Sample records for intestinal tissue samples

  1. Investigation of zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in the Northern Iraq-Erbil region by molecular methods

    NASA Astrophysics Data System (ADS)

    Ibraheem, Azad Saber; Önalan, Şükrü; Arabacı, Muhammed

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in the Northern Iraq-Erbil region. Carp is the main fish species cultured in Erbil region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 25 carp farms in the Northern Iraq-Erbil region. Six carp samples were collected from each carp farm. Head kidney and intestine tissue samples were collected from each carp sample. Then head kidney and intestine tissue samples were pooled separately from each carp farm. Total bacterial DNA had been extracted from the 25 pooled head kidney and 25 intestinal tissue samples. The pathogen Primers were originally designed from 16S RNA gene region. Zoonotic bacteria were scanned in all tissue samples with absent/present analysis by RT-PCR. Furthermore, the capillary gel electrophoresis bands were used for confirmation of amplicon size which was planned during primer designing stage. As a result, thirteen carp farms were positive in the respect to Aeromonas hydrophila, eight carp farms were positive from head kidney and six carp farms were positive from the intestine, only one carp farm was positive from both head kidney and the intestine tissue samples. In the respect to Streptococcus iniae, four carp farms were positive from head kidney and two carp farms were positive from the intestine. Only one carp farm was positive in the respect to Pseudomonas fluorescens from the intestine. Totally, 9 of 25 carp farms were cleared (negative) the zoonotic bacteria. In conclusion, the zoonotic bacteria were high (64 %) in carp farms in the Northern Iraq-Erbil region.

  2. Investigation for zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in Duhok region of Northern Iraq by molecular methods

    NASA Astrophysics Data System (ADS)

    Mohammed, Kamiran Abdulrahman; Arabacı, Muhammed; Önalan, Şükrü

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in Duhok region of the Northern Iraq. Carp is the main fish species cultured in the Duhok region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 20 carp farms in the Duhok Region of the Northern Iraq. Six carp samples were collected from each carp farm. Head kidney tissue samples and intestine tissue samples were collected from each carp sample. Than head kidney and intestine tissue samples were pooled. The total bacterial DNA extraction from the pooled each 20 head kidney tissue samples and pooled each 20 intestinal tissue samples. Primers for pathogens were originally designed from 16S Ribosomal gene region. Zoonotic bacteria were scanned in all tissue samples by absent / present analysis in the RT-PCR. After RT-PCR, Capillary gel electrophoresis bands were used for the confirmation of the size of amplicon which was planned during primer designing stage. As a result, one sample was positive in respect to Aeromonas hydrophila, from intestine and one carp farm was positive in respect to Pseudomonas fluorescens from intestine and two carp farms were positive in respect to Streptococcus iniae. Totally 17 of 20 carp farms were negative in respect to the zoonotic bacteria. In conclusion the zoonotic bacteria were very low (15 %) in carp farms from the Duhok Region in the Northern Iraq. Only in one Carp farms, both Aeromonas hydrophila and Pseudomonas fluorescens were positive. Also Streptococcus inia were positive in two carp farms.

  3. Chronic Binge Alcohol Administration Increases Intestinal T-Cell Proliferation and Turnover in Rhesus Macaques.

    PubMed

    Veazey, Ronald S; Amedee, Angela; Wang, Xiaolei; Bernice Kaack, M; Porretta, Constance; Dufour, Jason; Welsh, David; Happel, Kyle; Pahar, Bapi; Molina, Patricia E; Nelson, Steve; Bagby, Gregory J

    2015-08-01

    Alcohol use results in changes in intestinal epithelial cell turnover and microbial translocation, yet less is known about the consequences on intestinal lymphocytes in the gut. Here, we compared T-cell subsets in the intestine of macaques before and after 3 months of chronic alcohol administration to examine the effects of alcohol on intestinal T-cell subsets. Rhesus macaques received either alcohol or isocaloric sucrose as a control treatment daily over a 3-month period via indwelling gastric catheters. Intestinal lymphocyte subsets were identified in biopsy samples by flow cytometry. Twenty-four hours prior to sampling, animals were inoculated with bromo-deoxyuridine (BrdU) to assess lymphocyte proliferation. Immunohistochemistry was performed on tissue samples to quantitate CD3+ cells. Animals receiving alcohol had increased rates of intestinal T-cell turnover of both CD4+ and CD8+ T cells as reflected by increased BrdU incorporation. However, absolute numbers of T cells were decreased in intestinal tissues as evidenced by immunohistochemistry for total CD3 expression per mm(2) intestinal lamina propria in tissue sections. Combining immunohistochemistry and flow cytometry data showed that the absolute numbers of CD8+ T cells were significantly decreased, whereas absolute numbers of total CD4+ T cells were minimally decreased. Collectively, these data indicate that alcohol exposure to the small intestine results in marked loss of CD3+ T cells, accompanied by marked increases in CD4+ and CD8+ T-cell proliferation and turnover, which we speculate is an attempt to maintain stable numbers of T cells in tissues. This suggests that alcohol results in accelerated T-cell turnover in the gut, which may contribute to premature T-cell senescence. Further, these data indicate that chronic alcohol administration results in increased levels of HIV target cells (proliferating CD4+ T cells) that may support higher levels of HIV replication in intestinal tissues. Copyright © 2015 by the Research Society on Alcoholism.

  4. Chronic binge alcohol administration increases intestinal T cell proliferation and turnover in rhesus macaques

    PubMed Central

    Veazey, Ronald S.; Amedee, Angela; Wang, Xiaolei; Kaack, M. Bernice; Porretta, Constance; Dufour, Jason; Welsh, David; Happel, Kyle; Pahar, Bapi; Molina, Patricia E.; Nelson, Steve; Bagby, Gregory J.

    2015-01-01

    Background Alcohol use results in changes in intestinal epithelial cell turnover and microbial translocation, yet less in known about the consequences on intestinal lymphocytes in the gut. Here we compared T cell subsets in the intestine of macaques before and after 3 months of chronic alcohol administration to examine the effects of alcohol on intestinal T cell subsets. Methods Rhesus macaques received either alcohol or isocaloric sucrose as a control treatment daily over a 3 month period via indwelling gastric catheters. Intestinal lymphocytes subsets were identified in biopsy samples by flow cytometry. Twenty-four hours prior to sampling, animals were inoculated with BrdU to assess lymphocyte proliferation. Immunohistochemistry was performed on tissue samples to quantitate CD3+ cells. Results Animals receiving alcohol had increased rates of intestinal T cell turnover of both CD4+ and CD8+ T cells as reflected by increased BrdU incorporation. However, absolute numbers of T cells were decreased in intestinal tissues as evidenced by immunohistochemistry for total CD3 expression per mm2 intestinal lamina propria in tissue sections. Combining immunohistochemistry and flow cytometry data showed that the absolute numbers of CD8+ T cells were significantly decreased, whereas total of CD4+ T cells were minimally decreased. Conclusions Collectively, these data indicate alcohol exposure to the small intestine results in marked loss of CD3+ T cells, accompanied by marked increases in CD4+ and CD8+ T cell proliferation and turnover, which we speculate is an attempt to maintain stable numbers of T cells in tissues. This suggests alcohol results in accelerated T cell turnover in the gut, which may contribute to premature T cell senescence. Further these data indicate that chronic alcohol administration results in increased levels of HIV target cells (proliferating CD4+ T cells) that may support higher levels of HIV replication in intestinal tissues. PMID:26146859

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballachey, B.E.; Kloecker, K.A.

    Aliphatic and aromatic hydrocarbons were analyzed in hair, liver and intestinal samples taken from dead sea otters (Enhydra lutris) collected in spring and summer 1989 from Prince William Sound, the Kenai Peninsula and Kodiak Island, along the path of the Exxon Valdez oil spill. Hair showed significant differences in hydrocarbon concentrations among the three locations, but few significant differences were noted for liver or intestine samples. The highest concentrations of both aliphatic and aromatic hydrocarbons were measured in hair samples from Prince William Sound. Hydrocarbon concentrations in intestine and liver samples from the three locations were generally similar and low,more » suggesting that uptake into the tissues was limited, or that hydrocarbons within the tissues had been metabolized by the time samples were collected.« less

  6. Microscopic examination of the intestinal wall and selected organs of minipigs orally supplemented with humic acids.

    PubMed

    Büsing, Kirsten; Elhensheri, Mohamed; Entzian, Kristin; Meyer, Udo; Zeyner, Annette

    2014-04-01

    Humic acids are used to prophylactically treat intestinal diseases in a wide number of species, yet the mechanism of action remains unknown. The general assumption has been that humic acids act locally; however studies using young piglets show orally supplemented humic acids can penetrate the intestinal wall, and thus potentially act systemically. The objective of this study was to determine if humic acids could also cross the intestinal barrier in adult pigs and be detected in other organs. Adult minipigs (>18 months old) orally received either 1g humic acids/kg body weight (verum, n=3) or placebo (control, n=3), for 2 weeks. At the end of the feeding period tissue samples were harvested from the intestine, various glands and organs. Unstained tissue samples were examined by light microscopy for the presence of humic acid particles. No humic acid particles were detected in any of the unstained tissues from verum or control pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution

    PubMed Central

    Ingala, Melissa R.; Simmons, Nancy B.; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A.; Perkins, Susan L.

    2018-01-01

    The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated. PMID:29765359

  8. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution.

    PubMed

    Ingala, Melissa R; Simmons, Nancy B; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A; Perkins, Susan L

    2018-01-01

    The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated.

  9. A common molecular signature of intestinal-type gastric carcinoma indicates processes related to gastric carcinogenesis.

    PubMed

    Binato, Renata; Santos, Everton Cruz; Boroni, Mariana; Demachki, Samia; Assumpção, Paulo; Abdelhay, Eliana

    2018-01-26

    Gastric carcinoma (GC) is one of the most aggressive cancers and the second leading cause of cancer death in the world. According to the Lauren classification, this adenocarcinoma is divided into two subtypes, intestinal and diffuse, which differ in their clinical, epidemiological and molecular features. Several studies have attempted to delineate the molecular signature of gastric cancer to develop new and non-invasive screening tests that improve diagnosis and lead to new treatment strategies. However, a consensus signature has not yet been identified for each condition. Thus, this work aimed to analyze the gene expression profile of Brazilian intestinal-type GC tissues using microarrays and compare the results to those of non-tumor tissue samples. Moreover, we compared our intestinal-type gastric carcinoma profile with those obtained from populations worldwide to assess their similarity. The results identified a molecular signature for intestinal-type GC and revealed that 38 genes differentially expressed in Brazilian intestinal-type gastric carcinoma samples can successfully distinguish gastric tumors from non-tumor tissue in the global population. These differentially expressed genes participate in biological processes important to cell homeostasis. Furthermore, Kaplan-Meier analysis suggested that 7 of these genes could individually be able to predict overall survival in intestinal-type gastric cancer patients.

  10. Liquid microjunction surface sampling of acetaminophen, terfenadine and their metabolites in thin tissue sections

    DOE PAGES

    Kertesz, Vilmos; Paranthaman, Nithya; Moench, Paul; ...

    2014-10-01

    The aim of this paper was to evaluate the analytical performance of a fully automated droplet-based surface-sampling system for determining the distribution of the drugs acetaminophen and terfenadine, and their metabolites, in rat thin tissue sections. The following are the results: The rank order of acetaminophen concentration observed in tissues was stomach > small intestine > liver, while the concentrations of its glucuronide and sulfate metabolites were greatest in the liver and small intestine. Terfenadine was most concentrated in the liver and kidney, while its major metabolite, fexofenadine, was found in the liver and small intestine. In conclusion, the spatialmore » distributions of both drugs and their respective metabolites observed in this work were consistent with previous studies using radiolabeled drugs.« less

  11. Comparison of different histological protocols for the preservation and quantification of the intestinal mucus layer in pigs.

    PubMed

    Röhe, Ilen; Hüttner, Friedrich Joseph; Plendl, Johanna; Drewes, Barbara; Zentek, Jürgen

    2018-02-05

    The histological characterization of the intestinal mucus layer is important for many scientific experiments investigating the interaction between intestinal microbiota, mucosal immune response and intestinal mucus production. The aim of this study was to examine and compare different fixation protocols for displaying and quantifying the intestinal mucus layer in piglets and to test which histomorphological parameters may correlate with the determined mucus layer thickness. Jejunal and colonal tissue samples of weaned piglets (n=10) were either frozen in liquid nitrogen or chemically fixed using methacarn solution. The frozen tissue samples were cryosectioned and subsequently postfixed using three different postfixatives: paraformaldehyde vapor, neutrally buffered formalin solution and ethanol solution. After dehydration, methacarn fixed tissues were embedded in paraffin wax. Both sections of cryopreserved and methacarn fixed tissue samples were stained with Alcian blue (AB)-PAS followed by the microscopically determination of the mucus layer thickness. Different pH values of the Alcian Blue staining solution and two mucus layer thickness measuring methods were compared. In addition, various histomorphological parameters of methacarn fixed tissue samples were evaluated including the number of goblet cells and the mucin staining area. Cryopreservation in combination with chemical postfixation led to mucus preservation in the colon of piglets allowing mucus thickness measurements. Mucus could be only partly preserved in cryosections of the jejunum impeding any quantitative description of the mucus layer thickness. The application of different postfixations, varying pH values of the AB solution and different mucus layer measuring methods led to comparable results regarding the mucus layer thickness. Methacarn fixation proved to be unsuitable for mucus depiction as only mucus patches were found in the jejunum or a detachment of the mucus layer from the epithelium was observed in the colon. Correlation analyses revealed that the proportion of the mucin staining area per crypt area (relative mucin staining) measured in methacarn fixed tissue samples corresponded to the colonal mucus layer thickness determined in cryopreserved tissue samples. In conclusion, the results showed that cryopreservation using liquid nitrogen followed by chemical postfixation and AB-PAS staining led to a reliable mucus preservation allowing a mucus thickness determination in the colon of pigs. Moreover, the detected relative mucin staining area may serve as a suitable histomorphological parameter for the assessment of the intestinal mucus layer thickness. The findings obtained in this study can be used for the implementation of an improved standard for the histological description of the mucus layer in the colon of pigs.

  12. The role of curcumin on intestinal oxidative stress, cell proliferation and apoptosis after ischemia/reperfusion injury in rats.

    PubMed

    Yucel, Ahmet Fikret; Kanter, Mehmet; Pergel, Ahmet; Erboga, Mustafa; Guzel, Ahmet

    2011-12-01

    The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.

  13. Anti-inflammatory and antioxidant effects of infliximab in a rat model of intestinal ischemia/reperfusion injury.

    PubMed

    Pergel, Ahmet; Kanter, Mehmet; Yucel, Ahmet Fikret; Aydin, Ibrahim; Erboga, Mustafa; Guzel, Ahmet

    2012-11-01

    The aim of this study was to investigate the possible protective effects of infliximab on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group comprised 10 animals. Sham group animals underwent laparotomy without I/R injury. I/R groups after undergoing laparotomy, 1 hour of superior mesenteric artery ligation occurred, which was followed by 1 hour of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered intravenously. All animals were killed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no biochemical and histopathological changes have been reported regarding intestinal I/R injury in rats due to infliximab treatment. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased reduced superoxide dismutase and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions, inflammatory cell infiltration, necrosis, hemorrhage, and villous congestion. Infliximab treatment significantly attenuated the severity of intestinal I/R injury, inhibiting I/R-induced apoptosis, and cell proliferation. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects on the experimental intestinal I/R model of rats.

  14. Anti-inflammatory and antioxidant effects of infliximab on acute lung injury in a rat model of intestinal ischemia/reperfusion.

    PubMed

    Guzel, Ahmet; Kanter, Mehmet; Guzel, Aygul; Pergel, Ahmet; Erboga, Mustafa

    2012-06-01

    The purpose of this study was to investigate the role of infliximab on acute lung injury induced by intestinal ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered by intravenously. All animals were sacrificed at the end of reperfusion and lung tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by infliximab treatment have been reported. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissues samples. Intestinal I/R caused severe histopathological injury including edema, hemorrhage, increased thickness of the alveolar wall and a great number of inflammatory cells that infiltrated the interstitium and alveoli. Infliximab treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and arise in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with infliximab therapy. It was concluded that infliximab treatment might be beneficial in acute lung injury, therefore, shows potential for clinical use. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects in acute lung injury induced by intestinal I/R.

  15. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    PubMed Central

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented intestine from ischemia reperfusion injury. It is thought that the therapeutic effect of ozone is associated with increase in antioxidant enzymes and protection of cells from oxidation and inflammation. PMID:26161005

  16. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia

    PubMed Central

    Somaio Neto, Frederico; Ikejiri, Adauto Tsutomu; Bertoletto, Paulo Roberto; Chaves, José Carlos Bertoletto; Teruya, Roberto; Fagundes, Djalma José; Taha, Murched Omar

    2014-01-01

    Background Intestinal ischemia-reperfusion is a frequent clinical event associated to injury in distant organs, especially the heart. Objective To investigate the gene expression of oxidative stress and antioxidant defense in the heart of inbred mice subjected to intestinal ischemia and reperfusion (IR). Methods Twelve mice (C57BL / 6) were assigned to: IR Group (GIR) with 60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion; Control Group (CG) which underwent anesthesia and laparotomy without IR procedure and was observed for 120 minutes. Intestine and heart samples were processed using the RT-qPCR / Reverse transcriptase-quantitative Polymerase Chain Reaction method for the gene expression of 84 genes related to oxidative stress and oxidative defense (Student's "t" test, p < 0.05). Results The intestinal tissue (GIR) was noted to have an up-regulation of 65 genes (74.71%) in comparison to normal tissue (CG), and 37 genes (44.04%) were hyper-expressed (greater than three times the threshold allowed by the algorithm). Regarding the remote effects of intestinal I/R in cardiac tissue an up-regulation of 28 genes (33.33%) was seen, but only eight genes (9.52%) were hyper-expressed three times above threshold. Four (7.14%) of these eight genes were expressed in both intestinal and cardiac tissues. Cardiomyocytes with smaller and pyknotic nuclei, rich in heterochromatin with rare nucleoli, indicating cardiac distress, were observed in the GIR. Conclusion Intestinal I/R caused a statistically significant over expression of 8 genes associated with oxidative stress in remote myocardial tissue. PMID:24346830

  17. Sclerocollum saudii Al-Jahdali, 2010 (Acanthocephala: Cavisomidae) as a sentinel for heavy-metal pollution in the Red Sea.

    PubMed

    Hassanine, R M El-S; Al-Hasawi, Z M; Hariri, M S; Touliabah, H El-S

    2018-02-07

    Currently, fish helminth parasites, especially cestodes and acanthocephalans, are regarded as sentinel organisms to elucidate metal pollution in aquatic ecosystems. Here, 34 specimens of the fish Siganus rivulatus were collected in the Red Sea, from a seriously polluted, small lagoon named Sharm-Elmaya Bay, at Sharm El-Sheikh, South Sinai, Egypt; 22 (64.7%) were infected by Sclerocollum saudii (Acanthocephala: Cavisomidae). Thus, 22 natural infrapopulations (26-245 individuals) of this parasite were collected from infected fish. Samples of water and sediments from the bay, samples of muscle, intestine and liver from each fish, and samples from the parasite were taken for analysis of heavy metals (cadmium (Cd) and lead (Pb)). Both Cd and Pb concentrations in sediments were higher than those in water. The concentration of these metals were significantly higher in tissues (intestine, liver and muscle) of non-infected fish than those in infected fish, with Pb concentrations consistently higher than those of Cd, and both were drastically decreased in the order: liver > intestine > muscle. Metal concentrations in this acanthocephalan were much higher than those in its fish host. There were strong negative relationships between metal concentrations in tissues (intestine, liver and muscle) of infected fish and infrapopulation size, and between metal concentrations in the acanthocephalan and its infrapopulation size. These relationships strongly suggest competition for these metals between the fish host and its acanthocephalan parasite, and intraspecific competition among acanthocephalan individuals for available metals in the fish intestine. Bioconcentration factors were relatively high, since the mean Cd concentration in S. saudii was 239, 68 and 329 times higher than those in intestine, liver and muscle tissues, respectively, of its fish host. Also, mean Pb concentration was 55, 13 and 289 times higher than those in these tissues, respectively. The host-parasite system described here seems to be promising for biomonitoring of metal pollution in the Red Sea.

  18. Gene expression in human small intestinal mucosa in vivo is mediated by iron-induced oxidative stress.

    PubMed

    Troost, Freddy J; Brummer, Robert-Jan M; Haenen, Guido R M M; Bast, Aalt; van Haaften, Rachel I; Evelo, Chris T; Saris, Wim H M

    2006-04-13

    Iron-induced oxidative stress in the small intestine may alter gene expression in the intestinal mucosa. The present study aimed to determine which genes are mediated by an iron-induced oxidative challenge in the human small intestine. Eight healthy volunteers [22 yr(SD2)] were tested on two separate occasions in a randomized crossover design. After duodenal tissue sampling by gastroduodenoscopy, a perfusion catheter was inserted orogastrically to perfuse a 40-cm segment of the proximal small intestine with saline and, subsequently, with either 80 or 400 mg of iron as ferrous gluconate. After the intestinal perfusion, a second duodenal tissue sample was obtained. Thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, in intestinal fluid samples increased significantly and dose dependently at 30 min after the start of perfusion with 80 or 400 mg of iron, respectively (P < 0.001). During the perfusion with 400 mg of iron, the increase in thiobarbituric acid-reactive substances was accompanied by a significant, momentary rise in trolox equivalent antioxidant capacity, an indicator of total antioxidant capacity (P < 0.05). The expression of 89 gene reporters was significantly altered by both iron interventions. Functional mapping showed that both iron dosages mediated six distinct processes. Three of those processes involved G-protein receptor coupled pathways. The other processes were associated with cell cycle, complement activation, and calcium channels. Iron administration in the small intestine induced dose-dependent lipid peroxidation and a momentary antioxidant response in the lumen, mediated the expression of at least 89 individual gene reporters, and affected at least six biological processes.

  19. Increase in substance P precursor mRNA in noninflamed small-bowel sections in patients with Crohn's disease.

    PubMed

    Michalski, Christoph W; Autschbach, Frank; Selvaggi, Federico; Shi, Xin; Di Mola, Fabio Francesco; Roggo, Antoine; Müller, Michael W; Di Sebastiano, Pierluigi; Büchler, Markus W; Giese, Thomas; Friess, Helmut

    2007-04-01

    Neuropeptides, such as substance P (SP), are mediators of neurogenic inflammation and play an important role in inflammatory disorders. To further investigate the role of the SP pathway in inflammatory bowel disease (IBD), we analyzed the following in normal intestinal tissue specimens and in tissue specimens from patients with Crohn's disease (CD) and ulcerative colitis (UC): neurokinin receptor-1 (NK-1R); its isoforms (NK-1R-L and NK-1R-S); its ligand SP, encoded by preprotachykinin-A (PPT-A); and the SP-degradation enzyme, neutral endopeptidase (NEP). Real-time quantitative reverse transcription-polymerase chain reaction was used to simultaneously determine the expression of NK-1R-L, NK-1R-S, and PPT-A. Protein levels of NK-1R and NEP were determined by immunoblot analysis. In noninflamed small-bowel tissue samples of CD patients, PPT-A mRNA expression was significantly increased, whereas there was no difference between inflamed or noninflamed UC and normal intestinal tissue samples. Examining subgroups of diverse intestinal segments from CD and UC samples with various levels of inflammation revealed no differences in NK-1R-L and NK-1R-S mRNA expression, whereas there was a tendency toward overall lower NK-1R-S mRNA copy numbers. Immunoblot analysis showed upregulation of NK-1R protein levels in cases of IBD, with more pronounced enhancement in cases of CD than in UC. For NEP, there were no differences in protein levels in normal, CD, and UC intestinal tissues. These observations suggest a contribution of SP and its receptor, NK-1R, in the local inflammatory reaction in IBD and particularly in ileal CD. Moreover, significant upregulation of PPT-A mRNA in the noninflamed ileum of these patients suggests an influence of inflamed intestines on their healthy counterparts.

  20. Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue.

    PubMed

    Drobac, Damjana; Tokodi, Nada; Lujić, Jelena; Marinović, Zoran; Subakov-Simić, Gordana; Dulić, Tamara; Važić, Tamara; Nybom, Sonja; Meriluoto, Jussi; Codd, Geoffrey A; Svirčev, Zorica

    2016-05-01

    Cyanobacteria can produce toxic metabolites known as cyanotoxins. Common and frequently investigated cyanotoxins include microcystins (MCs), nodularin (NOD) and saxitoxins (STXs). During the summer of 2011 extensive cyanobacterial growth was found in several fishponds in Serbia. Sampling of the water and fish (common carp, Cyprinus carpio) was performed. Water samples from 13 fishponds were found to contain saxitoxin, microcystin, and/or nodularin. LC-MS/MS showed that MC-RR was present in samples of fish muscle tissue. Histopathological analyses of fish grown in fishponds with cyanotoxin production showed histopathological damage to liver, kidney, gills, intestines and muscle tissues. This study is among the first so far to report severe hyperplasia of intestinal epithelium and severe degeneration of muscle tissue of fish after cyanobacterial exposure. These findings emphasize the importance of cyanobacterial and cyanotoxin monitoring in fishponds in order to recognize cyanotoxins and their potential effects on fish used for human consumption and, further, on human health. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Long-term detection of seasonal influenza RNA in faeces and intestine.

    PubMed

    Hirose, R; Daidoji, T; Naito, Y; Watanabe, Y; Arai, Y; Oda, T; Konishi, H; Yamawaki, M; Itoh, Y; Nakaya, T

    2016-09-01

    Some cases of seasonal influenza virus (human influenza A virus (IAV)/human influenza B virus (IBV)) are associated with abdominal symptoms. Although virus RNA has been detected in faeces, intestinal infection has not been clearly demonstrated. We aimed to provide evidence that IAV/IBV infects the human intestine. This prospective observational study measured virus RNA in faecal and sputum samples from 22 patients infected with IAV/IBV (19 IAV positive and three IBV positive). Nineteen patients were included in the analysis and were assigned to faecal IAV-positive and -negative groups. Virus kinetics were examined in faecal samples from an IAV-infected patient (patient 1) and an IBV-infected patient (patient 2). Finally, intestinal tissue from an IAV-diagnosed patient who developed haemorrhagic colitis and underwent colonoscopy was examined for the presence of replicating IAV (patient 3). Virus RNA was detected in faecal samples from 8/22 IAV/IBV-infected patients (36.4%). Diarrhoea occurred significantly more often in the faecal IAV-positive group (p 0.002). In patients 1 and 2, virus RNA became undetectable in sputum on days 7 and 10 after infection, respectively, but was detected in faeces for a further 2 weeks. Virus mRNA and antigens were detected in intestinal tissues (mucosal epithelium of the sigmoid colon) from patient 3. These findings suggest that IAV/IBV infects within the intestinal tract; thus, the human intestine may be an additional target organ for IAV/IBV infection. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Advanced three-dimensional culture of equine intestinal epithelial stem cells.

    PubMed

    Stewart, A Stieler; Freund, J M; Gonzalez, L M

    2018-03-01

    Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease (colic). © 2017 EVJ Ltd.

  3. Intestinal absorption of dideoxynucleosides: characterization using a multiloop in situ technique.

    PubMed

    Mirchandani, H L; Chien, Y W

    1995-01-01

    The intestinal absorption of dideoxynucleosides was studied in rabbits, using a closed-loop mesenteric-sampling in situ technique developed in this laboratory, and the kinetic profiles were characterized. Each of the dideoxynucleosides exhibited different dependence on the intestinal regions studied: 3'-azido-2',3'-dideoxythymidine was best absorbed from the ileum, while 2',3'-dideoxyinosine and 2',3'-dideoxycytidine were preferentially absorbed from the jejunum. The results were validated by the mass-balance approach; the percent of drug retained in the intestinal lumen and that degraded at the intestinal pH, by colonic flora, in the intestinal tissue, and in plasma were assessed.

  4. Effects of microalgae Chlorella species crude extracts on intestinal adaptation in experimental short bowel syndrome.

    PubMed

    Kerem, Mustafa; Salman, Bulent; Pasaoglu, Hatice; Bedirli, Abdulkadir; Alper, Murat; Katircioglu, Hikmet; Atici, Tahir; Percin, E Ferda; Ofluoglu, Ebru

    2008-07-28

    To evaluate the effects of chlorella crude extract (CCE) on intestinal adaptation in rats subjected to short bowel syndrome (SBS). Wistar rats weighing 230-260 g were used in the study. After anesthesia a 75% small bowel resection was performed. Rats were randomized and divided into groups. Control group (n = 10): where 5% dextrose was given through a gastrostomy tube, Enteral nutrition (EN) group (n = 10): Isocaloric and isonitrogen EN (Alitraq, Abbott, USA), study group (n = 10): CCE was administrated through a gastrostomy tube. Rats were sacrificed on the fifteenth postoperative day and blood and tissue samples were taken. Histopathologic evaluation, intestinal mucosal protein and DNA levels, intestinal proliferation and apoptosis were determined in intestinal tissues, and total protein, albumin and citrulline levels in blood were studied. In rats receiving CCE, villus lengthening, crypt depth, mucosal DNA and protein levels, intestinal proliferation, and serum citrulline, protein and albumin levels were found to be significantly higher than those in control group. Apoptosis in CCE treated rats was significantly reduced when compared to EN group rats. CCE has beneficial effects on intestinal adaptation in experimental SBS.

  5. Intestinal anastomotic injury alters spatially defined microbiome composition and function

    DOE PAGES

    Shogan, Benjamin D.; Smith, Daniel P.; Christley, Scott; ...

    2014-09-15

    When diseased intestine (i.e., from colon cancer, diverticulitis) requires resection, its reconnection (termed anastomosis) can be complicated by non-healing of the newly joined intestine resulting in spillage of intestinal contents into the abdominal cavity (termed anastomotic leakage). Furthermore, while it is suspected that the intestinal microbiota have the capacity to both accelerate and complicate anastomotic healing, the associated genotypes and functions have not been characterized. As a result, using 16S rRNA amplicon sequencing of samples collected on the day of surgery (postoperative day 0 (POD0)) and the 6th day following surgery (postoperative day 0 (POD6)), we analyzed the changes inmore » luminal versus tissue-associated microbiota at anastomotic sites created in the colon of rats. Results indicated that anastomotic injury induced significant changes in the anastomotic tissue-associated microbiota with minimal differences in the luminal microbiota. The most striking difference was a 500-fold and 200-fold increase in the relative abundance of Enterococcus and Escherichia/Shigella, respectively. Functional profiling predicted the predominance of bacterial virulence-associated pathways in post-anastomotic tissues, including production of hemolysin, cytolethal toxins, fimbriae, invasins, cytotoxic necrotizing factors, and coccolysin. Taken together, our results suggest that compositional and functional changes accompany anastomotic tissues and may potentially accelerate or complicate anastomotic healing.« less

  6. Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation.

    PubMed

    Ferencz, Andrea; Racz, Boglarka; Tamas, Andrea; Reglodi, Dora; Lubics, Andrea; Nemeth, Jozsef; Nedvig, Klara; Kalmar-Nagy, Karoly; Horvath, Ors Peter; Weber, Gyorgy; Roth, Erzsebet

    2009-02-01

    Tissue injury caused by cold preservation and reperfusion remains an unsolved problem during small-bowel transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present and plays a central role in the intestinal physiology. This study investigated effect of PACAP-38 on the oxidative stress and tissue damage in autotransplanted intestine. Sham-operated, ischemia/reperfusion, and autotransplanted groups were established in Wistar rats. In ischemia/reperfusion groups, 1 h (group A), 2 h (group B), and 3 h (group C) ischemia followed by 3 h of reperfusion was applied. In autotransplanted groups, total orthotopic intestinal autotransplantation was performed. Grafts were preserved in University of Wisconsin (UW) solution and in UW containing 30 microg PACAP-38 for 1, 2, 3, and 6 h. Reperfusion lasted 3 h in all groups. Endogenous PACAP-38 concentration was measured by radioimmunoassay. To determine oxidative stress parameters, malondialdehyde, reduced glutathione, and superoxide dismutase were measured in tissue samples. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. Concentration of endogenous PACAP-38 significantly decreased in groups B and C compared to sham-operated group. Preservation solution containing PACAP-38 ameliorated bowel tissue oxidative injury induced by cold ischemia and reperfusion. Histological results showed that preservation caused destruction of the mucous, submucous, and muscular layers, which were further deteriorated by the end of reperfusion. In contrast, PACAP-38 significantly protected the intestinal structure. Ischemia/reperfusion decreased the endogenous PACAP-38 concentration in the intestinal tissue. Administration of PACAP-38 mitigated the oxidative injury and histological lesions in small-bowel autotransplantation model.

  7. Marine Mammal Necropsy: An Introductory Guide for Stranding Responders and Field Biologists

    DTIC Science & Technology

    2007-09-01

    the researcher or lab for required tissues and proper sample storage protocols (chill, fix, freeze and/or place in viral transport media). The most...tissues and fluids such as: liver, kidney, serum, aqueous humor, stom- ach contents, intestinal contents, feces, and urine . Tissue samples can be stored...refer to the Figure (2-1) for further explanation on frozen sample storage . The first label is written in black Sharpie on a 1 - 2 square inch piece of

  8. Inflammatory bowel disease exacerbation associated with Epstein-Barr virus infection.

    PubMed

    Dimitroulia, Evangelia; Pitiriga, Vassiliki C; Piperaki, Evangelia-Theophano; Spanakis, Nicholas E; Tsakris, Athanassios

    2013-03-01

    Epstein-Barr virus infection is associated with inflammatory bowel disease, but its role as a pathogenetic or exacerbating factor remains unclear. The aim of this study was to evaluate the association between Epstein-Barr virus infection and inflammatory bowel disease, particularly in regard to exacerbation of disease activity. This was a nonrandomized crosssectional study in subgroups of patients with inflammatory bowel disease compared with a control group with noninflammatory disease. Participants were patients treated for ulcerative colitis or Crohn's disease and individuals undergoing evaluation for noninflammatory disease recruited from 2 urban adult gastrointestinal referral centers in Greece. Diagnosis of inflammatory bowel disease was based on standard clinical and endoscopic criteria. Demographic and clinical characteristics of all participants were recorded. Whole blood samples and fresh tissue samples from biopsy of intestinal sites were obtained from each participant. The presence of Epstein-Barr virus was determined by amplifying the LMP1 gene of the virus in blood and intestinal tissue samples. The study comprised 94 patients with inflammatory bowel disease (63 with ulcerative colitis and 31 with Crohn's disease) and 45 controls with noninflammatory disease. Of the 94 patients, 67 (71.3%) had disease exacerbation and 27 (28.7%) were in remission. The prevalence of Epstein-Barr virus genome was significantly higher in patients than in controls for intestinal tissue (44 patients, 46.8% vs 6 controls, 13.3%; p = 0.001), but not for whole blood (24 patients, 25.5% vs 9 controls, 20%; p = 0.3). The viral genome was found significantly more frequently in intestinal samples from patients with disease exacerbation compared with patients in remission (38 patients with exacerbation, 56.7% vs 6 patients in remission, 22.2%; p = 0.001), but no significant difference was found for whole blood (18 patients with exacerbation, 26.8% vs 6 patients in remission, 22.2%; p = 0.79). Neither disease exacerbation nor the presence of virus genome was related to demographic or clinical characteristics. The exact location of Epstein-Barr virus in the intestinal tissues could not be specified because morphological data by immunohistochemistry or in situ hybridization were not available. Although causality could not be determined, the significantly higher prevalence of Epstein-Barr virus in intestinal tissue from patients with inflammatory bowel disease compared with controls and in patients with exacerbation compared with patients in remission suggests a potential viral involvement in the severity of inflammatory bowel disease. These findings merit further investigation in view of a potential for usefulness of antiviral therapy against Epstein-Barr virus infection in patients with exacerbation of inflammatory bowel disease.

  9. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.

    PubMed

    Zhou, Hao; Alici, Gursel; Than, Trung D; Li, Weihua

    2014-03-01

    This article reports on the results and implications of our experimental investigation into the biomechanical and biotribological properties of a real intestine for the optimal design of a spiral-type robotic capsule. Dynamic shear experiments were conducted to evaluate how the storage and loss moduli and damping factor of the small intestine change with the speed or the angular frequency. The sliding friction between differently shaped test pieces, with a topology similar to that of the spirals, and the intestine sample was experimentally determined. Our findings demonstrate that the intestine's biomechanical and biotribological properties are coupled, suggesting that the sliding friction is strongly related to the internal friction of the intestinal tissue. The significant implication of this finding is that one can predict the reaction force between the capsule with a spiral-type traction topology and the intestine directly from the intestine's biomechanical measurements rather than employing complicated three-dimensional finite element analysis or an inaccurate analytical model. Sliding friction experiments were also conducted with bar-shaped solid samples to determine the sliding friction between the samples and the small intestine. This sliding friction data will be useful in determining spiral material for an optimally designed robotic capsule.

  10. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium.

    PubMed

    Silberg, D G; Furth, E E; Taylor, J K; Schuck, T; Chiou, T; Traber, P G

    1997-08-01

    CDX1 is an intestine-specific transcription factor expressed early in intestinal development that may be involved in regulation of proliferation and differentiation of intestinal epithelial cells. We examined the pattern of CDX1 protein expression in metaplastic and neoplastic tissue to provide insight into its possible role in abnormal differentiation. Tissue samples were stained by immunohistochemistry using an affinity-purified, polyclonal antibody against a peptide epitope of CDX1. Specific nuclear staining was found in epithelial cells of the small intestine and colon. Esophagus and stomach did not express CDX1 protein; however, adjacent areas of intestinal metaplastic tissue intensely stained for CDX1. Adenocarcinomas of the stomach and esophagus had both positive and negative nuclear staining for CDX1. Colonic epithelial cells in adenomatous polyps and adenocarcinomas had a decreased intensity of staining compared with normal colonic crypts in the same specimen. CDX1 may be important in the transition from normal gastric and esophageal epithelium to intestinal-type metaplasia. The variability in expression of CDX1 in gastric and esophageal adenocarcinomas suggests more than one pathway in the development of these carcinomas. The decrease of CDX1 in colonic adenocarcinomas may indicate a role for CDX1 in growth regulation and in the maintenance of the differentiated phenotype.

  11. [Postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pigs].

    PubMed

    Liu, Wei; Da, Qing; Shen, Min

    2012-06-01

    To investigate the postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pig, and to provide method and evidence for forensic identification and clinical diagnosis and treatment. Guinea pigs were intragastric administrated with 100, 50, 15 microg/kg tetrodotoxin, respectively. The poisoning symptoms were observed. The samples of heart, liver, spleen, lung, kidney, brain, stomach, intestines, bile, heart blood and urine were collected. The concentrations of tetrodotoxin in tissues and body fluids were measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS). After administrated with tetrodotoxin, all guinea pigs came out poisoning signs including tachypnea, weary and dead finally. Tetrodotoxin concentrations in lung, stomach, intestines and urine were higher, followed by blood, heart and brain. The concentration in bile was the lowest. Postmortem distribution of tetrodotoxin in guinea pig is uneven. The concentration in the lung, stomach, intestines, urine and heart blood are higher, those tissues could be used for diagnosis of tetrodotoxin poisoning.

  12. B Lymphocyte intestinal homing in inflammatory bowel disease

    PubMed Central

    2011-01-01

    Background Inflammatory bowel disease (IBD) is thought to be due to an abnormal interaction between the host immune system and commensal microflora. Within the intestinal immune system, B cells produce physiologically natural antibodies but pathologically atypical anti-neutrophil antibodies (xANCAs) are frequently observed in patients with IBD. The objective is to investigate the localisation of immunoglobulin-producing cells (IPCs) in samples of inflamed intestinal tissue taken from patients with IBD, and their possible relationship with clinical features. Methods The IPCs in small intestinal, colonic and rectal biopsy specimens of patients with IBD were analysed by means of immunofluorescence using polyclonal rabbit anti-human Ig and goat anti-human IgM. The B cell phenotype of the IPC-positive samples was assessed using monoclonal antibodies specific for CD79, CD20, CD23, CD21, CD5, λ and κ chains. Statistical correlations were sought between the histological findings and clinical expression. Results The study involved 96 patients (64 with ulcerative colitis and 32 with Crohn's disease). Two different patterns of B lymphocyte infiltrates were found in the intestinal tissue: one was characterised by a strong to moderate stromal localisation of small IgM+/CD79+/CD20-/CD21-/CD23-/CD5± IPCs (42.7% of cases); in the other (57.3%) no such small IPCs were detected in stromal or epithelial tissues. IPCs were significantly less frequent in the patients with Crohn's disease than in those with ulcerative colitis (p = 0.004). Conclusion Our findings suggest that different immunopathogenetic pathways underlie chronic intestinal inflammation with different clinical expressions. The presence of small B lymphocytes resembling B-1 cells also seemed to be negatively associated with Crohn's disease. It can therefore be inferred that the gut contains an alternative population of B cells that have a regulatory function. PMID:22208453

  13. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    PubMed

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4 + T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4 + T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Multifunctional Bioreactor System for Human Intestine Tissues

    PubMed Central

    2017-01-01

    The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical features for the adhesion, growth, and differentiation of intestinal cells under static culture conditions. In this study, we designed and fabricated a multifunctional bioreactor system that incorporates pre-epithelialized 3D silk scaffolds in a dynamic culture environment for in vitro engineering of human intestine tissues. The bioreactor system allows for control of oxygen levels in perfusion fluids (aerobic simulated intestinal fluid (SIF), microaerobic SIF, and anaerobic SIF), while ensuring control over the mechanical and chemical microenvironments present in native human intestines. The bioreactor system also enables 3D cell culture with spatial separation and cultivation of cocultured epithelial and stromal cells. Preliminary functional analysis of tissues housed in the bioreactor demonstrated that the 3D tissue constructs survived and maintained typical phenotypes of intestinal epithelium, including epithelial tight junction formation, intestinal biomarker expression, microvilli formation, and mucus secretion. The unique combination of a dynamic bioreactor and 3D intestinal constructs offers utility for engineering human intestinal tissues for the study of intestinal diseases and discovery options for new treatments. PMID:29333491

  15. Measurement of intestinal edema using an impedance analyzer circuit.

    PubMed

    Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S

    2007-03-01

    Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.

  16. The Adaptive Response to Intestinal Oxidative Stress in Mammalian Hibernation

    DTIC Science & Technology

    2003-10-24

    redox status and pro- and anti- oxidant enzymes . a) Determination of oxidized lipids in intestinal mucosa: The tissue samples for these studies...hibernation season or between hibernating and summer squirrels. However, a strong trend was observed for lowest values of both enzyme activities in...depression involves moderate release of ROS that are detoxified by GSH-related enzymes . Although seemingly paradoxical, we have previously observed

  17. Development of a 3D printed device to support long term intestinal culture as an alternative to hyperoxic chamber methods.

    PubMed

    Costa, Matheus O; Nosach, Roman; Harding, John C S

    2017-01-01

    Most interactions between pathogenic microorganisms and their target host occur on mucosal surfaces of internal organs such as the intestine. In vitro organ culture (IVOC) provides an unique tool for studying host-pathogen interactions in a controlled environment. However, this technique requires a complex laboratory setup and specialized apparatus. In addition, issues arise when anaerobic pathogens are exposed to the hyperoxic environment required for intestinal culture. The objective of this study was to develop an accessible 3D-printed device that would allow manipulation of the gas mixture used to supply the tissue culture media separately from the gas mixture exposed to the mucosal side of explants. Porcine colon explants from 2 pigs were prepared ( n  = 20) and cultured for 0h, 8h, 18h and 24h using the device. After the culture period, explants were fixed in formalin and H&E stained sections were evaluated for histological defects of the mucosa. At 8h, 66% of samples displayed no histological abnormalities, whereas samples collected at 18h and 24h displayed progressively increasing rates of superficial epithelial erosion and epithelial metaplasia. The 3D-design reported here allows investigators to setup intestinal culture explants while manipulating the gas media explants are exposed to, to support tissue viability for a minimal of 8h. The amount of media necessary and tissue contamination are potential issues associated with this apparatus.

  18. Histology of a Woolly Mammoth (Mammuthus primigenius) Preserved in Permafrost, Yamal Peninsula, Northwest Siberia.

    PubMed

    Papageorgopoulou, Christina; Link, Karl; Rühli, Frank J

    2015-06-01

    In 2007, the baby woolly mammoth (Mammuthus primigenius) named Lyuba was found frozen in the Siberian tundra permafrost along the Yuribey River. She was proclaimed the best-preserved mammoth discovery. As part of the endoscopic examination of Lyuba, tissue samples of hair, muscle, and internal organs were taken. The sectioned biopsies were stained using standard and special histological stains. In general, the microscopic preservation of the tissue was good although no clearly identifiable cell nuclei were found by standard staining methods. Only a few cell nuclei could be identified in some samples when fluorescence stained with DAPI. The best-preserved structures were collagen fibers and muscle tissue, which gave some structural resemblance to the organs. In the hairs, evidence of pigmentation, a scaly surface, diagonal intra-hair structures, and a medulla were seen. Fat droplets could be identified with Sudan Red in the subcutaneous fat sample and in several organs. Bacteria were seen on the lumen side of the small intestine and caecum, and in the liver and lung tissue. In addition, fungi and pollen were seen in the lung sample. In the wall of the caecum and small intestine, blood vessels and nerves were visualized. Iron was identified in the vivianite sample. Some biopsies compared well structurally with the African elephant tissue sections. The histological findings support the theory that Lyuba drowned in muddy water. The microscopic tissue preservation and cell nuclei destruction indicate that Lyuba's body underwent at least one freeze-thaw cycle. © 2015 Wiley Periodicals, Inc.

  19. Cocoa and cocoa fibre differentially modulate IgA and IgM production at mucosal sites.

    PubMed

    Massot-Cladera, Malen; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida

    2016-05-01

    Previous studies have shown that a 10 % cocoa (C10) diet, containing polyphenols and fibre among others, modifies intestinal and systemic Ig production. The present study aimed at evaluating the impact of C10 on IgA and IgM production in the intestinal and extra-intestinal mucosal compartments, establishing the involvement of cocoa fibre (CF) in such effects. Mechanisms by which C10 intake may affect IgA synthesis in the salivary glands were also studied. To this effect, rats were fed either a standard diet, a diet containing C10, CF or inulin. Intestinal (the gut wash (GW), Peyer's patches (PP) and mesenteric lymph nodes (MLN)) and extra-intestinal (salivary glands) mucosal tissues and blood samples were collected for IgA and IgM quantification. The gene expressions of IgA production- and homing-related molecules were studied in the salivary glands. The C10 diet decreased intestinal IgA and IgM production. Although the CF diet decreased the GW IgA concentration, it increased PP, MLN and serum IgA concentrations. Both the C10 and the CF diets produced a down-regulatory effect on IgA secretion in the extra-intestinal tissues. The C10 diet interacted with the mechanisms involved in IgA synthesis, whereas the CF showed particular effects on the homing and transcytosis of IgA across the salivary glands. Overall, CF was able to up-regulate IgA production in the intestinal-inductor compartments, whereas it down-regulated its production at the mucosal-effector ones. Further studies must be directed to ascertain the mechanisms involved in the effect of particular cocoa components on gut-associated lymphoid tissue.

  20. First report of Cystoisospora belli parasitemia in a patient with acquired immunodeficiency syndrome.

    PubMed

    Velásquez, Jorge Néstor; di Risio, Cecilia Alicia; Etchart, Cristina Beatriz; Chertcoff, Agustín Víctor; Nigro, Mónica Gabriela; Pantano, María Laura; Ledesma, Bibiana Alba; Vittar, Natalia; Carnevale, Silvana

    2016-01-01

    Cystoisospora belli in patients with the acquired immunodeficiency syndrome (AIDS) has been described as cause of chronic diarrhea and disseminated cystoisosporosis. Diagnosis of intestinal cystoisosporosis can be achieved at the tissue level in the villus epithelium of the small bowel. Disseminated cystoisosporosis is diagnosed by microscopy identification of unizoite tissue cysts in the lamina propria of the intestine. We report a case of disseminated cystoisosporosis in a human immunodeficiency virus (HIV)-infected patient with detection of parasitemia. We studied a 39-year old patient with AIDS and chronic diarrhea by analysis of stool and duodenal biopsy samples. Blood samples were also collected and examined by light microscopy and molecular techniques for C. belli DNA detection. The unizoite tissue cyst stages were present in the lamina propria, with unsporulated oocysts in feces. Zoites were present in blood smears and DNA of C. belli was detected in blood samples. Our study identified a new stage in the life cycle of C. belli. Detection of parasitemia is a novel and noninvasive tool for diagnosis of disseminated cystoisosporosis.

  1. Multispectral tissue characterization for intestinal anastomosis optimization.

    PubMed

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N D; Decker, Ryan; Kim, Peter C W; Kang, Jin U; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  2. Multispectral tissue characterization for intestinal anastomosis optimization

    PubMed Central

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-01-01

    Abstract. Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement. PMID:26440616

  3. Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans.

    PubMed

    Miyake, Masateru; Koga, Toshihisa; Kondo, Satoshi; Yoda, Noriaki; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime

    2017-01-01

    An adequate evaluation system for drug intestinal absorption is essential in the pharmaceutical industry. Previously, we established a novel prediction system of drug intestinal absorption in humans, using the mini-Ussing chamber equipped with human intestinal tissues. In this system, the TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. In order to apply this system to the screening assay, it is important to understand the differences between animal and human tissues in the intestinal absorption of drugs. In this study, the transport index (TI) values of three drugs, with different levels of membrane permeability, were determined to evaluate the rank order of drug absorbability in intestinal tissues from rats, dogs, and monkeys. The TI values in small intestinal tissues in rats and dogs showed a good correlation with those in humans. On the other hand, the correlation of TI values in monkeys was lower compared to rats and dogs. The rank order of the correlation coefficient between human and investigated animal tissues was as follows: dog (r 2 =0.978), rat (r 2 =0.955), and monkey (r 2 =0.620). TI values in large intestinal tissues from rats (r 2 =0.929) and dogs (r 2 =0.808) also showed a good correlation. The obtained TI values in small intestinal tissues in rats and dogs were well correlated with the fraction of drug absorbed (F a ) in humans. From these results, the mini-Ussing chamber, equipped with intestinal tissues in rats and dogs, would be useful as a screening tool in the drug discovery stage. In addition, the obtained TI values can be used for the prediction of the F a in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model.

    PubMed

    Zhang, Yu-Sheng; Li, Ye; Wang, Yan; Sun, Shi-Yue; Jiang, Tao; Li, Cong; Cui, Shu-Xiang; Qu, Xian-Jun

    2016-05-01

    Naringin is a natural dietary flavonoid compound. We aimed to evaluate the effects of naringin on intestinal tumorigenesis in the adenomatous polyposis coli multiple intestinal neoplasia (Apc (Min/+)) mouse model. Apc (Min/+) mice were given either naringin (150 mg/kg) or vehicle by p.o. gavage daily for 12 consecutive weeks. Mice were killed with ether, and blood samples were collected to assess the concentrations of IL-6 and PGE2. Total intestines were removed, and the number of polyps was examined. Tissue samples of intestinal polyps were subjected to the assays of histopathology, immunohistochemical analysis and Western blotting analysis. Apc (Min/+) mice fed with naringin developed less and smaller polyps in total intestines. Naringin prevented intestinal tumorigenesis without adverse effects. Histopathologic analysis revealed the reduction of dysplastic cells and dysplasia in the adenomatous polyps. The treatments' effects might arise from its anti-proliferation, induction of apoptosis and modulation of GSK-3β and APC/β-catenin signaling pathways. Naringin also exerted its effects on tumorigenesis through anti-chronic inflammation. Naringin prevented intestinal tumorigenesis likely through a collection of activities including anti-proliferation, induction of apoptosis, modulation of GSK-3β and APC/β-catenin pathways and anti-inflammation. Naringin is a potential chemopreventive agent for reducing the risk of colonic cancers.

  5. Three-Dimensional Coculture Of Human Small-Intestine Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

    1994-01-01

    Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

  6. Tissue damage-induced intestinal stem cell division in Drosophila

    PubMed Central

    Amcheslavsky, Alla; Jiang, Jin; Ip, Y. Tony

    2009-01-01

    SUMMARY Stem cell division is essential for tissue integrity during growth, aging, and pathogenic assaults. Adult gastrointestinal tract encounters numerous stimulations and impaired tissue regeneration may lead to inflammatory diseases and cancer. Intestinal stem cells in adult Drosophila have recently been identified and shown to replenish the various cell types within the midgut. However, it is not known whether these intestinal stem cells can respond to environmental challenges. By feeding dextran sulfate sodium and bleomycin to flies and by expressing apoptotic proteins, we show that Drosophila intestinal stem cells can increase the rate of division in response to tissue damage. Moreover, if tissue damage results in epithelial cell loss, the newly formed enteroblasts can differentiate into mature epithelial cells. By using this newly established system of intestinal stem cell proliferation and tissue regeneration, we find that the insulin receptor signaling pathway is required for intestinal stem cell division. PMID:19128792

  7. Morphology of certain viruses of Salmonid fishes. II. In vivo studies of infectious Hematopoietic Necrosis Virus

    USGS Publications Warehouse

    Amend, Donald F.; Chambers, Velma C.

    1970-01-01

    Juvenile sockeye salmon (Oncorhynchus nerka) were injected with the infectious hematopoietic necrosis (IHN) virus, and tissue samples from the anterior kidney, spleen, liver, intestine, and pyloric caeca of moribund fish were prepared for electron microscopy. Bullet-shaped virus particles measuring 158 × 90 mμ were observed in the hematopoietic tissues of the anterior kidney and spleen. Virus particles were also observed in the outer connective tissues of the pancreas or pyloric caeca, or both. No virus was found in the intestine or liver. The healthy appearance of erythrocytes, reticular cells, and endothelial cells in necrotic areas of the spleen and anterior kidney, and the absence of lymphocytes in these areas, suggested that lymphocytes might be one source of the virus.

  8. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Gomez-Morilla, Inmaculada; Thoree, Vinay; Powell, Jonathan J.; Kirkby, Karen J.; Grime, Geoffrey W.

    2006-08-01

    Microscopic particles (0.5-2 μm diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles.

  9. Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs.

    PubMed

    Miyake, Masateru; Kondo, Satoshi; Koga, Toshihisa; Yoda, Noriaki; Nakazato, Satoru; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime

    2018-01-01

    The purpose of this study was to evaluate the intestinal metabolism and absorption in a mini-Ussing chamber equipped with animal intestinal tissues, based on the transport index (TI). TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. Midazolam was used as a test compound for the evaluation of intestinal metabolism and absorption. The metabolite formulation of midazolam was observed in both rats and dogs. Ketoconazole inhibited the intestinal metabolism of midazolam in rats and improved its intestinal absorption to a statistically significant extent. Therefore, the mini-Ussing chamber, equipped with animal intestinal tissues, showed potential to use the evaluation of the intestinal metabolism and absorption, including the assessment of species differences. Copyright © 2017. Published by Elsevier B.V.

  10. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks.

    PubMed

    Kettunen, H; Tiihonen, K; Peuranen, S; Saarinen, M T; Remus, J C

    2001-11-01

    The aim of this experiment was to study the patterns of betaine accumulation into intestinal tissue, liver and plasma of broiler chicks with or without coccidial infection. The chicks were raised on a corn-based, low-betaine diet with or without 1000 ppm betaine supplementation and with or without intestinal microparasite (Eimeria maxima) challenge to the age of 21 days. Plasma, liver, intestinal tissue and digesta of non-challenged (NC) birds and plasma and intestinal tissue of coccidiosis challenged (CC) birds were analysed for betaine content. NC birds were also analyzed for homocysteine in plasma and S-adenosylmethionine (S-AM) in liver. The jejunal epithelium was histologically examined for the presence of coccidia and the crypt-villus ratio was measured. Dietary betaine supplementation decreased the plasma homocysteine concentration but had no effect on liver S-AM of NC birds. The data suggest that chicks on a low-betaine diet accumulate betaine into the intestinal tissue. When the diet was supplemented with betaine, betaine accumulated heavily into liver and to a lesser degree into intestinal tissue. The concentration of betaine in jejunal and ileal digesta was low suggesting that dietary betaine was mainly absorbed from the proximal small intestine. The coccidial challenge decreased the concentration of betaine in the liver, but greatly increased that in the intestinal tissue. The crypt-villus ratio was decreased by the dietary betaine supplementation in healthy and challenged chicks, suggesting that dietary betaine both protects the jejunal villi against coccidial infection and also stabilizes the mucosal structure in healthy broiler chicks. These results support our earlier findings suggesting that betaine is likely to act as an important intestinal osmolyte in broiler chicks.

  11. Overlapping DNA Methylation Dynamics in Mouse Intestinal Cell Differentiation and Early Stages of Malignant Progression

    PubMed Central

    Forn, Marta; Díez-Villanueva, Anna; Merlos-Suárez, Anna; Muñoz, Mar; Lois, Sergi; Carriò, Elvira; Jordà, Mireia; Bigas, Anna; Batlle, Eduard; Peinado, Miguel A.

    2015-01-01

    Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart. PMID:25933092

  12. Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.

    2007-05-15

    Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrinmore » are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are {approx} 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts ({approx} 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected. Together, these results demonstrate that extrahepatic esterolytic metabolism of specific pyrethroids may be significant. Moreover, hepatic cytosolic and microsomal hydrolytic metabolism should each be considered during the development of pharmacokinetic models that predict the disposition of pyrethroids and other esterified compounds.« less

  13. Celiac Disease Diagnosis: Endoscopic Biopsy

    MedlinePlus

    ... tissue samples are also vital to an accurate diagnosis—celiac disease can cause patchy lesions in the duodenum which ... to perform an intestinal biopsy to establish the diagnosis of celiac disease in a patient with DH; the skin biopsy ...

  14. Stem cell-based growth, regeneration, and remodeling of the planarian intestine

    PubMed Central

    Forsthoefel, David J.; Park, Amanda E.; Newmark, Phillip A.

