in infants with cholestasis

    PubMed Central

    Sherif, Tahra M. K.; Mohammed, Omnia A.; Nasif, Khalid A.; El Gezawy, Ebtesam M.

    2017-01-01

    Background/Aims The safety of the human body is maintained by effective monitoring of the mucosal surface integrity and protection against potentially harmful compounds. This function of the gut called intestinal barrier function can be affected by cholestasis and the absence of bile in the intestinal lumen. We aimed to determine whether the gut barrier integrity is impaired in infants with cholestasis by evaluation of the intestinal fatty acid binding proteins (I-FABP) and ileal bile acid binding protein (I-BABP) as markers of intestinal epithelial cell damage and plasma D-lactate level as a marker of gut wall permeability. Methods This case-control study included 53 infants with cholestasis and 29 controls. Serum levels of I-FABP, I-BABP, and D-lactate were measured in all subjects. Results Both groups of patients with neonatal hepatitis and biliary atresia showed significantly higher levels of I-FABP and I-BABP than the controls. There were no differences in the serum D-lactate level between the cases and controls. There was no difference between the two groups of patients (I and II) regarding any of the parameters studied. No significant correlations between serum levels of I-FABP, I-BABP, or D-lactate and total or direct bilirubin levels were found in the cholestatic infants. Conclusions The intestinal epithelial barrier integrity is breached nearly in all parts of the intestine in infants with cholestasis. Further research is recommended to determine the impact of this finding on the management of these infants. The relationship between physical intestinal barrier damage and its functional failure remains subject for further research. PMID:28239322

  10. Relationship between β-catenin expression and epithelial cell proliferation in gastric mucosa with intestinal metaplasia

    PubMed Central

    Romiti, Adriana; Zullo, Angelo; Borrini, Francesco; Sarcina, Ida; Hassan, Cesare; Winn, Simon; Tomao, Silverio; Vecchione, Aldo; Morini, Sergio; Mingazzini, Pietro

    2005-01-01

    AIM: To investigate β-catenin expression in patients with intestinal metaplasia, and to look for a possible relationship between β-catenin expression and either epithelial proliferation values or Helicobacter pylori (H pylori) infection. METHODS: Twenty patients with complete type intestinal metaplasia were studied. β-catenin expression and epithelial cell proliferation in antral mucosa were assessed using an immunohistochemical analysis. H pylori infection was detected by histology and a rapid urease test. RESULTS: Reduced β-catenin expression on the surface of metaplastic cells was detected in 13 (65%) out of 20 patients. Moreover, in eight (40%) patients intranuclear expression of β-catenin was found. When patients were analyzed according to H pylori infection, the prevalence of both β-catenin reduction at the cell surface and its intranuclear localization did not significantly differ between infected and uninfected patients. Cell proliferation was higher in patients with intranuclear β-catenin expression as compared to the remaining patients, although the difference failed to reach the statistical significance (36 ± 8.9 vs 27.2 ± 11.4, P = 0.06). On the contrary, a similar cell proliferation value was observed between patients with reduced expression of β-catenin on cell surface and those with a normal expression (28.1 ± 11.8 vs 26.1 ± 8.8, P = 0.7). H pylori infection significantly increased cell proliferation (33.3 ± 10.2% vs 24.6 ± 7.4%, respectively, P = 0.04). CONCLUSION: Both cell surface reduction and intranuclear accumulation of β-catenin were detected in intestinal metaplasia. The intranuclear localization of β-catenin increases cell proliferation. H pylori infection does not seem to play a direct role in β-catenin alterations, whilst it significantly increases cell proliferation. PMID:16038041

  11. Cytokine response in the intestinal mucosa of hamsters infected with Taenia solium.

    PubMed

    Avila, Guillermina; Aguilar, Laura; Romero-Valdovinos, Mirza; Garcia-Vazquez, Francisco; Flisser, Ana

    2008-12-01

    Taenia solium grows in experimentally infected hamsters. An inflammatory reaction in the intestinal mucosa surrounding the scolex of the worms is produced. We searched for mRNA of Th1 and Th2 cytokines by in situ hybridization in intestinal biopsies. Hamsters were infected with T. solium cysticerci and necropsied on different days post infection (d.p.i.). Tissue from the small intestine was taken from the area surrounding the tapeworm scolex, fixed, and processed for histology. Antisense probes for the detection of interferon (IFN)-gamma, interleukin (IL)-4, IL-5, and IL-13 were used. Kinetics of each cytokine was defined through detection on specific mRNA by counting the number of positive infected hamsters and of positive cells per 100 enterocytes on different d.p.i. IFN-gamma was detected as of d.p.i. 2; all animals were positive on d.p.i. 4 and 8; and on d.p.i. 16, only 20% were still positive. IL-13 had a pattern similar to IFN-gamma, but all hamsters remained positive until d.p.i. 16 when the experiment was terminated. IL-4 was positive in 40% of infected hamsters on d.p.i. 6. On d.p.i. 8, IL-5 was only detected in 20% but increased to 100% by d.p.i. 16. These data suggest that tapeworms induce a mixed Th1/Th2 response with a polarization toward Th2 at 2 weeks post infection, which may influence the expulsion of worms.

  12. Extracorporeal circulation increases proliferation in the intestinal mucosa in a large animal model.

    PubMed

    Keschenau, Paula Rosalie; Ribbe, Stefanie; Tamm, Miriam; Hanssen, Sebastiaan J; Tolba, René; Jacobs, Michael J; Kalder, Johannes

    2016-10-01

    Extracorporeal circulation induces ischemia/reperfusion injury in the small intestinal wall. One reason for this damage is a perfusion shift from the muscular toward the mucosal layer. This study investigated the effect of this perfusion shift on the small-intestinal apoptosis and proliferation. Twenty-eight pigs were randomly assigned to the following cohorts and underwent a thoracolaparotomy and a 1 hour main procedure: cohort I: control; cohort II: thoracic aortic cross-clamping (TAC) without perfusion; cohort III: TAC and distal aortic perfusion (DAP); cohort IV: TAC, DAP, and selective visceral perfusion. The main procedure was followed by 2 hours of reperfusion in all cohorts. Tissue samples were taken during the experiment, stained, and analyzed for apoptosis and proliferation (caspase-3, annexin-V, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling, and proliferating cell nuclear antigen). Six animals died unexpectedly during the experiment and were excluded from the analysis. Extensive tissue damage and necrosis was only found in cohort II after the main procedure. In the mucosa, the proliferation was increased in cohort III at the end of the experiment (P = .0157 cohort I vs II). In contrast, the annexin-V/proliferating cell nuclear antigen ratio was significantly higher in cohorts II and IV than in cohorts I and II at the end of the experiment (P = .0034). Furthermore, the caspase-3/annexin-V ratio was increased in all cohorts at the end of the experiment (P = .0015). Mucosal proliferation is the early repair mechanism of the limited small intestinal ischemia/reperfusion injury after DAP. Furthermore, the extensive surgical trauma shifted the mucosal apoptosis into an advanced state. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  13. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology

    PubMed Central

    Yu, Linda Chia-Hui; Wang, Jin-Town; Wei, Shu-Chen; Ni, Yen-Hsuan

    2012-01-01

    The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status. PMID:22368784

  14. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains

    PubMed Central

    Fábrega, María José; Aguilera, Laura; Giménez, Rosa; Varela, Encarna; Alexandra Cañas, María; Antolín, María; Badía, Josefa

    2016-01-01

    The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier. PMID:27242727

  15. Effects of simulated weightlessness on the intestinal mucosal barrier of rats

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Chun-min; Mao, Gao-ping; Liu, Qing-sen; Guo, Ming-zhou

    2011-07-01

    This study employed a rat tail-suspension model to investigate the effects of simulated weightlessness on the intestinal mucosal barrier. Twenty-four Wistar rats were randomly divided into control (CON), 14-day tail-suspension (SUS-14d), and 21-day tail-suspension (SUS-21d) groups ( n = 8 per group). Expression of occludin and zonula occludins-1 (ZO-1), proteins of the tight junction (TJ), in the intestinal mucosa was measured by immunohistochemical analysis, Western blotting, and mRNA fluorescent quantitation PCR. Plasma concentrations of diamine oxidase (DAO) and D-lactate were determined using an enzymatic spectrophotometric assay. Expression of occludin and ZO-1 was reduced in the SUS-14d and SUS-21d groups as compared to the CON group, with lowest expression observed in the SUS-21d group ( P < 0.01). Examination by transmission electron microscopy (TEM) of the jejunal epithelium revealed increased intercellular space, decreased TJ and desmosome densities, and destruction of microvilli in the SUS-14d and SUS-21d groups. Plasma DAO and D-lactate concentrations in the SUS-21d group were higher than those in SUS-14d group and significantly higher than those in the CON group ( P < 0.01). In all three groups, the expression of occludin and ZO-1 was found to correlate negatively with DAO ( P < 0.01) and D-lactate ( P < 0.01) concentrations. It is concluded that simulated weightless results in down-regulation of expression of TJ proteins in the rat intestinal mucosa. Simulated weightlessness is proposed to increase intestinal permeability through damage to the TJ.

  16. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens.

    PubMed

    Wu, Qiu Jue; Zhou, Yan Min; Wu, Ya Nan; Zhang, Li Li; Wang, Tian

    2013-05-15

    The protection of intestinal barrier function and the anti-inflammatory effects of natural clinoptilolite (NCLI) and modified clinoptilolite (MCLI) were investigated in broilers that were repeatedly challenged with lipopolysaccharide (LPS). A total of 288 1-d-old broiler chicks were divided equally into three treatment groups: control, NCLI-treated (2%) and MCLI-treated (2%). Half of the birds from each treatment group were challenged with 0.9% NaCl solution or LPS (250μg/kg body weight, administered orally) at 16, 18 and 21d of age. The results indicated that, prior to LPS challenge, the diet had no effect on bird growth performance (P>0.05). The oral administration of LPS was also not associated with any significant changes in poultry performance (P>0.05). In LPS-challenged birds that were pretreated with NCLI (2%) or MCLI (2%), the LPS-induced increases in the plasma and intestinal mucosa concentrations of TNF-α, IL-1β, IL-2, IL-6, IL-4 and IL-10 were dramatically attenuated. Additionally, significant decreases in the plasma d-lactic acid and diamine oxidase (DAO) levels were found in birds that were pretreated with NCLI or MCLI. Furthermore, both NCLI and MCLI reduced the sICAM-1 concentration in the intestinal mucosa. In conclusion, NCLI and MCLI are able to prevent the LPS-induced intestinal mucosa damage and inflammatory response in vivo. These beneficial effects suggest that NCLI and MCLI act as anti-inflammatory agents in part by inhibiting neutrophil infiltration and hyperactivation and by suppressing the secretion of various plasma and intestinal mucosa inflammatory mediators.

  17. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model

    PubMed Central

    Han, Meng; Song, Peixia; Huang, Chang; Rezaei, Arash; Farrar, Shabnam; Brown, Michael A.; Ma, Xi

    2016-01-01

    Proanthocyanidins have been suggested as an effective antibiotic alternative, however their mechanisms are still unknown. The present study investigated the effects of grape seed proanthocyanidins on gut microbiota and mucosal barrier using a weaned piglet model in comparison with colistin. Piglets weaned at 28 day were randomly assigned to four groups treated with a control ration, or supplemented with 250 mg/kg proanthocyanidins, kitasamycin/colistin, or 250 mg/kg proanthocyanidins and half-dose antibiotics, respectively. On day 28, the gut chyme and tissue samples were collected to test intestinal microbiota and barrier function, respectively. Proanthocyanidins treated piglets had better growth performance and reduced diarrhea incidence (P < 0.05), accompanied with decreased intestinal permeability and improved mucosal morphology. Gene sequencing analysis of 16S rRNA revealed that dietary proanthocyanidins improved the microbial diversity in ileal and colonic digesta, and the most abundant OTUs belong to Firmicutes and Bacteroidetes spp. Proanthocyanidins treatment decreased the abundance of Lactobacillaceae, and increased the abundance of Clostridiaceae in both ileal and colonic lumen, which suggests that proanthocyanidins treatment changed the bacterial composition and distribution. Administration of proanthocyanidins increased the concentration of propionic acid and butyric acid in the ileum and colon, which may activate the expression of GPR41. In addition, dietary proanthocyanidins improved the antioxidant indices in serum and intestinal mucosa, accompanied with increasing expression of barrier occludin. Our findings indicated that proanthocyanidins with half-dose colistin was equivalent to the antibiotic treatment and assisted weaned animals in resisting intestinal oxidative stress by increasing diversity and improving balance of gut microbes. PMID:27880936

  18. Morphological characteristics of the intestinal mucosa in the Afghan pika (Ochotona rufescens rufescens).

    PubMed

    Kurohmaru, M; Hayakawa, T; Seki, M; Zyo, K

    1984-10-01

    The intestinal mucosa of the pika was examined with the naked eyes, a light microscope and a scanning electron microscope and was compared with that of the rabbit. The duodenal mucosa of the rabbit showed wavy folds different from so-called villi, while that of the pika exhibited leaf-like or columnar villi. In addition to the specific ileocecal lymphoid apparatuses, the pika had the peculiar region between the cecum and the proximal colon. That region called "the constricted portion" possessed characteristic net-arranged folds and well-developed muscular layers. At the lateral surface of these folds, small villus-like protrusions projected into the lumen in large numbers. The spiral fold ran around the mucosal surface of the rabbit cecum, whereas numerous slender protrusions, cecal digitations, projected into the lumen of the pika cecum. Although the colon of the pika showed a similar external figure to that of the rabbit, some differences were obviously found in histological structures. The first segment of the pika proximal colon with three teniae possessed several protrusions and well-developed mucous glands, while that of the rabbit had neither protrusions nor mucous glands. The second segment of the pika proximal colon with one tenia was covered with numerous villus-like protrusions, while that of the rabbit was composed of wart-like protrusions. The tubular mucous glands were observed in the lamina propria of the pika as well as the rabbit. The distal colon of the pika showed a flat mucosal surface and possessed tubular mucous glands as observed in the rabbit.

  19. Myenteric neurons and intestinal mucosa of diabetic rats after ascorbic acid supplementation

    PubMed Central

    de Freitas, Priscila; Natali, Maria Raquel Marçal; Pereira, Renata Virginia Fernandes; Neto, Marcilio Hubner Miranda; Zanoni, Jacqueline Nelisis

    2008-01-01

    AIM: To investigate the effect of ascorbic acid (AA) dietary supplementation on myenteric neurons and epithelial cell proliferation of the jejunum of adult rats with chronic diabetes mellitus. METHODS: Thirty rats at 90 d of age were divided into three groups: Non-diabetic, diabetic and diabetic treated with AA (DA) (1 g/L). After 120 d of treatment with AA the animals were killed. The myenteric neurons were stained for myosin-V and analyzed quantitatively in an area of 11.2 mm2/animal. We further measured the cellular area of 500 neurons per group. We also determined the metaphasic index (MI) of the jejunum mucosa layer of about 2500 cells in the intestinal crypts, as well as the dimensions of 30 villi and 30 crypts/animal. The data area was analyzed using the Olympus BX40 microscope. RESULTS: There was an increase of 14% in the neuronal density (792.6 ± 46.52 vs 680.6 ± 30.27) and 4.4% in the cellular area (303.4 ± 5.19 vs 291.1 ± 6.0) respectively of the diabetic group treated with AA when compared to control diabetic animals. There were no significant differences in MI parameters, villi height or crypt depths among the groups. CONCLUSION: Supplementation with AA in the diabetic animal promoted moderate neuroprotection. There was no observation of alteration of the cellular proliferation of the jejunum mucosa layer of rats with chronic diabetes mellitus with or without supplementation with AA. PMID:19030205

  20. Cordyceps sinensis preserves intestinal mucosal barrier and may be an adjunct therapy in endotoxin-induced sepsis rat model: a pilot study

    PubMed Central

    Gu, Guo-Sheng; Ren, Jian-An; Li, Guan-Wei; Yuan, Yu-Jie; Li, Ning; Li, Jie-Shou

    2015-01-01

    Background: Cordyceps sinensis (C. sinensis), a traditional Chinese medicine, exhibits various pharmacological activities such as reparative, antioxidant, and apoptosis inhibitory effects. Intestinal barrier dysfunction plays a vital role in the progression of sepsis. We aimed to explore the effect of C. sinensis on the gut barrier and evaluate its efficacy in sepsis. Methods: A murine model of gut barrier dysfunction was created by intraperitoneal injection of endotoxin. C. sinensis or saline was administered orally after the induction of sepsis. Alterations of intestinal barrier were evaluated and compared in terms of epithelial cell apoptosis, proliferation index (PI), intercellular tight junction (TJ) and proliferating cell nuclear antigen (PCNA). Results: C. sinensis significantly decreased the percentage of apoptotic cells and promoted mucosal cells proliferation indicated by enhanced PI and PCNA expression in the intestinal mucosa compared to control group. The TJs between epithelial cells which were disrupted in septic rats were also restored by treatment of C. sinensis. In survival studies, C. sinensis was demonstrated to confer a protection against the lethal effect of sepsis. Conclusion: These results suggest that C. sinensis has gut barrier-protection effect in endotoxin-induced sepsis by promoting the proliferation and inhibiting the apoptosis of intestinal mucosal cells, as well as restoring the TJs of intestinal mucosa. C. sinensis may have the potential to be a useful adjunct therapy for sepsis. PMID:26221273

  1. Weight loss and morphometric study of intestinal mucosa in rats after massive intestinal resection: influence of a glutamine-enriched diet.

    PubMed

    Ribeiro, Sidney Resende; Pinto, Paulo Engler; de Miranda, Ariney Costa; Bromberg, Sansom Henrique; Lopasso, Fábio Pinatel; Irya, Kiyoshi

    2004-12-01

    Short-bowel syndrome is responsible for significant metabolic alterations that compromise nutritional status. Glutamine is considered an essential nutrient for enterocytes, so beneficial effects from supplementation of the diet with glutamine are hypothesized. In this study, the effect of a diet enriched with glutamine was evaluated in rats undergoing extensive small bowel resection, with analysis of postoperative weight loss and intestinal morphometrics of villi height, crypt depth, and thickness of the duodenal and remnant jejunal mucosa. Three groups of male Wistar rats were established receiving the following diets: with glutamine, without glutamine, and the standard diet of laboratory ration. All animals underwent an extensive small bowel resection, including the ileocecal valve, leaving a remnant jejunum of only 25 cm from the pylorus that was anastomosed lateral-laterally to the ascendant colon. The animals were weighed at the beginning and end of the experiment (20th postoperative day). Then they were killed and the remnant intestine was removed. Fragments of duodenal and jejunal mucosa were collected from the remnant intestine and submitted to histopathologic exam. The morphometric study of the intestinal mucosa was accomplished using a digital system (KS 300) connected to an optic microscope. Morphometrics included villi height, crypt depth, and the total thickness of intestinal mucosa. The weight loss comparison among the 3 groups showed no significant loss difference. The morphometric studies showed significantly taller duodenal villi in the glutamine group in comparison to the without glutamine group, but not different from the standard diet group. The measurements obtained comparing the 3 groups for villi height, crypt depth, and thickness of the remnant jejunum mucosa were greater in the glutamine-enriched diet group than for the without-glutamine diet group, though not significantly different from with standard-diet group. In rats with

  2. Alterations of intestinal barrier and microbiota in chronic kidney disease.

    PubMed

    Sabatino, Alice; Regolisti, Giuseppe; Brusasco, Irene; Cabassi, Aderville; Morabito, Santo; Fiaccadori, Enrico

    2015-06-01

    Recent studies have highlighted the close relationship between the kidney and the gastrointestinal (GI) tract--frequently referred to as the kidney--gut axis--in patients with chronic kidney disease (CKD). In this regard, two important pathophysiological concepts have evolved: (i) production and accumulation of toxic end-products derived from increased bacterial fermentation of protein and other nitrogen-containing substances in the GI tract, (ii) translocation of endotoxins and live bacteria from gut lumen into the bloodstream, due to damage of the intestinal epithelial barrier and quantitative/qualitative alterations of the intestinal microbiota associated with the uraemic milieu. In both cases, these gut-centred alterations may have relevant systemic consequences in CKD patients, since they are able to trigger chronic inflammation, increase cardiovascular risk and worsen uraemic toxicity. The present review is thus focused on the kidney-gut axis in CKD, with special attention to the alterations of the intestinal barrier and the local microbiota (i.e. the collection of microorganisms living in a symbiotic coexistence with their host in the intestinal lumen) and their relationships to inflammation and uraemic toxicity in CKD. Moreover, we will summarize the most important clinical data suggesting the potential for nutritional modulation of gut-related inflammation and intestinal production of noxious by-products contributing to uraemic toxicity in CKD patients.

  3. Bacterial chemotactic oligopeptides and the intestinal mucosal barrier

    SciTech Connect

    Ferry, D.M.; Butt, T.J.; Broom, M.F.; Hunter, J.; Chadwick, V.S.

    1989-07-01

    Intestinal absorption and enterohepatic circulation of N-formyl-methionyl-leucyl-/sup 125/I-tyrosine, a bioactive synthetic analog of the bacterial chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine has been investigated in the rat. In ileum and proximal and distal colon, dithiothreitol, which increases mucosal permeability, increased peptide absorption and biliary recovery fourfold, 70-fold, and 20-fold over control values, respectively. When dithiothreitol was combined with d-l-benzyl succinate, a potent inhibitor of intestinal carboxypeptidase, absorption and biliary recovery from ileal loops increased markedly to 40-fold over control, whereas there was no further increase in absorption from colon loops. There was a strong correlation between biliary N-formyl-methionyl-leucyl-/sup 125/I-tyrosine recovery and intestinal absorption of /sup 51/Cr-ethylenediaminetetraacetate, a marker of passive mucosal permeability (r = 0.97). We conclude that in the ileum both enzymic degradation and restricted mucosal permeability contribute to the intestinal barrier to luminal bacterial formyl oligopeptides. In the colon, however, enzymic mechanisms are less active and restricted mucosal permeability is the major factor. Abnormalities of the intestinal mucosal barrier to proinflammatory bacterial peptides could play a role in inflammatory disorders of the gut.

  4. Effects of soybean agglutinin on intestinal barrier permeability and tight junction protein expression in weaned piglets.

    PubMed

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0-0.2%) in diets. The high dose SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects.

  5. Epigenetic control of intestinal barrier function and inflammation in zebrafish

    PubMed Central

    Marjoram, Lindsay; Alvers, Ashley; Deerhake, M. Elizabeth; Bagwell, Jennifer; Mankiewicz, Jamie; Cocchiaro, Jordan L.; Beerman, Rebecca W.; Willer, Jason; Sumigray, Kaelyn D.; Katsanis, Nicholas; Rawls, John F.; Goll, Mary G.; Bagnat, Michel

    2015-01-01

    The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset. PMID:25730872

  6. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome

    PubMed Central

    Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong

    2015-01-01

    Aim: The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. Methods: A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g·kg−1·d−1, ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4+ and CD8+ cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. Results: PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4+/CD8+ cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4+/CD8+ cell ratio and expression of IL-1β and IL-4. Conclusion: Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti

  7. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome.

    PubMed

    Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong

    2015-06-01

    The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g · kg(-1) · d(-1), ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4(+) and CD8(+) cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4(+)/CD8(+) cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4(+)/CD8(+) cell ratio and expression of IL-1β and IL-4. Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti

  8. Mechanism of intestinal mucosal barrier dysfunction in a rat model of chronic obstructive pulmonary disease: An observational study

    PubMed Central

    Xin, Xiaofeng; Dai, Wei; Wu, Jie; Fang, Liping; Zhao, Ming; Zhang, Pengpeng; Chen, Min

    2016-01-01

    The aim of the present study was to investigate intestinal mucosal barrier dysfunction in a rat model of chronic obstructive pulmonary disease (COPD). Male Sprague Dawley rats (n=40) were evenly randomized into control and COPD groups and the COPD model was established by regulated exposure to cigarette smoke for 6 months. Histopathological changes of the lung and intestinal tissues were detected by hematoxylin and eosin staining. Expression of the tight junction proteins occludin and zona occludens-1 (ZO-1) in the intestinal tissues were analyzed by western blotting, serum diamine oxidase (DAO) activity was detected by spectrophotometry, the urinary lactulose to mannitol ratio (L/M) was evaluated by high performance liquid chromatography, and intestinal tissue secretion of tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-8 were detected by ELISA. Lung histopathology revealed thinned alveolar walls, ruptured alveolar septa, enlarged and deformed alveoli, and the formation of bullae and emphysema due to alveolar fusion in the COPD group, while intestinal histopathology indicated clearly swollen intestines with darkened and gray mucosa, neutrophil infiltration of the intestinal mucosal and regional epithelial shedding. The occludin and ZO-1 expression levels were significantly lower in the COPD group compared with those in the corresponding control group (P<0.05), while the urinary L/M ratio was significantly higher (P<0.05). Furthermore, the serum DAO activity and secretion of TNF-α, IFN-γ and IL-8 in the intestinal tissues were significantly higher in the COPD group than in the control group (each P<0.05). Dysfunctional and structural changes were observed in the intestinal mucosal barrier in COPD model rats, which may be associated with the increased intestinal inflammatory responses. PMID:27588054

  9. Protective Effect of Huoxiang Zhengqi Oral Liquid on Intestinal Mucosal Mechanical Barrier of Rats with Postinfectious Irritable Bowel Syndrome Induced by Acetic Acid

    PubMed Central

    Liu, Yao; Liu, Wei; Peng, Qiu-Xian; Peng, Jiang-Li; Yu, Lin-Zhong; Hu, Jian-Lan

    2014-01-01

    In this study, a rat model with acetic acid-induced PI-IBS was used to study the role of HXZQ oral liquid in repairing the colonic epithelial barrier and reducing intestinal permeability. Pathomorphism of colonic tissue, epithelial ultrastructure, DAO activity in serum, and the protein expression of ZO-1 and occludin were examined to investigate protective effect mechanisms of HXZQ on intestinal mucosa barrier and then present experimental support for its use for prevention and cure of PI-IBS. PMID:25254052

  10. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa.

    PubMed

    Vafaei, Seyed Yaser; Esmaeili, Motahareh; Amini, Mohsen; Atyabi, Fatemeh; Ostad, Seyed Naser; Dinarvand, Rassoul

    2016-06-25

    To develop a nanoparticulate drug carrier for targeting of the inflamed intestinal mucosa, amphiphilic hyaluronic acid (HA) conjugates were synthesized, which could form self-assembled nanoparticles (NPs) in aqueous solution and budesonide (BDS) was loaded into the HANPs. Their particle sizes were in the range of 177 to 293nm with negative surface charge. The model of inflammatory CACO-2 cells was utilized to investigate the therapeutic potential of budesonide loaded HA nanocarriers. The highest expression of CD44 receptors was found on inflamed Caco-2 cells, as determined by flow cytometry. FITC-labeled HANPs revealed greater uptake in inflamed CACO-2 cells compared to untreated CACO-2 and CD44-negative cell lines, NIH3T3. BDS loaded HANPs displayed almost no toxicity indicating HANPs are excellent biocompatible nano-carriers. BDS loaded HANPs demonstrated higher anti-inflammatory effect on IL-8 and TNF-α secretion in inflamed cell model compared to the same dose of free drug. These results revealed the promising potential of HA nanoparticles as a targeted drug delivery system for IBD treatment.

  11. [Experiment of oral mucosa epithelial cells cultured on small intestinal submucosa in vitro].

    PubMed

    Tan, Bo; Wei, Ren-Qian; Yang, Zhi-Ming; Li, Xiu-Qun; Han, Ping; Zhi, Wei; Xie, Hui-Qi; Ren, Yan; Tan, Zhong-Xia

    2010-02-01

    To explore an effective method to culture oral mucosa epithelial cells (OMECs) of canine in vitro, and to observe the biological characteristics of OMECs growing on small intestinal submucosa (SIS) in order to provide the experimental basis for epithelium tissue engineering. The primary OMECs were cultivated with DKSFM (defined keratinocyte serum free medium) containing 6% fetal bovine serum (FBS). The morphological characteristics and the growth curve of OMECs were observed. The expressions of OMECs marker (CK19) were examined by immunocytochemistry. The 2nd passage of OMECs were seeded on SIS, OMECs co-cultured with SIS were observed by hematoxylin-eosin staining, immunohistochemical staining, and scanning electron microscope (SEM). OMECs were grown well in DKSFM. Immunohistochemical staining of the 2nd passage cultured canine OMECs with broadly reacting anti-cytokeratin anyibodies (CK19) was positive. OMECs formed a single layer on the surface of SIS, and eight days later the cells were polygong and arranged like slabstone. Culture of canine OMECs in DKSFM containing 6% FBS is a simple and feasible method. SIS has good biocompatibility, it is a kind of good bioscafold in the tissue-engineered epithelium.

  12. Factors influencing pyrroline 5-carboxylate synthesis from glutamate by rat intestinal mucosa mitochondria

    SciTech Connect

    Henslee, J.G.; Wakabayashi, Y.; Small, C.; Jones, M.E.

    1983-10-15

    Factors influencing pyrroline 5-carboxylate (P5C) synthesis from glutamate by a subcellular fraction enriched in mitochondria of rat small intestinal mucosa have been studied. P5C synthesis decreased rapidly if this subcellular fraction was preincubated at 20 degrees C in the absence of substrates; this effect suggests that the enzyme(s) catalyzing P5C synthesis from glutamate (P5C synthase) is unstable in the absence of substrates. In the presence of substrates P5C synthesis increased linearly for the first 30 min of incubation, suggesting that the substrates promote enzyme stability. Pyridoxal 5'-phosphate is an effective inhibitor of P5C synthase whereas pyridoxamine 5'-phosphate and pyridoxal are not inhibitory. Potassium phosphate, KCl, and KBr each inhibited P5C synthase but potassium-Hepes (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) did not. Potassium phosphate was the most potent inhibitor followed by KBr, and then KCl. These results suggest P5C synthase is sensitive to anion inhibition. Both L-ornithine and D-ornithine inhibited P5C synthase; L-proline did not inhibit. Several analogs of ornithine and proline were also tested and none was found to inhibit P5C synthase; the inhibition by ornithine is, therefore, rather specific and it may prove to contribute to the regulation of metabolism of these amino acids.

  13. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Edelblum, Karen L.; Duckworth, Carrie A.; Guan, Yanfang; Montrose, Marshall H.; Turner, Jerrold R.; Watson, Alastair J.M.

    2011-01-01

    BACKGROUND & AIMS Tumor necrosis factor (TNF) increases intestinal epithelial cell shedding and apoptosis, potentially challenging the barrier between the gastrointestinal lumen and internal tissues. We investigated the mechanism of tight junction remodeling and barrier maintenance, as well as the roles of cytoskeletal regulatory molecules during TNF-induced shedding. METHODS We studied wild-type and transgenic mice that express the fluorescent-tagged proteins enhanced green fluorescent protein–occludin or monomeric red fluorescent protein1–ZO-1. After injection of high doses of TNF (7.5µg, i.p.), laparotomies were performed and segments of small intestine were opened to visualize the mucosa by video confocal microscopy. Pharmacologic inhibitors and knockout mice were used to determine the roles of caspase activation, actomyosin, and microtubule remodeling and membrane trafficking in epithelial shedding. RESULTS Changes detected included redistribution of the tight junction proteins ZO-1 and occluding to lateral membranes of shedding cells. These proteins ultimately formed a funnel around the shedding cell that defined the site of barrier preservation. Claudins, E-cadherin, F-actin, myosin II, Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK) were also recruited to lateral membranes. Caspase activity, myosin motor activity, and microtubules were required to initiate shedding, whereas completion of the process required microfilament remodeling and ROCK, MLCK, and dynamin II activities. CONCLUSIONS Maintenance of the epithelial barrier during TNF-induced cell shedding is a complex process that involves integration of microtubules, microfilaments, and membrane traffic to remove apoptotic cells. This process is accompanied by redistribution of apical junctional complex proteins to form intercellular barriers between lateral membranes and maintain mucosal function. PMID:21237166

  14. Enteral feeding and its impact on the gut immune system and intestinal mucosal barrier

    PubMed Central

    Kruszewski, Wiesław J.; Buczek, Tomasz

    2015-01-01

    Enteral feeding is the preferred method of nutritional therapy. Mucosal lack of contact with nutrients leads do lymphoid tissue atrophy, immune system functional decline, and intensification in bacterial translocation. Currently, it is assumed that microbiome is one of the body organs that has a significant impact on health. The composition of microbiome is not affected by age, sex, or place of residence, although it changes rapidly after diet modification. The composition of the microbiome is determined by enterotype, which is specific for each organism. It has a significant impact on the risk of diabetes, cancer, atherosclerosis, and other diseases. This review gathers data on interaction between gut-associated lymphoid tissue, mucosa-associated lymphoid tissue, microbiome, and the intestinal mucosal barrier. Usually, the information on the aforementioned is scattered in specialist-subject magazines such as gastroenterology, microbiology, genetics, biochemistry, and others. PMID:26557936

  15. Postinjury Vagal Nerve Stimulation Protects Against Intestinal Epithelial Barrier Breakdown

    PubMed Central

    Krzyzaniak, Michael; Peterson, Carrie; Loomis, William; Hageny, Ann-Marie; Wolf, Paul; Reys, Luiz; Putnam, James; Eliceiri, Brian; Baird, Andrew; Bansal, Vishal; Coimbra, Raul

    2014-01-01

    Background Vagal nerve stimulation (VNS) can have a marked anti-inflammatory effect. We have previously shown that preinjury VNS prevented intestinal barrier breakdown and preserved epithelial tight junction protein expression. However, a pretreatment model has little clinical relevance for the care of the trauma patient. Therefore, we postulated that VNS conducted postinjury would also have a similar protective effect on maintaining gut epithelial barrier integrity. Methods Male balb/c mice were subjected to a 30% total body surface area, full-thickness steam burn followed by right cervical VNS at 15, 30, 60, 90, 120, and 150 minutes postinjury. Intestinal barrier dysfunction was quantified by permeability to 4 kDa fluorescein isothiocyanate-Dextran, histologic evaluation, gut tumor necrosis factor-alpha (TNF-α) enzyme-linked immunosorbent assay, and expression of tight junction proteins (myosin light chain kinase, occludin, and ZO-1) using immunoblot and immunoflourescence. Results Histologic examination documented intestinal villi appearance similar to sham if cervical VNS was performed within 90 minutes of burn insult. VNS done after injury decreased intestinal permeability to fluorescein isothiocyanate-Dextran when VNS was ≤90 minutes after injury. Burn injury caused a marked increase in intestinal TNF-α levels. VNS-treated animals had TNF-α levels similar to sham when VNS was performed within 90 minutes of injury. Tight junction protein expression was maintained at near sham values if VNS was performed within 90 minutes of burn, whereas expression was significantly altered in burn. Conclusion Postinjury VNS prevents gut epithelial breakdown when performed within 90 minutes of thermal injury. This could represent a therapeutic window and clinically relevant strategy to prevent systemic inflammatory response distant organ injury after trauma. PMID:21610431

  16. Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics

    PubMed Central

    Pastorelli, Luca; De Salvo, Carlo; Mercado, Joseph R.; Vecchi, Maurizio; Pizarro, Theresa T.

    2013-01-01

    The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier. PMID:24062746

  17. Antibiotics conspicuously affect community profiles and richness, but not the density of bacterial cells associated with mucosa in the large and small intestines of mice.

    PubMed

    Puhl, Nathan J; Uwiera, Richard R E; Yanke, L Jay; Selinger, L Brent; Inglis, G Douglas

    2012-02-01

    The influence of three antibiotics (bacitracin, enrofloxacin, and neomycin sulfate) on the mucosa-associated enteric microbiota and the intestines of mice was examined. Antibiotics caused conspicuous enlargement of ceca and an increase in overall length of the intestine. However, there were no pathologic changes associated with increased cecal size or length of the intestine. Conspicuous reductions in the richness of mucosa-associated bacteria and changes to community profiles within the small (duodenum, proximal jejunum, middle jejunum, distal jejunum, and ileum) and large (cecum, ascending colon, and descending colon) intestine occurred in mice administered antibiotics. Communities in antibiotic-treated mice were dominated by a limited number of Clostridium-like (i.e. clostridial cluster XIVa) and Bacteroides species. The richness of mucosa-associated communities within the small and large intestine increased during the 14-day recovery period. However, community profiles within the large intestine did not return to baseline (i.e. relative to the control). Although antibiotic administration greatly reduced bacterial richness, densities of mucosa-associated bacteria were not reduced correspondingly. These data showed that the antibiotics, bacitracin, enrofloxacin, and neomycin sulfate, administered for 21 days to mice did not sterilize the intestine, but did impart a tremendous and prolonged impact on mucosa-associated bacterial communities throughout the small and large intestine.

  18. The Correlation Between the Expression of Differentiation Markers in Rat Small Intestinal Mucosa and the Transcript Levels of Schlafen 3

    PubMed Central

    Kovalenko, Pavlo L.; Basson, Marc D.

    2015-01-01

    IMPORTANCE The normal absorptive function and structural maintenance of the intestinal mucosa depend on a constant process of proliferation of enterocytic stem cells followed by progressive differentiation toward a mature phenotype. The mechanisms that govern enterocytic differentiation in the mucosa of the small intestine are poorly understood. OBJECTIVE To determine whether schlafen 3 (but not other schlafen proteins) act in vivo and whether its effects are limited to the small intestine. We have previously demonstrated in nonmalignant rat intestinal IEC-6 cells that schlafen 3 levels correlate with the expression of various differentiation markers in vitro in response to differentiation stimuli. DESIGN Randomized controlled experiment. SETTING Animal science laboratory. PARTICIPANTS Male Sprague-Dawley rats 8 to 13 weeks old. MAINOUTCOMES AND MEASURES Messenger RNA (mRNA) from jejunal and colonic mucosa was isolated, and transcript levels of schlafen proteins 1, 2, 3, 4, 5, 13, and 14; sucrase isomaltase (SI); dipeptidyl peptidase 4 (Dpp4); glucose transporter type 2 (Glut2); and villin were measured by quantitative reverse transcriptase–polymerase chain reaction. We tested parallel variations in protein levels by Western blotting and Dpp4 enzyme activity. RESULTS The transcript level of schlafen 3 (Slfn3) correlated with the levels of the differentiation markers SI, Dpp4, Glut2, and villin. However, the expression of schlafen proteins 1, 2, 4, 5, 13, and 14 did not correlate with the expression of the differentiation markers. The mucosal mRNA levels of Slfn3, SI, Glut2, and Dpp4 were all substantially higher in the rat jejunum than in colonic mucosa by a mean (SE) factor of 51.0 (13.2) for 6 rats (P < .05), 599 (99) for 8 rats (P < .01), 12.5 (5.5) for 8 rats (P < .01), and 14.0 (3.9) for 8 rats (P < .01), respectively. In IEC-6 cells, infection with adenovirus-expressing GFP-tagged Slfn3 significantly increased Slfn3 expression and Dpp4-specific activity

  19. The correlation between the expression of differentiation markers in rat small intestinal mucosa and the transcript levels of schlafen 3.

    PubMed

    Kovalenko, Pavlo L; Basson, Marc D

    2013-11-01

    The normal absorptive function and structural maintenance of the intestinal mucosa depend on a constant process of proliferation of enterocytic stem cells followed by progressive differentiation toward a mature phenotype. The mechanisms that govern enterocytic differentiation in the mucosa of the small intestine are poorly understood. To determine whether schlafen 3 (but not other schlafen proteins) act in vivo and whether its effects are limited to the small intestine. We have previously demonstrated in nonmalignant rat intestinal IEC-6 cells that schlafen 3 levels correlate with the expression of various differentiation markers in vitro in response to differentiation stimuli. Randomized controlled experiment. Animal science laboratory. Male Sprague-Dawley rats 8 to 13 weeks old. Messenger RNA (mRNA) from jejunal and colonic mucosa was isolated, and transcript levels of schlafen proteins 1, 2, 3, 4, 5, 13, and 14; sucrase isomaltase (SI); dipeptidyl peptidase 4 (Dpp4); glucose transporter type 2 (Glut2); and villin were measured by quantitative reverse transcriptase-polymerase chain reaction. We tested parallel variations in protein levels by Western blotting and Dpp4 enzyme activity. The transcript level of schlafen 3 (Slfn3) correlated with the levels of the differentiation markers SI, Dpp4, Glut2, and villin. However, the expression of schlafen proteins 1, 2, 4, 5, 13, and 14 did not correlate with the expression of the differentiation markers. The mucosal mRNA levels of Slfn3, SI, Glut2, and Dpp4 were all substantially higher in the rat jejunum than in colonic mucosa by a mean (SE) factor of 51.0 (13.2) for 6 rats (P < .05), 599 (99) for 8 rats (P < .01), 12.5 (5.5) for 8 rats (P < .01), and 14.0 (3.9) for 8 rats (P < .01), respectively. In IEC-6 cells, infection with adenovirus-expressing GFP-tagged Slfn3 significantly increased Slfn3 expression and Dpp4-specific activity compared with GFP-expressing virus (in 6 rats; P < .05). Taken together with our

  20. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets.

    PubMed

    Wei, H-K; Xue, H-X; Zhou, Z X; Peng, J

    2017-02-01

    Recent studies indicate that intestinal oxidative stress and microbiota imbalance is involved in weaning-induced intestinal dysfunction in piglets. We have investigated the effect of feeding a carvacrol-thymol blend supplemented diet on intestinal redox status, selected microbial populations and the intestinal barrier in weaning piglets. The piglets (weaned at 21 days of age) were randomly allocated to two groups with six pens per treatment and 10 piglets per pen. At weaning day (21 days of age), six piglets were sacrificed before weaning to serve as the preweaning group. The weaned group was fed with a basal diet, while the weaned-CB group was fed with the basal diet supplemented with 100 mg/kg carvacrol-thymol (1 : 1) blend for 14 days. On day 7 post-weaning, six piglets from each group were sacrificed to determine intestinal redox status, selected microbial populations, messenger RNA (mRNA) transcript levels of proinflammatory cytokines and biomarkers of intestinal barrier function. Weaning resulted in intestinal oxidative stress, indicated by the increased concentration of reactive oxygen species and thiobarbituric acid-reactive substances present in the intestine. Weaning also reduced the population of Lactobacillus genus and increased the populations of Enterococcus genus and Escherichia coli in the jejunum, and increased mRNA levels of tumor necrosis factor α (TNF-α), interleukin 1β and interleukin 6 (IL-6). In addition, decreased mRNA levels of zonula occludens and occludin in the jejunal mucosa and increased plasma diamine oxidase concentrations indicated that weaning induced dysfunction of the intestinal barrier. On day 7 post-weaning, supplementation with the carvacrol-thymol blend restored weaning-induced intestinal oxidative stress. Compared with the weaned group, the weaned-CB group had an increased population of Lactobacillus genus but reduced populations of Enterococcus genus and E. coli in the jejunum and decreased mRNA levels of TNF-α. The

  1. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa.

    PubMed

    Steenwinckel, Valérie; Louahed, Jamila; Lemaire, Muriel M; Sommereyns, Caroline; Warnier, Guy; McKenzie, Andrew; Brombacher, Frank; Van Snick, Jacques; Renauld, Jean-Christophe

    2009-04-15

    IL-9 contributes to lung inflammatory processes such as asthma, by promoting mast cell differentiation, B cell activation, eosinophilia, and mucus production by lung epithelial cells. The observation that IL-9 overexpressing mice show increased mast cell numbers in the intestinal mucosa suggests that this cytokine might also play a role in intestinal inflammation. In colons from IL-9 transgenic mice, the expression of Muc2, a major intestinal mucin gene, was up-regulated, together with that of CLCA3 chloride channel and resistin like alpha, which are goblet cell-associated genes. Additional IL-9 up-regulated genes were identified and included innate immunity genes such as angiogenin 4 and the PLA2g2a phospholipase A(2), which are typical Paneth cell markers. Histochemical staining of Paneth cells by phloxine/tartrazine showed that IL-9 induces Paneth cell hyperplasia in Lieberkühn glands of the small intestine, and in the colonic mucosa, where this cell type is normally absent. Expression of Paneth cell markers, including angiogenin 4, PLA2g2a, and cryptdins, was induced in the colon of wild-type mice after two to four daily administrations of IL-9. By crossing IL-9 transgenic mice with IL-13(-/-) mice, or by injecting IL-9 into IL-4R(-/-) mice, we showed that IL-13 was required for the up-regulation of these Paneth cell-specific genes by IL-9. Taken together, our data indicate that Paneth cell hyperplasia and expression of their various antimicrobial products contribute to the immune response driven by TH2 cytokines, such as IL-9 and IL-13 in the intestinal mucosa.

  2. Effects of titanium dioxide nanoparticles on small intestinal mucosa in rats.

    PubMed

    Onishchenko, G E; Erokhina, M V; Abramchuk, S S; Shaitan, K V; Raspopov, R V; Smirnova, V V; Vasilevskaya, L S; Gmoshinski, I V; Kirpichnikov, M P; Tutelyan, V A

    2012-12-01

    Penetration of titanium dioxide nanoparticles into enterocytes after their administration into isolated loop of rat small intestine was shown in vivo by transmission electron microscopy. Using electron diffraction, titanium dioxide nanoparticles were identified in the apical regions of the cells under plasma membranes and in deeper parts of the cytoplasm as solitary objects or small aggregations. Water dispersions of nanoparticles (3-h exposure to high concentrations) caused no appreciable morphological changes in enterocyte ultrastructure. A 28-day subacute intragastric administration of water dispersion of nanoparticles to rats led to titanium accumulation in the liver, their level was significantly higher than in the control group, which was shown by mass spectrometry with inductive-bound plasma. These data indicated the possibility of penetration of titanium dioxide nanoparticles through the gastrointestinal barrier under near-physiological conditions.

  3. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    PubMed

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier

  4. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.

    PubMed

    Susewind, Julia; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Collnot, Eva-Maria; Schneider-Daum, Nicole; Griffiths, Gareth Wyn; Lehr, Claus-Michael

    2016-01-01

    Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation.

  5. The dynamic structure of a flat small intestinal mucosa studied on the explanted rat jejunum.

    PubMed

    Loehry, C A; Grace, R

    1974-04-01

    Small pieces of jejunum with an intact blood supply were explanted to the anterior abdominal wall in rats. Six weeks after explantation the mucosa appeared totally flat in many areas, both histologically and under the dissecting microscope. The structure of the flattened mucosa was shown to be identical to that in coeliac disease with hypertrophied intervillous ridges. A dynamic study with tritium-labelled thymidine demonstrated a considerably increased turnover in the flat mucosa with some disorganization of cell production and migration.