    2011-01-01

    Although some animals are capable of regenerating organs, the mechanisms by which this is achieved are poorly understood. In planarians, pluripotent somatic stem cells called neoblasts supply new cells for growth, replenish tissues in response to cellular turnover, and regenerate tissues after injury. For most tissues and organs, however, the spatiotemporal dynamics of stem cell differentiation and the fate of tissue that existed prior to injury have not been characterized systematically. Utilizing in vivo imaging and bromodeoxyuridine pulse-chase experiments, we have analyzed growth and regeneration of the planarian intestine, the organ responsible for digestion and nutrient distribution. During growth, we observe that new gut branches are added along the entire anteroposterior axis. We find that new enterocytes differentiate throughout the intestine rather than in specific growth zones, suggesting that branching morphogenesis is achieved primarily by remodeling of differentiated intestinal tissues. During regeneration, we also demonstrate a previously unappreciated degree of intestinal remodeling, in which pre-existing posterior gut tissue contributes extensively to the newly formed anterior gut, and vice versa. By contrast to growing animals, differentiation of new intestinal cells occurs at preferential locations, including within newly generated tissue (the blastema), and along pre-existing intestinal branches undergoing remodeling. Our results indicate that growth and regeneration of the planarian intestine are achieved by coordinated differentiation of stem cells and the remodeling of pre-existing tissues. Elucidation of the mechanisms by which these processes are integrated will be critical for understanding organogenesis in a post-embryonic context. PMID:21664348

  15. Fibrinogen deficiency suppresses the development of early and delayed radiation enteropathy

    PubMed Central

    Wang, Junru; Pathak, Rupak; Garg, Sarita; Hauer-Jensen, Martin

    2017-01-01

    AIM To determine the mechanistic role of fibrinogen, a key regulator of inflammation and fibrosis, in early and delayed radiation enteropathy. METHODS Fibrinogen wild-type (Fib+/+), fibrinogen heterozygous (Fib+/-), and fibrinogen knockout (Fib-/-) mice were exposed to localized intestinal irradiation and assessed for early and delayed structural changes in the intestinal tissue. A 5-cm segment of ileum of mice was exteriorized and exposed to 18.5 Gy of x-irradiation. Intestinal tissue injury was assessed by quantitative histology, morphometry, and immunohistochemistry at 2 wk and 26 wk after radiation. Plasma fibrinogen level was measured by enzyme-linked immunosorbent assay. RESULTS There was no difference between sham-irradiated Fib+/+ and Fib+/- mice in terms of fibrinogen concentration in plasma and intestinal tissue, intestinal histology, morphometry, intestinal smooth muscle cell proliferation, and neutrophil infiltration. Therefore, Fib+/- mice were used as littermate controls. Unlike sham-irradiated Fib+/+ and Fib+/- mice, no fibrinogen was detected in the plasma and intestinal tissue of sham-irradiated Fib-/- mice. Moreover, fibrinogen level was not elevated after irradiation in the intestinal tissue of Fib-/- mice, while significant increase in intestinal fibrinogen level was noticed in irradiated Fib+/+ and Fib+/- mice. Importantly, irradiated Fib-/- mice exhibited substantially less overall intestinal structural injury (RIS, P = 0.000002), intestinal wall thickness (P = 0.003), intestinal serosal thickness (P = 0.009), collagen deposition (P = 0.01), TGF-β immunoreactivity (P = 0.03), intestinal smooth muscle proliferation (P = 0.046), neutrophil infiltration (P = 0.01), and intestinal mucosal injury (P = 0.0003), compared to irradiated Fib+/+ and Fib+/- mice at both 2 wk and 26 wk. CONCLUSION These data demonstrate that fibrinogen deficiency directly attenuates development of early and delayed radiation enteropathy. Fibrinogen could be a novel target in treating intestinal damage. PMID:28765691

  16. New approaches to increase intestinal length: Methods used for intestinal regeneration and bioengineering

    PubMed Central

    Shirafkan, Ali; Montalbano, Mauro; McGuire, Joshua; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option. PMID:27011901

  17. Anti-glucagon-like peptide-1 immunoreactivity in samples of blood and ileum obtained from neonatal and adult alpacas.

    PubMed

    Smith, Courtney C; Cebra, Christopher K; Heidel, Jerry R; Stang, Bernadette V

    2013-11-01

    To compare numbers of L cells in intestinal samples and blood concentrations of glucagon-like peptide (GLP)-1 between neonatal and mature alpacas. Intestinal samples from carcasses of 4 suckling crias and 4 postweaning alpacas for immunohistochemical analysis and blood samples from 32 suckling crias and 19 healthy adult alpacas for an ELISA. Immunohistochemical staining was conducted in accordance with Oregon State University Veterinary Diagnostic Laboratory standard procedures with a rabbit polyclonal anti-GLP-1 primary antibody. Stained cells with staining results in ileal tissue were counted in 20 fields by 2 investigators, and the mean value was calculated. For quantification of GLP-1 concentrations, blood samples were collected into tubes containing a dipeptidyl peptidase-4 inhibitor. Plasma samples were tested in duplicate with a commercial GLP-1 ELISA validated for use in alpacas. Counts of stained cells (mean ± SD, 50 ± 18 cells) and plasma GLP-1 concentrations (median, 0.086 ng/mL; interquartile range, 0.061 to 0.144 ng/mL) were higher for suckling alpacas than for postsuckling alpacas (stained cells, 26 ± 4 cells; plasma GLP-1 concentration, median, 0.034 ng/mL; interquartile range, 0.015 to 0.048 ng/mL). Older alpacas had lower numbers of L cells in intestinal tissues and lower blood concentrations of GLP-1 than those in neonates. These findings suggested that there may be a decrease in the contribution of GLP-1 to insulin production in adult alpacas, compared with the contribution in neonates.

  18. Structural locus of transmucosal albumin efflux in canine ileum. A fluorescent study.

    PubMed

    Granger, D N; Cook, B H; Taylor, A E

    1976-12-01

    This study demonstrates the effects of elevated intestinal venous pressure on the intestinal tissue spaces and the histological locus of the transmucosal albumin flux under such conditions. The authors were able to localize albumin in the tissues using an Evans blue-albumin fluorescence technique. This technique makes use of the fluorescence properties and albumin affinity of Evans blue dye (T-1824). Evans blue dye has a high affinity for albumin and emits a red-orange fluorescence at a wavelength of 720 nm. Evans blue was mixed with a solution of bovine serum albumin at concentrations that yield negligible amounts of free dye. Control ileal samples were obtained in order to visualize the natural tissue morphology and fluorescence. The Evans blue-albumin solution was injected and tissue samples were obtained 15 and 60 min postinjection, then venous outflow was occluded and after 15 and 60 min the tissues were sampled. Each sample was immediately frozen, freeze dried, embedded in paraffin, and 7-mu sections were made. The Evans blue-albumin was demonstrated histologically with a fluorescence microscope. No leakage sites were apparent at normal venous pressures. However, after elevation of venous pressure, Evans blue-albumin was observed in the interepithelial and/or intraepithelial spaces of villus tips, but no Evans blue-albumin was observed either between or within the epithelial cells of the crypts, or within the tubular crypt lumina. These results indicate that at elevated venous pressures, the transmucosal albumin flux occurs exclusively at the villus tip region, suggesting a great vulnerability of the cells found in this region to elevations in tissue pressure as compared to the crypt epithelial cells.

  19. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope.

    PubMed

    Le, Viet Ha; Hernando, Leon-Rodriguez; Lee, Cheong; Choi, Hyunchul; Jin, Zhen; Nguyen, Kim Tien; Go, Gwangjun; Ko, Seong-Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    Recently, capsule endoscopes have been used for diagnosis in digestive organs. However, because a capsule endoscope does not have a locomotive function, its use has been limited to small tubular digestive organs, such as small intestine and esophagus. To address this problem, researchers have begun studying an active locomotive intestine capsule endoscope as a medical instrument for the whole gastrointestinal tract. We have developed a capsule endoscope with a small permanent magnet that is actuated by an electromagnetic actuation system, allowing active and flexible movement in the patient's gut environment. In addition, researchers have noted the need for a biopsy function in capsule endoscope for the definitive diagnosis of digestive diseases. Therefore, this paper proposes a novel robotic biopsy device for active locomotive intestine capsule endoscope. The proposed biopsy device has a sharp blade connected with a shape memory alloy actuator. The biopsy device measuring 12 mm in diameter and 3 mm in length was integrated into our capsule endoscope prototype, where the device's sharp blade was activated and exposed by the shape memory alloy actuator. Then the electromagnetic actuation system generated a specific motion of the capsule endoscope to extract the tissue sample from the intestines. The final biopsy sample tissue had a volume of about 6 mm(3), which is a sufficient amount for a histological analysis. Consequently, we proposed the working principle of the biopsy device and conducted an in-vitro biopsy test to verify the feasibility of the biopsy device integrated into the capsule endoscope prototype using the electro-magnetic actuation system. © IMechE 2015.

  20. Profound loss of intestinal Tregs in acutely SIV-infected neonatal macaques.

    PubMed

    Wang, Xiaolei; Xu, Huanbin; Shen, Chanjuan; Alvarez, Xavier; Liu, David; Pahar, Bapi; Ratterree, Marion S; Doyle-Meyers, Lara A; Lackner, Andrew A; Veazey, Ronald S

    2015-02-01

    Impairment of the intestinal mucosal immune system is an early feature of HIV-infected children. Most infected children exhibit clinical gastrointestinal symptoms at some stage of infection, and persistent diarrhea is a marker for rapid disease progression. It is known that Tregs are especially important in mediating intestinal immune homeostasis and that loss of this subset may result in intestinal inflammation and associated clinical signs. Large numbers of FoxP3(+) T cells were found in all tissues in newborn macaques, which coexpressed high levels of CD25 and CD4, indicating that they were Tregs. Moreover, neonates had much greater percentages of Tregs in intestinal tissues compared with peripheral lymphoid tissues. After SIV infection, a significant loss of Tregs was detected in the intestine compared with age-matched normal infants. Finally, SIV-infected FoxP3(+) T cells were detected in tissues in neonates as early as 7 SIV dpi. These results demonstrate that Tregs constitute a significant fraction of CD4(+) T cells in neonatal intestinal tissues and that an early, profound loss of Tregs occurs in acute SIV infection, which may contribute to the intestinal disorders associated with neonatal HIV infection. © Society for Leukocyte Biology.

  1. Differences in proximal (cardia) versus distal (antral) gastric carcinogenesis via retinoblastoma pathway

    PubMed Central

    Gulmann, Christian; Hegarty, Helen; Grace, Antoinette; Leader, Mary; Patchett, Stephen; Kay, Elaine

    2004-01-01

    AIM: Disruption of cell cycle regulation is a critical event in carcinogenesis, and alteration of the retinoblastoma (pRb) tumour suppressor pathway is frequent. The aim of this study was to compare alterations in this pathway in proximal and distal gastric carcinogenesis in an effort to explain the observed striking epidemiological differences. METHODS: Immunohistochemistry was performed to investigate expression of p16 and pRb in the following groups of both proximal (cardia) and distal (antral) tissue samples: (a) biopsies showing normal mucosa, (b) biopsies showing intestinal metaplasia and, (c) gastric cancer resection specimens including uninvolved mucosa and tumour. RESULTS: In the antrum there were highly significant trends for increased p16 expression with concomitant (and in the group of carcinomas inversely proportional) decreased pRb expression from normal mucosa to intestinal metaplasia to uninvolved mucosa (from cancer resections) to carcinoma. In the cardia, there were no differences in p16 expression between the various types of tissue samples whereas pRb expression was higher in normal mucosa compared with intestinal metaplasia and tissue from cancer resections. CONCLUSION: Alterations in the pRb pathway appear to play a more significant role in distal gastric carcinogenesis. It may be an early event in the former location since the trend towards p16 overexpression with concomitant pRb underexpression was seen as early as between normal mucosa and intestinal metaplasia. Importantly, the marked differences in expression of pRb and p16 between the cardia and antrum strongly support the hypothesis that tumours of the two locations are genetically different which may account for some of the observed epidemiological differences. PMID:14695761

  2. Combined two-photon microscopy and optical coherence tomography using individually optimized sources

    NASA Astrophysics Data System (ADS)

    Jeong, Bosu; Lee, Byunghak; Jang, Min Seong; Nam, Hyoseok; Kim, Hae Koo; Yoon, Sang June; Doh, Junsang; Lee, Sang-Joon; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Ki Hean

    2011-03-01

    Two-photon microscopy (TPM) and optical coherence tomography (OCT) are 3D tissue imaging techniques based on different contrast mechanisms. We developed a combined system of TPM and OCT to provide information of both imaging modalities for in-vivo tissue study. TPM and OCT were implemented by using separate light sources, a Ti-Sapphire laser and a wavelength-swept source centered at 1300 nm respectively, and scanners. Light from the two sources was combined for the simultaneous imaging of tissue samples. TPM provided molecular, cellular information of tissues in the region of a few hundred microns on one side at a sub-cellular resolution, and ran at approximately 40 frames per second. OCT provided structural information in the tissue region larger than TPM images at a sub-tenth micron resolution by using 0.1 numerical aperture. OCT had the field of view of 800 um × 800 um based on a 20x objective, the sensitivity of 97dB, and the imaging speed of 0.8 volumes per second. This combined system was tested with simple microsphere specimens, and then was applied to image the explanted intestine of a mouse model and the plant leaves. Morphology and micro-structures of the intestine villi and immune cells within the villi were shown in the intestine image, and chloroplasts and various microstructures of the maize leaves were visualized in 3D by the combined system.

  3. Decay-Accelerating Factor Mitigates Controlled Hemorrhage-Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine

    DTIC Science & Technology

    2011-07-01

    Decay-Accelerating Factor Mitigates Controlled Hemorrhage- Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine Jurandir J. Dalle...DAF treatment improved hemorrhage- induced hyperkalemia . The protective effects of DAF appear to be related to its ability to reduce tissue complement...Decay-accelerating factor mitigates controlled hemorrhage-instigated intestinal and lung tissue damage and hyperkalemia in swine 5a. CONTRACT NUMBER

  4. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    PubMed

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  5. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Pharmacokinetics of enrofloxacin and ceftiofur in plasma, interstitial fluid, and gastrointestinal tract of calves after subcutaneous injection, and bactericidal impacts on representative enteric bacteria.

    PubMed

    Foster, D M; Jacob, M E; Warren, C D; Papich, M G

    2016-02-01

    This study's objectives were to determine intestinal antimicrobial concentrations in calves administered enrofloxacin or ceftiofur sodium subcutaneously, and their impact on representative enteric bacteria. Ultrafiltration devices were implanted in the ileum and colon of 12 steers, which received either enrofloxacin or ceftiofur sodium. Samples were collected over 48 h after drug administration for pharmacokinetic/pharmacodynamic analysis. Enterococcus faecalis or Salmonella enterica (5 × 10(5) CFU/mL of each) were exposed in vitro to peak and tail (48 h postadministration) concentrations of both drugs at each location for 24 h to determine inhibition of growth and change in MIC. Enrofloxacin had tissue penetration factors of 1.6 and 2.5 in the ileum and colon, while ciprofloxacin, an active metabolite of enrofloxacin, was less able to cross into the intestine (tissue penetration factors of 0.7 and 1.7). Ceftiofur was rapidly eliminated leading to tissue penetration factors of 0.39 and 0.25. All concentrations of enrofloxacin were bactericidal for S. enterica and significantly reduced E. faecalis. Peak ceftiofur concentration was bactericidal for S. enterica, and tail concentrations significantly reduced growth. E. faecalis experienced growth at all ceftiofur concentrations. The MICs for both organisms exposed to peak and tail concentrations of antimicrobials were unchanged at the end of the study. Enrofloxacin and ceftiofur achieved intestinal concentrations capable of reducing intestinal bacteria, yet the short exposure of ceftiofur in the intestine may select for resistant organisms. © 2015 John Wiley & Sons Ltd.

  7. Human Milk Oligosaccharides and Synthetic Galactosyloligosaccharides Contain 3′-, 4-, and 6′-Galactosyllactose and Attenuate Inflammation in Human T84, NCM-460, and H4 Cells and Intestinal Tissue Ex Vivo12

    PubMed Central

    Ko, Jae Sung; Leone, Serena; Nanthakumar, N Nanda

    2016-01-01

    Background: The immature intestinal mucosa responds excessively to inflammatory insult, but human milk protects infants from intestinal inflammation. The ability of galactosyllactoses [galactosyloligosaccharides (GOS)], newly found in human milk oligosaccharides (HMOS), to suppress inflammation was not known. Objective: The objective was to test whether GOS can directly attenuate inflammation and to explore the components of immune signaling modulated by GOS. Methods: Galactosyllactose composition was measured in sequential human milk samples from days 1 through 21 of lactation and in random colostrum samples from 38 mothers. Immature [human normal fetal intestinal epithelial cell (H4)] and mature [human metastatic colonic epithelial cell (T84) and human normal colon mucosal epithelial cell (NCM-460)] enterocyte cell lines were treated with the pro-inflammatory molecules tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β) or infected with Salmonella or Listeria. The inflammatory response was measured as induction of IL-8, monocyte chemoattractant protein 1 (MCP-1), or macrophage inflammatory protein-3α (MIP-3α) protein by ELISA and mRNA by quantitative reverse transcriptase-polymerase chain reaction. The ability of HMOS or synthetic GOS to attenuate this inflammation was tested in vitro and in immature human intestinal tissue ex vivo. Results: The 3 galactosyllactoses (3′-GL, 4-GL, and 6′-GL) expressed in colostrum rapidly declined over early lactation (P < 0.05). In H4 cells, HMOS attenuated TNF-α– and IL-1β–induced expression of IL-8, MIP-3α, and MCP-1 to 48–51% and pathogen-induced IL-8 and MCP-1 to 26–30% of positive controls (P < 0.001). GOS reduced TNF-α– and IL-1β–induced inflammatory responses to 25–26% and pathogen-induced IL-8 and MCP-1 to 36–39% of positive controls (P < 0.001). GOS and HMOS mitigated nuclear translocation of nuclear transcription factor κB (NF-κB) p65. HMOS quenched the inflammatory response to Salmonella infection by immature human intestinal tissue ex vivo to 26% and by GOS to 50% of infected controls (P < 0.01). Conclusion: Galactosyllactose attenuated NF-κB inflammatory signaling in human intestinal epithelial cells and in human immature intestine. Thus, galactosyllactoses are strong physiologic anti-inflammatory agents in human colostrum and early milk, contributing to innate immune modulation. The potential clinical utility of galactosyllactose warrants investigation. PMID:26701795

  8. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis.

    PubMed

    Guo, Zheng; Lucchetta, Elena; Rafel, Neus; Ohlstein, Benjamin

    2016-10-01

    Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optimal Solution Volume for Luminal Preservation: A Preclinical Study in Porcine Intestinal Preservation.

    PubMed

    Oltean, M; Papurica, M; Jiga, L; Hoinoiu, B; Glameanu, C; Bresler, A; Patrut, G; Grigorie, R; Ionac, M; Hellström, M

    2016-03-01

    Rodent studies suggest that luminal solutions alleviate the mucosal injury and prolong intestinal preservation but concerns exist that excessive volumes of luminal fluid may promote tissue edema. Differences in size, structure, and metabolism between rats and humans require studies in large animals before clinical use. Intestinal procurement was performed in 7 pigs. After perfusion with histidine-tryptophan-ketoglutarate (HTK), 40-cm-long segments were cut and filled with 13.5% polyethylene glycol (PEG) 3350 solution as follows: V0 (controls, none), V1 (0.5 mL/cm), V2 (1 mL/cm), V3 (1.5 mL/cm), and V4 (2 mL/cm). Tissue and luminal solutions were sampled after 8, 14, and 24 hours of cold storage (CS). Preservation injury (Chiu score), the apical membrane (ZO-1, brush-border maltase activity), and the electrolyte content in the luminal solution were studied. In control intestines, 8-hour CS in HTK solution resulted in minimal mucosal changes (grade 1) that progressed to significant subepithelial edema (grade 3) by 24 hours. During this time, a gradual loss in ZO-1 was recorded, whereas maltase activity remained unaltered. Moreover, variable degrees of submucosal edema were observed. Luminal introduction of high volumes (2 mL/mL) of PEG solution accelerated the development of the subepithelial edema and submucosal edema, leading to worse histology. However, ZO-1 was preserved better over time than in control intestines (no luminal solution). Maltase activity was reduced in intestines receiving luminal preservation. Luminal sodium content decreased in time and did not differ between groups. This PEG solution protects the apical membrane and the tight-junction proteins but may favor water absorption and tissue (submucosal) edema, and luminal volumes >2 mL/cm may result in worse intestinal morphology. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Precision resection of intestine using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Gora, Wojciech S.; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2016-03-01

    Endoscopic resection of early colorectal neoplasms typically employs electrocautery tools, which lack precision and run the risk of full thickness thermal injury to the bowel wall with subsequent perforation. We present a means of endoluminal colonic ablation using picosecond laser pulses as a potential alternative to mitigate these limitations. High intensity ultrashort laser pulses enable nonlinear absorption processes, plasma generation, and as a consequence a predominantly non-thermal ablation regimen. Robust process parameters for the laser resection are demonstrated using fresh ex vivo pig intestine samples. Square cavities with comparable thickness to early colorectal neoplasms are removed for a wavelength of 1030 nm and 515 nm using a picosecond laser system. The corresponding histology sections exhibit in both cases only minimal collateral damage to the surrounding tissue. The ablation depth can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers for the resection of intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional electrocautery.

  11. Activity of SHIP, Which Prevents Expression of Interleukin 1β, Is Reduced in Patients With Crohn's Disease.

    PubMed

    Ngoh, Eyler N; Weisser, Shelley B; Lo, Young; Kozicky, Lisa K; Jen, Roger; Brugger, Hayley K; Menzies, Susan C; McLarren, Keith W; Nackiewicz, Dominika; van Rooijen, Nico; Jacobson, Kevan; Ehses, Jan A; Turvey, Stuart E; Sly, Laura M

    2016-02-01

    Crohn's disease (CD) is associated with a dysregulated immune response to commensal micro-organisms in the intestine. Mice deficient in inositol polyphosphate 5'-phosphatase D (INPP5D, also known as SHIP) develop intestinal inflammation resembling that of patients with CD. SHIP is a negative regulator of PI3Kp110α activity. We investigated mechanisms of intestinal inflammation in Inpp5d(-/-) mice (SHIP-null mice), and SHIP levels and activity in intestinal tissues of subjects with CD. We collected intestines from SHIP-null mice, as well as Inpp5d(+/+) mice (controls), and measured levels of cytokines of the interleukin 1 (IL1) family (IL1α, IL1β, IL1ra, and IL6) by enzyme-linked immunosorbent assay. Macrophages were isolated from lamina propria cells of mice, IL1β production was measured, and mechanisms of increased IL1β production were investigated. Macrophages were incubated with pan-phosphatidylinositol 3-kinase inhibitors or PI3Kp110α-specific inhibitors. Some mice were given an antagonist of the IL1 receptor; macrophages were depleted from ilea of mice using clodronate-containing liposomes. We obtained ileal biopsies from sites of inflammation and peripheral blood mononuclear cells (PBMCs) from treatment-naïve subjects with CD or without CD (controls), and measured SHIP levels and activity. PBMCs were incubated with lipopolysaccharide and adenosine triphosphate, and levels of IL1β production were measured. Inflamed intestinal tissues and intestinal macrophages from SHIP-null mice produced higher levels of IL1B and IL18 than intestinal tissues from control mice. We found PI3Kp110α to be required for macrophage transcription of Il1b. Macrophage depletion or injection of an IL1 receptor antagonist reduced ileal inflammation in SHIP-null mice. Inflamed ileal tissues and PBMCs from patients with CD had lower levels of SHIP protein than controls (P < .0001 and P < .0002, respectively). There was an inverse correlation between levels of SHIP activity in PBMCs and induction of IL1β production by lipopolysaccharide and adenosine triphosphate (R(2) = .88). Macrophages from SHIP-deficient mice have increased PI3Kp110α-mediated transcription of Il1b, which contributes to spontaneous ileal inflammation. SHIP levels and activity are lower in intestinal tissues and peripheral blood samples from patients with CD than controls. There is an inverse correlation between SHIP activity and induction of IL1β production by lipopolysaccharide and adenosine triphosphate in PBMCs. Strategies to reduce IL1B might be developed to treat patients with CD found to have low SHIP activity. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  13. A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt.

    PubMed

    Buske, Peter; Galle, Jörg; Barker, Nick; Aust, Gabriela; Clevers, Hans; Loeffler, Markus

    2011-01-06

    We introduce a novel dynamic model of stem cell and tissue organisation in murine intestinal crypts. Integrating the molecular, cellular and tissue level of description, this model links a broad spectrum of experimental observations encompassing spatially confined cell proliferation, directed cell migration, multiple cell lineage decisions and clonal competition.Using computational simulations we demonstrate that the model is capable of quantitatively describing and predicting the dynamic behaviour of the intestinal tissue during steady state as well as after cell damage and following selective gain or loss of gene function manipulations affecting Wnt- and Notch-signalling. Our simulation results suggest that reversibility and flexibility of cellular decisions are key elements of robust tissue organisation of the intestine. We predict that the tissue should be able to fully recover after complete elimination of cellular subpopulations including subpopulations deemed to be functional stem cells. This challenges current views of tissue stem cell organisation.

  14. Changes of the peptide YY levels in the intestinal tissue of rats with experimental colitis following oral administration of mesalazine and prednisolone.

    PubMed

    Hirotani, Yoshihiko; Mikajiri, Kyoko; Ikeda, Kenji; Myotoku, Michiaki; Kurokawa, Nobuo

    2008-09-01

    Few studies have reported the changes in the peptide YY (PYY) levels in the intestinal tissue of rats with ulcerative colitis (UC) following oral administration of mesalazine and prednisolone. We investigated the effects of these drugs on the intestinal mucosal PYY levels in a rat model of UC. We confirmed that the PYY levels in the rat intestinal mucosal tissue were high in the lower intestinal tract. The leukocyte count and hemoglobin levels approached the normal values after administering mesalazine or prednisolone to rats treated with 3% dextran sulfate sodium (DSS). The PYY levels in the caecum and colon decreased significantly after administering DSS but increased when mesalazine was administered in a tissue-specific manner. Unlike mesalazine, the PYY levels increased in the ileum in addition to the colon and rectum after administering prednisolone. However, neither of the drugs induced any changes in the plasma PYY levels. These findings indicate that changes in the intestinal tissue PYY levels may be partially involved in the improvement of DSS-induced UC in rats following the administration of these drugs.

  15. Radiation-induced changes in intestinal and tissue-nonspecific alkaline phosphatase: implications for recovery after radiation therapy.

    PubMed

    Rentea, Rebecca M; Lam, Vy; Biesterveld, Ben; Fredrich, Katherine M; Callison, Jennifer; Fish, Brian L; Baker, John E; Komorowski, Richard; Gourlay, David M; Otterson, Mary F

    2016-10-01

    Exogenous replacement of depleted enterocyte intestinal alkaline phosphatase (IAP) decreases intestinal injury in models of colitis. We determined whether radiation-induced intestinal injury could be mitigated by oral IAP supplementation and the impact on tissue-nonspecific AP. WAG/RjjCmcr rats (n = 5 per group) received lower hemibody irradiation (13 Gy) followed by daily gavage with phosphate-buffered saline or IAP (40 U/kg/d) for 4 days. Real-time polymerase chain reaction, AP activity, and microbiota analysis were performed on intestine. Lipopolysaccharide and cytokine analysis was performed on serum. Data were expressed as a mean ± SEM with P greater than .05 considered significant. Intestine of irradiated animals demonstrates lower hemibody irradiation and is associated with upregulation of tissue-nonspecific AP, downregulation of IAP, decreased AP activity, and altered composition of the intestinal microbiome. Supplemental IAP after radiation may be beneficial in mitigating intestinal radiation syndrome as evidenced by improved histologic injury, decreased acute intestinal inflammation, and normalization of intestinal microbiome. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions.

    PubMed

    Monticelli, Laurel A; Osborne, Lisa C; Noti, Mario; Tran, Sara V; Zaiss, Dietmar M W; Artis, David

    2015-08-25

    The barrier surfaces of the skin, lung, and intestine are constantly exposed to environmental stimuli that can result in inflammation and tissue damage. Interleukin (IL)-33-dependent group 2 innate lymphoid cells (ILC2s) are enriched at barrier surfaces and have been implicated in promoting inflammation; however, the mechanisms underlying the tissue-protective roles of IL-33 or ILC2s at surfaces such as the intestine remain poorly defined. Here we demonstrate that, following activation with IL-33, expression of the growth factor amphiregulin (AREG) is a dominant functional signature of gut-associated ILC2s. In the context of a murine model of intestinal damage and inflammation, the frequency and number of AREG-expressing ILC2s increases following intestinal injury and genetic disruption of the endogenous AREG-epidermal growth factor receptor (EGFR) pathway exacerbated disease. Administration of exogenous AREG limited intestinal inflammation and decreased disease severity in both lymphocyte-sufficient and lymphocyte-deficient mice, revealing a previously unrecognized innate immune mechanism of intestinal tissue protection. Furthermore, treatment with IL-33 or transfer of ILC2s ameliorated intestinal disease severity in an AREG-dependent manner. Collectively, these data reveal a critical feedback loop in which cytokine cues from damaged epithelia activate innate immune cells to express growth factors essential for ILC-dependent restoration of epithelial barrier function and maintenance of tissue homeostasis.

  17. Th17 Cells Coordinate with Th22 Cells in Maintaining Homeostasis of Intestinal Tissues and both are Depleted in SIV-Infected Macaques.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S

    2014-05-01

    Th17 and Th22 cells are thought to function as innate regulators of mucosal antimicrobial responses, tissue inflammation and mucosal integrity, yet their role in persistent SIV infection is still unclear. Here we compared Th17 and Th22 cells in their phenotype, effector/cytokine function, and frequency in blood and intestinal mucosal tissues, and correlate levels with mucosal damage in SIV-infected rhesus macaques. We found that Th17/Th22 cells share similar features in that both highly produce TNF-α and IL-2 and express CCR5 in intestinal tissues; yet very few show cytotoxic functions, as evidenced by lack of IFN-γ and granzyme B production. Further, Th17/Th22 cells display distinct tissue-specific distributions. Both Th17 and Th22 cells and cytokine secretion were significantly depleted in both blood and intestine in chronically SIV-infected macaques. The frequency of Th17 and Th22 cells in the intestine positively correlated with percentages of intestinal CD4+ T cells and negatively with damage to intestinal mucosa, and plasma viral loads in SIV infection. These findings indicate Th17 and Th22 cells share considerable functions, and may coordinate in innate mucosal immune responses, and their regional loss in the intestine may be associated with local mucosal immune dysfunction in persistent HIV/SIV infection.

  18. Th17 Cells Coordinate with Th22 Cells in Maintaining Homeostasis of Intestinal Tissues and both are Depleted in SIV-Infected Macaques

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.

    2014-01-01

    Th17 and Th22 cells are thought to function as innate regulators of mucosal antimicrobial responses, tissue inflammation and mucosal integrity, yet their role in persistent SIV infection is still unclear. Here we compared Th17 and Th22 cells in their phenotype, effector/cytokine function, and frequency in blood and intestinal mucosal tissues, and correlate levels with mucosal damage in SIV-infected rhesus macaques. We found that Th17/Th22 cells share similar features in that both highly produce TNF-α and IL-2 and express CCR5 in intestinal tissues; yet very few show cytotoxic functions, as evidenced by lack of IFN-γ and granzyme B production. Further, Th17/Th22 cells display distinct tissue-specific distributions. Both Th17 and Th22 cells and cytokine secretion were significantly depleted in both blood and intestine in chronically SIV-infected macaques. The frequency of Th17 and Th22 cells in the intestine positively correlated with percentages of intestinal CD4+ T cells and negatively with damage to intestinal mucosa, and plasma viral loads in SIV infection. These findings indicate Th17 and Th22 cells share considerable functions, and may coordinate in innate mucosal immune responses, and their regional loss in the intestine may be associated with local mucosal immune dysfunction in persistent HIV/SIV infection. PMID:25364618

  19. Pilot study of bipolar radiofrequency-induced anastomotic thermofusion-exploration of therapy parameters ex vivo.

    PubMed

    Winter, Hanno; Holmer, Christoph; Buhr, Heinz-Johannes; Lindner, Gerd; Lauster, Roland; Kraft, Marc; Ritz, Jörg-Peter

    2010-01-01

    Vessel sealing has been well-established in surgical practice in recent years. Bipolar radiofrequency-induced thermofusion (BIRTH) of intestinal tissue might replace traditionally used staples or sutures in the near future. In this experimental study, the influence of compressive pressure, fusion temperature, and duration of heating on the quality of intestinal anastomosis was investigated to obtain the relevant major parameters for the in vivo use of this system. An experimental setup for a closed-loop temperature-controlled bipolar radiofrequency-induced thermofusion of porcine intestinal tissue was developed. Twenty-four colon samples were harvested from nine different Saalower-Kräuter pigs and then anastomosed altering compressive pressure on five different levels to explore its influence on anastomotic bursting pressure. The anastomotic bursting strength depends on the compressive pressure applied to the colonic fusion site. An optimal interval of compressive pressure (CP = 1.125 N/mm(2)) in respect of a high amount of burst pressure was detected. A correlation (r = 0.54, p = 0.015) of burst pressure to delta compression indicated that increasing colonic wall thickness probably strengthens the anastomotic fusion. This study is a first step to enlighten the major parameters of tissue fusion, though effects and interactions of various main parameters of bipolar radiofrequency-induced thermofusion of colonic tissue remain unclear. Further studies exploring the main effects and interactions of tissue and process parameters to the quality of the fusion site have to follow.

  20. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    PubMed

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Ecotoxicoparasitology of the gastrointestinal tracts of pinnipeds: the effect of parasites on the potential bioavailability of total mercury (THg).

    PubMed

    McGrew, Ashley K; O'Hara, Todd M; Stricker, Craig A; Salman, Mo D; Van Bonn, William; Gulland, Frances M D; Whiting, Alex; Ballweber, Lora R

    2018-08-01

    Acanthocephalans, cestodes, and some species of nematodes acquire nutrients from the lumen contents in the gastrointestinal (GI) tract of their definitive host. These parasites are exposed to toxicants, such as mercury (Hg), through passive or active feeding mechanisms; therefore, the focus of this study was to determine if there is an effect of parasites on the dietary availability of total mercury (THg) within piscivorous pinniped hosts. THg concentrations ([THg]) in selected host tissues, parasites, and GI lumen contents from 22 California sea lions (Zalophus californianus), 15 ringed seals (Phoca hispida), and 4 spotted seals (Phoca largha) were determined. Among all pinnipeds, [THg] in acanthocephalans of the large intestine were significantly higher than concentrations in other samples (host lumen contents, other parasites and host intestinal wall), irrespective of location within the host GI tract. δ 15 N values of parasites depended both on parasite group and location within the GI tract. δ 15 N values were consistently higher in parasites inhabiting the large intestine, compared to elsewhere in the GI tract, for both sea lions and seals. δ 13 C values in parasites did not differ significantly from host GI tissues. Based on both [THg] and stable isotope values, parasites are likely affecting the Hg bioavailability within the GI lumen contents and host tissues, and toxicant-parasite interactions appear to depend on both parasitic taxon as well as their location within the host intestine. Copyright © 2018. Published by Elsevier B.V.

  2. Campylobacters and their bacteriophages from chicken liver: The prospect for phage biocontrol.

    PubMed

    Firlieyanti, Antung S; Connerton, Phillippa L; Connerton, Ian F

    2016-11-21

    Consumption of foods containing chicken liver has been associated with Campylobacter enteritis. Campylobacters can contaminate the surface of livers post-mortem but can also arise through systemic infection of colonising bacteria in live birds. The use of bacteriophage to reduce levels of Campylobacter entering the food chain is a promising intervention approach but most phages have been isolated from chicken excreta. This study examined the incidence and contamination levels of Campylobacter and their bacteriophage in UK retail chicken liver. Using enrichment procedures, 87% of 109 chicken livers were surface contaminated with Campylobacter and 83% contaminated within internal tissues. Direct plating on selective agar allowed enumeration of viable bacteria from 43% of liver samples with counts ranging from 1.8->3.8log 10 CFU/cm 2 for surface samples, and 3.0->3.8log 10 CFU/g for internal tissue samples. Three C. jejuni isolates recovered from internal liver tissues were assessed for their ability to colonise the intestines and extra-intestinal organs of broiler chickens following oral infection. All isolates efficiently colonised the chicken intestines but were variable in their abilities to colonise extra-intestinal organs. One isolate, CLB104, could be recovered by enrichment from the livers and kidneys of three of seven chickens. Campylobacter isolates remained viable within fresh livers stored at 4°C over 72h and frozen livers stored at -20°C over 7days in atmospheric oxygen, and therefore constitute a risk to human health. Only three Campylobacter-specific bacteriophages were isolated, and these exhibited a limited host range against the Camplylobacter chicken liver isolates. All were identified as group III virulent bacteriophage based on their genome size of 140kb. The application of broad host range group II virulent phages (8log 10 PFU/g) to liver homogenates containing C. jejuni strains of diverse origin at 4°C resulted in modest but significant reductions in the viable counts ranging from 0.2 to 0.7log 10 CFU/g. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Metabolomics as a Functional Tool in Screening Gastro Intestinal Diseases: Where are we in High Throughput Screening?

    PubMed

    Gundamaraju, Rohit; Vemuri, Ravichandra; Eri, Rajaraman; Ishiki, Hamilton M; Coy-Barrera, Ericsson; Yarla, Nagendra Sastry; Dos Santos, Sócrates Golzio; Alves, Mateus Feitosa; Barbosa Filho, José Maria; Diniz, Margareth F F M; Scotti, Marcus T; Scotti, Luciana

    2017-01-01

    Identifying novel bio markers in gastro intestinal disease is a promising method where a comprehensive analysis of the metabolome is performed. Metabolomics has evolved enormously in the past decade, paving a path in gastro intestinal disease research, especially diseases which lead to high morbidity and mortality. Metabolomics involves identifying metabolites such as anti-oxidants, and amino acids etc., which are screened in the urine, feces and tissue samples. Certain cases employ advanced tools like GC-MS, 1HNMR and GC-MS/SPME which reveal valuable information concerning disease severity and differentiation. In light of escalating health care costs and risky invasive procedures, metabolomics can be chosen as a safe yet precise method for screening diseases like ulcerative colitis, Crohns' disease, celiac disease, and gastro intestinal cancers. The present review focuses on major advancements in gastro intestinal metabolomics, giving attention to which parameters are assessed, and to recent changes in metabolite analysis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Protective Effects of Thymoquinone and Melatonin on Intestinal Ischemia–reperfusion Injury

    PubMed Central

    Tas, Ufuk; Ayan, Murat; Sogut, Erkan; Kuloglu, Tuncay; Uysal, Murat; Tanriverdi, Halil I.; Senel, Ufuk; Ozyurt, Birsen; Sarsilmaz, Mustafa

    2015-01-01

    Background/Aim: In the present study, we aimed to compare the potential protective effects of thymoquinone and melatonin by using equivalent dose, on oxidative stress-induced ischemia–reperfusion (IR) injury in the intestinal tissue of rats. Materials and Methods: The study was performed using 32 male Wistar–Albino rats (weighing 180–200 g) randomly divided into four groups: Group I, sham group; Group II, IR group; Group III, IR with melatonin group; and Group IV, IR with thymoquinone group. After laparotomy, ischemia and reperfusion were performed for 60 and 120 min, respectively, on all the groups. Intestinal tissue sections were stained using routine histological methods and examined under the light microscope. In addition, the sections were immunohistochemically stained using the TUNEL method for determination of apoptosis. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) levels in the intestinal tissue were also measured. Results: The IR group had significantly elevated tissue SOD activity, GSH-Px activity, and MDA levels compared with the sham group. Administration of thymoquinone and melatonin efficiently reduced these increases. Statistically significant number of apoptotic cells was observed in the intestinal tissue of IR group rats compared with the sham group. Treatment with thymoquinone and melatonin markedly reduced the number of apoptotic cells. Conclusion The effects of melatonin and thymoquinone on IR-induced oxidative stress in rat intestines were similar. Our findings suggest that melatonin and thymoquinone protect against IR-induced injury to intestinal tissues. PMID:26458854

  5. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks

    PubMed Central

    Simmons, Alan J.; Scurrah, Cherie’ R.; McKinley, Eliot T.; Herring, Charles A.; Irish, Jonathan M.; Washington, Mary K.; Coffey, Robert J.; Lau, Ken S.

    2016-01-01

    Cellular heterogeneity poses a significant challenge to understanding tissue level phenotypes and confounds conventional bulk analyses. To facilitate the analysis of signaling at the single-cell level in human tissues, we applied mass cytometry using CyTOF (Cytometry Time-of-Flight) to formalin-fixed paraffin-embedded (FFPE) normal and diseased intestinal specimens. We developed and validated a technique called FFPE-DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue), a single-cell approach for characterizing native signaling states from embedded solid tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor α (TNF-α) in intestinal enterocytes, goblet cells and enteroendocrine cells, implicating the role of the downstream RAS-RAF-MEK-ERK signaling pathway in dictating goblet cell identity. In addition, application of FFPE-DISSECT, mass cytometry, and data-driven computational analyses to human colon specimens confirmed reduced differentiation in colorectal cancer (CRC) compared to normal colon, and revealed quantitative increases in inter- and intra-tissue heterogeneity in CRC with regards to the modular regulation of signaling pathways. Specifically, modular co-regulation of the kinases P38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in the proliferative compartment of the normal colon was loss in CRC, as evidenced by their impaired coordination over samplings of single cells in tissue. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, such as microsatellite instability and mutations in KRAS and BRAF, allows rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. FFPE-DISSECT coupled of mass cytometry can be used for deriving cellular landscapes from archived patient samples, beyond CRC, and as a high resolution tool for disease characterization and subtyping. PMID:27729552

  6. Molecular imaging of lipids in cells and tissues

    NASA Astrophysics Data System (ADS)

    Borner, Katrin; Malmberg, Per; Mansson, Jan-Eric; Nygren, Hakan

    2007-02-01

    The distribution pattern of lipid species in biological tissues was analyzed with imaging mass spectrometry (TOF-SIMS; time-of-flight secondary ion mass spectrometry). The first application shows distribution of a glycosphingolipid, the galactosylceramide-sulfate (sulfatide) with different hydrocarbon chain lengths and the fatty acids palmitate and oleate in rat cerebellum. Sulfatides were seen localized in regions suggested as paranodal areas of rat cerebellar white matter as well as in the granular layer, with highest concentrations at the borders of the white matter. Different distribution patterns could be shown for the fatty acid C16:0 palmitate and C18:1 oleate in rat cerebellum, which seem to origin partly from the hydrocarbon chains of phosphatidylcholine. Results were shown for two different tissue preparation methods, which were plunge-freezing and cryostat sectioning as well as high-pressure freezing, freeze-fracturing and freeze-drying. The second application shows TOF-SIMS analysis on a biological trial of choleratoxin treatment in mouse intestine. The effect of cholera toxin on lipids in the intestinal epithelium was shown by comparing control and cholera toxin treated mouse intestine samples. A significant increase of the cholesterol concentration was seen after treatment. Cholesterol was mainly localized to the brush border of enterocytes of the intestinal villi, which could be explained by the presence of cholesterol-rich lipid rafts present on the microvilli or by relations to cholesterol uptake. After cholera toxin exposure, cholesterol was seen increased in the nuclei of enterocytes and apparently in the interstitium of the villi. We find that imaging TOF-SIMS is a powerful tool for studies of lipid distributions in cells and tissues, enabling the elucidation of their role in cell function and biology.

  7. A kinetic approach to the study of absorption of solutes by isolated perfused small intestine

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new technique has been developed for making serial measurements of water and solute absorption from the lumen of isolated small intestine. 2. The isolated intestine is perfused in a single pass with a segmented flow of slugs of liquid separated by bubbles of oxygen-carbon dioxide mixture. Simultaneous collections are made of effluent from the lumen and of the fluid which is transported across the mucosa. This latter fluid appears to be a fair sample of the tissue fluid. 3. Conditions in the lumen can be changed within less than 5 min. The effects of two or more treatments applied to the same segment of intestine can be determined and the time course of a change in luminal conditions. 4. The rate of appearance of solutes on the serosal side depends on the rate of water absorption, and changes exponentially towards a steady state. The rate constant is a function of tissue fluid volume. 5. In the steady state the concentration of glucose in the tissue fluid is 71 mM when the luminal concentration is 28 mM, and is 45 mM when the luminal concentration is 8·3 mM. 6. For solutes such as glucose for which reflux from tissue fluid to lumen is small relative to flux from lumen to tissue fluid, the time of attainment of a steady state in secretion is usually 50-60 min. 7. For solutes such as sodium for which the reflux is relatively high, the steady state may be reached in 15-20 min. 8. The Km for glucose absorption (14-19 mM) is much lower than is found with unsegmented flow perfusion. 9. These findings emphasize problems in interpreting results from other types of intestinal preparation. 10. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium concentration is reduced abruptly. In contrast the rate of glucose absorption falls suddenly when the luminal glucose concentration is reduced abruptly. This suggests that glucose absorption is not directly dependent on luminal sodium ions. ImagesPlate 1 PMID:4422346

  8. Cysteine-Rich Intestinal Protein 1 Silencing Inhibits Migration and Invasion in Human Colorectal Cancer.

    PubMed

    He, Guoyang; Zou, Liyuan; Zhou, Lin; Gao, Peiqiong; Qian, Xinlai; Cui, Jing

    2017-01-01

    Cysteine-rich intestinal protein 1 (CRIP1), a member of the LIM/double zinc finger protein family, is abnormally expressed in several tumour types. However, few data are available on the role of CRIP1 in cancer. In the present study, we aimed to investigate the expression profile and functions of CRIP1 in colorectal cancer. To examine the protein expression level of CRIP1, immunohistochemistry (IHC) was performed on 56 pairs of colon cancer tissue samples. Western blotting was performed to investigate CRIP1 protein expression in four colon cancer cell lines. The endogenous expression of CRIP1 was suppressed using short interfering RNAs (siRNAs). Cell proliferation assays were used to determine whether CRIP1 silencing affected cell proliferation. Flow cytometry analysis was used to detect cell apoptosis. The effects of silencing CRIP1 on cell migration and invasion was detected using the transwell and wound-healing assays. IHC analysis showed that protein level of CRIP1 was significantly higher in tumour tissue samples than in paired non-tumour tissue samples and that the CRIP1 level was higher in metastatic tissue samples than in non-metastatic tissue samples. In addition, protein levels of CRIP1 were higher in highly metastatic colon cancer cell lines than in colon cancer cell lines with low metastasis. Further, CRIP1 silencing had no effect on cell proliferation or apoptosis in SW620 and HT29 cells. CRIP1 silencing suppressed cell migration and invasion obviously in SW620 and HT29 cells. The present study provides new evidence that abnormal expression of CRIP1 might be related to the degree of metastasis in colorectal cancer and that CRIP1 silencing could effectively inhibit migration and invasion during colorectal cancer development. These findings might aid the development of a biomarker for colon cancer prognosis and metastasis, and thus help to treat this common type of cancer. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Distribution and elimination of [14C] sarafloxacin hydrochloride from tissues of juvenile channel catfish (Ictalurus punctatus)

    USGS Publications Warehouse

    Gingerich, W.H.; Meinertz, J.R.; Dawson, V.K.; Gofus, J.E.; Delaney, L.J.; Bunnell, P.R.

    1995-01-01

    The distribution and loss of radioactivity from tissues were determined in 60 juvenile channel catfish (Ictalurus punctatus) following oral dosing with the candidate fish therapeutant Sarafin® ([14C] sarafloxacin hydrochloride) at 10 mg/kg for 5 consecutive days. Twelve groups of 5 fish each were sampled at selected times ranging from 3 to 240 h after the last dose was administered, The concentration and content of sarafloxacin-equivalent activity was determined in liver, gallbladder, kidney, skin, and skinless fillet by sample oxidation and liquid scintillation counting; content of sarafloxacin-equivalent activity was determined in stomach and anterior and posterior intestines, Skinless fillet tissues were also analyzed for sarafloxacin and for potential metabolites by gradient-elution high-performance liquid chromatography (HPLC) with in-line radiometric and fluorescence detection, Loss of radioactivity from the whole body conformed to a bimodal elimination pattern with a rapid initial phase (t1/2=11 h) and a slower secondary phase (t1/2=222 h). Tissue and contents of the gastrointestinal tract (i.e. stomach and anterior and posterior intestines) were a principal depot of activity during the first four sample times (3, 6, 12, and 24 h); the combined head, skeleton, and fins (i.e. residual carcass) were the principal depot of activity in samples taken after 24 h. Of those tissues sampled 3 h after the last dose, relative sarafloxacin concentration was greatest in the liver (4.06 μg equivalents/g) and least in the residual carcass (1.13 μg equivalents/g), Intermediate concentrations were found in the kidney (2.04 μg equivalents/g), skinless fillet (1.71 μg equivalents/ g), and the skin (1.51 μg equivalents/g). Concentrations of sarafloxacin-equivalent residues in edible skinless fillet were consistently among the lowest of all tissues examined. The highest mean concentration of parent-equivalent material in the fillet tissue was found 12 h after administration of the last dose (2.27 μg equivalents/g) and declined thereafter, Sarafloxacin constituted between 80 and 90% of the extractable radioactive residues from the fillet homogenates. No other peaks were resolved in any of the fillet tissue samples analyzed by HPLC with in-line radiometric detection.

  10. Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis.

    PubMed

    Tito, Raul Y; Cypers, Heleen; Joossens, Marie; Varkas, Gaëlle; Van Praet, Liesbet; Glorieus, Elien; Van den Bosch, Filip; De Vos, Martine; Raes, Jeroen; Elewaut, Dirk

    2017-01-01

    Dysbiosis of the intestinal microbiota has been widely established in inflammatory bowel disease (IBD). There is significant clinical and genetic overlap between spondyloarthritis (SpA) and IBD, and up to 50% of all patients with SpA exhibit microscopic signs of bowel inflammation, often bearing particular resemblance to early Crohn's disease, a subtype of IBD. This study was undertaken to assess the relationship between intestinal microbial composition, gut histology, and disease activity markers in SpA. Gene analysis by 16S ribosomal RNA amplicon sequencing was used to compare the microbial composition in ileal and colonic biopsy specimens from 27 patients with SpA (14 with microscopic bowel inflammation, 13 without) and 15 healthy control subjects (ileal samples from all 15 subjects and colonic samples from 6). Spearman's rank correlation tests were used to assess correlations of the microbial composition with disease activity measures. The intestinal inflammation status (histologically normal versus acute or chronic inflammation) was strongly associated with the mucosal microbiota profile of patients with SpA. In inflamed biopsy tissue, the detected bacterial community composition clustered separately from that in noninflamed biopsy tissue (P < 0.05 by permutational multivariate analysis of variance, using hierarchical clustering on Bray-Curtis distances). Interestingly, abundance of the genus Dialister was found to be positively correlated with the Ankylosing Spondylitis Disease Activity Score (Spearman's rho = 0.62, false discovery rate-corrected q < 0.01). This finding was further supported by the low frequency of Dialister observed in noninflamed ileal and colonic biopsy tissue from patients with SpA and healthy controls. These findings demonstrate a significant difference in the intestinal microbial composition in patients with SpA who have microscopic gut inflammation compared to those without microscopic gut inflammation. Moreover, Dialister may represent a potential microbial marker of disease activity in SpA. © 2016, American College of Rheumatology.

  11. Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens.

    PubMed

    Pedroso, Adriana A; Batal, Amy B; Lee, Margie D

    2016-05-01

    OBJECTIVE To determine effects of in ovo administration of a probiotic on development of the intestinal microbiota of 2 genetic lineages (modern and heritage) of chickens. SAMPLE 10 newly hatched chicks and 40 fertile eggs to determine intestinal microbiota at hatch, 900 fertile eggs to determine effects of probiotic on hatchability, and 1,560 chicks from treated or control eggs. PROCEDURES A probiotic competitive-exclusion product derived from adult microbiota was administered in ovo to fertile eggs of both genetic lineages. Cecal contents and tissues were collected from embryos, newly hatched chicks, and chicks. A PCR assay was used to detect bacteria present within the cecum of newly hatched chicks. Fluorescence in situ hybridization and vitality staining were used to detect viable bacteria within intestines of embryos. The intestinal microbiota was assessed by use of 16S pyrosequencing. RESULTS Microscopic evaluation of embryonic cecal contents and tissues subjected to differential staining techniques revealed viable bacteria in low numbers. Development of the intestinal microbiota of broiler chicks of both genetic lineages was enhanced by in ovo administration of adult microbiota. Although the treatment increased diversity and affected composition of the microbiota of chicks, most bacterial species present in the probiotic were transient colonizers. However, the treatment decreased the abundance of undesirable bacterial species within heritage lineage chicks. CONCLUSIONS AND CLINICAL RELEVANCE In ovo inoculation of a probiotic competitive-exclusion product derived from adult microbiota may be a viable method of managing development of the microbiota and reducing the prevalence of pathogenic bacteria in chickens.

  12. [Epithelial intestine cells transdifferentiate into bladder urothelium in experiments in vivo].

    PubMed

    Popov, B K; Zaĭchik, A M; Bud'ko, M B; Zlobina, O V; Tolkunova, E N; Zhidkova, O V; Petrov, N S

    2011-01-01

    The autoplastic surgery by intestine tissue has been used for reconstructive therapy of the urinary tract since the middle of the last century; however, cell mechanisms of the urothelium engraftment are still obscure. Intestine stem cells possess plasticity and presumably enable after the autoplastic surgery to transdifferentiate into mature cells of urinary tract. Using the preliminary developed in vivo model for evaluation of somatic cells transdifferentiation into urothelium, we have found that the epithelial intestine cells producing Gfp transdifferentiate into the cryoinjured bladder urothelium of the syngenetic C57BL mice. Gfp was detected in the bladder tissue of mice-recipients using reverted polymerase chain reaction, primary fluorescence and immunofluorescence, while colocalization of the Gfp and Her-4 revealing similar to urothelium staining pattern was demonstrated in a few urothelium cells by double immunohistochemical staining of the bladder tissue with specific antibodies. The results obtained suggest that epithelial intestine cells enable to transdifferentiate into bladder urothelium, however the transdifferentiation level is low and presumably can not provide full functional urothelium engraftment in the case of autoplastic bladder surgery by intestine tissue.

  13. Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation.

    PubMed

    Weiner, Joshua; Zuber, Julien; Shonts, Brittany; Yang, Suxiao; Fu, Jianing; Martinez, Mercedes; Farber, Donna L; Kato, Tomoaki; Sykes, Megan

    2017-10-01

    Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.

  14. Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome.

    PubMed

    Millar-Büchner, Pamela; Philp, Amber R; Gutierrez, Noemí; Villanueva, Sandra; Kerr, Bredford; Flores, Carlos A

    2016-12-01

    Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon changes observed in the Mecp2-null mice, indicating the participation of other cells in this phenotype and the complex interaction between different cell types in this disease.

  15. Porcine Intestinal Mast Cells. Evaluation of Different Fixatives for Histochemical Staining Techniques Considering Tissue Shrinkage

    PubMed Central

    Rieger, J.; Twardziok, S.; Huenigen, H.; Hirschberg, R.M.; Plendl, J.

    2013-01-01

    Staining of mast cells (MCs), including porcine ones, is critically dependent upon the fixation and staining technique. In the pig, mucosal and submucosal MCs do not stain or stain only faintly after formalin fixation. Some fixation methods are particularly recommended for MC staining, for example the fixation with Carnoy or lead salts. Zinc salt fixation (ZSF) has been reported to work excellently for the preservation of fixation-sensitive antigens. The aim of this study was to establish a reliable histological method for counting of MCs in the porcine intestinum. For this purpose, different tissue fixation and staining methods that also allow potential subsequent immunohistochemical investigations were evaluated in the porcine mucosa, as well as submucosa of small and large intestine. Tissues were fixed in Carnoy, lead acetate, lead nitrate, Zamboni and ZSF and stained subsequently with either polychromatic methylene blue, alcian blue or toluidine blue. For the first time our study reveals that ZSF, a heavy metal fixative, preserves metachromatic staining of porcine MCs. Zamboni fixation was not suitable for histochemical visualization of MCs in the pig intestine. All other tested fixatives were suitable. Alcian blue and toluidine blue co-stained intestinal goblet cells which made a prima facie identification of MCs difficult. The polychromatic methylene blue proved to be the optimal staining. In order to compare MC counting results of the different fixation methods, tissue shrinkage was taken into account. As even the same fixation caused shrinkagedifferences between tissue from small and large intestine, different factors for each single fixation and intestinal localization had to be calculated. Tissue shrinkage varied between 19% and 57%, the highest tissue shrinkage was found after fixation with ZSF in the large intestine, the lowest one in the small intestine after lead acetate fixation. Our study emphasizes that MC counting results from data using different fixation techniques can only be compared if the respective studyimmanent shrinkage factor has been determined and quantification results are adjusted accordingly. PMID:24085270

  16. Intestinal Malrotation

    MedlinePlus

    ... bowel twists on itself, cutting off the blood flow to the tissue and causing the tissue to ... stomach and upper intestines. This keeps fluid and gas from building up in the abdomen. The child ...

  17. The effect of melatonin on bacterial translocation following ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion.

    PubMed

    Ozban, Murat; Aydin, Cagatay; Cevahir, Nural; Yenisey, Cigdem; Birsen, Onur; Gumrukcu, Gulistan; Aydin, Berrin; Berber, Ibrahim

    2015-03-08

    Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.

  18. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    PubMed

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral capsaicin effect at one remote site. There was an accompanying decrease and an increase in the proportion of body fat in visceral and subcutaenous compartments, respectively. Taken together, if oral capsaicin could regulate adipose tissue distribution, the process might involve the effect of intestinal mucosal afferent nerves in modulating intestinal and visceral adipose tissue blood flow. The hypothesis that the intestinal mucosal afferent mechanism is a plausible therapeutic target for abating visceral obesity deserves to be further evaluated.

  19. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.

    PubMed

    Zijlstra, R T; Jha, R; Woodward, A D; Fouhse, J; van Kempen, T A T G

    2012-12-01

    Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and insulin production. These methods will therefore support elucidation of mechanisms that link starch and fiber properties to whole body nutrient use and intestinal health.