  6. Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling

    PubMed Central

    Jung, Camille; Meinzer, Ulrich; Montcuquet, Nicolas; Thachil, Elodie; Château, Danielle; Thiébaut, Raphaële; Roy, Maryline; Alnabhani, Ziad; Berrebi, Dominique; Dussaillant, Monique; Pedruzzi, Eric; Thenet, Sophie; Cerf-Bensussan, Nadine; Hugot, Jean-Pierre; Barreau, Frederick

    2012-01-01

    Intestinal barrier function requires intricate cooperation between intestinal epithelial cells and immune cells. Enteropathogens are able to invade the intestinal lymphoid tissue known as Peyer’s patches (PPs) and disrupt the integrity of the intestinal barrier. However, the underlying molecular mechanisms of this process are poorly understood. In mice infected with Yersinia pseudotuberculosis, we found that PP barrier dysfunction is dependent on the Yersinia virulence plasmid and the expression of TLR-2 by hematopoietic cells, but not by intestinal epithelial cells. Upon TLR-2 stimulation, Y. pseudotuberculosis–infected monocytes activated caspase-1 and produced IL-1β. In turn, IL-1β increased NF-κB and myosin light chain kinase activation in intestinal epithelial cells, thus disrupting the intestinal barrier by opening the tight junctions. Therefore, Y. pseudotuberculosis subverts intestinal barrier function by altering the interplay between immune and epithelial cells during infection. PMID:22565313

  7. The Anti-Inflammatory Effect and Intestinal Barrier Protection of HU210 Differentially Depend on TLR4 Signaling in Dextran Sulfate Sodium-Induced Murine Colitis.

    PubMed

    Lin, Sisi; Li, Yongyu; Shen, Li; Zhang, Ruiqin; Yang, Lizhi; Li, Min; Li, Kun; Fichna, Jakub

    2017-02-01

    Ulcerative colitis (UC) is strongly associated with inflammation and intestinal barrier disorder. The nonselective cannabinoid receptor agonist HU210 has been shown to ameliorate inflamed colon in colitis, but its effects on intestinal barrier function and extraintestinal inflammation are unclear. To investigate the effects and the underlying mechanism of HU210 action on the UC in relation to a role of TLR4 and MAP kinase signaling. Wild-type (WT) and TLR4 knockout (Tlr4 (-/-)) mice were exposed to 4% dextran sulfate sodium (DSS) for 7 days. The effects of HU210 on inflammation and intestinal barrier were explored. Upon DSS challenge, mice suffered from bloody stool, colon shortening, intestinal mucosa edema, pro-inflammatory cytokine increase and intestinal barrier destruction with goblet cell depletion, increased intestinal microflora accompanied with elevated plasma lipopolysaccharide, reduced mRNA expression of the intestinal tight junction proteins, and abnormal ratio of CD4(+)/CD8(+) T cells in the intestinal Peyer's patches. Pro-inflammatory cytokines in the plasma and the lung, as well as pulmonary myeloperoxidase activity, indicators of extraintestinal inflammation were increased. Protein expression of p38α and pp38 was up-regulated in the colon of WT mice. Tlr4 (-/-) mice showed milder colitis. HU210 reversed the intestinal barrier changes in both strains of mice, but alleviated inflammation only in WT mice. Our study indicates that in experimental colitis, HU210 displays a protective effect on the intestinal barrier function independently of the TLR4 signaling pathway; however, in the extraintestinal tissues, the anti-inflammatory action seems through affecting TLR4-mediated p38 mitogen-activated protein kinase pathway.

  8. Peroxidation in intestinal mucosa of normal and iron-overloaded rats differing in selenium status

    SciTech Connect

    Mahoney, A.W.; Vega, S. )

    1991-03-15

    Material in the digesta may lead to lipid peroxidation of the intestinal mucosa. To study the effect of Se deficiency ({minus}Se) and Fe overload (++Fe) on mucosal free radical damage, 60 220g rats in four groups were fed torula yeast diet for 20d. Fe-overload was caused in two groups by three IM injections of Fe dextran given on days 4, 9, and 14. Fe-control rats (+Fe) were sham-injected with n-saline. Se-control rats (+Se) were given Na{sub 2}SeO{sub 3}-supplemented drinking water. Se deficiency reduced liver and mucosal glutathione peroxidase activity, but Fe overload did not. Serum, liver and mucosal Fe was higher in the Fe-overloaded rats. Fe and Se treatments did not affect hemoglobin level, but Fe-overload reduced weight gain. Fe overload increased liver and mucosal thiobarbituric acid reactive substances (TBARS), but Se status did not affect them. On days 5-9, CBrCL{sub 3}, an environmental pollutant and lipid peroxidation initiator which must be activated by cytochrome P-450, was gavaged in 10 rats from each group; the higher dose increased mucosal TBARS in Fe-overloaded rats but not Se-deficient ones. But, the lower CBrCL{sub 3} dose did not affect mucosal TBARS. Liver TBARS was not affected by CBrCL{sub 3}; however, the highest liver and mucosal TBARS levels occurred in the {minus}Se++Fe rats given the higher CBrCL{sub 3} dose. Liver cytochrome P-450 activity was not affected by Fe{minus} nor Se status.

  9. Nano-hydroxyapatite-thermally denatured small intestine sub-mucosa composites for entheses applications.

    PubMed

    Perla, Venu; Webster, Thomas J

    2006-01-01

    The objective of the present in vitro study was to estimate the adhesion strength of nanometer crystalline hydroxyapatite (HA)-small intestine sub-mucosa (SIS) composites on model implant surfaces. Techniques of thermal denaturation (60 degrees C, 20 min) of SIS were used to enhance the adhesion strength of entheses materials to underlying implants. Specifically, results indicated that the adhesion strength of thermally denatured SIS was 2-3 times higher than that for normal unheated SIS. In addition, aqua-sonicated, hydrothermally treated nano-HA dispersions enhanced the adhesion strength of SIS on implant surfaces. Importantly, results of the present study demonstrated that human skeletal muscle cell (hSkMC) numbers were not affected by thermally denaturing SIS in nano-HA composite coatings; however, they increased on aqua-sonicated nano-HA/SIS composites compared with SIS alone. Interestingly, thermally denatured SIS that contained aqua-sonicated, hydrothermally treated nano-HA decreased human osteoblasts (hOBs) numbers compared with respective unheated composites; all other composites when thermally denatured did not influence hOB numbers. Results also showed that the number of hOBs increased on nano-HA/SIS composites compared with SIS composites alone. Human mesenchymal stem cell (hMSC) numbers were not affected by the presence of nano-HA in SIS composites. For these reasons, the collective results of this in vitro study demonstrated a technique to increase the coating strength of entheses coatings on implant surfaces (using thermally denatured SIS and aqua-sonicated, hydrothermally prepared nano-HA) while, at the same time, supporting cell functions important for entheses regeneration.

  10. Automated measurement of intestinal mucosa electrical parameters using a new digital clamp.

    PubMed

    Mathieu, Julien; Mammar, Saïd; Eto, Bruno

    2008-10-01

    Electrophysiological studies that include measurements of the electrical parameters of the epithelium offer insight into the cell's ability to react to different biological effectors and their functional viability. These parameters are commonly measured using a Ussing permeation chamber; however, most Ussing permeation chambers currently available must follow a strict operational protocol, and the type of electrodes used has to be taken into special consideration. The purpose of this study was to develop a new Ussing permeation chamber device with an automatic digital clamp which uses a microcontroller. Conventional electrodes, such as platinum or Ag/AgCl electrodes, are replaced by stainless steel 316L working electrodes. The electrode-electrolyte interface (inox-Ringer's) study was performed by impedance spectroscopy in the range of 1-10 kHz. The determination of Warburg's model electrical parameters was inferred from the Nyquist diagram. The model validation of the new digital clamp was performed experimentally on isolated segments of mouse jejunum. Two main study results should be mentioned. One is that impedance spectroscopy on stainless steel electrodes has provided Warburg's parameters, allowing the development of a transfer function model. The other is that the new digital clamp can simultaneously measure or calculate conductance, potential difference and short-circuit current. These results have also confirmed the great importance of Warburg's model for determining the electrical parameters of the electrode-electrolyte interface, and have shown that the measurement of intestinal mucosa electrical parameters can be achieved with a digital correction. Finally, the results suggest that stainless steel electrodes can be used successfully in a Ussing permeation chamber as working electrodes.

  11. Pycnogenol protects against Ionizing radiation as shown in the intestinal mucosa of rats exposed to X-rays.

    PubMed

    de Moraes Ramos, Flávia Maria; Schönlau, Frank; Novaes, Pedro Duarte; Manzi, Flávio Ricardo; Bóscolo, Frab Norberto; de Almeida, Solange Maria

    2006-08-01

    X-rays and gamma radiation delivered to the abdominal region for cancer treatment encompasses severe damage to the intestinal mucosa, which significantly impairs a patient's quality of life. To a great extent the deleterious effects of x-radiation originate from radiolysis-induced reactive oxygen species. The well-researched powerful antioxidant Pycnogenol was administered orally to rats prior to x-irradiation with 15 Gy. Histological sections of the intestines showed a dramatically better condition of the mucosal layers compared with the irradiated control animals administered water without Pycnogenol. Pycnogenol treatment significantly preserved the height and number of villi as well as the glandular layer and a diminished number of congested vases were present. No intestinal alterations were seen in control animals receiving Pycnogenol in the absence of radiation. It is concluded that Pycnogenol provides significant protection from ionizing radiation damage.

  12. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus.

    PubMed

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  13. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus

    PubMed Central

    Mao, Xiangbing; Gu, Changsong; Hu, Haiyan; Tang, Jun; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Luo, Junqiu; Tian, Gang

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05), decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05), and affected the microbiota of ileum and cecum (P<0.05) in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05) reduced the Bax mRNA levels of the jejunal mucosa (P<0.05) in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05), and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05), the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05), the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05), and the microbiota of ileum and cecum (P<0.05) in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier function

  14. Synthetic surfactant food additives can cause intestinal barrier dysfunction.

    PubMed

    Csáki, Katalin F

    2011-05-01

    In addition to genetic factors and antigen exposure, intestinal barrier dysfunction plays a key role in the pathogenesis of numerous allergic and autoimmune diseases. The hypothesis of this article is that synthetic surfactant food additives (also called emulsifiers) - which are applied in relatively high concentrations in even the most frequently consumed foods -cause increased intestinal permeability, hence they can play a significant role in the increasing incidence of numerous allergic and autoimmune diseases. In many cases the surfactants added to foods are exactly the same as the ones used in pharmaceutics as absorption enhancers. Numerous synthetic surfactant food additives have been shown to increase the intestinal permeability through paracellular and/or transcellular mechanisms and some of them were also shown to inhibit P-glycoprotein. Additionally, based on the general characteristics of surfactants it can be predicted that they decrease the hydrophobicity of the mucus layer, which has also been shown to associate with increased intestinal permeability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effect of Wild-Type Shigella Species and Attenuated Shigella Vaccine Candidates on Small Intestinal Barrier Function, Antigen Trafficking, and Cytokine Release

    PubMed Central

    Fiorentino, Maria; Levine, Myron M.

    2014-01-01

    Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to

  16. Effect of alemtuzumab on intestinal intraepithelial lymphocytes and intestinal barrier function in cynomolgus model.

    PubMed

    Qu, Lin-Lin; Lyu, Ya-Qing; Jiang, Hai-Tao; Shan, Ting; Zhang, Jing-Bin; Li, Qiu-Rong; Li, Jie-Shou

    2015-03-05

    Alemtuzumab has been used in organ transplantation and a variety of hematologic malignancies (especially for the treatment of B-cell chronic lymphocytic leukemia). However, serious infectious complications frequently occur after treatment. The reason for increased infections postalemtuzumab treatment is unknown at this stage. We explore the effect of alemtuzumab on intestinal intraepithelial lymphocytes (IELs) and intestinal barrier function in cynomolgus model to explain the reason of infection following alemtuzumab treatment. Twelve male cynomolguses were randomly assigned to either a treatment or control group. The treatment group received alemtuzumab (3 mg/kg, intravenous injection) while the control group received the same volume of physiological saline. Intestinal IELs were isolated from the control group and the treatment group (on day 9, 35, and 70 after treatment) for counting and flow cytometric analysis. Moreover, intestinal permeability was monitored by enzymatic spectrophotometric technique and enzyme-linked immunosorbent assay. The numbers of IELs were decreased significantly on day 9 after treatment compared with the control group (0.35 ± 0.07 × 10 8 and 1.35 ± 0.09 × 10 8 , respectively; P < 0.05) and were not fully restored until day 70 after treatment. There were significant differences among four groups considering IELs subtypes. In addition, the proportion of apoptotic IELs after alemtuzumab treatment was significantly higher than in the control group (22.01 ± 3.67 and 6.01 ± 1.42, respectively; P < 0.05). Moreover, the concentration of D-lactate and endotoxin was also increased significantly on day 9 after treatment. Alemtuzumab treatment depletes lymphocytes in the peripheral blood and intestine of cynomolgus model. The induction of apoptosis is an important mechanism of lymphocyte depletion after alemtuzumab treatment. Notably, intestinal barrier function may be disrupted after alemtuzumab treatment.

  17. Effect of Alemtuzumab on Intestinal Intraepithelial Lymphocytes and Intestinal Barrier Function in Cynomolgus Model

    PubMed Central

    Qu, Lin-Lin; Lyu, Ya-Qing; Jiang, Hai-Tao; Shan, Ting; Zhang, Jing-Bin; Li, Qiu-Rong; Li, Jie-Shou

    2015-01-01

    Background: Alemtuzumab has been used in organ transplantation and a variety of hematologic malignancies (especially for the treatment of B-cell chronic lymphocytic leukemia). However, serious infectious complications frequently occur after treatment. The reason for increased infections postalemtuzumab treatment is unknown at this stage. We explore the effect of alemtuzumab on intestinal intraepithelial lymphocytes (IELs) and intestinal barrier function in cynomolgus model to explain the reason of infection following alemtuzumab treatment. Methods: Twelve male cynomolguses were randomly assigned to either a treatment or control group. The treatment group received alemtuzumab (3 mg/kg, intravenous injection) while the control group received the same volume of physiological saline. Intestinal IELs were isolated from the control group and the treatment group (on day 9, 35, and 70 after treatment) for counting and flow cytometric analysis. Moreover, intestinal permeability was monitored by enzymatic spectrophotometric technique and enzyme-linked immunosorbent assay. Results: The numbers of IELs were decreased significantly on day 9 after treatment compared with the control group (0.35 ± 0.07 × 108 and 1.35 ± 0.09 × 108, respectively; P < 0.05) and were not fully restored until day 70 after treatment. There were significant differences among four groups considering IELs subtypes. In addition, the proportion of apoptotic IELs after alemtuzumab treatment was significantly higher than in the control group (22.01 ± 3.67 and 6.01 ± 1.42, respectively; P < 0.05). Moreover, the concentration of D-lactate and endotoxin was also increased significantly on day 9 after treatment. Conclusions: Alemtuzumab treatment depletes lymphocytes in the peripheral blood and intestine of cynomolgus model. The induction of apoptosis is an important mechanism of lymphocyte depletion after alemtuzumab treatment. Notably, intestinal barrier function may be disrupted after alemtuzumab

  18. [Atrophy in the mucosa neighboring an intestinal-type gastric adenocarcinoma by comparing the Sydney vs. OLGA systems].

    PubMed

    Ramírez-Mendoza, Pablo; Hernández-Briseño, Liliana; Casarrubias-Ramírez, Moisés; Alvarado-Cabrero, Isabel; Ángeles-Garay, Ulises

    2015-01-01

    Gastric carcinoma causes about 700 000 deaths worldwide per year. Is feasible detect it in earlier stages. The aim of this article is to assess the atrophy in the mucosa neighboring an intestinal-type gastric adenocarcinoma by comparing the Sydney vs. OLGA systems. Twenty-eight individuals with intestinal-type gastric adenocarcinoma (Lauren) were compared with 32 non-neoplastic cases. Both groups had undergone total gastrectomy. Two pathologists made a consensus-based assessment of the atrophy in non-neoplastic corpus and antral epithelium using the Sydney and OLGA Systems. The mean, median, and distribution of the frequencies were obtained using the measuring and distribution scales of the study variables. The sensitivity, specificity, and predictive values, both positive and negative, for gastric cancer were calculated through the dichotomy of advanced atrophy-positive and advanced atrophy-negative scales. Twenty-four of the 28 cases with intestinal-type gastric carcinoma showed an advanced atrophy with the OLGA system, with a sensitivity and specificity of 77 and 85 %, respectively. Conversely, 4 of the 28 individuals showed an advanced atrophy with the Sydney system, with a sensitivity and specificity of 14 and 100 %, respectively. The OLGA system has a high sensitivity and specificity (77 y 85 % respectively) for the recognition of preneoplastic changes in the mucosa neighboring a gastric carcinoma.

  19. Cavitation of mesenteric lymph nodes, splenic atrophy, and a flat small intestinal mucosa. Report of six cases.

    PubMed

    Matuchansky, C; Colin, R; Hemet, J; Touchard, G; Babin, P; Eugene, C; Bergue, A; Zeitoun, P; Barboteau, M A

    1984-09-01

    This study describes, in 6 patients with a flat small intestinal mucosa and splenic atrophy, a particular lesion of the mesenteric lymph nodes termed "cavitation." In 4 women and 2 men with abdominal mass, intestinal obstruction, or suspected celiac disease-associated lymphoma, unusual pseudocystic lymph node lesions were found in the jejunal or jejunoileal mesentery. These lesions consisted histologically of a large central cavity occupied by hyaline-type material and surrounded by fibrous tissue and remnants of lymph node structures. There was no histologic evidence of malignant lymphoma or mesenteric panniculitis. Diffuse subtotal villous atrophy involving at least the jejunum was found in each case, together with unequivocal biological and morphological evidence of splenic atrophy, severe malabsorption, and a history of chronic or childhood diarrhea. HLA B8 or DR3, or both, was present in 4 of 4 cases; dermatitis herpetiformis was present in 1 case. An unequivocal mucosal response to a gluten-free diet was observed in 2 cases. Four patients died of cachexia or hyposplenism-related infections. We conclude that cavitation of mesenteric lymph nodes is an original feature which may be associated with splenic atrophy and a flat small intestinal mucosa; some of these patients may have celiac disease. Pathogenesis is unknown.

  20. Human mucosa/submucosa interactions during intestinal inflammation: involvement of the enteric nervous system in interleukin-8 secretion.

    PubMed

    Tixier, Emmanuelle; Lalanne, Florent; Just, Ingo; Galmiche, Jean-Paul; Neunlist, Michel

    2005-12-01

    Interleukin-8 (IL-8) is a key chemokine upregulated in various forms of intestinal inflammation, especially those induced by bacteria such as Clostridium difficile (C. difficile). Although interactions between different mucosal and submucosal cellular components have been reported, whether such interactions are involved in the regulation of IL-8 secretion during C. difficile infection is unknown. Moreover, whether the enteric nervous system, a major component of the submucosa, is involved in IL-8 secretion during an inflammatory challenge remains to be determined. In order to investigate mucosa/submucosa interactions that regulate IL-8 secretion, we co-cultured human intestinal mucosa and submucosa. In control condition, IL-8 secretion in co-culture was lower than the sum of the IL-8 secretion of both tissue layers cultured alone. Contrastingly, IL-8 secretion increased in co-culture after mucosal challenge with toxin B of C. difficile through an IL-1 beta-dependent pathway. Moreover, we observed that toxin B of C. difficile increased IL-8 immunoreactivity in submucosal enteric neurones in co-culture and in intact preparations of mucosa/submucosa, through an IL-1 beta-dependent pathway. IL-1 beta also increased IL-8 secretion and IL-8 mRNA expression in human neuronal cell lines (NT2-N and SH-SY5Y), through p38 and ERK1/2 MAP kinase-dependent pathways. Our results demonstrate that mucosa/submucosa interactions regulate IL-8 secretion during inflammatory processes in human through IL-1 beta-dependent pathways. Finally we observed that human submucosal neurones synthesize IL-8, whose production in neurones is induced by IL-1 beta via MAPK-dependent pathways.

  1. The role of intestinal epithelial barrier function in the development of NEC

    PubMed Central

    Halpern, Melissa D; Denning, Patricia W

    2015-01-01

    The intestinal epithelial barrier plays an important role in maintaining host health. Breakdown of intestinal barrier function is known to play a role in many diseases such as infectious enteritis, idiopathic inflammatory bowel disease, and neonatal inflammatory bowel diseases. Recently, increasing research has demonstrated the importance of understanding how intestinal epithelial barrier function develops in the premature neonate in order to develop strategies to promote its maturation. Optimizing intestinal barrier function is thought to be key to preventing neonatal inflammatory bowel diseases such as necrotizing enterocolitis. In this review, we will first summarize the key components of the intestinal epithelial barrier, what is known about its development, and how this may explain NEC pathogenesis. Finally, we will review what therapeutic strategies may be used to promote optimal development of neonatal intestinal barrier function in order to reduce the incidence and severity of NEC. PMID:25927016

  2. Spray-dried animal plasma prevents the effects of Staphylococcus aureus enterotoxin B on intestinal barrier function in weaned rats.

    PubMed

    Pérez-Bosque, Anna; Amat, Concepció; Polo, Javier; Campbell, Joy M; Crenshaw, Joe; Russell, Louis; Moretó, Miquel

    2006-11-01

    In this study, we investigated intestinal barrier function during inflammation as well as the effects of dietary supplementation with porcine spray-dried animal plasma (SDAP) proteins and porcine immunoglobulin concentrate (IC). Wistar Lewis rats were fed from d 21 (weaning) until d 34 or 35 either a control diet or a diet containing SDAP or IC. On d 30 and d 33, rats received an intraperitoneal dose of Staphylococcus aureus enterotoxin B (SEB; 0.5 mg/kg body wt; groups SEB, SEB-SDAP, and SEB-IC). SEB reduced the potential difference across the jejunum by 60%, the short-circuit current by 70%, and Na-K-ATPase activity in intestinal mucosa (all P < 0.05). The fluxes of dextran flux (4 kDa) and horseradish peroxidase (HRP, 40 kDa) across the intestinal wall also increased in SEB-treated rats (P < 0.01, P = 0.068, respectively). SEB also increased HRP flux across the paracellular space (P < 0.05). Moreover, SEB-treated rats had a reduced expression of tight junction proteins, such as ZO-1 (10% reduction; P < 0.05) and beta-catenin (20% reduction; P < 0.05). Dietary supplementation with SDAP or IC prevented dextran (P < 0.05) and HRP (P < 0.05) paracellular flux across the intestinal epithelium. SDAP supplementation also prevented SEB effects on Na-K-ATPase activity (P < 0.05). In our model of SEB-induced intestinal inflammation, the increased permeability across the intestinal mucosa was due to the lower expression of tight junction proteins, an effect that can be prevented by both SDAP and IC supplementation.

  3. Dietary glutamine, glutamic acid and nucleotides increase the carbon turnover (δ 13C) on the intestinal mucosa of weaned piglets.

    PubMed

    Amorim, A B; Berto, D A; Saleh, M A D; Miassi, G M; Ducatti, C

    2017-02-10

    This study aimed at evaluating the influence of dietary glutamine, glutamic acid and nucleotides on duodenal and jejunal carbon turnover, and on mucosa morphometry of piglets weaned at an age of 21 days. The diets were: additive-free diet - control (C); 1% of glutamine (G); 1% of glutamic acid (GA); and 1% of nucleotides (N). In intestinal mucosa morphometry trial, 65 animals were used. At day 0 (baseline), five animals were slaughtered to determine the villus height (VH), crypt depth (CD), VH : CD ratio and villi density (VD). The remaining 60 animals were allocated into a randomized block design with 4×3 factorial arrangement (four diets: C - control, G - glutamine, GA - glutamic acid and N - nucleotides; three slaughter ages: 7, 14 and 21 days post-weaning) with five piglets slaughtered per treatment. In carbon turnover trial, 123 animals were used. At day 0 (baseline), three animals were slaughtered to quantify the δ 13C half-life (T50%) and the 99% carbon substitution (T99%) on intestinal mucosa. The remaining 120 animals were blocked by three weight categories (light, medium and heavy) and, randomly assigned to pen with the same four diets from the previous trial with one piglet slaughtered per weight category per treatment at days 1, 2, 4, 5, 7, 9, 13, 20, 27 and 49 after weaning. Morphometric analyses have yielded no consistent results regarding the action of the evaluated additives, and few reproducible age-related effects. The N diets determined lower T50% values (5.18 days) and T99% (17.21 days) than G and C diets (T50%=7.29, 7.58 days and T99%=24.22, 25.17 days, respectively) in the duodenal mucosa. In jejunum, the N, GA and G diets determined the lowest T50% means (4.9, 6.2 and 6.7 days, respectively) and T99% means (15.34, 21.10 and 21.84 days, respectively) in comparison with C diets (T50%=7.44 and T99%=24.72 days). The inclusion of the additives in the diets of piglets accelerated the carbon turnover in piglets during the post-weaning period. The

  4. Prostaglandin E1 maintains structural integrity of intestinal mucosa and prevents bacterial translocation during experimental obstructive jaundice.

    PubMed

    Gurleyik, Emin; Coskun, Ozgur; Ustundag, Nil; Ozturk, Elif

    2006-01-01

    The absence of bile in the gut lumen induces mucosal injury and promotes bacterial translocation (BT). Prostaglandin E (PGE) has a protective effect on the mucosal layer of the alimentary tract. We hypothesize that PGE1 may prevent BT by its beneficial action on the mucosa of the small bowel. Thirty Wistar albino rats were divided equally into 3 groups; Group 1 (control) underwent sham laparotomy, group 2 obstructive jaundice (OJ) and group 3 (OJ + PGE1) underwent common bile duct (CBD) ligation and transection. Groups 1 and 2 received; 1 mL normal saline and group 3 received 40 mg of the PGE1 analogue misoprostol dissolved in 1 mL normal saline administered by orogastric tube once daily. After 7 days, laparotomy and collection of samples for laboratory analyses were performed, including bacteriological analysis of intestine, mesenteric lymph nodes (MLNs), and blood, and histopathologic examination of intestinal mucosa to determine mucosal thickness and structural damage. Serum bilirubin and alkaline phosphatase levels confirmed OJ in all animals with CBD transection. The mucosal damage score was significantly reduced in jaundiced animals receiving PGE1 compared to jaundiced controls (2.15 +/- 0.74 vs 5.3 +/- 0.59; p < .00001) and mucosal thickness was greater (607 +/- 59.1 microm vs. 393 +/- 40.3 microm; p < .00001). The incidence of BT to MLNs decreased from 90% to 30% (p < .02) when jaundiced rats received PGE1. PGE1 treatment reduced the detection rate of viable enteric bacteria in the blood from 60% to 10% (p < .057). We conclude that administration of PGE1 provides protection against OJ-induced atrophy and damage of intestinal mucosa, and thereby prevents translocation of enteric bacteria to underlying tissues.

  5. Homeostasis alteration within small intestinal mucosa after acute enteral refeeding in total parenteral nutrition mouse model

    PubMed Central

    Feng, Yongjia; Barrett, Meredith; Hou, Yue; Yoon, Hong Keun; Ochi, Takanori

    2015-01-01

    Feeding strategies to care for patients who transition from enteral nutrient deprivation while on total parenteral nutrition (TPN) to enteral feedings generally proceed to full enteral nutrition once the gastrointestinal tract recovers; however, an increasing body of literature suggests that a subgroup of patients may actually develop an increased incidence of adverse events, including death. To examine this further, we studied the effects of acute refeeding in a mouse model of TPN. Interestingly, refeeding led to some beneficial effects, including prevention in the decline in intestinal epithelial cell (IEC) proliferation. However, refeeding led to a significant increase in mucosal expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), as well as an upregulation in Toll-like receptor 4 (TLR-4). Refeeding also failed to prevent TPN-associated increases in IEC apoptosis, loss of epithelial barrier function, and failure of the leucine-rich repeat-containing G protein-coupled receptor 5-positive stem cell expression. Transitioning from TPN to enteral feedings led to a partial restoration of the small bowel microbial population. In conclusion, while acute refeeding led to some restoration of normal gastrointestinal physiology, enteral refeeding led to a significant increase in mucosal inflammatory markers and may suggest alternative strategies to enteral refeeding should be considered. PMID:26635320

  6. The cell cycle time in the flat (avillous) mucosa of the human small intestine.

    PubMed

    Wright, N; Watson, A; Morley, A; Appleton, D; Marks, J; Douglas, A

    1973-08-01

    A hyperproductive mucosal state in gluten-sensitive enteropathy has been proposed on the basis of an elevated mitotic index, but this parameter is dependent on the mitotic duration when used as an index of proliferative status. The mitotic duration was therefore measured in two control patients with normal villous mucosae and in two patients with the flat avillous mucosa of untreated gluten-sensitive enteropathy, using two different stathmokinetic techniques with vincristine. No significant difference in mitotic duration was found but values obtained for cell cycle time showed a halving in the flat mucosae. An increased rate of cell production in the small bowel mucosa of untreated gluten-sensitive enteropathy is thus confirmed.

  7. Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes.

    PubMed Central

    Castelló, A; Gumá, A; Sevilla, L; Furriols, M; Testar, X; Palacín, M; Zorzano, A

    1995-01-01

    1. GLUT5 gene expression was studied in small intestine under a variety of conditions characterized by altered intestinal absorption of monosaccharides. 2. RNA-blotting studies showed that GLUT5 mRNA was abundantly expressed in rat and rabbit intestine and kidney, but it was not detected in heart or brown adipose tissue. GLUT5 mRNA levels were higher in the upper segments of the small intestine (duodenum and proximal jejunum) than in the lower segments (distal jejunum and ileum). 3. The intestinal expression of GLUT5 mRNA in rat proximal jejunum showed circadian rhythm. A 12-fold increase in GLUT5 mRNA levels was detected at the end of the light cycle and at the beginning of the dark cycle when compared with the early light period. In keeping with this, GLUT5 protein content in brush-border membranes was also increased at the beginning of the dark cycle compared with that in the light period. 4. In streptozotocin-induced diabetes an 80% increase in GLUT5 mRNA levels in mucosa from the proximal jejunum was detected under conditions in which enhanced intestinal absorption of monosaccharides has been reported. 5. The intestinal expression of GLUT5 mRNA showed regulation during perinatal development. Levels of GLUT5 mRNA were low during fetal life, increased progressively during the postnatal period and reached levels comparable with the adult state after weaning. Weaning on to a high-fat diet partially prevented the induction of GLUT5 gene expression. 6. Our results indicate that GLUT5 gene expression is tightly regulated in small intestine. Regulation involves maximal expression in the upper part of the small intestine, circadian rhythm, developmental regulation dependent on the fat and carbohydrate content in the diet at weaning and enhanced expression in streptozotocin-induced diabetes. Furthermore, changes observed in intestinal GLUT5 expression correlate with reported alterations in intestinal absorption of fructose. This suggests a regulatory role for GLUT5 in

  8. Melatonin pretreatment improves gastric mucosal blood flow and maintains intestinal barrier function during hemorrhagic shock in dogs.

    PubMed

    Vollmer, Christian; Weber, Andreas P M; Wallenfang, Martin; Hoffmann, Till; Mettler-Altmann, Tabea; Truse, Richard; Bauer, Inge; Picker, Olaf; Mathes, Alexander M

    2017-05-01

    Melatonin improves hepatic perfusion after hemorrhagic shock and may reduce stress-induced gastric lesions. This study was designed to investigate whether pretreatment with melatonin may influence gastric mucosal microcirculatory perfusion (μflow), oxygenation (μHbO2 ), or intestinal barrier function during physiological and hemorrhagic conditions in dogs. In a randomized crossover study, five anesthetized foxhounds received melatonin 100 μg kg(-1) or vehicle (ethanol 5%) intravenously in the absence or presence of hemorrhagic shock (60 minutes, -20% blood volume). Systemic hemodynamic variables, gastric mucosal perfusion, and oxygenation were recorded continuously; intestinal barrier function was assessed intermittently via xylose absorption. During hemorrhagic shock, melatonin significantly attenuated the decrease in μflow, compared with vehicle (-19±9 vs -43±10 aU, P<.05), without influence on μHbO2 . A significant increase in xylose absorption was detected during hemorrhage in vehicle-treated dogs, compared with sham-operated animals (13±2 vs 8±1 relative amounts, P<.05); this was absent in melatonin-treated animals (6±1 relative amounts). Melatonin did not influence macrocirculation. Melatonin improves regional blood flow suggesting improved oxygen delivery in gastric mucosa during hemorrhagic shock. This could provide a mechanism for the observed protection of intestinal barrier function in dogs. © 2017 John Wiley & Sons Ltd.

  9. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    PubMed Central

    Williams, Benjamin B.; Tebbutt, Niall C.; Buchert, Michael; Putoczki, Tracy L.; Doggett, Karen; Bao, Shisan; Johnstone, Cameron N.; Masson, Frederick; Hollande, Frederic; Burgess, Antony W.; Scott, Andrew M.; Ernst, Matthias; Heath, Joan K.

    2015-01-01

    ABSTRACT The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms linking

  10. Mentha piperita (Linn) leaf extract provides protection against radiation induced alterations in intestinal mucosa of Swiss albino mice.

    PubMed

    Samarth, R M; Saini, M R; Maharwal, J; Dhaka, A; Kumar, Ashok

    2002-11-01

    Intestinal protection in mice against radiation injury by M. piperita (1 g/kg body weight/day) was studied from day 1 to day 20 after whole body gamma irradiation (8 Gy). Villus height, goblet cells/villus section, total cells, mitotic cells and dead cells/crypt section in the jejunum are good parameters for the assessment of radiation damage. There was significant decrease in the villus height, number of total cells and mitotic cells/crypt section, whereas goblet cells and dead cells showed significant increase after irradiation. Mentha pretreatment resulted in a significant increase in villus height, total cells and mitotic cells, whereas goblet cells and dead cells showed a significant decrease from respective irradiated controls at each autopsy day. The results suggest that Mentha pretreatment provides protection against radiation induced alterations in intestinal mucosa of Swiss albino mice.

  11. Food derived bioactive peptides and intestinal barrier function.

    PubMed

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-12-09

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  12. Food Derived Bioactive Peptides and Intestinal Barrier Function

    PubMed Central

    Martínez-Augustin, Olga; Rivero-Gutiérrez, Belén; Mascaraque, Cristina; Sánchez de Medina, Fermín

    2014-01-01

    A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action. PMID:25501338

  13. [Effect of gaseous hypoxic mixture GHM-10 on the intestinal death of Wistar rats and Na+,K+-ATPase activity of the plasma membrane of the small intestine mucosa after irradiation].

    PubMed

    Strelkov, R B; Dvoretskiĭ, A I; Kucherenko, N G

    1986-01-01

    It was shown that gas hypoxic mixture containing O2 (10%) and N2 (90%) significantly decreases "intestinal" death of Wistar rats on the 5th day following irradiation and normalizes Na+,K+-ATPase activity of the small intestine mucosa plasma membranes.

  14. [Effect of curcumin on intestinal mucosal mechanical barrier in rats with non-alcoholic fatty liver disease].

    PubMed

    Hou, H T; Qiu, Y M; Zhao, H W; Li, D H; Liu, Y T; Wang, Y Z; Su, S H

    2017-02-20

    Objective: To investigate the effect of curcumin on intestinal mucosal mechanical barrier in rats with non-alcoholic fatty liver disease. Methods: A total of 30 male Sprague-Dawley rats were equally divided into normal control group, model group, and curcumin intervention group. The rats in the model group and the curcumin intervention group were given high-fat feed for 16 weeks, and those in the curcumin intervention group were given curcumin 200 mg/kg/day by gavage once a day after 8 weeks of high-fat feeding. The rats were sacrificed at the end of week 16. A light microscope was used to observe pathological changes in the liver, an electron microscope was used to observe the tight junction of the intestinal mucosa, an automatic biochemical analyzer was used to measure the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), chromogenic substrate Limulus amebocyte lysate assay was used to measure plasma lipopolysaccharide (LPS) level, spectrophotometric method was used to measure the activity of serum diamine oxidase, ELISA was used to measure the serum level of tumor necrosis factor-α (TNFα), and immunohistochemistry was used to measure the expression of the tight junction protein occludin. One-way ANOVA test and SNK-q test were used for statistical analysis. Results: Under the light microscope, the control group had no hepatocyte steatosis, the model group had significant hepatocyte steatosis and inflammatory cell infiltration, and the curcumin intervention group had reduced hepatocyte steatosis and inflammatory cell infiltration. Under the electron microscope, the control group had a clear and complete structure of the tight junction of the intestinal mucosa and normal structures of mitochondria and endoplasmic reticulum; in the model group, the structure of the tight junction of the intestinal mucosa was destroyed, the intercellular space was widened, the desmosomes had a loose structure, there was edema in some mitochondria

  15. Inactivation of corticosteroids in intestinal mucosa by 11 beta-hydroxysteroid: NADP oxidoreductase (EC 1. 1. 1. 146)

    SciTech Connect

    Burton, A.F.; Anderson, F.H.

    1983-10-01

    Activity of the enzyme 11 beta-hydroxysteroid:NADP oxidoreductase (EC 1.1.1.146) in human intestinal mucosa was determined by incubating scraped mucosa with /sup 3/H-cortisone and /sup 14/C-cortisol; these steroids were then extracted, separated chromatographically, and the radioactivity assayed to determine simultaneously both reductase and dehydrogenase activities. This was the only significant metabolic alteration which the substrate underwent. Only two cases had slight (5 and 13%) reductase activity. In 35 patients, 16 male and 19 female, including seven cases of Crohn's disease, three ulcerative colitis, five diverticulitis, two undergoing surgery for repair of injuries and 18 for carcinoma of colon or rectum, cortisol was converted to cortisone in 15 min with a wide range of values distributed uniformly up to 85% dehydrogenation, with a mean of 42%. When tissue homogenates were fortified with coenzymes, excess NADPH lowered dehydrogenase activity 81%; excess NADP increased dehydrogenase activity 2-fold in three cases. It is possible that a value is characteristic of an individual but perhaps more likely enzyme activity varies with metabolic events involving changes in the coenzyme levels in mucosa, and a random sampling might be expected to yield such a distribution of values. In any event, where activity is high most of the cortisol is inactivated within minutes. It is suggested that synthetic corticoids which escape such metabolic alteration might, except during pregnancy, prove superior in the treatment of conditions such as inflammatory bowel disease.

  16. Proteome changes in the small intestinal mucosa of broilers (Gallus gallus) induced by high concentrations of atmospheric ammonia.

    PubMed

    Zhang, Jize; Li, Cong; Tang, Xiangfang; Lu, Qingping; Sa, Renna; Zhang, Hongfu

    2015-01-01

    Ammonia is a well-known toxicant both existing in atmospheric and aquatic system. So far, most studies of ammonia toxicity focused on mammals or aquatic animals. With the development of poultry industry, ammonia as a main source of contaminant in the air is causing more and more problems on broiler production, especially lower growth rate. The molecular mechanisms that underlie the negative effects of ammonia on the growth and intestine of broilers are yet unclear. We investigated the growth, gut morphology, and mucosal proteome of Arbor Acres broilers (Gallus gallus) exposed to high concentrations of atmospheric ammonia by performing a proteomics approach integrated with traditional methods. Exposure to ammonia interfered with the development of immune organ and gut villi. Meanwhile, it greatly reduced daily weight gain and feed intake, and enhanced feed conversion ratio. A total of 43 intestinal mucosal proteins were found to be differentially abundant. Up-regulated proteins are related to oxidative phosphorylation and apoptosis. Down-regulated proteins are related to cell structure and growth, transcriptional and translational regulation, immune response, oxidative stress and nutrient metabolism. These results indicated that exposure to ammonia triggered oxidative stress, and interfered with nutrient absorption and immune function in the small intestinal mucosa of broilers. These findings have important implications for understanding the toxic mechanisms of ammonia on intestine of broilers, which provides new information that can be used for intervention using nutritional strategies in the future.

  17. H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR

    PubMed Central

    Zou, Tongtong; Jaladanki, Suraj K.; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Wang, Jun-Yao; Xu, Yan; Gorospe, Myriam

    2016-01-01

    The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally. PMID:26884465

  18. Autoimmune diseases involving skin and intestinal mucosa are more frequent in adolescents and young adults suffering from atopic dermatitis.

    PubMed

    Cipriani, Francesca; Marzatico, Alice; Ricci, Giampaolo

    2017-09-19

    Evidence has emerged about the relationship between atopic dermatitis (AD) and autoimmune diseases, but the underlying mechanism of this association is complex and still unclear. Recent epidemiological data from the published work suggest a positive correlation. The aim of this review is to analyze the frequency of co-occurrence of AD and autoimmune diseases. Our systematic review included 22 articles from PubMed describing the reciprocal association between AD and autoimmune diseases. Although not all the studies achieved statistically significant results, patients suffering from autoimmune diseases involving skin and intestinal mucosa, such as vitiligo, alopecia areata, celiac disease and inflammatory bowel diseases, showed a higher risk to have AD as comorbidity. In contrast, patients with rheumatological autoimmune disorders did not show a significant correlation with AD. By analyzing the occurrence of autoimmune disorders in patients with AD, we confirmed a positive correlation between AD and autoimmune diseases involving skin and intestinal mucosa, but also with systemic lupus erythematosus, while the association between AD and type 1 diabetes, autoimmune thyroiditis and rheumatoid arthritis showed conflicting results. Further investigations are need to explain the mechanism underlying the observed comorbidity between AD and autoimmune diseases and to develop targeted prevention strategies and treatment. © 2017 Japanese Dermatological Association.

  19. Isolation of lactic acid bacteria bound to the porcine intestinal mucosa and an analysis of their moonlighting adhesins

    PubMed Central

    KINOSHITA, Hideki; OHUCHI, Satoko; ARAKAWA, Kensuke; WATANABE, Masamichi; KITAZAWA, Haruki; SAITO, Tadao

    2016-01-01

    The adhesion of lactic acid bacteria (LAB) to the intestinal mucosa is one of the criteria in selecting for probiotics. Eighteen LAB were isolated from porcine intestinal mucin (PIM): ten strains of Lactobacillus, six strains of Weissella, and two strains of Streptococcus. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for phosphate-buffered saline (PBS) extracts from the LAB, many bands were detected in half of the samples, while a few and/or no clear bands were detected in the other half. All six of the selected LAB showed adhesion to PIM. L. johnsonii MYU 214 and MYU 221 showed adhesion at more than 10%. W. viridescens MYU 208, L. reuteri MYU 213, L. mucosae MYU 225, and L. agilis MYU 227 showed medium levels of adhesion at 5.9–8.3%. In a comprehensive analysis for the adhesins in the PBS extracts using a receptor overlay analysis, many moonlighting proteins were detected and identified as candidates for adhesins: GroEL, enolase, and elongation factor Tu in MYU 208; peptidase C1, enolase, formyl-CoA transferase, phosphoglyceromutase, triosephosphate isomerase, and phosphofructokinase in MYU 221; and DnaK, enolase, and phosphoglycerate kinase in MYU 227. These proteins in the PBS extracts, which included such things as molecular chaperones and glycolytic enzymes, may play important roles as adhesins. PMID:27867805

  20. Alteration of the intestinal barrier and GLP2 secretion in Berberine-treated type 2 diabetic rats.

    PubMed

    Shan, C Y; Yang, J H; Kong, Y; Wang, X Y; Zheng, M Y; Xu, Y G; Wang, Y; Ren, H Z; Chang, B C; Chen, L M

    2013-09-01

    For centuries, Berberine has been used in the treatment of enteritis in China, and it is also known to have anti-hyperglycemic effects in type 2 diabetic patients. However, as Berberine is insoluble and rarely absorbed in gastrointestinal tract, the mechanism by which it works is unclear. We hypothesized that it may act locally by ameliorating intestinal barrier abnormalities and endotoxemia. A high-fat diet combined with low-dose streptozotocin was used to induce type 2 diabetes in male Sprague Dawley rats. Berberine (100 mg/kg) was administered by lavage to diabetic rats for 2 weeks and saline was given to controls. Hyperinsulinemia and insulin resistance improved in the Berberine group, although there was no significant decrease in blood glucose. Berberine treatment also led to a notable restoration of intestinal villi/mucosa structure and less infiltration of inflammatory cells, along with a decrease in plasma lipopolysaccharide (LPS) level. Tight junction protein zonula occludens 1 (ZO1) was also decreased in diabetic rats but was restored by Berberine treatment. Glutamine-induced glucagon-like peptide 2 (GLP2) secretion from ileal tissue decreased dramatically in the diabetic group but was restored by Berberine treatment. Fasting insulin, insulin resistance index, plasma LPS level, and ZO1 expression were significantly correlated with GLP2 level. In type 2 diabetic rats, Berberine treatment not only augments GLP2 secretion and improves diabetes but is also effective in repairing the damaged intestinal mucosa, restoring intestinal permeability, and improving endotoxemia. Whether these effects are mechanistically related will require further studies, but they certainly support the hypothesis that Berberine acts via modulation of intestinal function.

  1. The biogenic amine tyramine modulates the adherence of Escherichia coli O157:H7 to intestinal mucosa.

    PubMed

    Lyte, Mark

    2004-05-01

    The environmental factors that influence the ability of Escherichia coli O157:H7 to attach to the intestinal mucosa are incompletely understood. In the present study, the ability of one of the most common biogenic amines present in food, tyramine, to influence the ability of E. coli O157:H7 to adhere to murine cecal mucosa was examined. Ex vivo full-thickness sheets of murine cecum were mounted in Ussing chambers, which preserved the enteric nervous system innervation of the luminal epithelia and thereby allowed us to achieve a closer approximation of bacterial adherence than would be encountered in vivo. After exposure of the luminal aspect of the cecum to tyramine, E. coli O157:H7 was added for 90 min. The cecal tissue was then removed and washed, and adhered E. coli O157:H7 was enumerated using a selective medium. Tyramine significantly increased E. coli O157:H7 adherence to cecal mucosa when compared to that of controls. The 50% effective concentration of tyramine was 92.6 microM. Specific adrenergic antagonists were then employed to examine whether the effect of tyramine was mediated through alpha- or beta-adrenergic receptors on the intestinal tissue. Pretreatment of tissues with either the alpha-adrenergic receptor antagonist phentolamine or the beta-adrenergic receptor antagonist propranolol prevented the action of tyramine. Measurement of active transepithelial ion transport and ionic permeability in the cecal sheets before and after the addition of tyramine and E. coli O157:H7 did not show any impairment of tissue viability or transepithelial conductance. Further, tyramine did not influence either the growth of E. coli O157:H7 or the expression of the intimin attachment factor. The present findings suggest that biogenic amines, such as tyramine, present within the food matrix influence host susceptibility to E. coli O157:H7 infection.

  2. Differential expression of adhesion molecules and chemokines between nasal and small intestinal mucosae: implications for T- and sIgA+ B-lymphocyte recruitment.

    PubMed

    Bourges, Dorothée; Chevaleyre, Claire; Wang, CaiHong; Berri, Mustapha; Zhang, XiaoMei; Nicaise, Laetitia; Meurens, François; Salmon, Henri

    2007-12-01

    Nasal and small intestinal mucosae are the first sites of contact with infectious agents and the sites of T-cell-mediated and secreted immunoglobulin A (IgA)-mediated defences against pathogens. We investigated the factors controlling the infiltration of CD3(+) T lymphocytes and surface IgA(+) (sIgA(+)) B lymphocytes into swine epithelium and lamina propria (LP) within and between these two mucosal effector sites. Vascular addressins, vascular cell adhesion molecule 1 and mucosal addressin cell adhesion molecule-1 were reciprocally expressed in both mucosae. Strong expression of alpha(4)beta(1) relative to alpha(4)beta(7) was characteristic of CD3(+) T cells in nasal mucosa LP and epithelium and of sIgA(+) cells in nasal mucosa epithelium. The same profile was observed on corresponding blood cells. Conversely, higher levels of integrins beta(7) and alpha(4)beta(7) than alpha(4)beta(1) were characteristic of CD3(+) T cells and sIgA(+) cells in the small intestine. However, about 40% of the LP-activated sIgA(+) cells displayed sIgA(high), integrin alpha(4) and integrin alpha(4) expression. Whereas CCL19, CXCL12, CCL21 and CCL28 messenger RNAs were similarly expressed in both mucosae, CCL25 messenger RNA was only expressed in the small intestine. Thus, the nasal and small intestine mucosae represent separate compartments for infiltration by CD3(+) T cells and sIgA(+) effector cells, with the exception of a population of small intestine activated sIgA(+) cells, which may gain access to both mucosae.