  20. Proteomic Profiling of Paraffin-Embedded Samples Identifies Metaplasia-Specific and Early-Stage Gastric Cancer Biomarkers

    PubMed Central

    Sousa, Josane F.; Ham, Amy-Joan L.; Whitwell, Corbin; Nam, Ki Taek; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Zhang, Bing; Li, Ming; LaFleur, Bonnie; Liebler, Daniel C.; Goldenring, James R.

    2013-01-01

    Early diagnosis and curative resection are the predominant factors associated with increased survival in patients with gastric cancer. However, most gastric cancer cases are still diagnosed at later stages. Since most pathologic specimens are archived as FFPE samples, the ability to use them to generate expression profiles can greatly improve cancer biomarker discovery. We sought to uncover new biomarkers for stomach preneoplastic metaplasias and neoplastic lesions by generating proteome profiles using FFPE samples. We combined peptide isoelectric focusing and liquid chromatography–tandem mass spectrometry analysis to generate proteomic profiles from FFPE samples of intestinal-type gastric cancer, metaplasia, and normal mucosa. The expression patterns of selected proteins were analyzed by immunostaining first in single tissue sections from normal stomach, metaplasia, and gastric cancer and later in larger tissue array cohorts. We detected 60 proteins up-regulated and 87 proteins down-regulated during the progression from normal mucosa to metaplasia to gastric cancer. Two of the up-regulated proteins, LTF and DMBT1, were validated as specific markers for spasmolytic polypeptide–expressing metaplasia and intestinal metaplasia, respectively. In cancers, significantly lower levels of DMBT1 or LTF correlated with more advanced disease and worse prognosis. Thus, proteomic profiling using FFPE samples has led to the identification of two novel markers for stomach metaplasias and gastric cancer prognosis. PMID:22944598

  1. Generation of cell type-specific monoclonal antibodies for the planarian and optimization of sample processing for immunolabeling.

    PubMed

    Forsthoefel, David J; Waters, Forrest A; Newmark, Phillip A

    2014-12-21

    Efforts to elucidate the cellular and molecular mechanisms of regeneration have required the application of methods to detect specific cell types and tissues in a growing cohort of experimental animal models. For example, in the planarian Schmidtea mediterranea, substantial improvements to nucleic acid hybridization and electron microscopy protocols have facilitated the visualization of regenerative events at the cellular level. By contrast, immunological resources have been slower to emerge. Specifically, the repertoire of antibodies recognizing planarian antigens remains limited, and a more systematic approach is needed to evaluate the effects of processing steps required during sample preparation for immunolabeling. To address these issues and to facilitate studies of planarian digestive system regeneration, we conducted a monoclonal antibody (mAb) screen using phagocytic intestinal cells purified from the digestive tracts of living planarians as immunogens. This approach yielded ten antibodies that recognized intestinal epitopes, as well as markers for the central nervous system, musculature, secretory cells, and epidermis. In order to improve signal intensity and reduce non-specific background for a subset of mAbs, we evaluated the effects of fixation and other steps during sample processing. We found that fixative choice, treatments to remove mucus and bleach pigment, as well as methods for tissue permeabilization and antigen retrieval profoundly influenced labeling by individual antibodies. These experiments led to the development of a step-by-step workflow for determining optimal specimen preparation for labeling whole planarians as well as unbleached histological sections. We generated a collection of monoclonal antibodies recognizing the planarian intestine and other tissues; these antibodies will facilitate studies of planarian tissue morphogenesis. We also developed a protocol for optimizing specimen processing that will accelerate future efforts to generate planarian-specific antibodies, and to extend functional genetic studies of regeneration to post-transcriptional aspects of gene expression, such as protein localization or modification. Our efforts demonstrate the importance of systematically testing multiple approaches to species-specific idiosyncracies, such as mucus removal and pigment bleaching, and may serve as a template for the development of immunological resources in other emerging model organisms.

  2. Complement component C5a mediates hemorrhage-induced intestinal damage

    PubMed Central

    Fleming, Sherry D.; Phillips, Lauren M.; Lambris, John D.; Tsokos, George C.

    2008-01-01

    Background Complement has been implicated in the pathogenesis of intestinal damage and inflammation in multiple animal models. Although the exact mechanism is unknown, inhibition of complement prevents hemodynamic alterations in hemorrhage. Materials/Methods C57Bl/6, complement 5 deficient (C5−/−) and sufficient (C5+/+) mice were subjected to 25% blood loss. In some cases, C57Bl/6 mice were treated with C5a receptor antagonist (C5aRa) post-hemorrhage. Intestinal injury, leukotriene B4, and myeloperoxidase production were assessed for each treatment group of mice. Results Mice subjected to significant blood loss without major trauma develop intestinal inflammation and tissue damage within two hours. We report here that complement 5 (C5) deficient mice are protected from intestinal tissue damage when subjected to hemorrhage (Injury score = 0.36 compared to wildtype hemorrhaged animal injury score = 2.89; p<0.05). We present evidence that C5a represents the effector molecule because C57Bl/6 mice treated with a C5a receptor antagonist displayed limited intestinal injury (Injury score = 0.88), leukotriene B4 (13.16 pg/mg tissue) and myeloperoxidase (115.6 pg/mg tissue) production compared to hemorrhaged C57Bl/6 mice (p<0.05). Conclusion Complement activation is important in the development of hemorrhage-induced tissue injury and C5a generation is critical for tissue inflammation and damage. Thus, therapeutics targeting C5a may be useful therapeutics for hemorrhage-associated injury. PMID:18639891

  3. Multilayered epithelium in a rat model and human Barrett's esophagus: Similar expression patterns of transcription factors and differentiation markers

    PubMed Central

    Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J

    2008-01-01

    Background In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753–765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Methods Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. Results We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1α, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. Conclusion These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE. PMID:18190713

  4. Multilayered epithelium in a rat model and human Barrett's esophagus: similar expression patterns of transcription factors and differentiation markers.

    PubMed

    Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J

    2008-01-11

    In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753-765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1alpha, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE.

  5. Intestinal Mononuclear Phagocytes in Health and Disease.

    PubMed

    Sanders, Theodore J; Yrlid, Ulf; Maloy, Kevin J

    2017-01-01

    The intestine is the tissue of the body with the highest constitutive exposure to foreign antigen and is also a common entry portal for many local and systemic pathogens. Therefore, the local immune system has the unenviable task of balancing efficient responses to dangerous pathogens with tolerance toward beneficial microbiota and food antigens. As in most tissues, the decision between tolerance and immunity is critically governed by the activity of local myeloid cells. However, the unique challenges posed by the intestinal environment have necessitated the development of several specialized mononuclear phagocyte populations with distinct phenotypic and functional characteristics that have vital roles in maintaining barrier function and immune homeostasis in the intestine. Intestinal mononuclear phagocyte populations, comprising dendritic cells and macrophages, are crucial for raising appropriate active immune responses against ingested pathogens. Recent technical advances, including microsurgical approaches allowing collection of cells migrating in intestinal lymph, intravital microscopy, and novel gene-targeting approaches, have led to clearer distinctions between mononuclear phagocyte populations in intestinal tissue. In this review, we present an overview of the various subpopulations of intestinal mononuclear phagocytes and discuss their phenotypic and functional characteristics. We also outline their roles in host protection from infection and their regulatory functions in maintaining immune tolerance toward beneficial intestinal antigens.

  6. Distinct expression patterns of CD69 in mucosal and systemic lymphoid tissues in primary SIV infection of rhesus macaques.

    PubMed

    Wang, Xiaolei; Xu, Huanbin; Alvarez, Xavier; Pahar, Bapi; Moroney-Rasmussen, Terri; Lackner, Andrew A; Veazey, Ronald S

    2011-01-01

    Although the intestinal tract plays a major role in early human immunodeficiency virus (HIV) infection, the role of immune activation and viral replication in intestinal tissues is not completely understood. Further, increasing evidence suggests the early leukocyte activation antigen CD69 may be involved in the development or regulation of important T cell subsets, as well as a major regulatory molecule of immune responses. Using the simian immunodeficiency virus (SIV) rhesus macaque model, we compared expression of CD69 on T cells from the intestine, spleen, lymph nodes, and blood of normal and SIV-infected macaques throughout infection. In uninfected macaques, the majority of intestinal lamina propria CD4+ T cells had a memory (CD95+) phenotype and co-expressed CD69, and essentially all intestinal CCR5+ cells co-expressed CD69. In contrast, systemic lymphoid tissues had far fewer CD69+ T cells, and many had a naïve phenotype. Further, marked, selective depletion of intestinal CD4+CD69+ T cells occurred in early SIV infection, and this depletion persisted throughout infection. Markedly increased levels of CD8+CD69+ T cells were detected after SIV infection in virtually all tissues, including the intestine. Further, confocal microscopy demonstrated selective, productive infection of CD3+CD69+ T cells in the intestine in early infection. Combined, these results indicate CD69+CD4+ T cells are a major early target for viral infection, and their rapid loss by direct infection may have profound effects on intestinal immune regulation in HIV infected patients.

  7. Activity of inflammatory bowel disease influences the expression of cytokines in gingival tissue.

    PubMed

    Figueredo, C M; Martins, A P; Lira-Junior, R; Menegat, J B; Carvalho, A T; Fischer, R G; Gustafsson, A

    2017-07-01

    This study assessed the cytokine expression in gingival and intestinal tissues from periodontitis patients with inflammatory bowel disease (IBD) and evaluated if IBD activity is a covariate to the amount of gingival cytokines. Paired gingival and intestinal tissues were collected from 21 patients and homogenised using a cell disruptor. Cytokine expression (IL-1β, IL-4, IL-6, IL-10, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IL-17A, IL-17F, IFN-γ, sCD40L, and TNF-α) was evaluated using bead-based multiplex technology. An inflammation score was developed using the intestinal cytokines that showed good accuracy to discriminate IBD active patients from those in remission and then a similar score was applied to gingival tissue. IL-4, IL-10 and IL-21 expressions were significantly increased in gingival tissue from patients with an active disease as compared to those with a disease in remission. The inflammation score (mean value of IL-1β, IL-6, IL-21, and sCD40L) was significantly higher in gingival tissue from patients with IBD activity. There was a significant correlation between gingival and intestinal inflammation scores (rho=0.548; P=0.01). Significantly higher IL-23 and IFN-γ levels and lower IL-31 and TNF-α levels were observed in gingival tissues than in intestinal ones. Activity of inflammatory bowel disease influenced the cytokine expression in gingival tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-02

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.

  9. The Role of SGLT1 and GLUT2 in Intestinal Glucose Transport and Sensing

    PubMed Central

    Röder, Pia V.; Geillinger, Kerstin E.; Zietek, Tamara S.; Thorens, Bernard; Koepsell, Hermann; Daniel, Hannelore

    2014-01-01

    Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion. PMID:24587162

  10. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    PubMed

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Polydatin Alleviates Small Intestine Injury during Hemorrhagic Shock as a SIRT1 Activator

    PubMed Central

    Zeng, Zhenhua; Chen, Zhongqing; Xu, Siqi; Song, Rui; Yang, Hong; Zhao, Ke-seng

    2015-01-01

    Objective. To evaluate the role of SIRT1 in small intestine damage following severe hemorrhagic shock and to investigate whether polydatin (PD) can activate SIRT1 in shock treatment. Research Design and Methods. The severe hemorrhagic shock model was reproduced in Sprague Dawley rats. Main Outcome Measures. Two hours after drug administration, half of the rats were assessed for survival time evaluation and the remainder were used for small intestinal tissue sample collection. Results. Bleeding and swelling appeared in the small intestine with epithelial apoptosis and gut barrier disturbance during hemorrhagic shock. SIRT1 activity and PGC-1α protein expression of the small intestine were decreased, which led to an increase in acetylated SOD2 and decreases in the expression and activity of SOD2, resulting in severe oxidative stress. The decreased SIRT1 activity and expression were partially restored in the PD administration group, which showed reduced intestine injury and longer survival time. Notably, the effect of PD was abolished after the addition of Ex527, a selective inhibitor of SIRT1. Conclusions. The results collectively suggest a role for the SIRT1-PGC-1α-SOD2 axis in small intestine injury following severe hemorrhagic shock and that PD is an effective SIRT1 activator for the shock treatment. PMID:26301045

  12. Pharmacokinetic, bioavailability and tissue distribution study of MP3950, a new gastroprokinetic candidate compound, in rat using UPLC-MS/MS.

    PubMed

    Zhao, Yu; Zhao, Min; Jiang, Qi; Qin, Feng; Wang, Chengying; Xiong, Zhili; Wang, Shaojie; He, Zhonggui; Guo, Xingjie; Zhao, Longshan

    2018-06-02

    MP3950 is being developed as a gastroprokinetic candidate compound. To illustrate the pharmacokinetic profiles, absolute bioavailability after intravenous administration and oral administration with MP3950 as well as tissue distribution in vivo, an UPLC-MS/MS approach which was rapid and selective was developed to determine MP3950 in plasma and tissue of rat. Sample pre-treatment of plasma sample was one-step protein precipitation. 0.1% formic acid containing 5 mmol/L ammonium acetate-methanol(55/45,v/v) was used for isocratic elution on a Waters ACQUITY UPLC® BEH C18 (50 mm × 2.1 mm, 1.7 μm) to achieve the separation. The analysis was performed in MRM mode via positive ESI mode. LLOQ of the method was 10 ng/mL, and the linearity up to 10,000 ng/mL. The intra-day precision (relative standard deviation, RSD) was 4.0-9.0% and the inter-day precision was 4.2-10.6%. The accuracy (relative error, RE) was -1.2-2.4%. Tissue samples were collected from the brain, heart, liver, spleen, lung, kidney, stomach, duodenum, small intestine, large intestine, appendix and skeletal muscle. The same liquid chromatographic and mass spectrometric conditions were used, and it's proven that this method was feasible to analyze the MP3950 in tissues with good precision and accuracy over the range from 10 to 5000 ng·mL -1 . It was found that the concentration of MP3950 is higher in digestive system. The tissue distribution, pharmacokinetic and bioavailability of MP3950 in rats were carried out by the method for the first time, which can provide enough information for the further development and investigation of MP3950. Copyright © 2018. Published by Elsevier B.V.

  13. Evaluation of architectural and histopathological biomarkers in the intestine of brown trout (Salmo trutta Linnaeus, 1758) challenged with environmental pollution.

    PubMed

    Barišić, Josip; Filipović Marijić, Vlatka; Mijošek, Tatjana; Čož-Rakovac, Rozelindra; Dragun, Zrinka; Krasnići, Nesrete; Ivanković, Dušica; Kružlicová, Dáša; Erk, Marijana

    2018-06-14

    In the present study novel histopathological approach, using fish intestine as a sensitive bioindicator organ of pollution impact in the freshwater ecosystem, was proposed. Histopathological alterations were compared between native brown trout (Salmo trutta Linnaeus, 1758) from the reference (Krka River spring) and pollution impacted location (influence of technological/municipal wastewaters and agricultural runoff near the Town of Knin) of the karst Krka River in Croatia. In brown trout from both locations, severe parasitic infestation with acanthocephalan species Dentitruncus trutae was found, enabling evaluation of acanthocephalan infestation histopathology, which indicated parasite tissue reaction in a form of inflammatory, necrotic and hyperplastic response that extended throughout lamina epithelialis mucosae, lamina propria, and lamina muscularis mucosae. New semi-quantitative histological approach was proposed in order to foresee alterations classified in three reaction patterns: control tissue appearance, moderate (progressive) tissue impairment and severe (regressive and inflammatory) tissue damage. The most frequent progressive alteration was hyperplasia of epithelium on the reference site, whereas the most frequent regressive alterations were atrophy and necrosis seen on the polluted site. Furthermore, histopathological approach was combined with micromorphological and macromorphological assessment as an additional indicator of pollution impact. Among 15 observed intestinal measures, two biomarkers of intestinal tissue damage were indicated as significant, height of supranuclear space (hSN) and number of mucous cells over 100 μm fold distance of intestinal mucosa (nM), which measures were significantly lower in fish from polluted area compared to the reference site. Obtained results indicated that combined histological and morphological approach on fish intestinal tissue might be used as a valuable biological tool for assessing pollution impact on aquatic organisms. Therefore, semi quantitative scoring and multiparametric morphological assessment of intestinal tissue lesion magnitude should become a common approach to handle environmental pollution impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Protective Effects of Vitamin E on Methotrexate-Induced Jejunal Mucosal Damage in Rats.

    PubMed

    Burcu, Busra; Kanter, Mehmet; Orhon, Zeynep Nur; Yarali, Oguzhan; Karabacak, Rukiye

    2016-04-01

    To investigate the possible protective effects of Vitamin E (Vit E) on oxidative stress and jejunal damage in the rat intestinal mucosa after methotrexate (MTX)-induced enterotoxicity. Rats were divided into 3 groups: control, MTX, and MTX+ Vit E; each group contained 8 animals. The control group was given physiological serum in addition to sunflower oil for 3 days. The second group was given sunflower oil with intragastric tube daily, followed by MTX injection (20 mg/kg intraperitoneally). To the third group, starting 3 days before injection, Vit E was given dissolved in sunflower oil (600 mg/kg orally) in addition to MTX injection. Four days after MTX injection the anesthetized rats were sacrificed, and the tissue samples obtained from their jejunums were investigated for histological and biochemical analysis. Vit E treatment significantly decreased the elevated tissue malondialdehyde levels and increased the reduced glutathione peroxidase and superoxide dismutase activities in comparison to the MTX-treated group. MTX treatment caused severe histopathological injury including mucosal erosions, inflammatory cell infiltration, necrosis, hemorrhage, and villous congestion. Vit E treatment significantly attenuated the severity of intestinal injury caused by MTX via inhibiting induced nitric oxide synthase levels and NF-κB p65 activation. Because of its reconstructing and antioxidant effects, Vit E pretreatment may have protective effects in the intestinal tissue of MTX-treated rats.

  15. Microbiome Heterogeneity Characterizing Intestinal Tissue and Inflammatory Bowel Disease Phenotype.

    PubMed

    Tyler, Andrea D; Kirsch, Richard; Milgrom, Raquel; Stempak, Joanne M; Kabakchiev, Boyko; Silverberg, Mark S

    2016-04-01

    Inflammatory bowel disease has been associated with differential abundance of numerous organisms when compared to healthy controls (HCs); however, few studies have investigated variability in the microbiome across intestinal locations and how this variability might be related to disease location and phenotype. In this study, we have analyzed the microbiome of a large cohort of individuals recruited at Mount Sinai Hospital in Toronto, Canada. Biopsies were taken from subjects with Crohn's disease, ulcerative colitis, and HC, and also individuals having undergone ileal pouch-anal anastomosis for treatment of ulcerative colitis or familial adenomatous polyposis. Microbial 16S rRNA was sequenced using the Illumina MiSeq platform. We observed a great deal of variability in the microbiome characterizing different sampling locations. Samples from pouch and afferent limb were comparable in microbial composition. When comparing sigmoid and terminal ileum samples, more differences were observed. The greatest number of differentially abundant microbes was observed when comparing either pouch or afferent limb samples to sigmoid or terminal ileum. Despite these differences, we were able to observe modest microbial variability between inflammatory bowel disease phenotypes and HCs, even when controlling for sampling location and additional experimental factors. Most detected associations were observed between HCs and Crohn's disease, with decreases in specific genera in the families Ruminococcaceae and Lachnospiraceae characterizing tissue samples from individuals with Crohn's disease. This study highlights important considerations when analyzing the composition of the microbiome and also provides useful insight into differences in the microbiome characterizing these seemingly related phenotypes.

  16. Saccharomyces boulardii ameliorates clarithromycin- and methotrexate-induced intestinal and hepatic injury in rats.

    PubMed

    Duman, Deniz Güney; Kumral, Zarife Nigâr Özdemir; Ercan, Feriha; Deniz, Mustafa; Can, Güray; Cağlayan Yeğen, Berrak

    2013-08-28

    Saccharomyces boulardii is a probiotic used for the prevention of antibiotic-associated diarrhoea. We aimed to investigate whether S. boulardii could alter the effects of clarithromycin (CLA) and methotrexate (MTX) on oro-caecal intestinal transit and oxidative damage in rats. Rats were divided into two groups receiving a single dose of MTX (20 mg/kg) or CLA (20 mg/kg per d) for 1 week. Groups were treated with either saline or S. boulardii (500 mg/kg) twice per d throughout the experiment. The control group was administered only saline. Following decapitation, intestinal transit and inflammation markers of glutathione (GSH), malondialdehyde and myeloperoxidase were measured in intestinal and hepatic tissues. CLA and MTX increased intestinal transit, while S. boulardii treatment slowed down CLA-facilitated transit back to control level. Both MTX and CLA increased lipid peroxidation while depleting the antioxidant GSH content in the hepatic and ileal tissues. Conversely, lipid peroxidation was depressed and GSH levels were increased in the ileal and hepatic tissues of S. boulardii-treated rats. Increased ileal neutrophil infiltration due to MTX and CLA treatments was also reduced by S. boulardii treatment. Histological analysis supported that S. boulardii protected intestinal tissues against the inflammatory effects of both agents. These findings suggest that S. boulardii ameliorates intestinal injury and the accompanying hepatic inflammation by supporting the antioxidant state of the tissues and by inhibiting the recruitment of neutrophils. Moreover, a preventive effect on MTXinduced toxicity is a novel finding of S. boulardii, proposing it as an adjunct to chemotherapy regimens.

  17. Fermentation of animal components in strict carnivores: a comparative study with cheetah fecal inoculum.

    PubMed

    Depauw, S; Bosch, G; Hesta, M; Whitehouse-Tedd, K; Hendriks, W H; Kaandorp, J; Janssens, G P J

    2012-08-01

    The natural diet of felids contains highly digestible animal tissues but also fractions resistant to small intestinal digestion, which enter the large intestine where they may be fermented by the resident microbial population. Little information exists on the microbial degradability of animal tissues in the large intestine of felids consuming a natural diet. This study aimed to rank animal substrates in their microbial degradability by means of an in vitro study using captive cheetahs fed a strict carnivorous diet as fecal donors. Fresh cheetah fecal samples were collected, pooled, and incubated with various raw animal substrates (chicken cartilage, collagen, glucosamine-chondroitin, glucosamine, rabbit bone, rabbit hair, and rabbit skin; 4 replicates per substrate) for cumulative gas production measurement in a batch culture technique. Negative (cellulose) and positive (casein and fructo-oligosaccharides; FOS) controls were incorporated in the study. Additionally, after 72 h of incubation, short-chain fatty acids (SCFA), including branched-chain fatty acids (BCFA), and ammonia concentrations were determined for each substrate. Glucosamine and glucosamine-chondroitin yielded the greatest organic matter cumulative gas volume (OMCV) among animal substrates (P < 0.05), whereas total SCFA production was greatest for collagen (P < 0.05). Collagen induced an acetate production comparable with FOS and a markedly high acetate-to-propionate ratio (8.41:1) compared with all other substrates (1.67:1 to 2.97:1). Chicken cartilage was rapidly fermentable, indicated by a greater maximal rate of gas production (R(max)) compared with all other substrates (P < 0.05). In general, animal substrates showed an earlier occurrence for maximal gas production rate compared with FOS. Rabbit hair, skin, and bone were poorly fermentable substrates, indicated by the least amount of OMCV and total SCFA among animal substrates (P < 0.05). The greatest amount of ammonia production among animal substrates was measured after incubation of collagen and rabbit bone (P < 0.05). This study provides the first insight into the potential of animal tissues to influence large intestinal fermentation in a strict carnivore, and indicates that animal tissues have potentially similar functions as soluble or insoluble plant fibers in vitro. Further research is warranted to assess the impact of fermentation of each type of animal tissue on gastro-intestinal function and health in the cheetah and other felid species.

  18. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UPLC-MS/MS.

    PubMed

    Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing

    2017-12-27

    1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.

  19. Shiga toxin 1 interaction with enterocytes causes apical protein mistargeting through the depletion of intracellular galectin-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laiko, Marina; Murtazina, Rakhilya; Malyukova, Irina

    Shiga toxins (Stx) 1 and 2 are responsible for intestinal and systemic sequelae of infection by enterohemorrhagic Escherichia coli (EHEC). However, the mechanisms through which enterocytes are damaged remain unclear. While secondary damage from ischemia and inflammation are postulated mechanisms for all intestinal effects, little evidence excludes roles for more primary toxin effects on intestinal epithelial cells. We now document direct pathologic effects of Stx on intestinal epithelial cells. We study a well-characterized rabbit model of EHEC infection, intestinal tissue and stool samples from EHEC-infected patients, and T84 intestinal epithelial cells treated with Stx1. Toxin uptake by intestinal epithelial cellsmore » in vitro and in vivo causes galectin-3 depletion from enterocytes by increasing the apical galectin-3 secretion. This Shiga toxin-mediated galectin-3 depletion impairs trafficking of several brush border structural proteins and transporters, including villin, dipeptidyl peptidase IV, and the sodium-proton exchanger 2, a major colonic sodium absorptive protein. The mistargeting of proteins responsible for the absorptive function might be a key event in Stx1-induced diarrhea. These observations provide new evidence that human enterocytes are directly damaged by Stx1. Conceivably, depletion of galectin-3 from enterocytes and subsequent apical protein mistargeting might even provide a means whereby other pathogens might alter intestinal epithelial absorption and produce diarrhea.« less

  20. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings.

    PubMed

    Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan

    2018-02-01

    To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.

  1. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    PubMed Central

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal GALT are the essential early sites of prion accumulation. Furthermore, congruent infection with a large intestinal helminth (worm) around the time of oral prion exposure did not affect disease pathogenesis. This is important for our understanding of the factors that influence the risk of prion infection and the preclinical diagnosis of disease. The detection of prions within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, our data suggest that using these biopsy specimens may miss individuals in the early stages of oral prion infection and significantly underestimate the disease prevalence. PMID:26157121

  2. Abdominal pythiosis in a Bengal tiger (Panthera tigris tigris).

    PubMed

    Buergelt, Claus; Powe, Joshua; White, Tamara

    2006-06-01

    An adult Bengal tiger (Panthera tigris tigris) housed in an outdoor sanctuary in Florida exhibited vomiting, diarrhea, and weight loss. A clinical workup did not reveal the source of the clinical signs and antibiotic therapy was unrewarding. Radiographs revealed the presence of an abdominal mass. The tiger died during an immobilization for a follow-up clinical examination. A necropsy was performed and tissue samples of intestine and mesenteric lymph nodes were submitted for histopathologic diagnosis. A pyogranulomatous panenteritis and lymphadenitis with intralesional hyphae led to a presumptive etiologic diagnosis of intestinal/abdominal pythiosis. The diagnosis of pythiosis was confirmed by serology and immunoblotting.

  3. [Celiac disease in a group of children and adolescents with type 1 diabetes mellitus].

    PubMed

    Brandt, Katia G; Silva, Giselia A P; Antunes, Margarida M C

    2004-12-01

    To know the prevalence of celiac disease (CD) in a group of children and adolescents with type I diabetes mellitus. A cross sectional study was conducted at the Instituto Materno Infantil de Pernambuco (IMIP) in March 2000. The sample consisted of 19 children and adolescents with type I diabetes mellitus that had the human anti-tissue transglutaminase antibodies assessed using kits from the Eurospital Laboratory. In case of positive results it was realized small intestine biopsy to confirm the diagnosis. For the calculation of the prevalence of CD it was considered the number of patients with serum positive histological alterations of the mucous membrane of the small intestine compatible with CD. Four patients presented serum positivity for human anti-tissue transglutaminase antibodies with a serum prevalence of 21% (4/19). Out of these four subjects, three who accomplished small intestine biopsy presented histological alterations compatible with CD. The prevalence of CD in this group was 15.8% (3/19). The prevalence of CD in this study group was high, suggesting that those with type I diabetes mellitus should be led as a group of high risk to develop this disease.

  4. Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats.

    PubMed

    Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J; Franch, Àngels; Untersmayr, Eva; Castell, Margarida

    2017-04-01

    Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats

    PubMed Central

    Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J.; Franch, Àngels; Untersmayr, Eva; Castell, Margarida

    2018-01-01

    Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer’s patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+ cells as well. In cocoa-fed animals, we identified a five time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+ cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect. PMID:28189917

  6. A mathematical model of intestinal oedema formation.

    PubMed

    Young, Jennifer; Rivière, Béatrice; Cox, Charles S; Uray, Karen

    2014-03-01

    Intestinal oedema is a medical condition referring to the build-up of excess fluid in the interstitial spaces of the intestinal wall tissue. Intestinal oedema is known to produce a decrease in intestinal transit caused by a decrease in smooth muscle contractility, which can lead to numerous medical problems for the patient. Interstitial volume regulation has thus far been modelled with ordinary differential equations, or with a partial differential equation system where volume changes depend only on the current pressure and not on updated tissue stress. In this work, we present a computational, partial differential equation model of intestinal oedema formation that overcomes the limitations of past work to present a comprehensive model of the phenomenon. This model includes mass and momentum balance equations which give a time evolution of the interstitial pressure, intestinal volume changes and stress. The model also accounts for the spatially varying mechanical properties of the intestinal tissue and the inhomogeneous distribution of fluid-leaking capillaries that create oedema. The intestinal wall is modelled as a multi-layered, deforming, poroelastic medium, and the system of equations is solved using a discontinuous Galerkin method. To validate the model, simulation results are compared with results from four experimental scenarios. A sensitivity analysis is also provided. The model is able to capture the final submucosal interstitial pressure and total fluid volume change for all four experimental cases, and provide further insight into the distribution of these quantities across the intestinal wall.

  7. Impact of Peptide Transporter 1 on the Intestinal Absorption and Pharmacokinetics of Valacyclovir after Oral Dose Escalation in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei; Hu, Yongjun

    2013-01-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [3H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the Cmax and area under the curve (AUC)0–180 of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the Cmax and AUC0–180 of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10–100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy. PMID:23924683

  8. Bacterial communities associated with Shinkaia crosnieri from the Iheya North, Okinawa Trough: Microbial diversity and metabolic potentials

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zeng, Zhi-gang; Chen, Shuai; Sun, Li

    2018-04-01

    Shinkaia crosnieri is a galatheid crab endemic to the deep-sea hydrothermal systems in the Okinawa Trough. In this study, we systematically analyzed and compared the diversity and metabolic potentials of the microbial communities in different tissues (setae, gill, and intestine) of S. crosnieri by high-throughput sequencing technology and quantitative real-time polymerase chain reaction. Sequence analysis based on the V3-V4 regions of the 16S rRNA gene obtained 408,079 taxon tags, which covered 15 phyla, 22 classes, 32 orders, 42 families, and 25 genera. Overall, the microbial communities in all tissues were dominated by Epsilonproteobacteria and Gammaproteobacteria, of which Epsilonproteobacteria was the largest class and accounted for 85.24% of the taxon tags. In addition, 20 classes of bacteria were discovered for the first time to be associated with S. crosnieri and no archaea were detected. Comparative analysis showed that (i) bacteria from different tissues fell into different groups by β-diversity analysis, (ii) bacterial communities in intestine were similar to that in gill and much more diverse than that in setae, and the sulfur-oxidizing genus Sulfurovum was markedly enriched in intestine and gill. Furthermore, bacteria potentially involved in methane, nitrogen, and metal metabolisms were detected in all samples. The key genes of aprA/dsrA and pmoA involved in sulfate reducing and methane oxidization, respectively, were detected in the gill and gut communities for the first time, and pmoA was significantly more abundant in gill and setae than in intestine. These results provide the first comparative and relatively complete picture of the diversity and metabolic potentials of the bacteria in different tissues of S. crosnieri. These results also indicate that the composition of the microbial communities in hydrothermal fauna changes with time, suggesting the importance of environmental influence.

  9. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion.

    PubMed

    Knauf, Felix; Thomson, Robert B; Heneghan, John F; Jiang, Zhirong; Adebamiro, Adedotun; Thomson, Claire L; Barone, Christina; Asplin, John R; Egan, Marie E; Alper, Seth L; Aronson, Peter S

    2017-01-01

    Patients with cystic fibrosis have an increased incidence of hyperoxaluria and calcium oxalate nephrolithiasis. Net intestinal absorption of dietary oxalate results from passive paracellular oxalate absorption as modified by oxalate back secretion mediated by the SLC26A6 oxalate transporter. We used mice deficient in the cystic fibrosis transmembrane conductance regulator gene (Cftr) to test the hypothesis that SLC26A6-mediated oxalate secretion is defective in cystic fibrosis. We mounted isolated intestinal tissue from C57BL/6 (wild-type) and Cftr -/- mice in Ussing chambers and measured transcellular secretion of [ 14 C]oxalate. Intestinal tissue isolated from Cftr -/- mice exhibited significantly less transcellular oxalate secretion than intestinal tissue of wild-type mice. However, glucose absorption, another representative intestinal transport process, did not differ in Cftr -/- tissue. Compared with wild-type mice, Cftr -/- mice showed reduced expression of SLC26A6 in duodenum by immunofluorescence and Western blot analysis. Furthermore, coexpression of CFTR stimulated SLC26A6-mediated Cl - -oxalate exchange in Xenopus oocytes. In association with the profound defect in intestinal oxalate secretion, Cftr -/- mice had serum and urine oxalate levels 2.5-fold greater than those of wild-type mice. We conclude that defective intestinal oxalate secretion mediated by SLC26A6 may contribute to the hyperoxaluria observed in this mouse model of cystic fibrosis. Future studies are needed to address whether similar mechanisms contribute to the increased risk for calcium oxalate stone formation observed in patients with cystic fibrosis. Copyright © 2016 by the American Society of Nephrology.

  10. High-fat enteral nutrition reduces intestinal mucosal barrier damage after peritoneal air exposure.

    PubMed

    Tan, Shan-Jun; Yu, Chao; Yu, Zhen; Lin, Zhi-Liang; Wu, Guo-Hao; Yu, Wen-Kui; Li, Jie-Shou; Li, Ning

    2016-05-01

    Peritoneal air exposure is needed in open abdominal surgery, but long-time exposure could induce intestinal mucosal barrier dysfunction followed by many postoperative complications. High-fat enteral nutrition can ameliorate intestinal injury and improve intestinal function in many gastrointestinal diseases. In the present study, we investigated the effect of high-fat enteral nutrition on intestinal mucosal barrier after peritoneal air exposure and the underlying mechanism. Male adult rats were administrated saline, low-fat or high-fat enteral nutrition via gavage before and after peritoneal air exposure for 3 h. Rats undergoing anesthesia without laparotomy received saline as control. Twenty four hours after surgery, samples were collected to assess intestinal mucosal barrier changes in serum D-lactate levels, intestinal permeability, intestinal tight junction protein ZO-1 and occludin levels, and intestinal histopathology. The levels of malondialdehyde and the activity of superoxide dismutase in the ileum tissue were also measured to assess the status of intestinal oxidative stress. High-fat enteral nutrition significantly decreased the serum D-lactate level and increased the intestinal tight junction protein ZO-1 level when compared to the group treated with low-fat enteral nutrition (P < 0.05). Meanwhile, histopathologic findings showed that the intestinal mucosal injury assessed by the Chiu's score and the intestinal epithelial tight junction were also improved much more in the high-fat enteral nutrition-treated group (P < 0.05). In addition, the intestinal malondialdehyde level was lower, and the intestinal superoxide dismutase activity was higher in the high-fat enteral nutrition-treated group than that in the low-fat enteral nutrition-treated group (P < 0.05). These results suggest that high-fat enteral nutrition could reduce intestinal mucosal barrier damage after peritoneal air exposure, and the underlying mechanism may be associated with its antioxidative action. Perioperative administration of high-fat enteral nutrition may be a promising intervention to preserve intestinal mucosal barrier function in open abdominal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Validation of internal controls for gene expression analysis in the intestine of rats infected with Hymenolepis diminuta.

    PubMed

    Hoque, Tafazzal; Bhogal, Meetu; Boghal, Meetu; Webb, Rodney A

    2007-12-01

    The non-invasive parasitic cestode Hymenolepis diminuta induces hypertrophy, hyperplasia and other changes in cell activity in the intestine of rats which are indicated in the expression of mRNA. We have investigated various house-keeping genes (GAPDH, beta-actin, 18S and HPRT) and other internal controls (total RNA/unit biomass, total RNA/unit length of intestine) to validate gene expression in the rat intestine after cestode infection and drug-induced neuromodulation. Variation in GAPDH, beta-actin, 18S and HPRT expression was observed in rat jejunal tissue according to treatment. Total RNA/unit length of intestine was found to be the most suitable internal control for normalizing target gene mRNA expression in both infected and/or drug-induced rat intestine. This normalization method may be applied to studies of gene expression levels in intestinal tissue where hypertrophy, hyperplasia, rapid growth and cell differentiation generally occur.

  12. Intestinal M cells

    PubMed Central

    Ohno, Hiroshi

    2016-01-01

    We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer’s patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions. PMID:26634447

  13. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5.

    PubMed

    Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo

    2013-03-15

    Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  15. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses.

    PubMed

    Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L

    2017-01-01

    There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.

  16. Comparative analysis of Trichuris muris surface using conventional, low vacuum, environmental and field emission scanning electron microscopy.

    PubMed

    Lopes Torres, Eduardo José; de Souza, Wanderley; Miranda, Kildare

    2013-09-23

    The whipworm of the genus Trichuris Roederer, 1791, is a nematode of worldwide distribution and comprises species that parasitize humans and other mammals. Infections caused by Trichuris spp. in mammals can lead to various intestinal diseases of human and veterinary interest. The morphology of Trichuris spp. and other helminths has been mostly studied using conventional scanning electron microscopy of chemically fixed, dried and metal-coated specimens, although this kind of preparation has been shown to introduce a variety of artifacts such as sample shrinking, loss of secreted products and/or hiding of small structures due to sample coating. Low vacuum (LVSEM) and environmental scanning electron microscopy (ESEM) have been applied to a variety of insulator samples, also used in the visualization of hydrated and/or live specimens in their native state. In the present work, we used LVSEM and ESEM to analyze the surface of T. muris and analyze its interaction with the host tissue using freshly fixed or unfixed hydrated samples. Analysis of hydrated samples showed a set of new features on the surface of the parasite and the host tissue, including the presence of the secretory products of the bacillary glands on the surface of the parasite, and the presence of mucous material and eggs on the intestinal surface. Field emission scanning electron microscopy (FESEM) was also applied to reveal the detailed structure of the glandular chambers in fixed, dried and metal coated samples. Taken together, the results show that analysis of hydrated samples may provide new insights in the structural organization of the surface of helminth parasites and its interaction with the infected tissue, suggesting that the application of alternative SEM techniques may open new perspectives for analysis in taxonomy, morphology and host-parasite interaction fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats.

    PubMed

    Takasuna, K; Hagiwara, T; Hirohashi, M; Kato, M; Nomura, M; Nagai, E; Yokoi, T; Kamataki, T

    1998-01-01

    SN-38, a metabolite of irinotecan hydrochloride (CPT-11), is considered to play a key role in the development of diarrhea as well as in the antitumor activity of CPT-11. We have previously found that the inhibition of beta-glucuronidase, which hydrolyzes detoxified SN-38 (SN-38 glucuronide) to reform SN-38, in the lumen by eliminating the intestinal microflora with antibiotics, markedly ameliorates the intestinal toxicity of CPT-11 in rats. In this study we compared the disposition of CPT-11 and its metabolites in rats treated with and without antibiotics. Rats were given drinking water containing 1 mg/ml penicillin and 2 mg/ml streptomycin from 5 days before the administration of CPT-11 (60 mg/kg i.v.) and throughout the experiment. CPT-11, SN-38 glucuronide and SN-38 concentrations in the blood, intestinal tissues and intestinal luminal contents were determined by HPLC. Antibiotics had little or no effect on the pharmacokinetics of CPT-11, SN-38 glucuronide or SN-38 in the blood, or in the tissues or contents of the small intestine, which has less beta-glucuronidase activity in its luminal contents. In contrast, antibiotics markedly reduced the AUC1-24 h of SN-38 (by about 85%) in the large intestine tissue without changing that of CPT-11, and this was accompanied by a complete inhibition of the deconjugation of SN-38 glucuronide in the luminal contents. These results suggest that SN-38, which results from the hydrolysis of SN-38 glucuronide by beta-glucuronidase in the intestinal microflora, contributes considerably to the distribution of SN-38 in the large intestine tissue, and that inhibition of the beta-glucuronidase activity by antibiotics results in decreased accumulation of SN-38 in the large intestine.

  18. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs.

    PubMed

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-04-01

    Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P< 0.01) in the urine (35- to 204-fold), serum (6- to 186-fold), and adipose tissue (34- to 1144-fold) of pigs fed cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75-85%,P< 0.05). Compared with the unsupplemented pigs, the abundance ofLactobacillusspecies was greater in the feces (7-fold,P= 0.005) and that ofBifidobacteriumspecies was greater in the proximal colon contents (9-fold,P= 0.01) in pigs fed only 20 or 10 g cocoa powder/d, respectively. Moreover, consumption of cocoa powder reducedTLR9gene expression in ileal Peyer's patches (67-80%,P< 0.05) and mesenteric lymph nodes (43-71%,P< 0.05) of pigs fed 2.5-20 g cocoa powder/d compared with pigs not supplemented with cocoa powder. This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance ofLactobacillusandBifidobacteriumspecies and modulating markers of localized intestinal immunity. © 2016 American Society for Nutrition.

  19. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs1234

    PubMed Central

    Jang, Saebyeol; Sun, Jianghao; Chen, Pei; Lakshman, Sukla; Molokin, Aleksey; Harnly, James M; Vinyard, Bryan T; Urban, Joseph F; Davis, Cindy D; Solano-Aguilar, Gloria

    2016-01-01

    Background: Consumption of cocoa-derived polyphenols has been associated with several health benefits; however, their effects on the intestinal microbiome and related features of host intestinal health are not adequately understood. Objective: The objective of this study was to determine the effects of eating flavanol-enriched cocoa powder on the composition of the gut microbiota, tissue metabolite profiles, and intestinal immune status. Methods: Male pigs (5 mo old, 28 kg mean body weight) were supplemented with 0, 2.5, 10, or 20 g flavanol-enriched cocoa powder/d for 27 d. Metabolites in serum, urine, the proximal colon contents, liver, and adipose tissue; bacterial abundance in the intestinal contents and feces; and intestinal tissue gene expression of inflammatory markers and Toll-like receptors (TLRs) were then determined. Results: O-methyl-epicatechin-glucuronide conjugates dose-dependently increased (P < 0.01) in the urine (35- to 204-fold), serum (6- to 186-fold), and adipose tissue (34- to 1144-fold) of pigs fed cocoa powder. The concentration of 3-hydroxyphenylpropionic acid isomers in urine decreased as the dose of cocoa powder fed to pigs increased (75–85%, P < 0.05). Compared with the unsupplemented pigs, the abundance of Lactobacillus species was greater in the feces (7-fold, P = 0.005) and that of Bifidobacterium species was greater in the proximal colon contents (9-fold, P = 0.01) in pigs fed only 20 or 10 g cocoa powder/d, respectively. Moreover, consumption of cocoa powder reduced TLR9 gene expression in ileal Peyer’s patches (67–80%, P < 0.05) and mesenteric lymph nodes (43–71%, P < 0.05) of pigs fed 2.5–20 g cocoa powder/d compared with pigs not supplemented with cocoa powder. Conclusion: This study demonstrates that consumption of cocoa powder by pigs can contribute to gut health by enhancing the abundance of Lactobacillus and Bifidobacterium species and modulating markers of localized intestinal immunity. PMID:26936136

  20. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs.

    PubMed

    Cummings, Ryan J; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C; Cho, Judy; Lira, Sergio A; Blander, J Magarian

    2016-11-24

    Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions, are not merely extruded to maintain homeostatic cell numbers, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4 + T-cell activation. A common 'suppression of inflammation' signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4 + T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease.

  1. Histological and Transcriptomic Analysis of Adult Japanese Medaka Sampled Onboard the International Space Station

    PubMed Central

    Murata, Yasuhiko; Yasuda, Takako; Watanabe-Asaka, Tomomi; Oda, Shoji; Mantoku, Akiko; Takeyama, Kazuhiro; Chatani, Masahiro; Kudo, Akira; Uchida, Satoko; Suzuki, Hiromi; Tanigaki, Fumiaki; Shirakawa, Masaki; Fujisawa, Koichi; Hamamoto, Yoshihiko; Terai, Shuji; Mitani, Hiroshi

    2015-01-01

    To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment (“Medaka Osteoclast”) was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation–reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation. PMID:26427061

  2. Histological and Transcriptomic Analysis of Adult Japanese Medaka Sampled Onboard the International Space Station.

    PubMed

    Murata, Yasuhiko; Yasuda, Takako; Watanabe-Asaka, Tomomi; Oda, Shoji; Mantoku, Akiko; Takeyama, Kazuhiro; Chatani, Masahiro; Kudo, Akira; Uchida, Satoko; Suzuki, Hiromi; Tanigaki, Fumiaki; Shirakawa, Masaki; Fujisawa, Koichi; Hamamoto, Yoshihiko; Terai, Shuji; Mitani, Hiroshi

    2015-01-01

    To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment ("Medaka Osteoclast") was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation-reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.

  3. Intestinal inflammation induces genotoxicity to extraintestinal tissues and cell types in mice

    PubMed Central

    Westbrook, Aya M.; Wei, Bo; Braun, Jonathan; Schiestl, Robert H.

    2011-01-01

    Chronic intestinal inflammation leads to increased risk of colorectal and small intestinal cancers, and is also associated with extraintestinal manifestations such as lymphomas, other solid cancers, and autoimmune disorders. We have previously found that acute and chronic intestinal inflammation causes DNA damage to circulating peripheral leukocytes, manifesting a systemic effect in genetic and chemically-induced models of intestinal inflammation. This study addresses the scope of tissue targets and genotoxic damage induced by inflammation-associated genotoxicity. Using several experimental models of intestinal inflammation, we analyzed various types of DNA damage in leukocyte subpopulations of the blood, spleen, mesenteric and peripheral lymph nodes; and, in intestinal epithelial cells, hepatocytes, and the brain. Genotoxicity in the form of DNA single and double stranded breaks accompanied by oxidative base damage was found in leukocyte subpopulations of the blood, diverse lymphoid organs, intestinal epithelial cells, and hepatocytes. The brain did not demonstrate significant levels of DNA double strand breaks as measured by γ-H2AX immunostaining. CD4+ and CD8+ T-cells were most sensitive to DNA damage versus other cell types in the peripheral blood. In vivo measurements and in vitro modeling suggested that genotoxicity was induced by increased levels of systemically circulating proinflammatory cytokines. Moreover, genotoxicity involved increased damage rather than reduced repair, since it not associated with decreased expression of the DNA double-strand break recognition and repair protein, ataxia telangiectasia mutated (ATM). These findings suggest that levels of intestinal inflammation contribute to the remote tissue burden of genotoxicity, with potential effects on non-intestinal diseases and cancer. PMID:21520038

  4. Perioperative fluid management: comparison of high, medium and low fluid volume on tissue oxygen pressure in the small bowel and colon.

    PubMed

    Hiltebrand, L B; Pestel, G; Hager, H; Ratnaraj, J; Sigurdsson, G H; Kurz, A

    2007-11-01

    Insufficient blood flow and oxygenation in the intestinal tract is associated with increased incidence of postoperative complications after bowel surgery. High fluid volume administration may prevent occult regional hypoperfusion and intestinal tissue hypoxia. We tested the hypothesis that high intraoperative fluid volume administration increases intestinal wall tissue oxygen pressure during laparotomy. In all, 27 pigs were anaesthetized, ventilated and randomly assigned to one of the three treatment groups (n = 9 in each) receiving low (3 mL kg-1 h-1), medium (7 mL kg-1 h-1) or high (20 mL kg-1 h-1) fluid volume treatment with lactated Ringer's solution. All animals received 30% and 100% inspired oxygen in random order. Cardiac index was measured with thermodilution and tissue oxygen pressure with a micro-oximetry system in the jejunum and colon wall and subcutaneous tissue. Groups receiving low and medium fluid volume treatment had similar systemic haemodynamics. The high fluid volume group had significantly higher mean arterial pressure, cardiac index and subcutaneous tissue oxygenation. Tissue oxygen pressures in the jejunum and colon were comparable in all three groups. The three different fluid volume regimens tested did not affect tissue oxygen pressure in the jejunum and colon, suggesting efficient autoregulation of intestinal blood flow in healthy subjects undergoing uncomplicated abdominal surgery.

  5. Natural Tissue Microenvironmental Conditions Modulate Adhesive Material Performance

    PubMed Central

    Oliva, Nuria; Shitreet, Sagi; Abraham, Eytan; Stanley, Butch; Edelman, Elazer R.; Artzi, Natalie

    2015-01-01

    We designed and optimized tissue-responsive adhesive materials by matching material and tissue properties. A two-component material based on dextran aldehyde and dendrimer amine provides a cohesive gel through aldehyde–amine cross-linking and an adhesive interface created by a dextran aldehyde-selective reaction with tissue amines. By altering aldehyde–amine chemistry, we examined how variations in tissue surfaces (serosal amine density in the duodenum, jejunum, and ileum) affect interactions with adhesive materials of varied compositions (aldehyde content). Interestingly, the same adhesive formulation reacts differentially with the three regions of the small intestine as a result of variation in the tissue amine density along the intestinal tract, affecting the tissue–material interfacial morphology, adhesion strength, and adhesive mechanical properties. Whereas tissues provide chemical anchors for interaction with materials, we were able to tune the adhesion strength for each section of the small intestine tissue by altering the adhesive formulation using a two-component material with flexible variables aimed at controlling the aldehyde/amine ratio. This tissue-specific approach should be applied to the broad spectrum of biomaterials, taking into account specific microenvironmental conditions in material design. PMID:23046479

  6. Mouse fetal whole intestine culture system for ex vivo manipulation of signaling pathways and three-dimensional live imaging of villus development.

    PubMed

    Walton, Katherine D; Kolterud, Asa

    2014-09-04

    Most morphogenetic processes in the fetal intestine have been inferred from thin sections of fixed tissues, providing snapshots of changes over developmental stages. Three-dimensional information from thin serial sections can be challenging to interpret because of the difficulty of reconstructing serial sections perfectly and maintaining proper orientation of the tissue over serial sections. Recent findings by Grosse et al., 2011 highlight the importance of three- dimensional information in understanding morphogenesis of the developing villi of the intestine(1). Three-dimensional reconstruction of singly labeled intestinal cells demonstrated that the majority of the intestinal epithelial cells contact both the apical and basal surfaces. Furthermore, three-dimensional reconstruction of the actin cytoskeleton at the apical surface of the epithelium demonstrated that the intestinal lumen is continuous and that secondary lumens are an artifact of sectioning. Those two points, along with the demonstration of interkinetic nuclear migration in the intestinal epithelium, defined the developing intestinal epithelium as a pseudostratified epithelium and not stratified as previously thought(1). The ability to observe the epithelium three-dimensionally was seminal to demonstrating this point and redefining epithelial morphogenesis in the fetal intestine. With the evolution of multi-photon imaging technology and three-dimensional reconstruction software, the ability to visualize intact, developing organs is rapidly improving. Two-photon excitation allows less damaging penetration deeper into tissues with high resolution. Two-photon imaging and 3D reconstruction of the whole fetal mouse intestines in Walton et al., 2012 helped to define the pattern of villus outgrowth(2). Here we describe a whole organ culture system that allows ex vivo development of villi and extensions of that culture system to allow the intestines to be three-dimensionally imaged during their development.

  7. Effect of Glycine, Pyruvate, and Resveratrol on the Regeneration Process of Postischemic Intestinal Mucosa

    PubMed Central

    Brencher, Lisa; Petrat, Frank; Stych, Katrin; Hamburger, Tim

    2017-01-01

    Background Intestinal ischemia is often caused by a malperfusion of the upper mesenteric artery. Since the intestinal mucosa is one of the most rapidly proliferating organs in human body, this tissue can partly regenerate itself after the onset of ischemia and reperfusion (I/R). Therefore, we investigated whether glycine, sodium pyruvate, and resveratrol can either support or potentially harm regeneration when applied therapeutically after reperfusion injury. Methods I/R of the small intestine was initiated by occluding and reopening the upper mesenteric artery in rats. After 60 min of ischemia and 300 min of reperfusion, glycine, sodium pyruvate, or resveratrol was administered intravenously. Small intestine regeneration was analyzed regarding tissue damage, activity of saccharase, and Ki-67 positive cells. Additionally, systemic parameters and metabolic ones were obtained at selected periods. Results Resveratrol failed in improving the outcome after I/R, while glycine showed a partial beneficial effect. Sodium pyruvate ameliorated metabolic acidosis, diminished histopathologic tissue injury, and increased cell proliferation in the small intestine. Conclusion While glycine could improve in part regeneration but not proliferation, sodium pyruvate seems to be a possible therapeutic agent to facilitate proliferation and to support mucosal regeneration after I/R injury to the small intestine. PMID:29201896

  8. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    PubMed

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA expression. Exposure of IECs to interleukin (IL) 22 increased levels of H19 lncRNA with time and dose, which required STAT3 and protein kinase A activity. IL22 induced expression of H19 in mouse intestinal epithelial organoids within 6 hours. Exposure to IL22 increased growth of intestinal epithelial organoids derived from control mice, but not H19 ΔEx1/+ mice. Overexpression of H19 in HT-29 cells increased their proliferation. Intestinal mucosa healed more slowly after withdrawal of DSS from H19 ΔEx1/+ mice vs control mice. Crypt epithelial cells from H19 ΔEx1/+ mice proliferated more slowly than those from control mice after exposure to LPS. H19 lncRNA bound to p53 and microRNAs that inhibit cell proliferation, including microRNA 34a and let-7; H19 lncRNA binding blocked their function, leading to increased expression of genes that promote regeneration of the epithelium. The level of lncRNA H19 is increased in inflamed intestinal tissues from mice and patients. The inflammatory cytokine IL22 induces expression of H19 in IECs, which is required for intestinal epithelial proliferation and mucosal healing. H19 lncRNA appears to inhibit p53 protein and microRNA 34a and let-7 to promote proliferation of IECs and epithelial regeneration. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in the digestive system of tilapia (Oreochromis niloticus).

    PubMed

    Dai, Wei; Du, Huahua; Fu, Linglin; Jin, Chengguan; Xu, Zirong; Liu, Huitao

    2009-02-01

    With the increasing occurrence of dietary lead (Pb) contamination in aquatic environment, threat of the dietary Pb toxicity to aquatic organisms attracted more attention. In this study, after being exposed to dietary Pb at concentrations of 0, 100, 400, and 800-microg/g dry weight for 60 days, the groups of tilapia (Oreochromis niloticus) were sacrificed and sampled to analyze the effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in tissues of the digestive system. The results showed that the Pb accumulation in tissues increased with the dietary Pb concentrations. Moreover, Pb accumulated in sampled tissues in the following order: intestine > stomach > liver. By observation of liver histological sections in optical microscope, lesions could be detected in the Pb-contaminated groups. It was also demonstrated that the inhibitory effect of dietary Pb on digestive enzyme activities was dietary Pb concentration dependent. Different degrees of inhibition of enzyme activities were exhibited in sampled tissues. It was indicated that digestive enzyme activities in the digestive system might be considered as the potential biomarkers of dietary Pb contamination in tilapia.

  10. Molecular glycopathology by capillary electrophoresis: Analysis of the N-glycome of formalin-fixed paraffin-embedded mouse tissue samples.

    PubMed

    Donczo, Boglarka; Szarka, Mate; Tovari, Jozsef; Ostoros, Gyorgyi; Csanky, Eszter; Guttman, Andras

    2017-06-01

    Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze endoglycosidase released and fluorophore-labeled N-glycans from formalin-fixed paraffin-embedded (FFPE) mouse tissue samples of lung, brain, heart, spleen, liver, kidney and intestine. The FFPE samples were first deparaffinized followed by solubilization and glycoprotein retrieval. PNGase F mediated release of the N-linked oligosaccharides was followed by labeling with aminopyrene trisulfonate. After CE-LIF glycoprofiling of the FFPE mouse tissues, the N-glycan pool of the lung specimen was subject to further investigation by exoglycosidase array based carbohydrate sequencing. Structural assignment of the oligosaccharides was accomplished by the help of the GUcal software and the associated database, based on the mobility shifts after treatments with the corresponding exoglycosidase reaction mixtures. Sixteen major N-linked carbohydrate structures were sequenced from the mouse lung FFPE tissue glycome and identified, as high mannose (3) neutral biantennary (3) sialylated monoantennary (1) and sialylated bianennary (9) oligosaccharides. Two of these latter ones also possessed alpha(1-3) linked galactose residues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Genetics Home Reference: hereditary folate malabsorption

    MedlinePlus

    ... PCFT is important for normal functioning of intestinal epithelial cells, which are cells that line the walls of the intestine. ... intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. 2009 Jan 28;11: ...