  3. Differential expression of adhesion molecules and chemokines between nasal and small intestinal mucosae: implications for T- and sIgA+ B-lymphocyte recruitment

    PubMed Central

    Bourges, Dorothée; Chevaleyre, Claire; Wang, CaiHong; Berri, Mustapha; Zhang, XiaoMei; Nicaise, Laetitia; Meurens, François; Salmon, Henri

    2007-01-01

    Nasal and small intestinal mucosae are the first sites of contact with infectious agents and the sites of T-cell-mediated and secreted immunoglobulin A (IgA)-mediated defences against pathogens. We investigated the factors controlling the infiltration of CD3+ T lymphocytes and surface IgA+ (sIgA+) B lymphocytes into swine epithelium and lamina propria (LP) within and between these two mucosal effector sites. Vascular addressins, vascular cell adhesion molecule 1 and mucosal addressin cell adhesion molecule-1 were reciprocally expressed in both mucosae. Strong expression of α4β1 relative to α4β7 was characteristic of CD3+ T cells in nasal mucosa LP and epithelium and of sIgA+ cells in nasal mucosa epithelium. The same profile was observed on corresponding blood cells. Conversely, higher levels of integrins β7 and α4β7 than α4β1 were characteristic of CD3+ T cells and sIgA+ cells in the small intestine. However, about 40% of the LP-activated sIgA+ cells displayed sIgAhigh, integrin α4 and integrin α4 expression. Whereas CCL19, CXCL12, CCL21 and CCL28 messenger RNAs were similarly expressed in both mucosae, CCL25 messenger RNA was only expressed in the small intestine. Thus, the nasal and small intestine mucosae represent separate compartments for infiltration by CD3+ T cells and sIgA+ effector cells, with the exception of a population of small intestine activated sIgA+ cells, which may gain access to both mucosae. PMID:17635614

  4. Inhalation of methane preserves the epithelial barrier during ischemia and reperfusion in the rat small intestine.

    PubMed

    Mészáros, András T; Büki, Tamás; Fazekas, Borbála; Tuboly, Eszter; Horváth, Kitti; Poles, Marietta Z; Szűcs, Szilárd; Varga, Gabriella; Kaszaki, József; Boros, Mihály

    2017-06-01

    Methane is part of the gaseous environment of the intestinal lumen. The purpose of this study was to elucidate the bioactivity of exogenous methane on the intestinal barrier function in an antigen-independent model of acute inflammation. Anesthetized rats underwent sham operation or 45-min occlusion of the superior mesenteric artery. A normoxic methane (2.2%)-air mixture was inhaled for 15 min at the end of ischemia and at the beginning of a 60-min or 180-min reperfusion. The integrity of the epithelial barrier of the ileum was assessed by determining the lumen-to-blood clearance of fluorescent dextran, while microvascular permeability changes were detected by the Evans blue technique. Tissue levels of superoxide, nitrotyrosine, myeloperoxidase, and endothelin-1 were measured, the superficial mucosal damage was visualized and quantified, and the serosal microcirculation and mesenteric flow was recorded. Erythrocyte deformability and aggregation were tested in vitro. Reperfusion significantly increased epithelial permeability, worsened macro- and microcirculation, increased the production of proinflammatory mediators, and resulted in a rapid loss of the epithelium. Exogenous normoxic methane inhalation maintained the superficial mucosal structure, decreased epithelial permeability, and improved local microcirculation, with a decrease in reactive oxygen and nitrogen species generation. Both the deformability and aggregation of erythrocytes improved with incubation of methane. Normoxic methane decreases the signs of oxidative and nitrosative stress, improves tissue microcirculation, and thus appears to modulate the ischemia-reperfusion-induced epithelial permeability changes. These findings suggest that the administration of exogenous methane may be a useful strategy for maintaining the integrity of the mucosa sustaining an oxido-reductive attack. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of chito-oligosaccharide on growth performance, intestinal barrier function, intestinal morphology and cecal microflora in weaned pigs.

    PubMed

    Yang, C M; Ferket, P R; Hong, Q H; Zhou, J; Cao, G T; Zhou, L; Chen, A G

    2012-08-01

    A total of 180 weanling pigs (21 ± 3 d of age; 5.98 ± 0.04 kg) were used to investigate the effect of chito-oligosaccharide (COS) on growth performance, intestinal barrier function, intestinal morphology, and cecal microflora. Based on initial BW, gender and litter, the pigs were given 5 treatments during a 14-d feeding experiment, including a basal diet (control), 3 diets with COS supplementation (200, 400, or 600 mg/kg), and a diet with colistin sulfate (CSE) supplementation (20 mg/kg). Six randomly selected pigs from each treatment were used to collect serum, duodenal, jejunal, ileal, and cecal samples on d 7 and 14 postweaning. From d 1 to 7 postweaning, pigs fed COS or CSE had greater ADG and ADFI compared with the control pigs. From d 1 to 14, diets with either 400 or 600 mg/kg COS, or 20 mg/kg CSE increased (P < 0.05) ADG and G:F compared with the control diet. No significant differences were observed in ADG, ADFI, and G:F between the pigs fed COS and CSE. Pigs fed either 400 or 600 mg/kg COS, or 20 mg/kg CSE had less (P < 0.05) diamine oxidase (DAO) in the serum, but greater concentration of (P < 0.05) DAO in jejunal mucosa, than the control pigs on d 7 postweaning. Treatments did not affect villous height and crypt depth of the duodenum, jejunum, or ileum. Pigs fed COS at 400 mg/kg had greater (P < 0.05) concentration of Bifidobacteria and Lactobacilli in the cecum than pigs fed the control diet and CSE diet on d 7 postweaning. Supplementation of COS or CSE decreased (P < 0.05) the population of cecal Staphylococcus aureus compared with the control diet on d 7 postweaning. The number of cecal Bifidobacteria in pigs fed 600 mg/kg COS was greater (P < 0.05) than that of pigs fed the control diet or CSE diet on d 14 postweaning. No significant differences were observed in Escherichia coli counts in the cecum among treatments. The present results indicate that dietary supplementation of COS at 400 or 600 mg/kg promotes growth performance and improves gut

  6. Morphologic observation of mucosa-associated lymphoid tissue in the large intestine of Bactrian camels (Camelus bactrianus).

    PubMed

    ZhaXi, Yingpai; Wang, Wenhui; Zhang, Wangdong; Gao, Qiang; Guo, Minggang; Jia, Shuai

    2014-07-01

    The structure and distribution of the mucosa-associated lymphoid tissue (MALT) throughout the large intestine of 10 Bactrian camels were comparatively studied by anatomical and histological methods. The results showed that Peyer's patches (PPs) were mainly located on the mucosal surfaces of the entire ileocecal orifice, the beginning of the cecum and the first third of the colon. The shape of PPs gradually changed from "scrotiform" to "faviform" along the large intestine with the scrotiform PP as the major type in the ileocecal orifice. The distribution density also gradually decreased from the ileocecal orifice to the colon. The histological observations further revealed that the MALT in the form of PPs or isolated lymphoid follicles (ILF) and lamina propria lymphocytes was mainly present in the lamina propria and submucosa from the entire ileocecal orifice, where the muscularis mucosa is usually incomplete, to the colonic forepart. In addition, lymphoid tissue was much more abundant in the lamina propria and submucosa of the ileocecal orifice as compared to the cecum and colon. Statistically, the MALT of the ileocecal orifice contained a higher number of lymphoid follicles (37.7/10 mm(2) ) than that of the cecum, colon, or rectum (P < 0.05). The germinal centers of the lymphoid follicles were clearly visible. Together, our data suggest that the ileocecal orifice constitutes the main inductive site for the mucosal immunity in the large intestine of the Bactrian camel; and that scrotiform PPs are likely to the result of long-term adaptation of the Bactrian camel to the harsh living environment. © 2014 Wiley Periodicals, Inc.

  7. Immunoglobulin A anti-tissue transglutaminase antibody deposits in the small intestinal mucosa of children with no villous atrophy.

    PubMed

    Tosco, Antonella; Maglio, Maria; Paparo, Francesco; Rapacciuolo, Luciano; Sannino, Anna; Miele, Erasmo; Barone, Maria Vittoria; Auricchio, Renata; Troncone, Riccardo

    2008-09-01

    Anti-tissue transglutaminase (anti-TG2) immunoglobulin A (IgA) autoantibodies are detectable in the serum of most patients with untreated celiac disease (CD). Their deposits in the intestine of patients with CD with severe enteropathy are considered specific for this condition. The histological spectrum of CD includes cases with normal villous architecture. The aim of this study was to look for anti-TG2 IgA deposits in the intestine of children with normal villous architecture and to relate them with other markers of gluten sensitivity. A total of 57 children with normal duodenal villous architecture and markers of gluten sensitivity were considered. Of those, 39 showed positive serum anti-endomysium antibodies and/or high levels of anti-TG2 antibodies (group 1), and 18 were seronegative with only a greater density of gammadelta intraepithelial lymphocytes (group 2). Thirty-four children with no markers of gluten sensitivity and a normal mucosa represented the control group (group 3). The duodenal sections of all patients were investigated for deposited anti-TG2 IgA by double immunofluorescence. Human lymphocyte antigen molecular typing was performed. In group 1 and in group 2, 33 of 39 children (85%) and 12 of 18 children (66%) showed subepithelial anti-TG2 IgA intestinal deposits, respectively. Only in 3 of 34 (8.8%) children with no markers of gluten sensitivity were anti-TG2 IgA deposits noted. A subgroup of children with no serum CD-associated autoantibodies, but greater density of gammadelta intraepithelial lymphocytes, shows a clear anti-TG2 IgA deposition in the duodenal mucosa. These children must be investigated further for possible gluten sensitivity.

  8. Rapamycin, a specific inhibitor of the target of rapamycin complex 1, disrupts intestinal barrier integrity in broiler chicks.

    PubMed

    Liu, S Q; Zhao, J P; Fan, X X; Liu, G H; Jiao, H C; Wang, X J; Sun, S H; Lin, H

    2016-04-01

    To uncover the molecular mechanisms underlying the intestinal barrier integrity, this study determined whether the rapamycin (RAPA)-sensitive target of rapamycin complex 1 (TORC1) pathway was involved in this process. Three groups of 4-day-old male chicks were randomly subjected to one of the following treatments for 6 days: high-dose RAPA [a specific inhibitor of TORC1; an intraperitoneal injection of 1.0 mg/kg body weight (BW), once daily at 09:00 hours], low-dose RAPA (0.4 mg/kg BW) and RAPA vehicle (control). Results showed that the RAPA treatment increased mortality, while decreasing villus height (p < 0.01), claudin 1 expression, content of immunoglobulin A (IgA), extent of TORC1 phosphorylation (p < 0.05), ratio of villus height to crypt depth (p < 0.01), and population of IgA-positive B cells in intestinal mucosa, particularly for the jejunum. Some aspects of these responses were dose dependent and appeared to result from weight loss. Together, RAPA exerts the expected inhibition of small intestinal development and IgA production in birds, suggesting the important role of TORC1 in gut barrier integrity.

  9. L-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets.

    PubMed

    Lin, Meng; Zhang, Bolin; Yu, Changning; Li, Jiaolong; Zhang, Lin; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2014-01-01

    L-Glutamate is a major oxidative fuel for the small intestine. However, few studies have demonstrated the effect of L-glutamate on the intestinal architecture and signaling of amino acids in the small intestine. The aim of this study was to investigate the effects of dietary L-glutamate supplementation on the intestinal architecture and expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. A total of 120 weaning piglets aged 35 ± 1 days with an average body weight at 8.91 ± 0.45 kg were randomly allocated to two treatments with six replicates of ten piglets each, fed with diets containing 1.21% alanine, or 2% L-glutamate. L-Glutamate supplementation increased the activity of glutamate oxaloacetate transaminase (GOT) in the jejunal mucosa. Also, the mRNA expression level of jejunal mucosa glutamine synthetase (GS) was increased by L-glutamate supplementation. The height of villi in duodenal and jejunal segments, and the relative mRNA expression of occludin and zonula occludens protein-1 (ZO-1) in jejunal mucosa were increased by dietary L-glutamate supplementation. L-Glutamate supplementation increased plasma concentrations of glutamate, arginine, histidine, isoleucine, leucine, methionine, phenylalanine and threonine. L-Glutamate supplementation also increased the relative mRNA expression of the jejunal mucosa Ca(2+)-sensing receptor (CaR), metabotropic glutamate receptor 1 (mGluR1) and metabotropic glutamate receptor 4 (mGluR4), and neutral amino acid transporter B(0)-like (SLC1A5) in the jejunal mucosa. These findings suggest that dietary addition of 2% L-glutamate improves the intestinal integrity and influences the expression of amino acid receptors and transporters in the jejunum of weaning, which is beneficial for the improvement of jejunal nutrients for digestion and absorption.

  10. No holes barred: Invasion of the intestinal mucosa by Mycobacterium avium subspecies paratuberculosis

    USDA-ARS?s Scientific Manuscript database

    The infection biology of Mycobacterium avium subspecies paratuberculosis (MAP) has recently crystalized with added details surrounding intestinal invasion. The involvement of pathogen-derived effector proteins such as the major membrane protein, oxidoreductase and fibronectin attachment proteins hav...

  11. Effects of Physical Exercise on the Intestinal Mucosa of Rats Submitted to a Hypothalamic Obesity Condition.

    PubMed

    Gomes, J R; Freitas, J R; Grassiolli, S

    2016-10-01

    The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients.

    PubMed

    Epple, H-J; Schneider, T; Troeger, H; Kunkel, D; Allers, K; Moos, V; Amasheh, M; Loddenkemper, C; Fromm, M; Zeitz, M; Schulzke, J-D

    2009-02-01

    Impairment of the gastrointestinal mucosal barrier contributes to progression of HIV infection. The purpose of this study was to investigate the effect of highly active antiretroviral therapy (HAART) on the HIV-induced intestinal barrier defect and to identify underlying mechanisms. Epithelial barrier function was characterised by impedance spectroscopy and [(3)H]mannitol fluxes in duodenal biopsies from 11 untreated and 8 suppressively treated HIV-infected patients, and 9 HIV-seronegative controls. The villus/crypt ratio was determined microscopically. Epithelial apoptoses were analysed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and caspase-3 staining. Tight junction protein expression was quantified by densitometric analysis of immunoblots. Mucosal cytokine production was determined by cytometric bead array. Only in untreated but not in treated HIV-infected patients, epithelial resistance was reduced (13 (1) vs 23 (2) ohm cm(2), p<0.01) and mannitol permeability was increased compared with HIV-negative controls (19 (3) vs 9 (1) nm/s, p<0.05). As structural correlates, epithelial apoptoses and expression of the pore-forming claudin-2 were increased while expression of the sealing claudin-1 was reduced in untreated compared with treated patients and HIV-negative controls. Furthermore, villous atrophy was evident and mucosal production of interleukin 2 (IL2), IL4 and tumour necrosis factor alpha (TNFalpha) was increased in untreated but not in treated HIV-infected patients. Incubation with IL2, IL4, TNFalpha and IL13 reduced the transepithelial resistance of rat jejunal mucosa. Suppressive HAART abrogates HIV-induced intestinal barrier defect and villous atrophy. The HIV-induced barrier defect is due to altered tight junction protein composition and elevated epithelial apoptoses. Mucosal cytokines are mediators of the HIV-induced mucosal barrier defect and villous atrophy.

  13. Experimental adenomas and carcinomas of the large intestine behave as distinct entities: most carcinomas arise de novo in flat mucosa.

    PubMed

    Maskens, A P; Dujardin-Loits, R M

    1981-01-01

    Detailed histologic analyses were performed on tumors of the large intestine obtained in 152 dimethylhydrazine (DMH)-treated rats. Of a total 539 glandular neoplasms, 45 were benign; 494 (92%) were locally invasive; of which 222 (41%) were invading the muscularis propria. One-hundred-forty-one tumors were smaller than or equal to 3mm in diameter. Among those, 127 (90%) were invasive. In addition to macroscopic nodules, several appeared after longer latency periods than did serial sections of flat mucosa. The benign polyps usually appeared after longer latency periods than did carcinomas. A review of the literature indicates that in the majority of rat experiments most or all DMH-induced tumors were frequently reported. All these data constitute strong evidence that most experimental adenocarcinomas do arise de novo in flat mucosa, i.e., without a prior adenoma stage. However, most DMH-induced tumors in mice were reported to be adenomas, either alone or coexisting with carcinomas. It is suggested that "de novo arising carcinomas" and adenomatous polyps, which are both inducible by the same carcinogens, and which can coexist in some experimental systems, nonetheless constitute independent and distinct pathologic entities; they can be separated by genetic susceptibility.

  14. Mechanisms of Intestinal Epithelial Barrier Dysfunction by Adherent-Invasive Escherichia coli.

    PubMed

    Shawki, Ali; McCole, Declan F

    2017-01-01

    Pathobiont expansion, such as that of adherent-invasive Escherichia coli (AIEC), is an emerging factor associated with inflammatory bowel disease. The intestinal epithelial barrier is the first line of defense against these pathogens. Inflammation plays a critical role in altering the epithelial barrier and is a major factor involved in promoting the expansion and pathogenesis of AIEC. AIEC in turn can exacerbate intestinal epithelial barrier dysfunction by targeting multiple elements of the barrier. One critical element of the epithelial barrier is the tight junction. Increasing evidence suggests that AIEC may selectively target protein components of tight junctions, leading to increased barrier permeability. This may represent one mechanism by which AIEC could contribute to the development of inflammatory bowel disease. This review article discusses potential mechanisms by which AIEC can disrupt epithelial tight junction function and intestinal barrier function.

  15. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa.

    PubMed

    Tsukahara, Takamitsu; Iwasaki, Yoshie; Nakayama, Keizo; Ushida, Kazunari

    2003-12-01

    Fructooligosaccharides (FOS) reach the large intestine and are fermented into short-chain fatty acids (SCFA), lactate, and carbon dioxide. As the major energy source for the epithelial cells of the large intestine, n-butyrate stimulates the proliferation of cells as well as mineral and water absorption from the lumen. We examined the effect of dietary FOS supplementation on luminal SCFA production and its influence on the morphometrical variables of mucosa of the large intestine in commercially available pigs. Six weaning piglets were used. After 7 d of adaptation, three pigs were given a test diet containing FOS (10%) ad libitum for 10 d. The other three remained on the basal diet and were used as controls. At the end of the experiment, their large intestines were removed, and the cecum, gyri centripetales, gyri centrifugales, and rectum were separated. The contents of each portion were collected and measured for SCFA concentration, pH, and moisture. A micrometer was used to measure the crypt depth. The numbers of epithelial and mitotic cells in the crypt columns were also counted. The concentration of SCFA was significantly higher in piglets fed FOS than in the controls. The concentration of n-butyrate was markedly stimulated by FOS. The number of epithelial. mitotic, and mucin-containing cells was higher in piglets fed FOS than in the controls. Accordingly, the crypt depth was larger in the FOS-fed piglets. The luminal n-butyrate concentration showed a significantly positive correlation with the crypt depth and the number of epithelial, mitotic, and mucin-containing cells.

  16. Effects of galacto-oligosaccharide ingestion on the mucosa-associated mucins and sucrase activity in the small intestine of mice.

    PubMed

    Leforestier, Géraldine; Blais, Anne; Blachier, François; Marsset-Baglieri, Agnès; Davila-Gay, Anne-Marie; Perrin, Emmanuel; Tomé, Daniel

    2009-12-01

    Galacto-oligosaccharides (GOS) are non-digestible oligosaccharides with short galactosyl chain units produced by lactose fermentation which are considered as prebiotics. Only few studies have investigated the effects of GOS medium-term ingestion on the small intestinal epithelium characteristics. In this study, we evaluated the consequences of GOS ingestion on small intestinal mucosal morphology, on brush-border membrane enzyme activities and on mucin content in BALB/c mice. Mice received the experimental diets for 4 weeks and then the small intestine was collected to measure sucrase, lactase and alkaline phosphatase activities, to study the villus heights in the jejunum mucosa and to determine mucosal mucin content as well as MUC-2 and MUC-4 mRNAs expression by qRT-PCR. Our results showed that GOS has no detectable effect on the intestine villus height but increased the total protein content by twofold. Sucrase activity was significantly increased in the intestinal mucosa recovered from animals fed the GOS diet without any detectable modification of lactase and phosphatase activities. Interestingly, GOS was also able to increase sucrase activity in cultured Caco-2 cells raising the view that they likely act directly on these cells. Furthermore, GOS was found to markedly increase O-linked glycoproteins associated with the intestinal mucosa without modifying MUC-2, MUC-4 mRNAs expression. Lastly, TNF-alpha mRNA expression was also not modified after GOS ingestion. These results suggest that, in BALB/c mice, 4-week GOS ingestion is able to increase the small intestinal mucosa-associated mucin content and enterocyte-associated sucrase activity without modifying villus height.

  17. Effect of hypokinesia on invertase activity of the mucosa of the small intestine

    NASA Technical Reports Server (NTRS)

    Abdusattarov, A.

    1980-01-01

    The effect of prolonged hypokinesia on the enzyme activity of the middle portion of the small intestine was investigated. Eighty-four mongrel white male rats weighing 170-180 g were divided into two equal groups. The experimental group were maintained in single cages under 30 days of hypokinetic conditions and the control animals were maintained under ordinary laboratory conditions. It is concluded that rates of invertase formation and its inclusion in the composition if the cellular membrane, if judged by the enzyme activity studied in sections of the small intestine, are subject to phase changes in the course of prolonged hypokinesia.

  18. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.

    PubMed

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-03-15

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.

  19. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    PubMed Central

    Zuhl, Micah N.; Moseley, Pope L.

    2015-01-01

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485

  20. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life.

    PubMed

    Takiishi, Tatiana; Fenero, Camila Ideli Morales; Câmara, Niels Olsen Saraiva

    2017-09-06

    The gastrointestinal (GI) tract is considered the largest immunological organ in the body having a central role in regulating immune homeostasis. Contrary to earlier belief, the intestinal epithelial barrier is not a static physical barrier but rather strongly interacts with the gut microbiome and cells of the immune system. This intense communication between epithelial cells, immune cells and microbiome will shape specific immune responses to antigens, balancing tolerance and effector immune functions. Recent studies indicate that composition of the gut microbiome affects immune system development and modulates immune mediators, which in turn affect the intestinal barrier. Moreover, dysbiosis may favor intestinal barrier disruption and could be related to increased susceptibility to certain diseases. This review will be focused on the development of the intestinal barrier and its function in host immune defense and how gut microbiome composition throughout life can affect this role.

  1. Toll-Like Receptor Signalling and the Control of Intestinal Barrier Function.

    PubMed

    Johnston, Daniel G W; Corr, Sinéad C

    2016-01-01

    Epithelial barrier function and innate immunity are fundamental to the pathogenesis of inflammatory and infectious disease. Along with plasma membranes, epithelial cells are the primary cellular determinant of epithelial barrier function. The mechanism by which polarized epithelia form a permeability barrier is of fundamental importance to the prevention of many infectious and inflammatory diseases. Moreover, epithelial cells express Toll-like receptors (TLRs) which upon recognition of conserved microbial factors such as lipopolysaccharide (LPS) induce epithelial responses including epithelial cell proliferation, secretion of secretory IgA into the lumen and production mucins and antimicrobial peptides, thereby promoting intestinal barrier function. Understanding gut barrier integrity and regulation of permeability is crucial to increase our understanding of the pathogenesis of intestinal disease. A variety of tests have been developed to assess this barrier, including assessing intestinal epithelial cell proliferation or death, intestinal tight junction status and the consequence of intestinal barrier integrity loss such as increased intestinal permeability and susceptibility to bacterial infection. Using a mouse model, this chapter describes some of the methods to assess the functional integrity of this epithelial barrier and the part played by a TLR signalling pathway.

  2. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome.

    PubMed

    Fritscher-Ravens, Annette; Schuppan, Detlef; Ellrichmann, Mark; Schoch, Stefan; Röcken, Christoph; Brasch, Jochen; Bethge, Johannes; Böttner, Martina; Klose, Julius; Milla, Peter J

    2014-11-01

    We investigated suspected food intolerances in patients with irritable bowel syndrome (IBS) using confocal laser endomicroscopy (CLE) for real-time visualization of structural/functional changes in the intestinal mucosa after food challenge. Patients with functional changes after food challenge (CLE+) were placed on personalized exclusion diets and followed up for long-term symptom relief. Thirty-six IBS patients with suspected food intolerance and 10 patients with Barrett's esophagus (controls) without IBS symptoms were examined by CLE at University Hospital Schleswig-Holstein (Kiel, Germany). Diluted food antigens were administered directly to the duodenal mucosa through the working channel of the endoscope. Epithelial breaks, intervillous spaces, and the number of intraepithelial lymphocytes (IEL) were measured before and after the food challenge. CLE+ patients were placed on exclusion diets, given symptom score questionnaires, and followed up for 1 year; controls resumed their previous diet. CLE showed a real-time response to food antigens in 22 of 36 patients; no responses were observed in 14 of 36 patients (CLE-) or any of the controls. Baseline IELs were significantly higher in CLE+ than CLE- subjects (P = .004); numbers increased significantly after food challenge (P = .0008). Within 5 minutes of exposure of CLE+ patients to food antigens, IELs increased, epithelial leaks/gaps formed, and intervillous spaces widened. Epithelial leaks and intervillous spaces also increased significantly in CLE+ vs baseline (both P < .001). The concordance of IELs measured by CLE and conventional histology was 70.6%; they did not correlate (P = .89; r(2) = 0.027). Symptom scores improved more than 50% in CLE+ patients after a 4-week exclusion diet and increased to 74% at 12 months; symptoms continued in CLE- patients. Based on CLE analysis of IBS patients with a suspected food intolerance, exposure to candidate food antigens caused immediate breaks, increased intervillous

  3. A study of the small intestinal mucosa using the scanning electron microscope

    PubMed Central

    Marsh, M. N.; Swift, J. A.

    1969-01-01

    In this paper we describe the features of small intestinal structure in normal control subjects using the scanning electron microscope. ImagesFIGS. 2a and 2bFIG. 3FIG. 4FIG. 5FIG. 6FIGS. 7a and 7bFIG. 8FIG. 9FIG. 10FIG. 11FIG. 12FIG. 13FIG. 14FIG. 15 PMID:5358588

  4. Elevated IL-23R Expression and Foxp3+Rorgt+ Cells in Intestinal Mucosa During Acute and Chronic Colitis.

    PubMed

    Yang, Jiayin; Xu, Lili

    2016-08-08

    BACKGROUND IL-23/IL-23R signaling plays a pivotal role during the course of inflammatory bowel diseases (IBD). However, the underlying mechanisms are poorly characterized. Foxp3+ regulatory T cells are critical in the maintenance of gut immune homeostasis and therefore are important in preventing the development of IBD. This study was performed to clarify the association between IL-23/IL-23R signaling and Foxp3+ regulatory T cells in colitis. MATERIAL AND METHODS Acute and chronic mouse colitis models were established by administering mice DSS in drinking water. IL-23R, IL-23, IL-I7, and IFN-γ expression level, as well as regulatory T cell, Th17-, and Th1-related transcription factors Foxp3, RORgt, and T-bet were assayed by real-time PCR. The frequency of Foxp3+ RORγt+ cells in a Foxp3+ cell population in colon mucosa during acute and chronic colitis was evaluated through flow cytometry. The signaling pathway mediated by IL-23R in the colon mucosa from acute colitis mice and chronic colitis mice was monitored by Western blot analysis. RESULTS We detected elevated IL-23R, IL-23, and IFN-γ expression in colon mucosa during acute and chronic colitis and found increased IL-17 in acute colitis mice. Transcription factors Foxp3 and T-bet were elevated in colon mucosa during acute and chronic colitis. Phosphorylation of Stat3 was greatly enhanced, indicating the activation of IL-23R function in colitis mice. The percentage of Foxp3+ T cells in acute and chronic colitis mice was comparable to control mice, but there was a 2-fold increase of Foxp3+ RORγt+ cells among the Foxp3+ cell population in acute and chronic colitis mice compared to control mice. CONCLUSIONS These findings indicate that the induction of Foxp3+ RORgt+ T cells could be enhanced during inflammation in the intestine where IL-23R expression is greatly induced. Our study highlights the importance of IL-23R expression level and the instability of Foxp3+ regulatory T cells in the development of

  5. Effect of level of alimentation on visceral organ mass and the morphology and Na+, K+ adenosinetriphosphatase activity of intestinal mucosa in lambs.

    PubMed

    Rompala, R E; Hoagland, T A

    1987-10-01

    Changes in ovine visceral organ mass and small intestinal mucosa morphology and metabolism due to short-term and prolonged modifications in level of alimentation were studied. Thirty-six lambs were fed for 21 d at either 100 or 50% ad libitum levels of intake. For the next 5 d, lambs either remained on the same intake levels or were switched from 100 or 50% or from 50 to 100% ad libitum intake levels and were subsequently slaughtered. Levels of alimentation the last 5 d before slaughter had a significant effect on weights of the large intestine, small intestine, stomach complex and liver, while only the weight of the liver was affected by 21-d adaptation period. Weights of the heart, lungs, carcass and visceral fat were not affected by level of alimentation. Villus height and mucosal mass at a constant intestinal tissue weight were modified by level of alimentation 5 d before slaughter but static to the previous 21-d nutritional plane. Activity of Na+, K+ ATPase of jejunal mucosa was not influenced by level of alimentation 5 d before slaughter, but was influenced by 21-d adapted level of alimentation. Results from this study are interpreted to indicate that weights of the liver and alimentary tract and small intestinal mucosa development are highly sensitive to changes in level of alimentation.

  6. Enzymatic conversion of all-trans-. beta. -carotene to retinal by a cytosolic enzyme from rabbit and rat intestinal mucosa

    SciTech Connect

    Lakshman, M.R.; Mychkovsky, I.; Attlesey, M. )

    1989-12-01

    Enzymatic conversion of all-trans-{beta}-carotene to retinal by a partially purified enzyme from rabbit and rat intestinal mucosa was demonstrated. The enzymatic product was characterized based on the following evidence: (i) the product gave rise to its O-ethyloxime by treatment with O-ethylhydroxylamine with an absorption maximum at 363 nm in ethanol characteristics of authentic retinal O-ethyloxime. High-pressure liquid chromatography (HPLC) of this derivative yielded a sharp peak with a retention time of 7.99 min corresponding to the authentic compound; (ii) the mass spectrum of the O-ethyloxime of the enzymatic product was identical to that of authentic retinal O-ethyloxime; (iii) the specific activity of the enzymatically formed ({sup 14}C)retinal O-ethyloxime remained constant even after repeated crystallization; (iv) the enzymatic product exhibited an absorption maximum at 370 nm in light petroleum characteristic of authentic retinal. This retinol was enzymatically esterified to retinyl palmitate by rat pancreatic esterase with a retention time of 10 min on HPLC corresponding to authentic retinyl palmitate. Thus, the enzymatic product of {beta}-carotene cleavage by the partially purified intestinal enzyme was unequivocally confirmed to be retinal.

  7. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions.

    PubMed

    Van Landeghem, Laurianne; Mahé, Maxime M; Teusan, Raluca; Léger, Jean; Guisle, Isabelle; Houlgatte, Rémi; Neunlist, Michel

    2009-11-02

    Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions.

  8. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens

    PubMed Central

    Awad, Wageha A.; Hess, Claudia; Hess, Michael

    2017-01-01

    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens

  9. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens.

    PubMed

    Awad, Wageha A; Hess, Claudia; Hess, Michael

    2017-02-10

    Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird's health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction's molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as "leaky gut". A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can

  10. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats.

    PubMed

    Gong, Jing; Hu, Meilin; Huang, Zhaoyi; Fang, Ke; Wang, Dingkun; Chen, Qingjie; Li, Jingbin; Yang, Desen; Zou, Xin; Xu, Lijun; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2017-01-01

    Background: Intestinal mucosal barrier dysfunction plays an important role in the development of diabetes mellitus (DM). Berberine (BBR), a kind of isoquinoline alkaloid, is widely known to be effective for both DM and diarrhea. Here, we explored whether the anti-diabetic effect of BBR was related to the intestine mucosal barrier. Methods and Results: The rat model of T2DM was established by high glucose and fat diet feeding and intravenous injection of streptozocin. Then, those diabetic rats were treated with BBR at different concentrations for 9 weeks. The results showed, in addition to hyperglycemia and hyperlipidemia, diabetic rats were also characterized by proinflammatory intestinal changes, altered gut-derived hormones, and 2.77-fold increase in intestinal permeability. However, the treatment with BBR significantly reversed the above changes in diabetic rats, presenting as the improvement of the high glucose and triglyceride levels, the relief of the inflammatory changes of intestinal immune system, and the attenuation of the intestinal barrier damage. BBR treatment at a high concentration also decreased the intestinal permeability by 27.5% in diabetic rats. Furthermore, BBR regulated the expressions of the molecules involved in TLR4/MyD88/NF-κB signaling pathways in intestinal tissue of diabetic rats. Conclusion: The hypoglycemic effects of BBR might be related to the improvement in gut-derived hormones and the attenuation of intestinal mucosal mechanic and immune barrier damages.

  11. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats

    PubMed Central

    Gong, Jing; Hu, Meilin; Huang, Zhaoyi; Fang, Ke; Wang, Dingkun; Chen, Qingjie; Li, Jingbin; Yang, Desen; Zou, Xin; Xu, Lijun; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2017-01-01

    Background: Intestinal mucosal barrier dysfunction plays an important role in the development of diabetes mellitus (DM). Berberine (BBR), a kind of isoquinoline alkaloid, is widely known to be effective for both DM and diarrhea. Here, we explored whether the anti-diabetic effect of BBR was related to the intestine mucosal barrier. Methods and Results: The rat model of T2DM was established by high glucose and fat diet feeding and intravenous injection of streptozocin. Then, those diabetic rats were treated with BBR at different concentrations for 9 weeks. The results showed, in addition to hyperglycemia and hyperlipidemia, diabetic rats were also characterized by proinflammatory intestinal changes, altered gut-derived hormones, and 2.77-fold increase in intestinal permeability. However, the treatment with BBR significantly reversed the above changes in diabetic rats, presenting as the improvement of the high glucose and triglyceride levels, the relief of the inflammatory changes of intestinal immune system, and the attenuation of the intestinal barrier damage. BBR treatment at a high concentration also decreased the intestinal permeability by 27.5% in diabetic rats. Furthermore, BBR regulated the expressions of the molecules involved in TLR4/MyD88/NF-κB signaling pathways in intestinal tissue of diabetic rats. Conclusion: The hypoglycemic effects of BBR might be related to the improvement in gut-derived hormones and the attenuation of intestinal mucosal mechanic and immune barrier damages. PMID:28217099

  12. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation

    PubMed Central

    Demehri, Farokh R.; Barrett, Meredith; Ralls, Matthew W.; Miyasaka, Eiichi A.; Feng, Yongjia; Teitelbaum, Daniel H.

    2013-01-01

    Total parenteral nutrition (TPN), a commonly used treatment for patients who cannot receive enteral nutrition, is associated with significant septic complications due in part to a loss of epithelial barrier function (EBF). While the underlying mechanisms of TPN-related epithelial changes are poorly understood, a mouse model of TPN-dependence has helped identify several contributing factors. Enteral deprivation leads to a shift in intestinal microbiota to predominantly Gram-negative Proteobacteria. This is associated with an increase in expression of proinflammatory cytokines within the mucosa, including interferon-γ and tumor necrosis factor-α. A concomitant loss of epithelial growth factors leads to a decrease in epithelial cell proliferation and increased apoptosis. The resulting loss of epithelial tight junction proteins contributes to EBF dysfunction. These mechanisms identify potential strategies of protecting against TPN-related complications, such as modification of luminal bacteria, blockade of proinflammatory cytokines, or growth factor replacement. PMID:24392360

  13. Bacillus cereus var. toyoi promotes growth, affects the histological organization and microbiota of the intestinal mucosa in rainbow trout fingerlings.

    PubMed

    Gisbert, E; Castillo, M; Skalli, A; Andree, K B; Badiola, I

    2013-06-01

    In this preliminary study, we evaluated the effects of a gram-positive soil bacteria Bacillus cereus var. toyoi on the growth performance, digestive enzyme activities, intestinal morphology, and microbiota in rainbow trout Oncorhynchus mykiss fingerlings. Trout were maintained in a recirculation system and fed 2 diets: 1) a commercial trout feed deprived of the probiotic and 2) the same diet but with the spores of the probiotic bacteria dissolved in fish oil during the manufacturing of the feed (final concentration = 2 × 10(4) cfu/g). Each diet was tested in three 400-L cylindroconical tanks (125 fish per tank; initial density = 1.3 kg/m(3); 13.2°C) for a period of 93 d. The probiotic-supplemented diet promoted growth, and the final mean BW and standard length in fish fed the probiotic were 3.4% and 2.1%, respectively, which was greater than the control group (P < 0.05). Fish fed the probiotic showed a more homogeneous distribution in the final BW, with a greater frequency of individuals around the modal of the normal distribution of the population. This result is of practical importance because homogenous production lots can improve rearing practices, reducing hierarchical dominance situations arising from individuals of larger sizes. In addition, the probiotic-supplemented diet increased the level of leukocyte infiltration in the lamina propria of the intestinal mucosa, the number of goblet cells (P < 0.010), and villi height (P < 0.001) but did not affect villi width. The administration of the probiotic changed the intestinal microbiota as indicated by 16S rDNA PCR-restriction fragment length polymorphism. In this sense, fish fed the probiotic formed a well-defined cluster composed of 1 super clade, whereas compared control fish had a greater degree of diversity in their gut microbiota. These changes in gut microbiota did not affect the specific activity of selected pancreatic and intestinal digestive enzymes. These results indicate that the inclusion of the

  14. Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens.

    PubMed

    Ospina-Rojas, I C; Murakami, A E; Oliveira, C A L; Guerra, A F Q G

    2013-10-01

    A study was conducted to evaluate Gly requirements in low-CP diets with different levels of digestible (dig) Thr, and their effects on performance, intestinal mucosal development, and nutrient utilization of broiler chickens from 21 to 35 d age. A total of 240 twenty-one-day-old Cobb-Vantress male broiler chickens were distributed in a completely randomized 4 × 2 factorial arrangement for a total of 8 treatments with 5 replicates of 6 birds each. The treatments consisted of 4 levels of Gly+Ser (1.47, 1.57, 1.67, or 1.77%) and 2 levels of dig Thr (0.70 or 0.77%, corresponding to 100 or 110% of Thr requirements, respectively). Common diets were fed to broilers until 20 d of age. At d 35, an interaction (P ≤ 0.01) was observed between the Gly+Ser and dig Thr levels for G:F. Glycine supplementation resulted in a linear increase (P < 0.05) in BW gain, G:F, intestinal mucin secretion, apparent digestibility of fat, and AME values of the experimental diets. Threonine levels greater than the levels required (0.77%) improved (P < 0.05) G:F and increased (P < 0.05) intestinal mucin secretion. However, intestinal morphometry and the number of goblet cells in the duodenum, jejunum, and ileum were not affected by the treatments. The dietary Gly+Ser level necessary to optimize G:F in low-CP diets containing 0.77% Thr for broiler chickens during growth was estimated to be 1.54%; however, this requirement may be greater than 1.77% in diets with 0.70% Thr. Supplemental Gly may be essential to support maximum performance for broiler chickens from 21 to 35 d of age when they are fed diets based exclusively on vegetable ingredients and with low protein levels. Glycine can directly or indirectly influence the proper function of the intestinal mucosa and improve dietary energy utilization.

  15. Role of Non-muscle Myosin Light Chain Kinase in Neutrophil-mediated Intestinal Barrier Dysfunction During Thermal Injury

    PubMed Central

    Guo, Mingzhang; Yuan, Sarah Y.; Sun, Chongxiu; Frederich, Bert J.; Shen, Qiang; McLean, Danielle L.; Wu, Mack H.

    2013-01-01

    Neutrophils and non-muscle myosin light chain kinase (nmMLCK) have been implicated in intestinal microvascular leakage and mucosal hyperpermeability in inflammation and trauma. The aim of this study was to characterize the role of nmMLCK in neutrophil-dependent gut barrier dysfunction following thermal injury, a common form of trauma that typically induces inflammation in multiple organs. Histopathological examination of the small intestine in mice after a full-thickness burn revealed morphological evidence of mucosa inflammation characterized by neutrophil infiltration into the lamina propria, epithelial contraction, and narrow villi with blunt brush borders and loss of goblet cells. Compared to their wild-type counterparts, nmMLCK-/- mice displayed diminished morphological abnormalities. Likewise, intravital microscopic studies showed significant leukocyte adhesion in intestinal microvessels post-burn, a response that was blunted in the absence of nmMLCK. Functionally, thermal injury significantly increased the gut lumen-to-blood transport of FITC-dextran (4 kD), and this hyperpermeability was attenuated by either neutrophil depletion or nmMLCK deficiency. Consistent with the in vivo observations, in vitro assays with Caco-2 epithelial cell monolayers revealed a decrease in transcellular electric resistance coupled with myosin light chain phosphorylation, actomyosin ring condensation, and claudin-1 internalization upon stimulation with fMLP-activated neutrophils. Pretreatment of the cells with the MLCK inhibitor ML-7 prevented the tight junction responses. Taken together, the results suggest that nmMLCK plays an important role in neutrophil-dependent intestinal barrier dysfunction during inflammatory injury. PMID:22814287

  16. Quercetin attenuates the ischemia reperfusion induced COX-2 and MPO expression in the small intestine mucosa.

    PubMed

    Tóth, Štefan; Jonecová, Zuzana; Čurgali, Kristína; Maretta, Milan; Šoltés, Ján; Švaňa, Martin; Kalpadikis, Theodore; Caprnda, Martin; Adamek, Mariusz; Rodrigo, Luis; Kruzliak, Peter

    2017-08-28

    Quercetin, the active substance of tea, fruits and vegetables, exerts a broad spectrum of pharmacological activities and is considered to have potential therapeutic application. The present study was designed to investigate the beneficial effect of quercetin against experimental ischemia- reperfusion (IR) injury of the small intestine in rats. Quercetin was administrated intraperitoneally 30min before 1h ischemia of superior mesenteric artery with following reperfusion periods lasting 1, 4 and 24h. The male specific pathogen-free Charles River Wistar rats were used (n=45). In acute phase, 4h after start of reperfusion, the quercetin induced a significant decrease in mucosal injury index (p<0.05) accompanied by a significant decrease in cyclooxygenase-2 (COX-2) expression in the epithelial lining of the intestinal villi in comparison with the control group (p<0.01). In the epithelium of the intestinal glands, COX-2 expression resulting from IR injury significantly increased regardless quercetin application (in control group p<0.001; in quercetin group p<0.05), but in quercetin group, significant decrease in it during 24h of reperfusion in a late phase of IR injury was detected (p<0.001). Based on morphology of COX-2 positive cells, the COX-2 positivity was found particularly in goblet cells of the intestinal villi epithelium and enteroendocrine cells respectively, in the glandular epithelium. We concluded that quercetin application attenuated mucosal damage from IR injury by inhibiting neutrophil infiltration which was demonstrated by a lower number of myeloperoxidase positive cells in the lamina propria during both phases of IR injury and the significant decrease in that in a late phase after 24h of reperfusion (p<0.05). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Hypertrophy of mucosa and serosa in the obstructed intestine of rats

    PubMed Central

    BERTONI, SIMONA; GABELLA, GIORGIO

    2001-01-01

    After a surgically induced partial obstruction of the small intestine (ileum) in adult rats there is an accumulation of ingesta and a progressive enlargement of the lumen accompanied by wall thickening: over a period of 2–3 wk the circumference of the hypertrophic intestine increases by a factor of 2·7 and the thickness of the musculature increases more than threefold, while the length of the ileum (measured at the mesenteric attachment) remains unchanged. The villi become markedly larger and more elongated in the circumferential direction, and have a greater separation between one another. The number of villi per unit surface is markedly reduced but the number of villi per unit length of ileum, whilst appearing to show a small increase, was not significantly altered. The component epithelial cells (absorptive cells) appear unchanged in morphology and size (height). The microvilli of the epithelial cells have the same appearance, size (height) and packing density in the control and the hypertrophic ileum. Glands of Lieberkühn, Peyer's patches and single lymphatic follicles constituting the Peyer's patches are significantly increased in size in the hypertrophic intestine. The serosal surface of the hypertrophic ileum, in spite of the great expansion, remains regularly covered by mesothelial cells; these are much larger than in the controls and have an altered distribution of their microvilli. PMID:11787826

  18. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress

    PubMed Central

    Tong, Ling-chang; Wang, Yue; Wang, Zhi-bin; Liu, Wei-ye; Sun, Sheng; Li, Ling; Su, Ding-feng; Zhang, Li-chao

    2016-01-01

    Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway. PMID:27574508

  19. Effect of ethanol on lipid metabolism and epithelial permeability barrier of skin and oral mucosa in the rat.

    PubMed

    Squier, Christopher A; Kremer, Mary J; Wertz, Philip W

    2003-11-01

    Ethanol consumption induces changes in lipid metabolism. This might be reflected locally as an alteration in the epithelial lipid barrier. Rats were fed with an isocaloric liquid diet with, or without, ethanol (6.7%) and were sacrificed at 60 or 120 days. Plasma and liver triglycerides, gamma-glutamyl-transferase (GGTP) levels, and permeability (Kp) of skin and buccal mucosa to tritiated water and the tobacco carcinogen, nitrosonornicotine, were determined. Significant elevation of GGTP at 120 days and triglycerides at both 60 and 120 days was observed for rats fed with ethanol diet. For this diet, Kp values to both penetrants increased significantly for skin in rats after 120 days compared to all other groups. The parallel between changes in lipid metabolism and permeability suggests that one effect of ingested alcohol is to alter the lipid-containing permeability barrier of stratified squamous epithelium.