  12. Intestinal Tissues Induce an SNP Mutation in Pseudomonas aeruginosa That Enhances Its Virulence: Possible Role in Anastomotic Leak

    PubMed Central

    Olivas, Andrea D.; Shogan, Benjamin D.; Valuckaite, Vesta; Zaborin, Alexander; Belogortseva, Natalya; Musch, Mark; Meyer, Folker; L.Trimble, William; An, Gary; Gilbert, Jack

    2012-01-01

    The most feared complication following intestinal resection is anastomotic leakage. In high risk areas (esophagus/rectum) where neoadjuvant chemoradiation is used, the incidence of anastomotic leaks remains unacceptably high (∼10%) even when performed by specialist surgeons in high volume centers. The aims of this study were to test the hypothesis that anastomotic leakage develops when pathogens colonizing anastomotic sites become in vivo transformed to express a tissue destroying phenotype. We developed a novel model of anastomotic leak in which rats were exposed to pre-operative radiation as in cancer surgery, underwent distal colon resection and then were intestinally inoculated with Pseudomonas aeruginosa, a common colonizer of the radiated intestine. Results demonstrated that intestinal tissues exposed to preoperative radiation developed a significant incidence of anastomotic leak (>60%; p<0.01) when colonized by P. aeruginosa compared to radiated tissues alone (0%). Phenotype analysis comparing the original inoculating strain (MPAO1- termed P1) and the strain retrieved from leaking anastomotic tissues (termed P2) demonstrated that P2 was altered in pyocyanin production and displayed enhanced collagenase activity, high swarming motility, and a destructive phenotype against cultured intestinal epithelial cells (i.e. apoptosis, barrier function, cytolysis). Comparative genotype analysis between P1 and P2 revealed a single nucleotide polymorphism (SNP) mutation in the mexT gene that led to a stop codon resulting in a non-functional truncated protein. Replacement of the mutated mexT gene in P2 with mexT from the original parental strain P1 led to reversion of P2 to the P1 phenotype. No spontaneous transformation was detected during 20 passages in TSB media. Use of a novel virulence suppressing compound PEG/Pi prevented P. aeruginosa transformation to the tissue destructive phenotype and prevented anastomotic leak in rats. This work demonstrates that in vivo transformation of microbial pathogens to a tissue destroying phenotype may have important implications in the pathogenesis of anastomotic leak. PMID:22952955

  13. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  14. Protozoan Parasites of Rodents and Their Zoonotic Significance in Boyer-Ahmad District, Southwestern Iran

    PubMed Central

    Seifollahi, Zeinab; Motazedian, Mohammad Hossein; Asgari, Qasem; Ranjbar, Mohammad Javad; Abdolahi Khabisi, Samaneh

    2016-01-01

    Backgrounds. Wild rodents are reservoirs of various zoonotic diseases, such as toxoplasmosis, babesiosis, and leishmaniasis. The current study aimed to assess the protozoan infection of rodents in Boyer-Ahmad district, southwestern Iran. Materials and Methods. A total of 52 rodents were collected from different parts of Boyer-Ahmad district, in Kohgiluyeh and Boyer-Ahmad province, using Sherman live traps. Each rodent was anesthetized with ether, according to the ethics of working with animals, and was dissected. Samples were taken from various tissues and stool samples were collected from the contents of the colon and small intestines. Moreover, 2 to 5 mL of blood was taken from each of the rodents and the sera were examined for anti-Leishmania antibodies, by ELISA, or anti-T. gondii antibodies, by modified agglutination test (MAT). DNA was extracted from brain tissue samples of each rodent and PCR was used to identify the DNA of T. gondii. Results. Of the 52 stool samples of rodents studied by parasitological methods, intestinal protozoa infection was seen in 28 cases (53.8%). From 52 rodents, 19 (36.5%) were infected with Trichomonas, 10 (19.2%) with Giardia muris, and 11 (21.2%) with Entamoeba spp. Also, 10 cases (19.2%) were infected with Blastocystis, 3 (5.8%) were infected with Chilomastix, 7 (13.5%) were infected with Endolimax, 1 (1.9%) was infected with Retortamonas, 3 (5.77%) were infected with T. gondii, and 6 (11.54%) were infected with Trypanosoma lewisi. Antibodies to T. gondii were detected in the sera of 5 (9.61%) cases. Results of the molecular study showed T. gondii infection in 3 (5.77%) of the rodents. Findings of this study showed that rodents in Kohgiluyeh and Boyer-Ahmad province, southwestern Iran, are infected with several blood and intestinal parasites; some of them might be potential risks to residents and domestic animals in the region. PMID:26998380

  15. Lgr5High/DCLK1High phenotype is more common in early stage and intestinal subtypes of gastric carcinomas.

    PubMed

    Kalantari, Elham; Asadi Lari, Mohammad Hossein; Roudi, Raheleh; Korourian, Alireza; Madjd, Zahra

    2017-12-06

    Gastric carcinoma is the third most common malignancy and is one of the main causes of cancer deaths worldwide. Cancer stem cells (CSCs) are a subpopulation of tumour cells capable of self-renewal and differentiation, likely responsible for the initiation, recurrence, metastasis and chemo/radio-resistance. This study was conducted to evaluate the expression patterns and clinicopathologic significance of putative CSC markers, Lgr5 and DCLK1, in gastric carcinoma. The expression levels of Lgr5 and DCLK1 were examined in a well-defined series of gastric carcinoma tissues, including 75 (80%) from intestinal and 19 (20%) from diffuse subtypes, using tissue microarray (TMA). In addition, the correlation of the expression of these markers with clinicopathological factors was explored. Higher expressions of Lgr5 and DCLK1 were mainly detected in intestinal subtypes of gastric carcinomas compared to diffuse subtypes (P= 0.005 and P= 0.050, respectively). We also found a higher expression of Lgr5 and DCLK1 more frequently in well-differentiated gastric carcinoma cases (P< 0.001 and P= 0.007). The combined analysis demonstrated that the co-expression of Lgr5 and DCLK1 (Lgr5High/DCLK1High) was more common in intestinal subtypes (P= 0.025) and well-differentiated gastric carcinoma samples (P< 0.001). Interestingly, there was a significant correlation between Lgr5High/DCLK1High phenotype and early-stage gastric carcinoma specimens (P= 0.045). Our findings indicated that the Lgr5High/DCLK1High expression pattern may be considered as a signature phenotype for intestinal subtypes of gastric carcinoma.

  16. Resuscitation With 100% Oxygen Causes Intestinal Glutathione Oxidation and Reoxygenation Injury in Asphyxiated Newborn Piglets

    PubMed Central

    Haase, Erika; Bigam, David L.; Nakonechny, Quentin B.; Jewell, Laurence D.; Korbutt, Gregory; Cheung, Po-Yin

    2004-01-01

    Objective: To compare mesenteric blood flow, oxidative stress, and mucosal injury in piglet small intestine during hypoxemia and reoxygenation with 21%, 50%, or 100% oxygen. Summary Background Data: Necrotizing enterocolitis is a disease whose pathogenesis likely involves hypoxia-reoxygenation and the generation of oxygen-free radicals, which are known to cause intestinal injury. Resuscitation of asphyxiated newborns with 100% oxygen has been shown to increase oxidative stress, as measured by the glutathione redox ratio, and thus may predispose to free radical-mediated tissue injury. Methods: Newborn piglets subjected to severe hypoxemia for 2 hours were resuscitated with 21%, 50%, or 100% oxygen while superior mesenteric artery (SMA) flow and hemodynamic parameters were continuously measured. Small intestinal tissue samples were analyzed for histologic injury and levels of oxidized and reduced glutathione. Results: SMA blood flow decreased to 34% and mesenteric oxygen delivery decreased to 9% in hypoxemic piglets compared with sham-operated controls. With reoxygenation, SMA blood flow increased to 177%, 157%, and 145% of baseline values in piglets resuscitated with 21%, 50%, and 100% oxygen, respectively. Mesenteric oxygen delivery increased to more than 150% of baseline values in piglets resuscitated with 50% or 100% oxygen, and this correlated significantly with the degree of oxidative stress, as measured by the oxidized-to-reduced glutathione ratio. Two of eight piglets resuscitated with 100% oxygen developed gross and microscopic evidence of pneumatosis intestinalis and severe mucosal injury, while all other piglets were grossly normal. Conclusions: Resuscitation of hypoxemic newborn piglets with 100% oxygen is associated with an increase in oxygen delivery and oxidative stress, and may be associated with the development of small intestinal hypoxia-reoxygenation injury. Resuscitation of asphyxiated newborns with lower oxygen concentrations may help to decrease the risk of necrotizing enterocolitis. PMID:15273563

  17. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    PubMed Central

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID:23502354

  18. IKKε and TBK1 expression in gastric cancer.

    PubMed

    Lee, Seung Eun; Hong, Mineui; Cho, Junhun; Lee, Jeeyun; Kim, Kyoung-Mee

    2017-03-07

    Inhibitor of kappa B kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IKKs. IKKε and TBK1 share the kinase domain and are similar in their ability to activate the nuclear factor-kappa B signaling pathway. IKKε and TBK1 are overexpressed through multiple mechanisms in various human cancers. However, the expression of IKKε and TBK1 in gastric cancer and their role in prognosis have not been studied.To investigate overexpression of the IKKε and TBK1 proteins in gastric cancer and their relationship with clinicopathologic factors, we performed immunohistochemical staining using a tissue microarray. Tissue microarray samples were obtained from 1,107 gastric cancer patients who underwent R0 gastrectomy with extensive lymph node dissection and adjuvant chemotherapy.We identified expression of IKKε in 150 (13.6%) and TBK1 in 38 (3.4%) gastric cancers. Furthermore, co-expression of IKKε and TBK1 was identified in 1.5% of cases. Co-expression of IKKε and TBK1 was associated with differentiated intestinal histology and earlier T stage. In a multivariate binary logistic regression model, intestinal histologic type by Lauren classification and early AJCC stage were significant predictors for expression of IKKε and TBK1 proteins in gastric cancer. Changes in IKKε and TBK1 expression may be involved in the development of intestinal-type gastric cancer. The overexpression of IKKε and TBK1 should be considered in selected patients with intestinal-type gastric cancer.In conclusion, this is the first large-scale study investigating the relationships between expression of IKKε and TBK1 and clinicopathologic features of gastric cancer. The role of IKKε and TBK1 in intestinal-type gastric cancer pathogenesis should be elucidated by further investigation.

  19. The healing effect of bone marrow-derived stem cells in acute radiation syndrome.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Shekoohi-Shooli, Fatemeh; Aghamir, Seyed Mahmood Reza; Mehrabani, Davood; Dehghanian, Amirreza; Zare, Shahrokh; Mosleh-Shirazi, Mohammad Amin

    2016-01-01

    To determine the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on regeneration of bone marrow and intestinal tissue and survival rate in experimental mice with acute radiation syndrome (ARS). Forty mice were randomly divided into two equal groups of A receiving no BMSC transplantation and B receiving BMSCs. BMSCs were isolated from the bone marrow and cultured in DMEM media. Both groups were irradiated with 10 Gy (dose rate 0.28 Gy/ min) (60)CO during 35 minutes with a field size of 35×35 for all the body area. Twenty-four hours after γ irradiation, 150×10(3) cells of passage 5 in 150 µl medium were injected intravenously into the tail. Animals were euthanized one and two weeks after cell transplantation. They were evaluated histologically for any changes in bone marrow and intestinal tissues. The survival rate in mice were also determined. A significant increase for bone marrow cell count and survival rate were observed in group B in comparison to group A. Histological findings denoted to a healing in sample tissues. BMSCs could significantly reduce the side effects of ARS and increase the survival rate and healing in injured tissue. As such their transplantation may open a window in treatment of patients with ARS.

  20. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  1. Cell death at the intestinal epithelial front line.

    PubMed

    Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas

    2016-07-01

    The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.

  2. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.

    PubMed

    Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko

    2008-08-01

    Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.

  3. Intestinal M cells.

    PubMed

    Ohno, Hiroshi

    2016-02-01

    We have an enormous number of commensal bacteria in our intestine, moreover, the foods that we ingest and the water we drink is sometimes contaminated with pathogenic microorganisms. The intestinal epithelium is always exposed to such microbes, friend or foe, so to contain them our gut is equipped with specialized gut-associated lymphoid tissue (GALT), literally the largest peripheral lymphoid tissue in the body. GALT is the intestinal immune inductive site composed of lymphoid follicles such as Peyer's patches. M cells are a subset of intestinal epithelial cells (IECs) residing in the region of the epithelium covering GALT lymphoid follicles. Although the vast majority of IEC function to absorb nutrients from the intestine, M cells are highly specialized to take up intestinal microbial antigens and deliver them to GALT for efficient mucosal as well as systemic immune responses. I will discuss recent advances in our understanding of the molecular mechanisms of M-cell differentiation and functions. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Adult celiac disease with acetylcholine receptor antibody positive myasthenia gravis

    PubMed Central

    Freeman, Hugh J; Gillett, Helen R; Gillett, Peter M; Oger, Joel

    2009-01-01

    Celiac disease has been associated with some autoimmune disorders. A 40-year-old competitive strongman with celiac disease responded to a gluten-free diet, but developed profound and generalized motor weakness with acetylcholine receptor antibody positive myasthenia gravis, a disorder reported to occur in about 1 in 5000. This possible relationship between myasthenia gravis and celiac disease was further explored in serological studies. Frozen stored serum samples from 23 acetylcholine receptor antibody positive myasthenia gravis patients with no intestinal symptoms were used to screen for celiac disease. Both endomysial and tissue transglutaminase antibodies were examined. One of 23 (or, about 4.3%) was positive for both IgA-endomysial and IgA tissue transglutaminase antibodies. Endoscopic studies subsequently showed duodenal mucosal scalloping and biopsies confirmed the histopathological changes of celiac disease. Celiac disease and myasthenia gravis may occur together more often than is currently appreciated. The presence of motor weakness in celiac disease may be a clue to occult myasthenia gravis, even in the absence of intestinal symptoms. PMID:19824105

  5. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium.

    PubMed

    Knoop, Kathryn A; Kumar, Nachiket; Butler, Betsy R; Sakthivel, Senthilkumar K; Taylor, Rebekah T; Nochi, Tomonori; Akiba, Hisaya; Yagita, Hideo; Kiyono, Hiroshi; Williams, Ifor R

    2009-11-01

    Microfold cells (M cells) are specialized epithelial cells situated over Peyer's patches (PP) and other organized mucosal lymphoid tissues that transport commensal bacteria and other particulate Ags into intraepithelial pockets accessed by APCs. The TNF superfamily member receptor activator of NF-kappaB ligand (RANKL) is selectively expressed by subepithelial stromal cells in PP domes. We found that RANKL null mice have <2% of wild-type levels of PP M cells and markedly diminished uptake of 200 nm diameter fluorescent beads. Ab-mediated neutralization of RANKL in adult wild-type mice also eliminated most PP M cells. The M cell deficit in RANKL null mice was corrected by systemic administration of exogenous RANKL. Treatment with RANKL also induced the differentiation of villous M cells on all small intestinal villi with the capacity for avid uptake of Salmonella and Yersinia organisms and fluorescent beads. The RANK receptor for RANKL is expressed by epithelial cells throughout the small intestine. We conclude that availability of RANKL is the critical factor controlling the differentiation of M cells from RANK-expressing intestinal epithelial precursor cells.

  6. Gene expression profiles characterize early graft response in living donor small bowel transplantation: a case report.

    PubMed

    Bradley, S P; Pahari, M; Uknis, M E; Rastellini, C; Cicalese, L

    2006-01-01

    The cellular and histological events that occur during the regeneration process in invertebrates have been studied in the field of visceral regeneration. We would like to explore the molecular aspects of the regeneration process in the small intestine. The aim of this study was to characterize the gene expression profiles of the intestinal graft to identify which genes may have a role in regeneration of graft tissue posttransplant. In a patient undergoing living related small bowel transplantation (LRSBTx) in our institution, mucosal biopsies were obtained from the recipient intestine and donor graft at the time of transplant and at weeks 1, 2, 3, and 6 posttransplant. Total RNA was isolated from sample biopsies followed by gene expression profiles determined from the replicate samples (n = 3) for each biopsy using the Affymetrix U133 Plus 2.0 Human GeneChip set. Two profiles were obtained from the data. One profile showed rapid increase of 45 genes immediately after transplant by week 1 with significant changes (P < .05) greater than threefold including the chemokine CXC9 and glutathione-related stress factors, GPX2 and GSTA4. The second profile identified 133 genes that were significantly decreased by threefold or greater immediately after transplant week 1, including UCC1, the human homolog of the Ependymin gene. We have identified two gene expression profiles representing early graft responses to small bowel transplantation. These profiles will serve to identify and study those genes whose products may play a role in accelerating tissue regeneration following segmental LRSBTx.

  7. Some news from the unknown soldier, the Peyer's patch macrophage.

    PubMed

    Wagner, Camille; Bonnardel, Johnny; Da Silva, Clément; Martens, Liesbet; Gorvel, Jean-Pierre; Lelouard, Hugues

    2018-01-31

    In mammals, macrophages (MF) are present in virtually all tissues where they serve many different functions linked primarily to the maintenance of homeostasis, innate defense against pathogens, tissue repair and metabolism. Although some of these functions appear common to all tissues, others are specific to the homing tissue. Thus, MF become adapted to perform particular functions in a given tissue. Accordingly, MF express common markers but also sets of tissue-specific markers linked to dedicated functions. One of the largest pool of MF in the body lines up the wall of the gut. Located in the small intestine, Peyer's patches (PP) are primary antigen sampling and mucosal immune response inductive sites. Surprisingly, although markers of intestinal MF, such as F4/80, have been identified more than 30 years ago, MF of PP escaped any kind of phenotypic description and remained "unknown" for decades. In absence of MF identification, the characterization of the PP mononuclear phagocyte system (MPS) functions has been impaired. However, taking into account that PP are privileged sites of entry for pathogens, it is important to understand how the latter are handled by and/or escape the PP MPS, especially MF, which role in killing invaders is well known. This review focuses on recent advances on the PP MPS, which have allowed, through new criteria of PP phagocyte subset identification, the characterization of PP MF origin, diversity, specificity, location and functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Intestinal replication of influenza A viruses in two mammalian species. Brief report.

    PubMed

    Kawaoka, Y; Bordwell, E; Webster, R G

    1987-01-01

    The sites of replication of influenza A viruses in ferrets and pigs were studied. The majority of the swine, equine, and avian influenza A viruses tested were recovered from the intestinal tract of ferrets as well as from the respiratory tract; most of the human influenza viruses studied were recovered only from the respiratory tract. In contrast with ferrets, only Hong Kong/1/68 (H 3 N 2) influenza virus was recovered from the intestinal tract of pigs. Despite the large biological variability found in ferrets and in pigs, the results do establish that the majority of influenza viruses have the potential to replicate in the intestinal tissues of some mammals. Additionally, the study suggests that there are differences among the influenza A viruses in tissue tropism in different mammals. Both viral and host genetic factors determine the tissue tropism of influenza viruses in mammals.

  9. Implementation of Mass Cytometry as a Tool for Mechanism of Action Studies in Inflammatory Bowel Disease.

    PubMed

    Tyler, Christopher J; Pérez-Jeldres, Tamara; Ehinger, Erik; Capaldo, Brian; Karuppuchamy, Thangaraj; Boyer, Joshua D; Patel, Derek; Dulai, Parambir; Boland, Brigid S; Lannigan, Joanne; Eckmann, Lars; Ernst, Peter B; Sandborn, William J; Ho, Samuel B; Rivera-Nieves, Jesús

    2018-06-08

    Novel therapeutics for inflammatory bowel disease (IBD) are under development, yet mechanistic readouts at the tissue level are lacking. Techniques to assess intestinal immune composition could represent a valuable tool for mechanism of action (MOA) studies of novel drugs. Mass cytometry enables analysis of intestinal inflammatory cell infiltrate and corresponding molecular fingerprints with unprecedented resolution. Here, we aimed to optimize the methodology for isolation and cryopreservation of cells from intestinal tissue to allow for the potential implementation of mass cytometry in MOA studies. We investigated key technical issues, including minimal tissue requirements, cell isolation protocols, and cell storage, using intestinal biopsies and peripheral blood from healthy individuals. High-dimensional mass cytometry was employed for the analyses of biopsy-derived intestinal cellular subsets. Dithiothreitol and mechanical dissociation decreased epithelial cell contamination and allowed for isolation of adequate cell numbers from 2 to 4 colonic or ileal biopsies (6 × 104±2 × 104) after a 20-minute collagenase digestion, allowing for reliable detection of most major immune cell subsets. Biopsies and antibody-labeled mononuclear cells could be cryopreserved for later processing and acquisition (viability > 70%; P < 0.05). Mass cytometry represents a unique tool for deep immunophenotyping intestinal cell composition. This technique has the potential to facilitate analysis of drug actions at the target tissue by identifying specific cellular subsets and their molecular signatures. Its widespread implementation may impact not only IBD research but also other gastrointestinal conditions where inflammatory cells play a role in pathogenesis.

  10. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    PubMed Central

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  11. The effects of optical sensor-tissue separation in endocavitary photoplethysmography.

    PubMed

    Patel, Zaibaa; Thaha, Mohamed A; Kyriacou, Panayiotis A

    2018-06-12

    <i>Objective:</i> Intestinal anastomotic failure that occurs mainly due to ischaemia is a serious risk in colorectal cancer patients undergoing surgery. Surgeons continue to rely on subjective methods such as visual inspection to assess intestinal viability during surgery and there are no clinical tools to directly monitor viability postoperatively. A dual wavelength, reflectance optical sensor has been developed for continuous and dynamic monitoring of intestinal viability via the intestinal lumen. Maintaining direct contact between the sensor and the inner intestinal wall can be difficult in an intraluminal design, therefore impacting on signal acquisition and quality. This paper investigates the effect of direct contact versus variable distances between the sensor and the tissue surface of the buccal mucosa as a surrogate. <i>Approach:</i> The <i>in-vivo</i> study involved 20 healthy volunteers to measure the effect of optical sensor-tissue distances on the ability to acquire photoplethysmography signals and their quality. Signals were acquired from the buccal mucosa at five optical sensor-tissue distances. <i>Main results:</i> Distances between 0 mm (contact) to 5 mm were the most optimal, producing signals of high quality and signal-to-noise ratio, resulting in reliable estimations of the blood oxygen saturation. Distances exceeding 5 mm compromised the acquired signals, and were of poor quality, thereby unreliably estimating the blood oxygen saturation. <i>Significance:</i> The developed optical sensor proved to be reliable for acquiring photoplethysmography signals for cases where distances between the optical sensor-tissue may arise during the assessment of intraluminal intestinal viability. © 2018 Institute of Physics and Engineering in Medicine.

  12. Micro-polarimetry for pre-clinical diagnostics of pathological changes in human tissues

    NASA Astrophysics Data System (ADS)

    Golnik, Andrzej; Golnik, Natalia; Pałko, Tadeusz; Sołtysiński, Tomasz

    2008-05-01

    The paper presents a practical study of several methods of image analysis applied to polarimetric images of regular and malignant human tissues. The images of physiological and pathologically changed tissues from body and cervix of uterus, intestine, kidneys and breast were recorded in transmitted light of different polarization state. The set up of the conventional optical microscope with CCD camera and rotating polarizer's were used for analysis of the polarization state of the light transmitted through the tissue slice for each pixel of the camera image. The set of images corresponding to the different coefficients of the Stockes vectors, a 3×3 subset of the Mueller matrix as well as the maps of the magnitude and in-plane direction of the birefringent components in the sample were calculated. Then, the statistical analysis and the Fourier transform as well as the autocorrelation methods were used to analyze spatial distribution of birefringent elements in the tissue samples. For better recognition of tissue state we proposed a novel method that takes advantage of multiscale image data decomposition The results were used for selection of the optical characteristics with significantly different values for regular and malignant tissues.

  13. Preparation of wholemount mouse intestine for high-resolution three-dimensional imaging using two-photon microscopy.

    PubMed

    Appleton, P L; Quyn, A J; Swift, S; Näthke, I

    2009-05-01

    Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 mum within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of

  14. Simultaneously multiparametric spectroscopic monitoring of tissue viability in the brain and small intestine

    NASA Astrophysics Data System (ADS)

    Tolmasov, Michael; Barbiro-Michaely, Efrat; Mayevsky, Avraham

    2007-02-01

    Under body O II imbalance, the Autonomic Nervous System is responsible for redistribution of blood flow with preference to the most vital organs (brain, heart), while the less vital organs (intestine, GI tract) are hypoperfused. The aim of this study was to develop and use an animal model for real time monitoring of tissue viability in the brain, and the small intestine, under various levels of oxygen and blood supply. Male Wistar rats were anesthetized, the brain cortex and intestinal serosa were exposed and connected by optical fibers to the Multi-Site Multi-Parametric (MSMP) monitoring system. Tissue blood flow (TBF) and mitochondrial NADH redox state were monitored simultaneously in the two organs. The rats were subjected to short anoxia, 20 minutes hypoxia or epinephrine (2& 8μg/kg I.V.). Under oxygen deficiency, cerebral blood flow (CBF) was elevated, whereas intestinal TBF was reduced. Mitochondrial NADH was significantly elevated in both organs. Systemic injection of Adrenaline showed a dose-depended increase in systemic blood pressure and CBF response whereas, intestinal TBF similarly decreased in both doses. In addition, NADH was elevated (reduced form) in the intestine whereas oxidation was observed in the brain. In conclusion, our preliminary results may imply the ability of using of the MSMP for monitoring non-vital organs in order to detect early changes in the balance between oxygen supply and demand in the body.

  15. Numerical models of laser fusion of intestinal tissues.

    PubMed

    Pearce, John A

    2009-01-01

    Numerical models of continuous wave Tm:YAG thermal fusion in rat intestinal tissues were compared to experiment. Optical and thermal FDM models that included tissue damage based on Arrhenius kinetics were used to predict birefringence loss in collagen as the standard of comparison. The models also predicted collagen shrinkage, jellification and water loss. The inclusion of variable optical and thermal properties is essential to achieve favorable agreement between predicted and measured damage boundaries.

  16. Practical calculation method to estimate the absolute boron concentration in tissues using 18F-FBPA PET.

    PubMed

    Watabe, Tadashi; Hanaoka, Kohei; Naka, Sadahiro; Kanai, Yasukazu; Ikeda, Hayato; Aoki, Masanao; Shimosegawa, Eku; Kirihata, Mitsunori; Hatazawa, Jun

    2017-07-01

    The purpose of this study was to establish a practical method to estimate the absolute boron concentrations in the tissues based on the standardized uptake values (SUVs) after administration of 4-borono-phenylalanine (BPA) using 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) PET. Rat xenograft models of C6 glioma (n = 7, body weight 241 ± 28.0 g) were used for the study. PET was performed 60 min after intravenous injection of 18 F-FBPA (30.5 ± 0.7 MBq). After the PET scanning, BPA-fructose (167.3 ± 18.65 mg/kg) was administered by slow intravenous injection to the same subjects. The rats were killed 60 min after the BPA injection and tissue samples were collected from the major organs and tumors. The absolute boron concentrations (unit: ppm) in the samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The boron concentrations in the tissues/tumors were also estimated from the 18 F-FBPA PET images using the following formula: estimated absolute boron concentration (ppm) = 0.0478 × [BPA dose (mg/kg)] × SUV. The measured absolute boron concentrations (mBC) by ICP-OES and the estimated boron concentrations (eBC) from the PET images were compared. The percent difference between the mBC and eBC calculated based on the SUV max was -5.2 ± 21.1% for the blood, -9.4 ± 22.3% for the brain, 1.6 ± 21.3% for the liver, -14.3 ± 16.8% for the spleen, -9.5 ± 27.5% for the pancreas, and 3.4 ± 43.2% for the tumor. Relatively large underestimation was observed for the lung (-48.4 ± 16.2%), small intestine (-37.8 ± 19.3%) and large intestine (-33.9 ± 11.0%), due to the partial volume effect arising from the air or feces contained in these organs. In contrast, relatively large overestimation was observed for the kidney (34.3 ± 29.3%), due to the influence of the high uptake in urine. The absolute boron concentrations in tissues/tumors can be estimated from the SUVs on 18 F-FBPA PET using a practical formula. Caution must be exercised in interpreting the estimated boron concentrations in the lung, small intestine and large intestine, to prevent the adverse effects of overexposure, which could occur due to underestimation by partial volume effect using PET.

  17. Expression of the monocarboxylate transporter 1 (MCT1) in cells of the porcine intestine.

    PubMed

    Welter, Harald; Claus, Rolf

    2008-06-01

    Uptake of energy into cells and its allocation to individual cellular compartments by transporters are essential for tissue homeostasis. The present study gives an analysis of MCT1 expression and its cellular occurrence in the porcine intestine. Tissue portions from duodenum, jejunum, ileum, colon ascendens, colon transversum and colon descendens were collected and prepared for immunohistochemistry, Western blot and real time RT-PCR. A 169bp porcine MCT1 cDNA fragment was amplified and published. MCT1 mRNA expression in the large intestine was 20 fold higher compared to the small intestine. Western blot detected a single protein band of 41kDa at a much higher amount of MCT1 protein in the large intestine vs. the small intestine. MCT1 protein was detected in mitochondrial fractions of the large but not the small intestine. Immunohistochemistry in the small intestine showed that immune cells in the lamina propria and in the lymphoid follicles primarily expressed MCT1 while in the colon epithelial cells were the main source of MCT1. In summary, cellular expression of MCT1 differs between epithelial cells in the colon and small intestine. A possible role of MCT1 for uptake of butyrate into immune cells and the overall role of MCT1 for intestinal immune cell function remains elusive.

  18. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.

    PubMed

    Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang

    2018-04-08

    MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.

  19. Cadmium contamination of tissues and organs of delphinids species (Stenella attenuata)--influence of biological and ecological factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.M.; Amiard, J.C.; Amiard-Triquet, C.

    1990-12-01

    Based on a sample of 27 dolphins (Stenella attenuata) captured in the Eastern tropical zone of the Pacific Ocean, this study was carried out to analyze the cadmium accumulation levels and distribution in 12 organs or tissue samples. The average cadmium concentrations were between 0.2 mg Cd.kg-1 in the brain and muscle and 48 mg Cd.kg-1 in the kidneys. For most of organs and tissues the average values were between 1 and 5 mg Cd.kg-1. Kidneys, liver, muscle, and intestine contained almost 85% of the total cadmium burden of all tissues considered in this study. Most of the biological andmore » ecological factors taken into account (age, sex, total weight, and length of the dolphins, weight of the organs, place and date of capture) interacted with the cadmium concentrations and burdens in the collected organs or tissues. Three factors appear to be of prime importance: age, body weight, and geographical location of the area of capture.« less

  20. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp; Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp; Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expressionmore » was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.« less

  1. The effect of recombinant growth hormone on intestinal anastomotic wound healing in rats with obstructive jaundice.

    PubMed

    Cağlikülekçi, Mehmet; Ozçay, Necdet; Oruğ, Taner; Aydoğ, Gülden; Renda, Nurten; Atalay, Fuat

    2002-03-01

    Several clinical and experimental studies have shown that obstructive jaundice delays wound healing. Growth hormone may prevent delayed wound healing, since it has effects on the release of mediators in jaundice, as well as increasing the protein synthesis. Forty male Wistar rats were allocated to four groups: Group I (n=10): intestinal anastomosis to normal small bowel, Group II (n=10): intestinal anastomosis to normal small bowel followed by growth hormone therapy (2mg/kg/day, subcutaneously), Group III (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel, Group IV (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel followed by growth hormone therapy at the same dosage The animals were observed for seven days then killed. Intraabdominal adhesions, anastomotic complications and anastomotic bursting pressures were recorded and tissue samples from the anastomotic site were obtained to measure hydroxyproline levels and for histopathologic examination. Growth hormone had a beneficial effect on the healing of intestinal anastomosis in both jaundiced and non-jaundiced rats. This was demonstrated by clinical and mechanical parameters such as a significant increase in anastomotic bursting pressure, hydroxyproline content and histopathological scores. Growth hormone reverses the adverse effects of obstructive jaundice on small bowel anastomotic healing. It can be hypothesized that this effect is due to augmentation of insulin-like growth factors, protection of hepatocytes, enhancement of intestinal epithelization, and reversal of the resultant malnutritional state caused by growth hormone in obstructive jaundice.

  2. [Postconditioning -- effective method against distant organ dysfunction?].

    PubMed

    Onody, Péter; Rosero, Olivér; Kovács, Tibor; Garbaisz, Dávid; Hegedüs, Viktor; Lotz, Gábor; Harsányi, László; Szijártó, Attila

    2012-08-01

    The ischemia-reperfusion injury of the small intestine is a condition of high mortality, which occurs following superior mesenteric artery (SMA) embolization or circulatory redistribution. The aim of the study was to evaluate the local and systemic effects of postconditioning in a rat model of small intestine ischemia-reperfusion. Male Wistar rats underwent 60 min ischemia by the clamping of the SMA, followed by 6 hrs of reperfusion. The animals (n = 30) were randomized into three groups: sham-operated, control-, and postconditioned. Postconditioning was performed at the very onset of reperfusion by 6 alternating cycles of 10-10 seconds reperfusion/reocclusion, for a total of 2 min. At the end of the reperfusion blood and tissue (small intestine, lungs, kidney, liver) samples were taken for histological examination. The antioxidant status of small intestine was measured from intestinal homogenates. Histologic results revealed increased damage in control-group lungs, kidney, liver and small intestine in comparison with the postconditioned group. The injury was supported by significantly higher wet/dry weight ratio (p = 0.026), and serum levels of creatinine (p = 0.013), ASAT (p = 0.038), LDH (p = 0.028) and CK (p = 0.038) in the control group. The postconditioned group showed lower serum IL-6 levels (420 pg/ml vs. 188 pg/ml), as well as significantly higher mucosal antioxidant concentration. Postconditioning was able to decrease not only local, but the systemic damage intensity also, after a small intestinal ischemic-reperfusion episode.

  3. Isolation and Phenotyping of Intestinal Macrophages.

    PubMed

    Petit, Vanessa

    2018-01-01

    Macrophages are one of the most abundant leucocytes in the intestinal mucosa where they are essential for maintaining homeostasis. However they are also implicated in the pathogenesis of disorders such as inflammatory bowel disease (IBD), offering potential targets for novel therapies.Tissue macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These unique phenotypes likely reflect the heterogeneity of tissue macrophage origins and influence the tissue environment in which they reside. Here we describe how we can characterize and isolate the colonic macrophages.

  4. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres

    PubMed Central

    Reineke, Joshua J.; Cho, Daniel Y.; Dingle, Yu-Ting; Morello, A. Peter; Jacob, Jules; Thanos, Christopher G.; Mathiowitz, Edith

    2013-01-01

    Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine. PMID:23922388

  5. Delphinidin Reduces Glucose Uptake in Mice Jejunal Tissue and Human Intestinal Cells Lines through FFA1/GPR40.

    PubMed

    Hidalgo, Jorge; Teuber, Stefanie; Morera, Francisco J; Ojeda, Camila; Flores, Carlos A; Hidalgo, María A; Núñez, Lucía; Villalobos, Carlos; Burgos, Rafael A

    2017-04-05

    Anthocyanins are pigments with antihyperglycemic properties, and they are potential candidates for developing functional foods for the therapy or prevention of Diabetes mellitus type 2 (DM2). The mechanism of these beneficial effects of anthocyanins are, however, hard to explain, given their very low bioavailability due to poor intestinal absorption. We propose that free fatty acid receptor 1 (FFA1, also named GPR40), is involved in an inhibitory effect of the anthocyanidin delphinidin over intestinal glucose absorption. We show the direct effects of delphinidin on the intestine using jejunum samples from RF/J mice, and the human intestinal cell lines HT-29, Caco-2, and NCM460. By the use of specific pharmacological antagonists, we determined that delphinidin inhibits glucose absorption in both mouse jejunum and a human enterocytic cell line in a FFA1-dependent manner. Delphinidin also affects the function of sodium-glucose cotransporter 1 (SGLT1). Intracellular signaling after FFA1 activation involved cAMP increase and cytosolic Ca 2+ oscillations originated from intracellular Ca 2+ stores and were followed by store-operated Ca 2+ entry. Taken together, our results suggest a new GPR-40 mediated local mechanism of action for delphinidin over intestinal cells that may in part explain its antidiabetic effect. These findings are promising for the search for new prevention and pharmacological treatment strategies for DM2 management.

  6. Effect of dietary zinc on morphological characteristics and apoptosis related gene expression in the small intestine of Bama miniature pigs.

    PubMed

    Zhou, Xin; Li, Yansen; Li, Zhaojian; Cao, Yun; Wang, Fei; Li, ChunMei

    2017-04-01

    To investigate the effects of dietary zinc (Zn) on small intestinal mucosal epithelium, 6-month-old male Bama miniature pigs were randomly allocated into three groups and treated with three levels of Zn (Control, T1, and T2 diet supplemented with 0, 50, and 1500mg/kg Zn, respectively, as zinc sulfate) for 38days. The samples of small intestine tissues, serum, and feces were collected. The results showed that Zn concentrations of small intestine in the T2 group were higher than those in the control and T1 groups (p<0.05). In the T2 group, the pharmacological dose of dietary Zn treatment caused marked damage to the small intestinal epithelium. The expression of Bax, cleaved caspase-3, and caspase-8 were increased in the duodenum and the jejunum of the T2 group (p<0.05). The mRNA transcript levels of BAX, CYCS and CASP3 genes were upregulated in the duodenum and the jejunum of the T2 group. We concluded that a diet with a pharmacological dose of Zn increased the accumulation of Zn and the expression of Bax, cleaved caspase-3, and caspase-8, which might activate the apoptosis and lead to the marked injury of porcine small intestinal epithelium. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. A multi-component herbal preparation, STW 5, shows anti-apoptotic effects in radiation induced intestinal mucositis in rats.

    PubMed

    Khayyal, Mohamed T; Abdel-Naby, Doaa H; Abdel-Aziz, Heba; El-Ghazaly, Mona A

    2014-09-25

    Intestinal mucositis is a common adverse effect in patients undergoing radiotherapy and constitutes a treatment-limiting condition. Since no agents are yet known that can adequately guard against its development, the search continues to find safe and effective measures. The present study was intended to investigate whether the herbal preparation, STW 5, could offer a potentially effective agent in this respect. Intestinal mucositis was induced in rats by exposing them to whole body gamma-irradiation (6 Gy). Rats were treated orally with STW 5 (5 or 10 ml/kg) for five days before and two days after irradiation. One day later, rats were sacrificed and segments of small intestine were examined histologically. Intestinal homogenates and serum samples were used to assess relevant parameters for apoptosis and different markers for inflammation and oxidative stress. Exposure to radiation produced dose-dependent extents of intestinal injury associated with apoptotic changes with high radiation levels. Apoptosis was associated with an increase in cytosolic calcium, depletion of mitochondrial cytochrome c, B-cell lymphoma-2 and complex I. Oxidative stress parameters (reduced glutathione, thiobarbituric acid reactive substance and total nitrate/nitrite) were deranged. Inflammation markers (tumor necrosis factor and myeloperoxidase) and indices of intestinal damage (serum diamine oxidase) were increased. STW 5 protected to a large extent against histological changes and counteracted the deranged parameters. The findings provide experimental evidence for the potential beneficial use of STW5 in protecting against the development of radiation-induced intestinal mucositis and associated changes in tissue biomarkers. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Rapamycin Inhibition of mTOR Reduces Levels of the Na+/H+ Exchanger 3 in Intestines of Mice and Humans, Leading to Diarrhea

    PubMed Central

    Yang, Jun; Zhao, Xiaofeng; Patel, Archana; Potru, Rachana; Azizi-Ghannad, Sadra; Dolinger, Michael; Mazurkiewicz, Joseph; Conti, David; Jones, David; Huang, Yunfei; Zhu, Xinjun

    2016-01-01

    Background & Aims The immunosuppressant rapamycin frequently causes non-infectious diarrhea in recipients of organ transplants. We investigated the mechanisms of this process. Methods We performed a retrospective analysis of renal transplant recipients treated with rapamycin from 2003 through 2010 at Albany Medical College, collecting data on serum levels of rapamycin. Levels of the Na+/H+ exchanger 3 (NHE3) were measured in human ileal biopsies from patients who did and did not receive rapamycin (controls), in ileum tissues from rats or mice given rapamycin, and in mice with intestine-specific disruption of Mtor (mTORf/f:Villin-cre mice) or Atg7 (Atg7flox/flox; Villin-Cre). Exchange activity and intestinal water absorption were measured using a pH-sensitive dye and small intestine perfusion, respectively. Results Episodes of non-infectious diarrhea occurred in organ recipients following increases in serum levels of rapamycin. Expression of NHE3 was reduced in the ileal brush border of patients with diarrhea. In rats and mice, continuous administration of low doses of rapamycin reduced levels of NHE3 in intestinal tissues; this effect was not observed in mice with intestinal deletion of ATG7, indicating that autophagy is required for the reduction. Administration of single high doses of rapamycin to mice, to model the spikes in rapamycin levels that occur in patients with severe diarrheal episodes, resulted in reduced phosphorylation of S6 and AKT in ileal tissues, indicating inhibition of the mTOR complex (mTORC1 and mTORC2). Intestines of mice with intestine-specific deletion of mTOR were dilated and contained large amount of liquid stools; they also had reduced levels of total NHE3 and NHERF1, compared with control mice. We observed a significant reduction in Na+/H+ exchange activity in ileum tissues from these mice. Conclusions Rapamycin inhibition of mTOR reduces levels of NHE3 and Na+/H+ exchange activity in intestinal tissues of patients and rodents. This process appears to require the autophagic activity mediated by ATG7. Loss of mTOR regulation of NHE3 could mediate the development of diarrhea in patients undergoing rapamycin therapy. PMID:25836987

  9. Rapamycin Inhibition of mTOR Reduces Levels of the Na+/H+ Exchanger 3 in Intestines of Mice and Humans, Leading to Diarrhea.

    PubMed

    Yang, Jun; Zhao, Xiaofeng; Patel, Archana; Potru, Rachana; Azizi-Ghannad, Sadra; Dolinger, Michael; Cao, James; Bartholomew, Catherine; Mazurkiewicz, Joseph; Conti, David; Jones, David; Huang, Yunfei; Zhu, Xinjun Cindy

    2015-07-01

    The immunosuppressant rapamycin frequently causes noninfectious diarrhea in organ transplant recipients. We investigated the mechanisms of this process. We performed a retrospective analysis of renal transplant recipients treated with rapamycin from 2003 through 2010 at Albany Medical College, collecting data on serum levels of rapamycin. Levels of the Na+/H+ exchanger 3 (NHE3) were measured in human ileal biopsy specimens from patients who did and did not receive rapamycin (controls), in ileum tissues from rats or mice given rapamycin, and in mice with intestine-specific disruption of mammalian target of rapamycin (Mtor) (mTOR(f/f):Villin-cre mice) or Atg7 (Atg7(flox/flox); Villin-Cre). Exchange activity and intestinal water absorption were measured using a pH-sensitive dye and small intestine perfusion, respectively. Episodes of noninfectious diarrhea occurred in organ recipients after increases in serum levels of rapamycin. The expression of NHE3 was reduced in the ileal brush border of patients with diarrhea. In rats and mice, continuous administration of low doses of rapamycin reduced levels of NHE3 in intestinal tissues; this effect was not observed in mice with intestinal deletion of ATG7, indicating that autophagy is required for the reduction. Administration of single high doses of rapamycin to mice, to model the spikes in rapamycin levels that occur in patients with severe diarrheal episodes, resulted in reduced phosphorylation of S6 and AKT in ileal tissues, indicating inhibition of the mTOR complex (mTORC1 and mTORC2). The intestines of mice with intestine-specific deletion of mTOR were dilated and contained large amounts of liquid stools; they also had reduced levels of total NHE3 and NHERF1 compared with control mice. We observed a significant reduction in Na(+)/H(+) exchange activity in ileum tissues from these mice. Rapamycin inhibition of mTOR reduces levels of NHE3 and Na(+)/H(+) exchange activity in intestinal tissues of patients and rodents. This process appears to require the autophagic activity mediated by ATG7. Loss of mTOR regulation of NHE3 could mediate the development of diarrhea in patients undergoing rapamycin therapy. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Influence of dietary fiber on luminal environment and morphology in the small and large intestine of sows.

    PubMed

    Serena, A; Hedemann, M S; Bach Knudsen, K E

    2008-09-01

    In this study, the effect of feeding different types and amounts of dietary fiber (DF) on luminal environment and morphology in the small and large intestine of sows was studied. Three diets, a low-fiber diet (LF) and 2 high-fiber diets (high fiber 1, HF1, and high fiber 2, HF2) were used. Diet LF (DF, 17%; soluble DF 4.6%) was based on wheat and barley, whereas the 2 high-fiber diets (HF1: DF, 43%; soluble DF, 11.0%; and HF2: DF, 45%; soluble DF, 7.6%) were based on wheat and barley supplemented with different coproducts from the vegetable food and agroindustry (HF1 and HF2: sugar beet pulp, potato pulp, and pectin residue; HF2: brewers spent grain, seed residue, and pea hull). The diets were fed for a 4-wk period to 12 sows (4 receiving each diet). Thereafter, the sows were killed 4 h postfeeding, and digesta and tissue samples were collected from various parts of the small and large intestine. The carbohydrates in the LF diet were well digested in the small intestine, resulting in less digesta in all segments of the intestinal tract. The fermentation of nonstarch polysaccharides in the large intestine was affected by the chemical composition and physicochemical properties. The digesta from pigs fed the LF diet provided low levels of fermentable carbohydrates that were depleted in proximal colon, whereas for pigs fed the 2 high-DF diets, the digesta was depleted of fermentable carbohydrates at more distal locations of the colon. The consequence was an increased retention time, greater DM percentage, decreased amount of material, and a decreased tissue weight after feeding the LF diet compared with the HF diets. The concentration of short-chain fatty acids was consistent with the fermentability of carbohydrates in the large intestine, but there was no effect of the dietary composition on the molar short-chain fatty acid proportions. It was further shown that feeding the diet providing the greatest amount of fermentable carbohydrates (diet HF1, which was high in soluble DF) resulted in significant morphological changes in the colon compared with the LF diet.

  11. Stem cell-derived human intestinal organoids as an infection model for rotaviruses.

    PubMed

    Finkbeiner, Stacy R; Zeng, Xi-Lei; Utama, Budi; Atmar, Robert L; Shroyer, Noah F; Estes, Mary K

    2012-01-01

    Directed differentiation of stem cell lines into intestine-like tissue called induced human intestinal organoids (iHIOs) is now possible (J. R. Spence, C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells, Nature 470:105-109, 2011). We tested iHIOs as a new model to cultivate and study fecal viruses. Protocols for infection of iHIOs with a laboratory strain of rotavirus, simian SA11, were developed. Proof-of-principle analyses showed that iHIOs support replication of a gastrointestinal virus, rotavirus, on the basis of detection of nonstructural viral proteins (nonstructural protein 4 [NSP4] and NSP2) by immunofluorescence, increased levels of viral RNA by quantitative reverse transcription-PCR (qRT-PCR), and production of infectious progeny virus. iHIOs were also shown to support replication of 12/13 clinical rotavirus isolates directly from stool samples. An unexpected finding was the detection of rotavirus infection not only in the epithelial cells but also in the mesenchymal cell population of the iHIOs. This work demonstrates that iHIOs offer a promising new model to study rotaviruses and other gastrointestinal viruses. Gastrointestinal viral infections are a major cause of illness and death in children and adults. The ability to fully understand how viruses interact with human intestinal cells in order to cause disease has been hampered by insufficient methods for growing many gastrointestinal viruses in the laboratory. Induced human intestinal organoids (iHIOs) are a promising new model for generating intestine-like tissue. This is the first report of a study using iHIOs to cultivate any microorganism, in this case, an enteric virus. The evidence that both laboratory and clinical rotavirus isolates can replicate in iHIOs suggests that this model would be useful not only for studies of rotaviruses but also potentially of other infectious agents. Furthermore, detection of rotavirus proteins in unexpected cell types highlights the promise of this system to reveal new questions about pathogenesis that have not been previously recognized or investigated in other intestinal cell culture models.

  12. Effects of Rosuvastatin on the expression of the genes involved in cholesterol metabolism in rats: adaptive responses by extrahepatic tissues.

    PubMed

    Ahmadi, Yasin; Haghjoo, Amir Ghorbani; Dastmalchi, Siavoush; Nemati, Mahboob; Bargahi, Nasrin

    2018-06-30

    Statins mostly target the liver; therefore, increase in the synthesis of cholesterol by extra-hepatic tissues and then transferring this cholesterol to the liver can be regarded as adaptive responses by these tissues. In addition to cholesterol, these adaptive responses can increase isoprenoid units as the byproducts of the cholesterol biosynthesis pathway; isoprenoids play a key role in regulating cell signaling pathways and cancer development. Thus, there is a primary need for in vivo investigation of the effects of statins on the cholesterol metabolism in the extra-hepatic tissues. Eighteen male Sprague-Dawley rats were randomly divided into control (n = 9) and treatment (n = 9) groups. The treatment group was orally given 10 mg/kg/day of Rosuvastatin for 6 weeks. Then, serum lipid profile, expression levels of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), ABCA1, ABCG1 and ApoA1, and activity of HMGCR were measured in the liver, intestine and adipose tissues. Rosuvastatin significantly reduced total cholesterol and LDL-C. The expression levels of ABCA1, ABCG1, and ApoA1 in the liver and HMGCR in both liver and intestine were significantly increased in the Rosuvastatin treated-group. However, in the intestine, there were no significant differences in the expression levels of ABCA1 and ABCG1 between the study groups. Rosuvastatin had no effect on the adipose tissue. The HMGCR activity was significantly increased in the liver and intestine of the Rosuvastatin-treated group. In spite of the adipose tissue, the intestine efficiently responses to the reduced levels of cholesterol and increases its cholesterogenesis capacity. However, adipose tissue seems to play a small role in correcting cholesterol deficiency during the course of statin therapy. Copyright © 2018. Published by Elsevier B.V.

  13. Supplemental Oxygen and Carbon Dioxide Each Increase Subcutaneous and Intestinal Intramural Oxygenation

    PubMed Central

    Ratnaraj, Jebadurai; Kabon, Barbara; Talcott, Michael R.; Sessler, Daniel I.

    2005-01-01

    Oxidative killing by neutrophils, a primary defense against surgical pathogens, is directly related to tissue oxygenation. We tested the hypothesis that supplemental inspired oxygen or mild hypercapnia (end-tidal PCO2 of 50 mmHg) improves intestinal oxygenation. Pigs (25±2.5 kg) were used in two studies in random order: 1) Oxygen Study — 30% vs. 100% inspired oxygen concentration at an end-tidal PCO2 of 40 mmHg, and 2) Carbon Dioxide Study — end-tidal PCO2 of 30 mmHg vs. 50 mmHg with 30% oxygen. Within each study, treatment order was randomized. Treatments were maintained for 1.5 hours; measurements were averaged over the final hour. A tonometer inserted in the subcutaneous tissue of the left upper foreleg measured subcutaneous oxygen tension. Tonometers inserted into the intestinal wall measured intestinal intramural oxygen tension from the small and large intestines. 100% oxygen administration doubled subcutaneous oxygen partial pressure (PO2) (57±10 to 107±48 mmHg, P=0.006) and large intestine intramural PO2 (53±14 to 118±72 mmHg, P=0.014); intramural PO2increased 40% in the small intestine (37±10 to 52±25 mmHg, P=0.004). An end-tidal PCO2 of 50 mmHg increased large intestinal PO2 approximately 16% (49±10 to 57±12 mmHg, P=0.039), while intramural PO2 increased by 45% in the small intestine (31±12 to 44±16 mmHg, P=0.002). Supplemental oxygen and mild hypercapnia each increased subcutaneous and intramural tissue PO2, with supplemental oxygen being most effective. PMID:15281531

  14. Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4+ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model.

    PubMed

    Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira

    2017-01-01

    Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.

  15. Pharmacologic Comparison of Clinical Neutral Endopeptidase Inhibitors in a Rat Model of Acute Secretory Diarrhea

    PubMed Central

    Prinsen, Michael J.; Oliva, Jonathan; Campbell, Mary A.; Arnett, Stacy D.; Tajfirouz, Deena; Ruminski, Peter G.; Yu, Ying; Bond, Brian R.; Ji, Yuhua; Neckermann, Georg; Choy, Robert K. M.; de Hostos, Eugenio; Meyers, Marvin J.

    2016-01-01

    Racecadotril (acetorphan) is a neutral endopeptidase (NEP) inhibitor with known antidiarrheal activity in animals and humans; however, in humans, it suffers from shortcomings that might be improved with newer drugs in this class that have progressed to the clinic for nonenteric disease indications. To identify potentially superior NEP inhibitors with immediate clinical utility for diarrhea treatment, we compared their efficacy and pharmacologic properties in a rat intestinal hypersecretion model. Racecadotril and seven other clinical-stage inhibitors of NEP were obtained or synthesized. Enzyme potency and specificity were compared using purified peptidases. Compounds were orally administered to rats before administration of castor oil to induce diarrhea. Stool weight was recorded over 4 hours. To assess other pharmacologic properties, select compounds were orally administered to normal or castor oil–treated rats, blood and tissue samples collected at multiple time points, and active compound concentrations determined by mass spectroscopy. NEP enzyme activity was measured in tissue homogenates. Three previously untested clinical NEP inhibitors delayed diarrhea onset and reduced total stool output, with little or no effect on intestinal motility assessed by the charcoal meal test. Each was shown to be a potent, highly specific inhibitor of NEP. Each exhibited greater suppression of NEP activity in intestinal and nonintestinal tissues than did racecadotril and sustained this inhibition longer. These results suggest that newer clinical-stage NEP inhibitors originally developed for other indications may be directly repositioned for treatment of acute secretory diarrhea and offer advantages over racecadotril, such as less frequent dosing and potentially improved efficacy. PMID:26907621

  16. Real-time Measurement of Epithelial Barrier Permeability in Human Intestinal Organoids.

    PubMed

    Hill, David R; Huang, Sha; Tsai, Yu-Hwai; Spence, Jason R; Young, Vincent B

    2017-12-18

    Advances in 3D culture of intestinal tissues obtained through biopsy or generated from pluripotent stem cells via directed differentiation, have resulted in sophisticated in vitro models of the intestinal mucosa. Leveraging these emerging model systems will require adaptation of tools and techniques developed for 2D culture systems and animals. Here, we describe a technique for measuring epithelial barrier permeability in human intestinal organoids in real-time. This is accomplished by microinjection of fluorescently-labeled dextran and imaging on an inverted microscope fitted with epifluorescent filters. Real-time measurement of the barrier permeability in intestinal organoids facilitates the generation of high-resolution temporal data in human intestinal epithelial tissue, although this technique can also be applied to fixed timepoint imaging approaches. This protocol is readily adaptable for the measurement of epithelial barrier permeability following exposure to pharmacologic agents, bacterial products or toxins, or live microorganisms. With minor modifications, this protocol can also serve as a general primer on microinjection of intestinal organoids and users may choose to supplement this protocol with additional or alternative downstream applications following microinjection.

  17. Lymphotoxin Alpha-Deficient Mice Clear Persistent Rotavirus Infection after Local Generation of Mucosal IgA

    PubMed Central

    Lopatin, Uri; Blutt, Sarah E.; Conner, Margaret E.

    2013-01-01

    Rotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα−/−) mice that lack Peyer's patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα−/− and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses. However, unlike wild-type mice, which resolved the intestinal infection within 10 days, LTα−/− mice shed fecal virus for approximately 50 days after inoculation. The resolution of fecal virus shedding occurred concurrently with induction of intestinal rotavirus-specific IgA in both mouse strains. Induction of intestinal rotavirus-specific IgA in LTα−/− mice correlated with the (late) appearance of IgA-producing plasma cells in the small intestine. This, together with the absence of rotavirus-specific serum IgA, implies that secretory rotavirus-specific IgA was produced locally. These findings indicate that serum IgG responses are insufficient and imply that local intestinal IgA responses are important for the clearance of rotavirus from intestinal tissues. Furthermore, they show that while LTα-dependent lymphoid tissues are important for the generation of IgA-producing B cells in the intestine, they are not absolutely required in the setting of rotavirus infection. Moreover, the induction of local IgA-producing B cell responses can occur late after infection and in an LTα-independent manner. PMID:23097456

  18. Exploring new technologies to facilitate laparoscopic surgery: creating intestinal anastomoses without sutures or staples, using a radio-frequency-energy-driven bipolar fusion device.

    PubMed

    Smulders, J F; de Hingh, I H J T; Stavast, J; Jackimowicz, J J

    2007-11-01

    Intestinal anastomotic healing requires apposition of the collagen containing submucosal layers of the opposing intestinal walls, which is traditionally achieved by staples or sutures. Recently, a feedback-controlled bipolar sealing system (LigaSure) has been successfully introduced to seal and transect vessels. Since this technology depends on fusion of collagen fibres which are abundantly present in the intestinal wall, the possibility to create intestinal anastomoses using this technology was investigated in the present study. For this purpose a new-generation radiofrequency (RF) generator and a prototype of the Ligasure Anastomotic Device (LAD) have been developed. The generator incorporates a closed loop control system which monitors tissue fusion, compares it with a mathematical model of ideal fusion based on the density and compliance of intestinal tissue and adjusts energy output accordingly. In total 8 anastomoses were created in a porcine model (4 pigs, 2 anastomoses each) and healing was assessed by macroscopic and histological examination. All seals were macroscopic intact both immediate after creation and at sacrifice at the 7th postoperative day. Between operations, pigs appeared healthy and had normal intestinal passage. Histological examination of the anastomoses revealed undisturbed healing with granulation tissue, newly synthesised collagen in the submucosa and re-epithelialization at the borders of the seals. These results confirm the feasibility to create experimental intestinal anastomoses using LigaSure technology. This may be an important step towards the development of new laparoscopic equipment combining dissecting and reconstructive properties within one single instrument.

  19. Intravenous acid fibroblast growth factor protects intestinal mucosal cells against ischemia-reperfusion injury via regulating Bcl-2/Bax expression.

    PubMed

    Chen, Wei; Fu, Xiao-Bing; Ge, Shi-Li; Sun, Tong-Zhu; Zhou, Gang; Han, Bing; Du, Yi-Ri; Li, Hai-Hong; Sheng, Zhi-Yong

    2005-06-14

    To detect the effect of acid fibroblast growth factor (aFGF) on apoptosis and gene expression of bax and bcl-2 gene in rat intestine after ischemia/reperfusion (I/R) injury, and to explore the protective mechanisms of aFGF. One hundred and eight Wistar rats were randomly divided into sham-operated control group (C) (n = 6), intestinal ischemia group (I) (n = 6), aFGF treatment group (A) (n = 48) and intestinal ischemia-reperfusion group (R) (n = 48). In group I, the animals were killed after 45 min of superior mesenteric artery (SMA) occlusion, while in groups R and A, the rats sustained 45 min of SMA occlusion and were then treated with normal saline and aFGF, respectively, sustained 15 min, 30 min, 1, 2, 6, 12, 24, or 48 h of reperfusion, respectively. In group C, SMA was separated, but without occlusion. Apoptosis in intestinal villus was determined with terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling technique (TUNEL). Intestinal tissue samples were taken not only for detection of bax and bcl-2 gene expression by RT-PCR, but also for detection of bax and bcl-2 protein expression and distribution by immunohistochemical analysis. The rat survival rates in aFGF treated group were higher than group R (P<0.05) and the improvement of intestinal histological structures was observed at 2, 6, and 12 h after the reperfusion in group A compared with group R. The apoptotic rates were (41.17+/-3.49)%, (42.83+/-5.23)% and (53.33+/-6.92)% at 2, 6 and 12 h after reperfusion, respectively in group A, apparently less than those of group R at matched time points (50.67+/-6.95, 54.17+/-7.86, 64.33+/-6.47, respectively) (P<0.05). The bax gene transcription and translation were significantly decreased in group A vs group R, while mRNA and protein contents of Bcl-2 in group A were obviously higher than those in group R during 2-12 h period after reperfusion. The changes in histological structure and the increment of apoptotic rate indicated that the intestinal barrier was damaged after intestinal I/R injury, whilst intravenous aFGF could alleviate apoptosis induced by ischemia and reperfusion in rat intestinal tissues, in which genes of bax and bcl-2 might play important roles.