  20. Curcumin Protects Intestinal Mucosal Barrier Function of Rat Enteritis via Activation of MKP-1 and Attenuation of p38 and NF-κB Activation

    PubMed Central

    Meng, Fan-Su; Zhang, Qing-Hua; Zeng, Jian-Ying; Xiao, Li-Ping; Yu, Xin-Pei; Peng, Dan-dan; Su, Lei; Xiao, Bing; Zhang, Zhen-Shu

    2010-01-01

    Background Intestinal mucosa barrier (IMB) dysfunction results in many notorious diseases for which there are currently few effective treatments. We studied curcumin's protective effect on IMB and examined its mechanism by using methotrexate (MTX) induced rat enteritis model and lipopolysaccharide (LPS) treated cell death model. Methodology/Principal Findings Curcumin was intragastrically administrated from the first day, models were made for 7 days. Cells were treated with curcumin for 30 min before exposure to LPS. Rat intestinal mucosa was collected for evaluation of pathological changes. We detected the activities of D-lactate and diamine oxidase (DAO) according to previous research and measured the levels of myeloperoxidase (MPO) and superoxide dismutase (SOD) by colorimetric method. Intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were determined by RT-PCR and IL-10 production was determined by ELISA. We found Curcumin decreased the levels of D-lactate, DAO, MPO, ICAM-1, IL-1β and TNF-α, but increased the levels of IL-10 and SOD in rat models. We further confirmed mitogen-activated protein kinase phosphatase-1 (MKP-1) was activated but phospho-p38 was inhibited by curcumin by western blot assay. Finally, NF-κB translocation was monitored by immunofluorescent staining. We showed that curcumin repressed I-κB and interfered with the translocation of NF-κB into nucleus. Conclusions/Significance The effect of curcumin is mediated by the MKP-1-dependent inactivation of p38 and inhibition of NF-κB-mediated transcription. Curcumin, with anti-inflammatory and anti-oxidant activities may be used as an effective reagent for protecting intestinal mucosa barrier and other related intestinal diseases. PMID:20885979

  1. Intestinal Epithelial Barrier Disruption through Altered Mucosal MicroRNA Expression in Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections

    PubMed Central

    Gaulke, Christopher A.; Porter, Matthew; Han, Yan-Hong; Sankaran-Walters, Sumathi; Grishina, Irina; George, Michael D.; Dang, Angeline T.; Ding, Shou-Wei; Jiang, Guochun; Korf, Ian

    2014-01-01

    ABSTRACT Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4+ T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5′-3′-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of mi

  2. Enteric glial cells and their role in the intestinal epithelial barrier.

    PubMed

    Yu, Yan-Bo; Li, Yan-Qing

    2014-08-28

    The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population of astrocyte-like cells that are known as enteric glia. The morphological characteristics and expression markers of these enteric glia cells were identical to the astrocytes of the central nervous system. In the past few years, enteric glia have been demonstrated to have a trophic and supporting relationship with intestinal epithelial cells. Enteric glia lesions and/or functional defects can be involved in the barrier dysfunction. Besides, factors secreted by enteric glia are important for the regulation of gut barrier function. Moreover, enteric glia have an important impact on epithelial cell transcriptome and induce a shift in epithelial cell phenotype towards increased cell adhesion and cell differentiation. Enteric glia can also preserve epithelial barrier against intestinal bacteria insult. In this review, we will describe the current body of evidence supporting functional roles of enteric glia on intestinal barrier.

  3. Effects of oral supplementation with glutamate or combination of glutamate and N-carbamylglutamate on intestinal mucosa morphology and epithelium cell proliferation in weanling piglets.

    PubMed

    Wu, X; Zhang, Y; Liu, Z; Li, T J; Yin, Y L

    2012-12-01

    To evaluate the effects of glutamate (Glu) or combination of Glu and N-carbamylglutamate (NCG) on intestinal mucosa morphology and epithelium cell proliferation, 18 piglets weaned at 21 d (BW 5.56 ± 0.51 kg) were grouped into 3 treatments and fed one of the following diets for 20 d: a standard diet (SD), SD+Glu(1%), or SD+Glu(1%)+NCG(0.05%). All the piglets were killed for intestinal mucosa collection, and real-time PCR was used to detect mRNA abundance of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and β-catenin. The results showed that compared with the control group, adding Glu or Glu+NCG to the diet resulted in a higher villus height and mucosal thickness (P < 0.05) in the jejunum. However, the villus height/crypt depth ratio was unaltered. The RT-PCR results showed that Glu+NCG significantly increased PCNA mRNA abundance in both jejunum and ileum (P < 0.05), while they also significantly increased β-catenin and VEGF mRNA abundance in ileum (P < 0.05). Only Glu increased PCNA mRNA abundance in the jejunum (P < 0.05) and β-catenin mRNA in the jejunum (P < 0.05). These results indicated that oral supply of Glu improved intestinal mucosa morphology, and combined Glu and NCG may have favorable effects on intestinal epithelium cell proliferation than Glu alone.

  4. Cardiolipins Act as a Selective Barrier to Toll-Like Receptor 4 Activation in the Intestine

    PubMed Central

    Coats, Stephen R.; Hashim, Ahmed; Paramonov, Nikolay A.; Curtis, Michael A.

    2016-01-01

    ABSTRACT Intestinal homeostasis mechanisms must protect the host intestinal tissue from endogenous lipopolysaccharides (LPSs) produced by the intestinal microbiota. In this report, we demonstrate that murine intestinal fecal lipids effectively block Toll-like receptor 4 (TLR4) responses to naturally occurring Bacteroidetes sp. LPS. Cardiolipin (CL) represents a significant proportion of the total intestinal and fecal lipids and, furthermore, potently antagonizes TLR4 activation by reducing LPS binding at the lipopolysaccharide binding protein (LBP), CD14, and MD-2 steps of the TLR4 signaling pathway. It is further demonstrated that intestinal lipids and CL are less effective at neutralizing more potent Enterobacteriaceae-type LPS, which is enriched in feces obtained from mice with dextran sodium sulfate (DSS)-treated inflammatory bowel disease. The selective inhibition of naturally occurring LPS structures by intestinal lipids may represent a novel homeostasis mechanism that blocks LPS activation in response to symbiotic but not dysbiotic microbial communities. IMPORTANCE The guts of animals harbor a variety of Gram-negative bacteria associated with both states of intestinal health and states of disease. Environmental factors, such as dietary habits, can drive the microbial composition of the host animal's intestinal bacterial community toward a more pathogenic state. Both beneficial and harmful Gram-negative bacteria are capable of eliciting potentially damaging inflammatory responses from the host intestinal tissues via a lipopolysaccharide (LPS)-dependent pathway. Physical mucosal barriers and antibodies produced by the intestinal immune system protect against the undesired inflammatory effects of LPS, although it is unknown why some bacteria are more effective at overcoming the protective barriers than others. This report describes the discovery of a lipid-type protective barrier in the intestine that reduces the deleterious effects of LPSs from beneficial

  5. High-fat enteral nutrition reduces intestinal mucosal barrier damage after peritoneal air exposure.

    PubMed

    Tan, Shan-Jun; Yu, Chao; Yu, Zhen; Lin, Zhi-Liang; Wu, Guo-Hao; Yu, Wen-Kui; Li, Jie-Shou; Li, Ning

    2016-05-01

    Peritoneal air exposure is needed in open abdominal surgery, but long-time exposure could induce intestinal mucosal barrier dysfunction followed by many postoperative complications. High-fat enteral nutrition can ameliorate intestinal injury and improve intestinal function in many gastrointestinal diseases. In the present study, we investigated the effect of high-fat enteral nutrition on intestinal mucosal barrier after peritoneal air exposure and the underlying mechanism. Male adult rats were administrated saline, low-fat or high-fat enteral nutrition via gavage before and after peritoneal air exposure for 3 h. Rats undergoing anesthesia without laparotomy received saline as control. Twenty four hours after surgery, samples were collected to assess intestinal mucosal barrier changes in serum D-lactate levels, intestinal permeability, intestinal tight junction protein ZO-1 and occludin levels, and intestinal histopathology. The levels of malondialdehyde and the activity of superoxide dismutase in the ileum tissue were also measured to assess the status of intestinal oxidative stress. High-fat enteral nutrition significantly decreased the serum D-lactate level and increased the intestinal tight junction protein ZO-1 level when compared to the group treated with low-fat enteral nutrition (P < 0.05). Meanwhile, histopathologic findings showed that the intestinal mucosal injury assessed by the Chiu's score and the intestinal epithelial tight junction were also improved much more in the high-fat enteral nutrition-treated group (P < 0.05). In addition, the intestinal malondialdehyde level was lower, and the intestinal superoxide dismutase activity was higher in the high-fat enteral nutrition-treated group than that in the low-fat enteral nutrition-treated group (P < 0.05). These results suggest that high-fat enteral nutrition could reduce intestinal mucosal barrier damage after peritoneal air exposure, and the underlying mechanism may be associated with its antioxidative

  6. Potential benefits of pro- and prebiotics on intestinal mucosal immunity and intestinal barrier in short bowel syndrome.

    PubMed

    Stoidis, Christos N; Misiakos, Evangelos P; Patapis, Paul; Fotiadis, Constantine I; Spyropoulos, Basileios G

    2011-06-01

    The mechanism of impaired gut barrier function in patients with short bowel syndrome (SBS) is poorly understood and includes decreased intestinal motility leading to bacterial overgrowth, a reduction in gut-associated lymphoid tissue following the loss of intestinal length, inhibition of mucosal immunity of the small intestine by intravenous total parental nutrition, and changes in intestinal permeability to macromolecules. Novel therapeutic strategies (i.e. nutritive and surgical) have been introduced in order to prevent the establishment or improve the outcome of this prevalent disease. Pre- and probiotics as a nutritive supplement are already known to be very active in the intestinal tract (mainly in the colon) by maintaining a healthy gut microflora and influencing metabolic, trophic and protective mechanisms, such as the production of SCFA which influence epithelial cell metabolism, turnover and apoptosis. Probiotics have been recommended for patients suffering from SBS in order to decrease bacterial overgrowth and prevent bacterial translocation, two major mechanisms in the pathogenesis of SBS. The present review discusses the research available in the international literature, clinical and experimental, regarding probiotic supplementation for this complicated group of patients based on the clinical spectrum and pathophysiological aspects of the syndrome. The clinical data that were collected for the purposes of the present review suggest that it is difficult to correctly characterise probiotics as a preventive or therapeutic measure. It is very challenging after all to examine the relationship of the bacterial flora, the intestinal barrier and the probiotics as, according to the latest knowledge, demonstrate an interesting interaction.

  7. Femtosecond laser ablation of porcine intestinal mucosa: potential autologous transplant for segmental cystectomy

    NASA Astrophysics Data System (ADS)

    Higbee, Russell G.; Irwin, Bryan S.; Nguyen, Michael N.; Zhang, Yuanyuan; Warren, William L.

    2005-04-01

    Nearly 80% of patients with newly diagnosed bladder cancer present with superficial bladder tumors (confined to the bladder lining such as transitional cell carcinoma [90%], squamous cell carcinoma [6-8%], and adenocarcinoma[2%]) in stages Ta, Tis, or T1. Segmental cystectomy is one surgical treatment for patients who have a low-grade invasive tumor. Transposition of small intestine is a viable surgical treatment option. Success of the transplantation is also dependent upon removal of the entire SI mucosal layer. A Clark Spitfire Ti:Sapphire laser operating at 775 nm and 1 kHz repetition rate, was used to investigate the damage induced to fresh cadaveric porcine small intestinal mucosal epithelium. The laser was held constant at a focal spot diameter of 100 μm using a 200 mm focal point lens, with a power output maximum of 257 mW. A high resolution motorized X-Y-Z stage translated the SI tissue through the beam at 500 μm/sec with a line spacing of 50 μm. This produced a 50% overlap in the laser etching for each pass over a 1 cm x 1.5 cm grid. To determine if the mucosal lining of the SI was adequately removed, the targeted area was covered with 1% fluorescein solution for 30 seconds and then rinsed with phosphate buffered saline. Fluorescein staining was examined under UV illumination, to determine the initial degree of mucosal removal. Tissues were fixed and processed for light and scanning electron microscopy by standard protocols. Brightfield light microscopy of hematoxylin and eosin stained 4 μm thick cross sections, scanning electron microscopy were examined to determine the degree of mucosal tissue removal. Clear delineation of the submucosal layer by fluorescein staining was also observed. The Ti:Sapphire laser demonstrated precise, efficient removal of the mucosal epithelium with minimal submucosal damage.

  8. Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity.

    PubMed

    Salerno-Goncalves, Rosangela; Fasano, Alessio; Sztein, Marcelo B

    2016-07-25

    Because cells growing in a three-dimensional (3-D) environment have the potential to bridge many gaps of cell cultivation in 2-D environments (e.g., flasks or dishes). In fact, it is widely recognized that cells grown in flasks or dishes tend to de-differentiate and lose specialized features of the tissues from which they were derived. Currently, there are mainly two types of 3-D culture systems where the cells are seeded into scaffolds mimicking the native extracellular matrix (ECM): (a) static models and (b) models using bioreactors. The first breakthrough was the static 3-D models. 3-D models using bioreactors such as the rotating-wall-vessel (RWV) bioreactors are a more recent development. The original concept of the RWV bioreactors was developed at NASA's Johnson Space Center in the early 1990s and is believed to overcome the limitations of static models such as the development of hypoxic, necrotic cores. The RWV bioreactors might circumvent this problem by providing fluid dynamics that allow the efficient diffusion of nutrients and oxygen. These bioreactors consist of a rotator base that serves to support and rotate two different formats of culture vessels that differ by their aeration source type: (1) Slow Turning Lateral Vessels (STLVs) with a co-axial oxygenator in the center, or (2) High Aspect Ratio Vessels (HARVs) with oxygenation via a flat, silicone rubber gas transfer membrane. These vessels allow efficient gas transfer while avoiding bubble formation and consequent turbulence. These conditions result in laminar flow and minimal shear force that models reduced gravity (microgravity) inside the culture vessel. Here we describe the development of a multicellular 3-D organotypic model of the human intestinal mucosa composed of an intestinal epithelial cell line and primary human lymphocytes, endothelial cells and fibroblasts cultured under microgravity provided by the RWV bioreactor.

  9. THEMIS and PTPRK in celiac intestinal mucosa: coexpression in disease and after in vitro gliadin challenge.

    PubMed

    Bondar, Constanza; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Withoff, Sebo; Wijmenga, Cisca; Chirdo, Fernando; Bilbao, Jose Ramon

    2014-03-01

    Celiac disease (CD) is an immune mediated, polygenic disorder, where HLA-DQ2/DQ8 alleles contribute around 35% to genetic risk, but several other genes are also involved. Genome-wide association studies (GWASs) and the more recent immunochip genotyping projects have fine-mapped 39 regions of genetic susceptibility to the disease, most of which harbor candidate genes that could participate in this disease process. We focused our attention to the GWAS peak on chr6: 127.99-128.38 Mb, a region including two genes, thymocyte-expressed molecule involved in selection (THEMIS) and protein tyrosine phosphatase, receptor type, kappa (PTPRK), both of which have immune-related functions. The aim of this work was to evaluate the expression levels of these two genes in duodenal mucosa of active and treated CD patients and in controls, and to determine whether SNPs (rs802734, rs55743914, rs72975916, rs10484718 and rs9491896) associated with CD have any influence on gene expression. THEMIS showed higher expression in active CD compared with treated patients and controls, whereas PTPRK showed lower expression. Our study confirmed the association of this region with CD in our population, but only the genotype of rs802734 showed some influence in the expression of THEMIS. On the other hand, we found a significant positive correlation between THEMIS and PTPRK mRNA levels in CD patients but not in controls. Our results suggest a possible role for both candidate genes in CD pathogenesis and the existence of complex, regulatory relationships that reside in the vast non-coding, functional intergenic regions of the genome. Further investigation is needed to clarify the impact of the disease-associated SNPs on gene function.

  10. THEMIS and PTPRK in celiac intestinal mucosa: coexpression in disease and after in vitro gliadin challenge

    PubMed Central

    Bondar, Constanza; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Irastorza, Iñaki; Withoff, Sebo; Wijmenga, Cisca; Chirdo, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Celiac disease (CD) is an immune mediated, polygenic disorder, where HLA-DQ2/DQ8 alleles contribute around 35% to genetic risk, but several other genes are also involved. Genome-wide association studies (GWASs) and the more recent immunochip genotyping projects have fine-mapped 39 regions of genetic susceptibility to the disease, most of which harbor candidate genes that could participate in this disease process. We focused our attention to the GWAS peak on chr6: 127.99–128.38 Mb, a region including two genes, thymocyte-expressed molecule involved in selection (THEMIS) and protein tyrosine phosphatase, receptor type, kappa (PTPRK), both of which have immune-related functions. The aim of this work was to evaluate the expression levels of these two genes in duodenal mucosa of active and treated CD patients and in controls, and to determine whether SNPs (rs802734, rs55743914, rs72975916, rs10484718 and rs9491896) associated with CD have any influence on gene expression. THEMIS showed higher expression in active CD compared with treated patients and controls, whereas PTPRK showed lower expression. Our study confirmed the association of this region with CD in our population, but only the genotype of rs802734 showed some influence in the expression of THEMIS. On the other hand, we found a significant positive correlation between THEMIS and PTPRK mRNA levels in CD patients but not in controls. Our results suggest a possible role for both candidate genes in CD pathogenesis and the existence of complex, regulatory relationships that reside in the vast non-coding, functional intergenic regions of the genome. Further investigation is needed to clarify the impact of the disease-associated SNPs on gene function. PMID:23820479

  11. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients.

    PubMed

    Juuti-Uusitalo, K; Mäki, M; Kainulainen, H; Isola, J; Kaukinen, K

    2007-11-01

    In coeliac disease gluten induces an immunological reaction in genetically susceptible patients, and influences on epithelial cell proliferation and differentiation in the small-bowel mucosa. Our aim was to find novel genes which operate similarly in epithelial proliferation and differentiation in an epithelial cell differentiation model and in coeliac disease patient small-bowel mucosal biopsy samples. The combination of cDNA microarray data originating from a three-dimensional T84 epithelial cell differentiation model and small-bowel mucosal biopsy samples from untreated and treated coeliac disease patients and healthy controls resulted in 30 genes whose mRNA expression was similarly affected. Nine of 30 were located directly or indirectly in the receptor tyrosine kinase pathway starting from the epithelial growth factor receptor. Removal of gluten from the diet resulted in a reversion in the expression of 29 of the 30 genes in the small-bowel mucosal biopsy samples. Further characterization by blotting and labelling revealed increased epidermal growth factor receptor and beta-catenin protein expression in the small-bowel mucosal epithelium in untreated coeliac disease patients compared to healthy controls and treated coeliac patients. We found 30 genes whose mRNA expression was affected similarly in the epithelial cell differentiation model and in the coeliac disease patient small-bowel mucosal biopsy samples. In particular, those genes involved in the epithelial growth factor-mediated signalling pathways may be involved in epithelial cell differentiation and coeliac disease pathogenesis. The epithelial cell differentiation model is a useful tool for studying gene expression changes in the crypt-villus axis.

  12. ClC-2 regulation of intestinal barrier function: Translation of basic science to therapeutic target.

    PubMed

    Jin, Younggeon; Blikslager, Anthony T

    2015-01-01

    The ClC-2 chloride channel is a member of the voltage-gated chloride channel family. ClC-2 is involved in various physiological processes, including fluid transport and secretion, regulation of cell volume and pH, maintaining the membrane potential of the cell, cell-to-cell communication, and tissue homeostasis. Recently, our laboratory has accumulated evidence indicating a critical role of ClC-2 in the regulation of intestinal barrier function by altering inter-epithelial tight junction composition. This review will detail the role of ClC-2 in intestinal barrier function during intestinal disorders, including experimental ischemia/reperfusion injury and dextran sodium sulfate (DSS)-induced inflammatory bowel disease. Details of pharmacological manipulation of ClC-2 via prostone agonists will also be provided in an effort to show the potential therapeutic relevance of ClC-2 regulation, particularly during intestinal barrier disruption.

  13. ClC-2 regulation of intestinal barrier function: Translation of basic science to therapeutic target

    PubMed Central

    Jin, Younggeon; Blikslager, Anthony T

    2015-01-01

    The ClC-2 chloride channel is a member of the voltage-gated chloride channel family. ClC-2 is involved in various physiological processes, including fluid transport and secretion, regulation of cell volume and pH, maintaining the membrane potential of the cell, cell-to-cell communication, and tissue homeostasis. Recently, our laboratory has accumulated evidence indicating a critical role of ClC-2 in the regulation of intestinal barrier function by altering inter-epithelial tight junction composition. This review will detail the role of ClC-2 in intestinal barrier function during intestinal disorders, including experimental ischemia/reperfusion injury and dextran sodium sulfate (DSS)-induced inflammatory bowel disease. Details of pharmacological manipulation of ClC-2 via prostone agonists will also be provided in an effort to show the potential therapeutic relevance of ClC-2 regulation, particularly during intestinal barrier disruption. PMID:26716076

  14. Expression of the Na+/l- symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus

    PubMed Central

    Altorjay, Áron; Dohán, Orsolya; Szilágyi, Anna; Paroder, Monika; Wapnir, Irene L; Carrasco, Nancy

    2007-01-01

    Background The sodium/iodide symporter (NIS) is a plasma membrane glycoprotein that mediates iodide (I-) transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. Methods Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. Results Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. Conclusion That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease. PMID:17214887

  15. Yoghurts containing probiotics reduce disruption of the small intestinal barrier in methotrexate-treated rats.

    PubMed

    Southcott, E; Tooley, K L; Howarth, G S; Davidson, G P; Butler, R N

    2008-07-01

    Small intestinal permeability was employed to assess the efficacy of commercially available yoghurts containing probiotics in a rat model of methotrexate (MTX)-induced mucositis. Male Sprague-Dawley rats were allocated to four groups (n = 8): MTX + water, MTX + cow's milk yoghurt (CY; fermented with Lactobacillus johnsonii), MTX + sheep's milk yoghurt (SY; containing Lactobacillus bulgaricus and Streptococcus thermophilus), and saline. Treatment gavage occurred twice daily for 7 days pre-MTX and 5 days post-MTX. Intestinal permeability was assessed on days -7, -1, 2, and 5 of the trial. Intestinal sections were collected at sacrifice for histological and biochemical analyses. Histology revealed that rats receiving CY and SY did not have a significantly damaged duodenum compared to controls. However, an improved small intestinal barrier function was evident, determined by a decreased lactulose/mannitol ratio. Probiotics containing SY and CY may be useful in preventing disruption to intestinal barrier function in MTX-induced mucositis.

  16. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease?

    PubMed Central

    Brandl, Katharina

    2016-01-01

    Changes in the intestinal microbiota composition contribute to the pathogenesis of many disorders including gastrointestinal and liver diseases. Recent studies have broadened our understanding of the “gut-liver” axis. Dietary changes, other environmental and genetic factors can lead to alterations in the microbiota. Dysbiosis can further disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In this article, the authors dissect the different steps involved in disease pathogenesis to further refine approaches for the medical management of liver diseases. The authors will specifically discuss the role of dysbiosis in inducing intestinal inflammation and increasing intestinal permeability. PMID:26088524

  17. Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

    PubMed Central

    Yang, Yang; Qiu, Yuan; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Zhang, Chaojun; Yang, Hanwenbo; Teitelbaum, Daniel H; Sun, Li-Hua; Yang, Hua

    2014-01-01

    Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions. Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, IR+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxia conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions. PMID:24966910

  18. Review article: intestinal barrier dysfunction and central nervous system disorders--a controversial association.

    PubMed

    Julio-Pieper, M; Bravo, J A; Aliaga, E; Gotteland, M

    2014-11-01

    Central nervous system (CNS) development and physiopathology are greatly affected by environmental stimuli. The intestinal barrier restricts the entrance of toxins, pathogens, and antigens while modulating the expression of various neuroactive compounds. The existence of a rich gut-to-brain communication raises the possibility that intestinal barrier alterations may take part in the pathophysiology of CNS disorders. To review evidence associating intestinal barrier dysfunction with the development of CNS disorders. Literature search was conducted on PubMed using the following terms: intestinal barrier, intestinal permeability, central nervous system, mental disorders, schizophrenia, autism, stress, anxiety, depression, and neurodegeneration. Clinical and animal model studies of the association between intestinal barrier and schizophrenia, autism spectrum disorders, neurodegenerative diseases or depression were reviewed. The majority of reports concentrated on schizophrenia and autism spectrum disorders. About half of these described increased intestinal permeability/mucosal damage in patients compared with healthy controls, with up to 43% of children with autism spectrum disorders and up to 35% of schizophrenia patients displaying abnormally high urinary excretion of the sugars used as permeability markers. However, another substantial group of studies did not find such differences. In autism spectrum disorders, some reports show that the use of diets such as the gluten-free casein-free diet may contribute to the normalisation of lactulose/mannitol ratio, but to date there is no adequately controlled study showing improvement in behavioural symptoms following these dietary interventions. Evidence of altered intestinal permeability in individuals suffering from CNS disorders is limited and cannot be regarded as proven. Moreover the efficacy of targeting gut barrier in the management of neurological and behavioural aspects of CNS disorders has not yet been

  19. WISP1 Is Increased in Intestinal Mucosa and Contributes to Inflammatory Cascades in Inflammatory Bowel Disease

    PubMed Central

    Zhang, Qi; Zhang, Cuiping; Li, Xiaoyu; Yu, Yanan; Liang, Kun; Shan, Xinzhi; Zhao, Kun; Niu, Qinghui; Tian, Zibin

    2016-01-01

    Inflammatory bowel disease (IBD) is mainly characterized by intestinal tissue damage, which is caused by excessive autoimmune responses poorly controlled by corresponding regulatory mechanisms. WISP1, which belongs to the CCN protein family, is a secreted matricellular protein regulating several inflammatory pathways, such as Wnt/β-catenin pathway, and has been reported in several diseases including cancer. Here we examined the expression, regulatory mechanisms, and functions of WISP1 in IBD. WISP1 mRNA and protein expression was upregulated in colonic biopsies and lamina propria mononuclear cells (LPMC) of IBD patients compared with those of healthy controls. Tumor necrosis factor- (TNF-) α induced WISP1 expression in LPMC from healthy controls. Consistently, WISP1 mRNA expression was downregulated in colonic biopsies from IBD patients who had achieved clinical remission with infliximab (IFX). Furthermore, WISP1 expression was also found to be increased in colons from 2,4,6-trinitrobenzenesulfonic acid- (TNBS-) induced mice compared with those from control mice. Further studies confirmed that administration of rWISP1 could aggravate TNBS-induced colitis in vivo. Therefore, we concluded that WISP1 is increased in IBD and contributes to the proinflammatory cascades in the gut. PMID:27403031

  20. Expression of the nociceptin/orphanin FQ receptor in the intestinal mucosa of IBS patients.

    PubMed

    Li, Lu; Dong, Lei; Wang, Shenhao

    2013-09-01

    Nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide (NOP) receptor play important roles in regulating gastrointestinal function. To assess whether the NOP receptor is implicated in the etiopathogenesis of irritable bowel syndrome (IBS), we measured the levels of NOP receptor mRNA and protein in the jejunal and colonic tissues of healthy subjects and patients with diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS). Mucosal biopsies were obtained from the jejunum and colon of patients diagnosed with D-IBS and C-IBS by the Rome III criteria and from healthy control subjects. The expression of NOP receptor mRNA was measured quantitatively using quantitative PCR (qPCR) and NOP protein expression was assayed immunohistochemically using a rabbit monoclonal antibody to OFQ. NOP receptor mRNA was detected in the jejunum and colon of healthy subjects and was more highly expressed in the jejunum than in the colon. Expression was lower in the jejunum and colon of patients with D-IBS; however, it was similar in patients with C-IBS and healthy subjects. The numbers of OFQ-positive cells in the jejunum and colon were similar among the three groups. The NOP receptor may be involved in the regulation of intestinal movement in healthy individuals. Its involvement in the pathophysiology of IBS may depend on whether the IBS is constipation- or diarrhea-predominant.

  1. Expression of the nociceptin/orphanin FQ receptor in the intestinal mucosa of IBS patients

    PubMed Central

    LI, LU; DONG, LEI; WANG, SHENHAO

    2013-01-01

    Nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide (NOP) receptor play important roles in regulating gastrointestinal function. To assess whether the NOP receptor is implicated in the etiopathogenesis of irritable bowel syndrome (IBS), we measured the levels of NOP receptor mRNA and protein in the jejunal and colonic tissues of healthy subjects and patients with diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS). Mucosal biopsies were obtained from the jejunum and colon of patients diagnosed with D-IBS and C-IBS by the Rome III criteria and from healthy control subjects. The expression of NOP receptor mRNA was measured quantitatively using quantitative PCR (qPCR) and NOP protein expression was assayed immunohistochemically using a rabbit monoclonal antibody to OFQ. NOP receptor mRNA was detected in the jejunum and colon of healthy subjects and was more highly expressed in the jejunum than in the colon. Expression was lower in the jejunum and colon of patients with D-IBS; however, it was similar in patients with C-IBS and healthy subjects. The numbers of OFQ-positive cells in the jejunum and colon were similar among the three groups. The NOP receptor may be involved in the regulation of intestinal movement in healthy individuals. Its involvement in the pathophysiology of IBS may depend on whether the IBS is constipation- or diarrhea-predominant. PMID:24137246

  2. E. coli O124 K72 alters the intestinal barrier and the tight junctions proteins of guinea pig intestine.

    PubMed

    Ren, Xiaomeng; Zhu, Yanyan; Gamallat, Yaser; Ma, Shenhao; Chiwala, Gift; Meyiah, Abdo; Xin, Yi

    2017-10-01

    Our research group previously isolated and identified a strain of pathogenic Escherichia coli from clinical samples called E. coli O124 K72. The present study was aimed at determining the potential effects of E. coli O124 K72 on intestinal barrier functions and structural proteins integrity in guinea pig. Guinea pigs were grouped into three groups; control (CG); E. coli O124 K72 (E. coli); and probiotics Lactobacillus rhamnosus (LGG). Initially, we create intestinal dysbiosis by giving all animals Levofloxacin for 10days, but the control group (CG) received the same volume of saline. Then, the animals received either E. coli O124 K72 (E. coli) or Lactobacillus rhamnosus (LGG) according to their assigned group. E. coli O124 K72 treatment significantly affected colon morphology and distorted intestinal barrier function by up-regulating Claudin2 and down-regulating Occludin. In addition, E. coli upregulated the mRNA expression of MUC1, MUC2, MUC13 and MUC15. Furthermore, suspected tumor was found in the E. coli treated animals. Our results suggested that E. coli O124 K72 strain has adverse effects on intestinal barrier functions and is capable of altering integrity of structural proteins in guinea pig model while at same time it may have a role in colon carcinogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. [Effect of Tongfu granules and its constituents on barrier function of small intestine in rats with sepsis].

    PubMed

    Han, Lei; Ren, Ai-Min; Wang, Hong; Zhang, Shu-Wen; Wen, Yan

    2011-02-01

    To investigate the effects of Tongfu granules and its constituents on barrier function of small intestine in rats with sepsis. The male rats were divided into model group, Tongfu granules group, Rhubarb group and Magnoliae cortex group by random digits table, normal rats as control group. Intraperitoneal injection of lipopolysaccharide (LPS, 6 mg/kg) was used to reproduce sepsis model. After establishment of model, rats in Tongfu granules group were given Tongfu granules 28 g×kg(-1)×d(-1) by gavage, and Rhubarb group and Magnoliae cortex group rats were given Rhubarb or Magnoliae cortex 5 g×kg(-1)×d(-1) by gavage, while the model group was given normal saline in same quantity, once a day. Blood samples of rats were collected at 24, 48, 72 hours for measuring tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) with enzyme linked immunosorbent assay (ELISA). The pathological changes in intestinal mucosa were observed, and the pathological scores was estimated at 72 hours. The levels of TNF-α and IL-8 were significantly higher in model group than those in control group at different time points. The serum levels of TNF-α and IL-8 were significantly lower in treatment groups than those in model group, and the level of TNF-α (ng/L) in Tongfu granules group was significantly lower than that in Rhubarb and Magnoliae cortex groups at different time points (24 hours: 44.64±1.48 vs. 47.18±1.83 and 46.96±2.23, 48 hours: 51.38±1.36 vs. 57.17±2.23 and 59.41±2.01, 72 hours: 55.54±2.58 vs. 64.34±1.02 and 65.96±3.45, all P<0.05), and IL-8 (ng/L) level at 72 hours was significantly lower than that in Magnoliae cortex group (65.53±4.52 vs. 69.14±2.82,P<0.05). The scores of the lesions were significantly higher in model group than that in control group (3.90±0.17 vs. 0). The scores of Rhubarb group, Magnoliae cortex group and Tongfu granules group were 3.15±0.28, 3.18±0.08, and 2.95±0.15, respectively, which were lower than those of the model group (all P

  4. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  5. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  6. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    PubMed Central

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H. M.; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A. M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects. PMID:28045137

  7. The Tripeptide KdPT Protects from Intestinal Inflammation and Maintains Intestinal Barrier Function

    PubMed Central

    Bettenworth, Dominik; Buyse, Marion; Böhm, Markus; Mennigen, Rudolf; Czorniak, Isabel; Kannengiesser, Klaus; Brzoska, Thomas; Luger, Thomas A.; Kucharzik, Torsten; Domschke, Wolfram; Maaser, Christian; Lügering, Andreas

    2011-01-01

    Treatment options for inflammatory bowel disease (IBD) are incompletely helpful, and surgery is often needed. One promising class of future therapeutic agents for IBD is melanocortin-related peptides, which exhibit potent immunomodulatory effects. We investigated KdPT, a tripeptide derivative of the C-terminus of α–melanocyte-stimulating hormone, as an anti-inflammatory small molecule in vivo and in vitro. Intestinal inflammation was studied after oral administration of dextran sodium sulfate and in IL-10 gene–deficient mice. The effects of KdPT on key colonic epithelial cell functions were studied in vitro and in vivo by evaluating proliferation, wound healing, transepithelial resistance, and expression of tight junction proteins. Melanin assays were performed to determine the melanotropic effects of KdPT. KdPT-treated animals showed markedly reduced severity of inflammation in both colitis models. In colonic epithelial cells, KdPT increased proliferation, accelerated closure of wounds, and improved transepithelial electrical resistance after stimulation with interferon-γ/tumor necrosis factor-α. Moreover, treatment with KdPT also prevented the loss of tight junction protein expression and improved barrier function in vivo. KdPT acted independently of IL-1 receptor type I in vivo and did not affect melanogenesis in vitro. KdPT is capable of attenuating the course of experimental colitis in different models and maintains epithelial cell function. Furthermore, KdPT does not induce pigmentation, emphasizing the potential of this small molecule for the future treatment of IBD. PMID:21741932

  8. The difference in sensitivity to cardiac steriods of (Na+ + K+)-stimulated ATPase and amino acid transport in the intestinal mucosa of the rat and other species

    PubMed Central

    Robinson, J. W. L.

    1970-01-01

    1. The effect of various cardioactive steroids on the activity of a microsomal (Na+ + K+)-activated ATPase from rat intestinal mucosa has been studied and compared with their effects on L-phenylalanine and D-galactose transport by rings of rat intestine in vitro. A similar comparison between the sensitivities to ouabain of microsomal (Na+ + K+)-ATPase and of phenylalanine transport in the intestines of the mouse, guinea-pig and toad has been made. 2. The rat intestinal enzyme is 50% inhibited by a concentration of 1 × 10-4M ouabain, 1 × 10-5M scillaren A and 4 × 10-6M scilliroside. At concentrations which almost completely inhibit the (Na+ + K+)-ATPase activity, these steroids have no effect on the transport of phenylalanine or galactose by the rat intestine. Only at concentrations of 1 × 10-3M are scillaren A and scilliroside able to reduce phenylalanine accumulation significantly, the same concentration of ouabain being effective only in the absence of external potassium ions. Digitoxin, 1 × 10-4M, a comparatively apolar glycoside, had no action on phenylalanine transport in the rat intestine. 3. The effect of ouabain on the (Na+ + K+)-ATPase and phenylalanine transport system in the mouse intestine is completely analogous to its effect on these parameters in the rat. 4. A half-maximal inhibition of guinea-pig intestinal (Na+ + K+)-ATPase by ouabain occurs at an inhibitor concentration of 2 × 10-6M, but phenylalanine transport by this tissue is only half-maximally reduced at a concentration of 3 × 10-5M. Similarly, in the rabbit intestine, there appears to be a difference of an order of magnitude between the sensitivities of the two parameters. 5. In the toad, 50% inhibition of the enzymic activity is observed at a concentration of 3 × 10-5M ouabain, whereas a concentration of 8 × 10-4M is required to reduce phenylalanine accumulation by one half. 6. These findings are consistent with the suggestion that an (Na+ + K+)-stimulated ATPase is not the only

  9. Intestinal barrier function and absorption in pigs after weaning: a review.

    PubMed

    Wijtten, Peter J A; van der Meulen, Jan; Verstegen, Martin W A

    2011-04-01

    Under commercial conditions, weaning of piglets is associated with social, environmental and dietary stress. Consequently, small-intestinal barrier and absorptive functions deteriorate within a short time after weaning. Most studies that have assessed small-intestinal permeability in pigs after weaning used either Ussing chambers or orally administered marker probes. Paracellular barrier function and active absorption decrease when pigs are weaned at 3 weeks of age or earlier. However, when weaned at 4 weeks of age or later, the barrier function is less affected, and active absorption is not affected or is increased. Weaning stress is a critical factor in relation to the compromised paracellular barrier function after weaning. Adequate feed intake levels after weaning prevent the loss of the intestinal barrier function. Transcellular transport of macromolecules and passive transcellular absorption decrease after weaning. This may reflect a natural intestinal maturation process that is enhanced by the weaning process and prevents the pig from an antigen overload. It seems that passive and active absorption after weaning adapt accurately to the new environment when pigs are weaned after 3 weeks of age. However, when weaned at 3 weeks of age or earlier, the decrease in active absorption indicates that pigs are unable to sufficiently adapt to the new environment. To improve weaning strategies, future studies should distinguish whether the effect of feed intake on barrier function can be directed to a lack of a specific nutrient, i.e. energy or protein.

  10. [Effects of ω-3 polyunsaturated fatty acids on damage of intestinal mucosa of rats with severe burn in early stage and the mechanism].

    PubMed

    Cai, C; Xia, Z G; Xu, Q L; Li, X Z

    2017-08-20

    Objective: To observe the effects of ω-3 polyunsaturated fatty acids (PUFA) on damage of intestinal mucosa of rats with severe burn in early stage and to explore the mechanism. Methods: One hundred and twenty SD rats were divided into sham injury group, pure burn group, and ω-3 PUFA group according to the random number table, with 40 rats in each group. Rats in sham injury group were sham injured, while rats in pure burn group and ω-3 PUFA group were inflicted with 30% total body surface area full-thickness scald (hereinafter referred to as burn) on the back. Rats in sham injury group and pure burn group were injected with normal saline solution (1 mL/kg) by tail vein, while rats in ω-3 PUFA group were injected with ω-3 PUFA solution (1 mL/kg) by the same way at 5 minutes post injury. At post injury hour (PIH) 3, 6, 12, 24, and 48, abdominal aorta blood and intestinal mucosa were collected from 8 rats in each group, respectively. Serum content of diamine oxidase (DAO) was detected by spectrophotography. Serum content of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) was determined by enzyme-linked immunosorbent assay. Protein expression of NF-κB-p65 in intestinal mucosa was determined by Western blotting. Data were processed with analysis of variance of factorial design, one-way analysis of variance, chi-square test, LSD test, and Bonferroni correction. Results: (1) At all time points post injury, serum content of DAO of rats in pure burn group and ω-3 PUFA group was significantly higher than that in sham injury group (with P values below 0.01), and serum content of DAO of rats in ω-3 PUFA group was significantly lower than that in pure burn group (with P values below 0.01). (2) At all time points post injury, serum content of TNF-α and IL-6 of rats in pure burn group and ω-3 PUFA group was significantly higher than that in sham injury group (with P values below 0.01), and serum content of TNF-α and IL-6 of rats in ω-3 PUFA group was

  11. Nutritional value of dried fermentation biomass, hydrolyzed porcine intestinal mucosa products, and fish meal fed to weanling pigs.

    PubMed

    Sulabo, R C; Mathai, J K; Usry, J L; Ratliff, B W; McKilligan, D M; Moline, J D; Xu, G; Stein, H H

    2013-06-01

    Dried fermentation biomass (DFB) and hydrolyzed porcine intestinal mucosa are co-products of L-Lys • HCl production and heparin extraction, respectively. Three experiments were conducted to determine standardized ileal digestibility (SID) of AA (Exp. 1), concentration of DE and ME (Exp. 2), and standardized total tract digestibility (STTD) of P (Exp. 3) in DFB and 2 hydrolyzed porcine intestinal mucosa products (PEP50 and PEP2+), and compare these values with values for fish meal. In Exp. 1, 12 ileal cannulated barrows (BW = 11.5 ± 1.1 kg) were allotted to a replicated 6 × 6 Latin square design with 6 diets and 6 periods. A N-free diet, diet based on soybean meal (SBM), and 4 diets based on a combination of SBM and DFB, PEP50, PEP2+, or fish meal were formulated. With the exception of Lys, there were no differences in SID of indispensable AA between DFB and fish meal. Except for Thr, no differences in SID of indispensable AA between PEP50 and fish meal were observed, but SID of all indispensable AA, except Lys and Trp, was less (P < 0.05) in PEP2+ than in the other ingredients. In Exp. 2, 40 barrows (BW = 12.8 ± 1.4 kg) were allotted to 5 diets with 8 pigs/diet. A basal diet containing 96.4% corn and 4 diets containing corn and DFB, PEP50, PEP2+, or fish meal were formulated. The DE (5,445 kcal/kg DM) and ME (5,236 kcal/kg DM) in DFB were greater (P < 0.01) than in PEP50 (4,758 and 4,512 kcal/kg DM for DE and ME, respectively) and fish meal (4,227 and 3,960 kcal/kg DM for DE and ME, respectively). Also, DE in DFB was greater (P < 0.01) than in PEP2+ (4,935 kcal/kg DM), but ME in DFB was not different from that in PEP2+ (4,617 kcal/kg DM). Furthermore, DE in PEP50 and PEP2+ were greater (P < 0.01) than in fish meal, but ME did not differ from that in fish meal. In Exp. 3, 40 barrows (BW = 12.4 ± 1.3 kg) were randomly allotted to 5 diets with 8 pigs/diet. A P-free diet and 4 diets in which the sole source of P was from DFB, PEP50, PEP2+, or fish meal were

  12. Hydrolyzed porcine mucosa in broiler diets: effects on growth performance, nutrient retention, and histomorphology of the small intestine.

    PubMed

    Frikha, M; Mohiti-Asli, M; Chetrit, C; Mateos, G G

    2014-02-01

    The effect of including hydrolyzed porcine mucosa sprayed into soybean meal (HPM) in the diet was studied in broilers. In experiment 1 (pen study), 1,080 one-day-old chicks were used in a completely randomized design with 8 treatments arranged as a 4 × 2 factorial with 4 levels of HPM (0, 2.5, 5.0, and 7.5%) and 2 levels of Lys (1.23 and 1.38%). From d 1 to 22, HPM inclusion quadratically improved BW gain (BWG, P < 0.01) and feed conversion ratio (FCR, P < 0.01). From d 1 to 8, birds fed 1.38% Lys had higher BWG (P < 0.05) and better FCR (P < 0.05) than birds fed 1.23% Lys but only a trend (P < 0.08) for improved BWG was detected from d 1 to 22. From d 22 to 37, a period in which all birds received a common finisher diet, growth performance was not affected by the previous starter diet. In experiment 2 (battery study), birds were fed for 37 d the same diets used in the starter period of experiment 1. Broilers fed HPM had higher BWG (linear, P < 0.05; Quadratic, P < 0.05) than birds fed control diet, and birds fed 1.38% Lys had higher BWG (P < 0.01) than birds fed 1.23% Lys. From d 1 to 22, BWG (P < 0.05) and ADFI (P < 0.01) increased quadratically and FCR improved linearly (P < 0.05) with HPM inclusion. Also in this period, BWG was higher at the higher Lys level (P < 0.01). Diet did not affect intestinal histomorphology of broilers on d 8 or nutrient retention on d 22. We conclude that the inclusion of 2.5 to 5% HPM in the diet improved growth performance of broilers from d 1 to 22. An increase in Lys from 1.23 to 1.38% improved growth performance up to 15 d of age, but not thereafter. Diet did not affect villus histomorphology or nutrient retention of the small intestine.

  13. Intestinal Barrier Disturbances in Haemodialysis Patients: Mechanisms, Consequences, and Therapeutic Options

    PubMed Central

    Graham-Brown, M. P. M.; Burton, J. O.

    2017-01-01

    There is accumulating evidence that the intestinal barrier and the microbiota may play a role in the systemic inflammation present in HD patients. HD patients are subject to a number of unique factors, some related to the HD process and others simply to the uraemic milieu but with common characteristic that they can both alter the intestinal barrier and the microbiota. This review is intended to provide an overview of the current methods for measuring such changes in HD patients, the mechanisms behind these changes, and potential strategies that may mitigate these modifications. Lastly, intradialytic exercise is an increasingly employed intervention in HD patients; however the potential implications that this may have for the intestinal barrier are not known; therefore future research directions are also covered. PMID:28194419

  14. Yogurt inhibits intestinal barrier dysfunction in Caco-2 cells by increasing tight junctions.

    PubMed

    Putt, Kelley K; Pei, Ruisong; White, Heather M; Bolling, Bradley W

    2017-01-25

    Chronic inflammation disrupts intestinal barrier function and may contribute to the pathology of obesity and other diseases. The goal of this study was to determine the mechanism by which yogurt improves intestinal barrier function. Caco-2 cells were differentiated on Transwell inserts and used as a model of intestinal barrier permeability. Transepithelial electrical resistance (TEER) and flux of 4 kDa fluorescein isothiocyanate-dextran (FD) and lucifer yellow (LY) were used as indicators of monolayer integrity and paracellular permeability. Immunofluorescence microscopy and real time quantitative polymerase chain were used to assess the localization and expression of tight junction proteins known to regulate intestinal permeability. Differentiated cells were treated with a vehicle control (C), inflammatory stimulus (I) (interleukin-1β, tumor necrosis factor-α, interferon-γ, and lipopolysaccharide), or I and 0.03 g mL(-1) yogurt (IY). After 48 h, I reduced Caco-2 TEER by 46%, while IY reduced TEER by only 27% (P < 0.0001). FD and LY flux reflected TEER measurements, with IY having significantly lower permeability than I (P < 0.05). Yogurt also improved localization of occludin and zona occludens protein 1 (ZO-1) at tight junctions of differentiated Caco-2 cells. IY increased Caco-2 claudin-1, ZO-1, and occludin mRNA relative to I (P < 0.05). In a simulated digestion, the barrier-improving bioactivity of yogurt was maintained through the gastric phase, but was reduced to the level of I after intestinal digestion (P < 0.05). Therefore, yogurt improved inflammation-disrupted intestinal barrier function in a Caco-2 model by increasing tight junctions, but the beneficial effect on barrier function was reduced at latter stages of digestion.

  15. Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier.

    PubMed

    Bowie, Rachel V; Donatello, Simona; Lyes, Clíona; Owens, Mark B; Babina, Irina S; Hudson, Lance; Walsh, Shaun V; O'Donoghue, Diarmuid P; Amu, Sylvie; Barry, Sean P; Fallon, Padraic G; Hopkins, Ann M

    2012-04-15

    Intestinal epithelial barrier disruption is a feature of inflammatory bowel disease (IBD), but whether barrier disruption precedes or merely accompanies inflammation remains controversial. Tight junction (TJ) adhesion complexes control epithelial barrier integrity. Since some TJ proteins reside in cholesterol-enriched regions of the cell membrane termed lipid rafts, we sought to elucidate the relationship between rafts and intestinal epithelial barrier function. Lipid rafts were isolated from Caco-2 intestinal epithelial cells primed with the proinflammatory cytokine interferon-γ (IFN-γ) or treated with methyl-β-cyclodextrin as a positive control for raft disruption. Rafts were also isolated from the ilea of mice in which colitis had been induced in conjunction with in vivo intestinal permeability measurements, and lastly from intestinal biopsies of ulcerative colitis (UC) patients with predominantly mild or quiescent disease. Raft distribution was analyzed by measuring activity of the raft-associated enzyme alkaline phosphatase and by performing Western blot analysis for flotillin-1. Epithelial barrier integrity was estimated by measuring transepithelial resistance in cytokine-treated cells or in vivo permeability to fluorescent dextran in colitic mice. Raft and nonraft fractions were analyzed by Western blotting for the TJ proteins occludin and zonula occludens-1 (ZO-1). Our results revealed that lipid rafts were disrupted in IFN-γ-treated cells, in the ilea of mice with subclinical colitis, and in UC patients with quiescent inflammation. This was not associated with a clear pattern of occludin or ZO-1 relocalization from raft to nonraft fractions. Significantly, a time-course study in colitic mice revealed that disruption of lipid rafts preceded the onset of increased intestinal permeability. Our data suggest for the first time that lipid raft disruption occurs early in the inflammatory cascade in murine and human colitis and, we speculate, may contribute to

  16. Numbers and distribution of immune cells in the tunica mucosa of the small and large intestine of full-thickness biopsies from healthy pet cats.

    PubMed

    Marsilio, S; Kleinschmidt, S; Harder, J; Nolte, I; Hewicker-Trautwein, M

    2011-02-01

    In this study, CD3(+) T lymphocytes and IgA(+) , IgG(+) and IgM(+) plasma cells were quantified in the tunica mucosa of the intestinal tract of 12 pet cats without gastrointestinal diseases. The study included full-thickness biopsies of the duodenum, jejunum, ileum and colon. The distribution and quantification of CD3(+) T cells, IgA(+) , IgG(+) and IgM(+) plasma cells within the intestinal tunica mucosa was performed by using immunohistochemical methods and computer-aided morphometry. CD3(+) T cells were significantly prominent in the villi and their numbers increased from duodenum to ileum but decreased towards the colon. The predominant type of plasma cells was IgA(+) cells, followed by IgM(+) cells. The number of IgG(+) cells was generally low compared to the other plasma cell types investigated. The results of the vertical distribution showed that IgA(+) and IgM(+) plasma cells were most numerous in the lower crypt areas, whilst IgG(+) plasma cells accumulated in the upper crypt region with a decline towards the villi and the lower crypt areas of control cats. All types of plasma cells showed a general decline from the duodenum towards the caudal sections of the intestinal tract regarding the horizontal distribution of plasma cells. This study provides a comprehensive overview on the vertical and horizontal distribution and the number of CD3(+) T cells and IgA(+) , IgG(+) and IgM(+) plasma cells in the intestinal tunica mucosa of pet cats.

  17. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    SciTech Connect

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-05-15

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  18. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis

    PubMed Central

    Gerlach, Katharina; McKenzie, Andrew N; Neurath, Markus F; Weigmann, Benno

    2015-01-01

    As previous studies suggested that IL-9 may control intestinal barrier function, we tested the role of IL-9 in experimental T cell-mediated colitis induced by the hapten reagent 2,4,6-trinitrobenzenesulfonic acid (TNBS). The deficiency of IL-9 suppressed TNBS-induced colitis and led to lower numbers of PU.1 expressing T cells in the lamia propria, suggesting a regulatory role for Th9 cells in the experimental TNBS colitis model. Since IL-9 is known to functionally alter intestinal barrier function in colonic inflammation, we assessed the expression of tight junction molecules in intestinal epithelial cells of TNBS-inflamed mice. Therefore we made real-time PCR analyses for tight junction molecules in the inflamed colon from wild-type and IL-9 KO mice, immunofluorescent stainings and investigated the expression of junctional proteins directly in intestinal epithelial cells of TNBS-inflamed mice by Western blot studies. The results demonstrated that sealing proteins like occludin were up regulated in the colon of inflamed IL-9 KO mice. In contrast, the tight junction protein Claudin1 showed lower expression levels when IL-9 is absent. Surprisingly, the pore-forming molecule Claudin2 revealed equal expression in TNBS-treated wild-type and IL-9-deficient animals. These results illustrate the pleiotropic functions of IL-9 in changing intestinal permeability in experimental colitis. Thus, modulation of IL-9 function emerges as a new approach for regulating barrier function in intestinal inflammation. PMID:25838986

  19. Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression

    PubMed Central

    Gu, Min Jeong; Song, Sun Kwang; Park, Sung Moo; Lee, In Kyu; Yun, Cheol-Heui

    2014-01-01

    Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction. PMID:25049991

  20. Nivalenol has a greater impact than deoxynivalenol on pig jejunum mucosa in vitro on explants and in vivo on intestinal loops.

    PubMed

    Cheat, Sophal; Gerez, Juliana R; Cognié, Juliette; Alassane-Kpembi, Imourana; Bracarense, Ana Paula F L; Raymond-Letron, Isabelle; Oswald, Isabelle P; Kolf-Clauw, Martine

    2015-05-29

    The mycotoxins deoxynivalenol (DON) and nivalenol (NIV), worldwide cereal contaminants, raise concerns for animal and human gut health, following contaminated food or feed ingestion. The impact of DON and NIV on intestinal mucosa was investigated after acute exposure, in vitro and in vivo. The histological changes induced by DON and NIV were analyzed after four-hour exposure on pig jejunum explants and loops, two alternative models. On explants, dose-dependent increases in the histological changes were induced by DON and NIV, with a two-fold increase in lesion severity at 10 µM NIV. On loops, NIV had a greater impact on the mucosa than DON. The overall proliferative cells showed 30% and 13% decrease after NIV and DON exposure, respectively, and NIV increased the proliferative index of crypt enterocytes. NIV also increased apoptosis at the top of villi and reduced by almost half the proliferative/apoptotic cell ratio. Lamina propria cells (mainly immune cells) were more sensitive than enterocytes (epithelial cells) to apoptosis induced by NIV. Our results demonstrate a greater impact of NIV than DON on the intestinal mucosa, both in vitro and in vivo, and highlight the need of a specific hazard characterization for NIV risk assessment.

  1. Nivalenol Has a Greater Impact than Deoxynivalenol on Pig Jejunum Mucosa in Vitro on Explants and in Vivo on Intestinal Loops

    PubMed Central

    Cheat, Sophal; Gerez, Juliana R.; Cognié, Juliette; Alassane-Kpembi, Imourana; Bracarense, Ana Paula F. L.; Raymond-Letron, Isabelle; Oswald, Isabelle P.; Kolf-Clauw, Martine

    2015-01-01

    The mycotoxins deoxynivalenol (DON) and nivalenol (NIV), worldwide cereal contaminants, raise concerns for animal and human gut health, following contaminated food or feed ingestion. The impact of DON and NIV on intestinal mucosa was investigated after acute exposure, in vitro and in vivo. The histological changes induced by DON and NIV were analyzed after four-hour exposure on pig jejunum explants and loops, two alternative models. On explants, dose-dependent increases in the histological changes were induced by DON and NIV, with a two-fold increase in lesion severity at 10 µM NIV. On loops, NIV had a greater impact on the mucosa than DON. The overall proliferative cells showed 30% and 13% decrease after NIV and DON exposure, respectively, and NIV increased the proliferative index of crypt enterocytes. NIV also increased apoptosis at the top of villi and reduced by almost half the proliferative/apoptotic cell ratio. Lamina propria cells (mainly immune cells) were more sensitive than enterocytes (epithelial cells) to apoptosis induced by NIV. Our results demonstrate a greater impact of NIV than DON on the intestinal mucosa, both in vitro and in vivo, and highlight the need of a specific hazard characterization for NIV risk assessment. PMID:26035490

  2. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    PubMed Central

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  3. Effects of acute intra-abdominal hypertension on multiple intestinal barrier functions in rats

    PubMed Central

    Leng, Yuxin; Yi, Min; Fan, Jie; Bai, Yu; Ge, Qinggang; Yao, Gaiqi

    2016-01-01

    Intra-abdominal hypertension (IAH) is a common and serious complication in critically ill patients for which there is no well-defined treatment strategy. Here, we explored the effect of IAH on multiple intestinal barriers and discussed whether the alteration in microflora provides clues to guide the rational therapeutic treatment of intestinal barriers during IAH. Using a rat model, we analysed the expression of tight junction proteins (TJs), mucins, chemotactic factors, and Toll-like receptor 4 (TLR4) by immunohistochemistry. We also analysed the microflora populations using 16S rRNA sequencing. We found that, in addition to enhanced permeability, acute IAH (20 mmHg for 90 min) resulted in significant disturbances to mucosal barriers. Dysbiosis of the intestinal microbiota was also induced, as represented by decreased Firmicutes (relative abundance), increased Proteobacteria and migration of Bacteroidetes from the colon to the jejunum. At the genus level, Lactobacillus species and Peptostreptococcaceae incertae sedis were decreased, whereas levels of lactococci remained unchanged. Our findings outline the characteristics of IAH-induced barrier changes, indicating that intestinal barriers might be treated to alleviate IAH, and the microflora may be an especially relevant target. PMID:26980423

  4. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    PubMed Central

    Ranhotra, Harmit S.; Flannigan, Kyle L.; Brave, Martina; Mukherjee, Subhajit; Lukin, Dana J.; Hirota, Simon A.; Mani, Sridhar

    2016-01-01

    The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs. PMID:27942535

  5. Effects of l-carnitine and/or maize distillers dried grains with solubles in diets of gestating and lactating sows on the intestinal barrier functions of their offspring.

    PubMed

    Wei, Bingdong; Nie, Shaoping; Meng, Qingwei; Qu, Zhe; Shan, Anshan; Chen, Zhihui

    2016-08-01

    The objective of this study was to investigate the effects of l-carnitine and/or maize distillers dried grains with solubles (DDGS) in diets of gestating and lactating sows on the intestinal barrier functions of their offspring. The experiment was designed as a 2×2 factorial with two dietary treatments (soyabean meal v. DDGS) and two l-carnitine levels (0 v. 100 mg/kg in gestating diets and 0 v. 200 mg/kg in lactating diets). Sows (Landrace×Large White) with an average parity of 4·2 with similar body weight were randomly assigned to four groups of thirty each. Dietary supplementation with l-carnitine increased the total superoxide dismutase activity but decreased the concentration of malondialdehyde of the jejunal mucosa in newborn piglets and weaning piglets on day 21. Dietary supplementation with l-carnitine decreased the concentrations of IL-1β, IL-12 and TNF-α in the jejunal mucosa of newborn piglets and decreased the concentrations of IL-6 and TNF-α in the jejunal mucosa of weaning piglets on day 21. There was an interaction between dietary treatment and l-carnitine on the bacterial numbers of total eubacteria in the digesta of caecum in weaning piglets on day 21. Bacterial numbers of total eubacteria in weaning piglets on day 21 were significantly increased by l-carnitine only in soyabean meal diet, but there was no significant effect of l-carnitine in DDGS-based diet. Dietary supplementation with l-carnitine increased the bacterial numbers of Lactobacillus spp. and bifidobacteria spp. in the digesta of caecum in weaning piglets on day 21. Dietary supplementation with l-carnitine in sows affected the expression of tight junction proteins (claudin 1, zonula occludens-1 (ZO-1) and occludin) in the jejunal mucosa of their offspring by increasing the expression of ZO-1 mRNA in the jejunal mucosa of newborn piglets, and by increasing the expression of ZO-1 and occludin mRNA in the jejunal mucosa of weaning piglets on day 21. In conclusion, dietary

  6. Probing the immune and healing response of murine intestinal mucosa by time-lapse 2-photon microscopy of laser-induced lesions with real-time dosimetry

    PubMed Central

    Orzekowsky-Schroeder, Regina; Klinger, Antje; Freidank, Sebastian; Linz, Norbert; Eckert, Sebastian; Hüttmann, Gereon; Gebert, Andreas; Vogel, Alfred

    2014-01-01

    Gut mucosa is an important interface between body and environment. Immune response and healing processes of murine small intestinal mucosa were investigated by intravital time-lapse two-photon excited autofluorescence microscopy of the response to localized laser-induced damage. Epithelial lesions were created by 355-nm, 500-ps pulses from a microchip laser that produced minute cavitation bubbles. Size and dynamics of these bubbles were monitored using a novel interferometric backscattering technique with 80 nm resolution. Small bubbles (< 2.5 µm maximum radius) merely resulted in autofluorescence loss of the target cell. Larger bubbles (7-25 µm) affected several cells and provoked immigration of immune cells (polymorphonuclear leucocytes). Damaged cells were expelled into the lumen, and the epithelium healed within 2 hours by stretching and migration of adjacent epithelial cells. PMID:25360369

  7. Net replication of Salmonella enterica serovars Typhimurium and Choleraesuis in porcine intestinal mucosa and nodes is associated with their differential virulence.

    PubMed

    Paulin, Susan M; Jagannathan, Aparna; Campbell, June; Wallis, Timothy S; Stevens, Mark P

    2007-08-01

    Salmonella enterica is a facultative intracellular pathogen of worldwide importance and causes a spectrum of diseases depending on serovar- and host-specific factors. Oral infection of pigs with S. enterica serovar Typhimurium strain 4/74 produces acute enteritis but is rarely fatal, whereas serovar Choleraesuis strain A50 causes systemic disease with a high mortality rate. With a porcine ligated ileal loop model, we observed that systemic virulence of serovar Choleraesuis A50 is not associated with enhanced intestinal invasion, secretory responses, or neutrophil recruitment compared to serovar Typhimurium 4/74. The net growth in vivo of serovar Choleraesuis A50 and serovar Typhimurium 4/74 was monitored following oral inoculation of pigs with strains harboring pHSG422, which exhibits temperature-sensitive replication. Analysis of plasmid partitioning revealed that the enteric virulence of serovar Typhimurium 4/74 relative to that of serovar Choleraesuis A50 is associated with rapid replication in the intestinal wall, whereas systemic virulence of serovar Choleraesuis A50 is associated with enhanced persistence in intestinal mesenteric lymph nodes. Faster replication of serovar Typhimurium, compared to that of serovar Choleraesuis, in the intestinal mucosa was associated with greater induction of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-8 (IL-8), and IL-18 as detected by reverse transcriptase PCR analysis of transcripts from infected mucosa. During replication in batch culture and porcine alveolar macrophages, transcription of genes encoding components of type III secretion systems 1 (sipC) and 2 (sseC) was observed to be significantly higher in serovar Typhimurium 4/74 than in serovar Choleraesuis A50, and this may contribute to the differences in epithelial invasion and intracellular proliferation. The rapid induction of proinflammatory responses by strain 4/74 may explain why pigs confine serovar Typhimurium infection to the

  8. Bone marrow transplantation helps restore the intestinal mucosal barrier after total body irradiation in mice.

    PubMed

    Garg, Sarita; Wang, Wenze; Prabath, Biju G; Boerma, Marjan; Wang, Junru; Zhou, Daohong; Hauer-Jensen, Martin

    2014-03-01

    Bone marrow transplantation (BMT) substantially improves 10-day survival after total body irradiation (TBI), consistent with an effect on intestinal radiation death. Total body irradiation, in addition to injuring the intestinal epithelium, also perturbs the mucosal immune system, the largest immune system in the body. This study focused on how transplanted bone marrow cells (BMCs) help restore mucosal immune cell populations after sublethal TBI (8.0 Gy). We further evaluated whether transplanted BMCs: (a) home to sites of radiation injury using green fluorescent protein labeled bone marrow; and (b) contribute to restoring the mucosal barrier in vivo. As expected, BMT accelerated recovery of peripheral blood (PB) cells. In the intestine, BMT was associated with significant early recovery of mucosal granulocytes (P = 0.005). Bone marrow transplantation did not affect mucosal macrophages or lymphocyte populations at early time points, but enhanced the recovery of these cells from day 14 onward (P = 0.03). Bone marrow transplantation also attenuated radiation-induced increase of intestinal CXCL1 and restored IL-10 levels (P = 0.001). Most importantly, BMT inhibited the post-radiation increase in intestinal permeability after 10 Gy TBI (P = 0.02) and modulated the expression of tight junction proteins (P = 0.01-0.05). Green fluorescent protein-positive leukocytes were observed both in intestinal tissue and in PB. These findings strongly suggest that BMT, in addition to enhancing general hematopoietic and immune system recovery, helps restore the intestinal immune system and enhances intestinal mucosal barrier function. These findings may be important in the development and understanding of strategies to alleviate or treat intestinal radiation toxicity.

  9. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications

    PubMed Central

    Tsiaoussis, Georgios I; Assimakopoulos, Stelios F; Tsamandas, Athanassios C; Triantos, Christos K; Thomopoulos, Konstantinos C

    2015-01-01

    The intestinal lumen is a host place for a wide range of microbiota and sets a unique interplay between local immune system, inflammatory cells and intestinal epithelium, forming a physical barrier against microbial invaders and toxins. Bacterial translocation is the migration of viable or nonviable microorganisms or their pathogen-associated molecular patterns, such as lipopolysaccharide, from the gut lumen to the mesenteric lymph nodes, systemic circulation and other normally sterile extraintestinal sites. A series of studies have shown that translocation of bacteria and their products across the intestinal barrier is a commonplace in patients with liver disease. The deterioration of intestinal barrier integrity and the consulting increased intestinal permeability in cirrhotic patients play a pivotal pathophysiological role in the development of severe complications as high rate of infections, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatorenal syndrome, variceal bleeding, progression of liver injury and hepatocellular carcinoma. Nevertheless, the exact cellular and molecular mechanisms implicated in the phenomenon of microbial translocation in liver cirrhosis have not been fully elucidated yet. PMID:26301048

  10. Effect of BML-111 on the intestinal mucosal barrier in sepsis and its mechanism of action.

    PubMed

    Liu, Huaizheng; Liu, Zuoliang; Zhao, Shangping; Sun, Chuanzheng; Yang, Mingshi

    2015-08-01

    5(S),6(R)-7-trihydroxymethyl heptanoate (BML-111) is an lipoxin A4 receptor agonist, which modulates the immune response and attenuates hemorrhagic shock-induced acute lung injury. However, the role of BML-111 in sepsis and in the intestinal mucosal barrier are not well understood. Therefore, the present study was designed to investigate the effect of BML-111 on the intestinal mucosal barrier in a rat model of sepsis. Furthermore, the molecular mechanism of action of BML-111 was evaluated. The cecal ligation and puncture-induced rat model of sepsis was constructed, and BML-111 was administered at three different doses. The results revealed that BML-111 suppressed the elevation of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6, while enhancing the elevation of the anti-inflammatory cytokine transforming growth factor-β in the intestine. In addition, BML-111 significantly upregulated rat defensin-5 mRNA expression levels and downregulated the induction of cell apoptosis as well as caspase-3 activity in the intestine. All these results demonstrated that BML-111 exerted protective effects on the intestinal mucosal barrier in sepsis. Further, it was indicated that alterations in the expression of toll-like receptor (TLR)2 and TLR4 may be one of the molecular mechanisms underlying the protective effect of BML-111. The present study therefore suggested that BML-111 may be a novel therapeutic agent for sepsis.

  11. High-throughput sequencing reveals differing immune responses in the intestinal mucosa of two inbred lines afflicted with necrotic enteritis.

    PubMed

    Truong, Anh Duc; Hong, Yeong Ho; Lillehoj, Hyun S

    2015-08-15

    We investigated the necrotic enteritis (NE)-induced transcripts of immune-related genes in the intestinal mucosa of two highly inbred White Leghorn chicken lines, line 6.3 and line 7.2, which share the same MHC haplotype and show different levels of NE susceptibility using high-throughput RNA sequencing (RNA-Seq) technology. NE was induced by the previously described co-infection model using Eimeria maxima and Clostridium perfringens. The RNA-Seq generated over 38 million sequence reads for Marek's disease (MD)-resistant line 6.3 and over 40 million reads for the MD-susceptible line 7.2. Alignment of these sequences with the Gallus gallus genome database revealed the expression of over 29,900 gene transcripts induced by NE in these two lines, among which 7,841 genes were significantly upregulated and 2,919 genes were downregulated in line 6.3 chickens and 6,043 genes were significantly upregulated and 2,764 genes were downregulated in NE-induced line 7.2 compared with their uninfected controls. Analysis of 560 differentially expressed genes (DEGs) using the gene ontology database revealed annotations for 246 biological processes, 215 molecular functions, and 81 cellular components. Among the 53 cytokines and 96 cytokine receptors, 15 cytokines and 29 cytokine receptors were highly expressed in line 6.3, whereas the expression of 15 cytokines and 15 cytokine receptors was higher in line 7.2 than in line 6.3 (fold change ≥ 2, p<0.01). In a hierarchical cluster analysis of novel mRNAs, the novel mRNA transcriptome showed higher expression in line 6.3 than in line 7.2, which is consistent with the expression profile of immune-related target genes. In qRT-PCR and RNA-Seq analysis, all the genes examined showed similar responses to NE (correlation coefficient R=0.85-0.89, p<0.01) in both lines 6.3 and 7.2. This study is the first report describing NE-induced DEGs and novel transcriptomes using RNA-seq data from two inbred chicken lines showing different levels of NE

  12. Human small intestinal mucosa harbours a small population of cytolytically active CD8+ αβ T lymphocytes

    PubMed Central

    Melgar, Silvia; Bas, Anna; Hammarström, Sten; Hammarström, Marie-Louise

    2002-01-01

    Intraepithelial lymphocytes (IEL) in normal human small intestine exhibit cytotoxicity. This study was undertaken to characterize the effector cells and their mode of action. Freshly isolated jejunal IEL and lamina propria lymphocytes (LPL), as well as IEL and LPL depleted of CD4+, CD8+ and T-cell receptor (TCR)-γδ+ cells were used as effector cells in anti-CD3-mediated redirected cytotoxicity against a murine FcγR-expressing cell line. Effector cell frequencies were estimated by effector to target cell titration and limiting dilution. The capacity of IEL and LPL to kill a Fas-expressing human T-cell line was also analysed. T-cell subsets were analysed for perforin, granzyme B, Fas-ligand (FasL), tumour necrosis factor-α (TNF-α) and TNF-related apoptosis inducing ligand (TRAIL) mRNA expression by reverse transcription–polymerase chain reaction (RT-PCR). Frequencies of IEL expressing the perforin and FasL proteins were determined by immunomorphometry. Both IEL and LPL exhibited significant Ca2+-dependent, anti-CD3-mediated cytotoxicity, ≈ 30% specific lysis at the effector to target cell ratio 100. The cytotoxic cells constituted, however, only a small fraction of IEL and LPL (≈ 0·01%). CD8+ TCR-αβ+ cells accounted for virtually all the cytotoxicity and expressed mRNA for all five cytotoxic proteins. The frequency of granzyme B-expressing samples was higher in CD8+ cells than in CD4+ cells (P<0·05 and <0·01 for IEL and LPL, respectively). In addition, both IEL and LPL exhibited significant spontaneous anti-CD3-independent cytotoxicity against Fas-expressing human T cells. This killing was mediated by Fas–FasL interaction. On average, 2–3% of the IEL expressed perforin and FasL. We speculate that CD8+ memory cells accumulate in the jejunal mucosa and that the CD8+ TCR-αβ+ lymphocytes executing TCR/CD3-mediated, Ca2+-dependent cytotoxicity are classical cytotoxic T lymphocytes ‘caught in the act’ of eliminating infected epithelial cells

  13. Dietary fiber alleviates intestinal barrier dysfunction in post-trauma rats.

    PubMed

    Hou, Huichi; Ping, Xiaochun; Zhu, Yanfei; Zhao, Zengshun; Li, Yousheng; Li, Jieshou

    2010-04-01

    Damage to the intestinal barrier often occurs following severe trauma. It has been reported that enteral nutrition with dietary fiber (DF) could mitigate impairment of the intestinal barrier and might therefore be effective in clinical application; however, the conclusions from existing trials are controversial and the nature of the protective mechanism is far from clear. This study investigated the protective mechanism of dietary fiber on intestinal barrier in rats under bilateral closed femur fracture. Twenty-four Sprague-Dawley rats were divided into four groups: normal control without any manipulation, trauma control with normal feeding, DF and dietary fiber-free (NF) groups fed with Nutrison Fibre and Nutrison, respectively. The later two groups were further divided into 1, 4, 7 and 10 days post-trauma groups. The trauma caused body weight decline, promoted bacterial translocation, and decreased immune function. The levels of portal vein endoxin in DF group was significantly lower than in NF group (p=0.013). Levers of both serum TNF-alpha and IL-6 on post-trauma day 10 showed no statistical differences between DF and NF groups. The incidence of bacterial translocation recovered to normal in DF group. Only secreted immunoglobulin a (sIgA) levels in DF group was higher than in NF group (p=0.005). Early enteral nutrition with dietary fiber could alleviate damage to intestinal barrier function and decreased the incidence of bacterial translocation caused by trauma and endotoxemia in rats under extra-abdominal trauma.

  14. Zinc’s impact on intestinal barrier function and zinc trafficking during coccidial caccine challenge

    USDA-ARS?s Scientific Manuscript database

    In order to evaluate the effects of Zn supplementation on intestinal barrier function and Zn trafficking, three dietary regimens were formulated: a basal corn/SBM diet formulated with a Zn-free vitamin/mineral premix (Basal), and two Zn regimens formulated to provide 90 mg/kg total dietary Zn from ...

  15. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function

    PubMed Central

    Bode, Lars; Salvestrini, Camilla; Park, Pyong Woo; Li, Jin-Ping; Esko, Jeffrey D.; Yamaguchi, Yu; Murch, Simon; Freeze, Hudson H.

    2007-01-01

    Patients with protein-losing enteropathy (PLE) fail to maintain intestinal epithelial barrier function and develop an excessive and potentially fatal efflux of plasma proteins. PLE occurs in ostensibly unrelated diseases, but emerging commonalities in clinical observations recently led us to identify key players in PLE pathogenesis. These include elevated IFN-γ, TNF-α, venous hypertension, and the specific loss of heparan sulfate proteoglycans from the basolateral surface of intestinal epithelial cells during PLE episodes. Here we show that heparan sulfate and syndecan-1, the predominant intestinal epithelial heparan sulfate proteoglycan, are essential in maintaining intestinal epithelial barrier function. Heparan sulfate– or syndecan-1–deficient mice and mice with intestinal-specific loss of heparan sulfate had increased basal protein leakage and were far more susceptible to protein loss induced by combinations of IFN-γ, TNF-α, and increased venous pressure. Similarly, knockdown of syndecan-1 in human epithelial cells resulted in increased basal and cytokine-induced protein leakage. Clinical application of heparin has been known to alleviate PLE in some patients but its unknown mechanism and severe side effects due to its anticoagulant activity limit its usefulness. We demonstrate here that non-anticoagulant 2,3-de-O-sulfated heparin could prevent intestinal protein leakage in syndecan-deficient mice, suggesting that this may be a safe and effective therapy for PLE patients. PMID:18064305

  16. Heat Stress Reduces Intestinal Barrier Integrity and Favors Intestinal Glucose Transport in Growing Pigs

    PubMed Central

    Pearce, Sarah C.; Mani, Venkatesh; Boddicker, Rebecca L.; Johnson, Jay S.; Weber, Thomas E.; Ross, Jason W.; Rhoads, Robert P.; Baumgard, Lance H.; Gabler, Nicholas K.

    2013-01-01

    Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P = 0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P = 0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport. PMID:23936392

  17. [Researches on the change of intestinal barrier function in patients with ulcerative colitis].

    PubMed

    Shi, Tao; Wei, Jiangpeng; Liu, Gang; Han, Mei; Liu, Tong

    2015-06-23

    To discuss the variation of intestinal barrier and its clinical significance in patients with ulcerative colitis (UC). Specimens were obtained from 200 patients of UC and 40 controls respectively from March 2010 to June 2013. UC samples were classified into three groups as mild (n = 68), moderate (n = 70) and severe (n = 62) according to Mayo classification. Immunohistochemistry was performed to examine the expression of occludin, β-defensin and sIgA, which respectively reflect the changes of mechanical barrier, chemical barrier and immune barrier in intestinal tissue. The result and the clinical data were analyzed. Compared with controls, the expression of occludin and sIgA significantly decreased (28.53% ± 2.21% vs 44.28% ± 1.94%, 19.26% ± 1.09% vs 28.36% ± 2.36%, both P < 0.05), β-defensin significantly increased (29.13% ± 1.75% vs 19.71% ± 1.83%, P < 0.05) in UC group. There was a significant difference of occludin levels among different active subgroups (P < 0.05), and the levels decreased significantly with the increase of UC classification (r = -0.753, P < 0.05). β-defensin levels were significant differently among different active subgroups (P < 0.05), and the levels increased significantly with the increase of UC classification (r = 0.698, P < 0.05). There was no significant difference in the sIgA levels among the three stages (P > 0.05). In different gender, age and lesion site, there was no statistically significant difference in expression of three kinds of protein (all P > 0.05). UC patients exist intestinal barrier function injury, with the increase of UC classification, the damages of intestinal mechanical barrier and chemical barrier were more obvious.

  18. Barrier function of the nasal mucosa in health and type-2 biased airway diseases.

    PubMed

    Zhang, N; Van Crombruggen, K; Gevaert, E; Bachert, C

    2016-03-01

    The mucosal lining of the upper airways represents the outer surface of the body to the ambient air and its contents and is prepared for it as the first line of defense. Apart from the well-described physical barrier and the mucociliary clearance, a variety of systems, including the airway microbiome, antimicrobial proteins, damage-associated molecular patterns, innate lymphoid cells, epithelial-derived cytokines and chemokines, and finally the adaptive immune system, as well as eosinophils as newly appreciated defense cells form different levels of protection against and response to any possible intruder. Of interest especially for allergic airway disease, mucosal germs might not just elicit a classical Th1/Th17-biased inflammatory response, but may directly induce a type-2 mucosal inflammation. Innovative therapeutic interventions may be possible at different levels also; however, whether modulations of the innate or adaptive immune responses will finally be more successful, and how the correction of the adaptive immune response might impact on the innate side, will be determined in the near future.

  19. Monocyte and M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD.

    PubMed

    Lissner, Donata; Schumann, Michael; Batra, Arvind; Kredel, Lea-Isabel; Kühl, Anja A; Erben, Ulrike; May, Claudia; Schulzke, Jörg-Dieter; Siegmund, Britta

    2015-06-01

    Macrophages are key players in inflammatory bowel diseases (IBD). This study aimed to determine site-specific effects of defined macrophage subtypes on the integrity of the intestinal epithelial barrier. Macrophage subtypes in situ in intestinal specimens of patients with IBD were visualized by immunohistochemistry. In vitro polarization of human peripheral CD14 cells yielded M1 or M2 macrophages. The influence of primary monocytes or macrophage subtypes on epithelial barrier integrity was analyzed by transepithelial resistance measurements, Western blot analysis, confocal laser scanning microscopy, and cytometric bead array in a coculture model of primary human macrophages and layers of intestinal epithelial cell lines. The lamina propria of the inflamed intestine in patients with IBD, predominantly in Crohn's disease, is massively infiltrated by CD68 cells also positive for inducible nitric oxide synthase and tumor necrosis factor (TNF) α. The presence of M1 macrophage shifted the balance in the local macrophage compartment towards a proinflammatory state. In the coculture model, monocytes and M1 macrophages reduced transepithelial resistance as a marker for epithelial barrier integrity. The mechanisms for paracellular leakage included intracellular relocalization of tight junction proteins like claudin-2 and epithelial cell apoptosis. Determined by specific cytokine blockade, M1 macrophages exerted their deleterious effect mainly through TNF-α, whereas monocyte-mediated damage was driven by the inflammasome effector cytokines, interleukin-1β and interleukin-18. Lamina propria monocytes and M1 macrophages invading intestinal tissues directly contribute to disrupting the epithelial barrier through deregulation of tight junction proteins and induction of epithelial cell apoptosis, thus driving intestinal inflammation in IBD.

  20. Monocyte and M1 Macrophage-induced Barrier Defect Contributes to Chronic Intestinal Inflammation in IBD

    PubMed Central

    Lissner, Donata; Schumann, Michael; Batra, Arvind; Kredel, Lea-Isabel; Kühl, Anja A.; Erben, Ulrike; May, Claudia; Schulzke, Jörg-Dieter

    2015-01-01

    Background: Macrophages are key players in inflammatory bowel diseases (IBD). This study aimed to determine site-specific effects of defined macrophage subtypes on the integrity of the intestinal epithelial barrier. Methods: Macrophage subtypes in situ in intestinal specimens of patients with IBD were visualized by immunohistochemistry. In vitro polarization of human peripheral CD14+ cells yielded M1 or M2 macrophages. The influence of primary monocytes or macrophage subtypes on epithelial barrier integrity was analyzed by transepithelial resistance measurements, Western blot analysis, confocal laser scanning microscopy, and cytometric bead array in a coculture model of primary human macrophages and layers of intestinal epithelial cell lines. Results: The lamina propria of the inflamed intestine in patients with IBD, predominantly in Crohn's disease, is massively infiltrated by CD68+ cells also positive for inducible nitric oxide synthase and tumor necrosis factor (TNF) α. The presence of M1 macrophage shifted the balance in the local macrophage compartment towards a proinflammatory state. In the coculture model, monocytes and M1 macrophages reduced transepithelial resistance as a marker for epithelial barrier integrity. The mechanisms for paracellular leakage included intracellular relocalization of tight junction proteins like claudin-2 and epithelial cell apoptosis. Determined by specific cytokine blockade, M1 macrophages exerted their deleterious effect mainly through TNF-α, whereas monocyte-mediated damage was driven by the inflammasome effector cytokines, interleukin-1β and interleukin-18. Conclusions: Lamina propria monocytes and M1 macrophages invading intestinal tissues directly contribute to disrupting the epithelial barrier through deregulation of tight junction proteins and induction of epithelial cell apoptosis, thus driving intestinal inflammation in IBD. PMID:25901973

  1. Cytotoxic Th1 and Th17 cells infiltrate the intestinal mucosa of Behcet patients and exhibit high levels of TNF-α in early phases of the disease

    PubMed Central

    Emmi, Giacomo; Silvestri, Elena; Bella, Chiara Della; Grassi, Alessia; Benagiano, Marisa; Cianchi, Fabio; Squatrito, Danilo; Cantarini, Luca; Emmi, Lorenzo; Selmi, Carlo; Prisco, Domenico; D’Elios, Mario Milco

    2016-01-01

    Abstract Background: Gastrointestinal involvement is one of the most serious in Behçet disease, potentially leading to severe complications. Aim of this study was to investigate at mucosal level the T-cell responses in Behçet patients with early intestinal involvement. Methods: We isolated T cells from intestinal mucosa of 8 patients with intestinal symptoms started within 6 months. T lymphocytes were cloned and analyzed for surface phenotype and cytokines production. Results: We obtained 382 T-cell clones: 324 were CD4+ and 58 were CD8+. Within the 324 CD4+ clones, 195 were able to secrete IFN-γ and TNF-α, but not IL-4, nor IL-17 thus showing a polarized Th1 profile, whereas CD4 clones producing both IFN-γ and IL-17 (Th1/Th17 profile) were 79. Likewise, the number of CD8 clones producing type 1 cytokines was higher than those of CD8 clones producing both type 1 and 2 cytokines. Almost all intestinal-derived T-cell clones expressed perforin-mediated cytotoxicity and Fas–Fas Ligand-mediated pro-apoptotic activity. Conclusions: Our results indicate that in the early stages of the disease, both Th1 and Th17 cells drive inflammation leading to mucosal damage via abnormal and long-lasting cytokines production as well as via both perforin- and Fas–Fas ligand-mediated cytotoxicity. Finally, all the T cells at mucosal level were able to produce large amount of TNF-α, suggesting that its production is a property of intestinal T cells of patients with early active intestinal disease. These results support the therapy with anti-TNF-α agents and suggest the use of anti-IL-17 monoclonal antibodies in Behçet patients with early intestinal involvement. PMID:27930541

  2. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation.

    PubMed

    Luettig, J; Rosenthal, R; Barmeyer, C; Schulzke, J D

    2015-01-01

    The epithelial tight junction determines the paracellular water and ion movement in the intestine and also prevents uptake of larger molecules, including antigens, in an uncontrolled manner. Claudin-2, one of the 27 mammalian claudins regulating that barrier function, forms a paracellular channel for small cations and water. It is typically expressed in leaky epithelia like proximal nephron and small intestine and provides a major pathway for the paracellular transport of sodium, potassium, and fluid. In intestinal inflammation (Crohn's disease, ulcerative colitis), immune-mediated diseases (celiac disease), and infections (HIV enteropathy), claudin-2 is upregulated in small and large intestine and contributes to diarrhea via a leak flux mechanism. In parallel to that upregulation, other epithelial and tight junctional features are altered and the luminal uptake of antigenic macromolecules is enhanced, for which claudin-2 may be partially responsible through induction of tight junction strand discontinuities.

  3. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier.

    PubMed

    Zhai, Qixiao; Tian, Fengwei; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-07-15

    The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. Our previous work demonstrated that oral administration of probiotics can significantly inhibit Cd absorption in the intestines of mice, but further evidence is needed to gain insights into the related protection mode. The goal of this study was to evaluate whether probiotics can inhibit Cd absorption through routes other than the Cd binding, with a focus on gut barrier protection. In the in vitro assay, both the intervention and therapy treatments of Lactobacillus plantarum CCFM8610 alleviated Cd-induced cytotoxicity in the human intestinal cell line HT-29 and protected the disruption of tight junctions in the cell monolayers. In a mouse model, probiotics with either good Cd-binding or antioxidative ability increased fecal Cd levels and decreased Cd accumulation in the tissue of Cd-exposed mice. Compared with the Cd-only group, cotreatment with probiotics also reversed the disruption of tight junctions, alleviated inflammation, and decreased the intestinal permeability of mice. L. plantarum CCFM8610, a strain with both good Cd binding and antioxidative abilities, exhibited significantly better protection than the other two strains. These results suggest that along with initial intestinal Cd sequestration, probiotics can inhibit Cd absorption by protecting the intestinal barrier, and the protection is related to the alleviation of Cd-induced oxidative stress. A probiotic with both good Cd-binding and antioxidative capacities can be used as a daily supplement for the prevention of oral Cd exposure. The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. For the general population, food and drinking water are the main sources of Cd exposure due to the biomagnification of Cd within the food chain; therefore, the intestinal tract is the first organ that is susceptible to Cd contamination

  4. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier

    PubMed Central

    Zhai, Qixiao; Tian, Fengwei; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan

    2016-01-01

    ABSTRACT The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. Our previous work demonstrated that oral administration of probiotics can significantly inhibit Cd absorption in the intestines of mice, but further evidence is needed to gain insights into the related protection mode. The goal of this study was to evaluate whether probiotics can inhibit Cd absorption through routes other than the Cd binding, with a focus on gut barrier protection. In the in vitro assay, both the intervention and therapy treatments of Lactobacillus plantarum CCFM8610 alleviated Cd-induced cytotoxicity in the human intestinal cell line HT-29 and protected the disruption of tight junctions in the cell monolayers. In a mouse model, probiotics with either good Cd-binding or antioxidative ability increased fecal Cd levels and decreased Cd accumulation in the tissue of Cd-exposed mice. Compared with the Cd-only group, cotreatment with probiotics also reversed the disruption of tight junctions, alleviated inflammation, and decreased the intestinal permeability of mice. L. plantarum CCFM8610, a strain with both good Cd binding and antioxidative abilities, exhibited significantly better protection than the other two strains. These results suggest that along with initial intestinal Cd sequestration, probiotics can inhibit Cd absorption by protecting the intestinal barrier, and the protection is related to the alleviation of Cd-induced oxidative stress. A probiotic with both good Cd-binding and antioxidative capacities can be used as a daily supplement for the prevention of oral Cd exposure. IMPORTANCE The heavy metal cadmium (Cd) is an environmental pollutant that causes adverse health effects in humans and animals. For the general population, food and drinking water are the main sources of Cd exposure due to the biomagnification of Cd within the food chain; therefore, the intestinal tract is the first organ that is susceptible to Cd

  5. Prevention of Barrier Disruption by Heme Oxygenase-1 in Intestinal Bleeding Model.

    PubMed

    Akagi, Reiko; Akagi, Masaaki; Hatori, Yuta; Inouye, Sachiye

    2016-01-01

    In this study we investigated the effect of free heme, the local level of which was increased by bleeding, on the intestinal barrier function, using human epithelial colorectal adenocarcinoma cells (Caco-2). Our results show that the addition of hemin to the culture medium markedly disrupted the barrier function, which was significantly improved by glutamine supplementation. Although hemin treatment caused the increased expression of heme oxygenase (HO)-1, the inhibition of HO activity resulted in the aggravation of hemin-induced barrier dysfunction. Up-regulation of HO-1 by pretreatment with a low concentration of hemin almost completely prevented hemin-induced barrier dysfunction. Taken together, these observations indicate that an abnormally high level of intracellular free heme causes barrier dysfunction, probably through the modulation of proteins forming tight junctions.

  6. Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora.

    PubMed Central

    Johansson, M L; Molin, G; Jeppsson, B; Nobaek, S; Ahrné, S; Bengmark, S

    1993-01-01

    In vivo colonization by different Lactobacillus strains on human intestinal mucosa of healthy volunteers was studied together with the effect of Lactobacillus administration on different groups of indigenous bacteria. A total of 19 test strains were administered in fermented oatmeal soup containing 5 x 10(6) CFU of each strain per ml by using a dose of 100 ml of soup per day for 10 days. Biopsies were taken from both the upper jejunum and the rectum 1 day before administration was started and 1 and 11 days after administration was terminated. The administration significantly increased the Lactobacillus counts on the jejunum mucosa, and high levels remained 11 days after administration was terminated. The levels of streptococci increased by 10- to 100-fold in two persons, and the levels of sulfite-reducing clostridia in the jejunum decreased by 10- to 100-fold in three of the volunteers 1 day after administration was terminated. In recta, the anaerobic bacterium counts and the gram-negative anaerobic bacterium counts decreased significantly by the end of administration. Furthermore, a decrease in the number of members of the Enterobacteriaceae by 1,000-fold was observed on the rectal mucosa of two persons. Randomly picked Lactobacillus isolates were identified phenotypically by API 50CH tests and genotypically by the plasmid profiles of strains and by restriction endonuclease analysis of chromosomal DNAs.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8439146

  7. PHD3 Stabilizes the Tight Junction Protein Occludin and Protects Intestinal Epithelial Barrier Function*

    PubMed Central

    Chen, Ying; Zhang, Hai-Sheng; Fong, Guo-Hua; Xi, Qiu-Lei; Wu, Guo-Hao; Bai, Chen-Guang; Ling, Zhi-Qiang; Fan, Li; Xu, Yi-Ming; Qin, Yan-Qing; Yuan, Tang-Long; Sun, Heng; Fang, Jing

    2015-01-01

    Prolyl hydroxylase domain proteins (PHDs) control cellular adaptation to hypoxia. PHDs are found involved in inflammatory bowel disease (IBD); however, the exact role of PHD3, a member of the PHD family, in IBD remains unknown. We show here that PHD3 plays a critical role in maintaining intestinal epithelial barrier function. We found that genetic ablation of Phd3 in intestinal epithelial cells led to spontaneous colitis in mice. Deletion of PHD3 decreases the level of tight junction protein occludin, leading to a failure of intestinal epithelial barrier function. Further studies indicate that PHD3 stabilizes occludin by preventing the interaction between the E3 ligase Itch and occludin, in a hydroxylase-independent manner. Examination of biopsy of human ulcerative colitis patients indicates that PHD3 is decreased with disease severity, indicating that PHD3 down-regulation is associated with progression of this disease. We show that PHD3 protects intestinal epithelial barrier function and reveal a hydroxylase-independent function of PHD3 in stabilizing occludin. These findings may help open avenues for developing a therapeutic strategy for IBD. PMID:26124271

  8. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders.

    PubMed

    Kelly, John R; Kennedy, Paul J; Cryan, John F; Dinan, Timothy G; Clarke, Gerard; Hyland, Niall P

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a "leaky gut" may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function.

  9. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    PubMed Central

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  10. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    PubMed

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  11. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  12. Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice.

    PubMed

    Griffin, Laura E; Witrick, Katherine A; Klotz, Courtney; Dorenkott, Melanie R; Goodrich, Katheryn M; Fundaro, Gabrielle; McMillan, Ryan P; Hulver, Matthew W; Ponder, Monica A; Neilson, Andrew P

    2017-09-06

    Epidemiological and clinical studies suggest that grapes and grape-derived products may reduce the risk for chronic disease. Grape seed extract specifically has been gaining interest due to its reported ability to prevent weight gain, moderate hyperglycemia, and reduce inflammation. The purpose of this study was to examine the long-term effects of two doses of grape seed extract (10 and 100 mg kg(-1) body wt per d in mice) on markers of metabolic syndrome in the context of a moderately high-fat diet. After 12 weeks, the lower dose of grape seed extract was more effective at inhibiting fat gain and improving glucose tolerance and insulin sensitivity. Neither the high fat diet nor grape seed extract altered skeletal muscle substrate metabolism. Most interestingly, when examining the profile of metabolically active microbiota in the mucosa of the small intestine, cecum, and colonic tissue, grape seed extract seemed to have the most dramatic effect on small intestinal tissue, where the population of Firmicutes was lower compared to control groups. This effect was not observed in the cecal or colonic tissues, suggesting that the main alterations to gut microbiota due to flavan-3-ol supplementation occur in the small intestine, which has not been reported previously. These findings suggest that grape seed extract can prevent early changes in glucose tolerance and alter small intestinal gut microbiota, prior to the onset of skeletal muscle metabolic derangements, when grape seed extract is consumed at a low dose in the context of a moderately high fat diet.

  13. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine

    PubMed Central

    Yi, Hongbo; Zhang, Lin; Gan, Zhenshun; Xiong, Haitao; Yu, Caihua; Du, Huahua; Wang, Yizhen

    2016-01-01

    Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals. PMID:27181680

  14. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis.

    PubMed

    De Walle, Jacqueline Van; Sergent, Thérèse; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [(3)H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [(3)H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-kappaB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    SciTech Connect

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  16. Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs

    PubMed Central

    2013-01-01

    An experiment was conducted to determine how an E. coli challenge and dietary clays affect the intestinal barrier of pigs. Two groups of 32 pigs (initial BW: 6.9 ± 1.0 kg) were distributed in a 2 × 4 factorial arrangement of a randomized complete block design (2 challenge treatments: sham or E. coli, and 4 dietary treatments: control, 0.3% smectite A, 0.3% smectite B and 0.3% zeolite), with 8 replicates total. Diarrhea score, growth performance, goblet cell size and number, bacterial translocation from intestinal lumen to lymph nodes, intestinal morphology, and relative amounts of sulfo and sialo mucins were measured. The E. coli challenge reduced performance, increased goblet cell size and number in the ileum, increased bacterial translocation from the intestinal lumen to the lymph nodes, and increased ileal crypt depth. One of the clays (smectite A) tended to increase goblet cell size in ileum, which may indicate enhanced protection. In conclusion, E. coli infection degrades intestinal barrier integrity but smectite A may enhance it. PMID:24359581

  17. Intestinal mucosa remodeling by recombinant human epidermal growth factor(1-48) in neonates with severe necrotizing enterocolitis.