  20. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering.

    PubMed

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike

    2017-05-01

    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  1. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  2. Tissue Transglutaminase Levels Are Not Sufficient to Diagnose Celiac Disease in North American Practices Without Intestinal Biopsies.

    PubMed

    Elitsur, Yoram; Sigman, Terry; Watkins, Runa; Porto, Anthony F; Leonard Puppa, Elaine L; Foglio, Elsie J; Preston, Deborah L

    2017-01-01

    Celiac serology is crucial for the diagnosis of celiac disease in children. The American guideline for celiac disease in children suggested that positive serology should be followed by confirmatory intestinal histology. The relationship between high tissue transglutaminase titers and celiac disease in children has not been well investigated in children from North America. In the present study, we investigated whether different tissue transglutaminase titers in symptomatic children could predict celiac disease without the confirmation of intestinal histology. Data from biopsy confirmed celiac children were collected from four different clinics in North America. Clinical, serological, histological, and follow-up data were collected. The accuracy rates of various tissue transglutaminase titers to predict celiac disease in children were calculated. The data from 240 children were calculated. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy rate of tissue transglutaminase titers at ≥10× upper limit of normal were 75.4, 48.8, 87.7, 29.0, and 70.8 %, respectively. Similar data were noted in the other tissue transglutaminase titers (≥3× upper limit of normal, >100 U/ml, or >100 U/ml and >10× upper limit of normal). The positive predictive value of tissue transglutaminase titers at ≥3× upper limit of normal or higher was too low to predict celiac disease in children. Our data suggested that in routine clinical practice, high titers of tissue transglutaminase are not sufficient to diagnose celiac disease in North American children without intestinal biopsies.

  3. Cholecystokinin immunoreactivity in the digestive tract of bowfin (Amia calva), bluegill (Lepomis macrochirus), and bullfrog (Rana catesbeiana).

    PubMed

    Rajjo, I M; Vigna, S R; Crim, J W

    1988-04-01

    The distribution of the intestinal hormone, cholecystokinin (CCK), was studied in the gastrointestinal tract of a holostean fish, the bowfin (Amia calva), and compared to a teleostean fish, the bluegill (Lepomis macrochirus), and an amphibian, the bullfrog (Rana catesbeiana), using an antiserum specific for the carboxyl terminal tetrapeptide of CCK in an unlabeled biotin-avidin immunoperoxidase procedure. In the bowfin CCK immunostained cells were detected only in the anterior and mid-intestine; the stomach and the rest of the gastrointestinal tract were negative. Immunoreactive cells were open in appearance and were scattered along the intestinal mucosal epithelium, with cells in mid-intestine relatively more abundant than in anterior intestine. These relative distributions were confirmed by radioimmunoassay of tissue extracts. Additional immunostained cells of uncertain function were detected in the lamina propria of the intestine. In bluegill gut immunoreactive cells were observed in the anterior and mid-intestine and in the pyloric caeca, where cells were clustered near the intestinal opening. Immunoreactive cells occurred relatively uniformly along the anterior and mid-intestine. Bullfrog CCK-containing cells were detected both in the antral stomach and in the duodenum. CCK in gut tissues likely originated in the intestine. The redistribution of CCK cells toward the anterior part of the intestine during evolution coincides with the development of a compact pancreas in higher classes of vertebrates. Such a redistribution constitutes an adaptive placement of endocrine cells for signaling during the intestinal phase of digestion.

  4. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.

    PubMed

    Lundquist, P; Artursson, P

    2016-11-15

    In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Intestine-specific Disruption of Hypoxia-inducible Factor (HIF)-2α Improves Anemia in Sickle Cell Disease.

    PubMed

    Das, Nupur; Xie, Liwei; Ramakrishnan, Sadeesh K; Campbell, Andrew; Rivella, Stefano; Shah, Yatrik M

    2015-09-25

    Sickle cell disease (SCD) is caused by genetic defects in the β-globin chain. SCD is a frequently inherited blood disorder, and sickle cell anemia is a common type of hemoglobinopathy. During anemia, the hypoxic response via the transcription factor hypoxia-inducible factor (HIF)-2α is highly activated in the intestine and is essential in iron absorption. Intestinal disruption of HIF-2α protects against tissue iron accumulation in iron overload anemias. However, the role of intestinal HIF-2α in regulating anemia in SCD is currently not known. Here we show that in mouse models of SCD, disruption of intestinal HIF-2α significantly decreased tissue iron accumulation. This was attributed to a decrease in intestinal iron absorptive genes, which were highly induced in a mouse model of SCD. Interestingly, disruption of intestinal HIF-2α led to a robust improvement in anemia with an increase in RBC, hemoglobin, and hematocrit. This was attributed to improvement in RBC survival, hemolysis, and insufficient erythropoiesis, which is evident from a significant decrease in serum bilirubin, reticulocyte counts, and serum erythropoietin following intestinal HIF-2α disruption. These data suggest that targeting intestinal HIF-2α has a significant therapeutic potential in SCD pathophysiology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Re-generation of tissue about an animal-based scaffold: AMS studies of the fate of the scaffold

    NASA Astrophysics Data System (ADS)

    Rickey, Frank A.; Elmore, David; Hillegonds, Darren; Badylak, Stephen; Record, Rae; Simmons-Byrd, Abby

    2000-10-01

    Small intestinal submucosa (SIS) is an unusual tissue, which shows great promise for the repair of damaged tissues in humans. When the SIS is used as a surgical implant, the porcine-derived material is not rejected by the host immune system, and in fact stimulates the constructive re-modeling of damaged tissue. In dogs, these SIS scaffolds have been used to grow new arteries, tendons, and urinary bladders. Moreover, the SIS scaffold tissue seems to disappear from the implant region after a few months. The fate of this SIS tissue is of considerable importance if it is to be used in human tissue repair. SIS is obtained from pigs. We have labeled the SIS in several pigs by intraveneous administration of 14C enriched proline from the age of three weeks until they reach market weight. The prepared SIS was then implanted in dogs as scaffolds for urinary bladder patches. During the remaining life of each dog, blood, urine and feces samples were collected on a regular schedule. AMS analyses of these specimens were performed to measure the elimination rate of the SIS. At different intervals, the dogs were sacrificed. Tissue samples were analyzed by AMS to determine the whole-body distribution of the labeled SIS.

  7. Use of micro-lightguide spectrophotometry for evaluation of microcirculation in the small and large intestines of horses without gastrointestinal disease.

    PubMed

    Reichert, Christof; Kästner, Sabine B R; Hopster, Klaus; Rohn, Karl; Rötting, Anna K

    2014-11-01

    To evaluate the use of a micro-lightguide tissue spectrophotometer for measurement of tissue oxygenation and blood flow in the small and large intestines of horses under anesthesia. 13 adult horses without gastrointestinal disease. Horses were anesthetized and placed in dorsal recumbency. Ventral midline laparotomy was performed. Intestinal segments were exteriorized to obtain measurements. Spectrophotometric measurements of tissue oxygenation and regional blood flow of the jejunum and pelvic flexure were obtained under various conditions that were considered to have a potential effect on measurement accuracy. In addition, arterial oxygen saturation at the measuring sites was determined by use of pulse oximetry. 12,791 single measurements of oxygen saturation, relative amount of hemoglobin, and blood flow were obtained. Errors occurred in 381 of 12,791 (2.98%) measurements. Most measurement errors occurred when surgical lights were directed at the measuring site; covering the probe with the surgeon's hand did not eliminate this error source. No measurement errors were observed when the probe was positioned on the intestinal wall with room light, at the mesenteric side, or between the mesenteric and antimesenteric side. Values for blood flow had higher variability, and this was most likely caused by motion artifacts of the intestines. The micro-lightguide spectrophotometry system was easy to use on the small and large intestines of horses and provided rapid evaluation of the microcirculation. Results indicated that measurements should be performed with room light only and intestinal motion should be minimized.

  8. Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis

    PubMed Central

    Griseri, Thibault; Arnold, Isabelle C.; Pearson, Claire; Krausgruber, Thomas; Schiering, Chris; Franchini, Fanny; Schulthess, Julie; McKenzie, Brent S.; Crocker, Paul R.; Powrie, Fiona

    2015-01-01

    Summary The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target. PMID:26200014

  9. Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria.

    PubMed

    Jiang, Tony T; Shao, Tzu-Yu; Ang, W X Gladys; Kinder, Jeremy M; Turner, Lucien H; Pham, Giang; Whitt, Jordan; Alenghat, Theresa; Way, Sing Sing

    2017-12-13

    Commensal intestinal microbes are collectively beneficial in preventing local tissue injury and augmenting systemic antimicrobial immunity. However, given the near-exclusive focus on bacterial species in establishing these protective benefits, the contributions of other types of commensal microbes remain poorly defined. Here, we show that commensal fungi can functionally replace intestinal bacteria by conferring protection against injury to mucosal tissues and positively calibrating the responsiveness of circulating immune cells. Susceptibility to colitis and influenza A virus infection occurring upon commensal bacteria eradication is efficiently overturned by mono-colonization with either Candida albicans or Saccharomyces cerevisiae. The protective benefits of commensal fungi are mediated by mannans, a highly conserved component of fungal cell walls, since intestinal stimulation with this moiety alone overrides disease susceptibility in mice depleted of commensal bacteria. Thus, commensal enteric fungi safeguard local and systemic immunity by providing tonic microbial stimulation that can functionally replace intestinal bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Simple, Inexpensive Method for the Measurement of in vivo Intestinal Activity.

    ERIC Educational Resources Information Center

    Sallee, V. L.; Gaugl, J. F.

    1980-01-01

    Describes a system that monitors intestinal motility in vivo which is very sensitive, minimally injurious to the tissue, and inexpensive. Used are two balloons, one of which is inserted into the intestinal lumen and the other suspended from a force transducer. (CS)

  11. Potential use of MCR-ALS for the identification of coeliac-related biochemical changes in hyperspectral Raman maps from pediatric intestinal biopsies.

    PubMed

    Fornasaro, Stefano; Vicario, Annalisa; De Leo, Luigina; Bonifacio, Alois; Not, Tarcisio; Sergo, Valter

    2018-05-14

    Raman hyperspectral imaging is an emerging practice in biological and biomedical research for label free analysis of tissues and cells. Using this method, both spatial distribution and spectral information of analyzed samples can be obtained. The current study reports the first Raman microspectroscopic characterisation of colon tissues from patients with Coeliac Disease (CD). The aim was to assess if Raman imaging coupled with hyperspectral multivariate image analysis is capable of detecting the alterations in the biochemical composition of intestinal tissues associated with CD. The analytical approach was based on a multi-step methodology: duodenal biopsies from healthy and coeliac patients were measured and processed with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). Based on the distribution maps and the pure spectra of the image constituents obtained from MCR-ALS, interesting biochemical differences between healthy and coeliac patients has been derived. Noticeably, a reduced distribution of complex lipids in the pericryptic space, and a different distribution and abundance of proteins rich in beta-sheet structures was found in CD patients. The output of the MCR-ALS analysis was then used as a starting point for two clustering algorithms (k-means clustering and hierarchical clustering methods). Both methods converged with similar results providing precise segmentation over multiple Raman images of studied tissues.

  12. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

    NASA Astrophysics Data System (ADS)

    Dahan, Arik; Markovic, Milica; Keinan, Shahar; Kurnikov, Igor; Aponick, Aaron; Zimmermann, Ellen M.; Ben-Shabat, Shimon

    2017-11-01

    Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (ΔΔGtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

  13. Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon

    PubMed Central

    Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I

    2017-01-01

    Background Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Aim Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. Methods We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Results Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Conclusions Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role. PMID:29774159

  14. Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon.

    PubMed

    Latorre, Eva; Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I; Mesonero, José E

    2018-04-01

    Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role.

  15. Histochemical differences along the intestine of Corydoras paleatus (Siluriformes: Callichthyidae).

    PubMed

    Plaul, Silvia E; Barbeito, Claudio G; Díaz, Alcira O

    2016-03-01

    The Neotropical catfish Corydoras paleatus is a facultative air-breather and the caudal half of the intestine is involved in gas exchange. In South America, air-breathing fishes are found in tropical or sub-tropical freshwaters where the probability of hypoxia is high. The aim of this study was to characterize by traditional histochemical and lectinhistochemical methods the pattern of carbohydrate in the intestinal mucosa. Intestine samples were taken from 25 healthy adult specimens collected in Buenos Aires (Argentina). Samples were fixed by immersion in 10 % buffered formalin and routinely processed and embedded in paraffin wax. Subsequently, these sections were incubated in the biotinylated lectins battery. Labeled Streptavidin-Biotin (LSAB) system was used for detection, diaminobenzidine as chromogen and haematoxylin as a contrast. To locate and distinguish glycoconjugates (GCs) of the globet cells, we used the following histochemical methods: PAS; PAS*S; KOH/ PA*S; PA/Bh/KOH/PAS; KOH/PA*/Bh/PAS; Alcian Blue and Toluidine Blue at different pHs. Microscopically, the general structure of vertebrate intestine was observed and showed all the cell types characteristic of the intestinal epithelium. The cranial sector of catfish intestine is a site of digestion and absorption and its structure is similar to other fish groups. In contrast, enterocytes of the caudal portion are low cuboidal cells; and between these, globet cells and capillaries are observed, these latter may reach the mucosal lumen. Underlying the epithelium, observed a well-developed lamina propria-submucosa made of connective tissue; this layer was highly vascularized and did not exhibit glands. According to histochemistry, the diverse GCs elaborated and secreted in the intestine are associated with specific functions in relation to their physiological significance, with special reference to their role in lubrication, buffering effect and prevention of proteolytic damage to the epithelium together with other biological processes, such as osmoregulation and ion exchange. The lectinhistochemical analysis of the intestinal mucosa reveals the presence of terminal residues of glucose, mannose and galactose. In conclusion, this study has shown that GCs synthesized in the intestine of C. paleatus exhibit a high level of histochemical complexity and that the lectin binding pattern of the intestinal mucosa is characteristic of each species and the variations are related with the multiple functions performed by the mucus in the digestive tract. The information generated here may be a relevant biological tool for comparing and analyzing the possible glycosidic changes in the intestinal mucus under different conditions, such as changes in diet or different pathological stages.

  16. Murine lethal milk mutation causes maternal accumulation of zinc in intestine and kidney and reduced zinc transport to milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohyeel Lee; Cousins, R.J.

    1991-03-15

    The lethal milk (Lm) mutation is autosomal recessive in C57BL/6J mice and causes Zn deficiency in pups nursed by Lm dams. The genetic defect may cause a shift in the tissue Zn distribution in Lm dams since their milk has a 34-45% lower Zn concentration than milk of normal (N) dams. To examine tissue Zn distribution and Zn transport to milk and pups, 1 {mu}Ci of {sup 65}Zn was administered ip to lactating N and Lm dams. They also received 800 {mu}g Zn/ml in their drinking water to preclude short term, terminal zinc deficiency in the neonates nursed by Lmmore » dams. {sup 65}Zn content of milk and tissues of dams and tissues of pups was measured. Transport of {sup 65}Zn to milk of Lm dams was about 50% compared to milk of N dams. The percentage of the {sup 65}Zn dose recovered in the intestine, liver, and kidney of N pups nursed by LM dams was markedly lower than those of N pups nursed by N dams. In contrast, the percentage of {sup 65}Zn in the intestine and kidney of Lm dams was about twice that of N dams. The elevated intestinal {sup 65}Zn was paralleled by and elevated metallothionein concentration, but the increased {sup 65}Zn in the kidney was not. The Lm gene defect might limit Zn transport to milk by shifting the Zn distribution in lactating dams to the intestine, kidney, and perhaps other tissues.« less

  17. Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia

    PubMed Central

    Anderson, Erik R.; Taylor, Matthew; Xue, Xiang; Ramakrishnan, Sadeesh K.; Martin, Angelical; Xie, Liwei; Bredell, Bryce X.; Gardenghi, Sara; Rivella, Stefano; Shah, Yatrik M.

    2013-01-01

    Several distinct congenital disorders can lead to tissue-iron overload with anemia. Repeated blood transfusions are one of the major causes of iron overload in several of these disorders, including β-thalassemia major, which is characterized by a defective β-globin gene. In this state, hyperabsorption of iron is also observed and can significantly contribute to iron overload. In β-thalassemia intermedia, which does not require blood transfusion for survival, hyperabsorption of iron is the leading cause of iron overload. The mechanism of increased iron absorption in β-thalassemia is unclear. We definitively demonstrate, using genetic mouse models, that intestinal hypoxia-inducible factor-2α (HIF2α) and divalent metal transporter-1 (DMT1) are activated early in the pathogenesis of β-thalassemia and are essential for excess iron accumulation in mouse models of β-thalassemia. Moreover, thalassemic mice with established iron overload had significant improvement in tissue-iron levels and anemia following disruption of intestinal HIF2α. In addition to repeated blood transfusions and increased iron absorption, chronic hemolysis is the major cause of tissue-iron accumulation in anemic iron-overload disorders caused by hemolytic anemia. Mechanistic studies in a hemolytic anemia mouse model demonstrated that loss of intestinal HIF2α/DMT1 signaling led to decreased tissue-iron accumulation in the liver without worsening the anemia. These data demonstrate that dysregulation of intestinal hypoxia and HIF2α signaling is critical for progressive iron overload in β-thalassemia and may be a novel therapeutic target in several anemic iron-overload disorders. PMID:24282296

  18. Effects of exercise preconditioning on intestinal ischemia-reperfusion injury.

    PubMed

    Gokbel, H; Oz, M; Okudan, N; Belviranli, M; Esen, H

    2014-01-01

    To investigate the effects of exercise preconditioning on oxidative injury in the intestinal tissue of rats. Sixty male Wistar rats were randomly divided into six groups as sham (n = 10), ischemia-reperfusion (n = 10), exercise (n = 10), exercise plus ischemia-reperfusion (n = 10), ischemic preconditioning (n = 10), and ischemic preconditioning plus ischemia-reperfusion groups (n = 10). Tissue levels of malondialdehyde and activities of myeloperoxidase and superoxide dismutase, and serum levels of tumor necrosis factor-alpha and interleukin-6 were measured. Intestinal tissue histopathology was also evaluated by light microscopy. Tumor necrosis factor-alpha concentrations significantly decreased in the exercise group compared to the sham group (p < 0.05). Myeloperoxidase activity significantly increased and superoxide dismutase activity significantly decreased in ischemia-reperfusion group compared to the sham group (p < 0.05). Superoxide dismutase activity in the ischemic preconditioning and ischemic preconditioning plus ischemia-reperfusion groups were significantly higher compared to the ischemia-reperfusion and exercise groups (p < 0.05). Histopathologically, intestinal injury significantly attenuated in the exercise plus ischemia-reperfusion group compared to the ischemia-reperfusion group. The results of the present study indicate that exercise training seems to have a protective role against intestinal ischemia-reperfusion injury (Tab. 3, Fig. 1, Ref. 35).

  19. Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides.

    PubMed

    Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu

    2016-01-01

    Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.

  20. Chicken parvovirus and its associations with malabsorption syndrome.

    PubMed

    Finkler, F; Lima, D A; Cerva, C; Moraes, L B; Cibulski, S P; Teixeira, T F; Santos, H F; Almeida, L L; Roehe, P M; Franco, A C

    2016-08-01

    Malabsorption syndrome (MAS) is a multifactorial syndrome which is characterized by enteric disorders and reduced growth rates of broilers. Such condition is responsible for significant economic losses to the poultry industry. A possible association between chicken parvovirus (ChPV) infections and the occurrence of MAS has been proposed. However, such association has not to date been elucidated in view that ChPV has been detected in healthy as well as in MAS-affected chickens. This study aimed to detect and quantify ChPV loads in sera and tissues of MAS-affected, as well as in healthy broilers. Fifty nine, 39-day-old broilers (50 diseased, 9 healthy birds), obtained from the same flocks, were examined. The highest ChPV DNA loads were detected in MAS-affected broilers, particularly in fecal samples and intestinal tissues (~5500 genomic copies/300ng of total DNA). The average viral genome load in serum in MAS-affected birds was 1134copies/mL, whereas no viral DNA was found in sera and thymus tissues from healthy animals. These findings reveal that MAS-affected broilers consistently carry ChPV DNA is serum, whereas healthy animals do not. In addition, viral loads in tissues (bursa of Fabricius, spleen, intestine and liver) of MAS-affected birds were significantly higher in comparison to the same tissues from healthy broilers. Although preliminary, the results obtained here indicate an association between the detection of ChPV DNA in serum, in addition to high ChPV viral loads in tissues, and the occurrence of MAS in broilers. Further experiments should be performed to confirm such results. Copyright © 2016. Published by Elsevier Ltd.

  1. Evaluation of Small Intestine Grafts Decellularization Methods for Corneal Tissue Engineering

    PubMed Central

    Oliveira, Ana Celeste; Garzón, Ingrid; Ionescu, Ana Maria; Carriel, Victor; Cardona, Juan de la Cruz; González-Andrades, Miguel; Pérez, María del Mar; Alaminos, Miguel; Campos, Antonio

    2013-01-01

    Advances in the development of cornea substitutes by tissue engineering techniques have focused on the use of decellularized tissue scaffolds. In this work, we evaluated different chemical and physical decellularization methods on small intestine tissues to determine the most appropriate decellularization protocols for corneal applications. Our results revealed that the most efficient decellularization agents were the SDS and triton X-100 detergents, which were able to efficiently remove most cell nuclei and residual DNA. Histological and histochemical analyses revealed that collagen fibers were preserved upon decellularization with triton X-100, NaCl and sonication, whereas reticular fibers were properly preserved by decellularization with UV exposure. Extracellular matrix glycoproteins were preserved after decellularization with SDS, triton X-100 and sonication, whereas proteoglycans were not affected by any of the decellularization protocols. Tissue transparency was significantly higher than control non-decellularized tissues for all protocols, although the best light transmittance results were found in tissues decellularized with SDS and triton X-100. In conclusion, our results suggest that decellularized intestinal grafts could be used as biological scaffolds for cornea tissue engineering. Decellularization with triton X-100 was able to efficiently remove all cells from the tissues while preserving tissue structure and most fibrillar and non-fibrillar extracellular matrix components, suggesting that this specific decellularization agent could be safely used for efficient decellularization of SI tissues for cornea TE applications. PMID:23799114

  2. In vivo deep tissue fluorescence imaging of the murine small intestine and colon

    NASA Astrophysics Data System (ADS)

    Crosignani, Viera; Dvornikov, Alexander; Aguilar, Jose S.; Stringari, Chiara; Edwards, Roberts; Mantulin, Williams; Gratton, Enrico

    2012-03-01

    Recently we described a novel technical approach with enhanced fluorescence detection capabilities in two-photon microscopy that achieves deep tissue imaging, while maintaining micron resolution. This technique was applied to in vivo imaging of murine small intestine and colon. Individuals with Inflammatory Bowel Disease (IBD), commonly presenting as Crohn's disease or Ulcerative Colitis, are at increased risk for developing colorectal cancer. We have developed a Giα2 gene knock out mouse IBD model that develops colitis and colon cancer. The challenge is to study the disease in the whole animal, while maintaining high resolution imaging at millimeter depth. In the Giα2-/- mice, we have been successful in imaging Lgr5-GFP positive stem cell reporters that are found in crypts of niche structures, as well as deeper structures, in the small intestine and colon at depths greater than 1mm. In parallel with these in vivo deep tissue imaging experiments, we have also pursued autofluorescence FLIM imaging of the colon and small intestine-at more shallow depths (roughly 160μm)- on commercial two photon microscopes with excellent structural correlation (in overlapping tissue regions) between the different technologies.

  3. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue-Resident Memory T Cells.

    PubMed

    Bergsbaken, Tessa; Bevan, Michael J; Fink, Pamela J

    2017-04-04

    Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8 + T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103 - CD69 + Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-β and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103 - CD69 + Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2 + IL-12-producing cells reduced the size of the CD103 - Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Detection of the Emerging Picornavirus Senecavirus A in Pigs, Mice, and Houseflies.

    PubMed

    Joshi, Lok R; Mohr, Kristin A; Clement, Travis; Hain, Kyle S; Myers, Bryan; Yaros, Joseph; Nelson, Eric A; Christopher-Hennings, Jane; Gava, Danielle; Schaefer, Rejane; Caron, Luizinho; Dee, Scott; Diel, Diego G

    2016-06-01

    Senecavirus A (SVA) is an emerging picornavirus that has been recently associated with an increased number of outbreaks of vesicular disease and neonatal mortality in swine. Many aspects of SVA infection biology and epidemiology remain unknown. Here, we present a diagnostic investigation conducted in swine herds affected by vesicular disease and increased neonatal mortality. Clinical and environmental samples were collected from affected and unaffected herds and were screened for the presence of SVA by real-time reverse transcriptase PCR and virus isolation. Notably, SVA was detected and isolated from vesicular lesions and tissues of affected pigs, environmental samples, mouse feces, and mouse small intestine. SVA nucleic acid was also detected in houseflies collected from affected farms and from a farm with no history of vesicular disease. Detection of SVA in mice and housefly samples and recovery of viable virus from mouse feces and small intestine suggest that these pests may play a role on the epidemiology of SVA. These results provide important information that may allow the development of improved prevention and control strategies for SVA. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Detection of the Emerging Picornavirus Senecavirus A in Pigs, Mice, and Houseflies

    PubMed Central

    Joshi, Lok R.; Mohr, Kristin A.; Clement, Travis; Hain, Kyle S.; Myers, Bryan; Yaros, Joseph; Nelson, Eric A.; Christopher-Hennings, Jane; Gava, Danielle; Schaefer, Rejane; Caron, Luizinho; Dee, Scott

    2016-01-01

    Senecavirus A (SVA) is an emerging picornavirus that has been recently associated with an increased number of outbreaks of vesicular disease and neonatal mortality in swine. Many aspects of SVA infection biology and epidemiology remain unknown. Here, we present a diagnostic investigation conducted in swine herds affected by vesicular disease and increased neonatal mortality. Clinical and environmental samples were collected from affected and unaffected herds and were screened for the presence of SVA by real-time reverse transcriptase PCR and virus isolation. Notably, SVA was detected and isolated from vesicular lesions and tissues of affected pigs, environmental samples, mouse feces, and mouse small intestine. SVA nucleic acid was also detected in houseflies collected from affected farms and from a farm with no history of vesicular disease. Detection of SVA in mice and housefly samples and recovery of viable virus from mouse feces and small intestine suggest that these pests may play a role on the epidemiology of SVA. These results provide important information that may allow the development of improved prevention and control strategies for SVA. PMID:27030489

  6. Gene and protein expression and cellular localisation of cytochrome P450 enzymes of the 1A, 2A, 2C, 2D and 2E subfamilies in equine intestine and liver.

    PubMed

    Tydén, Eva; Tjälve, Hans; Larsson, Pia

    2014-10-08

    Among the cytochrome P450 enzymes (CYP), families 1-3 constitute almost half of total CYPs in mammals and play a central role in metabolism of a wide range of pharmaceuticals. This study investigated gene and protein expression and cellular localisation of CYP1A, CYP2A, CYP2C, CYP2D and CYP2E in equine intestine and liver. Real-time polymerase chain reaction (RT-PCR) was used to analyse gene expression, western blot to examine protein expression and immunohistochemical analyses to investigate cellular localisation. CYP1A and CYP2C were the CYPs with the highest gene expression in the intestine and also showed considerable gene expression in the liver. CYP2E and CYP2A showed the highest gene expression in the liver. CYP2E showed moderate intestinal gene expression, whereas that of CYP2A was very low or undetectable. For CYP2D, rather low gene expression levels were found in both intestine and the liver. In the intestine, CYP gene expression levels, except for CYP2E, exhibited patterns resembling those of the proteins, indicating that intestinal protein expression of these CYPs is regulated at the transcriptional level. For CYP2E, the results showed that the intestinal gene expression did not correlate to any visible protein expression, indicating that intestinal protein expression of this CYP is regulated at the post-transcriptional level. Immunostaining of intestine tissue samples showed preferential CYP staining in enterocytes at the tips of intestinal villi in the small intestine. In the liver, all CYPs showed preferential localisation in the centrilobular hepatocytes. Overall, different gene expression profiles were displayed by the CYPs examined in equine intestine and liver. The CYPs present in the intestine may act in concert with those in the liver to affect the oral bioavailability and therapeutic efficiency of substrate drugs. In addition, they may play a role in first-pass metabolism of feed constituents and of herbal supplements used in equine practice.

  7. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is an epigenetic mechanism central to the development and maintenance of complex mammalian tissues, but our understanding of its role in intestinal development is limited. We used whole genome bisulfite sequencing, and found that differentiation of mouse colonic intestinal stem cell...

  8. Intestinal immune response to chicken Coccidiosis in the context of Th1 and Th17 response

    USDA-ARS?s Scientific Manuscript database

    Coccidiosis is one of the most economically important diseases of the chickens caused by several different Eimeria spp. The primary target tissue of Eimeria parasites is the intestinal mucosa and coccidiosis infection destroys intestinal epithelium resulting in nutrient malabsorption, body weight lo...

  9. SU-F-T-220: Validation of Hounsfield Unit-To-Stopping Power Ratio Calibration Used for Dose Calculation in Proton Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polf, J; Chung, H; Langen, K

    Purpose: To validate the stoichiometric calibration of the Hounsfield Unit (HU) to Stopping Power Ratio (SPR) calibration used to commission a commercial treatment planning system (TPS) for proton radiotherapy dose calculation. Methods and Materials: The water equivalent thickness (WET) of several individual pig tissues (lung, fat, muscle, liver, intestine, rib, femur), mixed tissue samples (muscle/rib, ice/femur, rib/air cavity/muscle), and an intact pig head were measured with a multi-layer ionization chamber (MLIC). A CT scan of each sample was obtained and imported into a commercial TPS. The WET calculated by the TPS for each tissue sample was compared to the measuredmore » WET value to determine the accuracy of the HU-to-SPR calibration curve used by the TPS to calculate dose. Results: The WET values calculated by the TPS showed good agreement (< 2.0%) with the measured values for bone and all soft tissues except fat (3.1% difference). For the mixed tissue samples and the intact pig head measurements, the difference in the TPS and measured WET values all agreed to within 3.5%. In addition, SPR values were calculated from the measured WET of each tissue, and compared to SPR values of reference tissues from ICRU 46 used to generate the HU-to-SPR calibration for the TPS. Conclusion: For clinical scenarios where the beam passes through multiple tissue types and its path is dominated by soft tissues, we believe using an uncertainty of 3.5% of the planned beam range is acceptable to account for uncertainties in the TPS WET determination.« less

  10. [Investigation of postconditioning in intestinal ischemia-reperfusion experimental models].

    PubMed

    Rosero, Olivér; Onody, Péter; Stangl, Rita; Hegedus, Viktor; Lotz, Gábor; Blázovics, Anna; Kupcsulik, Péter; Szijártó, Attila

    2011-02-01

    The ischemic-reperfusion injury of the intestine, which occurs as a consequence of circulatory redistribution or occlusion of the superior mesenteric artery, is associated with high mortality rates. Postconditioning may reduce ischemic-reperfusion damage in such cases. Effects of this new surgical method were investigated in rats. Male Wistar rats underwent 60 minutes of superior mesenteric artery occlusion in four groups: sham-operated, control and two postconditioned groups with different algorithms. Postconditioning was performed immediately at the beginning of reperfusion, by repetitive cycles of reperfusion and reocclusion. 3 cycles of 1 minute and 6 cycles of 10 seconds were applied according to groups. Intestinal microcirculation was followed by laser Doppler flowmetry. Blood and tissue samples were taken after 60 minutes of reperfusion. Histological analayses of the small intestine, measurement of serum necroenzyme levels and IL-6, mesenterial venous blood gas analyses were preformed and antioxidant state of the mucosa was investigated. The microcirculation during the reperfusion showed significant improvement in both postconditioned groups. Histological damage, necroenzyme and IL-6 levels were significantly reduced, while antioxidant state was improved in the postconditioned groups. Postconditioning was capable of increasing the guts chance to survive ischemic-reperfusion injury caused by superior mesenteric artery occlusion.

  11. Migration of antigen-presenting B cells from peripheral to mucosal lymphoid tissues may induce intestinal antigen-specific IgA following parenteral immunization.

    PubMed

    Coffin, S E; Clark, S L; Bos, N A; Brubaker, J O; Offit, P A

    1999-09-15

    Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.

  12. [Distribution of aconitum alkaloids in the corpse died of acute aconite intoxication].

    PubMed

    Liu, Wei; Shen, Min; Qin, Zhi-Qiang

    2009-06-01

    To investigate the distribution of aconite alkaloids in biological fluids and tissues in the corpse died of acute aconite intoxication and to provide information for sample selection and result evaluation in forensic identification. The content of aconite alkaloids in biological fluids and tissues were determined by liquid chromatography-tandem mass spectrometry. The content of aconite displayed in decending order of urine, bile, gastric content, heart blood, pancreas, heart, intestine, liver, kidney, stomach, lung, gallbladder and spleen, with no aconite detected in the brain. It was indicated that urine, bile and blood are the best specimens for the determination of aconite in body of the acute aconite intoxication.

  13. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs

    PubMed Central

    Cummings, Ryan J.; Barbet, Gaetan; Bongers, Gerold; Hartmann, Boris M.; Gettler, Kyle; Muniz, Luciana; Furtado, Glaucia C.; Cho, Judy; Lira, Sergio A.; Blander, J. Magarian

    2017-01-01

    Recognition and removal of apoptotic cells by professional phagocytes, including dendritic cells and macrophages, preserves immune self-tolerance and prevents chronic inflammation and autoimmune pathologies1,2. The diverse array of phagocytes that reside within different tissues, combined with the necessarily prompt nature of apoptotic cell clearance, makes it difficult to study this process in situ. The full spectrum of functions executed by tissue-resident phagocytes in response to homeostatic apoptosis, therefore, remains unclear. Here we show that mouse apoptotic intestinal epithelial cells (IECs), which undergo continuous renewal to maintain optimal barrier and absorptive functions3, are not merely extruded to maintain homeostatic cell numbers4, but are also sampled by a single subset of dendritic cells and two macrophage subsets within a well-characterized network of phagocytes in the small intestinal lamina propria5,6. Characterization of the transcriptome within each subset before and after in situ sampling of apoptotic IECs revealed gene expression signatures unique to each phagocyte, including macrophage-specific lipid metabolism and amino acid catabolism, and a dendritic-cell-specific program of regulatory CD4+ T-cell activation. A common ‘suppression of inflammation’ signature was noted, although the specific genes and pathways involved varied amongst dendritic cells and macrophages, reflecting specialized functions. Apoptotic IECs were trafficked to mesenteric lymph nodes exclusively by the dendritic cell subset and served as critical determinants for the induction of tolerogenic regulatory CD4+ T-cell differentiation. Several of the genes that were differentially expressed by phagocytes bearing apoptotic IECs overlapped with susceptibility genes for inflammatory bowel disease7. Collectively, these findings provide new insights into the consequences of apoptotic cell sampling, advance our understanding of how homeostasis is maintained within the mucosa and set the stage for development of novel therapeutics to alleviate chronic inflammatory diseases such as inflammatory bowel disease. PMID:27828940

  14. Detection of Chronic Wasting Disease Prions in Salivary, Urinary, and Intestinal Tissues of Deer: Potential Mechanisms of Prion Shedding and Transmission▿

    PubMed Central

    Haley, Nicholas J.; Mathiason, Candace K.; Carver, Scott; Zabel, Mark; Telling, Glenn C.; Hoover, Edward A.

    2011-01-01

    Efficient horizontal transmission is a signature trait of chronic wasting disease (CWD) in cervids. Infectious prions shed into excreta appear to play a key role in this facile transmission, as has been demonstrated by bioassays of cervid and transgenic species and serial protein misfolding cyclic amplification (sPMCA). However, the source(s) of infectious prions in these body fluids has yet to be identified. In the present study, we analyzed tissues proximate to saliva, urine, and fecal production by sPMCA in an attempt to elucidate this unique aspect of CWD pathogenesis. Oropharyngeal, urogenital, and gastrointestinal tissues along with blood and obex from CWD-exposed cervids (comprising 27 animals and >350 individual samples) were analyzed and scored based on the apparent relative CWD burden. PrPCWD-generating activity was detected in a range of tissues and was highest in the salivary gland, urinary bladder, and distal intestinal tract. In the same assays, blood from the same animals and unseeded normal brain homogenate controls (n = 116 of 117) remained negative. The PrP-converting activity in peripheral tissues varied from 10−11- to 100-fold of that found in brain of the same animal. Deer with highest levels of PrPCWD amplification in the brain had higher and more widely disseminated prion amplification in excretory tissues. Interestingly, PrPCWD was not demonstrable in these excretory tissues by conventional Western blotting, suggesting a low prion burden or the presence of protease-sensitive infectious prions destroyed by harsh proteolytic treatments. These findings offer unique insights into the transmission of CWD in particular and prion infection and trafficking overall. PMID:21525361

  15. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation.

    PubMed

    Kalujnaia, Svetlana; Hazon, Neil; Cramb, Gordon

    2016-08-01

    A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. Copyright © 2016 the American Physiological Society.

  16. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation

    PubMed Central

    Kalujnaia, Svetlana; Hazon, Neil

    2016-01-01

    A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. PMID:27252471

  17. Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats.

    PubMed

    Li, Hewei; Dong, Ling; Liu, Yang; Wang, Guopeng; Wang, Gang; Qiao, Yanjiang

    2014-05-15

    The present study was conducted to characterize the biopharmaceutics classification system (BCS) category of puerarin in terms of intrinsic dissolution rate (IDR) and rat intestinal permeability and to investigate the poor intestinal absorption probably related to the drug metabolism in the gut wall of rats. Equilibrium solubility of puerarin was determined in various phosphate buffers and water, and IDR was estimated by measuring the dissolution of a non-disintegrating compact. Intestinal permeability (Peff and Pblood) of puerarin was determined using the technology of in situ single-pass intestinal perfusion (SPIP) and intestinal perfusion with venous sampling (IPVS) in fasted rats. Metabolism of puerarin in intestinal tissue was tested by S9 incubation in vitro. The aqueous solubility of puerarin in phosphate buffers and water was good with a maximum solubility of 7.56 mg/mL at pH 7.4. Obtained IDR values of puerarin were in the range of 0.360-1.088 mg/min/cm(2), with maximum and minimum IDR value of pH 7.4 and pH 4.0, respectively. The Peff was 1.252 × 10(-5)cm/s determined by SPIP and the Pblood was 0.068×10(-5)cm/s by IPVS in jejunum at puerarin 80 μg/mL. The metabolism rate of puerarin determined by the intestinal S9 fraction indicated that the gut wall metabolism of puerarin is one cause of poor absorption. According to the proposed classification of drugs and the results obtained from equilibrium solubility, IDR, Peff and Pblood, it is concluded that puerarin could be categorized IV drug of the BCS based on its low solubility and low intestinal permeability values. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Use of rapid sampling microdialysis for intraoperative monitoring of bowel ischemia.

    PubMed

    Deeba, S; Corcoles, E P; Hanna, G B; Hanna, B G; Pareskevas, P; Aziz, O; Boutelle, M G; Darzi, A

    2008-09-01

    Intestinal ischemia is a major cause of anastomotic leak and death and remains a clinical challenge as the physician relies on several nonspecific signs, biologic markers, and radiologic studies to make the diagnosis. This study used rapid sampling online microdialysis to evaluate the biochemical changes occurring in a segment of human bowel during and after resection, and assessed for the feasibility and reproducibility of this technique in monitoring intestinal ischemia. A custom made, rapid sampling online microdialysis analyzer was used to monitor the changes in the bowel wall of specimens being resected intraoperatively. Two patients were recruited for the pilot study to optimize the analyzer and seven patients undergoing colonic resections were recruited for the data collection and analysis. The concentration of glucose in the extracellular bowel wall fluid decreased transiently after division of individual feeding arteries followed by a rebound increase in the concentration back to baseline concentrations. After completion of resection, glucose concentrations continued to decrease while lactate concentrations increased constantly. Rapid sampling microdialysis was feasible in the clinical environment. These results suggest that tissue responds to ischemic insult by mobilizing glucose stores which later decrease again, whereas lactate concentrations constantly increased.

  19. Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques.

    PubMed

    Barry, Christopher; Schmitz, Matthew T; Propson, Nicholas E; Hou, Zhonggang; Zhang, Jue; Nguyen, Bao K; Bolin, Jennifer M; Jiang, Peng; McIntosh, Brian E; Probasco, Mitchell D; Swanson, Scott; Stewart, Ron; Thomson, James A; Schwartz, Michael P; Murphy, William L

    2017-11-01

    The aim of the present study was to test sample reproducibility for model neural tissues formed on synthetic hydrogels. Human embryonic stem (ES) cell-derived precursor cells were cultured on synthetic poly(ethylene glycol) (PEG) hydrogels to promote differentiation and self-organization into model neural tissue constructs. Neural progenitor, vascular, and microglial precursor cells were combined on PEG hydrogels to mimic developmental timing, which produced multicomponent neural constructs with 3D neuronal and glial organization, organized vascular networks, and microglia with ramified morphologies. Spearman's rank correlation analysis of global gene expression profiles and a comparison of coefficient of variation for expressed genes demonstrated that replicate neural constructs were highly uniform to at least day 21 for samples from independent experiments. We also demonstrate that model neural tissues formed on PEG hydrogels using a simplified neural differentiation protocol correlated more strongly to in vivo brain development than samples cultured on tissue culture polystyrene surfaces alone. These results provide a proof-of-concept demonstration that 3D cellular models that mimic aspects of human brain development can be produced from human pluripotent stem cells with high sample uniformity between experiments by using standard culture techniques, cryopreserved cell stocks, and a synthetic extracellular matrix. Impact statement Pluripotent stem (PS) cells have been characterized by an inherent ability to self-organize into 3D "organoids" resembling stomach, intestine, liver, kidney, and brain tissues, offering a potentially powerful tool for modeling human development and disease. However, organoid formation must be quantitatively reproducible for applications such as drug and toxicity screening. Here, we report a strategy to produce uniform neural tissue constructs with reproducible global gene expression profiles for replicate samples from multiple experiments.

  20. FAK Regulates Intestinal Epithelial Cell Survival and Proliferation during Mucosal Wound Healing

    PubMed Central

    Tilghman, Robert W.; Casanova, James E.; Bouton, Amy H.

    2011-01-01

    Background Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo. Methodology and Principal Findings To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression. Conclusions In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1. PMID:21887232

  1. Case–control study of Epstein–Barr virus and Helicobacter pylori serology in Latin American patients with gastric disease.

    PubMed

    Cárdenas-Mondragón, M G; Torres, J; Flores-Luna, L; Camorlinga-Ponce, M; Carreón-Talavera, R; Gomez-Delgado, A; Kasamatsu, E; Fuentes-Pananá, E M

    2015-06-09

    Chronic tissue damage induced by Helicobacter pylori (HP)-driven inflammation is considered the main risk of gastric carcinoma (GC). Epstein–Barr virus (EBV) infection has also been associated with GC. In this study, we aim to address the role of EBV in inflammatory GC precursor lesions and its added risk to HP infection. Antibodies against EBV, HP and the bacterial virulence factor CagA were measured in sera from 525 Mexican and Paraguayan patients with gastric disease. Gastric samples were characterised according to the updated Sydney classification and associations were estimated between antibody responses and severity of both tissue damage and inflammation. We found significant associations (odd ratios and trends) between EBV and HP copositivity and premalignant lesions and intestinal-type GC. The EBV and HP coinfection was also significantly associated with increased infiltration of immune cells. No association was found between EBV and the less inflammation-driven diffuse-type GC. Our study suggests that EBV co-participates with HP to induce severe inflammation, increasing the risk of progression to intestinal-type GC.

  2. Metabolic effects of dietary sugar beet pulp or wheat bran in growing female pigs.

    PubMed

    Weber, T E; Kerr, B J

    2012-02-01

    An experiment was conducted to determine the effects of feeding a moderate level of 2 different fiber sources on energy metabolites; mitochondrial biogenesis in the intestine, liver, and muscle; and the expression of some genes that regulate energy metabolism in intestine, liver, muscle, and adipose tissue. Female pigs (n = 36; BW = 15.0 ± 0.7 kg) were fed diets containing no added fiber, 12.5% sugar beet pulp (SBP), or 12.5% wheat bran (WB) for 24 d. Blood samples were collected on d 7 and 24 for cholesterol, glucose, NEFA, and triglyceride analyses. At completion of the experiment, ileum, colon, subcutaneous adipose, and LM samples were obtained from a subset (n = 6) of pigs fed each diet for analysis of tissue mitochondrial DNA (mtDNA) content and mRNA abundance by quantitative real-time reverse-transcription PCR. Glycogen and triglyceride content of liver and LM were determined, and colon content VFA was also determined. The addition of SBP or WB to the diet had no effect (P > 0.55) on ADG, ADFI, or G:F. Serum NEFA and triglycerides were increased (P < 0.05) in pigs fed SBP compared with pigs fed the control diet or WB on d 7, and NEFA remained increased (P < 0.05) on d 24 in pigs fed SBP. Dietary fiber had no effect (P > 0.24) on glycogen and triglyceride content of liver or LM, but colonic acetate concentrations were increased (P < 0.05) in pigs fed either SBP or WB. Pigs fed WB had an increased (P < 0.05) mtDNA content in ileum tissue and increased (P < 0.05) citrate synthase mRNA in colon tissue. In the liver, feeding either SBP or WB led to a decrease (P < 0.05) in mtDNA content, whereas feeding WB decreased (P < 0.05) mtDNA abundance in the LM, and feeding either SBP or WB decreased (P < 0.05) expression of citrate synthase mRNA. Quantitative reverse-transcription PCR revealed that feeding WB increased (P < 0.05) proliferating cell nuclear antigen mRNA abundance in the ileum and colon. Feeding WB increased (P < 0.05) mRNA abundance of a regulator of mitochondrial biogenesis, PPAR coactivator 1 α, in ileum tissue, and increased (P < 0.05) mRNA abundance of another mediator of mitochondrial biogensis, sirtuin 1, in colon tissue. Colonic mRNA expression of fasting-induced adipose factor was increased (P < 0.05) in pigs fed either SBP or WB, and adipose triglyceride lipase mRNA abundance was increased (P < 0.05) in adipose tissue of pigs fed SBP. These data indicate that increasing dietary fiber can increase the capacity of the intestine for oxidative metabolism and induce a repartitioning of energy metabolites depending on fiber source.

  3. Seasonally variable intestinal metagenomes of the red palm weevil (Rhynchophorus ferrugineus)

    PubMed Central

    Jia, Shangang; Zhang, Xiaowei; Zhang, Guangyu; Yin, An; Zhang, Sun; Li, Fusen; Wang, Lei; Zhao, Duojun; Yun, Quanzheng; Tala; Wang, Jixiang; Sun, Gaoyuan; Baabdullah, Mohammed; Yu, Xiaoguang; Hu, Songnian; Al-Mssallem, Ibrahim S; Yu, Jun

    2013-01-01

    The intestinal microbes residing in the red palm weevil (RPW, Rhynchophorus ferrugineus) larva consume tender interior fibrous tissues of date palm trunks. The understanding of such microbiota at molecular level provides vital clues for the biological control of this devastating pest. Using pyrosequencing and shotgun strategy, we first study taxonomic profiles of the microbiota sampled at different months (March, July and November), and then confirm the impact of high-temperature stress on the microbial populations based on data from 16S rRNA amplicons using both field and laboratory samples. We further identify Klebsiella pneumoniae in November and Lactococcus lactis in July as the dominant species of the microbiota. We find that the RPW gut microbiota degrades polysaccharides and sucrose with hydrolases and that different active bacterial species in November and July are responsible for the symbiotic relationship between the microbiota and the host. Our results provide vital information for pest control and cellulolytic bacterial species characterization. PMID:24102776

  4. Intestinal stem cells: no longer immortal but ever so clever....

    PubMed

    Edgar, Bruce A

    2012-05-30

    To maintain tissue homeostasis, stem cells must balance self-renewal with differentiation. In some stem cell lineages this process is 'hard-wired' by the asymmetric partitioning of determinants at division, such that one stem cell daughter always remains pluripotent and other differentiates. But in a dynamic tissue like the intestinal epithelium, which might need to repair itself following an infection or expand to digest the fall harvest, this balancing act requires more flexibility. Recent studies of intestinal stem cell (ISC) lineages in the fruit fly and mouse provide new insights into how this plasticity is achieved. The mechanisms in these two homologous but rather different organs have remarkable similarities, and so are likely relevant to how stem cell pools are controlled in organs other than the intestine.

  5. Effects of n-3 PUFAs on Intestinal Mucosa Innate Immunity and Intestinal Microbiota in Mice after Hemorrhagic Shock Resuscitation.

    PubMed

    Tian, Feng; Gao, Xuejin; Zhang, Li; Wang, Xinying; Wan, Xiao; Jiang, Tingting; Wu, Chao; Bi, Jingcheng; Lei, Qiucheng

    2016-09-29

    n -3 polyunsaturated fatty acids (PUFAs) can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR). However, the effects of n -3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n -3 PUFAs and HSR + n -6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n -3 and n -6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n -3 PUFAs had an advantage over n -6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n -3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n -3 PUFAs to patients recovering from ischemia-reperfusion.

  6. Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria.

    PubMed

    Amin, Ruhul; Asplin, John; Jung, Daniel; Bashir, Mohamed; Alshaikh, Altayeb; Ratakonda, Sireesha; Sharma, Sapna; Jeon, Sohee; Granja, Ignacio; Matern, Dietrich; Hassan, Hatim

    2018-05-01

    Most kidney stones are composed of calcium oxalate, and minor changes in urine oxalate affect the stone risk. Obesity is a risk factor for kidney stones and a positive correlation of unknown etiology between increased body size, and elevated urinary oxalate excretion has been reported. Here, we used obese ob/ob (ob) mice to elucidate the pathogenesis of obesity-associated hyperoxaluria. These ob mice have significant hyperoxaluria (3.3-fold) compared with control mice, which is not due to overeating as shown by pair-feeding studies. Dietary oxalate removal greatly ameliorated this hyperoxaluria, confirming that it is largely enteric in origin. Transporter SLC26A6 (A6) plays an essential role in active transcellular intestinal oxalate secretion, and ob mice have significantly reduced jejunal A6 mRNA (- 80%) and total protein (- 62%) expression. While net oxalate secretion was observed in control jejunal tissues mounted in Ussing chambers, net absorption was seen in ob tissues, due to significantly reduced secretion. We hypothesized that the obesity-associated increase in intestinal and systemic inflammation, as reflected by elevated proinflammatory cytokines, suppresses A6-mediated intestinal oxalate secretion and contributes to obesity-associated hyperoxaluria. Indeed, proinflammatory cytokines (elevated in ob mice) significantly decreased intestinal oxalate transport in vitro by reducing A6 mRNA and total protein expression. Proinflammatory cytokines also significantly reduced active mouse jejunal oxalate secretion, converting oxalate transport from net secretion in vehicle-treated tissues to net absorption in proinflammatory cytokines-treated tissues. Thus, reduced active intestinal oxalate secretion, likely secondary to local and systemic inflammation, contributes to the pathogenesis of obesity-associated hyperoxaluria. Hence, proinflammatory cytokines represent potential therapeutic targets. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. The autodigestion hypothesis: Proteolytic receptor cleavage in rheological and cardiovascular cell dysfunction1

    PubMed Central

    Schmid-Schönbein, Geert W.

    2017-01-01

    Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737

  8. Impacts of maternal selenium supply and nutritional plane on visceral tissues and intestinal biology in 180 day-old offspring in sheep.

    USDA-ARS?s Scientific Manuscript database

    Objectives were to investigate the effects of maternal Se supply and nutritional plane during gestation on offspring visceral tissues and indices of intestinal growth, vascularity, and function at 180 d of age. Rambouillet ewe lambs (n = 82, approximately 240 d of age; 52 ± 0.8 kg BW at breeding) we...

  9. Effect of short-term ornithine alpha-ketoglutarate pretreatment on intestinal ischemia-reperfusion in rats.

    PubMed

    Gonçalves, Eduardo Silvio Gouveia; Rabelo, Camila Menezes; Prado Neto, Alberico Ximenes do; Garcia, José Huygens Parente; Guimarães, Sérgio Botelho; Vasconcelos, Paulo Roberto Leitão de

    2011-01-01

    To investigate the effects of preventive enteral administration of ornithine alpha-ketoglutarate (OKG) in an ischemia-reperfusion rat model. Sixty rats were randomized into five groups (G1-G5, n = 12). Each group was divided into two subgroups (n = 6) and treated with calcium carbonate (CaCa) or OKG by gavage. Thirty minutes later, the animals were anesthetized with xylazine 15mg + ketamine 1mg ip and subjected to laparotomy. G1-G3 rats served as controls. Rats in groups G4 and G5 were subjected to ischemia for 30 minutes. Ischemia was achieved by clamping the small intestine and its mesentery, delimiting a segment of bowel 5 cm long and 5 cm apart from the ileocecal valve. In addition, G5 rats underwent reperfusion for 30 minutes. Blood samples were collected at the end of the laparotomy (G1), after 30 minutes (G2, G4) and 60 minutes (G3, G5) to determine concentrations of metabolites (pyruvate, lactate), creatine phosphokinase (CPK), thiobarbituric acid reactive substances (TBARS) and glutathione (GSH). There was a significant decrease in tissue pyruvate and lactate and plasma CPK levels in OKG-treated rats at the end of reperfusion period. GSH levels did not change significantly in ischemia and reperfusion groups. However, TBARS levels increased significantly (p<0.05) in tissue samples in OKG-treated rats subjected to ischemia for 30 minutes. Short-term pretreatment with OKG before induction of I/R decreases tissue damage, increases pyruvate utilization for energy production in the Krebs cycle and does not attenuate the oxidative stress in this animal model.

  10. [Effects of sodium aescinate on the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion in rats].

    PubMed

    Wang, Yan-Lei; Jing, You-Ling; Cai, Qing-Yan; Cui, Guo-Jin; Zhang, Yi-Bing; Zhang, Feng-Yu

    2012-03-01

    To investigate the relationship between apoptosis-related genes and lung injury induced by intestinal ischemia reperfusion and to explore the effects and its possible mechanism of sodium aescinate. Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: sham group, intestinal ischemia/reperfusion group (I/R group) and sodium aescinate group (SA + I/R group). Lung wet/dry weight ratio, lung coefficient and Superoxide dismutase (SOD), malondialdehyde (MDA) in plasma and lung tissue were measured, as well as the expression levels of Bcl-2 and Bax proteins in lung tissue were examined using immunohistochemical method. Compared with sham group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly increased, and while the activity of SOD in plasma and lung tissue were decreased significantly in I/R group. At the same time, the protein expression level of Bcl-2 and Bax were significantly increased. But Bax protein expression was much greater than that of Bcl-2, the ratio of Bcl-2 to Bax was decreased significantly in I/R group than that in sham group. Compared with I/R group, lung wet/dry weight ratio, lung coefficient and MDA in plasma and lung tissue were significantly decreased, and while the activity of SOD in serum and lung tissue were significantly increased in SA + I/R group. At the same time, Bax protein expression was significantly decreased, both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SA + I/R group than that in I/R group. Lung injury induced by intestinal ischemia reperfusion is correlated with abnormal expression levels of Bcl-2 and Bax protein which is caused by oxidative injury. Sodium aescinate can protect the lung injury induced by intestinal ischemia/reperfusion (I/R), which may be mediated by inhibiting lipid peroxidation, upregulating Bcl-2 gene protein expression, improving the ratio of Bcl-2/ Bax to inhibit lung apoptosis.

  11. Culture-Independent Identification of Mycobacterium avium Subspecies paratuberculosis in Ovine Tissues: Comparison with Bacterial Culture and Histopathological Lesions

    PubMed Central

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Johne’s disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR) test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38). Likewise, almost all tissue culture (61/64) or histopathology (52/58) positives were detected with good to moderate agreement (Cohen’s kappa statistic) and no significant difference to the reference tests (McNemar’s Chi-square test). Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07). Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption. PMID:29312970

  12. Culture-Independent Identification of Mycobacterium avium Subspecies paratuberculosis in Ovine Tissues: Comparison with Bacterial Culture and Histopathological Lesions.

    PubMed

    Acharya, Kamal R; Dhand, Navneet K; Whittington, Richard J; Plain, Karren M

    2017-01-01

    Johne's disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR) test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38). Likewise, almost all tissue culture (61/64) or histopathology (52/58) positives were detected with good to moderate agreement (Cohen's kappa statistic) and no significant difference to the reference tests (McNemar's Chi-square test). Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07). Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption.

  13. Growth hormone and nutrition as protective agents against methotrexate induced enteritis.

    PubMed

    Ortega, M; de Segura, I A; Vázquez, I; López, J M; De Miguel, E

    2001-03-01

    To determine whether exogenously administered growth hormone can reduce or prevent chemotherapy-induced intestinal mucosa injury. The expected results will allow to consider its potential clinical use. Experimental and randomized study. Experimental Surgery Service, La Paz University Hospital. Adult Wistar rats weighing 250-300 g. A chemotherapy protocol with methotrexate (MTX) (120 mg/kg) was employed. Animals fed either with a normoproteic or a hyperproteic liquid diet were treated with either saline or growth hormone (1 mg/kg/day) since three days before until four days after chemotherapy. Animals were sacrificed seven days after MTX administration for tissue sampling. Co-administration of growth hormone and a hyperproteic diet increased intestinal crypt proliferation and reduced MTX-induced apoptosis. Jejunal mucosal structure (morphometry), proliferation (Ki-67) and apoptosis (TUNNEL) were assessed.

  14. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB.

    PubMed

    Turan, Inci; Sayan Ozacmak, Hale; Ozacmak, V Haktan; Barut, Figen; Ozacmak, I Diler

    2018-06-01

    Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Abdominal sounds

    MedlinePlus

    ... intestines, or strangulation of the bowel and death ( necrosis ) of the bowel tissue. Very high-pitched bowel ... missing bowel sounds may be caused by: Blocked blood vessels prevent the intestines from getting proper blood flow. ...

  16. Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models

    PubMed Central

    Govers, Coen; van der Meulen, Jan; van Hoef, Angeline; Stoopen, Geert; Hamers, Astrid; Hoekman, Arjan; de Vos, Ric; Bovee, Toine F. H.; Smits, Mari; Mes, Jurriaan J.

    2016-01-01

    Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies. PMID:27631494

  17. Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.

    PubMed

    de Wit, Nicole J W; Hulst, Marcel; Govers, Coen; van der Meulen, Jan; van Hoef, Angeline; Stoopen, Geert; Hamers, Astrid; Hoekman, Arjan; de Vos, Ric; Bovee, Toine F H; Smits, Mari; Mes, Jurriaan J; Hendriksen, Peter J M

    2016-01-01

    Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.

  18. Regulation of human intestinal T-cell responses by type 1 interferon-STAT1 signaling is disrupted in inflammatory bowel disease.

    PubMed

    Giles, E M; Sanders, T J; McCarthy, N E; Lung, J; Pathak, M; MacDonald, T T; Lindsay, J O; Stagg, A J

    2017-01-01

    Type 1 interferon (IFN-1) promotes regulatory T-cell function to suppress inflammation in the mouse intestine, but little is known about IFN-1 in the human gut. We therefore assessed the influence of IFN-1 on CD4+ T-cells isolated from human colon tissue obtained from healthy controls or patients with inflammatory bowel disease (IBD). Immunofluorescent imaging revealed constitutive expression of IFNβ in human intestinal tissue, and colonic T-cells were responsive to exogenous IFN-1 as assessed by phosphorylation of signal transduction and activator of transcription 1 (pSTAT1) and induction of interferon stimulated genes (ISGs). Unlike their blood counterparts, intestinal T-cells from non-inflamed regions of IBD colon displayed enhanced responsiveness to IFN-1, increased frequency of pSTAT1+ cells, and greater induction of ISGs upon IFN-1 exposure in vitro. In healthy tissue, antibody neutralization of IFNβ selectively reduced T-cell production of the pro-regulatory cytokine interleukin-10 (IL-10) and increased IFNγ synthesis. In contrast, neutralization of IFNβ in IBD tissue cultures increased the frequency of T-cells producing inflammatory cytokines but did not alter IL-10 expression. These data support a role for endogenous IFN-1 as a context-dependent modulator of T-cell function that promotes regulatory activity in healthy human intestine, but indicate that the IFN-1/STAT1 pathway is dysregulated in inflammatory bowel disease.

  19. Comparison of the chloride channel activator lubiprostone and the oral laxative Polyethylene Glycol 3350 on mucosal barrier repair in ischemic-injured porcine intestine.

    PubMed

    Moeser, Adam-J; Nighot, Prashant-K; Roerig, Birgit; Ueno, Ryuji; Blikslager, Anthony-T

    2008-10-21

    To investigate the effects of lubiprostone and Polyethylene Glycol 3350 (PEG) on mucosal barrier repair in ischemic-injured porcine intestine. Ileum from 6 piglets (approximately 15 kg body weight) was subjected to ischemic conditions by occluding the local mesenteric circulation for 45 min in vivo. Ileal tissues from each pig were then harvested and mounted in Ussing chambers and bathed in oxygenated Ringer's solution in vitro. Intestinal barrier function was assessed by measuring transepithelial electrical resistance (TER) and mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Statistical analyses of data collected over a 120-min time course included 2-way ANOVA for the effects of time and treatment on indices of barrier function. Application of 1 micromol/L lubiprostone to the mucosal surface of ischemic-injured ileum in vitro induced significant elevations in TER compared to non-treated tissue. Lubiprostone also reduced mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Alternatively, application of a polyethylene laxative (PEG, 20 mmol/L) to the mucosal surface of ischemic tissues significantly increased flux of (3)H-mannitol and (14)C-inulin. This experiment demonstrates that lubiprostone stimulates recovery of barrier function in ischemic intestinal tissues whereas the PEG laxative had deleterious effects on mucosal repair. These results suggest that, unlike osmotic laxatives, lubiprostone stimulates repair of the injured intestinal barrier.

  20. Comparison of the chloride channel activator lubiprostone and the oral laxative Polyethylene Glycol 3350 on mucosal barrier repair in ischemic-injured porcine intestine

    PubMed Central

    Moeser, Adam J; Nighot, Prashant K; Roerig, Birgit; Ueno, Ryuji; Blikslager, Anthony T

    2008-01-01

    AIM: To investigate the effects of lubiprostone and Polyethylene Glycol 3350 (PEG) on mucosal barrier repair in ischemic-injured porcine intestine. METHODS: Ileum from 6 piglets (approximately 15 kg body weight) was subjected to ischemic conditions by occluding the local mesenteric circulation for 45 min in vivo. Ileal tissues from each pig were then harvested and mounted in Ussing chambers and bathed in oxygenated Ringer’s solution in vitro. Intestinal barrier function was assessed by measuring transepithelial electrical resistance (TER) and mucosal-to-serosal fluxes of 3H-mannitol and 14C-inulin. Statistical analyses of data collected over a 120-min time course included 2-way ANOVA for the effects of time and treatment on indices of barrier function. RESULTS: Application of 1 μmol/L lubiprostone to the mucosal surface of ischemic-injured ileum in vitro induced significant elevations in TER compared to non-treated tissue. Lubiprostone also reduced mucosal-to-serosal fluxes of 3H-mannitol and 14C-inulin. Alternatively, application of a polyethylene laxative (PEG, 20 mmol/L) to the mucosal surface of ischemic tissues significantly increased flux of 3H-mannitol and 14C-inulin. CONCLUSION: This experiment demonstrates that lubiprostone stimulates recovery of barrier function in ischemic intestinal tissues whereas the PEG laxative had deleterious effects on mucosal repair. These results suggest that, unlike osmotic laxatives, lubiprostone stimulates repair of the injured intestinal barrier. PMID:18932279

  1. A case of fetal intestinal volvulus without malrotation causing severe anemia.

    PubMed

    Nakagawa, Tomoko; Tachibana, Daisuke; Kitada, Kohei; Kurihara, Yasushi; Terada, Hiroyuki; Koyama, Masayasu; Sakae, Yukari; Morotomi, Yoshiki; Nomura, Shiho; Saito, Mika

    2015-01-01

    Fetal intestinal volvulus without malrotation is a rare, life-threatening disease. Left untreated, hemorrhage from necrotic bowel tissue will lead to severe fetal anemia and even intrauterine death. We encountered a case of fetal intestinal volvulus causing severe anemia, which was diagnosed postnatally and successfully treated with surgical intervention.

  2. A Case of Fetal Intestinal Volvulus Without Malrotation Causing Severe Anemia

    PubMed Central

    Nakagawa, Tomoko; Tachibana, Daisuke; Kitada, Kohei; Kurihara, Yasushi; Terada, Hiroyuki; Koyama, Masayasu; Sakae, Yukari; Morotomi, Yoshiki; Nomura, Shiho; Saito, Mika

    2015-01-01

    Fetal intestinal volvulus without malrotation is a rare, life-threatening disease. Left untreated, hemorrhage from necrotic bowel tissue will lead to severe fetal anemia and even intrauterine death. We encountered a case of fetal intestinal volvulus causing severe anemia, which was diagnosed postnatally and successfully treated with surgical intervention. PMID:25628516

  3. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo

    PubMed Central

    Brunham, Liam R.; Kruit, Janine K.; Iqbal, Jahangir; Fievet, Catherine; Timmins, Jenelle M.; Pape, Terry D.; Coburn, Bryan A.; Bissada, Nagat; Staels, Bart; Groen, Albert K.; Hussain, M. Mahmood; Parks, John S.; Kuipers, Folkert; Hayden, Michael R.

    2006-01-01

    Plasma HDL cholesterol levels are inversely related to risk for atherosclerosis. The ATP-binding cassette, subfamily A, member 1 (ABCA1) mediates the rate-controlling step in HDL particle formation, the assembly of free cholesterol and phospholipids with apoA-I. ABCA1 is expressed in many tissues; however, the physiological functions of ABCA1 in specific tissues and organs are still elusive. The liver is known to be the major source of plasma HDL, but it is likely that there are other important sites of HDL biogenesis. To assess the contribution of intestinal ABCA1 to plasma HDL levels in vivo, we generated mice that specifically lack ABCA1 in the intestine. Our results indicate that approximately 30% of the steady-state plasma HDL pool is contributed by intestinal ABCA1 in mice. In addition, our data suggest that HDL derived from intestinal ABCA1 is secreted directly into the circulation and that HDL in lymph is predominantly derived from the plasma compartment. These data establish a critical role for intestinal ABCA1 in plasma HDL biogenesis in vivo. PMID:16543947

  4. Free Total Rhubarb Anthraquinones Protect Intestinal Injury via Regulation of the Intestinal Immune Response in a Rat Model of Severe Acute Pancreatitis

    PubMed Central

    Xiong, Yuxia; Chen, Li; Fan, Ling; Wang, Lulu; Zhou, Yejiang; Qin, Dalian; Sun, Qin; Wu, Jianming; Cao, Shousong

    2018-01-01

    Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP). Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs) isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg) into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg) or normal saline (control) immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), nitric oxide (NO), myeloperoxidase (MPO), capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD domain (ASC), casepase-1, secretary immunoglobulin A (SIgA), regulatory T cells (Tregs), and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN) cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while significantly increased the expression of SIgA in the intestinal tissues and/or MLN cells in SAP rats. Our results indicate that FTRAs could protect intestinal injury and improve intestinal mucosal barrier function through regulating immune function of SAP rats. Therefore, FTRAs may have the potential to be developed as the novel agent for the treatment of SAP clinically. PMID:29487524

  5. AMPK modulates tissue and organismal aging in a cell-non-autonomous manner

    PubMed Central

    Ulgherait, Matthew; Rana, Anil; Rera, Michael; Graniel, Jacqueline; Walker, David W.

    2014-01-01

    AMPK exerts pro-longevity effects in diverse species; however, the tissue-specific mechanisms involved are poorly understood. Here, we show that up-regulation of AMPK in the adult Drosophila nervous system induces autophagy both in the brain and also in the intestinal epithelium. Induction of autophagy is linked to improved intestinal homeostasis during aging and extended lifespan. Neuronal up-regulation of the autophagy-specific protein kinase Atg1 is both necessary and sufficient to induce these inter-tissue effects during aging and to prolong lifespan. Furthermore, up-regulation of AMPK in the adult intestine induces autophagy both cell autonomously and non-autonomously in the brain, slows systemic aging and prolongs lifespan. We show that the organism-wide response to tissue-specific AMPK/Atg1 activation is linked to reduced insulin-like peptide levels in the brain and a systemic increase in 4E-BP expression. Together, these results reveal that localized activation of AMPK and/or Atg1 in key tissues can slow aging in a cell-non-autonomous manner. PMID:25199830

  6. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    PubMed

    Cotton, James A; Motta, Jean-Paul; Schenck, L Patrick; Hirota, Simon A; Beck, Paul L; Buret, Andre G

    2014-01-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment.

  7. Increased variability in ApcMin/+ intestinal tissue can be measured with microultrasound

    NASA Astrophysics Data System (ADS)

    Fatehullah, A.; Sharma, S.; Newton, I. P.; Langlands, A. J.; Lay, H.; Nelson, S. A.; McMahon, R. K.; McIlvenny, N.; Appleton, P. L.; Cochran, S.; Näthke, I. S.

    2016-07-01

    Altered tissue structure is a feature of many disease states and is usually measured by microscopic methods, limiting analysis to small areas. Means to rapidly and quantitatively measure the structure and organisation of large tissue areas would represent a major advance not just for research but also in the clinic. Here, changes in tissue organisation that result from heterozygosity in Apc, a precancerous situation, are comprehensively measured using microultrasound and three-dimensional high-resolution microscopy. Despite its normal appearance in conventionally examined cross-sections, both approaches revealed a significant increase in the variability of tissue organisation in Apc heterozygous tissue. These changes preceded the formation of aberrant crypt foci or adenoma. Measuring these premalignant changes using microultrasound provides a potential means to detect microscopically abnormal regions in large tissue samples, independent of visual examination or biopsies. Not only does this provide a powerful tool for studying tissue structure in experimental settings, the ability to detect and monitor tissue changes by microultrasound could be developed into a powerful adjunct to screening endoscopy in the clinic.

  8. Cross polarization optical coherence tomography for diagnosis of oral soft tissues

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia; Karabut, Maria; Kiseleva, Elena; Robakidze, Natalia; Muraev, Alexander; Fomina, Julia

    2011-03-01

    We consider the capabilities of cross-polarization OCT (CP OCT) focused on comparison of images resulting from cross-polarization and co-polarization scattering simultaneously for diagnosis of oral soft tissues. CP OCT was done for 35 patients with dental implants and 30 patients with inflammatory intestine diseases. Our study showed good diagnostic capabilities of CP OCT for detecting soft tissue pathology in the oral cavity. The cross-polarized images demonstrate the ability of tissue to depolarize. CP OCT demonstrates clinical capabilities for early diagnosis of inflammatory intestine diseases by the state of oral cavity mucosa and for early detection of gingivitis in patients above implant.

  9. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity.

    PubMed

    Schulz, Manon D; Atay, Ciğdem; Heringer, Jessica; Romrig, Franziska K; Schwitalla, Sarah; Aydin, Begüm; Ziegler, Paul K; Varga, Julia; Reindl, Wolfgang; Pommerenke, Claudia; Salinas-Riester, Gabriela; Böck, Andreas; Alpert, Carl; Blaut, Michael; Polson, Sara C; Brandl, Lydia; Kirchner, Thomas; Greten, Florian R; Polson, Shawn W; Arkan, Melek C

    2014-10-23

    Several features common to a Western lifestyle, including obesity and low levels of physical activity, are known risk factors for gastrointestinal cancers. There is substantial evidence suggesting that diet markedly affects the composition of the intestinal microbiota. Moreover, there is now unequivocal evidence linking dysbiosis to cancer development. However, the mechanisms by which high-fat diet (HFD)-mediated changes in the microbial community affect the severity of tumorigenesis in the gut remain to be determined. Here we demonstrate that an HFD promotes tumour progression in the small intestine of genetically susceptible, K-ras(G12Dint), mice independently of obesity. HFD consumption, in conjunction with K-ras mutation, mediated a shift in the composition of the gut microbiota, and this shift was associated with a decrease in Paneth-cell-mediated antimicrobial host defence that compromised dendritic cell recruitment and MHC class II molecule presentation in the gut-associated lymphoid tissues. When butyrate was administered to HFD-fed K-ras(G12Dint) mice, dendritic cell recruitment in the gut-associated lymphoid tissues was normalized, and tumour progression was attenuated. Importantly, deficiency in MYD88, a signalling adaptor for pattern recognition receptors and Toll-like receptors, blocked tumour progression. The transfer of faecal samples from HFD-fed mice with intestinal tumours to healthy adult K-ras(G12Dint) mice was sufficient to transmit disease in the absence of an HFD. Furthermore, treatment with antibiotics completely blocked HFD-induced tumour progression, suggesting that distinct shifts in the microbiota have a pivotal role in aggravating disease. Collectively, these data underscore the importance of the reciprocal interaction between host and environmental factors in selecting a microbiota that favours carcinogenesis, and they suggest that tumorigenesis is transmissible among genetically predisposed individuals.

  10. Expression of the Na+/l- symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus

    PubMed Central

    Altorjay, Áron; Dohán, Orsolya; Szilágyi, Anna; Paroder, Monika; Wapnir, Irene L; Carrasco, Nancy

    2007-01-01

    Background The sodium/iodide symporter (NIS) is a plasma membrane glycoprotein that mediates iodide (I-) transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. Methods Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. Results Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. Conclusion That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease. PMID:17214887

  11. Development of a human rotavirus induced diarrhea model in Chinese mini-pigs.

    PubMed

    Li, Jin-Tao; Wei, Jing; Guo, Hong-Xia; Han, Jiang-Bo; Ye, Nan; He, Hai-Yang; Yu, Tian-Tian; Wu, Yu-Zhang

    2016-08-21

    To establish a new animal model for the research of human rotavirus (HRV) infection, its pathogenesis and immunity and evaluation of potential vaccines. 5-d, 30-d and 60-d-old Chinese mini-pigs, Guizhou and Bamma, were inoculated with a single oral dose of attenuated strain Wa, G1, G3 of HRV, and PBS (control), respectively, and fecal samples of pigs from 0 to 7 d post infection (DPI) were collected individually. Enzyme linked immunosorbent assay was used to detect HRV antigen in feces. The HRV was tested by real-time PCR (RT-PCR). The sections of the intestinal tissue were stained with hematoxylin and eosin to observe the morphologic variation by microscopy. Immunofluorescence was used to determine the HRV in intestinal tissue. HRV particles in cells of the ileum were observed by electron micrography. When inoculated with HRV, mini-pigs younger than 30 d developed diarrhea in an age-dependent manner and shed HRV antigen of the same inoculum, as demonstrated by RT-PCR. Histopathological changes were observed in HRV inoculated mini-pigs including small intestinal cell tumefaction and necrosis. HRV that was distributed in the small intestine was restricted to the top part of the villi on the internal wall of the ileum, which was observed by immunofluorescence and transmission electron microscopy. Virus particles were observed in Golgi like follicles in HRV-infected neonatal mini-pigs. Guizhou mini-pigs were more sensitive to HRV than Bamma with respect to RV antigen shedding and clinical diarrhea. These results indicate that we have established a mini-pig model of HRV induced diarrhea. Our findings are useful for the understanding of the pathogenic mechanisms of HRV infection.

  12. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity. © The Author(s) 2014.

  13. Cross-talk Between Host, Microbiome and Probiotics: A Systems Biology Approach for Analyzing the Effects of Probiotic Enterococcus faecium NCIMB 10415 in Piglets.

    PubMed

    Twardziok, S O; Pieper, R; Aschenbach, J R; Bednorz, C; Brockmann, G A; Fromm, M; Klingspor, S; Kreuzer, S; Lodemann, U; Martens, H; Martin, L; Richter, J F; Scharek-Tedin, L; Siepert, B F; Starke, I C; Tedin, K; Vahjen, W; Wieler, L H; Zakrzewski, S S; Zentek, J; Wrede, P

    2014-03-01

    A comprehensive data-set from a multidisciplinary feeding experiment with the probiotic Enterococcus faecium was analyzed to elucidate effects of the probiotic on growing piglets. Sixty-two piglets were randomly assigned to a control (no probiotic treatment) and a treatment group (E. faecium supplementation). Piglets were weaned at 26 d. Age-matched piglets were sacrificed for the collection of tissue samples at 12, 26, 34 and 54 d. In addition to zootechnical data, the composition and activity of intestinal microbiota, immune cell types, and intestinal responses were determined. Our systems analysis revealed clear effects on several measured variables in 26 and 34 days old animals, while response patterns varied between piglets from different age groups. Correlation analyses identified reduced associations between intestinal microbial communities and immune system reactions in the probiotic group. In conclusion, the developed model is useful for comparative analyses to unravel systems effects of dietary components and their time resolution. The model identified that effects of E. faecium supplementation most prominently affected the interplay between intestinal microbiota and the intestinal immune system. These effects, as well as effects in other subsystems, clustered around weaning, which is the age where piglets are most prone to diarrhea. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa.

    PubMed

    Linardi, R L; Stokes, A M; Andrews, F M

    2013-02-01

    Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo. © 2012 Blackwell Publishing Ltd.

  15. Simian immunodeficiency virus selectively infects proliferating CD4+ T cells in neonatal rhesus macaques.

    PubMed

    Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Alvarez, Xavier; Green, Linda C; Dufour, Jason; Moroney-Rasmussen, Terri; Lackner, Andrew A; Veazey, Ronald S

    2010-11-18

    Infants infected with HIV have a more severe course of disease and persistently higher viral loads than HIV-infected adults. However, the underlying pathogenesis of this exacerbation remains obscure. Here we compared the rate of CD4(+) and CD8(+) T-cell proliferation in intestinal and systemic lymphoid tissues of neonatal and adult rhesus macaques, and of normal and age-matched simian immunodeficiency virus (SIV)-infected neonates. The results demonstrate infant primates have much greater rates of CD4(+) T-cell proliferation than adult macaques, and that these proliferating, recently "activated" CD4(+) T cells are infected in intestinal and other lymphoid tissues of neonates, resulting in selective depletion of proliferating CD4(+) T cells in acute infection. This depletion is accompanied by a marked increase in CD8(+) T-cell activation and production, particularly in the intestinal tract. The data indicate intestinal CD4(+) T cells of infant primates have a markedly accelerated rate of proliferation and maturation resulting in more rapid and sustained production of optimal target cells (activated memory CD4(+) T cells), which may explain the sustained "peak" viremia characteristic of pediatric HIV infection. Eventual failure of CD4(+) T-cell turnover in intestinal tissues may indicate a poorer prognosis for HIV-infected infants.

  16. Primary intestinal lymphangiectasia diagnosed by capsule endoscopy and double balloon enteroscopy

    PubMed Central

    Oh, Tak Geun; Chung, Joo Won; Kim, Hee Man; Han, Seok-Joo; Lee, Jin Sung; Park, Jung Yeob; Song, Si Young

    2011-01-01

    Primary intestinal lymphangiectasia (PIL) is a rare disorder characterized by dilated intestinal lymphatics and the development of protein-losing enteropathy. Patients with PIL develop hypoalbuminemia, hypocalcemia, lymphopenia and hypogammaglobulinemia, and present with bilateral lower limb edema, fatigue, abdominal pain and diarrhea. Endoscopy reveals diffusely elongated, circumferential and polypoid mucosae covered with whitish enlarged villi, all of which indicate intestinal lymphangiectasia. Diagnosis is confirmed by characteristic tissue pathology, which includes dilated intestinal lymphatics with diffusely swollen mucosa and enlarged villi. The prevalence of PIL has increased since the introduction of capsule endoscopy. The etiology and prevalence of PIL remain unknown. Some studies have reported that several genes and regulatory molecules for lymphangiogenesis are related to PIL. We report the case of a patient with PIL involving the entire small bowel that was confirmed by capsule endoscopy and double-balloon enteroscopy-guided tissue pathology who carried a deletion on chromosome 4q25. The relationship between this deletion on chromosome 4 and PIL remains to be investigated. PMID:22110841

  17. Metabolic component of intestinal PCO(2) during dysoxia.

    PubMed

    Raza, O; Schlichtig, R

    2000-12-01

    The adequacy of intestinal perfusion during shock and resuscitation might be estimated from intestinal tissue acid-base balance. We examined this idea from the perspective of conventional blood acid-base physicochemistry. As the O(2) supply diminishes with failing blood flow, tissue acid-base changes are first "respiratory, " with CO(2) coming from combustion of fuel and stagnating in the decreasing blood flow. When the O(2) supply decreases to critical, the changes become "metabolic" due to lactic acid. In blood, the respiratory vs. metabolic distinction is conventionally made using the buffer base principle, in which buffer base is the sum of HCO(3)(-) and noncarbonate buffer anion (A(-)). During purely respiratory acidosis, buffer base stays constant because HCO(3)(-) cannot buffer its own progenitor, carbonic acid, so that the rise of HCO(3)(-) equals the fall of A(-). During anaerobic "metabolism," however, lactate's H(+) is buffered by both A(-) and HCO(3)(-), causing buffer base to decrease. We quantified the partitioning of lactate's H(+) between HCO(3)(-) and A(-) buffer in anoxic intestine by compressing intestinal segments of anesthetized swine into a steel pipe and measuring PCO(2) and lactate at 5- to 10-min intervals. Their rises followed first-order kinetics, yielding k = 0. 031 min(-1) and half time = approximately 22 min. PCO(2) vs. lactate relations were linear. Over 3 h, lactate increased by 31 +/- 3 mmol/l tissue fluid (mM) and PCO(2) by approximately 17 mM, meaning that one-half of lactate's H(+) was buffered by tissue HCO(3)(-) and one-half by A(-). The data were consistent with a lumped pK(a) value near 6.1 and total A(-) concentration of approximately 30 mmol/kg. We conclude that the respiratory vs. metabolic distinction could be made in tissue by estimating tissue buffer base from measured pH and PCO(2).

  18. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  19. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of β-Catenin.

    PubMed

    Lai, Yu; Zhong, Wa; Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui

    2015-01-01

    The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin.

  20. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of β-Catenin

    PubMed Central

    Yu, Tao; Xia, Zhong-Sheng; Li, Jie-Yao; Ouyang, Hui; Shan, Ti-Dong; Yang, Hong-Sheng; Chen, Qi-Kui

    2015-01-01

    Background The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage. Methods BALB/c mice were administered aspirin (200 mg/kg/d) for 5 days to induce acute small intestinal injury (SII). Subsequently, SII mice were treated with rebamipide (320 mg/kg/d) for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2) levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX) and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively. Results COX expression was significantly down-regulated in aspirin induced SII (P < 0.05). In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05). Conclusion Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin. PMID:26135128

  1. Immune Antibodies and Helminth Products Drive CXCR2-Dependent Macrophage-Myofibroblast Crosstalk to Promote Intestinal Repair

    PubMed Central

    Esser-von Bieren, Julia; Volpe, Beatrice; Sutherland, Duncan B.; Bürgi, Jérôme; Verbeek, J. Sjef; Marsland, Benjamin J.; Urban, Joseph F.; Harris, Nicola L.

    2015-01-01

    Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing. PMID:25806513

  2. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes.

    PubMed

    Al-Gubory, Kaïs H; Blachier, François; Faure, Patrice; Garrel, Catherine

    2016-08-01

    Pomegranate peel extract (PPE) contains several compounds with antioxidative properties. PPE added to foods may interact with endogenous antioxidants and promote health. However, little is known about the biochemical mechanisms by which PPE exerts their actions on tissues of biological systems in vivo. The purpose of this study was to determine the effects of PPE on activities of antioxidant enzymes. Mice were used to investigate the effects of PPE on plasma levels of malondialdehyde (MDA), tissue MDA content and activities of superoxide dismutase 1 (SOD1), SOD2 and glutathione peroxidase (GPX) in the small intestine, liver and skeletal muscle - different tissues involved in the digestion, absorption and metabolism of dietary nutrients. Control mice were fed a standard diet, whereas treated mice were fed for 40 days with the standard diet containing 5% or 10% PPE. Mice fed the 10% PPE diet exhibited lower plasma MDA concentrations, reduced content of MDA in the small intestine and liver and higher levels of SOD1 and GPX activities in the small intestine compared to mice fed the control diet. These findings demonstrate that intake of PPE in diet attenuates small intestine lipid peroxidation and strengthens the first line of small intestine antioxidant defense by enhancing enzymatic antioxidative pathways. PPE is worthy of further study as a therapeutic approach to prevent peroxidative stress-induced gut pathogenesis. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].

    PubMed

    Logvinovich, O S; Aksenova, G E

    2013-01-01

    Ornithine decarboxylase (ODC, EC 4.1.1.17.) is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.

  4. Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice.

    PubMed

    Nakayama, Takafumi; Sawai, Tomoko; Masuda, Ikuko; Kaneko, Shinya; Yamauchi, Kazumi; Blyth, Benjamin J; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko

    2017-10-01

    DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis. Environ. Mol. Mutagen. 58:592-606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Simultaneous purification of DNA and RNA from microbiota in a single colonic mucosal biopsy.

    PubMed

    Moen, Aina E F; Tannæs, Tone M; Vatn, Simen; Ricanek, Petr; Vatn, Morten Harald; Jahnsen, Jørgen

    2016-06-28

    Nucleic acid purification methods are of importance when performing microbiota studies and especially when analysing the intestinal microbiota as we here find a wide range of different microbes. Various considerations must be taken to lyse the microbial cell wall of each microbe. In the present article, we compare several tissue lysis steps and commercial purification kits, to achieve a joint RNA and DNA purification protocol for the purpose of investigating the microbiota and the microbiota-host interactions in a single colonic mucosal tissue sample. A further optimised tissue homogenisation and lysis protocol comprising mechanical bead beating, lysis buffer replacement and enzymatic treatment, in combination with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) resulted in efficient and simultaneous purification of microbial and human RNA and DNA from a single mucosal colonic tissue sample. The present work provides a unique possibility to study RNA and DNA from the same mucosal biopsy sample, making a direct comparison between metabolically active microbes and total microbial DNA. The protocol also offers an opportunity to investigate other members of a microbiota such as viruses, fungi and micro-eukaryotes, and moreover the possibility to extract data on microbiota and host interactions from one single mucosal biopsy.

  6. Nitrogen metabolism of the intestine during digestion in a teleost fish, the plainfin midshipman (Porichthys notatus).

    PubMed

    Bucking, Carol; LeMoine, Christophe M R; Craig, Paul M; Walsh, Patrick J

    2013-08-01

    Digestion affects nitrogen metabolism in fish, as both exogenous and endogenous proteins and amino acids are catabolized, liberating ammonia in the process. Here we present a model of local detoxification of ammonia by the intestinal tissue of the plainfin midshipman (Porichthys notatus) during digestion, resulting in an increase in urea excretion of gastrointestinal origin. Corroborating evidence indicated whole-animal ammonia and urea excretion increased following feeding, and ammonia levels within the lumen of the midshipman intestine increased to high levels (1.8±0.4 μmol N g(-1)). We propose that this ammonia entered the enterocytes and was detoxified to urea via the ornithine-urea cycle (O-UC) enzymes, as evidenced by a 1.5- to 2.9-fold post-prandial increase in glutamine synthetase activity (0.14±0.05 and 0.28±0.02 μmol min(-1) g(-1) versus 0.41±0.03 μmol min(-1) g(-1)) and an 8.7-fold increase in carbamoyl phosphate synthetase III activity (0.3±1.2 versus 2.6±0.4 nmol min(-1) g(-1)). Furthermore, digestion increased urea production by isolated gastrointestinal tissue 1.7-fold, supporting our hypothesis that intestinal tissue synthesizes urea in response to feeding. We further propose that the intestinal urea may have been excreted into the intestinal lumen via an apical urea transporter as visualized using immunohistochemistry. A portion of the urea was then excreted to the environment along with the feces, resulting in the observed increase in urea excretion, while another portion may have been used by intestinal ureolytic bacteria. Overall, we propose that P. notatus produces urea within the enterocytes via a functional O-UC, which is then excreted into the intestinal lumen. Our model of intestinal nitrogen metabolism does not appear to be universal as we were unab le to activate the O-UC in the intestine of fed rainbow trout. However, literature values suggest that multiple fish species could follow this model.

  7. A Revised Model for Dosimetry in the Human Small Intestine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Poston; Nasir U. Bhuiyan; R. Alex Redd

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  8. Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism

    PubMed Central

    2013-01-01

    Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study. PMID:23497580

  9. Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring123

    PubMed Central

    Meyer, Allison M; Caton, Joel S

    2016-01-01

    Small-intestinal growth and function are critical for optimal animal growth and health and play a major role in nutrient digestion and absorption, energy and nutrient expenditure, and immunological competence. During fetal and perinatal development, the small intestine is affected by the maternal environment and nutrient intake. In ruminants, altered small-intestinal mass, villi morphology, hypertrophy, hyperplasia, vascularity, and gene expression have been observed as a result of poor gestational nutrition or intrauterine growth restriction. Although many of these data come from fetal stages, data have also demonstrated that nutrition during mid- and late gestation affects lamb small-intestinal growth, vascularity, digestive enzyme activity, and gene expression at 20 and 180 d of age as well. The small intestine is known to be a highly plastic tissue, changing with nutrient intake and physiological state even in adulthood, and the maternal small intestine adapts to pregnancy and advancing gestation. In ruminants, the growth, vascularity, and gene expression of the maternal small intestine also adapt to the nutritional plane and specific nutrient intake such as high selenium during pregnancy. These changes likely alter both pre- and postnatal nutrient delivery to offspring. More research is necessary to better understand the role of the offspring and maternal small intestines in whole-animal responses to developmental programming, but programming of this plastic tissue seems to play a dynamic role in gestational nutrition impacts on the whole animal. PMID:27180380

  10. Dietary supplementation with an amino acid blend enhances intestinal function in piglets.

    PubMed

    Yi, Dan; Li, Baocheng; Hou, Yongqing; Wang, Lei; Zhao, Di; Chen, Hongbo; Wu, Tao; Zhou, Ying; Ding, Binying; Wu, Guoyao

    2018-05-16

    The traditionally classified nutritionally non-essential amino acids are now known to be insufficiently synthesized for maximal growth and optimal health in piglets. This study determined the effects of dietary supplementation with an amino acid blend (AAB; glutamate:glutamine:glycine:arginine:N-acetylcysteine = 5:2:2:1:0.5) on piglet growth performance and intestinal functions. Sixteen piglets (24-day-old) were randomly assigned to a corn and soybean meal-based diet supplemented with 0.99% alanine (isonitrogenous control) or 1% AAB. On day 20 of the trial, blood and intestinal tissue samples were obtained from piglets. Compared with the control, AAB supplementation reduced (P < 0.05) diarrhoea incidence; plasma alanine aminotransferase and diamine oxidase activities; intestinal concentrations of hydrogen peroxide, malondialdehyde, and heat shock protein-70, and intestinal mRNA levels for interleukin-1β, interferon-γ, and chemokine (C-X-C motif) ligand-9; and the numbers of Enterobacterium family, Enterococcus genus and Clostridium coccoides in the colon digesta. Furthermore, AAB supplementation enhanced (P < 0.05): the plasma concentrations of serine, aspartate, glutamate, cysteine, tyrosine, phenylalanine, tryptophan, lysine, arginine, citrulline, ornithine, taurine, and γ-aminobutyric acid; intestinal villus height and surface area, villus height/crypt depth ratio, antioxidative enzyme activities, and mRNA levels for porcine β-defensin-1, sodium-independent amino acid transporters (b 0,+ AT and y + LAT1), aquaporin (AQP) 3, AQP8, AQP10, nuclear factor erythroid 2-related factor 2 and glutathione S-transferase omega-2, and protein abundances of AQP3, AQP4, claudin-1, occludin and myxovirus resistance 1; and the numbers of Bifidobacterium genus and Lactobacillus genus in the colon digesta. Collectively, these comprehensive results indicate that dietary AAB supplementation plays an important role in improving piglet growth and intestinal function.

  11. Randomized Clinical Trial: Impact of Oral Administration of Saccharomyces boulardii on Gene Expression of Intestinal Cytokines in Patients Undergoing Colon Resection.

    PubMed

    Consoli, Marcella Lobato D; da Silva, Raphael Steinberg; Nicoli, Jacques Robert; Bruña-Romero, Oscar; da Silva, Rodrigo Gomes; de Vasconcelos Generoso, Simone; Correia, Maria Isabel T D

    2016-11-01

    When intestinal microbiota is imbalanced, a patient becomes more vulnerable to infectious complications; intervention with beneficial probiotics may help lower risk for infection. The aim of this study was to measure levels of inflammatory cytokine messenger RNA (mRNA) in surgical samples of intestinal mucosal tissues from patients who were given the probiotic Saccharomyces boulardii before undergoing colon surgery. Thirty-three patients undergoing colon resection were randomly assigned to receive at least 7-day preoperative probiotic treatment (n = 15) or conventional (n = 18) treatment. Probiotic treatment consisted of oral lyophilized S boulardii Cytokine mRNA levels (interleukin [IL]-10, IL-1β, IL-23A, tumor necrosis factor [TNF]-α, IL-12B, interferon-γ [INF-γ], and IL-17A) were measured in samples obtained during the operation. Postoperative infections were also assessed. Patients who received probiotics had significantly lower mucosal IL-1β, IL-10, and IL-23A mRNA levels than the control group (P = .001, P = .04, and P = .03, respectively). However, mRNA expression of other cytokines did not differ between the 2 groups (P > .05). The incidence of postoperative infectious complications was 13.3% and 38.8% in probiotic and control groups, respectively (P > .05). There was no perioperative mortality in either group. The mean total length of hospital stay was similar between the groups (P > .05). Probiotic treatment with S boulardii downregulates both pro- and anti-inflammatory cytokines in the intestinal colonic mucosa with no statistical impact on postoperative infection rates. © 2015 American Society for Parenteral and Enteral Nutrition.

  12. Retinal dehydrogenase gene expression in stomach and small intestine of rats during postnatal development and in vitamin A deficiency.

    PubMed

    Bhat, P V

    1998-04-17

    Retinal dehydrogenase (RALDH) catalyzes the oxidation of retinal to all-trans and 9-cis retinoic acid, which function as ligands controlling RAR and RXR nuclear receptor-signaling pathways. We have recently shown the expression of RALDH transcript in the stomach and small intestine by reverse transcription polymerase chain reaction [Bhat, P.V., Labrecque J., Dumas, F., Lacroix, A. and Yoshida, A. (1995) Gene 166, 303-306]. We have examined RALDH expression in the stomach and small intestine before and during postnatal development and in vitamin A deficiency by assaying for mRNA levels and protein as well as for enzyme activity. In -2 day fetuses, RALDH expression was high in the small intestine, whereas RALDH protein was not detectable in the stomach. However, expression of RALDH was seen in the stomach after birth, and gradually increased with age and reached the highest level at postnatal day 42. In the intestine, RALDH expression decreased postnatally. Vitamin A deficiency up-regulated RALDH expression in the stomach and small intestine, and administration of retinoids down-regulated the RALDH expression in these tissues. These results show the differential expression of RALDH in the stomach and small intestine during postnatal development, and that vitamin A status regulates the expression of RALDH gene in these tissues.

  13. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis

    PubMed Central

    Okada, Morihiro; Miller, Thomas C.; Fu, Liezhen

    2015-01-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis. PMID:26086244

  14. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  15. The pancreas responds to remote damage and systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII.

    PubMed

    Reding, Theresia; Palmiere, Cristian; Pazhepurackel, Clinsyjos; Schiesser, Marc; Bimmler, Daniel; Schlegel, Andrea; Süss, Ursula; Steiner, Sabrina; Mancina, Leandro; Seleznik, Gitta; Graf, Rolf

    2017-05-02

    In patients with infection and sepsis serum levels of Pancreatic Stone protein/regenerating protein I (PSP) are highly elevated. The origin of PSP during these conditions is presumably the pancreas, however, an intestinal origin cannot be excluded. Similarly, pancreatitis-associated protein (PAP) was identified in the pancreas. These proteins were also localized in intestinal organs. Here we aim to elucidate the bio-distribution of PSP and PAP in animal models of sepsis and in healthy humans. PSP and PAP responded to remote lesions in rats although the pancreatic response was much more pronounced than the intestinal. Tissue distribution of PSP demonstrated a 100-fold higher content in the pancreas compared to any other organ while PAP was most abundant in the small intestine. Both proteins responded to CLP or sham operation in the pancreas. PSP also increased in the intestine during CLP. The distribution of PSP and PAP in human tissue mirrored the distribution in the murine models. Distribution of PSP and PAP was visualized by immunohistochemistry. Rats and mice underwent midline laparotomies followed by mobilization of tissue and incision of the pancreatic duct or duodenum. Standard cecum-ligation-puncture (CLP) procedures or sham laparotomies were performed. Human tissue extracts were analyzed for PSP and PAP. The pancreas reacts to remote lesions and septic insults in mice and rats with increased PSP synthesis, while PAP is selectively responsive to septic events. Furthermore, our results suggest that serum PSP in septic patients is predominantly derived through an acute phase response of the pancreas.

  16. Cardiolipins Act as a Selective Barrier to Toll-Like Receptor 4 Activation in the Intestine

    PubMed Central

    Coats, Stephen R.; Hashim, Ahmed; Paramonov, Nikolay A.; Curtis, Michael A.

    2016-01-01

    ABSTRACT Intestinal homeostasis mechanisms must protect the host intestinal tissue from endogenous lipopolysaccharides (LPSs) produced by the intestinal microbiota. In this report, we demonstrate that murine intestinal fecal lipids effectively block Toll-like receptor 4 (TLR4) responses to naturally occurring Bacteroidetes sp. LPS. Cardiolipin (CL) represents a significant proportion of the total intestinal and fecal lipids and, furthermore, potently antagonizes TLR4 activation by reducing LPS binding at the lipopolysaccharide binding protein (LBP), CD14, and MD-2 steps of the TLR4 signaling pathway. It is further demonstrated that intestinal lipids and CL are less effective at neutralizing more potent Enterobacteriaceae-type LPS, which is enriched in feces obtained from mice with dextran sodium sulfate (DSS)-treated inflammatory bowel disease. The selective inhibition of naturally occurring LPS structures by intestinal lipids may represent a novel homeostasis mechanism that blocks LPS activation in response to symbiotic but not dysbiotic microbial communities. IMPORTANCE The guts of animals harbor a variety of Gram-negative bacteria associated with both states of intestinal health and states of disease. Environmental factors, such as dietary habits, can drive the microbial composition of the host animal's intestinal bacterial community toward a more pathogenic state. Both beneficial and harmful Gram-negative bacteria are capable of eliciting potentially damaging inflammatory responses from the host intestinal tissues via a lipopolysaccharide (LPS)-dependent pathway. Physical mucosal barriers and antibodies produced by the intestinal immune system protect against the undesired inflammatory effects of LPS, although it is unknown why some bacteria are more effective at overcoming the protective barriers than others. This report describes the discovery of a lipid-type protective barrier in the intestine that reduces the deleterious effects of LPSs from beneficial bacteria but is less effective in dampening the inflammatory effects of LPSs from harmful bacteria, providing a novel mechanistic insight into inflammatory intestinal disorders. PMID:27208127

  17. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  18. Studies of the kallikrein-kinin system and prostaglandins in epithelial ion transport.

    PubMed

    Margolius, H S; Halushka, P V; Chao, J; Miller, D H; Cuthbert, A W; Spayne, J A

    1985-01-01

    Tissue kallikrein of colon mucosa is synthesized rapidly, and this synthetic process can now be examined in relation to hormonal or dietary manipulations or pathological circumstances that affect intestinal ion transport. Although the identical renal tissue enzyme is known to be enriched in membranes of distal convoluted tubular epithelial cells, the precise localization of the intestinal enzyme is uncertain. An understanding of the intestinal cellular locale of kallikrein will help in defining its local role. That tissue kallikreins can be inhibited by monovalent cations and some drugs (e.g., amiloride) and that kallikrein inhibitors affect cation transport across epithelial surfaces containing such enzymes must be reconciled with the new observations of kinin-induced chloride secretion. Extracellular calcium, eicosanoid synthesis, and cyclic nucleotide production are involved in the secretory response to kinins, although an absolute requirement for intact eicosanoid synthesis may not exist.

  19. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    PubMed

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  20. [Antirheumatic substance and meridian tropism of Loranthus parasiticus based on "syndrome-efficacy-analysis of biological samples"].

    PubMed

    Li, Ling-Ling; Wang, Jing; Cui, Ying; Wen, Pu; Guan, Jun; Yang, Shu; Ma, Kai

    2016-05-01

    To study the antirheumatic substance of Loranthus parasiticus and observe the relationship between its in vivo distribution and meridian tropism in rats by establishing adjuvant arthritis models corresponding to effectiveness. All rats except the negative control group were injected with 0.1 mL Freund's complete adjuvant on the left foot. After 8 days, the rats in negative control group and model group were given with normal saline while the rats in positive control group were given with tripterygium glycosides suspension 10 mg•kg-1, and the rats in L. parasiticus treatment groups were given with high(10 g•kg ⁻¹), medium(5 g•kg ⁻¹) and low(2.5 g•kg ⁻¹) dose decoction for 21 days. The left rear ankle joint diameter of rats were measured every 7 days from the 9th day of modeling. On the 22nd day, eyeball blood of part rats in L. parasiticus high-dose group was taken at different time points, and then they were sacrificed to take heart, liver, spleen, lung, kidney, stomach, large intestine, small intestine and brain tissues. For the remaining rats, eyeball blood was taken 30 min after drug treatment, and their left rear ankle joints were taken to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels in serum by ELISA method; rutin, avicularin and quercitrin levels in the tissues of high-dose group were detected by HPLC; pharmacokinetic parameters were analyzed by using DAS 2.0. Our results showed that L. parasiticus decoction could significantly improve the paw edema situation of adjuvant arthritis model rats, and reduce IL-1β and TNF-α levels in rat serum. The in vivo efficacy substance analysis in rats showed that rutin was only present in the stomach with a small amount. AUC0-t of avicularin was stomach > small intestine > kidney, and the duration time in vivo was kidney=stomach > small intestine > lung > heart. AUC0-t of quercitrin was stomach > kidney > liver > heart > lung > spleen > small intestine > brain > large intestine > serum, and the duration time in vivo was kidney=liver=small intestine=brain=lung=spleen=heart=stomach > large intestine > serum. The research indicated that L. parasiticus decoction was effective in treating rats with adjuvant arthritis. Avicularin and quercitrin are important ingredients of L. parasiticus in antirheumatism therapy. The distribution of avicularin and quercitrin in rats were consistent with traditional understanding that L. parasiticus could attribute to the kidney and liver meridians. Copyright© by the Chinese Pharmaceutical Association.

  1. Method for creating ideal tissue fusion in soft-tissue structures using radio frequency (RF) energy.

    PubMed

    Shields, Chelsea A; Schechter, David A; Tetzlaff, Phillip; Baily, Ali L; Dycus, Sean; Cosgriff, Ned

    2004-01-01

    Bipolar radiofrequency (RF) energy can successfully seal vascular structures up to 7 mm by fusing collagen and elastin in the lumen. Valleylab has created a system to expand this technology beyond vessel sealing with the development of a closed-loop, feedback-control RF generator that closely monitors tissue fusion. This generator, operating with a loop time of approximately 250 micros, continuously adjusts energy output, creating optimized soft-tissue fusion through structural protein amalgamation. In the first study, RF energy was applied to canine lung using the new-generation generator and lung-prototype device. A lobectomy was completed, sealing the lobar bronchus, parenchyma, and pulmonary vasculature. Chronic performance of the seals was evaluated at necropsy on postoperative days 7 and 14. In a second study, RF energy was applied to porcine small intestine using the same closed-loop generator and anastomosis prototype device. Acute tissue fusion was assessed qualitatively for hemostasis and seal quality. Terminal tissue evaluation was completed on postoperative day 7 and analyzed histopathologically. Histopathology confirmed acute and chronic tissue fusion in both the lung and intestine. Normal pathological healing was substantiated by angiogenesis, granulation, and proliferation of fibroblasts. Preliminary studies using canine lung and porcine small intestine demonstrate the potential of this closed-loop generator for soft-tissue amalgamation. Advanced monitoring capabilities make this fusion system applicable in many soft-tissue structures with adequate collagen and elastin. Further investigation of potential surgical applications needs to be completed.

  2. Cardiovascular and intestinal responses to oxidative and nitrosative stress during prolonged magnesium deficiency.

    PubMed

    Weglicki, William B; Chmielinska, Joanna J; Kramer, Jay H; Mak, I Tong

    2011-08-01

    In rodents with dietary magnesium deficiency (Mg deficiency), hypomagnesemia, occurs leading to a rise in circulating substance P from neuronal tissues to trigger systemic inflammatory stress in cardiac and intestinal tissues. Sustained elevations of substance P may result from impaired neutral endopeptidase (NEP) activity due to reactive oxygen and reactive nitrogen species. Associated increase in intestinal permeability includes infiltration of WBC and endotoxemia, which can further amplify the systemic inflammatory response that leads to impaired contractile function associated with up-regulation of the cardiac CD14 endotoxin receptor. The neurogenic signal transduction pathways that we have identified in the pro-oxidant/pro-inflammatory processes found with prolonged hypomagnesemia are described in this report.

  3. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    PubMed Central

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  4. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals.

    PubMed

    Powell, Robin H; Behnke, Michael S

    2017-05-15

    Recent years have seen significant developments in the ability to continuously propagate organoids derived from intestinal crypts. These advancements have been applied to mouse and human samples providing models for gastrointestinal tissue development and disease. We adapt these methods for the propagation of intestinal organoids (enteroids) from various large farm and small companion (LF/SC) animals, including cat, dog, cow, horse, pig, sheep and chicken. We show that LF/SC enteroids propagate and expand in L-WRN conditioned media containing signaling factors Wnt3a, R-spondin-3, and Noggin (WRN). Multiple successful isolations were achieved for each species, and the growth of LF/SC enteroids was maintained to high passage number. LF/SC enteroids expressed crypt stem cell marker LGR5 and low levels of mesenchymal marker VIM. Labeling with EdU also showed distinct regions of cell proliferation within the enteroids marking crypt-like regions. The ability to grow and maintain LF/SC enteroid cell lines provides additional models for the study of gastrointestinal developmental biology as well as platforms for the study of host-pathogen interactions between intestinal cells and zoonotic enteric pathogens of medical importance. © 2017. Published by The Company of Biologists Ltd.

  5. Genome-wide DNA methylation analysis in jejunum of Sus scrofa with intrauterine growth restriction.

    PubMed

    Hu, Yue; Hu, Liang; Gong, Desheng; Lu, Hanlin; Xuan, Yue; Wang, Ru; Wu, De; Chen, Daiwen; Zhang, Keying; Gao, Fei; Che, Lianqiang

    2018-02-01

    Intrauterine growth restriction (IUGR) may elicit a series of postnatal body developmental and metabolic diseases due to their impaired growth and development in the mammalian embryo/fetus during pregnancy. In the present study, we hypothesized that IUGR may lead to abnormally regulated DNA methylation in the intestine, causing intestinal dysfunctions. We applied reduced representation bisulfite sequencing (RRBS) technology to study the jejunum tissues from four newborn IUGR piglets and their normal body weight (NBW) littermates. The results revealed extensively regional DNA methylation changes between IUGR/NBW pairs from different gilts, affecting dozens of genes. Hiseq-based bisulfite sequencing PCR (Hiseq-BSP) was used for validations of 19 genes with epigenetic abnormality, confirming three genes (AIFM1, MTMR1, and TWIST2) in extra samples. Furthermore, integrated analysis of these 19 genes with proteome data indicated that there were three main genes (BCAP31, IRAK1, and AIFM1) interacting with important immunity- or metabolism-related proteins, which could explain the potential intestinal dysfunctions of IUGR piglets. We conclude that IUGR can lead to disparate DNA methylation in the intestine and these changes may affect several important biological processes such as cell apoptosis, cell differentiation, and immunity, which provides more clues linking IUGR and its long-term complications.

  6. Ultrastructure of mouse intestinal mucosa and changes observed after long term anthraquinone administration.

    PubMed Central

    Dufour, P; Gendre, P

    1984-01-01

    In an attempt to study the relative toxicity of anthraquinonic laxatives on intestinal mucosa, we compared in mice the effects of fruit pulp containing sennosides A and B with those of a free anthraquinone, 1-8 dihydroxyanthraquinone. Observations have been made with transmission electron microscopy (EM) after 16 weeks of treatment with the two drugs. Although the doses used in this study were equipotent in terms of laxative activity, no damage to the intestinal tissue was observed with the sennosides. A number of changes, however, were detected in intestinal nervous tissues of all the animals treated with 1-8 dihydroxyanthraquinone, mainly in the form of vacuolisation of the axons, formation of lysosomal structures and in some cases appearances of fibrillar degeneration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:6510768

  7. Synthetic Hydrogels for Human Intestinal Organoid Generation and Colonic Wound Repair

    PubMed Central

    Cruz-Acuña, Ricardo; Quirós, Miguel; Farkas, Attila E.; Dedhia, Priya H.; Huang, Sha; Siuda, Dorothée; García-Hernández, Vicky; Miller, Alyssa J.; Spence, Jason R.; Nusrat, Asma; García, Andrés J.

    2017-01-01

    In vitro differentiation of human intestinal organoids (HIOs) from pluripotent stem cells is an unparalleled system for creating complex, multi-cellular 3D structures capable of giving rise to tissue analogous to native human tissue. Current methods for generating HIOs rely on growth in an undefined tumor-derived extracellular matrix (ECM), which severely limits use of organoid technologies for regenerative and translational medicine. Here, we developed a fully defined, synthetic hydrogel based on a four-armed, maleimide-terminated poly(ethylene glycol) macromer that supports robust and highly reproducible in vitro growth and expansion of HIOs such that 3D structures are never embedded in tumor-derived ECM. We also demonstrate that the hydrogel serves as an injectable HIO vehicle that can be delivered into injured intestinal mucosa resulting in HIO engraftment and improved colonic wound repair. Together, these studies show proof-of-concept that HIOs may be used therapeutically to treat intestinal injury. PMID:29058719

  8. Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells.

    PubMed

    Penny, Hugo A; Hodge, Suzanne H; Hepworth, Matthew R

    2018-05-08

    The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.

  9. Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide.

    PubMed

    Melo, Maria Luisa P; Brito, Gerly A C; Soares, Rudy C; Carvalho, Sarah B L M; Silva, Johan V; Soares, Pedro M G; Vale, Mariana L; Souza, Marcellus H L P; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2008-04-01

    Irinotecan (CPT-11) is an inhibitor of DNA topoisomerase I and is clinically effective against several cancers. A major toxic effect of CPT-11 is delayed diarrhea; however, the exact mechanism by which the drug induces diarrhea has not been established. Elucidate the mechanisms of induction of delayed diarrhea and determine the effects of the cytokine production inhibitor pentoxifylline (PTX) and thalidomide (TLD) in the experimental model of intestinal mucositis, induced by CPT-11. Intestinal mucositis was induced in male Swiss mice by intraperitoneal administration of CPT-11 (75 mg/kg) daily for 4 days. Animals received subcutaneous PTX (1.7, 5 and 15 mg/kg) or TLD (15, 30, 60 mg/kg) or 0.5 ml of saline daily for 5 and 7 days, starting 1 day before the first CPT-11 injection. The incidence of delayed diarrhea was monitored by scores and the animals were sacrificed on the 5th and 7th experimental day for histological analysis, immunohistochemistry for TNF-alpha and assay of myeloperoxidase (MPO) activity, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and KC ELISA. CPT-11 caused significant diarrhea, histopathological alterations (inflammatory cell infiltration, loss of crypt architecture and villus shortening) and increased intestinal tissue MPO activity, TNF-alpha, IL-1beta and KC level and TNF-alpha immuno-staining. PTX inhibited delayed diarrhea of mice submitted to intestinal mucositis and reduced histopathological damage, intestinal MPO activity, tissue level of TNF-alpha, IL-1beta and KC and TNF-alpha immuno-staining. TLD significantly reduced the lesions induced by CPT-11 in intestinal mucosa, decreased MPO activity, TNF-alpha tissue level and TNF-alpha immuno-staining, but did not reduce the severity of diarrhea. These results suggest an important role of TNF-alpha, IL-1beta and KC in the pathogenesis of intestinal mucositis induced by CPT-11.

  10. Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation.

    PubMed

    Emgård, Johanna; Kammoun, Hana; García-Cassani, Bethania; Chesné, Julie; Parigi, Sara M; Jacob, Jean-Marie; Cheng, Hung-Wei; Evren, Elza; Das, Srustidhar; Czarnewski, Paulo; Sleiers, Natalie; Melo-Gonzalez, Felipe; Kvedaraite, Egle; Svensson, Mattias; Scandella, Elke; Hepworth, Matthew R; Huber, Samuel; Ludewig, Burkhard; Peduto, Lucie; Villablanca, Eduardo J; Veiga-Fernandes, Henrique; Pereira, João P; Flavell, Richard A; Willinger, Tim

    2018-01-16

    Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The production of the oral mucosa of antiendomysial and anti-tissue-transglutaminase antibodies in patients with celiac disease: a review.

    PubMed

    Compilato, Domenico; Campisi, Giuseppina; Pastore, Luca; Carroccio, Antonio

    2010-12-14

    Celiac disease (CD) is a lifelong, T cell-mediated enteropathy, triggered by the ingestion of gluten and related prolamins in genetically susceptible subjects, resulting in minor intestinal mucosal injury, including villous atrophy with crypt hyperplasia and intraepithelial lymphocytosis, and subsequent nutrient malabsorption. Although serological tests for antiendomysial (EMA) and anti-tissue transglutaminase (anti-tTG) autoantibodies are used to screen and follow up on patients with CD, diagnostic confirmation is still based on the histological examination of the small intestinal mucosa. Although the small intestinal mucosa is the main site of the gut involved in CD, other mucosal surfaces (such as gastric, rectal, ileal, and esophageal) belonging to the gastrointestinal tract and the gut-associated lymphoid tissue (GALT) can also be involved. A site that could be studied less invasively is the mouth, as it is the first part of the gastrointestinal system and a part of the GALT. Indeed, not only have various oral ailments been reported as possible atypical aspects of CD, but it has been also demonstrated that inflammatory changes occur after oral supramucosal application and a submucosal injection of gliadin into the oral mucosa of CD patients. However, to date, only two studies have assessed the capacity of the oral mucosa of untreated CD patients to EMA and anti-tTG antibodies. In this paper, we will review studies that evaluate the capacity of the oral mucosa to produce specific CD autoantibodies. Discrepancies in sensitivity from the two studies have revealed that biopsy is still not an adequate procedure for the routine diagnostic purposes of CD patients, and a more in-depth evaluation on a larger sample size with standardized collection and analysis methods is merited. However, the demonstration of immunological reactivity to the gluten ingestion of the oral mucosa of CD, in terms of IgA EMA and anti-tTG production, needs to be further evaluated in order to verify whether the oral mucosa is colonized by lymphocytes activated in the intestine or if gluten could stimulate naïve lymphocytes directly in the oral mucosa. This would have important implications for the pathogenesis, diagnosis, and treatment of CD.