    PubMed

    Sullivan, Peter B; Lewindon, Peter J; Cheng, Carmen; Lenehan, Peter F; Kuo, Bo-Sheng; Haskins, Jeffrey R; Goodlad, Robert A; Wright, Nicholas A; de la Iglesia, Felix A; dela Iglesia, Felix A

    2007-03-01

    Neonatal necrotizing enterocolitis (NEC) is a common and serious acquired gastrointestinal tract condition. This clinical study assessed the potential clinical efficacy and microscopic effects of recombinant human epidermal growth factor 1-48 (EGF(1-48)) in neonates with NEC. This prospective, double-blind, randomized controlled study included 8 neonates with NEC. The study compared the effects of a 6-day continuous intravenous infusion of EGF(1-48) at 100 ng kg(-1) h(-1) against placebo. Clinical outcomes and morphological evaluation of serial rectal mucosal biopsies were assessed at baseline and 4, 7, and 14 days after starting EGF infusions. There was no difference between the clinical safety outcomes recorded for EGF(1-48) or placebo patients. Quantitative morphologic differences in the rectal mucosa biopsies were noted with EGF(1-48) treatment compared with baseline or placebo and included a statistically significant increase in the number of mitoses per mucosal crypt on study day 4, significantly increased thickness of rectal mucosa from baseline on study days 4 and 7, and increased crypt surface area of rectal mucosa in parallel with increased mucosa thickness on day 14. This study of EGF(1-48) in neonates with severe NEC showed that growth factor treatment was well tolerated and produced positive and measurable remodeling trophic effects on the gastrointestinal mucosa.

  18. Adamdec1, Ednrb and Ptgs1/Cox1, inflammation genes upregulated in the intestinal mucosa of obese rats, are downregulated by three probiotic strains.

    PubMed

    Plaza-Díaz, Julio; Robles-Sánchez, Cándido; Abadía-Molina, Francisco; Morón-Calvente, Virginia; Sáez-Lara, María José; Ruiz-Bravo, Alfonso; Jiménez-Valera, María; Gil, Ángel; Gómez-Llorente, Carolina; Fontana, Luis

    2017-05-16

    We have previously reported that administration of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 to obese Zucker-Lepr (fa/fa) rats attenuates liver steatosis and exerts anti-inflammatory effects. The goal of the present work was to investigate the modulation of gene expression in intestinal mucosa samples of obese Zucker-Lepr (fa/fa) rats fed the probiotic strains using a DNA microarray and postgenomic techniques. We also measured secretory IgA content in the gut and lipopolysaccharide (LPS)-binding protein (LBP) in serum. Expression of three genes (Adamdec1, Ednrb and Ptgs1/Cox1) was up-regulated in the intestinal mucosa of the obese rats compared with that in the rats when they were still lean. Probiotic administration down-regulated expression of Adamdec1 and Ednrb at the mRNA and protein levels and that of Ptgs1/Cox1 at the mRNA level, and this effect was in part mediated by a decrease in both macrophage and dendritic cell populations. Probiotic treatment also increased secretory IgA content and diminished the LBP concentration. Based on results reported in this work and else where, we propose a possible mechanism of action for these bacterial strains.

  19. Impaired function of the intestinal barrier in a novel sub-health rat model

    PubMed Central

    FENG, SISI; LIU, WEIDONG; ZUO, SHENGNAN; XIE, TINGYAN; DENG, HUI; ZHANG, QIUHUAN; ZHONG, BAIYUN

    2016-01-01

    Sub-health is a state featuring a deterioration in physiological function between health and illness, and the sub-health condition has surfaced as life-threatening in humans. The aim of the present study was to establish a sub-health model in rats, and investigate the function of the intestinal barrier in the sub-health rats and rats following intervention. To establish a sub-health model, the rats were subjected to a high-fat and sugar diet, motion restriction and chronic stress. Their serum glucose and triglyceride levels, immune function and adaptability were then measured. The levels of diamine oxidase and D-lactic acid in the plasma were analyzed as markers of the intestinal permeability. The protein and mRNA expression levels of anti-apoptotic YWHAZ in the colonic tissue was detected using immunohistochemical and reverse transcription-quantitative polymerase chain reaction analyses In the present study, the sub-health rat model was successfully established, and sub-health factors increased the intestinal permeability and reduced the expression of YWHAZ. Providing sub-health rats with normal living conditions did not improve the function of the intestinal barrier. In conclusion, the results of the present study demonstrated that intestinal disorders in the sub-health rat model may result from the damage caused by reduce intestinal barrier function as well as the decreased expression levels of YWHAZ. Additionally, rats in the sub-health condition did not recover following subsequent exposure to normal living conditions, suggesting that certain exercises or medical intervention may be necessary to improve sub-health symptoms. PMID:26957295

  20. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions.

    PubMed

    Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha

    2017-04-01

    Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability. Copyright © 2017 the American Physiological Society.

  1. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction.

    PubMed

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-10-14

    To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS group (65.1 ± 4.7 U/L vs

  2. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    PubMed Central

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS

  3. Intestinal permeability, leaky gut, and intestinal disorders.

    PubMed

    Hollander, D

    1999-10-01

    A major task of the intestine is to form a defensive barrier to prevent absorption of damaging substances from the external environment. This protective function of the intestinal mucosa is called permeability. Clinicians can use inert, nonmetabolized sugars such as mannitol, rhamnose, or lactulose to measure the permeability barrier or the degree of leakiness of the intestinal mucosa. Ample evidence indicates that permeability is increased in most patients with Crohn's disease and in 10% to 20% of their clinically healthy relatives. The abnormal leakiness of the mucosa in Crohn's patients and their relatives can be greatly amplified by aspirin preadministration. Permeability measurements in Crohn's patients reflect the activity, extent, and distribution of the disease and may allow us to predict the likelihood of recurrence after surgery or medically induced remission. Permeability is also increased in celiac disease and by trauma, burns, and nonsteroidal anti-inflammatory drugs. The major determinant of the rate of intestinal permeability is the opening or closure of the tight junctions between enterocytes in the paracellular space. As we broaden our understanding of the mechanisms and agents that control the degree of leakiness of the tight junctions, we will be increasingly able to use permeability measurements to study the etiology and pathogenesis of various disorders and to design or monitor therapies for their management.

  4. [Protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease].

    PubMed

    Liu, Y T; Li, Y Q; Wang, Y Z

    2016-12-20

    Objective: To investigate the protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease (NAFLD). Methods: A total of 36 healthy male Sprague-Dawley rats with a mean body weight of 180±20 g were randomly divided into control group, model group, and treatment group, with 12 rats in each group, after adaptive feeding for 1 week. The rats in the control group were given basic feed, and those in the model group and treatment group were given high-fat feed. After 12 weeks of feeding, the treatment group was given Saccharomyces boulardii (75×10(8) CFU/kg/d) by gavage, and those in the control group and model group were given isotonic saline by gavage. At the 20th week, blood samples were taken from the abdominal aorta to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), intestinal fatty acid binding protein (IFABP), tumor necrosis factor-α (TNF-α), and endotoxins. The liver pathological changes, intestinal histopathological changes, and expression of occludin in the intestinal mucosa were observed. Fecal samples were collected to measure the changes in Escherichia coli and Bacteroides. A one-way analysis of variance and the SNK test were used for comparison between multiple groups, and the rank sum test was used as the non-parametric test. Results: Compared with the control group, the model group had significantly higher body weight, liver mass, and liver index (P < 0.05), and compared with the model group, the treatment group had significant reductions in body weight, liver mass, and liver index (P < 0.05). The model group had significant increases in TG, ALT, and AST compared with the control group (P < 0.05), the treatment group had a significant reduction in AST compared with the model group (P < 0.05), and the treatment group had slight reductions in TG and ALT compared with the model group (P > 0.05). Compared with the control group

  5. Signaling pathways induced by serine proteases to increase intestinal epithelial barrier function

    PubMed Central

    Shang, Judie; Dion, Sébastien P.; Désilets, Antoine; Leduc, Richard

    2017-01-01

    Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn’s disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted

  6. Signaling pathways induced by serine proteases to increase intestinal epithelial barrier function.

    PubMed

    Lahey, Kelcie A; Ronaghan, Natalie J; Shang, Judie; Dion, Sébastien P; Désilets, Antoine; Leduc, Richard; MacNaughton, Wallace K

    2017-01-01

    Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial

  7. Effects of simulated weightlessness on tight junction protein occludin and Zonula Occluden-1 expression levels in the intestinal mucosa of rats.

    PubMed

    Ying, Chen; Chunmin, Yang; Qingsen, Liu; Mingzhou, Guo; Yunsheng, Yang; Gaoping, Mao; Ping, Wang

    2011-02-01

    This study investigated the tight junction (TJ) protein expression of the intestinal mucosa in a rat tail-suspension model under simulated weightlessness. Twenty-four Wistar rats were randomly divided into three groups: CON group (n=8), control; SUS-14 d group (n=8), tail-suspension for 14 days; SUS-21 d group (n=8), tail-suspension for 21 days. Occludin and Zonula Occluden-1 (ZO-1) expression levels were determined by immunohistochemical analysis and mRNA fluorescent quantitative PCR. Plasma levels of diamine oxidase (DAO) and d-lactate were determined using enzymatic spectrophotometry. Immunohistochemical results for occludin and ZO-1 showed disruption of the TJs in the intestinal mucosa in SUS-14 d and SUS-21 d groups. The expression levels of occludin and ZO-1 in SUS-21 d group were lower than those in SUS-14 d group, and significantly lower than those in CON group (Occldin: 0.86±0.02 vs 1.01±0.03 vs 1.63±0.03 and ZO-1: 0.82±0.01 vs 1.00±0.02 vs 1.55±0.01, P<0.01). Moreover, the levels of plasma DAO and d-lactate in SUS-21 d group were higher than those in SUS-14 d group, and significantly higher than those in CON group (DAO: 27.58±0.49 vs 20.74±0.49 vs 12.94±0.21 and d-lactate: 37.86±0.74 vs 28.26±1.01 vs 17.76±0.91, P<0.01). There were significant negative correlations between occludin or ZO-1 expression levels and DAO (r (2)=0.9014, r (2)=0.9355, P<0.01) or d-lactate levels (r (2)=0.8989, r (2)=0.9331, P<0.01). Occludin and Zo-1 were reduced in intestinal mucosa both in mRNA and protein levels in the rat tail-suspension model. The significant negative correlations between expression levels of TJs and plasma levels of DAO or d-lactate support the hypothesis that intestinal permeability is increased due to a decrease in TJ protein expression during tail-suspension from 14 days to 21 days.

  8. Effect of Zinc Supplementation on Growth Performance, Intestinal Development, and Intestinal Barrier-Related Gene Expression in Pekin Ducks.

    PubMed

    Wen, Min; Zhao, Hua; Liu, Guangmang; Chen, Xiaoling; Wu, Bing; Tian, Gang; Cai, Jingyi; Jia, Gang

    2017-09-11

    The current study was conducted to investigate the effect of zinc supplementation on the growth performance, intestinal morphology, and the transcription of the barrier function related genes in Pekin ducks. Seven-hundred and sixty-eight 1-day-old Pekin ducks were randomly assigned into six dietary treatments. Each treatment had eight replicates with 16 ducks per replicates. The ducks were fed either a corn-soybean meal basal diet or basal diets supplemented with 15, 30, 60, 120, and 240 mg zinc/kg from zinc sulfate. This experiment lasted for 5 weeks, and the jejunum sample were harvested at 14 and 35 days of age. Results have shown that diets supplemented with zinc significantly increased the duck body weight, average daily gain, and average daily feed intake in different period of experiment (P < 0.05); feed to gain ratio was decreased as the zinc level increased (P < 0.05). Zinc supplementation increased the villus height and decreased the crypt depth in jejunum of ducks (P < 0.05) at 14 and 35 days of age. The transcription of tight junction protein CLDN1, OCND, ZO-1, and ZO-3 in jejunum were increased (P < 0.05), and the messenger RNA (mRNA) levels of leak protein CLDN2 were decreased as the dietary zinc level increased (P < 0.05) at 14 and 35 days of age. The mRNA levels of chemical barrier-related genes MUC2 and TFF-2 in jejunum at 14 and 35 days of age were increased (P < 0.05) by zinc supplementation, and so did the transcription of immunological barrier-related genes lgA, pIgR, LYZ, and AvBD2 (P < 0.05). In conclusion, dietary zinc supplementation exhibited growth-promoting effect on Pekin duck, improved intestinal morphology, and enhanced the intestinal barrier integrity.

  9. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats

    PubMed Central

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-01

    AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463

  10. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats.

    PubMed

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-14

    To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14(th) day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.

  11. Binding Studies on Isolated Porcine Small Intestinal Mucosa and in vitro Toxicity Studies Reveal Lack of Effect of C. perfringens Beta-Toxin on the Porcine Intestinal Epithelium

    PubMed Central

    Roos, Simone; Wyder, Marianne; Candi, Ahmet; Regenscheit, Nadine; Nathues, Christina; van Immerseel, Filip; Posthaus, Horst

    2015-01-01

    Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine. PMID:25860161

  12. Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome.

    PubMed

    Keszthelyi, D; Troost, F J; Jonkers, D M; van Eijk, H M; Lindsey, P J; Dekker, J; Buurman, W A; Masclee, A A M

    2014-08-01

    Alterations in serotonergic (5-HT) metabolism and/or intestinal integrity have been associated with irritable bowel syndrome (IBS). To assess the effects of the precursor of 5-HT, 5-hydroxytryptophan (5-HTP), on mucosal 5-HT availability and intestinal integrity, and to assess potential differences between healthy controls and IBS patients. Fifteen IBS patients and 15 healthy volunteers participated in this randomised double-blind placebo-controlled study. Intestinal integrity was assessed by dual-sugar test and by determining the mucosal expression of tight junction proteins after ingestion of an oral bolus of 100 mg 5-HTP or placebo. Mucosal serotonergic metabolism was assessed in duodenal biopsy samples. 5-HTP administration significantly increased mucosal levels of 5-HIAA, the main metabolite of 5-HT, in both healthy controls (7.1 ± 1.7 vs. 2.5 ± 0.7 pmol/mg, 5-HTP vs. placebo, P = 0.02) and IBS patients (20.0 ± 4.8 vs. 8.1 ± 1.3 pmol/mg, 5-HTP vs. placebo, P = 0.02), with the latter group showing a significantly larger increase. Lactulose/L-rhamnose ratios were significantly lower after administration of 5-HTP (P < 0.05) in healthy controls and were accompanied by redistribution of zonula occludens-1 (ZO-1), pointing to reinforcement of the barrier. In IBS, expression of the tight junction proteins was significantly lower compared to healthy controls, and 5-HTP resulted in a further decrease in occludin expression. Oral 5-HTP induced alterations in mucosal 5-HT metabolism. In healthy controls, a reinforcement of the intestinal barrier was seen whereas such reaction was absent in IBS patients. This could indicate the presence of a serotonin-mediated mechanism aimed to reinforce intestinal barrier function, which seems to dysfunction in IBS patients. © 2014 John Wiley & Sons Ltd.

  13. Carotenoids, Retinol, and Intestinal Barrier Function in Children From Northeastern Brazil

    PubMed Central

    Vieira, Milena M.; Paik, Jisun; Blaner, William S.; Soares, Alberto M.; Mota, Rosa M.S.; Guerrant, Richard L.; Lima, Aldo A.M.

    2009-01-01

    Objectives To investigate the association of carotenoids and retinol (vitamin A) with intestinal barrier function in children in an urban community in Fortaleza, northeastern Brazil. Methods Descriptive analysis of serum carotenoids and retinol concentrations with intestinal barrier function in 102 children from an urban community, July 2000 to August 2001. Results The weight for height z score (wasting) showed that 19.6% (20/102) had mild malnutrition (–1 to –2 z score). All of the children's serum retinol concentrations were determined and none were severely deficient (≤0.35 μmol/L), 2.9% (3/102) were moderately (0.36–0.70 μmol/L) deficient, 20.6% (21/102) were mildly (0.71–1.05 μmol/L) deficient; 76.5% (78/102) were vitamin A sufficient (>1.05 μmol/L). The lactulose:mannitol (L/M) ratio was elevated (≥0.0864) in 49% (47/97) of children when compared with healthy children with normal L/M ratio (<0.0864) in the same geographic area. Serum carotenoids, lutein, β-cryptoxanthin and β-carotene showed significant inverse correlations with the L/M ratio, but not lutein after adjusting for age. Acute phase proteins (C-reactive protein and β-acid glycoprotein) were significantly inversely correlated with retinol but not with carotenoids. Retinol and retinol-binding protein were not significantly associated with L/M ratio. Conclusions These data suggest a disruption of intestinal barrier function in the paracellular pathway with low serum concentrations of carotenoids. Carotenoids may provide a better marker for disrupted intestinal barrier function than retinol-binding protein or retinol. PMID:18955868

  14. Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions.

    PubMed

    Grozdanovic, Milica M; Čavić, Milena; Nešić, Andrijana; Andjelković, Uroš; Akbari, Peyman; Smit, Joost J; Gavrović-Jankulović, Marija

    2016-03-01

    The intestinal epithelium forms a barrier that food allergens must cross in order to induce sensitization. The aim of this study was to evaluate the impact of the plant-derived food cysteine protease--actinidin (Act d1) on the integrity of intestinal epithelium tight junctions (TJs). Effects of Act d1 on the intestinal epithelium were evaluated in Caco-2 monolayers and in a mouse model by measuring transepithelial resistance and in vivo permeability. Integrity of the tight junctions was analyzed by confocal microscopy. Proteolysis of TJ protein occludin was evaluated by mass spectrometry. Actinidin (1 mg/mL) reduced the transepithelial resistance of the cell monolayer by 18.1% (after 1 h) and 25.6% (after 4 h). This loss of barrier function was associated with Act d 1 disruption of the occludin and zonula occludens (ZO)-1 network. The effect on intestinal permeability in vivo was demonstrated by the significantly higher concentration of 40 kDa FITC-dextran (2.33 μg/mL) that passed from the intestine into the serum of Act d1 treated mice in comparison to the control group (0.5 μg/mL). Human occludin was fragmented, and putative Act d1 cleavage sites were identified in extracellular loops of human occludin. Act d1 caused protease-dependent disruption of tight junctions in confluent Caco-2 cells and increased intestinal permeability in mice. In line with the observed effects of food cysteine proteases in occupational allergy, these results suggest that disruption of tight junctions by food cysteine proteases may contribute to the process of sensitization in food allergy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity.

    PubMed

    Otte, Jan-Michel; Zdebik, Anna-Elisabeth; Brand, Stephan; Chromik, Ansgar M; Strauss, Sarah; Schmitz, Frank; Steinstraesser, Lars; Schmidt, Wolfgang E

    2009-08-07

    The human cathelicidin LL-37 is involved in innate immune responses, angiogenesis and wound healing. Functions in maintenance and re-establishment of intestinal barrier integrity have not been characterized yet. Following direct and indirect stimulation of human colonic HT-29 and Caco-2 cells with LL-37 the cellular viability, rate of apoptosis, proliferation and wound healing were determined. Expression of mucins and growth factors was quantified by real-time PCR and Western blotting. Direct application of LL-37 stimulated migration in Caco-2 cells expressing the proposed LL-37 receptor P2X7. Intestinal epithelial cell (IEC) proliferation was not altered. Indirectly, LL-37 significantly enhanced IEC migration via release of growth factors from subepithelial fibroblasts and IEC. Furthermore, LL-37 induced the expression of protective mucins in IEC and abated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced apoptosis in IEC. LL-37 induced signaling is mediated in part by the P2X7 receptor, the epidermal growth factor receptor and the p38 mitogen-activated protein kinase (MAPK). LL-37 contributes to maintenance and re-establishment of the intestinal barrier integrity via direct and indirect pathways. These features, in addition to its known antimicrobial properties, suggest an important role for this peptide in intestinal homeostasis.

  16. Apoptosis in the intestinal mucosa of patients with inflammatory bowel disease: evidence of altered expression of FasL and perforin cytotoxic pathways.

    PubMed

    Souza, Heitor S P; Tortori, Claudio J A; Castelo-Branco, Morgana T L; Carvalho, Ana Teresa P; Margallo, Victor S; Delgado, Carlos F S; Dines, Ilana; Elia, Celeste C S

    2005-05-01

    Abnormal apoptosis may result in the persistence of activated intestinal T-cells in inflammatory bowel disease (IBD). We investigated apoptosis in distinct mucosal compartments, and the expression of Fas/Fas ligand and perforin in the inflamed and non-inflamed intestinal mucosa of patients with IBD. Colon specimens from 15 patients with ulcerative colitis (UC) and inflamed and non-inflamed mucosa from 15 patients with Crohn's disease (CD) were analysed for densities and distribution of apoptotic cells determined by the terminal deoxynucleotidyltransferase-mediated dUDP-biotin nick-end labelling (TUNEL) method. Fas, FasL, and perforin-expressing cells were assessed by immunoperoxidase, and with anti-CD3, anti-CD20 and anti-CD68, by double immunofluorescence with confocal microscopy. Quantitative analysis was performed using a computer-assisted image analyser. Colonic lamina propria (LP) and epithelium from patients with UC showed higher rates of apoptosis than controls, but no difference was shown regarding patients with CD. In LP, co-expression of Fas was reduced with T-cells in inflamed CD mucosa, and with macrophages in all patients with IBD. No difference was found in the expression of Fas on B-cells. Rates of FasL-expressing cells in LP were higher in IBD than in controls, with no correlation with the rates of apoptosis. Rates of perforin-expressing cells in LP were greater in UC than in controls, and correlated to the rates of apoptosis. No difference was shown regarding the inflamed and non-inflamed CD mucosa. Rates of FasL and perforin-expressing intra-epithelial lymphocytes showed no difference among groups. Increased expression of FasL in IBD colonic LP not parallelled by Fas on T-cells and macrophages may indicate a reduced susceptibility to the Fas/FasL-mediated apoptosis of lymphoid cells. Expression of perforin is correlated to the tissue damage, and may represent the enhancement of a distinct cytotoxic pathway in UC.

  17. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    PubMed Central

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  18. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling.

    PubMed

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A; Topping, David L

    2016-05-07

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  19. The Bacterial Virulence Factor Lymphostatin Compromises Intestinal Epithelial Barrier Function by Modulating Rho GTPases

    PubMed Central

    Babbin, Brian A.; Sasaki, Maiko; Gerner-Schmidt, Kirsten W.; Nusrat, Asma; Klapproth, Jan-Michael A.

    2009-01-01

    Lymphocyte inhibitory factor A (lifA) in Citrobacter rodentium encodes the large toxin lymphostatin, which contains two enzymatic motifs associated with bacterial pathogenesis, a glucosyltransferase and a protease. Our aim was to determine the effects of each lymphostatin motif on intestinal epithelial-barrier function. In-frame mutations of C. rodentium lifA glucosyltransferase (CrGlM21) and protease (CrPrM5) were generated by homologous recombination. Infection of both model intestinal epithelial monolayers and mice with C. rodentium wild type resulted in compromised epithelial barrier function and mislocalization of key intercellular junction proteins in the tight junction and adherens junction. In contrast, CrGlM21 was impaired in its ability to reduce barrier function and influenced the tight junction proteins ZO-1 and occludin. CrPrM5 demonstrated decreased effects on the adherens junction proteins β-catenin and E-cadherin. Analysis of the mechanisms revealed that C. rodentium wild type differentially influenced Rho GTPase activation, suppressed Cdc42 activation, and induced Rho GTPase activation. CrGlM21 lost its suppressive effects on Cdc42 activation, whereas CrPrM5 was unable to activate Rho signaling. Rescue experiments using constitutively active Cdc42 or C3 exotoxin to inhibit Rho GTPase supported a role of Rho GTPases in the epithelial barrier compromise induced by C. rodentium. Taken together, our results suggest that lymphostatin is a bacterial virulence factor that contributes to the disruption of intestinal epithelial-barrier function via the modulation of Rho GTPase activities. PMID:19286565

  20. Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens.

    PubMed

    Antonissen, Gunther; Van Immerseel, Filip; Pasmans, Frank; Ducatelle, Richard; Janssens, Geert P J; De Baere, Siegrid; Mountzouris, Konstantinos C; Su, Shengchen; Wong, Eric A; De Meulenaer, Bruno; Verlinden, Marc; Devreese, Mathias; Haesebrouck, Freddy; Novak, Barbara; Dohnal, Ilse; Martel, An; Croubels, Siska

    2015-12-23

    Deoxynivalenol (DON) and fumonisins (FBs) are secondary metabolites produced by Fusarium fungi that frequently contaminate broiler feed. The aim of this study was to investigate the impact of DON and/or FBs on the intestinal barrier in broiler chickens, more specifically on the mucus layer and antioxidative response to oxidative stress. One-day-old broiler chicks were divided into four groups, each consisting of eight pens of seven birds each, and were fed for 15 days either a control diet, a DON-contaminated diet (4.6 mg DON/kg feed), a FBs-contaminated diet (25.4 mg FB1 + FB2/kg feed), or a DON+FBs-contaminated diet (4.3 mg DON and 22.9 mg FB1 + FB2/kg feed). DON and FBs affected the duodenal mucus layer by suppressing intestinal mucin (MUC) 2 gene expression and altering the mucin monosaccharide composition. Both mycotoxins decreased gene expression of the intestinal zinc transporter (ZnT)-1 and regulated intracellular methionine homeostasis, which are both important for preserving the cell's critical antioxidant activity. Feeding a DON- and/or FBs-contaminated diet, at concentrations close to the European Union maximum guidance levels (5 mg DON and 20 mg FB1 + FB2/kg feed) changes the intestinal mucus layer and several intestinal epithelial antioxidative mechanisms.

  1. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier

    PubMed Central

    Gouyer, Valérie; Dubuquoy, Laurent; Robbe-Masselot, Catherine; Neut, Christel; Singer, Elisabeth; Plet, Ségolène; Geboes, Karel; Desreumaux, Pierre; Gottrand, Frédéric; Desseyn, Jean-Luc

    2015-01-01

    A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent–invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases. PMID:25974250

  2. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury.

    PubMed

    Cresci, Gail A; Glueck, Bryan; McMullen, Megan R; Xin, Wei; Allende, Daniella; Nagy, Laura E

    2017-09-01

    Impaired gut-liver axis is a potential factor contributing to alcoholic liver disease. Ethanol depletes intestinal integrity and causes gut dysbiosis. Butyrate, a fermentation byproduct of gut microbiota, is altered negatively following chronic ethanol exposure. This study aimed to determine whether prophylactic tributyrin could protect the intestinal barrier and liver in mice during combined chronic-binge ethanol exposure. C57BL/6J mice exposed to 5% v/v ethanol-containing diet for 10 days received a single ethanol gavage (5 g/kg) 9 h before euthanasia. Control mice were isocalorically pair-fed maltose dextrin for ethanol. Diets were supplemented (5 mM) with tributyrin or glycerol. Intestine and liver disease activity was assessed histologically. Protein and mRNA expression of tight junction (TJ) proteins, toll-like receptors, and tumor necrosis factor-alpha were assessed. Caco-2 monolayers with or without ethanol exposure and/or sodium butyrate were used to test butyrate's direct effects on intestinal integrity. Chronic-binge ethanol feeding impaired intestinal TJ protein co-localization staining; however, tributyrin co-treatment mitigated these effects. Ethanol depleted TJ and transepithelial electrical resistance in Caco-2 monolayers, but butyrate co-treatment reduced these effects. Hepatic toll-like receptor mRNA expression and tumor necrosis factor-alpha protein expression was induced by ethanol; however, the response was significantly dampened in mice co-treated with tributyrin. Tributyrin altered localization of both neutrophils and single hepatocyte death: Leukocytes and apoptotic hepatocytes localized predominantly around the portal tract in ethanol-only treated mice, whereas localization predominated around the central vein in ethanol-tributyrin mice. Prophylactic tributyrin supplementation mitigated effects of combined chronic-binge ethanol exposure on disruption of intestinal TJ localization and intestinal permeability and liver injury. © 2017

  3. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    PubMed

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  4. Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota

    PubMed Central

    Ma, Ning; Wu, Yi; Xie, Fei; Du, Kexin; Wang, Yuan; Shi, Linxin; Ji, Linbao; Liu, Tianyi; Ma, Xi

    2017-01-01

    The effects of dimethyl fumarate (DMF) on mycotoxins and animal growth performance are well documented. However, its mechanism of anti-mildew effects is still unknown. The current study investigated how DMF detoxified the mycotoxin and improved the growth performance using BALB/c mice model, especially its effects on intestinal barrier function and gut micro-ecology. Our study also compared with the ultraviolet radiation (UR) treatment, a traditional anti-mildew control (TC). The results indicated that the DMF treatment had a lower contents of mycotoxin, better growth performance and improved mucosal morphology (P < 0.05), accompanied with the decreased intestinal permeability and the tighter gut barrier. Moreover, the efficiency of DMF was better than TC (P < 0.05). 16S rRNA gene sequence analysis revealed that the richness and diversity of bacteria was increased in DMF treatment. The most abundant OTUs belonged to Firmicutes and Bacteroidetes, and their changes in DMF were more moderate than the TC group, suggesting a more stable micro-ecology and the positive impact of DMF on the biodiversity of intestine. Specifically, the increased abundance of bacteria producing short-chain fatty acids (SCFAs), such as Gemella, Roseburia, Bacillus and Bacteroides in DMF group and prebiotics such as Lactobacillus in TC group, suggested a more healthier microbial composition and distribution. These findings supported that DMF had significant effects on animal's growth performance and intestinal barrier function by modulating the pathway of nutrient absorption and increasing the diversity and balance of gut microbes, which also illuminate that DMF is more efficient than traditional anti-mildew method. PMID:28574825

  5. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    PubMed

    Catanzaro, Daniela; Rancan, Serena; Orso, Genny; Dall'Acqua, Stefano; Brun, Paola; Giron, Maria Cecilia; Carrara, Maria; Castagliuolo, Ignazio; Ragazzi, Eugenio; Caparrotta, Laura; Montopoli, Monica

    2015-01-01

    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the

  6. Intestinal Barrier Maturation in Very Low Birthweight Infants: Relationship to Feeding and Antibiotic Exposure.

    PubMed

    Saleem, Bushra; Okogbule-Wonodi, Adora C; Fasano, Alessio; Magder, Laurence S; Ravel, Jacques; Kapoor, Shiv; Viscardi, Rose M

    2017-04-01

    To test the hypothesis that feeding and antibiotic exposures affect intestinal barrier maturation in preterm infants, we serially measured intestinal permeability (IP) biomarkers in infants <33 weeks gestation (gestational age [GA]) during the first 2 weeks of life. Eligible infants <33 weeks GA were enrolled within 4 days of birth in a prospective study of IP biomarkers (NCT01756040). Study participants received the nonmetabolized sugars lactulose/rhamnose enterally on study days 1, 8, and 15 and lactulose/rhamnose were measured in urine by high-performance liquid chromatography. Serum zonulin and fecal alpha-1-anti-trypsin, 2 other IP markers, were measured by semiquantitative Western blot and ELISA, respectively. In a cohort of 43 subjects, the lactulose/rhamnose ratio was increased on day 1 and decreased over 2 weeks, but remained higher in infants born at ≤28 weeks of gestation compared with IP in infants born at >28 weeks of gestation. Exclusive breastmilk feeding was associated with more rapid maturation in intestinal barrier function. A cluster analysis of 35 subjects who had urine samples from all time points revealed 3 IP patterns (cluster 1, normal maturation: n = 20 [57%]); cluster 2, decreased IP during the first week and subsequent substantial increase: n = 5 [14%]); and cluster 3, delayed maturation: n = 10 [29%]). There were trends toward more prolonged antibiotic exposure (P = .092) and delayed initiation of feeding ≥4 days (P = .064) in infants with abnormal IP patterns. Intestinal barrier maturation in preterm infants is GA and postnatal age dependent, and is influenced by feeding with a maturational effect of breastmilk feeding and possibly by antibiotic exposures. ClinicalTrials.gov: NCT01756040. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage

    PubMed Central

    Catanzaro, Daniela; Rancan, Serena; Orso, Genny; Dall’Acqua, Stefano; Brun, Paola; Giron, Maria Cecilia; Carrara, Maria; Castagliuolo, Ignazio; Ragazzi, Eugenio; Caparrotta, Laura; Montopoli, Monica

    2015-01-01

    Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the

  8. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken.

    PubMed

    Chen, Z; Xie, J; Wang, B; Tang, J

    2014-10-01

    To explore the effect of dietary γ-aminobutyric acid (GABA) on digestive enzyme activity, absorption function and immune function of intestinal mucosa in heat-stressed Wenchang chicken were studied. One-day-old male Wenchang chickens were randomly divided into a control group (CK), heat stress group (HS), and GABA+HS group. The chickens from the GABA+HS group were administered with 0.2 mL of GABA solution daily. Chickens from HS and GABA+HS groups were subjected to heat stress treatment at 40 ± 0.5°C for 2 h during 1300 to 1500 h every day. Blood was drawn and 0.5 cm-long duodenum, jejunum, and ileum were collected from the chickens on d 3, 5, 7, 9, 12, and 15. Results showed that the activity of Ca²⁺-Mg²⁺-adenosine triphosphatase (ATPase), Na⁺-K⁺-ATPase, maltase, sucrase, and alkaline phosphatase, the contents of secretory IgA, glutathione, and d-xylose, and the number of lymphocytes in HS group were significantly lower than those in the CK group. Among them, some were rescued after the treatment of GABA as the time extension. For maltase, d-xylose, alkaline phosphatase, and Na⁺-K⁺-ATPase, it required 5 to 7 d for achieving the significant effect. For sucrase, 12 d for the alleviation effect was required. In the case of other parameters, no alleviation was observed during the whole period of the study. We have concluded that HS can inhibit the activity of digestive enzymes and reduce absorption and immune functions of intestinal mucosa. γ-Aminobutyric acid can effectively alleviate these inhibitory effects.

  9. Effect of vitamin A deficiency on permeability of the small intestinal mucosa for macromolecules in adult rats

    SciTech Connect

    Gmoshinskii, I.V.; Khvylya, S.I.; Kon', I.Ya.

    1987-07-01

    The authors study the effect of experimental vitamin A deficiency on absorption of macromolecules of hen's ovalbumin in the intestine. An electron-microscopic study of permeability of small intestine enterocytes for particles of colloidal lanthanum hydroxide La(OH)/sub 3/ was carried out at the same time. The concentration of unsplit hen's ovalbumin in the blood of the rats used in the experiment was determined by competitive radioimmunoassay. Samples of serum were incubated with indicator doses of /sup 125/I-OA. Radioactivity of the precipitates was measured.

  10. CLMP-Mediated Regulation of Intestinal Homeostasis in IBD

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0333 TITLE: CLMP-mediated regulation of intestinal homeostasis in...Sep 2013 – 29 Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0333 CLMP-mediated regulation of intestinal ... intestinal mucosa is composed by a single layer of epithelial cells that forms a selective physical barrier allowing the passage of nutrients and solutes

  11. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    PubMed Central

    Yu, Qinghua; Yuan, Lixia; Deng, Jun; Yang, Qian

    2015-01-01

    Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells), or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus) C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK, and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection. PMID:25859435

  12. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression.

    PubMed

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine.

  13. Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression

    PubMed Central

    Watari, Akihiro; Hasegawa, Maki; Yagi, Kiyohito; Kondoh, Masuo

    2016-01-01

    Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine. PMID:26727128

  14. Human intestinal mucosa-associated Lactobacillus and Bifidobacterium strains with probiotic properties modulate IL-10, IL-6 and IL-12 gene expression in THP-1 cells.

    PubMed

    Čitar, M; Hacin, B; Tompa, G; Štempelj, M; Rogelj, I; Dolinšek, J; Narat, M; Matijašić, B Bogovič

    2015-01-01

    Lactobacilli and bifidobacteria are considered one of the permanent genera of the physiological human intestinal microbiota and represent an enormous pool of potential probiotic candidates. Approximately 450 isolates of presumptive Lactobacillus or Bifidobacterium strains were obtained from bioptic samples of colonic and ileal mucosa from 15 adolescents aged 12 to 18 years. On the basis of randomly amplified polymorphic DNA (RAPD)-PCR analysis, 20 strains were selected for further taxonomic classification and characterisation, as well as assessment of probiotic properties and safety. Importantly, selected strains showed the capability of colonising different parts of the intestine. The most frequently isolated species was Lactobacillus paracasei followed by Lactobacillus fermentum. The majority of isolates were susceptible to antimicrobials of human and veterinary importance, however, tetracycline and/or erythromycin resistance was observed in Lactobacillus plantarum and L. fermentum strains. Thirteen strains were able to ferment more than 19 different carbon sources and three out of five tested strains exerted antagonistic activity against several different indicator strains. Two Lactobacillus isolates (L. paracasei L350 and L. fermentum L930 bb) and one Bifidobacterium isolate (Bifidobacterium animalis subsp. animalis IM386) fulfilled in vitro selection criteria for probiotic strains and exhibited strong downregulation of pro-inflammatory cytokines IL-6 and IL-12 and upregulation of anti-inflammatory IL-10. The selected strains represent suitable candidates for further studies regarding their positive influence on host health and could play an important role in ameliorating the symptoms of inflammatory bowel diseases.

  15. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function

    PubMed Central

    Wu, Richard Y.; Abdullah, Majd; Määttänen, Pekka; Pilar, Ana Victoria C.; Scruten, Erin; Johnson-Henry, Kathene C.; Napper, Scott; O’Brien, Catherine; Jones, Nicola L.; Sherman, Philip M.

    2017-01-01

    Prebiotics are non-digestible oligosaccharides that promote the growth of beneficial gut microbes, but it is unclear whether they also have direct effects on the intestinal mucosal barrier. Here we demonstrate two commercial prebiotics, inulin and short-chain fructo-oligosaccharide (scFOS), when applied onto intestinal epithelia in the absence of microbes, directly promote barrier integrity to prevent pathogen-induced barrier disruptions. We further show that these effects involve the induction of select tight junction (TJ) proteins through a protein kinase C (PKC) δ-dependent mechanism. These results suggest that in the absence of microbiota, prebiotics can directly exert barrier protective effects by activating host cell signaling in the intestinal epithelium, which represents a novel alternative mechanism of action of prebiotics. PMID:28098206

  16. Adaptive HIV-specific B cell-derived humoral immune defenses of the intestinal mucosa in children exposed to HIV via breast-feeding.

    PubMed

    Moussa, Sandrine; Jenabian, Mohammad-Ali; Gody, Jean Chrysostome; Léal, Josiane; Grésenguet, Gérard; Le Faou, Alain; Bélec, Laurent

    2013-01-01

    We evaluated whether B cell-derived immune defenses of the gastro-intestinal tract are activated to produce HIV-specific antibodies in children continuously exposed to HIV via breast-feeding. Couples of HIV-1-infected mothers (n = 14) and their breastfed non HIV-infected (n = 8) and HIV-infected (n = 6) babies, and healthy HIV-negative mothers and breastfed babies (n = 10) as controls, were prospectively included at the Complexe Pédiatrique of Bangui, Central African Republic. Immunoglobulins (IgA, IgG and IgM) and anti-gp160 antibodies from mother's milk and stools of breastfed children were quantified by ELISA. Immunoaffinity purified anti-gp160 antibodies were characterized functionally regarding their capacity to reduce attachment and/or infection of R5- and X4- tropic HIV-1 strains on human colorectal epithelial HT29 cells line or monocyte-derived-macrophages (MDM). The levels of total IgA and IgG were increased in milk of HIV-infected mothers and stools of HIV-exposed children, indicating the activation of B cell-derived mucosal immunity. Breast milk samples as well as stool samples from HIV-negative and HIV-infected babies exposed to HIV by breast-feeding, contained high levels of HIV-specific antibodies, mainly IgG antibodies, less frequently IgA antibodies, and rarely IgM antibodies. Relative ratios of excretion by reference to lactoferrin calculated for HIV-specific IgA, IgG and IgM in stools of HIV-exposed children were largely superior to 1, indicating active production of HIV-specific antibodies by the intestinal mucosa. Antibodies to gp160 purified from pooled stools of HIV-exposed breastfed children inhibited the attachment of HIV-1NDK on HT29 cells by 63% and on MDM by 77%, and the attachment of HIV-1JRCSF on MDM by 40%; and the infection of MDM by HIV-1JRCSF by 93%. The intestinal mucosa of children exposed to HIV by breast-feeding produces HIV-specific antibodies harbouring in vitro major functional properties against HIV. These

  17. Adaptive HIV-Specific B Cell-Derived Humoral Immune Defenses of the Intestinal Mucosa in Children Exposed to HIV via Breast-Feeding

    PubMed Central

    Moussa, Sandrine; Jenabian, Mohammad-Ali; Gody, Jean Chrysostome; Léal, Josiane; Grésenguet, Gérard; Le Faou, Alain; Bélec, Laurent

    2013-01-01

    Background We evaluated whether B cell-derived immune defenses of the gastro-intestinal tract are activated to produce HIV-specific antibodies in children continuously exposed to HIV via breast-feeding. Methods Couples of HIV-1-infected mothers (n = 14) and their breastfed non HIV-infected (n = 8) and HIV-infected (n = 6) babies, and healthy HIV-negative mothers and breastfed babies (n = 10) as controls, were prospectively included at the Complexe Pédiatrique of Bangui, Central African Republic. Immunoglobulins (IgA, IgG and IgM) and anti-gp160 antibodies from mother’s milk and stools of breastfed children were quantified by ELISA. Immunoaffinity purified anti-gp160 antibodies were characterized functionally regarding their capacity to reduce attachment and/or infection of R5- and X4- tropic HIV-1 strains on human colorectal epithelial HT29 cells line or monocyte-derived-macrophages (MDM). Results The levels of total IgA and IgG were increased in milk of HIV-infected mothers and stools of HIV-exposed children, indicating the activation of B cell-derived mucosal immunity. Breast milk samples as well as stool samples from HIV-negative and HIV-infected babies exposed to HIV by breast-feeding, contained high levels of HIV-specific antibodies, mainly IgG antibodies, less frequently IgA antibodies, and rarely IgM antibodies. Relative ratios of excretion by reference to lactoferrin calculated for HIV-specific IgA, IgG and IgM in stools of HIV-exposed children were largely superior to 1, indicating active production of HIV-specific antibodies by the intestinal mucosa. Antibodies to gp160 purified from pooled stools of HIV-exposed breastfed children inhibited the attachment of HIV-1NDK on HT29 cells by 63% and on MDM by 77%, and the attachment of HIV-1JRCSF on MDM by 40%; and the infection of MDM by HIV-1JRCSF by 93%. Conclusions The intestinal mucosa of children exposed to HIV by breast-feeding produces HIV-specific antibodies harbouring in vitro major

  18. Role of defective methylation reactions in ethanol-induced dysregulation of intestinal barrier integrity.

    PubMed

    Thomes, Paul G; Osna, Natalia A; Bligh, Sarah M; Tuma, Dean J; Kharbanda, Kusum K

    2015-07-01

    Alcoholic liver disease (ALD) is a major healthcare challenge worldwide. Emerging evidence reveals that ethanol administration disrupts the intestinal epithelial tight junction (TJ) complex; this defect allows for the paracellular translocation of gut-derived pathogenic molecules to reach the liver to cause inflammation and progressive liver injury. We have previously demonstrated a causative role of impairments in liver transmethylation reactions in the pathogenesis of ALD. We have further shown that treatment with betaine, a methylation agent that normalizes liver methylation potential, can attenuate ethanol-induced liver injury. Herein, we explored whether alterations in methylation reactions play a causative role in disrupting intestinal mucosal barrier function by employing an intestinal epithelial cell line. Monolayers of Caco-2 cells were exposed to ethanol or a-pan methylation reaction inhibitor, tubercidin, in the presence and absence of betaine. The structural and functional integrity of intestinal epithelial barrier was then examined. We observed that exposure to either ethanol or tubercidin disrupted TJ integrity and function by decreasing the localization of TJ protein occludin-1 to the intracellular junctions, reducing transepithelial electrical resistance and increasing dextran influx. All these detrimental effects of ethanol and tubercidin were attenuated by co-treatment with betaine. We further show that the mechanism of betaine protection was through BHMT-mediated catalysis. Collectively, our data suggest a novel mechanism for alcohol-induced gut leakiness and identifies the importance of normal methylation reactions in maintaining TJ integrity. We also propose betaine as a potential therapeutic option for leaky gut in alcohol-consuming patients who are at the risk of developing ALD. Published by Elsevier Inc.

  19. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote.

    PubMed

    Kuge, Tomoo; Greenwood-Van Meerveld, Beverley; Sokabe, Masahiro

    2006-07-24

    Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function.

  20. Anti-mouse CD52 monoclonal antibody ameliorates intestinal epithelial barrier function in interleukin-10 knockout mice with spontaneous chronic colitis.

    PubMed

    Wang, Honggang; Dong, Jianning; Shi, Peiliang; Liu, Jianhui; Zuo, Lugen; Li, Yi; Gong, Jianfeng; Gu, Lili; Zhao, Jie; Zhang, Liang; Zhang, Wei; Zhu, Weiming; Li, Ning; Li, Jieshou

    2015-02-01

    Intestinal inflammation causes tight junction changes and death of epithelial cells, and plays an important role in the development of Crohn's disease (CD). CD52 monoclonal antibody (CD52 mAb) directly targets the cell surface CD52 and is effective in depleting mature lymphocytes by cytolytic effects in vivo, leading to long-lasting changes in adaptive immunity. The aim of this study was to investigate the therapeutic effect of CD52 mAb on epithelial barrier function in animal models of IBD. Interleukin-10 knockout mice (IL-10(-/-) ) of 16 weeks with established colitis were treated with CD52 mAb once a week for 2 weeks. Severity of colitis, CD4(+) lymphocytes and cytokines in the lamina propria, epithelial expression of tight junction proteins, morphology of tight junctions, tumour necrosis factor-α (TNF-α)/TNF receptor 2 (TNFR2) mRNA expression, myosin light chain kinase (MLCK) expression and activity, as well as epithelial apoptosis in proximal colon were measured at the end of the experiment. CD52 mAb treatment effectively attenuated colitis associated with decreased lamina propria CD4(+) lymphocytes and interferon-γ/IL-17 responses in colonic mucosa in IL-10(-/-) mice. After CD52 mAb treatment, attenuation of colonic permeability, increased epithelial expression and correct localization of tight junction proteins (occludin and zona occludens protein-1), as well as ameliorated tight junction morphology were observed in IL-10(-/-) mice. CD52 mAb treatment also effectively suppressed the epithelial apoptosis, mucosa TNF-α mRNA expression, epithelial expression of long MLCK, TNFR2 and phosphorylation of MLC. Our results indicated that anti-CD52 therapy may inhibit TNF-α/TNFR2-mediated epithelial apoptosis and MLCK-dependent tight junction permeability by depleting activated T cells in the gut mucosa.

  1. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium.