  12. Integration of extracellular matrix with chitosan adhesive film for sutureless tissue fixation.

    PubMed

    Lauto, Antonio

    2009-07-01

    Extracellular matrices (ECMs) are currently applied in reconstructive surgery to enhance wound healing and tissue remodelling. Sutures and staples are usually employed to stabilize ECM on tissue although they may damage the matrix structure. In this investigation, a novel biocompatible bandage was developed to fix ECM on tissue without sutures. An adhesive film, based on chitosan, was integrated with small intestine submucosa (SIS) in a single bandage strip. This bandage was bonded to sheep small intestine upon laser irradiation of the chitosan film (P = 0.12 W, Fluence = 46+/-1 J/cm(2)) to assess tissue adhesion strength. Thermocouples were used to estimate temperatures under SIS during laser irradiation. Bandage strips were also mechanically tested to evaluate their tensile strength before and after irradiation. The bandage successfully bonded to intestine achieving a shear stress of 9.6+/- 1.6 kPa (n = 15). During laser irradiation, the temperature increased modestly to 31+/-2 degrees C (n = 14) beneath the ECM portion of the bandage. The bandage withstood a tensile strength of 3,122+/-780 and 3,384+/-791 kPa, before and after laser irradiation respectively (n = 10, P = 0.47, t-test). The SIS-chitosan bandage bonded effectively to tissue without sutures and preserved the ECM structure avoiding irreversible thermal denaturation of imbedded bioactive proteins.

  13. Potentially hallucinogenic 5-hydroxytryptamine receptor ligands bufotenine and dimethyltryptamine in blood and tissues.

    PubMed

    Kärkkäinen, J; Forsström, T; Tornaeus, J; Wähälä, K; Kiuru, P; Honkanen, A; Stenman, U H; Turpeinen, U; Hesso, A

    2005-01-01

    Bufotenine and N,N-dimethyltryptamine (DMT) are hallucinogenic dimethylated indolethylamines (DMIAs) formed from serotonin and tryptamine by the enzyme indolethylamine N-methyltransferase (INMT) ubiquitously present in non-neural tissues. In mammals, endogenous bufotenine and DMT have been identified only in human urine. The DMIAs bind effectively to 5HT receptors and their administration causes a variety of autonomic effects, which may reflect their actual physiological function. Endogenous levels of bufotenine and DMT in blood and a number of animal and human tissues were determined using highly sensitive and specific quantitative mass spectrometric techniques. A new finding was the detection of large amounts of bufotenine in stools, which may be an indication of its role in intestinal function. It is suggested that fecal and urinary bufotenine originate from epithelial cells of the intestine and the kidney, respectively, although the possibility of their synthesis by intestinal bacteria cannot be excluded. Only small amounts of the DMIAs were found in somatic or neural tissues and none in blood. This can be explained by rapid catabolism of the DMIAs by mitochondrial monoamino-oxidase or by the fact that the dimethylated products of serotonin and tryptamine are not formed in significant amounts in most mammalian tissues despite the widespread presence of INMT in tissues.

  14. HPLC determination of strychnine and brucine in rat tissues and the distribution study of processed semen strychni.

    PubMed

    Chen, Jun; Hou, Ting; Fang, Yun; Chen, Zhi-peng; Liu, Xiao; Cai, Hao; Lu, Tu-lin; Yan, Guo-jun; Cai, Bao-chang

    2011-01-01

    A simple and low-cost HPLC method with UV absorbance detection was developed and validated to simultaneously determine strychnine and brucine, the most abundant alkaloids in the processed Semen Strychni, in rat tissues (kidney, liver, spleen, lung, heart, stomach, small intestine, brain and plasma). The tissue samples were treated with a simple liquid-liquid extraction prior to HPLC. The LOQs were in the range of 0.039-0.050 µg/ml for different tissue or plasma samples. The extraction recoveries varied from 71.63 to 98.79%. The linear range was 0.05-2 µg/ml with correlation coefficient of over 0.991. The intra- and inter-day precision was less than 15%. Then the method was used to measure the tissue distribution of strychnine and brucine after intravenous administration of 1 mg/kg crude alkaloids fraction (CAF) extracted from the processed Semen Strychni. The results revealed that strychnine and brucine possessed similar tissue distribution characterization. The highest level was observed in kidney, while the lowest level was found in brain. It was indicated that kidney might be the primary excretion organ of prototype strychnine and brucine. It was also deduced that strychnine and brucine had difficulty in crossing the blood-brain barrier. Furthermore, no long-term accumulation of strychnine and brucine was found in rat tissues.

  15. Pharmacokinetics and tissue distribution of furanodiene W/O/W multiple emulsions in rats by a fast and sensitive HPLC-APCI-MS/MS method.

    PubMed

    Zhang, Li-Feng; Lu, Tao-Tao; Zhang, Shu-Qiu; Lin, Wen-Han; Li, Qing-Shan

    2013-12-01

    A sensitive and specific HPLC-APCI-MS/MS method was developed and validated for the quantification of furanodiene, a natural antitumor compound in rat plasma and tissues. W/O/W multiple emulsions of furanodiene, identified through microscope-observation and eosin staining method, were prepared with a two-step-procedure. Pharmacokinetics and tissue distribution were studied in rats after oral, intraperitoneal and intravenous injection with the dose of 5, 10 and 50 mg/kg, respectively. The assay achieved a good sensitivity and specificity for the determination of furanodiene in biological samples. The results showed that the concentration-time curves of furanodiene in rats after intravenous injection were fitted to a two-compartment model and the linear pharmacokinetic characteristic. The highest concentration in rat tissue was observed in the spleen, followed by heart, liver, lung, kidney, small intestine and brain. Comparing with the low concentration in plasma, furanodiene could be detected in various tissue samples after oral or intraperitoneal injection which indicated furanodiene had good and rapid tissue uptake. The results suggested that the wide tissue distribution of furanodiene could conduce to the therapeutic effects, but the short biological half-life limited its further application as an antitumor agent. The results are helpful for the structure modification of furanodiene as an antitumor candidate.

  16. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-04-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here inspired by the endoparasite Pomphorhynchus laevis, which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~3.5-fold increase in adhesion strength compared with staples in skin graft fixation, and removal force of ~4.5 N cm-2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics.

  17. A Bio-Inspired Swellable Microneedle Adhesive for Mechanical Interlocking with Tissue

    PubMed Central

    Yang, Seung Yun; O'Cearbhaill, Eoin D.; Sisk, Geoffroy C.; Park, Kyeng Min; Cho, Woo Kyung; Villiger, Martin; Bouma, Brett E.; Pomahac, Bohdan; Karp, Jeffrey M.

    2013-01-01

    Achieving significant adhesion to soft tissues while minimizing tissue damage poses a considerable clinical challenge. Chemical-based adhesives require tissue-specific reactive chemistry, typically inducing a significant inflammatory response. Staples are fraught with limitations including high-localized tissue stress and increased risk of infection, and nerve and blood vessel damage. Here, inspired by the endoparasite Pomphorhynchus laevis which swells its proboscis to attach to its host’s intestinal wall, we have developed a biphasic microneedle array that mechanically interlocks with tissue through swellable microneedle tips, achieving ~ 3.5 fold increase in adhesion strength compared to staples in skin graft fixation, and removal force of ~ 4.5 N/cm2 from intestinal mucosal tissue. Comprising a poly(styrene)-block-poly(acrylic acid) swellable tip and non-swellable polystyrene core, conical microneedles penetrate tissue with minimal insertion force and depth, yet high adhesion strength in their swollen state. Uniquely, this design provides universal soft tissue adhesion with minimal damage, less traumatic removal, reduced risk of infection and delivery of bioactive therapeutics. PMID:23591869

  18. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation.

    PubMed

    Tipsmark, C K; Madsen, S S

    2012-08-01

    Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3 isoforms were expressed at highest level in kidney tissue. Transfer of juvenile FW salmon to seawater (SW) elevated intestinal tricellulin and occludin mRNA, and these transcripts were also elevated at the time of best SW-tolerance during the course of smoltification. In the kidney, expression of tricellulin and claudin-3 isoforms was elevated after SW-transfer and tricellulin, occludin, claudin-3a and -3b increased in March before the peak smolt stage. In the gill, none of the examined tight junction proteins were impacted by SW-transfer. The data suggest that expression of tricellulin and occludin is dynamically involved in reorganization of intestinal epithelium and possibly changed paracellular permeability during SW-acclimation. The increased renal tricellulin and claudin-3 expression in SW suggests a role in remodeling of the kidney during SW-acclimation. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Mass spectrometric profiling of lipids in intestinal tissue from rats fed cereals processed for medical conditions.

    PubMed

    Dowlatshahi Pour, Masoumeh; Jennische, Eva; Lange, Stefan; Ewing, Andrew G; Malmberg, Per

    2016-06-11

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used for lipid profiling of intestine tissue sections from rats fed specially processed cereals and rats fed ordinary feed as a control. This cereal is known to increase the activity of antisecretory factor in plasma and the exact mechanism for the activation process at the cellular level is unclear. ToF-SIMS has been used to track food induced changes in lipid content in intestinal tissue sections to gain insight into the possible mechanisms involved. Data from 20 intestine sections belonging to four different rats from each group of control and specially processed cereals-fed rats were obtained using the stage scan macroraster with a lateral resolution of 5 μm. Data were subsequently subjected to orthogonal partial least squares discriminant analysis. The data clearly show that changes of certain lipids are induced by the specially processed cereal feed. Scores plots show a well-defined separation between the two groups. The corresponding loading plots reveal that the groups separate mainly due to changes of vitamin E, phosphocholine, and phosphosphingolipid fragments, and that for the c18:2 fatty acid. The observed changes in lipids might give insight into the working mechanisms of antisecretory factor in the body, and this has been successfully used to understand the working mechanism of specially processed cereal-induced antisecretory factor activation in intestine.

  20. Modulation of gut-specific mechanisms by chronic δ(9)-tetrahydrocannabinol administration in male rhesus macaques infected with simian immunodeficiency virus: a systems biology analysis.

    PubMed

    Molina, Patricia E; Amedee, Angela M; LeCapitaine, Nicole J; Zabaleta, Jovanny; Mohan, Mahesh; Winsauer, Peter J; Vande Stouwe, Curtis; McGoey, Robin R; Auten, Matthew W; LaMotte, Lynn; Chandra, Lawrance C; Birke, Leslie L

    2014-06-01

    Our studies have demonstrated that chronic Δ(9)-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques. Gut-associated lymphoid tissue is an important site for HIV replication and inflammation that can impact disease progression. We used a systems approach to examine the duodenal immune environment in 4- to 6-year-old male rhesus monkeys inoculated intravenously with SIVMAC251 after 17 months of chronic THC administration (0.18-0.32 mg/kg, intramuscularly, twice daily). Duodenal tissue samples excised from chronic THC- (N=4) and vehicle (VEH)-treated (N=4) subjects at ∼5 months postinoculation showed lower viral load, increased duodenal integrin beta 7(+)(β7) CD4(+) and CD8(+) central memory T cells, and a significant preferential increase in Th2 cytokine expression. Gene array analysis identified six genes that were differentially expressed in intestinal samples of the THC/SIV animals when compared to those differentially expressed between VEH/SIV and uninfected controls. These genes were identified as having significant participation in (1) apoptosis, (2) cell survival, proliferation, and morphogenesis, and (3) energy and substrate metabolic processes. Additional analysis comparing the duodenal gene expression in THC/SIV vs. VEH/SIV animals identified 93 differentially expressed genes that participate in processes involved in muscle contraction, protein folding, cytoskeleton remodeling, cell adhesion, and cell signaling. Immunohistochemical staining showed attenuated apoptosis in epithelial crypt cells of THC/SIV subjects. Our results indicate that chronic THC administration modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis. These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.

  1. Radiofrequency-induced small bowel thermofusion: an ex vivo study of intestinal seal adequacy using mechanical and imaging modalities.

    PubMed

    Arya, Shobhit; Hadjievangelou, Nancy; Lei, Su; Kudo, Hiromi; Goldin, Robert D; Darzi, Ara W; Elson, Daniel S; Hanna, George B

    2013-09-01

    Bipolar radiofrequency (RF) induced tissue fusion is believed to have the potential to seal and anastomose intestinal tissue thereby providing an alternative to current techniques which are associated with technical and functional complications. This study examines the mechanical and cellular effects of RF energy and varying compressive pressures when applied to create ex vivo intestinal seals. A total of 299 mucosa-to-mucosa fusions were formed on ex vivo porcine small bowel segments using a prototype bipolar RF device powered by a closed-loop, feedback-controlled RF generator. Compressive pressures were increased at 0.05 MPa intervals from 0.00 to 0.49 MPa and RF energy was applied for a set time period to achieve bowel tissue fusion. Seal strength was subsequently assessed using burst pressure and tensile strength testing, whilst morphological changes were determined through light microscopy. To further identify the subcellular tissue changes that occur as a result of RF energy application, the collagen matrix in the fused area of a single bowel segment sealed at an optimal pressure was examined using transmission electron microscopy (TEM). An optimal applied compressive pressure range was observed between 0.10 and 0.25 MPa. Light microscopy demonstrated a step change between fused and unfused tissues but was ineffective in distinguishing between pressure levels once tissues were sealed. Non uniform collagen damage was observed in the sealed tissue area using TEM, with some areas showing complete collagen denaturation and others showing none, despite the seal being complete. This finding has not been described previously in RF-fused tissue and may have implications for in vivo healing. This study shows that both bipolar RF energy and optimal compressive pressures are needed to create strong intestinal seals. This finding suggests that RF fusion technology can be effectively applied for bowel sealing and may lead to the development of novel anastomosis tools.

  2. Erdosteine and ebselen as useful agents in intestinal ischemia/reperfusion injury.

    PubMed

    Tunc, Turan; Uysal, Bulent; Atabek, Cuneyt; Kesik, Vural; Caliskan, Bahadir; Oztas, Emin; Ersoz, Nail; Oter, Sukru; Guven, Ahmet

    2009-08-01

    Reactive oxygen and nitrogen species generated during reperfusion of the tissue are characteristic of ischemia/reperfusion (I/R) injury. The purpose of the present study was to investigate whether erdosteine and ebselen, molecules with antioxidant properties and peroxynitrite scavenging capability, respectively, can reduce oxidative stress and histological damage in the rat small bowel subjected to mesenteric I/R injury. Forty Sprague-Dawley rats were divided into five groups equally: sham, I/R, I/R plus erdosteine, I/R plus ebselen, and I/R plus erdosteine and ebselen. Intestinal ischemia for 45 min and reperfusion for 3 d were carried out. Ileal specimens were obtained to determine the tissue levels of malondialdehide (MDA), protein carbonyl content (PCC), superoxide dismutase (SOD), glutathione peroxidase (GPx), nitrite/nitrate (NO(x)) level and histological changes. Intestinal I/R resulted in increased tissue MDA, PCC, and NO(x) levels and decreased SOD and GPx activities. Both erdosteine and ebselen alone significantly decreased MDA, PCC, and NO(x) levels and increased antioxidant enzymes activities, but all values were different from control. These changes almost returned to control values in the group treated with erdostein and ebselen. Histopathologically, the intestinal injury in rats treated with erdosteine and ebselen as well as combination were less than I/R group. Both erdosteine and ebselen were able to attenuate I/R injury of the intestine via inhibition of lipid peroxidation and protein oxidation, maintenance of antioxidant, and free radical scavenger properties. Nevertheless, combination treatment showed more promising results, suggesting that scavenging peroxynitrite nearby antioxidant activity is important in preventing intestinal I/R injury.

  3. Substance-P alleviates dextran sulfate sodium-induced intestinal damage by suppressing inflammation through enrichment of M2 macrophages and regulatory T cells.

    PubMed

    Hong, Hyun Sook; Hwang, Dae Yeon; Park, Ju Hyeong; Kim, Suna; Seo, Eun Jung; Son, Youngsook

    2017-02-01

    Intestinal inflammation alters immune responses in the mucosa and destroys colon architecture, leading to serious diseases such as inflammatory bowel disease (IBD). Thus, regulation of inflammation is regarded as the ultimate therapy for intestinal disease. Substance-P (SP) is known to mediate proliferation, migration, and cellular senescence in a variety of cells. SP was found to mobilize stem cells from bone marrow to the site of injury and to suppress inflammatory responses by inducing regulatory T cells (Tregs) and M2 macrophages. In this study, we explored the effects of SP in a dextran sodium sulfate (DSS)-induced intestine damage model. The effects of SP were evaluated by analyzing crypt structures, proliferating cells within the colon, cytokine secretion profiles, and immune cells population in the spleen/mesenteric lymph nodes in vivo. DSS treatment provoked an inflammatory response with loss of crypts in the intestines of experimental mice. This response was associated with high levels of inflammatory cytokines such as TNF-α and IL-17, and low levels of Tregs and M2 macrophages, leading to severely damaged tissue structure. However, SP treatment inhibited inflammatory responses by modulating cytokine production as well as the balance of Tregs/Th 17 cells and the M1/M2 transition in lymphoid organs, leading to accelerated tissue repair. Collectively, our data indicate that SP can promote the regeneration of tissue following damage by DSS treatment, possibly by modulating immune response. Our results propose SP as a candidate therapeutic for intestine-related inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dynamics of CCR5 Expression by CD4+ T Cells in Lymphoid Tissues during Simian Immunodeficiency Virus Infection

    PubMed Central

    Veazey, Ronald S.; Mansfield, Keith G.; Tham, Irene C.; Carville, Angela C.; Shvetz, Daniel E.; Forand, Amy E.; Lackner, Andrew A.

    2000-01-01

    Early viral replication and profound CD4+ T-cell depletion occur preferentially in intestinal tissues of macaques infected with simian immunodeficiency virus (SIV). Here we show that a much higher percentage of CD4+ T cells in the intestine express CCR5 compared with those found in the peripheral blood, spleen, or lymph nodes. In addition, the selectivity and extent of the CD4+ T-cell loss in SIV infection may depend upon these cells coexpressing CCR5 and having a “memory” phenotype (CD45RA−). Following intravenous infection with SIVmac251, memory CD4+ CCR5+ T cells were selectively eliminated within 14 days in all major lymphoid tissues (intestine, spleen, and lymph nodes). However, the effect on CD4+ T-cell numbers was most profound in the intestine, where cells of this phenotype predominate. The CD4+ T cells that remain after 14 days of infection lacked CCR5 and/or were naive (CD45RA+). Furthermore, when animals in the terminal stages of SIV infection (with AIDS) were examined, virtually no CCR5-expressing CD4+ T cells were found in lymphoid tissues, and all of the remaining CD4+ T cells were naive and coexpressed CXCR4. These findings suggest that chemokine receptor usage determines which cells are targeted for SIV infection and elimination in vivo. PMID:11069995

  5. Metals in Fishes from Yongshu Island, Southern South China Sea: Human Health Risk Assessment

    PubMed Central

    Cheng, Sha-Yen; Chen, Huorong; Huang, Dongren; Chen, Kai; Lin, Yan; Liu, Mengyang; Deng, Hengxiang; Ni, Minjie

    2017-01-01

    In order to assess the bioaccumulation of metals associated with gender, tissues, and their potential ecological risk, four species of fish were collected from the Yongshu Island in the Southern South China Sea. Metals and stable Pb isotopes in their tissues (muscle, gill, liver, intestine, and ovary) were determined. The concentrations of metals (mg/kg, dry weight) in these species were ND–21.60 (Cd), 1.21–4.87 (Cr), 0.42–22.4 (Cu), 1.01–51.8 (Mn), 0.30–3.28 (Ni), 6.04–1.29 × 103 (Zn), 14.89–1.40 × 103 (Fe), and 0.22–3.36 (Pb). In general, the liver and intestine absorbed more metals than the other tissues. Metals accumulation can be influenced by gender and feeding behavior and in fact, female fish and dietary exposure are more prone to accumulate metals. In addition, Pb isotopic ratios indicated that all species had significant biological fractionation, which may not make them good tracers for source identification. The metal concentrations of most samples were lower than the national standard values of the FAO (USA), which suggested that human consumption of these species may not cause health risks. However, since the surrounding areas are developing rapidly, the potential environmental risk of metals will intensify and should receive more attention. PMID:29201049

  6. Allograft Fascia Lata as an Augmentation Device for Musculoskeletal Repairs

    DTIC Science & Technology

    2008-12-01

    TissueMend® ( fetal bovine dermis), Restore® (porcine small intestine submucosa), CuffPatch™ (crosslinked porcine small intestine submucosa) and...transfers, grafting lacerated muscles, periosteal coverage and wound healing. Providing an effective treatment for musculoskeletal conditions such

  7. The Hippo pathway in intestinal regeneration and disease.

    PubMed

    Hong, Audrey W; Meng, Zhipeng; Guan, Kun-Liang

    2016-06-01

    The Hippo pathway is a signalling cascade conserved from Drosophila melanogaster to mammals. The mammalian core kinase components comprise MST1 and MST2, SAV1, LATS1 and LATS2 and MOB1A and MOB1B. The transcriptional co-activators YAP1 and TAZ are the downstream effectors of the Hippo pathway and regulate target gene expression. Hippo signalling has crucial roles in the control of organ size, tissue homeostasis and regeneration, and dysregulation of the Hippo pathway can lead to uncontrolled cell growth and malignant transformation. Mammalian intestine consists of a stem cell compartment as well as differentiated cells, and its ability to regenerate rapidly after injury makes it an excellent model system to study tissue homeostasis, regeneration and tumorigenesis. Several studies have established the important role of the Hippo pathway in these processes. In addition, crosstalk between Hippo and other signalling pathways provides tight, yet versatile, regulation of tissue homeostasis. In this Review, we summarize studies on the role of the Hippo pathway in the intestine on these physiological processes and the underlying mechanisms responsible, and discuss future research directions and potential therapeutic strategies targeting Hippo signalling in intestinal disease.

  8. The Hippo pathway in intestinal regeneration and disease

    PubMed Central

    Hong, Audrey W.; Meng, Zhipeng; Guan, Kun-Liang

    2017-01-01

    The Hippo pathway is a signalling cascade conserved from Drosophila melanogaster to mammals. The mammalian core kinase components comprise MST1 and MST2, SAV1, LATS1 and LATS2 and MOB1A and MOB1B. The transcriptional co-activators YAP1 and TAZ are the downstream effectors of the Hippo pathway and regulate target gene expression. Hippo signalling has crucial roles in the control of organ size, tissue homeostasis and regeneration, and dysregulation of the Hippo pathway can lead to uncontrolled cell growth and malignant transformation. Mammalian intestine consists of a stem cell compartment as well as differentiated cells, and its ability to regenerate rapidly after injury makes it an excellent model system to study tissue homeostasis, regeneration and tumorigenesis. Several studies have established the important role of the Hippo pathway in these processes. In addition, crosstalk between Hippo and other signalling pathways provides tight, yet versatile, regulation of tissue homeostasis. In this Review, we summarize studies on the role of the Hippo pathway in the intestine on these physiological processes and the underlying mechanisms responsible, and discuss future research directions and potential therapeutic strategies targeting Hippo signalling in intestinal disease. PMID:27147489

  9. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  10. [Expression of neuropeptide Y and long leptin receptor in gastrointestinal tract of giant panda].

    PubMed

    Luo, Qihui; Tang, Xiuying; Chen, Zhengli; Wang, Kaiyu; Wang, Chengdong; Li, Desheng; Li, Caiwu

    2015-08-01

    To study the expression and distribution of neuropeptide Y (NPY) and long leptin receptor (OB-Rb) in the gastrointestinal tract of giant panda, samples of three animals were collected from the key laboratory for reproduction and conservation genetics of endangered wildlife of Sichuan province, China conservation and research center for the giant panda. Paraffin sections of giant panda gastrointestinal tissue samples were observed using hematoxylin-eosin staining (HE) and strept actividin-biotin complex immunohistochemical staining (IHC). The results show that the intestinal histology of three pandas was normal and no pathological changes, and there were rich single-cell and multi-cell mucous glands, long intestinal villi and thick muscularis mucosa and muscle layer. Positive cells expressing NPY and OB-Rb were widely detected in the gastrointestinal tract by IHC methods. NPY positive nerve fibers and neuronal cell were widely distributed in submucosal plexus and myenteric plexus, especially in the former. They were arranged beaded or point-like shape. NPY positive cells were observed in the shape of ellipse and polygon and mainly located in the mucous layer and intestinal glands. OB-Rb positive cells were mainly distributed in the mucous layer and the laminae propria, especially the latter. These results confirmed that NPY and OB-Rb are widely distributed in the gut of the giant panda, which provide strong reference for the research between growth and development, digestion and absorption, and immune function.

  11. Determination of hydroxysafflor yellow A in rat plasma and tissues by high-performance liquid chromatography after oral administration of safflower extract or safflor yellow.

    PubMed

    Li, Yi; Zhang, Zhao-Yang; Zhang, Jin-Lan

    2007-03-01

    A simple and reproducible HPLC method for quantification of hydroxysafflor yellow A (HSYA) in rat plasma and tissues after oral administration of safflower extract or safflor yellow (SY) was developed. Sample preparation was achieved by protein precipitation of plasma and tissue homogenates with three volumes of methanol. p-Hydroxybenzaldehyde was used as the internal standard (IS). HSYA and IS were separated on a Hypersil BDS-C(18) column with a gradient elution system composed of acetonitrile and aqueous acetic acid. UV detection was used at 320 nm. The calibration curves were linear in all matrices (r(2) > 0.999) in the concentration ranges 0.51-101.36 microg/mL for plasma, 12.27-2454.46 microg/g for intestines and 0.96-192.20 microg/g for lung. The intra-day and inter-day precision were all less than 12.5%, and the extract recovery was in the range 64.1-103.7% with RSD less than 15.6% for HSYA in all matrices. The method was used successfully to quantify HSYA in rat plasma and tissue samples to support a pharmacokinectic study.

  12. Intestinal alkaline phosphatase: novel functions and protective effects.

    PubMed

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  13. MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis.

    PubMed

    Runtsch, Marah C; Hu, Ruozhen; Alexander, Margaret; Wallace, Jared; Kagele, Dominique; Petersen, Charisse; Valentine, John F; Welker, Noah C; Bronner, Mary P; Chen, Xinjian; Smith, Daniel P; Ajami, Nadim J; Petrosino, Joseph F; Round, June L; O'Connell, Ryan M

    2015-10-06

    Host-microbial interactions within the mammalian intestines must be properly regulated in order to promote host health and limit disease. Because the microbiota provide constant immunological signals to intestinal tissues, a variety of regulatory mechanisms have evolved to ensure proper immune responses to maintain homeostasis. However, many of the genes that comprise these regulatory pathways, including immune-modulating microRNAs (miRNAs), have not yet been identified or studied in the context of intestinal homeostasis. Here, we investigated the role of microRNA-146a (miR-146a) in regulating intestinal immunity and barrier function and found that this miRNA is expressed in a variety of gut tissues in adult mice. By comparing intestinal gene expression in WT and miR-146a-/- mice, we demonstrate that miR-146a represses a subset of gut barrier and inflammatory genes all within a network of immune-related signaling pathways. We also found that miR-146a restricts the expansion of intestinal T cell populations, including Th17, Tregs, and Tfh cells. GC B cells, Tfh ICOS expression, and the production of luminal IgA were also reduced by miR-146a in the gut. Consistent with an enhanced intestinal barrier, we found that miR-146a-/- mice are resistant to DSS-induced colitis, a model of Ulcerative Colitis (UC), and this correlated with elevated colonic miR-146a expression in human UC patients. Taken together, our data describe a role for miR-146a in constraining intestinal barrier function, a process that alters gut homeostasis and enhances at least some forms of intestinal disease in mice.

  14. MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis

    PubMed Central

    Runtsch, Marah C.; Hu, Ruozhen; Alexander, Margaret; Wallace, Jared; Kagele, Dominique; Petersen, Charisse; Valentine, John F.; Welker, Noah C.; Bronner, Mary P.; Chen, Xinjian; Smith, Daniel P.; Ajami, Nadim J.; Petrosino, Joseph F.; Round, June L.; O'Connell, Ryan M.

    2015-01-01

    Host-microbial interactions within the mammalian intestines must be properly regulated in order to promote host health and limit disease. Because the microbiota provide constant immunological signals to intestinal tissues, a variety of regulatory mechanisms have evolved to ensure proper immune responses to maintain homeostasis. However, many of the genes that comprise these regulatory pathways, including immune-modulating microRNAs (miRNAs), have not yet been identified or studied in the context of intestinal homeostasis. Here, we investigated the role of microRNA-146a (miR-146a) in regulating intestinal immunity and barrier function and found that this miRNA is expressed in a variety of gut tissues in adult mice. By comparing intestinal gene expression in WT and miR-146a−/− mice, we demonstrate that miR-146a represses a subset of gut barrier and inflammatory genes all within a network of immune-related signaling pathways. We also found that miR-146a restricts the expansion of intestinal T cell populations, including Th17, Tregs, and Tfh cells. GC B cells, Tfh ICOS expression, and the production of luminal IgA were also reduced by miR-146a in the gut. Consistent with an enhanced intestinal barrier, we found that miR-146a−/− mice are resistant to DSS-induced colitis, a model of Ulcerative Colitis (UC), and this correlated with elevated colonic miR-146a expression in human UC patients. Taken together, our data describe a role for miR-146a in constraining intestinal barrier function, a process that alters gut homeostasis and enhances at least some forms of intestinal disease in mice. PMID:26456940

  15. A chronic oral reference dose for hexavalent chromium-induced intestinal cancer†

    PubMed Central

    Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A

    2014-01-01

    High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg–1 day–1 was derived for diffuse hyperplasia—an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l–1. This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l–1) and well above levels of Cr(VI) in US drinking water supplies (typically ≤ 5 µg l–1). © 2013 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:23943231

  16. Differential gene expression of CYP3A isoforms in equine liver and intestines.

    PubMed

    Tydén, E; Löfgren, M; Pegolo, S; Capolongo, F; Tjälve, H; Larsson, P

    2012-12-01

    Recently, seven CYP3A isoforms - CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP129 - have been isolated from the horse genome. In this study, we have examined the hepatic and intestinal gene expression of these CYP3A isoforms using TaqMan probes. We have also studied the enzyme activity using luciferin-isopropyl acetal (LIPA) as a substrate. The results show a differential gene expression of the CYP3A isoforms in the liver and intestines in horses. In the liver, CYP3A89, CYP3A94, CYP3A96 and CYP3A97 were highly expressed, while in the intestine there were only two dominating isoforms, CYP3A93 and CYP3A96. The isoform CYP3A129 was not detected in the liver or the intestine, although this gene consists of a complete set of exons and should therefore code for a functional protein. It is possible that this gene is expressed in tissues other than the liver and intestines. In the intestine, both CYP3A96 and CYP3A93 showed the highest gene expression in the duodenum and the proximal parts of the jejunum. This correlated with a high protein expression in these tissues. Studies of the enzyme activity showed the same K(m) for the LIPA substrate in the liver and the intestine, while the maximum velocity (V(max)) in the liver was higher than in the intestine. Our finding of a differential gene expression of the CYP3A isoforms in the liver and the intestines contributes to a better understanding of drug metabolism in horses. © 2012 Blackwell Publishing Ltd.

  17. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut.

    PubMed

    Nerurkar, Nandan L; Mahadevan, L; Tabin, Clifford J

    2017-02-28

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth-driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution.

  18. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut

    PubMed Central

    Nerurkar, Nandan L.; Mahadevan, L.; Tabin, Clifford J.

    2017-01-01

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth–driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution. PMID:28193855

  19. Identification and expression characterization of WntA during intestinal regeneration in the sea cucumber Apostichopus japonicus.

    PubMed

    Li, Xiaoni; Sun, Lina; Yang, Hongsheng; Zhang, Libin; Miao, Ting; Xing, Lili; Huo, Da

    2017-08-01

    Wnt genes encode secreted glycoproteins that act as signaling molecules; these molecules direct cell proliferation, migration, differentiation and survival during animal development, maintenance of homeostasis and regeneration. At present, although the regeneration mechanism in Apostichopus japonicus has been studied, there is a little research on the Wnt signaling pathway in A. japonicus. To understand the potential role of the Wnt signaling pathway in A. japonicus, we cloned and sequenced the WntA gene in A. japonicus. Protein localization analysis showed that WntA protein was ubiquitously expressed in epidermal cells, the muscle and submucosa of the intestinal tissue. After stimulation and evisceration, the dynamic changes in expression of the WntA gene and protein showed that WntA was constitutively expressed during different stages of intestine regeneration in A. japonicus, with higher levels during the early wound healing stage and late lumen formation in the residual and nascent intestinal tissues, indicating its response to intestinal regeneration. Simultaneously, cell proliferation and apoptosis analysis showed that the patterns of cell proliferation were similar to the patterns of WntA protein expression during different intestinal regeneration stages in this organism. Taken together, these results suggested that WntA might participate in intestinal regeneration and may be connected with cell proliferation, apoptosis in different intestinal layers. This research could establish a basis for further examination of WntA functions in A. japonicus and Wnt genes in other echinoderms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    PubMed

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  1. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin.

    PubMed

    Gill, Katherine L; Houston, J Brian; Galetin, Aleksandra

    2012-04-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.

  2. Giardia duodenalis Infection Reduces Granulocyte Infiltration in an In Vivo Model of Bacterial Toxin-Induced Colitis and Attenuates Inflammation in Human Intestinal Tissue

    PubMed Central

    Cotton, James A.; Motta, Jean-Paul; Schenck, L. Patrick; Hirota, Simon A.; Beck, Paul L.; Buret, Andre G.

    2014-01-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn’s disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain Giardia infections may attenuate PMN accumulation by decreasing the expression of the mediators responsible for their recruitment. PMID:25289678

  3. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis.

    PubMed

    Perkins, Sarah; Verschoyle, Richard D; Hill, Kirsti; Parveen, Ifat; Threadgill, Michael D; Sharma, Ricky A; Williams, Marion L; Steward, William P; Gescher, Andreas J

    2002-06-01

    Curcumin, the major yellow pigment in turmeric, prevents the development of adenomas in the intestinal tract of the C57Bl/6J Min/+ mouse, a model of human familial APC. To aid the rational development of curcumin as a colorectal cancer-preventive agent, we explored the link between its chemopreventive potency in the Min/+ mouse and levels of drug and metabolites in target tissue and plasma. Mice received dietary curcumin for 15 weeks, after which adenomas were enumerated. Levels of curcumin and metabolites were determined by high-performance liquid chromatography in plasma, tissues, and feces of mice after either long-term ingestion of dietary curcumin or a single dose of [(14)C]curcumin (100 mg/kg) via the i.p. route. Whereas curcumin at 0.1% in the diet was without effect, at 0.2 and 0.5%, it reduced adenoma multiplicity by 39 and 40%, respectively, compared with untreated mice. Hematocrit values in untreated Min/+ mice were drastically reduced compared with those in wild-type C57Bl/6J mice. Dietary curcumin partially restored the suppressed hematocrit. Traces of curcumin were detected in the plasma. Its concentration in the small intestinal mucosa, between 39 and 240 nmol/g of tissue, reflects differences in dietary concentration. [(14)C]Curcumin disappeared rapidly from tissues and plasma within 2-8 h after dosing. Curcumin may be useful in the chemoprevention of human intestinal malignancies related to Apc mutations. The comparison of dose, resulting curcumin levels in the intestinal tract, and chemopreventive potency suggests tentatively that a daily dose of 1.6 g of curcumin is required for efficacy in humans. A clear advantage of curcumin over nonsteroidal anti-inflammatory drugs is its ability to decrease intestinal bleeding linked to adenoma maturation.

  4. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis

    PubMed Central

    Aherne, CM; Saeedi, B; Collins, CB; Masterson, JC; McNamee, EN; Perrenoud, L; Rapp, CR; Curtis, VF; Bayless, A; Fletcher, A; Glover, LE; Evans, CM; Jedlicka, P; Furuta, GT; de Zoeten, EF; Colgan, SP; Eltzschig, HK

    2015-01-01

    Central to inflammatory bowel disease (IBD) pathogenesis is loss of mucosal barrier function. Emerging evidence implicates extracellular adenosine signaling in attenuating mucosal inflammation. We hypothesized that adenosine-mediated protection from intestinal barrier dysfunction involves tissue-specific signaling through the A2B adenosine receptor (Adora2b) at the intestinal mucosal surface. To address this hypothesis, we combined pharmacologic studies and studies in mice with global or tissue-specific deletion of the Adora2b receptor. Adora2b−/− mice experienced a significantly heightened severity of colitis, associated with a more acute onset of disease and loss of intestinal epithelial barrier function. Comparison of mice with Adora2b deletion on vascular endothelial cells (Adora2bfl/flVeCadCre+) or intestinal epithelia (Adora2bfl/flVillinCre+) revealed a selective role for epithelial Adora2b signaling in attenuating colonic inflammation. In vitro studies with Adora2b knockdown in intestinal epithelial cultures or pharmacologic studies highlighted Adora2b-driven phosphorylation of vasodilator-stimulated phosphoprotein (VASP) as a specific barrier repair response. Similarly, in vivo studies in genetic mouse models or treatment studies with an Adora2b agonist (BAY 60-6583) recapitulate these findings. Taken together, our results suggest that intestinal epithelial Adora2b signaling provides protection during intestinal inflammation via enhancing mucosal barrier responses. PMID:25850656

  5. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  6. Intraluminal polyethylene glycol stabilizes tight junctions and improves intestinal preservation in the rat.

    PubMed

    Oltean, M; Joshi, M; Björkman, E; Oltean, S; Casselbrant, A; Herlenius, G; Olausson, M

    2012-08-01

    Rapidly progressing mucosal breakdown limits the intestinal preservation time below 10 h. Recent studies indicate that intraluminal solutions containing polyethylene glycol (PEG) alleviate preservation injury of intestines stored in UW-Viaspan. We investigated whether a low-sodium PEG solution is beneficial for intestines stored in histidine-tryptophane-ketoglutarate (HTK) preservation solution. Rat intestines used as control tissue (group 1) were perfused with HTK, groups 2 and 3 received either a customized PEG-3350 (group 2) or an electrolyte solution (group 3) intraluminally before cold storage. Tissue injury, brush-border maltase activity, zonula occludens-1 (ZO-1) and claudin-3 expression in the tight junctions (TJ) were analyzed after 8, 14 and 20 h. We measured epithelial resistance and permeability (Ussing chamber) after 8 and 14 h. Group 2 had superior morphology while maltase activity was similar in all groups. TJ proteins rapidly decreased and decolocalized in groups 1 3; these negative events were delayed in group 2, where colocalization persisted for about 14 h. Intestines in group 2 had higher epithelial resistance and lower permeability than the other groups. These results suggest that a customized PEG solution intraluminally reduces the intestinal preservation injury by improving several major epithelial characteristics without negatively affecting the brush-border enzymes or promoting edema. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis

    PubMed Central

    Matsuura, Kazuo; Shi, Yun-Bo

    2012-01-01

    Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development. PMID:23071801

  8. Inflammasome, Inflammation, and Tissue Homeostasis.

    PubMed

    Rathinam, Vijay A K; Chan, Francis Ka-Ming

    2018-03-01

    Organismal fitness demands proper response to neutralize the threat from infection or injury. At the mammalian intestinal epithelium barrier, the inflammasome coordinates an elaborate tissue repair response marked by the induction of antimicrobial peptides, wound-healing cytokines, and reparative proliferation of epithelial stem cells. The inflammasome in myeloid and intestinal epithelial compartments exerts these effects in part through maintenance of a healthy microbiota. Disease-associated mutations and elevated expression of certain inflammasome sensors have been identified. In many cases, inhibition of inflammasome activity has dramatic effects on disease outcome in mouse models of experimental colitis. Here, we discuss recent studies on the role of distinct inflammasome sensors in intestinal homeostasis and how this knowledge may be translated into a therapeutic setting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Synchrotron X-ray microscopy and spectroscopy analysis of iron in hemochromatosis liver and intestines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J .Y. Peter; Sham, Tsun-Kong; Chakrabarti, Subrata

    2009-12-01

    Hemochromatosis is a genetic disorder that causes body to store excess iron in organs such as heart or liver. Distribution of iron, as well as copper, zinc and calcium, and chemical identity of iron in hemochromatosis liver and intestine were investigated by X-ray microprobe experiments, which consist of X-ray microscopy and micro-X-ray absorption fine structure. Our results show that iron concentration in hemochromatosis liver tissue is high, while much less Fe is found in intestinal tissue. Moreover, chemical identity of Fe in hemochromatosis liver can be identified. X-ray microprobe experiments allows for examining elemental distribution at an excellent spatial resolution.more » Moreover, chemical identity of element of interest can be obtained.« less

  10. The Inside Story of Shigella Invasion of Intestinal Epithelial Cells

    PubMed Central

    Carayol, Nathalie; Tran Van Nhieu, Guy

    2013-01-01

    As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process. PMID:24086068

  11. Microenvironment of Breast Tissue: Lithocholic Acid and Other Intestinal Steroids.

    DTIC Science & Technology

    1997-09-01

    6. chenodeoxycholic acid -7-sulfate 7. ursodeoxycholic acid 8. glycodeoxycholic acid 9. 3ß-hydroxy-5-cholenoic acid sulfate 10. cholicacid 11. 3a... acids 7 Ursodeoxycholic acid 29.1 10 Cholic acid 32.5 11 3ß,7a-Dihydroxy-chol-5-enoicacidJ 33.3 12 7a-Hydroxy-3-oxo-chol-4-enoic acidc 34.1 16...AD GRANT NUMBER DAMD17-94-J-4311 TITLE: Microenvironment of: Breast Tissue: Lithocholic Acid and Other Intestinal Steroids PRINCIPAL

  12. Genes involved in muscle contractility and nutrient signaling pathways within celiac disease risk loci show differential mRNA expression.

    PubMed

    Montén, Caroline; Gudjonsdottir, Audur H; Browaldh, Lars; Arnell, Henrik; Nilsson, Staffan; Agardh, Daniel; Naluai, Åsa Torinsson

    2015-06-30

    Risk gene variants for celiac disease, identified in genome-wide linkage and association studies, might influence molecular pathways important for disease development. The aim was to examine expression levels of potential risk genes close to these variants in the small intestine and peripheral blood and also to test if the non-coding variants affect nearby gene expression levels in children with celiac disease. Intestinal biopsy and peripheral blood RNA was isolated from 167 children with celiac disease, 61 with potential celiac disease and 174 disease controls. Transcript levels for 88 target genes, selected from celiac disease risk loci, were analyzed in biopsies of a smaller sample subset by qPCR. Differentially expressed genes (3 from the pilot and 8 previously identified) were further validated in the larger sample collection (n = 402) of both tissues and correlated to nearby celiac disease risk variants. All genes were significantly down- or up-regulated in the intestinal mucosa of celiac disease children, NTS being most down-regulated (Fold change 3.6, p < 0.001). In contrast, PPP1R12B isoform C was up-regulated in the celiac disease mucosa (Fold change 1.9, p < 0.001). Allele specific expression of GLS (rs6741418, p = 0.009), INSR (rs7254060, p = 0.003) and NCALD (rs652008, p = 0.005) was also detected in the biopsies. Two genes (APPL2 and NCALD) were differentially expressed in peripheral blood but no allele specific expression was observed in this tissue. The differential expression of NTS and PPP1R12B indicate a potential role for smooth muscle contractility and cell proliferation in celiac disease, whereas other genes like GLS, NCALD and INSR suggests involvement of nutrient signaling and energy homeostasis in celiac disease pathogenesis. A disturbance in any of these pathways might contribute to development of childhood celiac disease.

  13. Seaweed extracts and galacto-oligosaccharides improve intestinal health in pigs following Salmonella Typhimurium challenge.

    PubMed

    Bouwhuis, M A; McDonnell, M J; Sweeney, T; Mukhopadhya, A; O'Shea, C J; O'Doherty, J V

    2017-09-01

    Pork and pork products are recognised as vehicles of Salmonella Typhimurium infection in humans. Seaweed-derived polysaccharides (SWE) and galacto-oligosaccharides (GOS) have shown to exhibit antimicrobial, prebiotic and immunomodulatory activity. The objective of this study was to assess the effects of dietary GOS and SWE supplementation on reducing S. Typhimurium numbers and intestinal inflammation in vivo. In total, 30 pigs (n=10/treatment, BW 30.9 kg) were randomly assigned to three dietary treatments: (1) basal diet; (2) basal diet+2.5 g GOS/kg diet; (3) basal diet+SWE (containing 180 mg laminarin/kg diet+340 mg fucoidan/kg diet). Following an 11-day dietary adaptation period, pigs were orally challenged with 108 colony-forming units/ml S. Typhimurium (day 0). Pigs remained on their diets for a further 17 days and were then sacrificed for sample collection. The SWE supplementation did not affect S. Typhimurium numbers on days 2 and 4 post-challenge but reduced S. Typhimurium numbers in faecal samples collected day 7 post-challenge (-0.80 log gene copy numbers (GCN)/g faeces) and in caecal and colonic digesta (-0.62 and -0.98 log GCN/g digesta, respectively; P<0.05) compared with the control treatment. Lactobacillus numbers were increased in caecal and colonic digesta after GOS supplementation (+0.70 and +0.35 log GCN/g digesta, respectively; P<0.05). In colonic tissue, both GOS and SWE supplementation resulted in reduced messenger RNA expression levels of interleukin (IL)-6, IL-22, tumour necrosis factor-α and regenerating islet-derived protein 3-γ (P<0.05). It can be concluded that dietary supplementation of SWE reduced faecal and intestinal S. Typhimurium numbers compared with the basal diet, whereas dietary GOS supplementation increased Lactobacillus numbers in caecal and colonic digesta but did not affect S. Typhimurium numbers. Supplementation of GOS and SWE reduced the gene expression of pro-inflammatory cytokines in colonic tissue of pigs after the experimental S. Typhimurium challenge.

  14. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves.

    PubMed

    Kreikemeier, K K; Harmon, D L; Peters, J P; Gross, K L; Armendariz, C K; Krehbiel, C R

    1990-09-01

    Twenty (12 Holstein, 8 Longhorn cross) calves (198 kg and 7 mo old) were used in a randomized complete block design to evaluate the effects of dietary forage concentration and feed intake on carbohydrase activities and small intestinal (SI) morphology. Calves were individually fed 90% forage (alfalfa) or a 90% concentrate (50% sorghum: 50% wheat) diet at either one or two times NEm for 140 d and slaughtered; tissues and small intestinal digesta were collected. Increased feed intake increased (P less than .05) pancreatic weight, alpha-amylase and glucoamylase activities in the pancreas, SI length and SI digesta weight. Forage-fed calves gained faster (P less than .01) and had greater (P less than .05) pancreatic protein concentrations, alpha-amylase and glucoamylase activities in the pancreas and greater SI digesta alpha-amylase activities than grain-fed calves did. Increased feed intake increased (P less than .01) mucosal weight/cm small intestine only in forage-fed calves and increased (P less than .05) SI surface/volume only in grain-fed calves. Mucosal weight was greatest (P less than .05) at the terminal ileum, surface/volume was greatest (P less than .05) in the duodenum, and mucosal protein concentration was highest (P less than .05) in the SI mid-section. Mucosal lactase was higher (P less than .05) in proximal segments, whereas mucosal isomaltase was higher in middle and distal segments of the small intestine. For mucosal maltase activity, there was a feed intake x SI sampling site interaction (P less than .05) and for trehalase, a diet x feed intake x SI sampling site interaction (P less than .05). The SI distribution patterns of maltase and isomaltase were similar, as were those of trehalase and lactase. The alpha-amylase activity in the pancreas and SI morphology were influenced greatly by diet composition and feed intake by calves.

  15. Assessment of Water Quality in Asa River (Nigeria) and Its Indigenous Clarias gariepinus Fish

    PubMed Central

    Kolawole, Olatunji M.; Ajayi, Kolawole T.; Olayemi, Albert B.; Okoh, Anthony I.

    2011-01-01

    Water is a valued natural resource for the existence of all living organisms. Management of the quality of this precious resource is, therefore, of special importance. In this study river water samples were collected and analysed for physicochemical and bacteriological evaluation of pollution in the Unity Road stream segment of Asa River in Ilorin, Nigeria. Juvenile samples of Clarias gariepinus fish were also collected from the experimental Asa River and from the control Asa Dam water and were analysed for comparative histological investigations and bacterial density in the liver and intestine in order to evaluate the impact of pollution on the aquatic biota. The water pH was found to range from 6.32 to 6.43 with a mean temperature range of 24.3 to 25.8 °C. Other physicochemical parameters monitored including total suspended solids, total dissolved solids, biochemical oxygen demand and chemical oxygen demand values exceeded the recommended level for surface water quality. Results of bacteriological analyses including total heterotrophic count, total coliform and thermotolerant coliform counts revealed a high level of faecal pollution of the river. Histological investigations revealed no significant alterations in tissue structure, but a notable comparative distinction of higher bacterial density in the intestine and liver tissues of Clarias gariepinus from Asa River than in those collected from the control. It was inferred that the downstream Asa River is polluted and its aquatic biota is bacteriologically contaminated and unsafe for human and animal consumption. PMID:22163210

  16. Profound loss of neprilysin accompanied by decreased levels of neuropeptides and increased CRP in ulcerative colitis.

    PubMed

    Sargın, Zeynep Gök; Erin, Nuray; Tazegul, Gokhan; Elpek, Gülsüm Özlem; Yıldırım, Bülent

    2017-01-01

    Neprilysin (NEP, CD10) acts to limit excessive inflammation partly by hydrolyzing neuropeptides. Although deletion of NEP exacerbates intestinal inflammation in animal models, its role in ulcerative colitis (UC) is not well explored. Herein, we aimed to demonstrate changes in NEP and associated neuropeptides at the same time in colonic tissue. 72 patients with UC and 27 control patients were included. Patients' demographic data and laboratory findings, five biopsy samples from active colitis sites and five samples from uninvolved mucosa were collected. Substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal peptide (VIP) were extracted from freshly frozen tissues and measured using ELISA. Levels of NEP expression were determined using immunohistochemistry and immunoreactivity scores were calculated. GEBOES grading system was also used. We demonstrated a profound loss (69.4%) of NEP expression in UC, whereas all healthy controls had NEP expression. Patients with UC had lower neuronal SP; however non-neuronal SP remained similar. UC patients had also lower neuronal and non-neuronal VIP levels. CGRP were low in general and no significant changes were observed. Additionally, CRP positive patients with UC had higher rates of NEP loss (80% vs 51.9%) and lower SP levels when compared with CRP negative patients with UC. Concurrent decreases in SP and VIP with profound loss of NEP expression observed in UC is likely to be one of the factors in pathogenesis. Further studies are required to define the role of neuropeptides and NEP in UC.

  17. Profound loss of neprilysin accompanied by decreased levels of neuropeptides and increased CRP in ulcerative colitis

    PubMed Central

    Sargın, Zeynep Gök; Tazegul, Gokhan; Elpek, Gülsüm Özlem; Yıldırım, Bülent

    2017-01-01

    Neprilysin (NEP, CD10) acts to limit excessive inflammation partly by hydrolyzing neuropeptides. Although deletion of NEP exacerbates intestinal inflammation in animal models, its role in ulcerative colitis (UC) is not well explored. Herein, we aimed to demonstrate changes in NEP and associated neuropeptides at the same time in colonic tissue. 72 patients with UC and 27 control patients were included. Patients’ demographic data and laboratory findings, five biopsy samples from active colitis sites and five samples from uninvolved mucosa were collected. Substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal peptide (VIP) were extracted from freshly frozen tissues and measured using ELISA. Levels of NEP expression were determined using immunohistochemistry and immunoreactivity scores were calculated. GEBOES grading system was also used. We demonstrated a profound loss (69.4%) of NEP expression in UC, whereas all healthy controls had NEP expression. Patients with UC had lower neuronal SP; however non-neuronal SP remained similar. UC patients had also lower neuronal and non-neuronal VIP levels. CGRP were low in general and no significant changes were observed. Additionally, CRP positive patients with UC had higher rates of NEP loss (80% vs 51.9%) and lower SP levels when compared with CRP negative patients with UC. Concurrent decreases in SP and VIP with profound loss of NEP expression observed in UC is likely to be one of the factors in pathogenesis. Further studies are required to define the role of neuropeptides and NEP in UC. PMID:29232715

  18. Porcine small intestine submucosal grafts improve remucosalization and progenitor cell recruitment to sites of upper airway tissue remodeling.

    PubMed

    Nayak, Jayakar V; Rathor, Aakanksha; Grayson, Jessica W; Bravo, Dawn T; Velasquez, Nathalia; Noel, Julia; Beswick, Daniel M; Riley, Kristen O; Patel, Zara M; Cho, Do-Yeon; Dodd, Robert L; Thamboo, Andrew; Choby, Garret W; Walgama, Evan; Harsh, Griffith R; Hwang, Peter H; Clemons, Lisa; Lowman, Deborah; Richman, Joshua S; Woodworth, Bradford A

    2018-06-01

    To better understand upper airway tissue regeneration, the exposed cartilage and bone at donor sites of tissue flaps may serve as in vivo "Petri dishes" for active wound healing. The pedicled nasoseptal flap (NSF) for skull-base reconstruction creates an exposed donor site within the nasal airway. The objective of this study is to evaluate whether grafting the donor site with a sinonasal repair cover graft is effective in promoting wound healing. In this multicenter, prospective trial, subjects were randomized to intervention (graft) or control (no graft) intraoperatively after NSF elevation. Individuals were evaluated at 2, 6, and 12 weeks postintervention with endoscopic recordings. Videos were graded (Likert scale) by 3 otolaryngologists blinded to intervention on remucosalization, crusting, and edema. Scores were analyzed for interrater reliability and cohorts compared. Biopsy and immunohistochemistry at the leading edge of wound healing was performed in select cases. Twenty-one patients were randomized to intervention and 26 to control. Subjects receiving the graft had significantly greater overall remucosalization (p = 0.01) than controls over 12 weeks. Although crusting was less in the small intestine submucosa (SIS) group, this was not statistically significant (p = 0.08). There was no overall effect on nasal edema (p = 0.2). Immunohistochemistry demonstrated abundant upper airway basal cell progenitors in 2 intervention samples, suggesting that covering grafts may facilitate tissue proliferation via progenitor cell expansion. This prospective, randomized, controlled trial indicates that a porcine SIS graft placed on exposed cartilage and bone within the upper airway confers improved remucosalization compared to current practice standards. © 2018 ARS-AAOA, LLC.

  19. A novel model for simultaneous study of neointestinal regeneration and intestinal adaptation.

    PubMed

    Jwo, Shyh-Chuan; Tang, Shye-Jye; Chen, Jim-Ray; Chiang, Kun-Chun; Huang, Ting-Shou; Chen, Huang-Yang

    2013-01-01

    The use of autologous grafts, fabricated from tissue-engineered neointestine, to enhance insufficient compensation of intestinal adaptation for severe short bowel syndrome is a compelling idea. Unfortunately, current approaches and knowledge for neointestinal regeneration, unlike intestinal adaptation, are still unsatisfactory. Thus, we have designed a novel model of intestinal adaptation with simultaneous neointestinal regeneration and evaluated its feasibility for future basic research and clinical application. Fifty male Sprague-Dawley rats weighing 250-350 g underwent this procedure and sacrificed at 4, 8, and 12 weeks postoperatively. Spatiotemporal analyses were carried out by gross, histology, and DNA/protein quantification. Three rats died of operative complications. In early experiments, the use of hard silicone stent as tissue scaffold in 11 rats was unsatisfactory for neointestinal regeneration. In later experiments, when a soft silastic tube was used, the success rate increased up to 90.9%. Further analyses revealed that no neointestine developed without donor intestine; regenerated lengths of mucosa and muscle were positively related to time postsurgery but independent of donor length with 0.5 or 1 cm. Other parameters of neointestinal regeneration or intestinal adaptation showed no relationship to both time postsurgery and donor length. In conclusion, this is a potentially important model for investigators searching for solutions to short bowel syndrome. © 2013 by the Wound Healing Society.

  20. Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs.

    PubMed

    Zhan, Zhenfeng; Ou, Deyuan; Piao, Xiangshu; Kim, Sung Woo; Liu, Yanhong; Wang, Junjun

    2008-07-01

    This study was conducted to evaluate the effects of dietary arginine levels on microvascular development of the small intestine in early-weaned pigs. Twenty-four crossbred pigs (5.0 +/- 0.3 kg body weight) were individually housed and randomly allotted to 1 of 3 diets supplemented with 0, 0.7, and 1.2% L-arginine (8 pigs per group). Pigs consumed the diets ad libitum for 10 d. We collected blood samples on d 3, 6, and 10. On d 10, 6 pigs from each group were randomly selected and killed for tissue sample collection. Compared with control pigs, dietary supplementation with 0.7% L-arginine increased (P < 0.05) jejunal concentrations of nitrite and nitrate (stable oxidation products of nitric oxide), intestinal villus height, as well as plasma proline and arginine concentrations on d 6 and 10. Dietary supplementation with 0.7% L-arginine also increased (P < 0.05) immunoreactive expression of CD34 in duodenal submucosa, ileal mucosa and submucosa, and expression of vascular endothelial growth factor (VEGF) in duodenal submucosa, jejunal mucosa and submucosa, and ileal mucosa compared with the control and 1.2% L-arginine supplementation. Dietary supplementation with 1.2% L-arginine increased (P < 0.05) the concentration of jejunal endothelin-1 compared with the control pigs. Immunoexpression of VEGF in duodenal mucosa and plasma lysine concentrations on d 6 and 10 were lower (P < 0.05) in pigs supplemented with 1.2% L-arginine than in unsupplemented pigs. Collectively, these findings indicate that the effects of L-arginine on microvascular development are beneficial at lower levels but have adverse effects at higher intakes. Dietary supplementation with 0.7% L-arginine may be a useful method to improve microvascular development in the small intestine of early-weaned pigs.

  1. Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11

    PubMed Central

    Hatfield, M. Jason; Tsurkan, Lyudmila; Garrett, Michael; Shaver, Timothy M.; Hyatt, Janice L.; Edwards, Carol C.; Hicks, Latorya D.; Potter, Philip M.

    2010-01-01

    The activation of the anticancer prodrug CPT-11, to its active metabolite SN-38, is primarily mediated by carboxylesterases (CE). In humans, three CEs have been identified, of which human liver CE (hCE1; CES1) and human intestinal CE (hiCE; CES2) demonstrate significant ability to hydrolyze the drug. However, while the kinetic parameters of CPT-11 hydrolysis have been measured, the actual contribution of each enzyme to activate the drug in biological samples has not been addressed. Hence, we have used a combination of specific CE inhibition and conventional chromatographic techniques to determine the amounts, and hydrolytic activity, of CEs present within human liver, kidney, intestinal and lung specimens. These studies confirm that hiCE demonstrates the most efficient kinetic parameters for CPT-11 activation, however, due to the high levels of hCE1 that are expressed in liver, the latter enzyme can contribute up to 50% of the total of drug hydrolysis in this tissue. Conversely, in human duodenum, jejunum, ileum and kidney, where hCE1 expression is very low, greater than 99% of the conversion of CPT-11 to SN-38 was mediated by hiCE. Furthermore, analysis of lung microsomal extracts indicated that CPT-11 activation was more proficient in samples obtained from smokers. Overall, our studies demonstrate that hCE1 plays a significant role in CPT-11 hydrolysis even though it is up to 100-fold less efficient at drug activation than hiCE, and that drug activation in the intestine and kidney are likely major contributors to SN-38 production in vivo. PMID:20833148

  2. Label-free proteomic analysis of intestinal mucosa proteins in common carp (Cyprinus carpio) infected with Aeromonas hydrophila.