    PubMed

    Vaziri, Nosratola D; Goshtasbi, Nisa; Yuan, Jun; Jellbauer, Stefan; Moradi, Hamid; Raffatellu, Manuela; Kalantar-Zadeh, Kamyar

    2012-01-01

    Chronic kidney disease (CKD) causes intestinal barrier dysfunction which by allowing influx of endotoxin and other noxious products contributes to the CKD-associated systemic inflammation and uremic toxicity. We have recently shown that intestinal barrier dysfunction in CKD animals is due to degradation of transcellular (claudin-1 and occludin) and intracellular (ZO1) constituents of epithelial tight junction (TJ). This study determined whether CKD-associated disruption of TJ is mediated by retained uremic toxins/metabolites and, if so, whether they are removed by hemodialysis. The TJ-forming human enterocytes (T84 cells) were seeded on the Transwell plates and utilized when transepithelial electrical resistance (TER) exceeded 1,000 mΩ/cm(2) to ensure full polarization and TJ formation. The cells were then incubated for 24 h in media containing 10% pre- or posthemodialysis plasma from end-stage renal disease (ESRD) patients or healthy individuals. TER was then measured and cells were processed for Western blot and immunohistological analyses. Compared with the control plasma, incubation in media containing predialysis plasma from ESRD patients resulted in a marked drop in TER pointing to increased epithelial permeability. This was accompanied by significant reductions in claudin-1 (85%), occludin (15%), and ZO1 (70%) abundance. The severity of TJ damage and dysfunction was significantly less in cells exposed to the postdialysis in comparison to predialysis plasma. These findings point to the presence of as-yet unidentified product(s) in the uremic plasma capable of depleting epithelial TJ. Exposure to uremic milieu damages the intestinal epithelial TJ and impairs its barrier function, events which are mediated by agents which are partially removed by hemodialysis. Copyright © 2012 S. Karger AG, Basel.

  2. Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs.

    PubMed

    Peace, Ralph Michael; Campbell, Joy; Polo, Javier; Crenshaw, Joe; Russell, Louis; Moeser, Adam

    2011-07-01

    The objective of this study was to evaluate the effects of dietary inclusion levels of spray-dried porcine plasma (SDPP) on postweaning (PW) intestinal barrier function, mucosal inflammation, and clinical indices of gut health in pigs. Ex vivo Ussing chamber studies were conducted to measure Ileal and colonic barrier function in terms of transepithelial electrical resistance and paracellular flux of (3)H-mannitol and (14)C-inulin. Intestinal inflammation was assessed by histological analysis and mucosal levels of proinflammatory cytokines. Dietary inclusion of 2.5 and 5% SDPP reduced colonic paracellular permeability of (14)C-inulin compared with controls (0% SDPP) on d 7 PW. Both 2.5 and 5% dietary SDPP reduced ileal (3)H-mannitol and (14)C-inulin permeability on d 14 PW. The 5% SDPP diet reduced colonic short-circuit current, an index of net electrogenic ion transport, and fecal scores when measured on d 7 and 14 PW compared with the control and 2.5% SDPP groups (P < 0.05). Histological analysis revealed fewer lamina propria cells in ileum and colon from pigs fed diets containing 2.5 and 5% SDPP on d 7 and 14 PW. Levels of the proinflammatory cytokine TNFα were reduced in the colon but not ileum from pigs fed the 5% SDPP on d 7 and 14 PW compared with controls (P < 0.05). IFNγ levels were lower than in controls in both of the SDPP-fed groups in the ileum and colon on d 7 but not on d 14 PW. Overall, this study demonstrated that dietary inclusion of SDPP had beneficial effects on intestinal barrier function, inflammation, and diarrhea in weaned pigs.

  3. Contribution of enteric infection, altered intestinal barrier function, and maternal malnutrition to infant malnutrition in Bangladesh.

    PubMed

    Mondal, Dinesh; Minak, Juliana; Alam, Masud; Liu, Yue; Dai, Jing; Korpe, Poonum; Liu, Lei; Haque, Rashidul; Petri, William A

    2012-01-15

    Malnourished children are at increased risk for death due to diarrhea. Our goal was to determine the contribution of specific enteric infections to malnutrition-associated diarrhea and to determine the role of enteric infections in the development of malnutrition. Children from an urban slum in Bangladesh were followed for the first year of life by every-other-day home visits. Enteropathogens were identified in diarrheal and monthly surveillance stools; intestinal barrier function was measured by serum endocab antibodies; and nutritional status was measured by anthropometry. Diarrhea occurred 4.69 ± 0.19 times per child per year, with the most common infections caused by enteric protozoa (amebiasis, cryptosporidiosis, and giardiasis), rotavirus, astrovirus, and enterotoxigenic Escherichia coli (ETEC). Malnutrition was present in 16.3% of children at birth and 42.4% at 12 months of age. Children malnourished at birth had increased Entamoeba histolytica, Cryptosporidium, and ETEC infections and more severe diarrhea. Children who became malnourished by 12 months of age were more likely to have prolonged diarrhea, intestinal barrier dysfunction, a mother without education, and low family expenditure. Prospective observation of infants in an urban slum demonstrated that diarrheal diseases were associated with the development of malnutrition that was in turn linked to intestinal barrier disruption and that diarrhea was more severe in already malnourished children. The enteric protozoa were unexpectedly important causes of diarrhea in this setting. This study demonstrates the complex interrelationship of malnutrition and diarrhea in infants in low-income settings and points to the potential for infectious disease interventions in the prevention and treatment of malnutrition.

  4. Spatial Localization and Binding of the Probiotic Lactobacillus farciminis to the Rat Intestinal Mucosa: Influence of Chronic Stress

    PubMed Central

    Raymond, Arthur; Mercade-Loubière, Myriam; Salvador-Cartier, Christel; Ringot, Bélinda; Léonard, Renaud; Fourquaux, Isabelle; Ait-Belgnaoui, Afifa; Loubière, Pascal; Théodorou, Vassilia; Mercier-Bonin, Muriel

    2015-01-01

    The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2. PMID:26367538

  5. Gliadin intake alters the small intestinal mucosa in indomethacin-treated HLA-DQ8 transgenic mice.

    PubMed

    Mazzarella, Giuseppe; Bergamo, Paolo; Maurano, Francesco; Luongo, Diomira; Rotondi Aufiero, Vera; Bozzella, Giuseppina; Palmieri, Gianna; Troncone, Riccardo; Auricchio, Salvatore; David, Chella; Rossi, Mauro

    2014-08-01

    Celiac disease (CD) is an enteropathy caused by the ingestion of wheat gluten in genetically susceptible individuals. A complete understanding of the pathogenic mechanisms in CD has been hindered because of the lack of adequate in vivo models. In the present study, we explored the events after the intragastric administration of gliadin and of the albumin/globulin fraction from wheat in human leukocyte antigen-DQ8 transgenic mice (DQ8 mice) treated with indomethacin, an inhibitor of cyclooxygenases (COXs). After 10 days of treatment, mice showed a significant reduction of villus height, increased crypt depth, increased number of lamina propria-activated macrophages, and high basal interferon-γ secretion in mesenteric lymph nodes, all of which were specifically related to gliadin intake, whereas the albumin/globulin fraction of wheat was unable to induce similar changes. Cotreatment with NS-398, a specific inhibitor of COX-2, also induced the intestinal lesion. Enteropathy onset was further characterized by high levels of oxidative stress markers, similar to CD. Biochemical assessment of the small intestine revealed the specific activation of matrix metalloproteinases 2 and 9, high caspase-3 activity, and a significant increase of tissue transglutaminase protein levels associated with the intestinal lesion. Notably, after 30 days of treatment, enteropathic mice developed serum antibodies toward gliadin (IgA) and tissue transglutaminase (IgG). We concluded that gliadin intake in combination with COX inhibition caused a basal inflammatory status and an oxidative stress condition in the small intestine of DQ8 mice, thus triggering the mucosal lesion and, subsequently, an antigen-specific immunity. Copyright © 2014 the American Physiological Society.

  6. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice.

    PubMed

    El Aidy, Sahar; van Baarlen, Peter; Derrien, Muriel; Lindenbergh-Kortleve, Dicky J; Hooiveld, Guido; Levenez, Florence; Doré, Joël; Dekker, Jan; Samsom, Janneke N; Nieuwenhuis, Edward E S; Kleerebezem, Michiel

    2012-09-01

    During colonization of germfree mice with the total fecal microbial community of their conventionally born and raised siblings (conventionalization), the intestinal mucosal immune system initiates and maintains a balanced immune response. However, the genetic regulation of these balanced, appropriate responses to the microbiota is obscure. Here, combined analysis of germfree and conventionalized mice revealed that the major molecular responses could be detected initiating at day 4 post conventionalization, with a strong induction of innate immune functions followed by stimulation of adaptive immune responses and development and expansion of adaptive immune cells at later stages of conventionalization. This study provides a comprehensive overview of mouse developmental and immune-related cellular pathways and processes that were co-mediated by the commensal microbiota and suggests which mechanisms were involved in this reprogramming. The dynamic, region-dependent mucosal responses to the colonizing microbiota revealed potential transcriptional signatures for the control of intestinal homeostasis in healthy mice, which may help to decipher the genetic basis of pathway dysregulation in human intestinal inflammatory diseases.

  7. COLOSTRO NONI administration effects on epithelial cells turn-over, inflammatory events and integrity of intestinal mucosa junctional systems.

    PubMed

    Cardani, D

    2014-03-01

    In this work we evaluated the possibility for dietary supplement COLOSTRO NONI to be used as preventive and therapeutic agent in various diseases characterized by altered intestinal homeostasis with changes in the composition of the microbiota, alteration of the morphology and functionality, and also inflammation of the epithelium. Cellular activity of COLOSTRO NONI has been tested in an in vitro model of intestinal epithelium based on Caco-2 cell line. We tested the ability of COLOSTRO NONI to stimulate cellular turnover evaluating cell growth rate with WST-1 proliferation assay. We also tested the ability of COLOSTRO NONI to increase the gene expression of Interleukin-8 (IL-8) with a Real Time PCR assay. IL-8 is a fundamental chemotactic factor involved in inflammatory phenomena and in the control of tissue homeostasis. COLOSTRO NONI is able to stimulate cell turnover in the proposed in vitro model and demonstrates active in increasing the gene expression of IL-8. Both aspects observed are fundamental for the establishment of mechanisms to repair tissue damage. Obtained results indicate that COLOSTRO NONI could find clinical application in treatment of gastrointestinal disorders characterized by impairment of proper intestinal permeability, in inflammatory bowel diseases, in dysenteric diseases, in gastritis and in forms of pathological alteration of the mucous layer as celiac disease and gluten sensitivity.

  8. Bax and Bak Do Not Exhibit Functional Redundancy in Mediating Radiation-Induced Endothelial Apoptosis in the Intestinal Mucosa

    SciTech Connect

    Rotolo, Jimmy A.; Maj, Jerzy G.; Feldman, Regina; Ren, Decheng; Haimovitz-Friedman, Adriana; Cordon-Cardo, Carlos; Cheng, Emily H.-Y.; Kolesnick, Richard; Fuks, Zvi

    2008-03-01

    Purpose: To address in vivo the issue of whether Bax and Bak are functionally redundant in signaling apoptosis, capable of substituting for each other. Methods and Materials: Mice were exposed to whole-body radiation, and endothelial cell apoptosis was quantified using double immunostaining with TUNEL and anti-CD31 antibody. Crypt survival was determined at 3.5 days after whole-body radiation by the microcolony survival assay. Actuarial animal survival was calculated by the product-limit Kaplan-Meier method, and autopsies were performed to establish cause of death. Results: Radiation exposure of Bax- and Bak-deficient mice, both expressing a wild-type acid sphingomyelinase (ASMase) phenotype, indicated that Bax and Bak are both mandatory, though mutually independent, for the intestinal endothelial apoptotic response. However, neither affected epithelial apoptosis at crypt positions 4-5, indicating specificity toward endothelium. Furthermore, Bax deficiency and Bak deficiency each individually mimicked ASMase deficiency in inhibiting crypt lethality in the microcolony assay and in rescuing mice from the lethal gastrointestinal syndrome. Conclusions: The data indicate that Bax and Bak have nonredundant functional roles in the apoptotic response of the irradiated intestinal endothelium. The observation that Bax deficiency and Bak deficiency also protect crypts in the microcolony assay provides strong evidence that the microvascular apoptotic component is germane to the mechanism of radiation-induced damage to mouse intestines, regulating reproductive cell death of crypt stem cell clonogens.

  9. Inhibitory Effect of Baicalin on iNOS and NO Expression in Intestinal Mucosa of Rats with Acute Endotoxemia

    PubMed Central

    Yuan, Xiaoming; Huang, Xinli; Zhang, Zhengyuan; Zhang, Ti

    2013-01-01

    The mechanism by which baicalin modulated the expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the mucosa of distal ileum was investigated in a rat model of acute endo-toxemia induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). The experiment demonstrated that LPS upregulated iNOS mRNA and protein expression as well as NO produc-tion (measured as the stable degradation production, nitrites). LPS not only increased toll-like receptor 4 (TLR4) and peroxisome proliferator-activated receptor gamma (PPARγ) content, but also activated p38 and activating transcription factor 2 (ATF2) and inactivated PPARγ via phosphorylation. Inhibition of p38 signalling pathway by chemical inhibitor SB202190 and small interfering RNA (siRNA) ameliorated LPS-induced iNOS generation, while suppression of PPARγ pathway by SR-202 boosted LPS-elicited iNOS expression. Baicalin treatment (I) attenuated LPS-induced iNOS mRNA and protein as well as nitrites generation, and (II) ameliorated LPS-elicited TLR4 and PPARγ production, and (III) inhibited p38/ATF2 phosphorylation leading to suppression of p38 signalling, and (IV) prevented PPARγ from phosphorylation contributing to maintainence of PPARγ bioactivity. However, SR-202 co-treatment (I) partially abrogated the inhibitory effect of baicalin on iNOS mRNA expression, and (II) partially reversed baicalin-inhibited p38 phosphorylation. In summary, baicalin could ameliorate LPS-induced iNOS and NO overproduction in mucosa of rat terminal ileum via inhibition of p38 signalling cascade and activation of PPARγ pathway. There existed a interplay between the two signalling pathways. PMID:24312512

  10. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    SciTech Connect

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Lee, Seung-Sook; Park, Sunhoo

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  11. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers

    PubMed Central

    Akiyama, Takuya; Oishi, Kenji

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  12. Nickel-Related Intestinal Mucositis in IBS-Like Patients: Laser Doppler Perfusion Imaging and Oral Mucosa Patch Test in Use.

    PubMed

    Borghini, Raffaele; Puzzono, Marta; Rosato, Edoardo; Di Tola, Marco; Marino, Mariacatia; Greco, Francesca; Picarelli, Antonio

    2016-09-01

    Nickel (Ni) is often the trigger of irritable bowel syndrome (IBS)-like gastrointestinal disorders: its ingestion may cause allergic contact mucositis, identifiable by means of oral mucosa patch test (omPT). OmPT effectiveness has been proven, but it is still an operator-dependent method. Laser Doppler perfusion imaging (LDPI) was tested to support omPT in Ni allergic contact mucositis diagnosis. Group A: 22 patients with intestinal/systemic symptoms related to the ingestion of Ni-containing foods. Group B: 12 asymptomatic volunteers. Ni-related symptoms and their severity were tested by a questionnaire. All patients underwent Ni omPT with clinical evaluation at baseline (T0), after 30 min (T1), after 2 h (T2), and after 24-48 h (T3). LDPI was performed to evaluate the mean mucosal perfusion at T0, T1, and T2. Statistical analysis was performed by ANOVA test and Bonferroni multiple-comparison test. All 22 Ni-sensitive patients (group A) presented oral mucosa hyperemia and/or edema at T2. Eight out of the same 22 patients presented a local delayed vesicular reaction at T3 (group A1), unlike the remaining 14 out of 22 patients (group A2). All 12 patients belonging to control group B did not show any alteration. The mean mucosal perfusion calculated with LDPI showed an increase in both subgroups A1 and A2. In group B, no significant perfusion variations were observed. LDPI may support omPT for diagnostic purposes in Ni allergic contact mucositis. This also applies to symptomatic Ni-sensitive patients without aphthous stomatitis after 24-48 h from omPT and that could risk to miss the diagnosis.

  13. Nitric oxide attenuates hydrogen peroxide-induced barrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell.

    PubMed

    Katsube, Takanori; Tsuji, Hideo; Onoda, Makoto

    2007-06-01

    The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells.

  14. Low Dosage of Chitosan Supplementation Improves Intestinal Permeability and Impairs Barrier Function in Mice

    PubMed Central

    Peng, Hanhui; Li, Guanya

    2016-01-01

    The purpose of this study was to explore relationships between low dose dietary supplementation with chitosan (COS) and body weight, feed intake, intestinal barrier function, and permeability in mice. Twenty mice were randomly assigned to receive an unadulterated control diet (control group) or a dietary supplementation with 30 mg/kg dose of chitosan (COS group) for two weeks. Whilst no significant differences were found between the conditions for body weight or food and water intake, mice in the COS group had an increased serum D-lactate content (P < 0.05) and a decreased jejunal diamine oxidase (DAO) activity (P < 0.05). Furthermore, mice in COS group displayed a reduced expression of occludin and ZO-1 (P < 0.05) and a reduced expression of occludin in the ileum (P < 0.05). The conclusion drawn from these findings showed that although 30 mg/kg COS-supplemented diet had no effect on body weight or feed intake in mice, this dosage may compromise intestinal barrier function and permeability. This research will contribute to the guidance on COS supplements. PMID:27610376

  15. Absorption and Effect of Azaspiracid-1 Over the Human Intestinal Barrier.

    PubMed

    Abal, Paula; Louzao, M Carmen; Fraga, María; Vilariño, Natalia; Ferreiro, Sara; Vieytes, Mercedes R; Botana, Luis M

    2017-08-28

    Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellates genera Azadinium and Amphidoma. These toxins cause azaspiracid poisoning (AZP), characterized by severe gastrointestinal illness in humans after the consumption of bivalve molluscs contaminated with AZAs. The main aim of the present study was to examine the consequences of human exposure to AZA1 by the study of absorption and effects of the toxin on Caco-2 cells, a reliable model of the human intestine. The ability of AZA1 to cross the human intestinal epithelium has been evaluated by the Caco-2 transepithelial permeability assay. The toxin has been detected and quantified using a microsphere-based immunoassay. Cell alterations and ultrastructural effects has been observed with confocal and transmission electron microscopy Results: AZA1 was absorbed by Caco-2 cells in a dose-dependent way without affecting cell viability. However, modifications on occludin distribution detected by confocal microscopy imaging indicated a possible monolayer integrity disruption. Nevertheless, transmission electron microscopy imaging revealed ultrastructural damages at the nucleus and mitochondria with autophagosomes in the cytoplasm, however, tight junctions and microvilli remained unaffected. After the ingestion of molluscs with the AZA1, the toxin will be transported through the human intestinal barrier to blood causing damage on epithelial cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Regional Specialisation of T Cell Subsets and Apoptosis in the Human Gut Mucosa: Differences Between Ileum and Colon in Healthy Intestine and Inflammatory Bowel Diseases.

    PubMed

    Carrasco, Anna; Fernández-Bañares, Fernando; Pedrosa, Elisabet; Salas, Antonio; Loras, Carme; Rosinach, Mercè; Aceituno, Montserrat; Andújar, Xavier; Forné, Montserrat; Zabana, Yamile; Esteve, Maria

    2016-09-01

    There is very limited information regarding region-specific immunological response in human intestine. We aimed to determine differences in immune compartmentalisation between ileum and colon in healthy and inflamed mucosa. T cell profile and its apoptosis were measured by flow cytometry, Th1, Th17, Treg [CD4(+)CD25(+)FOXP3(+)], double positive [DP, CD3(+)CD4(+)CD8(+)] and double negative T cells [DN, CD3(+)CD4(-)CD8(-)], immunohistochemistry [FOXP3, caspase-3], and real-time polymerase chain reaction [PCR] [IFN-γ, IL-17-A, and FOXP3] on biopsies from different regions of healthy intestine and of intestine in inflammatory bowel diseases. Healthy colon showed higher percentages of Treg, Th17, and DN, and lower numbers of DP T cells compared with ileum [p < 0.05]. Some but not all region-specific differences were lost in inflammatory conditions. Disease-specific patterns were found: a Th1/Th17 pattern and a Th17 pattern in Crohn's disease and ulcerative colitis respectively, whereas a reduction in Th1/Th17 was found in microscopic colitis. In colonic Crohn's disease and microscopic colitis, DN T cells had a pattern inverse to that of Th1/Th17 (increase in microscopic colitis [p < 0.05] and decrease in Crohn's disease [p < 0.005]). Higher levels of lymphocyte apoptosis were found in healthy colon compared with the ileal counterparts [p = 0.001]. All forms of colonic inflammation presented a dramatic decrease in apoptosis compared with healthy colon. By contrast ileal Crohn's disease showed higher levels of cleaved-Caspase(+) CD3(+) cells. Immunological differences exist in healthy gastrointestinal tract. Inflammatory processes overwhelm some location-specific differences, whereas others are maintained. Care has to be taken when analysing immune response in intestinal inflammation, as location-specific differences may be relevant. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For

  17. [Association of intestinal epithelial tight junctions, E.coli, intestinal mucosa Toll-like receptor-4 and tumor necrosis factor-alpha in rabbit with non-alcoholic fatty liver disease].

    PubMed

    Wang, Haikun; Gao, Hongliang; Yao, Ping

    2014-12-01

    To explore the variation and association of intestinal epithelial tight junctions, E.coli, and expression of Toll-like receptor-4 (TLR-4) and tumor necrosis factor-alpha (TNFα) in a rabbit model of non-alcoholic fatty liver disease (NAFLD). Fourteen male New Zealand rabbits were randomly divided into two groups. The control group was given a normal diet, while the NAFLD group was given a high-fat diet. After 12 weeks, the two groups were sacrificed. Both length and width of the tight junctions of ileum epithelial cells were measured by electron microscopy. Enzyme-linked immunosorbent assay was used to detect the concentration of TNFα in venous blood serum. Location and expression of TLR-4 were observed by immunohistochemical staining. Copies of E.coli genes were measured by RT-PCR. The relationship between TNFα and tight junctions, TLR-4, and E.coli were respectively analyzed by stepwise multiple linear regression. Compared with the control group, the NAFLD group has significantly shortened ileum epithelial fight junctions (t=5.031, P<0.01), increased copies of E. coli genes (t=-3.492, P<0.01), and increased ileal expression of TLR-4 (t=-44.089, P<0.01). A significant increase of TNFα was also observed in the NAFLD group (t=-17.768, P<0.01). Regression analysis showed that E.coli and intestinal epithelial tight junctions were correlated (standardized beta=-0.385), and showed a positive correlation between E. coli and TLR-4 (standardized beta=0.332 and 0.427). Damage to the intestine as a physical barrier, biological barrier and immune barrier is closely related to TNFα expression, and the relation between the immune barrier and TNFα is more significant.

  18. Reelin protects from colon pathology by maintaining the intestinal barrier integrity and repressing tumorigenic genes.

    PubMed

    Carvajal, Ana E; Serrano-Morales, José M; Vázquez-Carretero, María D; García-Miranda, Pablo; Calonge, María L; Peral, María J; Ilundain, Anunciación A

    2017-09-01

    We previously reported that reelin, an extracellular matrix protein first known for its key role in neuronal migration, reduces the susceptibility to dextran sulphate sodium (DSS)-colitis. The aim of the current study was to determine whether reelin protects from colorectal cancer and how reelin defends from colon pathology. In the colon of wild-type and of mice lacking reelin (reeler mice) we have analysed the: i) epithelium cell renewal processes, ii) morphology, iii) Sox9, Cdx2, Smad5, Cyclin D1, IL-6 and IFNγ mRNA abundance in DSS-treated and untreated mice, and iv) development of azoxymethane/DSS-induced colorectal cancer, using histological and real time-PCR methodologies. The reeler mutation increases colitis-associated tumorigenesis, with increased tumours number and size. It also impairs the intestinal barrier because it reduces cell proliferation, migration, differentiation and apoptosis; decreases the number and maturation of goblet cells, and expands the intercellular space of the desmosomes. The intestinal barrier impairment might explain the increased susceptibility to colon pathology exhibited by the reeler mice and is at least mediated by the down-regulation of Sox9 and Cdx2. In response to DSS-colitis, the reeler colon increases the mRNA abundance of IL-6, Smad5 and Cyclin D1 and decreases that of IFNγ, conditions that might result in the increased colitis-associated tumorigenesis found in the reeler mice. In conclusion, the results highlight a role for reelin in maintaining intestinal epithelial cell homeostasis and providing resistance against colon pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Protective effect of salvianolic acid B on NASH rat liver through restoring intestinal mucosal barrier function

    PubMed Central

    Wang, Ying-Chun; Jin, Qing-Mei; Kong, Wei-Zong; Chen, Juan

    2015-01-01

    Aim: To investigate the effect of Salvianolic acid B (Sal B) on the disease progress of NASH and change of intestinal barrier function. Methods: Sixty Sprague-Dawley (SD) rats were randomly divided into control group, model group and treated group, with the former given normal diet and the latter 2 groups rats fed high-fat diet. In treated group, rats were infused through the stomach with 1 mg/ml Sal B every day at a dose of 20 mL/kg body weight. All animals were killed at the 24th week and plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), endotoxin (ET) and diamine oxdase (DAO) were analyzed using the blood samples. The histopathology of liver was observed by H&E staining. The expression changes of tight junction protein occludin and ZO-1 were analyzed by immunocytochemistry. Ultrastructural morphology of small intestinal tissues was investigated by transmission electron microscopy. Results: Plasma levels of ALT, AST, TG, TC, ET and DAO were significantly higher in model group than those in both control group and group treated with Sal B. In model group, vacuolated swelling of the cytoplasm with aggregates of chronic inflammatory cells was observed in the liver tissue but not in Sal B-treated group. NAFLD Activity Score in the treated group was significantly lower than that in model group. Immunohistochemical staining showed that Sal B administration recovered the expression of occludin and ZO-1, which was downregulated in the model group. Transmission electron microscopy analysis demonstrated that cell surface microvilli and major intercellular junctional complex including tight junction, gap junction and adherens junction were restored in Sal B-treated group. Conclusion: Sal B exerted protective function against high-fat diet-induced liver damage by restoring healthy barrier function of intestine in NASH rat model. PMID:26191218

  20. Characteristics of β-galactosidase in the mucosa of the small intestine of infant rats. Physicochemical properties

    PubMed Central

    Kraml, Jiří; Koldovský, Otakar; Heringová, Aleša; Jirsová, Věra; Kácl, Karel; Ledvina, Miloš; Pelichová, Hana

    1969-01-01

    1. The characteristics of acid and neutral β-galactosidases isolated chromatographically from homogenates of the mucosa of the jejunum and ileum of suckling rats were studied. 2. The minimal molecular weight of the acid β-galactosidase, as estimated by gel filtration on Sephadex G-200, was in the range 83000–105000, whereas for the neutral β-galactosidase the estimated molecular weight was in the range 360000–510000. 3. The acid and neutral β-galactosidases were inhibited competitively by galactono-(1→4)-lactone, with respective Ki values of 0·15mm and 1·1mm. Only the acid β-galactosidase was inhibited competitively by sodium galactonate (Ki 0·17mm). 4. Heat inactivation of both β-galactosidases occurred according to first-order kinetics. The neutral enzyme was more labile, but bovine serum albumin protected acid enzyme only. 5. Urea treatment inactivated both β-galactosidases, the neutral β-galactosidase being more sensitive than the acid β-galactosidase. 6. No differences were found between preparations from the jejunum and ileum. PMID:5820646

  1. Morphometric study of the small intestinal mucosa in young, adult, and old rats submitted to protein deficiency and rehabilitation.

    PubMed Central

    Rodrigues, M A; de Camargo, J L; Coelho, K I; Montenegro, M R; Angeleli, A Y; Burini, R C

    1985-01-01

    Linear and stereological morphometric methods were applied to the jejunal and ileal mucosa of young, adult, and old male Wistar rats submitted to protein deficiency and rehabilitation. The animals were fed ad libitum a 2% casein diet during 42 days and then received a 20% casein diet for 30 days. Food intake, body weights, and plasma protein concentrations were recorded. In the young protein deficient rats values of mucosal height, surface area, and volume of the lamina propria were significantly lower than those of their age controls in both jejunum and ileum. In adults the differences were less marked and in the old rats all parameters were found to be unaltered by the protein deficient diet. The surface-to-volume ratio showed no significant differences between control and protein deficient in all three age groups, meaning that villus pattern did not change with protein deficiency. On rehabilitation, a striking difference between jejunum and ileum was observed in the young rats; all parameters returned to control levels in the jejunum, while they remained lower than those of their controls in the ileum. PMID:4018648

  2. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans.

    PubMed

    Wu, Qiuli; Yin, Li; Li, Xing; Tang, Meng; Zhang, Tao; Wang, Dayong

    2013-10-21

    Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged exposure to 0.5-100 mg L(-1) of GO caused damage on functions of both primary (intestine) and secondary (neuron and reproductive organ) targeted organs. In the intestine, ROS production was significantly correlated with the formation of adverse effects on functions of both primary and secondary targeted organs. GO could be translocated into intestinal cells with loss of microvilli, and distributed to be adjacent to or surrounding mitochondria. Prolonged exposure to GO resulted in a hyper-permeable state of the intestinal barrier, an increase in mean defecation cycle length, and alteration of genes required for intestinal development and defecation behavior. Thus, our data suggest that prolonged exposure to GO may cause potential risk to environmental organisms after release into the environment. GO toxicity may be due to the combinational effects of oxidative stress in the intestinal barrier, enhanced permeability of the biological barrier, and suppressed defecation behavior in C. elegans.

  3. Blockade of high-mobility group box 1 attenuates intestinal mucosal barrier dysfunction in experimental acute pancreatitis.

    PubMed

    Chen, Xia; Zhao, Hong-Xian; Bai, Chao; Zhou, Xiang-Yu

    2017-07-28

    The release of inflammatory cytokines, that plays a dominant role in local pancreatic inflammation and systemic complications in severe acute pancreatitis (SAP). High-mobility group box 1 (HMGB1) is implicated in the mechanism of organ dysfunction and bacterial translocation in SAP. This current study aims to investigate possible role of HMGB1 in the intestinal mucosal barrier dysfunction of SAP, and the effect of anti-HMGB1 antibody treatment in intestinal mucosal injury in SAP. Our data revealed that the HMGB1 expression was significantly increased in AP mice induced by caerulein and LPS, and the inhibition of HMGB1 played a protective role in intestinal mucosal barrier dysfunction, reduced the serum level of other proinflammatory cytokines include IL-1β, IL-6, TNF-α. Next we investigated the downstream receptors involving in HMGB1 signaling. We found that the expressions of toll-like receptor (TLR) 4 and TLR9 were elevated in ileum of AP mice, the administration of HMGB1 neutralizing antibody significantly reduced the TLR4 and TLR9 expression. It was concluded that HMGB1 contributed the mechanism to the intestinal mucosal barrier dysfunction during AP. Blockade of HMGB1 by administration of HMGB1 neutralizing antibody may be a beneficial therapeutic strategy in improving intestinal mucosal barrier dysfunction in SAP.

  4. Phenotypic characterization of cells participating in transport of prion protein aggregates across the intestinal mucosa of sheep.

    PubMed

    Piercey Åkesson, Caroline; Press, Charles McL; Tranulis, Michael A; Jeffrey, Martin; Aleksandersen, Mona; Landsverk, Thor; Espenes, Arild

    2012-07-01

    The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrP (d) ) in Peyer's patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrP (d) from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrP (d) and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance.

  5. Phenotypic characterization of cells participating in transport of prion protein aggregates across the intestinal mucosa of sheep

    PubMed Central

    Piercey Åkesson, Caroline; Press, Charles McL.; Tranulis, Michael A.; Jeffrey, Martin; Aleksandersen, Mona; Landsverk, Thor; Espenes, Arild

    2012-01-01

    The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrPd) in Peyer’s patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrPd from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrPd and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance. PMID:22437736

  6. Protective effect of Enterococcus faecalis DAPTO 512 on the intestinal tract and gut mucosa: milk allergy application.

    PubMed

    Belkaaloul, K; Haertlé, T; Chobert, J M; Merah, R; Taibi, K; Saad El Hachemi, H A; Hemch, S; Amier, L; Chekroun, A; Saidi, D; Kheroua, O

    2015-01-01

    The allergenicity of β-lactoglobulin (β-Lg) was studied by using Ussing chamber in a murine model of β-Lg allergy supplemented with hydrolysates obtained after fermentation of milk for 48 h at 37 (°)C with Enterococcus faecalis DAPTO 512, isolated from cow milk and identified by 16S rDNA sequence analysis. Balb/c mice were sensitised intraperitoneally with β-Lg. Three groups of mice were formed: group 1, composed of naive mice used as control received only NaCl; group 2, positive control composed of mice sensitised intraperitoneally with β-Lg; group 3, formed by mice which were given hydrolysates of 48 h then sensitised with β-Lg. After 48 h of fermentation β-casein and β-Lg were degraded by E. faecalis DAPTO 512. β-Lg immunisation was associated with strong IgG and IgE production in case of positive controls and a significant increase in short current circuit (Isc) and high conductance (G) responses were observed. The control and the hydrolysate groups showed a significant decrease in the production of IgG and IgE anti β-Lg compared to the positive control. The allergenic potential of β-Lg was markedly reduced in the group that received hydrolysates (Isc and G remained unchanged after intestine challenge with β-Lg). The histological scrutiny showed villi atrophy, lymphocyte hyperplasia and a significant chorion detachment in the positive control group. In the group administered with hydrolysates of fermented milk, inflammatory signs were lower, the villi were long and thin and lymphocytes were less dense. The results showed that feeding of milk fermented with E. faecalis DAPTO 512 during 18 days prior to β-Lg allergy induction exerts a protecting effect on the murine intestine and induces a significant decrease in the β-Lg allergenicity.

  7. Rebeccamycin Attenuates TNF-α-Induced Intestinal Epithelial Barrier Dysfunction by Inhibiting Myosin Light Chain Kinase Production.

    PubMed

    Watari, Akihiro; Sakamoto, Yuta; Hisaie, Kota; Iwamoto, Kazuki; Fueta, Miho; Yagi, Kiyohito; Kondoh, Masuo

    2017-01-01

    Although proinflammatory cytokine-induced disruption of intestinal epithelial barrier integrity is associated with intestinal inflammatory disease, effective treatment for barrier dysfunction is lacking. Previously, we demonstrated that rebeccamycin alleviates epithelial barrier dysfunction induced by inflammatory cytokines in Caco-2 cell monolayers; however, the underlying mechanism remained unclear. Here, we investigated the mechanism by which rebeccamycin protects the epithelial barrier function of Caco-2 cells exposed to TNF-α. To confirm the epithelial barrier function of Caco-2 cell monolayers, transepithelial electrical resistance (TER) and paracellular permeability were measured. Production levels and localization of tight junction (TJ) proteins were analyzed by immunoblot and immunofluorescence, respectively. Phosphorylated myosin light chain (pMLC) and MLC kinase (MLCK) mRNA expression levels were determined by immunoblot and quantitative RT-PCR, respectively. Rebeccamycin attenuated the TNF-α-induced reduction in TER and increase in paracellular permeability. Rebeccamycin increased claudin-5 expression, but not claudin-1, -2, -4, occludin or ZO-1 expression, and prevented the TNF-α-induced changes in ZO-1 and occludin localization. Rebeccamycin suppressed the TNF-α-induced increase in MLCK mRNA expression, thus suppressing MLC phosphorylation. The rebeccamycin-mediated reduction in MLCK production and protection of epithelial barrier function were alleviated by Chk1 inhibition. Rebeccamycin attenuates TNF-α-induced disruption of intestinal epithelial barrier integrity by inducing claudin-5 expression and suppressing MLCK production via Chk1 activation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  8. Analysis of JAK-STAT signaling pathway genes and their microRNAs in the intestinal mucosa of genetically disparate chicken lines induced with necrotic enteritis.

    PubMed

    Truong, Anh Duc; Rengaraj, Deivendran; Hong, Yeojin; Hoang, Cong Thanh; Hong, Yeong Ho; Lillehoj, Hyun S

    2017-05-01

    The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate the expression of candidate JAK-STAT pathway genes and their regulators and interactors in the intestinal mucosal layer of two genetically disparate chicken lines [Marek's disease (MD)-resistant line 6.3 and MD-susceptible line 7.2] induced with necrotic enteritis (NE). Through RNA-sequencing, we investigated 116 JAK-STAT signaling pathway-related genes that were significant and differentially expressed between the intestinal mucosa of the two lines compared with respective uninfected controls. About 15 JAK-STAT pathway genes were further verified by qRT-PCR, and the results were in agreement with our sequencing data. All the identified 116 genes were annotated through Gene Ontology and mapped to the KEGG chicken JAK-STAT signaling pathway. To the best of our knowledge, this is the first study to represent the transcriptional analysis of a large number of candidate genes, regulators, and potential interactors in the JAK-STAT pathway of the two chicken lines induced with NE. Several key genes of the interactome, namely, STAT1/3/4, STAT5B, JAK1-3, TYK2, AKT1/3, SOCS1-5, PIAS1/2/4, PTPN6/11, and PIK3, were determined to be differentially expressed in the two lines. Moreover, we detected 68 known miRNAs variably targeting JAK-STAT pathway genes and differentially expressed in the two lines induced with NE. The RNA-sequencing and bioinformatics analyses in this study provided an abundance of data that will be useful for future studies on JAK-STAT pathways associated with the functions of two genetically disparate chicken lines induced with NE. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Influence of enteral administration of hypertonic electrolyte glucose solution on the intestinal barrier and organ functions in dogs with severe burn].

    PubMed

    Hu, Quan; Hu, Sen; Chai, Jia-ke; Shen, Xiao-peng; Che, Jin-wei; Sheng, Zhi-yong

    2010-02-01

    To study the change in intestinal barrier and organ functions of burned dog after enteral administration of hypertonic electrolyte glucose solution (HEGS) in shock stage. Twenty-four Beagle dogs inflicted with 35% TBSA full-thickness burn were divided into no-fluid group (NF), intravenous infusion with isotonic electrolyte glucose solution (IEGS) group (II group), enteral infusion with IEGS group (EI), and enteral infusion with HEGS group (EH) according to the random number table, with 6 dogs in each group. Saline, containing 50 g/L glucose, was intravenously or enterally infused into dogs in II group and EI group respectively 0.5 hour post injury (PIH) for resuscitation. Total infusion volume within PIH 24 was 4 mL x kg(-1) x %TBSA(-1) (half of the total volume was infused in the first 8 hours in a constant speed, the other half volume was infused in the rest 16 hours in a constant speed). HEGS, containing 18 g/L NaCl and 50 g/L glucose, was enterally infused into dogs in EH group. Total infusion volume within PIH 24 was 2 mL x kg(-1) x %TBSA(-1), with the same infusion speed as that in II and EI groups. Liver and kidney function indexes [activity of ALT and CK-MB, expression levels of creatinine and blood urea nitrogen (BUN) in serum], activity of diamine oxidase (DAO), and activity of Na(+)-K(+)-ATPase in intestinal mucosa at PIH 24 were determined. ALT activity in each group was close to one another. Serum levels of creatinine and BUN in II, EI, and EH groups were significantly lower than those in NF group. CK-MB activity obviously increased at PIH 2 in every group. CK-MB activity in EH group at PIH 2 to 8 was respectively lower than that in NF and II groups. DAO activity in serum in II, EI, and EH groups decreased since PIH 4 or PIH 6, respectively from (3.9 + or - 0.6) U/L to (3.6 + or - 0.5) U/L, (4.8 + or - 0.4) U/L to (2.8 + or - 0.8) U/L, (6.4 + or - 1.8) U/L to (3.5 + or - 0.8) U/L, all were significantly lower than those in NF group [from (12.5 + or - 0

  10. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Effect of eicosapentaenoic acid-derived prostaglandin E3 on intestinal epithelial barrier function.

    PubMed

    Rodríguez-Lagunas, Maria J; Ferrer, Ruth; Moreno, Juan J

    2013-05-01

    Prostaglandins (PG) are inflammatory mediators derived from arachidonic or eicosapentaenoic acid giving rise to the 2-series or the 3-series prostanoids, respectively. Previously, we have observed that PGE2 disrupts epithelial barrier function. Considering the beneficial effect of fish oil consumption in intestinal inflammatory processes, the aim of this study was to assess the role of PGE3 on epithelial barrier function assessed from transepithelial electrical resistance and dextran fluxes in Caco-2 cells. The results indicate that PGE3 increased paracellular permeability (PP) to the same extent as PGE2, through the interaction with EP1 and EP4 receptors and with intracellular Ca(2+) and cAMP as the downstream targets. Moreover, we observed a redistribution of tight junction proteins, occludin and claudin-4. In conclusion, PGE3 is able to increase PP thus leading to reconsider the role of PGE2/PGE3 ratio in the beneficial effects of dietary fish oil supplementation in the disruption of barrier function.

  12. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice

    PubMed Central

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-01-01

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p < 0.05), loss of lysozyme, MUC2, and IAP, and changes in the gut microbiota (p < 0.001). Administration of 20% EN supplemented with PN significantly increased the concentrations of lysozyme, MUC2, IAP, and the mRNA levels of lysozyme and MUC2 (p < 0.001). The percentages of Bacteroidetes and Tenericutes were significantly lower in the 20% EN group than in the TPN group (p < 0.001). These changes were accompanied by maintained barrier function in bacterial culture (p < 0.05). Supplementation of PN with 20% EN preserves gut barrier function, by way of maintaining innate immunity, IAP and intestinal microbiota. PMID:26247961

  13. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows.

    PubMed

    Kvidera, S K; Dickson, M J; Abuajamieh, M; Snider, D B; Fernandez, M V Sanz; Johnson, J S; Keating, A F; Gorden, P J; Green, H B; Schoenberg, K M; Baumgard, L H

    2017-03-22

    Study objectives were to evaluate the effects of intentionally reduced intestinal barrier function on productivity, metabolism, and inflammatory indices in otherwise healthy dairy cows. Fourteen lactating Holstein cows (parity 2.6 ± 0.3; 117 ± 18 d in milk) were enrolled in 2 experimental periods. Period 1 (5 d) served as the baseline for period 2 (7 d), during which cows received 1 of 2 i.v. treatments twice per day: sterile saline or a gamma-secretase inhibitor (GSI; 1.5 mg/kg of body weight). Gamma-secretase inhibitors reduce intestinal barrier function by inhibiting crypt cell differentiation into absorptive enterocytes. During period 2, control cows receiving sterile saline were pair-fed (PF) to the GSI-treated cows, and all cows were killed at the end of period 2. Administering GSI increased goblet cell area 218, 70, and 28% in jejunum, ileum, and colon, respectively. In the jejunum, GSI-treated cows had increased crypt depth and reduced villus height, villus height-to-crypt depth ratio, cell proliferation, and mucosal surface area. Plasma lipopolysaccharide binding protein increased with time, and tended to be increased 42% in GSI-treated cows relative to PF controls on d 5 to 7. Circulating haptoglobin and serum amyloid A concentrations increased (585- and 4.4-fold, respectively) similarly in both treatments. Administering GSI progressively reduced dry matter intake (66%) and, by design, the pattern and magnitude of decreased nutrient intake was similar in PF controls. A similar progressive decrease (42%) in milk yield occurred in both treatments, but we observed no treatment effects on milk components. Cows treated with GSI tended to have increased plasma insulin (68%) and decreased circulating nonesterified fatty acids (29%) compared with PF cows. For both treatments, plasma glucose decreased with time while β-hydroxybutyrate progressively increased. Liver triglycerides increased 221% from period 1 to sacrifice in both treatments. No differences were

  14. Neutrophil priming by hypoxic preconditioning protects against epithelial barrier damage and enteric bacterial translocation in intestinal ischemia/reperfusion.

    PubMed

    Lu, Yen-Zhen; Wu, Chi-Chin; Huang, Yi-Chen; Huang, Ching-Ying; Yang, Chung-Yi; Lee, Tsung-Chun; Chen, Chau-Fong; Yu, Linda Chia-Hui

    2012-05-01

    Intestinal ischemia/reperfusion (I/R) induces mucosal barrier dysfunction and bacterial translocation (BT). Neutrophil-derived oxidative free radicals have been incriminated in the pathogenesis of ischemic injury in various organs, but their role in the bacteria-containing intestinal tract is debatable. Primed neutrophils are characterized by a faster and higher respiratory burst activity associated with more robust bactericidal effects on exposure to a second stimulus. Hypoxic preconditioning (HPC) attenuates ischemic injury in brain, heart, lung and kidney; no reports were found in the gut. Our aim is to investigate whether neutrophil priming by HPC protects against intestinal I/R-induced barrier damage and bacterial influx. Rats were raised in normoxia (NM) or kept in a hypobaric hypoxic chamber (380 Torr) 17 h/day for 3 weeks for HPC, followed by sham operation or intestinal I/R. Gut permeability was determined by using an ex vivo macromolecular flux assay and an in vivo magnetic resonance imaging-based method. Liver and spleen homogenates were plated for bacterial culturing. Rats raised in HPC showed diminished levels of BT, and partially improved mucosal histopathology and epithelial barrier function compared with the NM groups after intestinal I/R. Augmented cytokine-induced neutrophil chemoattractant (CINC)-1 and -3 levels and myeloperoxidase activity correlated with enhanced infiltration of neutrophils in intestines of HPC-I/R compared with NM-I/R rats. HPC alone caused blood neutrophil priming, as shown by elevated production of superoxide and hydrogen peroxide on stimulation, increased membrane translocation of cytosolic p47(phox) and p67(phox), as well as augmented bacterial-killing and phagocytotic activities. Neutrophil depletion reversed the mucosal protection by HPC, and aggravated intestinal leakiness and BT following I/R. In conclusion, neutrophil priming by HPC protects against I/R-induced BT via direct antimicrobial activity by oxidative

  15. The Human Milk Oligosaccharide 2'-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa.

    PubMed

    Yu, Zhuo-Teng; Nanthakumar, N Nanda; Newburg, David S

    2016-10-01

    Campylobacter jejuni causes diarrhea worldwide; young children are most susceptible. Binding of virulent C. jejuni to the intestinal mucosa is inhibited ex vivo by α1,2-fucosylated carbohydrate moieties, including human milk oligosaccharides (HMOSs). The simplest α1,2-fucosylated HMOS structure, 2'-fucosyllactose (2'-FL), can be predominant at ≤5 g/L milk. Although 2'-FL inhibits C. jejuni binding ex vivo and in vivo, the effects of 2'FL on the cell invasion central to C. jejuni pathogenesis have not been tested. Clinical isolates of C. jejuni infect humans, birds, and ferrets, limiting studies on its mammalian pathobiology. Human epithelial cells HEp-2 and HT-29 infected with the virulent C. jejuni strain 81-176 human isolate were treated with 5 g 2'-FL/L, and the degree of infection and inflammatory response was measured. Four-week-old male wild-type C57BL/6 mice were fed antibiotics to reduce their intestinal microbiota and were inoculated with C. jejuni strain 81-176. The sensitivity of the resulting acute transient enteric infection and immune response to inhibition by 2'-FL ingestion was tested. In HEp-2 and HT-29 cells, 2'-FL attenuated 80% of C. jejuni invasion (P < 0.05) and suppressed the release of mucosal proinflammatory signals of interleukin (IL) 8 by 60-70%, IL-1β by 80-90%, and the neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2) by 50% (P < 0.05). Ingestion of 2'-FL by mice reduced C. jejuni colonization by 80%, weight loss by 5%, histologic features of intestinal inflammation by 50-70%, and induction of inflammatory signaling molecules of the acute-phase mucosal immune response by 50-60% (P < 0.05). This acute model did not induce IL-17 (adaptive T cell response), a chronic response. In human cells in vitro (HEp-2, HT-29) and in a mouse infection model that recapitulated key pathologic features of C. jejuni clinical disease, 2'-FL inhibited pathogenesis and its sequelae. These data strongly support the hypothesis that 2

  16. Lipo-Protein Emulsion Structure in the Diet Affects Protein Digestion Kinetics, Intestinal Mucosa Parameters and Microbiota Composition.

    PubMed

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Feunteun, Steven Le; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion; Gaudichon, Claire; Blachier, François

    2017-10-10

    Food structure is a key factor controlling digestion and nutrient absorption. We tested the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. Rats (n = 40) were fed for 3 weeks two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and micro-structure levels. After an overnight fasting, they ingested a (15) N-labeled LFE or GCE test meal and were euthanized 0, 15min, 1h and 5h later. (15) N enrichment in intestinal contents and (15) N blood fate were measured. Gastric emptying, protein digestion kinetics, (15) N absorption and incorporation in blood protein and urea were faster with LFE than GCE. At 15min timepoint, LFE group showed higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation led to higher expression of cationic amino acid-transporters in ileum of LFE compared to GCE. LFE diet raised cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increased fecal Parabacteroides relative abundance but decreased Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Intestinal brucellosis associated with celiac artery and superior mesenteric artery stenosis and with ileum mucosa and submucosa thickening

    PubMed Central

    Wang, Miaoqian; Zhu, Qingli; Yang, Qian; Li, Wenbo; Wang, Xinning; Liu, Wei; Zhou, Baotong; Li, Zhenghong; Yang, Hong

    2017-01-01

    Abstract Rationale: Brucellosis is a multisystem infection found worldwide that has a broad range of characteristics, which range from acute fever and hepatomegaly to chronic infections that most commonly affect the central nervous system, cardiovascular system, or skeletal system. Gastrointestinal and splanchnic artery involvements in brucellosis are relatively uncommon. Patient concerns: We report a case of brucellosis in an adolescent presenting as intermittent abdominal pain, diarrhea, and fever, with intestinal tract involvement. And stenosis of the celiac artery and the superior mesenteric artery was found after exposed to risk factors of Brucella infection. Splanchnic vessels stenosis and an endothelial lesion may exacerbate the prevalent symptom of abdominal pain, as a form of colic pain, occurring after eating. Diagnoses: The patient was diagnosed as brucellosis. The narrowing of the SMA and CA was suspected to be vasculitis secondary to the brucellosis. Interventions: The patient was treated with minocycline and rifampicin for 12 weeks totally. Outcomes: The gastrointestinal manifestations of brucellosis recovered rapidly under intensive treatment. However, follow-up imaging revealed that the superior mesenteric artery and celiac artery stenosis was unimproved. Lessons: In brucellosis, gastrointestinal manifestations may be the only observable features of the disease. Splanchnic arterial stenosis is a rare complication of brucellosis. Sonography and computed tomography may be useful for both diagnosis and follow-up. PMID:28079834

  18. Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol.

    PubMed

    Kirpich, Irina A; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Arteel, Gavin E; Falkner, K Cameron; Barve, Shirish S; McClain, Craig J

    2013-05-01

    Alcohol and dietary fat both play an important role in alcohol-mediated multi-organ pathology, including gut and liver. In the present study we hypothesized that the combination of alcohol and dietary unsaturated fat (USF) would result in intestinal inflammatory stress and mucus layer alterations, thus contributing to disruption of intestinal barrier integrity. C57BL/6N mice were fed Lieber-DeCarli liquid diets containing EtOH and enriched in USF (corn oil/linoleic acid) or SF (medium chain triglycerides: beef tallow) for 8 weeks. Intestinal histology, morphometry, markers of inflammation, as well as levels of mucus protective factors were evaluated. Alcohol and dietary USF triggered an intestinal pro-inflammatory response, characterized by increase in Tnf-α, MCP1, and MPO activity. Further, alcohol and dietary USF, but not SF, resulted in alterations of the intestinal mucus layer, characterized by decreased expression of Muc2 in the ileum. A strong correlation was observed between down-regulation of the antimicrobial factor Cramp and increased Tnf-α mRNA. Therefore, dietary unsaturated fat (corn oil/LA enriched) is a significant contributing factor to EtOH-mediated intestinal inflammatory response and mucus layer alterations in rodents.

  19. Microbiota and pathogen 'pas de deux': setting up and breaking down barriers to intestinal infection.

    PubMed

    McKenney, Elizabeth S; Kendall, Melissa M

    2016-07-01

    The gut microbiota plays essential roles in human health and disease. In this review, we focus on the role of the intestinal microbiota in promoting resistance to infection by bacterial pathogens as well as how pathogens overcome this barrier. We discuss how the resident microbiota restricts growth and colonization of invading pathogens by limiting availability of nutrients and through generation of a hostile environment. Additionally, we examine how microbiota-derived signaling molecules interfere with bacterial virulence. In turn, we discuss how pathogens exploit non-competitive metabolites to replicate in vivo as well as to precisely control virulence and cause disease. This bacterial two step of creating and overcoming challenges important in preventing and establishing infection highlights the complexities of elucidating interactions between the commensal bacteria and pathogens. Better understanding of microbiota-pathogen interplay will have significant implications for developing novel therapeutics to treat infectious diseases.

  20. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models.

    PubMed

    O'Neill, Martin J; Bourre, Ludovic; Melgar, Silvia; O'Driscoll, Caitriona M

    2011-03-01

    The future of nucleic acid-based therapeutics is dependent on achieving successful delivery. Recently, there has been an increasing interest in delivery via the gastrointestinal tract. Gene therapy via this route has many advantages, including non-invasive access and the versatility to treat local diseases, such as inflammatory bowel disease, as well as systemic diseases, such as haemophilia. However, the intestine presents several distinct barriers and, therefore, the design of robust non-viral delivery systems is key to future success. Several non-viral delivery strategies have provided evidence of activity in vivo. To facilitate the design of more efficient and safe gene medicines, more physiologically relevant models, at both the in vitro and in vivo levels, are essential.

  1. Claudin-3 expression in radiation-exposed rat models: a potential marker for radiation-induced intestinal barrier failure.

    PubMed

    Shim, Sehwan; Lee, Jong-Geol; Bae, Chang-Hwan; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Lee, Seung-Sook; Park, Sunhoo

    2015-01-02

    The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation+neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  2. Delivery of Berberine Using Chitosan/Fucoidan-Taurine Conjugate Nanoparticles for Treatment of Defective Intestinal Epithelial Tight Junction Barrier

    PubMed Central

    Wu, Shao-Jung; Don, Trong-Ming; Lin, Cheng-Wei; Mi, Fwu-Long

    2014-01-01

    Bacterial-derived lipopolysaccharides (LPS) can cause defective intestinal barrier function and play an important role in the development of inflammatory bowel disease. In this study, a nanocarrier based on chitosan and fucoidan was developed for oral delivery of berberine (Ber). A sulfonated fucoidan, fucoidan-taurine (FD-Tau) conjugate, was synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy. The FD-Tau conjugate was self-assembled with berberine and chitosan (CS) to form Ber-loaded CS/FD-Tau complex nanoparticles with high drug loading efficiency. Berberine release from the nanoparticles had fast release in simulated intestinal fluid (SIF, pH 7.4), while the release was slow in simulated gastric fluid (SGF, pH 2.0). The effect of the berberine-loaded nanoparticles in protecting intestinal tight-junction barrier function against nitric oxide and inflammatory cytokines released from LPS-stimulated macrophage was evaluated by determining the transepithelial electrical resistance (TEER) and paracellular permeability of a model macromolecule fluorescein isothiocyanate-dextran (FITC-dextran) in a Caco-2 cells/RAW264.7 cells co-culture system. Inhibition of redistribution of tight junction ZO-1 protein by the nanoparticles was visualized using confocal laser scanning microscopy (CLSM). The results suggest that the nanoparticles may be useful for local delivery of berberine to ameliorate LPS-induced intestinal epithelia tight junction disruption, and that the released berberine can restore barrier function in inflammatory and injured intestinal epithelial. PMID:25421323

  3. Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets

    PubMed Central

    Jacobi, Sheila K; Moeser, Adam J; Blikslager, Anthony T; Rhoads, J Marc; Corl, Benjamin A; Harrell, Robert J; Odle, Jack

    2013-01-01

    AIM: To investigate the effect of protein-energy malnutrition on intestinal barrier function during rotavirus enteritis in a piglet model. METHODS: Newborn piglets were allotted at day 4 of age to the following treatments: (1) full-strength formula (FSF)/noninfected; (2) FSF/rotavirus infected; (3) half-strength formula (HSF)/noninfected; or (4) HSF/rotavirus infected. After one day of adjustment to the feeding rates, pigs were infected with rotavirus and acute effects on growth and diarrhea were monitored for 3 d and jejunal samples were collected for Ussing-chamber analyses. RESULTS: Piglets that were malnourished or infected had lower body weights on days 2 and 3 post-infection (P < 0.05). Three days post-infection, marked diarrhea and weight loss were accompanied by sharp reductions in villus height (59%) and lactase activity (91%) and increased crypt depth (21%) in infected compared with non-infected pigs (P < 0.05). Malnutrition also increased crypt depth (21%) compared to full-fed piglets. Villus:crypt ratio was reduced (67%) with viral infection. There was a trend for reduction in transepithelial electrical resistance with rotavirus infection and malnutrition (P = 0.1). 3H-mannitol flux was significantly increased (50%; P < 0.001) in rotavirus-infected piglets compared to non-infected piglets, but there was no effect of nutritional status. Furthermore, rotavirus infection reduced localization of the tight junction protein, occludin, in the cell membrane and increased localization in the cytosol. CONCLUSION: Overall, malnutrition had no additive effects to rotavirus infection on intestinal barrier function at day 3 post-infection in a neonatal piglet model. PMID:23964143

  4. Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets.

    PubMed

    Jacobi, Sheila K; Moeser, Adam J; Blikslager, Anthony T; Rhoads, J Marc; Corl, Benjamin A; Harrell, Robert J; Odle, Jack

    2013-08-21

    To investigate the effect of protein-energy malnutrition on intestinal barrier function during rotavirus enteritis in a piglet model. Newborn piglets were allotted at day 4 of age to the following treatments: (1) full-strength formula (FSF)/noninfected; (2) FSF/rotavirus infected; (3) half-strength formula (HSF)/noninfected; or (4) HSF/rotavirus infected. After one day of adjustment to the feeding rates, pigs were infected with rotavirus and acute effects on growth and diarrhea were monitored for 3 d and jejunal samples were collected for Ussing-chamber analyses. Piglets that were malnourished or infected had lower body weights on days 2 and 3 post-infection (P < 0.05). Three days post-infection, marked diarrhea and weight loss were accompanied by sharp reductions in villus height (59%) and lactase activity (91%) and increased crypt depth (21%) in infected compared with non-infected pigs (P < 0.05). Malnutrition also increased crypt depth (21%) compared to full-fed piglets. Villus:crypt ratio was reduced (67%) with viral infection. There was a trend for reduction in transepithelial electrical resistance with rotavirus infection and malnutrition (P = 0.1). (3)H-mannitol flux was significantly increased (50%; P < 0.001) in rotavirus-infected piglets compared to non-infected piglets, but there was no effect of nutritional status. Furthermore, rotavirus infection reduced localization of the tight junction protein, occludin, in the cell membrane and increased localization in the cytosol. Overall, malnutrition had no additive effects to rotavirus infection on intestinal barrier function at day 3 post-infection in a neonatal piglet model.

  5. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function.

    PubMed

    Anderson, Rachel C; Cookson, Adrian L; McNabb, Warren C; Kelly, William J; Roy, Nicole C

    2010-08-01

    The aim of this research was to identify bacterial isolates having the potential to improve intestinal barrier function. Lactobacillus plantarum strains and human oral isolates were screened for their ability to enhance tight junction integrity as measured by the transepithelial electrical resistance (TEER) assay. Eight commercially used probiotics were compared to determine which had the greatest positive effect on TEER, and the best-performing probiotic strain, Lactobacillus rhamnosus HN001, was used as a benchmark to evaluate the isolates. One isolate, L. plantarum DSM 2648, was selected for further study because it increased TEER 135% more than L. rhamnosus HN001. The ability of L. plantarum DSM 2648 to tolerate gastrointestinal conditions and adhere to intestinal cells was determined, and L. plantarum DSM 2648 performed better than L. rhamnosus HN001 in all the assays. Lactobacillus plantarum DSM 2648 was able to reduce the negative effect of Escherichia coli [enteropathogenic E. coli (EPEC)] O127:H6 (E2348/69) on TEER and adherence by as much as 98.75% and 80.18%, respectively, during simultaneous or prior coculture compared with EPEC incubation alone. As yet, the precise mechanism associated with the positive effects exerted by L. plantarum DSM 2648 are unknown, and may influence its use to improve human health and wellness.

  6. Supplementation with L-glutamine prevents tumor growth and cancer-induced cachexia as well as restores cell proliferation of intestinal mucosa of Walker-256 tumor-bearing rats.

    PubMed

    Martins, Heber Amilcar; Sehaber, Camila Caviquioli; Hermes-Uliana, Catchia; Mariani, Fernando Augusto; Guarnier, Flavia Alessandra; Vicentini, Geraldo Emílio; Bossolani, Gleison Daion Piovezana; Jussani, Laraine Almeida; Lima, Mariana Machado; Bazotte, Roberto Barbosa; Zanoni, Jacqueline Nelisis

    2016-12-01

    This study aimed to evaluate the intestinal mucosa of the duodenum and jejunum of Walker-256 tumor-bearing rats supplemented with L-glutamine. Thirty-two male 50-day-old Wistar rats (Rattus norvegicus) were randomly divided into four groups: control (C), control supplemented with 2 % L-glutamine (GC), Walker-256 tumor (WT), and Walker-256 tumor supplemented with 2 % L-glutamine (TWG). Walker-256 tumor was induced by inoculation viable tumor cells in the right rear flank. After 10 days, celiotomy was performed and duodenal and jejunal tissues were removed and processed. We evaluated the cachexia index, proliferation index, villus height, crypt depth, total height of the intestinal wall, and number of goblet cells by the technique of periodic acid-Schiff (PAS). Induction of Walker-256 tumor promoted a reduction of metaphase index in the TW group animals, which was accompanied by a reduction in the villous height and crypt depths, resulting in atrophy of the intestinal wall as well as increased PAS-positive goblet cells. Supplementation with L-glutamine reduced the tumor growth and inhibited the development of the cachectic syndrome in animals of the TWG group. Furthermore, amino acid supplementation promoted beneficial effects on the intestinal mucosa in the TWG animals through restoration of the number of PAS-positive goblet cells. Therefore, supplementation with 2 % L-glutamine exhibited a promising role in the prevention of tumor growth and cancer-associated cachexia as well as restoring the intestinal mucosa in the duodenum and jejunum of Walker-256 tumor-bearing rats.

  7. Metabolism of cyadox by the intestinal mucosa microsomes and gut flora of swine, and identification of metabolites by high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry.

    PubMed

    Xu, Ning; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Wang, Xu; Tao, Yanfei; Chen, Dongmei; Wang, Yulian; Peng, Dapeng; Yuan, Zong hui

    2011-08-30

    Cyadox (CYX), 2-formylquinoxaline-1,4-dioxide cyanoacetylhydrazone, is an antimicrobial and growth-promoting feed additive for food-producing animals. To reveal biotransformation of CYX in swine intestine, CYX was incubated with swine intestinal microsomes and mucosa in the presence of an NADPH-generating system and swine ileal flora and colonic flora, respectively. The metabolites of CYX were identified using high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry (LC/MS-ITTOF). Structural elucidation of the metabolites was precisely performed by comparing their changes in molecular mass, full scan MS/MS spectra and accurate mass measurements with those of the parent drug. Finally, seven metabolites were identified as follows: three reduced metabolites (cyadox 1-monoxide (Cy1), cyadox 4-monoxide (Cy2) and bisdesoxycyadox (Cy4)); hydroxylation metabolite (3-hydroxylcyadox 1-monoxide (Cy3)); hydrolysis metabolite of the amide bond (N-decyanoacetyl cyadox (Cy5)); a hydrogenation metabolite (11,12-dihydro-bisdesoxycyadox (Cy6)) and a side-chain cleavage metabolite (2-hydromethylquinoxaline (Cy7)). Only one metabolite (Cy1) was found in intestinal microsomes. Cy1, Cy2 and Cy4 were detected in intestinal mucosa, ileal and colonic flora. In addition, Cy3 and Cy5 were only obtained from ileal flora, and Cy6 and Cy7 alone were observed in colonic bacteria. The results indicated that N→O group reduction was the main metabolic pathway of CYX metabolism in swine ileal flora, intestinal microsomes and mucosa. New metabolic profiles of hydrogenation and cleavage on the side chain were found in colonic bacteria. Among the identified metabolites, two new metabolites (Cy6, Cy7) were detected for the first time. These studies will contribute to clarify comprehensively the metabolism of CYX in animals, and provide evidence to explain the pharmacology and toxicology effects of CYX in animals.

  8. Intestinal and Blood-Brain Barrier Permeability of Ginkgolides and Bilobalide: In Vitro and In Vivo Approaches

    USDA-ARS?s Scientific Manuscript database

    In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...

  9. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  10. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    PubMed Central

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-01-01

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury. PMID:27918411

  11. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa.

    PubMed

    Sellin, Mikael E; Müller, Anna A; Felmy, Boas; Dolowschiak, Tamas; Diard, Médéric; Tardivel, Aubry; Maslowski, Kendle M; Hardt, Wolf-Dietrich

    2014-08-13

    The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/β and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogen's intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections.

  12. It takes more than a coating to get nanoparticles through the intestinal barrier in vitro.

    PubMed

    Lichtenstein, Dajana; Ebmeyer, Johanna; Meyer, Thomas; Behr, Anne-Cathrin; Kästner, Claudia; Böhmert, Linda; Juling, Sabine; Niemann, Birgit; Fahrenson, Christoph; Selve, Sören; Thünemann, Andreas F; Meijer, Jan; Estrela-Lopis, Irina; Braeuning, Albert; Lampen, Alfonso

    2017-09-01

    Size and shape are crucial parameters which have impact on the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in nanotoxicology additionally focuses on particle coating. To distinguish between core- and coating-related effects in nanoparticle uptake and translocation, two nanoparticles equal in size, coating and charge but different in core material were investigated. Silver and iron oxide nanoparticles coated with poly (acrylic acid) were chosen and extensively characterized by small-angle x-ray scattering, nanoparticle tracing analysis and transmission electron microscopy (TEM). Uptake and transport were studied in the intestinal Caco-2 model in a Transwell system with subsequent elemental analysis. TEM and ion beam microscopy were conducted for particle visualization. Although equal in size, charge and coating, the behavior of the two particles in Caco-2 cells was different: while the internalized amount was comparable, only iron oxide nanoparticles additionally passed the epithelium. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. Knowledge about the different roles of the particle coating and core materials in crossing biological barriers will facilitate toxicological risk assessment of nanoparticles and contribute to the optimization of pharmacokinetic properties of nano-scaled pharmaceuticals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    PubMed

    Segawa, Shuichi; Fujiya, Mikihiro; Konishi, Hiroaki; Ueno, Nobuhiro; Kobayashi, Naoyuki; Shigyo, Tatsuro; Kohgo, Yutaka

    2011-01-01

    Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P), a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg) improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  14. Probiotic-Derived Polyphosphate Enhances the Epithelial Barrier Function and Maintains Intestinal Homeostasis through Integrin–p38 MAPK Pathway

    PubMed Central

    Segawa, Shuichi; Fujiya, Mikihiro; Konishi, Hiroaki; Ueno, Nobuhiro; Kobayashi, Naoyuki; Shigyo, Tatsuro; Kohgo, Yutaka

    2011-01-01

    Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P), a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg) improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK. PMID:21858054

  15. Alteration of intestinal barrier function during activity-based anorexia in mice.

    PubMed

    Jésus, Pierre; Ouelaa, Wassila; François, Marie; Riachy, Lina; Guérin, Charlène; Aziz, Moutaz; Do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O; Coëffier, Moïse

    2014-12-01

    Anorexia nervosa is a severe eating disorder often leading to malnutrition and cachexia, but its pathophysiology is still poorly defined. Chronic food restriction during anorexia nervosa may induce gut barrier dysfunction, which may contribute to disease development and its complications. Here we have characterized intestinal barrier function in mice with activity-based anorexia (ABA), an animal model of anorexia nervosa. Male C57Bl/6 ABA or limited food access (LFA) mice were placed respectively in cages with or without activity wheel. After 5 days of acclimatization, both ABA and LFA mice had progressively limited access to food from 6 h/d at day 6 to 3 h/d at day 9 and until the end of experiment at day 17. A group of pair-fed mice (PF) was also compared to ABA. On day 17, food intake was lower in ABA than LFA mice (2.0 ± 0.18 g vs. 3.0 ± 0.14 g, p < 0.001) and weight loss was more pronounced in ABA and PF compared to LFA mice (23.6 ± 1.6% and 24.7 ± 0.7% vs. 16.5 ± 1.2%; p < 0.05). Colonic histology showed decreased thickness of the muscularis layer in ABA compared to LFA mice (p < 0.05). Colonic permeability was increased in both ABA and PF compared to LFA mice (p < 0.05) but jejunal paracellular permeability was not affected. Expression of claudin-1 in the colon was lower in the ABA than the LFA group (p < 0.05), whereas occludin expression remained unaffected. Increased colonic permeability and histological alterations found in ABA mice suggest that intestinal barrier dysfunction may also occur in anorexia nervosa. The role of these alterations in the pathophysiology of anorexia nervosa should be further evaluated. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.

    PubMed

    Neves, Ana Rute; Queiroz, Joana Fontes; Costa Lima, Sofia A; Figueiredo, Francisco; Fernandes, Rui; Reis, Salette

    2016-02-01

    Oral administration is the preferred route for drug delivery and nanosystems represent a promising tool for protection and transport of hardly soluble, chemically unstable and poorly permeable drugs through the intestinal barrier. In the present work, we have studied lipid nanoparticles cellular uptake, internalization pathways and transcytosis routes through Caco-2 cell monolayers. Both lipid nanosystems presented similar size (∼180nm) and surface charge (-30mV). Nanostructured lipid carriers showed a higher cellular uptake and permeability across the barrier, but solid lipid nanoparticles could enter cells faster than the former. The internalization of lipid nanoparticles occurs mainly through a clathrin-mediated endocytosis mechanism, although caveolae-mediated endocytosis is also involved in the uptake. Both lipid nanoparticles were able to cross the intestinal barrier by a preferential transcellular route. This work contributed to a better knowledge of the developed nanosystems for the oral delivery of a wide spectrum of drugs.

  17. Characterization of mucosa-associated bacterial communities of the mouse intestine by terminal restriction fragment length polymorphism: Utility of sampling strategies and methods to reduce single-stranded DNA artifacts.

    PubMed

    Costa, Estela; Puhl, Nathan J; Selinger, L Brent; Inglis, G Douglas

    2009-08-01

    Terminal restriction fragment length polymorphism (T-RFLP) is a molecular technique used for comparative analysis of microbial community structure and dynamics. We evaluated three sampling methods for recovering bacterial community DNA associated with intestinal mucosa of mice (i.e. mechanical agitation with PBS, hand washing with PBS containing Tween 80, and direct DNA extraction from mucosal plugs). In addition, the utility of two methods (i.e. Klenow fragment and mung-bean nuclease) to reduce single-stranded DNA artifacts was tested. T-RFLP analysis indicated that diverse communities of bacteria are associated with mucosa of the ileum, cecum, and descending colon of mice. Although there was no significant difference in bacterial community structure between the mechanical agitation and direct DNA extraction methods regardless of intestinal location, community diversity was reduced for the hand wash method in the colon. The use of Klenow fragment and mung-bean nuclease have been reported to eliminate single-stranded DNA artifacts (i.e. pseudo-T-restriction fragments), but neither method was beneficial for characterizing mucosa-associated bacterial communities of the mouse cecum. Our study showed that the mechanical agitation and direct plug extraction methods yielded equivalent bacterial community DNA from the mucosa of the small and large intestines of mice, but the latter method was superior for logistical reasons. We also applied a combination of different statistical approaches to analyze T-RFLP data, including statistical detection of true peaks, analysis of variance for peak number, and group significance test, which provided a quantitative improvement for the interpretation of the T-RFLP data.

  18. The highly variable microbiota associated to intestinal mucosa correlates with growth and hypoxia resistance of sea bass, Dicentrarchus labrax, submitted to different nutritional histories.

    PubMed

    Gatesoupe, François-Joël; Huelvan, Christine; Le Bayon, Nicolas; Le Delliou, Hervé; Madec, Lauriane; Mouchel, Olivier; Quazuguel, Patrick; Mazurais, David; Zambonino-Infante, José-Luis

    2016-11-08

    The better understanding of how intestinal microbiota interacts with fish health is one of the key to sustainable aquaculture development. The present experiment aimed at correlating active microbiota associated to intestinal mucosa with Specific Growth Rate (SGR) and Hypoxia Resistance Time (HRT) in European sea bass individuals submitted to different nutritional histories: the fish were fed either standard or unbalanced diets at first feeding, and then mixed before repeating the dietary challenge in a common garden approach at the juvenile stage. A diet deficient in essential fatty acids (LH) lowered both SGR and HRT in sea bass, especially when the deficiency was already applied at first feeding. A protein-deficient diet with high starch supply (HG) reduced SGR to a lesser extent than LH, but it did not affect HRT. In overall average, 94 % of pyrosequencing reads corresponded to Proteobacteria, and the differences in Operational Taxonomy Units (OTUs) composition were mildly significant between experimental groups, mainly due to high individual variability. The highest and the lowest Bray-Curtis indices of intra-group similarity were observed in the two groups fed standard starter diet, and then mixed before the final dietary challenge with fish already exposed to the nutritional deficiency at first feeding (0.60 and 0.42 with diets HG and LH, respectively). Most noticeably, the median percentage of Escherichia-Shigella OTU_1 was less in the group LH with standard starter diet. Disregarding the nutritional history of each individual, strong correlation appeared between (1) OTU richness and SGR, and (2) dominance index and HRT. The two physiological traits correlated also with the relative abundance of distinct OTUs (positive correlations: Pseudomonas sp. OTU_3 and Herbaspirillum sp. OTU_10 with SGR, Paracoccus sp. OTU_4 and Vibrio sp. OTU_7 with HRT; negative correlation: Rhizobium sp. OTU_9 with HRT). In sea bass, gut microbiota characteristics and

  19. Mutation of EpCAM leads to intestinal barrier and ion transport dysfunction.

    PubMed

    Kozan, Philip A; McGeough, Matthew D; Peña, Carla A; Mueller, James L; Barrett, Kim E; Marchelletta, Ronald R; Sivagnanam, Mamata

    2015-05-01

    Congenital tufting enteropathy (CTE) is a devastating diarrheal disease seen in infancy that is typically associated with villous changes and the appearance of epithelial tufts. We previously found mutations in epithelial cell adhesion molecule (EpCAM) to be causative in CTE. We developed a knock-down cell model of CTE through transfection of an EpCAM shRNA construct into T84 colonic epithelial cells to elucidate the in vitro role of EpCAM in barrier function and ion transport. Cells with EpCAM deficiency exhibited decreased electrical resistance, increased permeability, and decreased ion transport. Based on mutations in CTE patients, an in vivo mouse model was developed, with tamoxifen-inducible deletion of exon 4 in Epcam resulting in mutant protein with decreased expression. Tamoxifen treatment of Epcam (Δ4/Δ4) mice resulted in pathological features of villous atrophy and epithelial tufts, similar to those in human CTE patients, within 4 days post induction. Epcam (Δ4/Δ4) mice also showed decreased expression of tight junctional proteins, increased permeability, and decreased ion transport in the intestines. Taken together, these findings reveal mechanisms that may underlie disease in CTE. Knock-down EpCAM cell model of congenital tufting enteropathy was developed. In vivo inducible mouse model was developed resulting in mutant EpCAM protein. Cells with EpCAM deficiency demonstrated barrier and ion transport dysfunction. Tamoxifen-treated Epcam (Δ4/Δ4) mice demonstrated pathological features. Epcam (Δ4/Δ4) mice showed improper barrier function and ion transport.

  20. In vivo demonstration of T lymphocyte migration and amelioration of ileitis in intestinal mucosa of SAMP1/Yit mice by the inhibition of MAdCAM-1

    PubMed Central

    Matsuzaki, K; Tsuzuki, Y; Matsunaga, H; Inoue, T; Miyazaki, J; Hokari, R; Okada, Y; Kawaguchi, A; Nagao, S; Itoh, K; Matsumoto, S; Miura, S

    2005-01-01

    The aetiology of Crohn's disease (CD) remains unknown. Since SAMP1/Yit mice have been reported to develop CD-like spontaneous enteric inflammation, such mice have been studied as an animal model of CD. In this study, using this model we examined T lymphocyte migration in microvessels of intestinal mucosa in vivo and the expression of adhesion molecules by immunohistochemistry. Fluorescence-labelled T lymphocytes isolated from AKR/J (control) mice were injected into the tail veins of recipient mice, and T lymphocyte migration in the postcapillary venules of Peyer's patches, submucosal microvessels, and villus capillaries of the terminal ileum was monitored using an intravital microscope. Adhesion of T lymphocytes was significantly increased in 35 week old SAMP1/Yit mice compared with that in AKR/J or 15 week old SAMP1/Yit mice. Immunohistochemical study showed increased infiltration of CD4, CD8 and β7-integrin-positive cells and increased expression of MAdCAM-1 and VCAM-1 in the terminal ileum of SAMP1/Yit mice. Antibodies against MAdCAM-1 and VCAM-1 significantly inhibited adhesion of T lymphocytes to microvessels of the terminal ileum, and anti-MAdCAM-1 antibody showed stronger suppressive effect than the anti-VCAM-1 antibody. Periodical administration of anti-MAdCAM-1 antibody twice a week for 7 weeks significantly ameliorated ileitis of SAMP1/Yit mice, but submucosal hypertrophy was not significantly suppressed. Anti-VCAM-1 antibody treatment failed to show significant resolution of ileitis. In addition, anti-MAdCAM-1 antibody treatment also attenuated established ileitis. The results demonstrate that, although MAdCAM-1 and VCAM-1 play an important role in T lymphocyte–endothelial cell interactions in SAMP1/Yit mice, MAdCAM-1 may be a more appropriate target for therapeutic modulation of chronic ileitis. PMID:15762871

  1. Arabinoxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets.

    PubMed

    Chen, Hong; Wang, Wei; Degroote, Jeroen; Possemiers, Sam; Chen, Daiwen; De Smet, Stefaan; Michiels, Joris

    2015-01-01

    The effect of dietary fiber on intestinal function primarily has been ascribed to its interaction with intestinal bacteria in the hindgut, whereas changes in intestinal bacteria in the host have been considered to depend on fiber composition. The objectives of this study were to determine the contribution of the major fiber components to the health-promoting effects of wheat bran on intestinal mucosal barrier function and to elucidate the involvement of microbiota changes in weaned piglets. Thirty freshly weaned male piglets were assigned to 5 dietary treatment groups (n = 6) according to litter and weight. The piglets consumed synthetic diets ad libitum for 30 d, including a basal control diet (CON) without fiber components, a wheat bran diet (WB) as reference diet (10% wheat bran), and 3 other diets containing amounts of fiber components equivalent to those in the WB, i.e., an arabinoxylan diet (AX), a cellulose diet (CEL), and a combined arabinoxylan and cellulose diet (CB). The groups consuming diets containing arabinoxylans (i.e., the WB, AX, and CB groups) had increased intestinal secretory immunoglobulin A concentrations, goblet cell number and cecal short-chain fatty acid concentrations, and reduced branched-chain fatty acid concentrations and pH values compared with the CON group. In the WB group, the stimulated secretion of Cl(-) was suppressed (60.8% and 47.5% change in short-circuit current caused by theophylline and carbachol, respectively) in the distal small intestine compared with the CON group. The AX and CB groups also had increased intestinal alkaline phosphatase activities and reduced intestinal transcellular permeability (by 77.3% and 67.2%, respectively) compared with the CON group. Meanwhile, in the WB group, cecal Bacteroidetes and Enterobacteriaceae populations were lower, and the growth of Lactobacillus was higher in the AX and CB groups than in the CON group, whereas no positive effect on intestinal barrier function was observed in the

  2. Basic and clinical research on the regulation of the intestinal barrier by Lactobacillus and its active protein components: a review with experience of one center.

    PubMed

    Liu, Zhi-Hua; Kang, Liang; Wang, Jian-Ping

    2014-12-01

    Probiotics got protective effects on the intestinal barrier. Our present study is to review the basic and clinical progress on the regulation of the intestinal barrier by Lactobacillus and its active protein components, combing the study of our center. Our study have isolated the active component of micro integral membrane protein (MIMP) within the media place of the integral membrane protein of Lactobacillus plantarum, which was verified about the protective effects against the intestinal epithelial dysfunction. On the other hand, we also found the effects of perioperative use of probiotics in the prevention and treatment of postoperative intestinal barrier dysfunction, and reduction of the postoperative infective complications. In this review, we would like to report the founding of our center, involving in the basic and clinical research progress of regulation of intestinal barrier by Lactobacillus and its active protein component MIMP. Furthermore, we may also promote our following studies about the MIMP and its clinical verification.

  3. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation.

    PubMed

    Ling, Ka-Ho; Wan, Murphy Lam Yim; El-Nezami, Hani; Wang, Mingfu

    2016-05-16

    Contamination of food/feedstuffs by mycotoxins is a serious problem worldwide, causing severe economic losses and serious health problems in animals/humans. Deoxynivalenol (DON) is a major mycotoxin contaminant and is known to impair intestinal barrier function. Grapes and red wine are rich in polyphenols, such as resveratrol (RES), which has striking antioxidant and anti-inflammatory activities. RES is a food-derived component; therefore, it may be simultaneously present with DON in the gastrointestinal tract. The aim of this study was to explore in vitro protective effects of RES against DON-induced intestinal damage. The results showed that RES could protect DON-induced bacteria translocation because of enhanced of intestinal barrier function by restoring the DON-induced decrease in transepithelial electrical resistance and increase in paracellular permeability. Further mechanistic studies demonstrated that RES protects against DON-induced barrier dysfunction by promoting the assembly of claudin-4 in the tight junction complex. This is probably mediated through modulation of IL-6 and IL-8 secretion via mitogen-activated protein kinase-dependent pathways. Our results imply that RES can protect against DON-induced intestinal damage and that RES may be used as a novel dietary intervention strategy to reduce DON toxicity in animals/humans.

  4. Fermented Yupingfeng polysaccharides enhance immunity by improving the foregut microflora and intestinal barrier in weaning rex rabbits.

    PubMed

    Sun, Hao; Ni, Xueqin; Song, Xu; Wen, Bin; Zhou, Yi; Zou, Fuqin; Yang, Mingyue; Peng, Zhirong; Zhu, Hui; Zeng, Yan; Wang, Hesong; Fu, Xiangchao; Shi, Yunduo; Yin, Zhongqiong; Pan, Kangcheng; Jing, Bo; Zeng, Dong; Wang, Ping

    2016-09-01

    Yupingfeng (YPF) is a kind of Astragali radix-based ancient Chinese herbal supplemented with Atractylodis Macrocephalae Rhizoma and Radix Saposhnikoviae. Increasing evidence has proven the beneficial immunomodulating activity of YPF. However, the action mechanism(s) of it is not known. Here, we explored the immunomodulatory activity of unfermented Yupingfeng polysaccharides (UYP) and fermented Yupingfeng polysaccharides (FYP) obtained using Rhizopus oligosporus SH in weaning Rex rabbits. The results showed that both UYP and FYP exhibited notable growth-promoting and immune-enhancing activities, improvement of the intestinal flora homeostasis, and maintenance of intestinal barrier integrity and functionality. Notably, compared with UYP, FYP effectively enhanced average daily gain, organ indices, interleukin-2 (IL-2), IL-4, IL-10, tumor necrosis factor-alpha (TNF-α), TLR2, and TLR4 mRNA levels in spleen, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ protein concentrations in serum, and TLR2 and TLR4 mRNA expressions in the gastrointestinal tract (GIT). Moreover, FYP exhibited greater beneficial effects in improving the intestinal flora, including augment flora diversity and the abundance of cellulolytic bacteria, reduction the abundance of Streptococcus spp. and Enterococcus spp. in the GIT, particularly the foregut and maintaining the intestinal barrier integrity and functionality by upregulating zonula occludens 1, claudin, polymeric immunoglobulin receptor, trefoil factor, and epidermal growth factor mRNA levels in the jejunum and ileum. Our results indicated the immunoenhancement effect of FYP is superior over that of UYP, which is probably related with the amelioration of the intestinal microflora and intestinal barrier in the foregut.

  5. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks.

    PubMed

    Wils-Plotz, E L; Jenkins, M C; Dilger, R N

    2013-03-01

    Coccidiosis is a major contributor to economic losses in the poultry industry due to its detrimental effects on growth performance and nutrient utilization. We hypothesized that the combined effects of supplemental dietary Thr and purified fiber may modulate the intestinal environment and positively affect intestinal immune responses and barrier function in broiler chicks infected with Eimeria maxima. A Thr-deficient basal diet (3.1 g of Thr/kg of diet) was supplemented with 70 g/kg of silica sand (control) or high-methoxy pectin and 1 of 2 concentrations of Thr (1.8 or 5.3 g/kg of diet; 4 diets total), and fed to chicks from hatch to d 16 posthatch. On d 10 posthatch, chicks received 0.5 mL of distilled water or an acute dose of Eimeria maxima (1.5 × 10(3) sporulated oocytes) with 6 replicate pens of 6 chicks per each of 8 treatment combinations (4 diets and 2 inoculation states). Body weight gain, feed intake, and G:F increased (P < 0.01) with addition of 5.3 g of Thr/kg of diet. Eimeria maxima schizonts were present only in intestinal tissue sampled from infected birds (P < 0.01). Weights of cecal digesta were highest (P < 0.01) in pectin-fed birds, and ceca with the heaviest weights also had the highest concentrations of total short-chain fatty acids. Expression of interleukin-12 in ileal mucosa was highest (P < 0.01) in infected birds receiving the control diet with 5.3 g of supplemental Thr/kg. In cecal tonsils, interferon-γ expression was highest in infected birds receiving the control diet (fiber × infection, P < 0.05); interferon-γ expression was lowest in infected birds fed the high Thr diet (Thr × infection, P < 0.05). There were no differences due to infection or Thr supplementation for cytokine expression in birds fed pectin-containing treatments. Overall, we conclude that although pectin has some protective function against coccidiosis, Thr supplementation had the greatest effect on intestinal immune response and maintenance of near normal growth

  6. Effects of continuous renal replacement therapy on intestinal mucosal barrier function during extracorporeal membrane oxygenation in a porcine model

    PubMed Central

    2014-01-01

    Backgrounds Extracorporeal membrane oxygenation (ECMO) has been recommended for treatment of acute, potentially reversible, life-threatening respiratory failure unresponsive to conventional therapy. Intestinal mucosal barrier dysfunction is one of the most critical pathophysiological disorders during ECMO. This study aimed to determine whether combination with CRRT could alleviate damage of intestinal mucosal barrier function during VV ECMO in a porcine model. Methods Twenty-four piglets were randomly divided into control(C), sham(S), ECMO(E) and ECMO + CRRT(EC) group. The animals were treated with ECMO or ECMO + CRRT for 24 hours. After the experiments, piglets were sacrificed. Jejunum, ileum and colon were harvested for morphologic examination of mucosal injury and ultrastructural distortion. Histological scoring was assessed according to Chiu’s scoring standard. Blood samples were taken from the animals at -1, 2, 6, 12 and 24 h during experiment. Blood, liver, spleen, kidney and mesenteric lymphnode were collected for bacterial culture. Serum concentrations of diamine oxidase (DAO) and intestinal fatty acid binding protein (I-FABP) were tested as markers to assess intestinal epithelial function and permeability. DAO levels were determined by spectrophotometry and I-FABP levels by enzyme linked immunosorbent assay. Results Microscopy findings showed that ECMO-induced intestinal microvillus shedding and edema, morphological distortion of tight junction between intestinal mucous epithelium and loose cell-cell junctions were significantly improved with combination of CRRT. No significance was detected on positive rate of serum bacterial culture. The elevated colonies of bacterial culture in liver and mesenteric lymphnode in E group reduced significantly in EC group (p < 0.05). Compared with E group, EC group showed significantly decreased level of serum DAO and I-FABP (p < 0.05). Conclusions CRRT can alleviate the intestinal mucosal dysfunction

  7. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    SciTech Connect

    Cheng, Jian; Zhang, Lin; Dai, Weiqi; Mao, Yuqing; Li, Sainan; Wang, Jingjie; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  8. Effects of the administration of lactobacilli, maltodextrins and fructooligosaccharides upon the adhesion of E. coli O8:K88 to the intestinal mucosa and organic acid levels in the gut contents of piglets.

    PubMed

    Nemcová, R; Bomba, A; Gancarcíková, S; Reiffová, K; Guba, P; Koscová, J; Jonecová, Z; Sciranková, L; Bugarský, A

    2007-10-01

    The influence of the administration of Lactobacillus plantarum, maltodextrin Maldex 150 and Raftifeed IPX fructooligosaccharides on the inhibition of adhesion of E. coli O8:K88 to the mucosa of the jejunum, ileum and colon as well as on the organic acid levels was investigated in 33 conventional piglets. The counts of E. coli K88 adhering to the jejunal mucosa were significantly decreased (p < 0.05) in Lact. plantarum + Maldex 150 and Lact. plantarum + Maldex 150 + Raftifeed IPX groups. The counts of E. coli K88 adhering to the colonic mucosa of Lact. plantarum + Maldex 150 + Raftifeed IPX and Lact. plantarum + Raftifeed IPX groups were significantly lower (p < 0.05) than in Lact. plantarum and Lact. plantarum + Maldex 150 animals. The acetic acid levels in the ileum and colon of the Lact. plantarum + Maldex 150 + Raftifeed IPX group and Lact. plantarum + Raftifeed IPX group were significantly higher (p < 0.05) than in the Lact. plantarum and Lact. plantarum + Maldex 150 group. The combination of Lact. plantarum, maltodextrin Maldex 150 and Raftifeed IPX proved to be the most effective one to inhibit the counts of E. coli O8:K88 adhering to the intestinal mucosa of the jejunum and colon of conventional piglets.

  9. Relationship between expression of triggering receptor-1 on myeloid cells in intestinal tissue and intestinal barrier dysfunction in severe acute pancreatitis

    PubMed Central

    Yin, Kai; Dang, Sheng-chun; Zhang, Jian-xin

    2011-01-01

    BACKGROUND: Triggering receptor expressed on myeloid cells-1 (TREM-1) in the intestine was upregulated and correlated with disease activity in inflammatory bowel diseases. Membrane-bound TREM-1 protein is increased in the pancreas, liver and kidneys of patients with severe acute pancreatitis (SAP), suggesting that TREM-1 may act as an important mediator of inflammation and subsequent extra-pancreatic organ injury. This study aimed to investigate the relationship between the expression of TREM-1 in intestinal tissue and intestinal barrier dysfunction in SAP. METHODS: Sixty-four male Wistar rats were randomly divided into a sham operation group (SO group, n=32) and a SAP group (n=32). A SAP model was established by retrograde injection of 5% sodium deoxycholate into the bile-pancreatic duct. Specimens were taken from blood and intestinal tissue 2, 6, 12, and 48 hours after operation respectively. The levels of D-lactate, diamine oxidase (DAO) and endotoxin in serum were measured using an improved spectro-photometric method. The expression levels of TREM-1, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) mRNA in terminal ileum were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). Specimens of the distal ileum were taken to determine pathological changes by a validated histology score. RESULTS: The serum levels of D-lactate, DAO and endotoxin were significantly increased in each subgroup of SAP compared with the SO group (P<0.01, P<0.05). The expression levels of TREM-1, IL-1β and TNF-α mRNA in the terminal ileum in each subgroup of SAP were significantly higher than those in the SO group (P<0.01, P<0.05). The expression level of TREM-1mRNA was positively correlated with IL-1β and TNF-α mRNA (r=0.956, P=0.044; r=0.986, P=0.015), but the correlation was not found between IL-1β mRNA and TNF-α mRNA (P=0.133). Compared to the SO group, the pathological changes were aggravated significantly in the SAP group. CONCLUSIONS

  10. Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers

    SciTech Connect

    Kaushik, Gaurav; Huber, David P.; Aho, Ken; Finney, Bruce; Bearden, Shawn; Zarbalis, Konstantinos S.; Thomas, Michael A.

    2016-05-27

    Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic protein expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding {sup 2}H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post–conception days), and quantifying {sup 2}H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of {sup 2}H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at

  11. Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers.

    PubMed

    Kaushik, Gaurav; Huber, David P; Aho, Ken; Finney, Bruce; Bearden, Shawn; Zarbalis, Konstantinos S; Thomas, Michael A

    2016-05-27

    Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic protein expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding (2)H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post-conception days), and quantifying (2)H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of (2)H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at typical

  12. Severity of pancreatitis-associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin

    PubMed Central

    Deng, Wenhong; Abliz, Ablikim; Xu, Sheng; Sun, Rongze; Guo, Wenyi; Shi, Qiao; Yu, Jia; Wang, Weixing

    2016-01-01

    intestinal barrier dysfunction in sodium taurocholate-induced SAP, presumably via its role in the prevention of reactive oxygen species generation and inhibition of p38 MAPK and NF-κB pathway activation. These findings provide novel insight suggesting that pharmacological inhibition of NOX by apocynin may be considered a novel therapeutic method for the treatment of intestinal injury in SAP. PMID:27573037

  13. Mechanism of IL-1β Modulation of Intestinal Epithelial Barrier Involves p38 Kinase and Activating Transcription Factor-2 Activation

    PubMed Central

    Al-Sadi, Rana; Guo, Shuhong; Ye, Dongmei; Dokladny, Karol; Alhmoud, Tarik; Ereifej, Lisa; Said, Hamid M.

    2013-01-01

    The defective intestinal epithelial tight junction (TJ) barrier has been postulated to be an important pathogenic factor contributing to intestinal inflammation. It has been shown that the proinflammatory cytokine IL-1β causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of the p38 kinase pathway and the molecular processes involved. In these studies, the in vitro intestinal epithelial model system (Caco-2 monolayers) was used to delineate the cellular and molecular mechanisms, and a complementary in vivo mouse model system (intestinal perfusion) was used to assess the in vivo relevance of the