    PubMed

    Di, Guilan; Li, Hui; Zhang, Chao; Zhao, Yanjing; Zhou, Chuanjiang; Naeem, Sajid; Li, Li; Kong, Xianghui

    2017-07-01

    Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 10 8  CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Rare Death Via Histamine Poisoning Following Crab Consumption: A Case Report.

    PubMed

    Yu, Yang; Wang, Ping; Bian, Ligong; Hong, Shijun

    2018-05-01

    Histamine poisoning (scombroid food poisoning) is a toxicity syndrome that results from eating spoiled fish. To date, however, few poisoning (or mortality) cases have been reported in relation to crab consumption. Here, we describe a very uncommon case in which a 37-year-old woman and her 14-year-old son ate cooked crabs (Scylla serrata), resulting in the death of the female. Samples of vomitus, food residue, liver tissue, gastric content, intestinal content, and cardiac blood were analyzed by high-performance liquid chromatography. Toxicological analysis revealed that histamine concentrations were very high in the cooked crab (47.08 mg/100 g) and intestinal content (22.54 mg/100 g). Comparing our toxicological results, police investigations, and family member statements, it can be assumed that the decedent ingested spoiled crabs, and by excluding other causes of death, lethal intoxication with histamine poisoning was confirmed. © 2017 American Academy of Forensic Sciences.

  4. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.

    PubMed

    Da, Lincui; Gong, Mei; Chen, Anjing; Zhang, Yi; Huang, Yizhou; Guo, Zhijun; Li, Shengfu; Li-Ling, Jesse; Zhang, Li; Xie, Huiqi

    2017-09-01

    Although soft tissue replacement has been clinically successful in many cases, the corresponding procedure has many limitations including the lack of resilience and mechanical integrity, significant donor-site morbidity, volume loss with time, and fibrous capsular contracture. These disadvantages can be alleviated by utilizing bio-absorbable scaffolds with high resilience and large strain, which are capable of stimulating natural tissue regeneration. Hence, the chemically crosslinked tridimensional scaffolds obtained by incorporating water-based polyurethane (PU) (which was synthesized from polytetramethylene ether glycol, isophorone diisocyanate, and 2,2-bis(hydroxymethyl) butyric acid) into a bioactive extracellular matrix consisting of small intestinal submucosa (SIS) have been tested in this study to develop a new approach for soft tissue engineering. After characterizing the structure and properties of the produced PU/SIS composites, the strength, Young's modulus, and resilience of wet PU/SIS samples were compared with those of crosslinked PU. In addition, the fabricated specimens were investigated using human umbilical vein endothelial cells to evaluate their ability to enhance cell attachment and proliferation. As a result, the synthesized PU/SIS samples exhibited high resilience and were capable of enhancing cell viability with no evidence of cytotoxicity. Subcutaneous implantation in animals and the subsequent testing conducted after 2, 4, and 8weeks indicated that sound implant integration and vascularization occurred inside the PU/SIS composites, while the presence of SIS promoted cell infiltration, angiogenesis, and ultimately tissue regeneration. The obtained results revealed that the produced PU/SIS composites were characterized by high bioactivity and resilience, and, therefore, could be used for soft tissue engineering applications. Hybrid composites containing synthetic polymers with high mechanical strength and naturally derived components, which create a bio-mimetic environment, are one of the most promising biomaterials. Although synthetic polymer/ECM composites have been previously used for soft tissue repair, their resilience properties were not investigated in sufficient detail, while the development of elastic composites composed of synthetic polymers and ECMs in nontoxic aqueous solutions remains a rather challenging task. In this study, porous PU/SIS composites were fabricated in a non-toxic manner; the obtained materials exhibited sufficient mechanical support, which promote cell growth, angiogenesis, and tissue regeneration. The described method can be adapted for the development of scaffolds with various acellular matrices and subsequently used during the restoration of particular types of tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. A genetic framework controlling the differentiation of intestinal stem cells during regeneration in Drosophila

    PubMed Central

    Boquete, Jean-Philippe

    2017-01-01

    The speed of stem cell differentiation has to be properly coupled with self-renewal, both under basal conditions for tissue maintenance and during regeneration for tissue repair. Using the Drosophila midgut model, we analyze at the cellular and molecular levels the differentiation program required for robust regeneration. We observe that the intestinal stem cell (ISC) and its differentiating daughter, the enteroblast (EB), form extended cell-cell contacts in regenerating intestines. The contact between progenitors is stabilized by cell adhesion molecules, and can be dynamically remodeled to elicit optimal juxtacrine Notch signaling to determine the speed of progenitor differentiation. Notably, increasing the adhesion property of progenitors by expressing Connectin is sufficient to induce rapid progenitor differentiation. We further demonstrate that JAK/STAT signaling, Sox21a and GATAe form a functional relay to orchestrate EB differentiation. Thus, our study provides new insights into the complex and sequential events that are required for rapid differentiation following stem cell division during tissue replenishment. PMID:28662029

  6. Mechanisms of the anti-inflammatory effects of the natural secosteroids physalins in a model of intestinal ischaemia and reperfusion injury.

    PubMed

    Vieira, Angélica T; Pinho, Vanessa; Lepsch, Lucilia B; Scavone, Cristóforo; Ribeiro, Ivone M; Tomassini, Therezinha; Ribeiro-dos-Santos, Ricardo; Soares, Milena B P; Teixeira, Mauro M; Souza, Danielle G

    2005-09-01

    Reperfusion of an ischaemic tissue is associated with an intense inflammatory response and inflammation-mediated tissue injury. Physalins, a group of substances with secosteroidal chemical structure, are found in Physalis angulata stems and leaves. Here, we assessed the effects of physalins on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in mice and compared with the effects of dexamethasone. Following I/R injury, dexamethasone (10 mg kg(-1)) or physalin B or F markedly prevented neutrophil influx, the increase in vascular permeability in the intestine and the lungs. Maximal inhibition occurred at 20 mg kg(-1). Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. Dexamethasone or physalins effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF-alpha. Interestingly, treatment with the compounds was associated with enhancement of IL-10. The anti-inflammatory effects of dexamethasone or physalins were reversed by pretreatment with the corticoid receptor antagonist RU486 (25 mg kg(-1)). The drug compounds suppressed steady-state concentrations of corticosterone, but did not alter the reperfusion-associated increase in levels of corticosterone. The IL-10-enhancing effects of the drugs were not altered by RU486. In conclusion, the in vivo anti-inflammatory actions of physalins, natural steroidal compounds, appear to be mostly due to the activation of glucocorticoid receptors. Compounds derived from these natural secosteroids may represent novel therapeutic options for the treatment of inflammatory diseases.

  7. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  8. The expression of REG 1A and REG 1B is increased during acute amebic colitis.

    PubMed

    Peterson, Kristine M; Guo, Xiaoti; Elkahloun, Abdel G; Mondal, Dinesh; Bardhan, Pradip K; Sugawara, Akira; Duggal, Priya; Haque, Rashidul; Petri, William A

    2011-09-01

    Entamoeba histolytica, a protozoan parasite, is an important cause of diarrhea and colitis in the developing world. Amebic colitis is characterized by ulceration of the intestinal mucosa. We performed microarray analysis of intestinal biopsies during acute and convalescent amebiasis in order to identify genes potentially involved in tissue injury or repair. Colonic biopsy samples were obtained from 8 patients during acute E. histolytica colitis and again 60 days after recovery. Gene expression in the biopsies was evaluated using microarray, and confirmed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). REG 1A and REG 1B were the most up-regulated of all genes in the human intestine in acute versus convalescent E. histolytica disease: as determined by microarray, the levels of induction were 7.4-fold and 10.7 fold for REG 1A and B; p=0.003 and p=0.006 respectively. Increased expression of REG 1A and REG 1B protein in the colonic crypt epithelial cells during acute amebiasis was similarly observed by immunohistochemistry. Because REG 1 protein is anti-apoptotic and pro-proliferative, and since E. histolytica induces apoptosis of the intestinal epithelium as part of its disease process, we next tested if REG 1 might be protective during amebiasis by preventing parasite-induced apoptosis. Intestinal epithelial cells from REG 1-/- mice were found to be more susceptible to spontaneous, and parasite-induced, apoptosis in vitro (p=0.03). We concluded that REG 1A and REG 1B were upregulated during amebiasis and may function to protect the intestinal epithelium from parasite-induced apoptosis. Published by Elsevier Ireland Ltd.

  9. Molecular mechanism of dietary phospholipid requirement of Atlantic salmon, Salmo salar, fry.

    PubMed

    Carmona-Antoñanzas, G; Taylor, J F; Martinez-Rubio, L; Tocher, D R

    2015-11-01

    The phospholipid (PL) requirement in fish is revealed by enhanced performance when larvae are provided PL-enriched diets. To elucidate the molecular mechanism underlying PL requirement in Atlantic salmon, Salmo salar, were fed a minimal PL diet and tissue samples from major lipid metabolic sites were dissected from fry and parr. In silico analysis and cloning techniques demonstrated that salmon possess a full set of enzymes for the endogenous production of PL. The gene expression data indicated that major PL biosynthetic genes of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns) display lower expression in intestine during the early developmental stage (fry). This is consistent with the hypothesis that the intestine of salmon is immature at the early developmental stage with limited capacity for endogenous PL biosynthesis. The results also indicate that intact PtdCho, PtdEtn and PtdIns are required in the diet at this stage. PtdCho and sphingomyelin constitute the predominant PL in chylomicrons, involved in the transport of dietary lipids from the intestine to the rest of the body. As sphingomyelin can be produced from PtdCho in intestine of fry, our findings suggest that supplementation of dietary PtdCho alone during early developmental stages of Atlantic salmon would be sufficient to promote chylomicron formation. This would support efficient transport of dietary lipids, including PL precursors, from the intestine to the liver where biosynthesis of PtdEtn, PtdSer, and PtdIns is not compromised as in intestine facilitating efficient utilisation of dietary energy and the endogenous production of membrane PL for the rapidly growing and developing animal. Copyright © 2015. Published by Elsevier B.V.

  10. Cell Migration in Tissues: Explant Culture and Live Imaging.

    PubMed

    Staneva, Ralitza; Barbazan, Jorge; Simon, Anthony; Vignjevic, Danijela Matic; Krndija, Denis

    2018-01-01

    Cell migration is a process that ensures correct cell localization and function in development and homeostasis. In disease such as cancer, cells acquire an upregulated migratory capacity that leads to their dissemination throughout the body. Live imaging of cell migration allows for better understanding of cell behaviors in development, adult tissue homeostasis and disease. We have optimized live imaging procedures to track cell migration in adult murine tissue explants derived from: (1) healthy gut; (2) primary intestinal carcinoma; and (3) the liver, a common metastatic site. To track epithelial cell migration in the gut, we generated an inducible fluorescent reporter mouse, enabling us to visualize and track individual cells in unperturbed gut epithelium. To image intratumoral cancer cells, we use a spontaneous intestinal cancer model based on the activation of Notch1 and deletion of p53 in the mouse intestinal epithelium, which gives rise to aggressive carcinoma. Interaction of cancer cells with a metastatic niche, the mouse liver, is addressed using a liver colonization model. In summary, we describe a method for long-term 3D imaging of tissue explants by two-photon excitation microscopy. Explant culturing and imaging can help understand dynamic behavior of cells in homeostasis and disease, and would be applicable to various tissues.

  11. Characterization of glucagon-like peptide 2 pathway member expression in bovine gastrointestinal tract.

    PubMed

    Connor, E E; Baldwin, R L; Capuco, A V; Evock-Clover, C M; Ellis, S E; Sciabica, K S

    2010-11-01

    Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, has several physiological effects on the intestine of monogastric species, including promotion of growth of intestinal epithelium, reduction of epithelial cell apoptosis, and enhancement of intestinal blood flow, nutrient absorption, and epithelial barrier function. The regulatory functions of GLP-2 in the ruminant gastrointestinal tract (GIT) have not been well studied. The objectives of this investigation were to characterize the mRNA expression of 4 members of the GLP-2 pathway throughout the bovine GIT, including (1) proglucagon (GCG), the parent peptide from which GLP-2 is derived through cleavage by prohormone convertase; (2) prohormone convertase (PCSK1); (3) GLP-2 receptor (GLP2R); and (4) dipeptidyl peptidase IV (DPP4), the enzyme that inactivates GLP-2. Gene expression was evaluated in rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, and rectum collected at slaughter from prepubertal heifers, mature cows in early, mid, and late lactation, and nonlactating cows (n=3 per stage) by a gene expression profiling assay. In addition, mRNA expression of 14 genes involved in nutrient transport, enzyme activity, blood flow, apoptosis, and proliferation were evaluated in the 9 GIT tissues for their association with GCG and GLP2R mRNA expression. Immunohistochemistry was used to localize GLP2R protein in tissues of the lower GIT. Results indicated that mRNA expression of GCG, PCSK1, GLP2R, and DPP4 varies across the 9 GIT tissues, with greatest expression in small and large intestines, and generally nondetectable levels in forestomachs. Expression of DPP4 and GLP2R mRNA varied by developmental stage or lactational state in intestinal tissues. Expression of GCG or GLP2R mRNA was correlated with molecular markers of proliferation, apoptosis, blood flow, enzyme activity, and urea transport, depending on the tissue examined, which suggests a potential for involvement of GLP-2 in these physiological processes in the ruminant GIT. The GLP2R protein was expressed in intestinal crypts of the bovine GIT, which is consistent with the distribution in monogastric species. Our findings support a functional role of the GLP-2 pathway in bovine GIT and the potential for use of GLP-2 as a therapy to improve intestinal function and nutrient absorption in ruminants. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. MicroPET/CT Colonoscopy in long-lived Min mouse using NM404

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew B.; Halberg, Richard B.; Schutten, Melissa M.; Weichert, Jamey P.

    2009-02-01

    Colon cancer is a leading cause of death in the US, even though many cases are preventable if tumors are detected early. One technique to promote screening is Computed Tomography Colonography (CTC). NM404 is a second generation phospholipid ether analogue which has demonstrated selective uptake and prolonged retention in 43/43 types of malignant tumors but not inflammatory sites or premalignant lesions. The purpose of this experiment was to evaluate (SWR x B6 )F1.Min mice as a preclinical model to test MicroPET/CT dual modality virtual colonoscopy. Each animal was given an IV injection of 124I-NM404 (100 uCi) 24, 48 and 96 hours prior to scanning on a dedicated microPET/CT system. Forty million counts were histogrammed in 3D and reconstructed using an OSEM 2D algorithm. Immediately after PET acquisition, a 93 m volumetric CT was acquired at 80 kVp, 800 uA and 350 ms exposures. Following CT, the mouse was sacrificed. The entire intestinal tract was excised, washed, insufflated, and scanned ex vivo A total of eight tissue samples from the small intestine were harvested: 5 were benign adenomas, 2 were malignant adenocarcinomas, and 1 was a Peyer's patch (lymph tissue) . The sites of these samples were positioned on CT and PET images based on morphological cues and the distance from the anus. Only 1/8 samples showed tracer uptake. several hot spots in the microPET image were not chosen for histology. (SWR x B6)F1.Min mice develop benign and malignant tumors, making this animal model a strong candidate for future dual modality microPET/CT virtual colonography studies.

  13. Attenuation of intestinal ischemia-reperfusion-injury by β-alanine: a potentially glycine-receptor mediated effect.

    PubMed

    Brencher, Lisa; Verhaegh, Rabea; Kirsch, Michael

    2017-05-01

    Acute mesenteric ischemia is often caused by embolization of the mesenteric arterial circulation. Coherent intestinal injury due to ischemia and following reperfusion get visible on macroscopic and histologic level. In previous studies, application of glycine caused an ameliorated intestinal damage after ischemia-reperfusion in rats. Because we speculated that glycine acted here as a signal molecule, we investigated whether the glycine-receptor agonist β-alanine evokes the same beneficial effect in intestinal ischemia-reperfusion. β-alanine (10, 30, and 100 mg/kg) was administered intravenously. Ischemia/reperfusion of the small intestine was initiated by occluding and reopening the superior mesenteric artery in rats. After 90 min of ischemia and 120 min of reperfusion, the intestine was analyzed with regard to macroscopic and histologic tissue damage, the activity of the saccharase, and accumulation of macrophages. In addition, systemic parameters and metabolic ones (e.g., acid-base balance, electrolytes, and blood glucose) were measured at certain points in time. All three dosages of β-alanine did not change systemic parameters but prevent from hyponatremia during the period of reperfusion. Most importantly, application of 100-mg β-alanine clearly diminished intestinal tissue damage, getting visible on macroscopic and histologic level. In addition, I/R-mediated decrease of saccharase activity and accumulation of macrophages in the small intestine were ameliorated. The present study demonstrated that β-alanine was a potent agent to ameliorate I/R-induced injury of the small intestine. Due to its diminishing effect on the accumulation of macrophages, β-alanine is strongly expected to mediate its beneficial effect via glycine receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    PubMed Central

    Yang, Xin-Jing; Qian, Jin-Xian; Wei, Yao; Guo, Qiang; Jin, Jun; Sun, Xue; Liu, Sheng-Lan

    2018-01-01

    Background Tanshinone IIA sodium sulfonate (TSS) is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS-) induced intestinal injury is still unknown. Objective The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6) in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3) and Beclin-1) were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury. PMID:29706995

  15. Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection.

    PubMed

    Ewaschuk, Julia B; Murdoch, Gordon K; Johnson, Ian R; Madsen, Karen L; Field, Catherine J

    2011-09-01

    The weaning period is associated with an increased prevalence of gastrointestinal infection in many species. Glutamine (Gln) has been shown to improve intestinal barrier function and immune function in both in vivo and in vitro models. The objective of the present study was to determine the effect of dietary Gln supplementation on intestinal barrier function and intestinal cytokines in a model of Escherichia coli infection. We randomised 21-d-old piglets (n 20) to nutritionally complete isonitrogenous diets with or without Gln (4·4 %, w/w) for 2 weeks. Intestinal loops were isolated from anaesthetised pigs and inoculated with either saline or one of the two E. coli (K88AC or K88 wild-type)-containing solutions. Intestinal tissue was studied for permeability, cytokine expression, fluid secretion and tight-junction protein expression. Animals receiving Gln supplementation had decreased potential difference (PD) and short-circuit current (I(sc)) in E. coli-inoculated intestinal loops (PD 0·628 (SEM 0·151) mV; I(sc) 13·0 (SEM 3·07) μA/cm(2)) compared with control-fed animals (PD 1·36 (SEM 0·227) mV; I(sc) 22·4 (SEM 2·24) μA/cm(2)). Intestinal tissue from control, but not from Gln-supplemented, animals responded to E. coli with a significant increase in mucosal cytokine mRNA (IL-1β, IL-6, transforming growth factor-β and IL-10). Tight-junction protein expression (claudin-1 and occludin) was reduced with exposure to E. coli in control-fed animals and was not influenced in Gln-supplemented piglets. Gln supplementation may be useful in reducing the severity of weaning-related gastrointestinal infections, by reducing the mucosal cytokine response and altering intestinal barrier function.

  16. Abdominal Adhesions

    MedlinePlus

    ... Clearinghouse What are abdominal adhesions? Abdominal adhesions are bands of fibrous tissue that can form between abdominal ... Esophagus Stomach Large intestine Adhesion Abdominal adhesions are bands of fibrous tissue that can form between abdominal ...

  17. Targeting Nuclear Receptors to Treat Fibrostenotic Crohn’s Disease

    DTIC Science & Technology

    2017-08-01

    feedback loop . 15. SUBJECT TERMS Crohn’s disease, intestinal smooth muscle, intestinal fibroblasts, NR4A1, 6-MP, Cytosporone B, proliferation, inflammation...whether the exaggerated tissue remodelling observed in our studies reflects a hyper -fibrotic response, versus a hyper -inflammatory phenotype

  18. Histopathological changes caused by the metacestodes of Neogryporhynchus cheilancristrotus (Wedl, 1855) in the gut of the gibel carp, Carassius gibelio.

    PubMed

    Molnár, K

    2005-01-01

    Metacestodes of Neogryporhynchus cheilancristrotus (Wedl, 1855) were found in the gut of some gibel carp (Carassius gibelio) specimens from a Hungarian water reservoir. Location of metacestodes in the freshly opened gut was marked with disseminated, red-coloured, pinhead-sized nodules in the anterior part of the intestine. In histological sections, metacestodes were found in a hole inside the propria layer of the intestinal folds. The worms were in direct contact with the host tissue without being encapsulated as a result of host reaction. In some specimens with extruded rostellum the rostellar hooks were bored into the host tissue and suckers grabbed pieces of the surrounding connective tissue. Around the worms, congested capillaries and formation of macrophages were seen in the lysed connective tissue.

  19. Porcine models of digestive disease: the future of large animal translational research

    PubMed Central

    Gonzalez, Liara M.; Moeser, Adam J.; Blikslager, Anthony T.

    2015-01-01

    There is increasing interest in non-rodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia/ reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine as well as to mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine. PMID:25655839

  20. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    PubMed Central

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  1. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio).

    PubMed

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil K; Granby, Kit; Barranco, Alejandro

    2018-04-01

    Microplastics contamination of the aquatic environment is considered a growing problem. The ingestion of microplastics has been documented for a variety of aquatic animals. Studies have shown the potential of microplastics to affect the bioavailability and uptake route of sorbed co-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected zebrafish to four different feeds: A) untreated feed; B) feed supplemented with microplastics (LD-PE 125-250µm of diameter); C) feed supplemented with 2% microplastics to which a mixture of PCBs, BFRs, PFCs and methylmercury were sorbed; and D) feed supplemented with the mixture of contaminants only. After 3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects on zebrafish in the experimental conditions tested; on the contrary, the combined effect of microplastics and sorbed contaminants altered significantly their organs homeostasis in a greater manner than the contaminants alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Translational safety biomarkers of colonic barrier integrity in the rat.

    PubMed

    Erkens, Tim; Bueters, Ruud; van Heerden, Marjolein; Cuyckens, Filip; Vreeken, Rob; Goeminne, Nick; Lammens, Lieve

    2018-05-20

    The intestinal barrier controls intestinal permeability, and its disruption has been associated with multiple diseases. Therefore, preclinical safety biomarkers monitoring barrier integrity are essential during the development of drugs targeting the intestines, particularly if starting treatment early after onset of disease. Classical toxicology endpoints are not sensitive enough and therefore our objective was to identify non-invasive markers enabling early in vivo detection of colonic barrier perturbation. Male Sprague-Dawley rats were dosed intracolonically via the rectum, using sodium caprate or ibuprofen as tool compounds to alter barrier integrity. Several potentially translational biomarkers and probe molecules related to permeability, inflammation or tissue damage were evaluated, using various analytical platforms, including immunoassays, targeted metabolomics and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry. Several markers were identified that allow early in vivo detection of colonic barrier integrity changes, before histopathological evidence of tissue damage. The most promising permeability markers identified were plasma fluorescein isothiocyanate-dextran 4000 and a lactulose/mannitol/sucralose mixture in urine. These markers showed maximum increases over 100-fold or approximately 10-50-fold, respectively. Intracolonic administration of the above probe molecules outperformed oral administration and inflammatory or other biomarkers, such as α 2 -macroglobulin, calprotectin, cytokines, prostaglandins and a panel of metabolic molecules to identify early and subtle changes in barrier integrity. However, optimal timing of probe administration and sample collection is important for all markers evaluated. Inclusion of these probe molecules in preclinical toxicity studies might aid in risk assessment and the design of a clinical biomarker plan, as several of these markers have translational potential. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization.

    PubMed

    Zhang, Hongyu; Wang, Yi; Vasilescu, Steven; Gu, Zhibin; Sun, Tao

    2017-05-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25mm/s; normal loading: 0.4N) and adhesion test (preloading: 0.5N; hoisting speed: 2.5×10 -3 mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9mN vs 26.7mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1d, 3d, and 5d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro.

    PubMed

    Bijlsma, P B; van Raaij, M T; Dobbe, C J; Timmerman, A; Kiliaan, A J; Taminiau, J A; Groot, J A

    2001-05-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to male rats. At 8 days before the noise experiments, 50% of the animals were cannulated in the vena cava for blood sampling during the experimental period. The other 50% of the animals were sacrificed at Day 9, segments of ileum were mounted in Ussing chambers and perfused at 37 degrees C. Horseradish peroxidase (HRP) was added mucosally, serosal appearance was detected enzymatically and tissues were fixed for electron microscopy. In the animals exposed to 95-dB noise, plasma corticosterone levels were enhanced twofold compared to controls, and ileal HRP flux was enhanced twofold. Electron micrographs of tissue from stressed or control animals showed no detectable paracellular staining of HRP. Quantification of HRP-containing endosomes in enterocytes revealed a twofold increase in endosome number in the animals exposed to 95-db noise indicating that the increased HRP permeability was primarily due to increased endocytosis. In contrast to the animals exposed to 95-dB noise, rats exposed to 105-dB noise showed no increase in corticosterone levels and ileal HRP fluxes were not significantly different from controls. We conclude that mild subchronic noise stress may cause a decrease in intestinal barrier function by increased transcytosis of luminal antigens.

  5. Parental development of eimerian coccidia in sandhill and whooping cranes

    USGS Publications Warehouse

    Novilla, M.N.; Carpenter, J.W.; Spraker, T.R.; Jeffers, T.K.

    1981-01-01

    In contrast with isosporoid species of coccidia that have established extraintestinal phases of development, the eimeriids, except for a few species, generally have been considered inhabitants of the intestinal tract. Eimeria infection in sandhill cranes (Grus canadensis) and whooping cranes (G. americana) may result in disseminated visceral coccidiosis. Nodules were observed in the oral cavity of 33% (n = 95) of the G. canadensis at the Patuxent Wildlife Research Center (PWRC) in Laurel, MD. Necropsy of six of the afflicted cranes revealed granulomatous nodules in many tissues and organs. Histologic studies disclosed protozoan organisms morphologically resembling schizonts in the granulomas, and endogenous stages of coccidia were present in the intestines of four birds. Fecalysis of three of four sandhill cranes yielded oocysts of E. reichenowi and E. gruis. Only E. reichenowi-type oocysts were recovered from a dead whooping crane sample. Domestic broiler chicks each intubated with about 1 times 106 pooled sporulated oocysts of E. reichenowi and E. gruis were not infected. Exposure of six incubator-hatched and hand-reared sandhill crane chicks to oocysts artificially (two chicks) and naturally (four chicks) resulted in typical infection of intestinal epithelium with invasion of subepithelial tissues extending to the muscular layer and widespread extraintestinal development. Asexual and sexual stages occurred primarily in macrophages in the liver, spleen, heart, and lung. In the lung, oocysts were found in bronchial exudate and epithelial lining cells. Six of ten G. canadensis chicks, one adult G. americana, and three of five G. americana chicks that died naturally at PWRC had disseminated visceral coccidiosis.

  6. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate.

    PubMed

    Moss, Angela K; Hamarneh, Sulaiman R; Mohamed, Mussa M Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S; Narisawa, Sonoko; Millán, José Luis; Warren, H Shaw; Hohmann, Elizabeth; Malo, Madhu S; Hodin, Richard A

    2013-03-15

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.

  7. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    PubMed

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  8. Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet

    PubMed Central

    Zhang, Li; Andersen, Daniel; Roager, Henrik Munch; Bahl, Martin Iain; Hansen, Camilla Hartmann Friis; Danneskiold-Samsøe, Niels Banhos; Kristiansen, Karsten; Radulescu, Ilinca Daria; Sina, Christian; Frandsen, Henrik Lauritz; Hansen, Axel Kornerup; Brix, Susanne; Hellgren, Lars I.; Licht, Tine Rask

    2017-01-01

    Dietary gluten causes severe disorders like celiac disease in gluten-intolerant humans. However, currently understanding of its impact in tolerant individuals is limited. Our objective was to test whether gliadin, one of the detrimental parts of gluten, would impact the metabolic effects of an obesogenic diet. Mice were fed either a defined high-fat diet (HFD) containing 4% gliadin (n = 20), or a gliadin-free, isocaloric HFD (n = 20) for 23 weeks. Combined analysis of several parameters including insulin resistance, histology of liver and adipose tissue, intestinal microbiota in three gut compartments, gut barrier function, gene expression, urinary metabolites and immune profiles in intestinal, lymphoid, liver and adipose tissues was performed. Mice fed the gliadin-containing HFD displayed higher glycated hemoglobin and higher insulin resistance as evaluated by the homeostasis model assessment, more hepatic lipid accumulation and smaller adipocytes than mice fed the gliadin-free HFD. This was accompanied by alterations in the composition and activity of the gut microbiota, gut barrier function, urine metabolome, and immune phenotypes within liver and adipose tissue. Our results reveal that gliadin disturbs the intestinal environment and affects metabolic homeostasis in obese mice, suggesting a detrimental effect of gluten intake in gluten-tolerant subjects consuming a high-fat diet. PMID:28300220

  9. Thermostatic tissue platform for intravital microscopy: 'the hanging drop' model.

    PubMed

    Pavlovic, Dragan; Frieling, Helge; Lauer, Kai-Stephan; Bac, Vo Hoai; Richter, Joern; Wendt, Michael; Lehmann, Christian; Usichenko, Taras; Meissner, Konrad; Gruendling, Matthias

    2006-11-01

    Intravital microscopy imposes the particular problem of the combined control of the body temperature of the animal and the local temperature of the observed organ or tissues. We constructed and tested, in the rat ileum microcirculation preparation, a new organ-support platform. The platform consisted of an organ bath filled with physiological solution, and contained a suction tube, a superfusion tube, an intestine-support hand that was attached to a micromanipulator and a thermometer probe. To cover the intestine we used a cover glass plate with a plastic ring glued on its upper surface. After a routine procedure (anaesthesia, monitoring and surgery), the intestine segment (2-3 cm long) was gently exteriorized and placed on the 'hand' of the organ support. A small part of the intestine formed a small 'island' in the bath that was filled with physiological salt solution. The cover glass was secured in place. The physiological salt solution from the superfusion tube, which was pointed to the lower surface of the cover glass, formed a 'hanging drop'. The objective of the microscope was then immersed into distilled water that was formed by the cover glass plastic ring. The 'hanging drop' technique prevented any tissue quenching, ensured undisturbed microcirculation, provided for stable temperature and humidity, and permitted a clear visual field.

  10. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats.

    PubMed

    Foster, Michelle T; Gentile, Christopher L; Cox-York, Kimberly; Wei, Yuren; Wang, Dong; Estrada, Andrea L; Reese, Lauren; Miller, Tirrel; Pagliassotti, Michael J; Weir, Tiffany L

    2016-05-01

    Nonalcoholic fatty liver disease is an obesity-related disorder characterized by lipid infiltration of the liver. Management is limited to lifestyle modifications, highlighting the need for alternative therapeutic options. The objective of this study was to examine if fermented Fuzhuan tea prevents metabolic impairments associated with development of hepatic steatosis. Rats consumed control (CON) or high saturated fat (SAT) diets with or without Fuzhuan tea for 8 weeks. Outcomes included enzymatic and gene expression measures of metabolic dysregulation in liver and adipose tissue. Pyrosequencing was used to assess intestinal microbiota adaptations. Fuzhuan tea prevented diet-induced inflammation in the liver. Liver triglycerides of ∼18 mg/g were observed in SAT-fed animals, but remained similar to CON diet levels (∼12 mg/g) when supplemented with Fuzhuan tea. In adipose tissue, tea treatment prevented SAT-induced inflammation and reduced plasma leptin approximately twofold. Fuzhuan tea also altered intestinal function and was associated with a threefold increase in two Lactobacillus spp. These data suggest that Fuzhuan tea protects against liver and adipose tissue stress induced by a high SAT diet and positively influences intestinal function. Further investigation of the molecular targets of Fuzhuan tea is warranted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supplementation with Astragalus polysaccharides alters Aeromonas-induced tissue-specific cellular immune response.

    PubMed

    Abuelsaad, Abdelaziz S A

    2014-01-01

    Members of the genus Aeromonas inhabit various aquatic environments and are responsible for a number of intestinal and extra-intestinal infections in humans as well as other animals. Astragalus species are used in Chinese traditional medicine as antiperspirant, antihypertensive, diuretic and tonic treatments and have been used for treatment of patients with leukemia and uterine cancers. The present study was aimed to investigate immunomodulatory effect of Astragalus polysaccharides (APS) treatment on Aeromonas hydrophila-infected mice. The present data showed that APS-treatment ameliorated neutrophils phagocytic activity and reactive oxygen species (ROS) production in intestinal tissues of infected mice. Moreover, APS treatment induced a highly significantly (P < 0.001) increase in the number of CD4(+) T cells in the intestinal tissues and thymus, however, number of CD4(+) T cells in the spleens of infected mice not significantly changed with APS treatment. On the other hand, APS-treatment caused a very highly significant (P < 0.001) decrease in the number of CD8(+) T cells in the spleens and thymus of infected mice. In conclusion, the present data suggested that APS treatment reduced ROS production, downmodulated neutrophils activity, and increased CD4(+)/CD8(+) T cells ratio in A. hydrophila-infected mice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of the combination of fibrin glue and growth hormone on intestinal anastomoses in a pig model of traumatic shock associated with peritonitis.

    PubMed

    Wang, Pengfei; Wang, Jian; Zhang, Wenbo; Li, Yousheng; Li, Jieshou

    2009-03-01

    Intra-abdominal sepsis and hemorrhagic shock have been found to impair the healing of intestinal anastomoses. The present study examined whether fibrin glue (FG) and recombinant human growth hormone (GH) can improve intestinal primary anastomotic healing in a pig model of traumatic shock associated with peritonitis. Further, the study was designed to investigate the probable mechanism of these agents. Female anesthetized pigs were divided into five groups. Group sham (n = 7), pigs without traumatic shock had small bowel resection anastomoses; group control (n = 14), pigs had bowel resection anastomoses 24 h after abdominal gunshot plus exsanguination/resuscitation; group FG (n = 14); group GH (n = 14); group FG/GH (n = 14), pigs received FG, recombinant GH, or both, respectively. Recombinant GH was given daily for 7 days. Blood samples were collected daily for measurement of interleukin-6 (IL-6) and tumor necrosis factor (TNF)-alpha levels. Investigations also included adhesion formation, anastomotic bursting pressure, tensile strength, hydroxyproline (HP) content, myeloperoxidase (MPO), tumor necrosis factor (NF)-kappaB activity, and histology analysis 10 days later. A second experiment (n = 20 subjects assigned to each of the five groups) was designed to study survival during the first 20 postoperative days. Traumatic shock associated with peritonitis led to significant decreases in intestinal anastomotic bursting pressures, tensile strengths, and tissue hydroxyproline content, along with severe adhesion formation, increases in MPO activity and NF-kappaB activity, and plasma levels of tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). Both FG and recombinant GH treatment led to early significant increases in plasma levels of TNF-alpha and IL-6. At the same time, FG alone, unlike recombinant GH alone, led to significant increases in anastomotic bursting pressures, tensile strength, and tissue HP content, along with decreases in anastomotic MPO and NF-kappaB activity and later plasma levels of TNF-a and IL-6. The FG group also developed more marked neoangiogenesis and collagen deposition on histology analysis. However, FG and recombinant GH synergistically effected improved anastomotic healing, abolishing the infaust effects promoted by recombinant GH. Adhesion formation after intestinal anastomosis could not be lowered by FG alone or by the combination of FG and recombinant GH. Both FG alone and FG/GH, in contrast to GH alone and control treatment, significantly prolonged the survival time of experimental animals. We found that FG, but not recombinant GH, could lower the risk of anastomotic leakage, improve intestinal anastomotic healing, and prolong survival in a pig model of traumatic shock associated with peritonitis. Both FG and recombinant GH synergistically effected improved intestinal anastomotic healing. It was suggested that GH could be used locally to promote intestinal anastomotic healing in intra-abdominal peritonitis.

  13. Microanatomy of the intestinal lymphatic system

    PubMed Central

    Miller, Mark J.; Newberry, Rodney D.

    2011-01-01

    The intestinal lymphatic system is comprised of two non-communicating lymphatic networks; one containing the lacteals draining the villi and the connecting submucosal lymphatic network, and one containing the lymphatics that drain the intestine muscular layer. These systems deliver lymph into a common network of collecting lymphatics originating near the mesenteric border. The intestinal lymphatic system serves vital functions in the regulation of tissue fluid homeostasis, immune surveillance, and the transport of nutrients, and conversely this system is affected by, and directly contributes to, disease processes within the intestine. Recent discoveries of specific lymphatic markers, factors promoting lymphangiogenesis, and factors selectively affecting the development of intestinal lymphatics hold promise for unlocking the role of lymphatics in the pathogenesis of diseases affecting the intestine and for intestinal lymphatic selective therapies. Vital to progress in understanding how the intestinal lymphatic system functions is integrating of recent advances identifying molecular pathways for lymphatic growth and remodeling with advanced imaging modalities to observe lymphatic function and dysfunction in vivo. PMID:20961303

  14. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    PubMed

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  15. The imbalance between regulatory and IL-17-secreting CD4⁺T cells in multiple-trauma rat.

    PubMed

    Dai, Heling; Sun, Tiansheng; Liu, Zhi; Zhang, Jianzheng; Zhou, Meng

    2013-11-01

    It has been well recognised that a deficit of numbers and function of CD4(+)CD25(+)Foxp3(+)cells (Treg) is attributed to the development of auto-immune diseases, inflammatory diseases, tumour and rejection of transplanted tissue; however, there are controversial data regarding the suppressive effect of Treg cells on the T-cell response in auto-immune diseases. Additionally, interleukin-17 (IL-17)-producing cells (Th17) have a pro-inflammatory role. The balance between Th17 and Treg may be essential for maintaining immune homeostasis and has long been thought as one of the important factors in the development/prevention of auto-immune diseases, inflammatory diseases, tumour and rejection of transplanted tissue, but their role in multiple trauma remains unclear. This study aims to investigate whether an imbalance of Treg and Th17 effector cells is characteristic of rats suffering from multiple trauma. Sixty Sprague-Dawley (SD) rats were randomly divided into three groups. The control group (n=20, group I) no received procedures (normal). The sham group (n=20, group II) only received anaesthesia, cannulation and observation. The bilateral femoral shaft fractures with haemorrhagic shock groups (n=20, group III). Rats in groups II and III were killed at the end of 4h after models were established. Peripheral blood samples were collected for assessment of Treg cells, Th17 cells and cytokines (IL-17, IL-6, IL-2, transforming growth factor beta (TGF-β)) and intestine tissue was collected for intestine histological analysis. We observed decreased Treg/Th17 ratios in CD4(+)T cells in rats with multiple trauma and a strong inverse correlation with disease activity (intestinal histological scores). We suggest a role for immune imbalance in the pathogenesis and development of multiple trauma. The alteration of the index of Treg/Th17 cells likely indicates the therapeutic response and progress in the clinic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee, Austria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sures, B.; Steiner, W.; Rydlo, M.

    1999-11-01

    Concentrations of the elements Al, Ag, Ba, ca, Cd, Co, Cr, cu, Fe, Ga, Mg, Mn, Ni, Pb, Sr, Tl, and Zn were analyzed by inductively coupled plasma mass spectrometry in the acanthocephalan Acanthocephalus lucii (Mueller); in its host, Perca fluviatilis (L.), and in the soft tissue of the zebra mussel, Dreissena polymorpha (Pallas). All animals were collected from the same sampling site in a subalpine lake, Mondsee, in Austria. Most of the elements were found at significantly higher concentrations in the acanthocephalan than in different tissues (muscle, liver, and intestinal wall) of its perch host. Only Co was concentratedmore » in the liver of perch to a level that was significantly higher than that found in the parasite. Most of the analyzed elements were also present at significantly higher concentrations in A. lucii than in D. polymorpha. Barium and Cr were the only elements recorded at higher concentrations in the mussel compared with the acanthocephalan. Thus, when comparing the accumulation of elements, the acanthocephalans appear to be even more suitable than the zebra mussels in terms of their use in the detection of metal contamination within aquatic biotopes. Spearman correlation analysis revealed that the concentrations of several elements within the parasites decreased with increasing infrapopulation. Furthermore, the levels of some elements in the perch liver were negatively correlated with the weight of A. lucii in the intestine. Thus, it emerged that not only is there competition for elements between acanthocephalans inside the gut but there is also competition for these elements between the host and the parasites. The elevated element concentrations demonstrated here in the parasitic worm A. lucii provide support for further investigations of these common helminthes and of their accumulation properties.« less

  17. Changes of Tight Junction Protein Claudins in Small Intestine and Kidney Tissues of Mice Fed a DDC Diet.

    PubMed

    Abiko, Yukie; Kojima, Takashi; Murata, Masaki; Tsujiwaki, Mitsuhiro; Takeuchi, Masaya; Sawada, Norimasa; Mori, Michio

    2013-12-01

    DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.

  18. Evaluation of elevated dietary corn fiber from corn germ meal in growing female pigs.

    PubMed

    Weber, T E; Trabue, S L; Ziemer, C J; Kerr, B J

    2010-01-01

    To evaluate the effects of dietary hemicellulose from corn on growth and metabolic measures, female pigs (n = 48; initial BW 30.8 kg) were fed diets containing 0 to 38.6% solvent-extracted corn germ meal for 28 d. Increasing the hemicellulose level had no impact on ADG or ADFI, but resulted in a quadratic response (P < 0.03) on G:F. To investigate physiological changes that occur with increased dietary hemicellulose, blood, colon contents, and tissue samples from the liver and intestine were obtained from a subset (n = 16; 8 pigs/treatment) of pigs fed the least and greatest hemicellulose levels. The abundance of phospho-adenosine monophosphate-activated protein kinase (AMPK) and the mitochondrial respiratory protein, cytochrome C oxidase II (COXII) were determined in liver, jejunum, ileum, and colon by Western blotting. The mRNA expression levels of AMPKalpha1, AMPKalpha2, PPAR coactivator 1alpha (PGC1-alpha), PPARgamma2, and sirtuin 1 (Sirt1) were determined in liver and intestinal tissues. When compared with pigs fed the control diet, pigs fed the high hemicellulose diet had increased (P < 0.02) plasma triglycerides, but there was no difference in plasma cholesterol, glucose, or insulin. Absolute and relative liver weights were decreased (P < 0.03) in pigs consuming the high hemicellulose diet. The high-fiber diet led to a tendency (P < 0.12) for decreased liver triglyceride content. In pigs fed the high hemicellulose diet, ileal mucosal alkaline phosphatase activity was increased (P < 0.08) and sucrase activity tended (P < 0.12) to be increased. The high hemicellulose diet had no effect on phospho-AMPK, AMPK mRNA, or colonic VFA, but in pigs consuming the high fiber diet there was a greater (P < 0.05) abundance of COXII in colon tissue. The expression of PGC1-alpha, PPARgamma, or Sirt1 mRNA was not altered by dietary fiber in liver, jejunum, or ileum tissue. In colon tissue from pigs fed the high fiber diet there was an increase (P < 0.09) in Sirt1 mRNA and a trend (P < 0.12) toward increased of PGC1-alpha mRNA. These data suggest that alterations in metabolism involved in adaptation to a diet high in hemicellulose are associated with increased colonic Sirt1 mRNA and COXII expression, indicating an increased propensity for oxidative metabolism by the intestine.

  19. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  20. Therapeutic Effects of Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition. PMID:24984001

  1. Three-Dimensional Organotypic Co-Culture Model of Intestinal Epithelial Cells and Macrophages to Study "Salmonella Enterica" Colonization Patterns

    NASA Technical Reports Server (NTRS)

    Ott, Mark; Yang, J; Barilla, J.; Crabbe, A.; Sarker, S. F.; Liu, Y.

    2017-01-01

    Three-dimensional/3-D organotypic models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by 2-D monolayers and respond to Salmonella in ways that reflect in vivo infections. To further enhance the physiological relevance of 3-D models to more closely approximate in vivo intestinal microenvironments during infection, we developed and validated a novel 3-D intestinal co-culture model containing multiple epithelial cell types and phagocytic macrophages, and applied to study enteric infection by different Salmonella pathovars.

  2. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice.

    PubMed

    Qin, Xiaoteng; Liu, Shangming; Lu, Qiulun; Zhang, Meng; Jiang, Xiuxin; Hu, Sanyuan; Li, Jingxin; Zhang, Cheng; Gao, Jiangang; Zhu, Min-Sheng; Feil, Robert; Li, Huashun; Chen, Min; Weinstein, Lee S; Zhang, Yun; Zhang, Wencheng

    2017-04-01

    The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (Gsa SMKO and SM22-CreER T2 , induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo-obstruction, compared with tissues from controls. Gsa is required for intestinal smooth muscle contraction in mice, and its levels are reduced in ileum biopsies of patients with chronic intestinal pseudo-obstruction. Mice with disruption of Gnas might be used to study human chronic intestinal pseudo-obstruction. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Characterization of naturally developing small intestinal bacterial overgrowth in 16 German shepherd dogs.

    PubMed

    Willard, M D; Simpson, R B; Fossum, T W; Cohen, N D; Delles, E K; Kolp, D L; Carey, D P; Reinhart, G A

    1994-04-15

    Sixteen German Shepherd Dogs were found, via quantitative microbial culture of intestinal fluid samples, to have small intestinal bacterial overgrowth (IBO) over an 11-month period. All dogs were deficient in serum IgA. Consistent clinical signs suggestive of an alimentary tract disorder were not observed. Serum cobalamin determinations were not helpful in detecting IBO. Serum folate concentrations had variable sensitivity and specificity for detecting dogs from which we could culture > or = 1 x 10(5) bacterial/ml from intestinal fluid samples in the nonfed state. Histologic and intestinal mucosal cytologic examinations were not useful in detecting IBO. Substantial within-dog and between-dog variation was found in the numbers and species of bacteria in the intestines. The difficulty in diagnosing IBO, the variability in organisms found in individual dogs on repeated sampling, the likelihood that intestinal fluid microbial cultures failed to diagnose IBO in some dogs, and the potential of IBO to be clinically inapparent were the most important findings in this study.

  4. Induction of intestinalization in human esophageal keratinocytes is a multistep process.

    PubMed

    Kong, Jianping; Nakagawa, Hiroshi; Isariyawongse, Brandon K; Funakoshi, Shinsuke; Silberg, Debra G; Rustgi, Anil K; Lynch, John P

    2009-01-01

    Barrett's esophagus (BE) is the replacement of normal squamous esophageal mucosa with an intestinalized columnar epithelium. The molecular mechanisms underlying its development are not understood. Cdx2 is an intestine-specific transcription factor that is ectopically expressed in BE, but its role in this process is unclear. Herein, we describe a novel cell culture model for BE. Retroviral-mediated Cdx2 expression in immortalized human esophageal keratinocytes [EPC-human telomerase reverse transcriptase (hTERT)] could transiently be established but not maintained and was associated with a reduction in cell proliferation. Coexpression of cyclin D1, but not a dominant-negative p53, rescued proliferation in the Cdx2-expressing cells. Cdx2 expression in the EPC-hTERT.D1 cells decreased cell proliferation but did not induce intestinalization. We investigated for other treatments to enhance intestinalization and found that acidic culture conditions uniformly killed EPC-hTERT.D1.Cdx2 cells. However, treatment with 5-aza-2-deoxycytidine (5-AzaC) to demethylate epigenetically silenced genes did appear to be tolerated. Multiple Cdx2 target genes, markers of intestinal differentiation and markers of BE, were induced by this 5-AzaC treatment. More interestingly, the expression level of several of these genes was enhanced only in the EPC-hTERT.D1-Cdx2 cells treated with 5-AzaC. Two of these, SLC26a3/DRA (downregulated in adenoma) and Na+/H+ exchanger 2 (NHE2), were not previously known to be elevated in BE; however, we confirmed their elevation in BE tissue samples. 5-AzaC treatment also induced cell senescence, even at low doses. We conclude that ectopic proliferation signals, alterations in epigenetic gene regulation and the inhibition of tumor suppressor mechanisms are required for Cdx2-mediated intestinalization of human esophageal keratinocytes in BE.

  5. Induction of intestinalization in human esophageal keratinocytes is a multistep process

    PubMed Central

    Kong, Jianping; Nakagawa, Hiroshi; Isariyawongse, Brandon K.; Funakoshi, Shinsuke; Silberg, Debra G.; Rustgi, Anil K.; Lynch, John P.

    2009-01-01

    Barrett's esophagus (BE) is the replacement of normal squamous esophageal mucosa with an intestinalized columnar epithelium. The molecular mechanisms underlying its development are not understood. Cdx2 is an intestine-specific transcription factor that is ectopically expressed in BE, but its role in this process is unclear. Herein, we describe a novel cell culture model for BE. Retroviral-mediated Cdx2 expression in immortalized human esophageal keratinocytes [EPC-human telomerase reverse transcriptase (hTERT)] could transiently be established but not maintained and was associated with a reduction in cell proliferation. Coexpression of cyclin D1, but not a dominant-negative p53, rescued proliferation in the Cdx2-expressing cells. Cdx2 expression in the EPC-hTERT.D1 cells decreased cell proliferation but did not induce intestinalization. We investigated for other treatments to enhance intestinalization and found that acidic culture conditions uniformly killed EPC-hTERT.D1.Cdx2 cells. However, treatment with 5-aza-2-deoxycytidine (5-AzaC) to demethylate epigenetically silenced genes did appear to be tolerated. Multiple Cdx2 target genes, markers of intestinal differentiation and markers of BE, were induced by this 5-AzaC treatment. More interestingly, the expression level of several of these genes was enhanced only in the EPC-hTERT.D1-Cdx2 cells treated with 5-AzaC. Two of these, SLC26a3/DRA (downregulated in adenoma) and Na+/H+ exchanger 2 (NHE2), were not previously known to be elevated in BE; however, we confirmed their elevation in BE tissue samples. 5-AzaC treatment also induced cell senescence, even at low doses. We conclude that ectopic proliferation signals, alterations in epigenetic gene regulation and the inhibition of tumor suppressor mechanisms are required for Cdx2-mediated intestinalization of human esophageal keratinocytes in BE. PMID:18845559

  6. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis

    PubMed Central

    2011-01-01

    Background Mycobacterium avium subspecies paratuberculosis (MAP) is suspected to be a causative agent in human Crohn's disease (CD). Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP), which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD). Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC), and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection. Methods Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR) to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR. Results MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids. Conclusions The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC in vivo. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain. PMID:21477272

  7. Proteomic analysis of urine in patients with intestinal segments transposed into the urinary tract.

    PubMed

    Nabi, Ghulam; N'Dow, James; Hasan, Tahseen S; Booth, Ian R; Cash, Phil

    2005-04-01

    Intestinal segments are used to replace or reconstruct the urinary bladder when it has become dysfunctional or develops life-threatening disease such as cancer. The quality of life in patients with intestinal segments used to either enlarge or completely replace the native bladder is adversely affected by recurrent urinary tract infections, excessive mucus production and the occasional development of malignancy. At present, there is no reliable method of predicting or noninvasively monitoring these patients for the development of these complications. The characterisation of proteins secreted into urine from the transposed intestinal segments could serve as important indicators of these clinical complications. Urine is an ideal source of material in which to search for biomarkers, since it bathes the affected tissues and can be obtained relatively easily by noninvasive methods. The urinary proteome of patients with intestinal segments transposed into the urinary tract is unknown and we present the first global description of the urinary protein profile in these patients. Sample preparation is a critical step in achieving accurate and reliable data. We describe a method to prepare urinary proteins that was compatible with their subsequent analysis using two-dimensional polyacrylamide gel electrophoresis. This method helped to overcome some of the technical problems encountered in analysing urine from this patient cohort. The method was used to analyse urinary proteins recovered from five healthy controls and ten patients with intestinal segments transposed into the urinary tract. Four low molecular weight proteins were found to be present in nine out of ten for the patient group but for none of the healthy controls. The four proteins were identified as lithostathine-1 alpha precursor, pancreatitis associated protein-1 precursor, liver fatty acid binding protein and testis expressed protein-12. The role of these proteins as potential biomarkers of intestinal cell activity within the reconstructed bladder is discussed.

  8. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation.

    PubMed

    Meyer, A M; Hess, B W; Paisley, S I; Du, M; Caton, J S

    2014-09-01

    We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.

  9. Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia.

    PubMed

    Paerewijck, Oonagh; Maertens, Brecht; Dreesen, Leentje; Van Meulder, Frederik; Peelaers, Iris; Ratman, Dariusz; Li, Robert W; Lubberts, Erik; De Bosscher, Karolien; Geldhof, Peter

    2017-08-17

    The protozoan parasite Giardia is a highly prevalent intestinal pathogen with a wide host range. Data obtained in mice, cattle and humans revealed the importance of IL-17A in the development of a protective immune response against Giardia. The aim of this study was to further unravel the protective effector mechanisms triggered by IL-17A following G. muris infection in mice, by an RNA-sequencing approach. C57BL/6 WT and C57BL/6 IL-17RA KO mice were orally infected with G. muris cysts. Three weeks post infection, intestinal tissue samples were collected for RNA-sequencing, with samples from uninfected C57BL/6 WT and C57BL/6 IL-17RA KO animals serving as negative controls. Differential expression analysis showed that G. muris infection evoked the transcriptional upregulation of a wide array of genes, mainly in animals with competent IL-17RA signaling. IL-17RA signaling induced the production of various antimicrobial peptides, such as angiogenin 4 and α- and β-defensins and regulated complement activation through mannose-binding lectin 2. The expression of the receptor that regulates the secretion of IgA into the intestinal lumen, the polymeric immunoglobulin receptor, was also dependent on IL-17RA signaling. Interestingly, the transcriptome data showed for the first time the involvement of the circadian clock in the host response following Giardia infection.

  10. Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora.

    PubMed

    Sun, Qingshen; Shi, Yue; Wang, Fuying; Han, Dequan; Lei, Hong; Zhao, Yao; Sun, Quan

    2015-01-01

    To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.

  11. Absorption of Orally Administered Hyaluronan.

    PubMed

    Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro

    2016-12-01

    Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.

  12. Relationship between the pathology of bovine intestinal tissue and current diagnostic tests for Johne's disease

    USDA-ARS?s Scientific Manuscript database

    Johne’s disease is an enteric disease caused by the intracellular pathogen Mycobacterium avium subsp. paratuberculosis (MAP). Upon translocation from the lumen of the small intestine, mycobacteria have the ability to thwart innate defense mechanisms and persist within the macrophage in the lamina pr...

  13. Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro.

    PubMed

    Kettunen, H; Peuranen, S; Tiihonen, K

    2001-06-01

    In Experiment 1, the water holding capacity of broiler chick intestinal tissue was studied in vitro. The chicks were fed with corn-based diets with or without a 0.2% betaine supplementation in the drinking water. Slices from duodenum and jejunum were incubated in iso-osmotic (300 mM) or hyperosmotic saline (600 mM) with or without 10 mM betaine. The water volume of tissue slices was studied by adding tritiated water in the incubation medium while [14C]inulin was used to correct for the adherent water. After 30 min of incubation, by which time the steady-state of tritium influx had been achieved, the 3H and 14C-activities of the tissue slices were measured. The ileal and duodenal tissues incubated in the hyperosmotic saline accumulated less tritium than those incubated in iso-osmotic saline. Duodenal slices incubated in hyperosmotic saline with the presence of betaine showed a tritium content similar to slices incubated in iso-osmotic saline. The data suggest that the presence of betaine helped the duodenal, but not jejunal, epithelium to maintain water balance in hyperosmotic conditions. The dietary betaine supplementation diminished the differences between the incubation treatments in duodenal, but not in ileal tissue. In Experiment 2, the same double labeling method, but with shorter incubation times, was used to assess the rate of water flux from the incubation medium to duodenal or jejunal slices. The dietary treatments (as in Experiment 1) had little effect on the results. Betaine in the hyperosmotic saline significantly decreased the rate of tritium accumulation into the tissue slices, indicating that betaine slowed down the influx of water to the epithelium. We suggest that betaine affects the movement of water across the intestinal epithelium and has a role in the osmoregulation of small intestine of broiler chicks.

  14. Impact of dextran sulphate sodium-induced colitis on the intestinal transport of the colon carcinogen PhIP.

    PubMed

    Nicken, Petra; von Keutz, Anne; Willenberg, Ina; Ostermann, Annika I; Schebb, Nils Helge; Giovannini, Samoa; Kershaw, Olivia; Breves, Gerhard; Steinberg, Pablo

    2016-05-01

    Colorectal cancer is one of the most frequent cancers in Western countries. Chronic intestinal diseases such as Crohn's disease and ulcerative colitis, in which the intestinal barrier is massively disturbed, significantly raise the risk of developing a colorectal tumour. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a genotoxic heterocyclic aromatic amine that is formed after strongly heating fish and meat. In this study, the hypothesis that PhIP uptake in the gut is increased during chronic colitis was tested. Chronic colitis was induced by oral administration of dextran sulphate sodium (DSS) to Fischer 344 rats. The transport of PhIP in eight different rat intestinal segments was examined in Ussing chambers. The tissues were incubated with 10 µM PhIP for 90 min, and the concentration of PhIP was determined in the mucosal and serosal compartments of the Ussing chambers as well as in the clamped tissues by LC-MS. Although chronic colitis was clearly induced in the rats, no differences in the intestinal transport of PhIP were observed between control and DSS-treated animals. The hypothesis that in the course of chronic colitis more PhIP is taken up by the intestinal epithelium, thereby increasing the risk of developing colorectal cancer, could not be confirmed in the present report.

  15. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python.

    PubMed

    Secor, Stephen M; Taylor, Josi R; Grosell, Martin

    2012-01-01

    Snakes exhibit an apparent dichotomy in the regulation of gastrointestinal (GI) performance with feeding and fasting; frequently feeding species modestly regulate intestinal function whereas infrequently feeding species rapidly upregulate and downregulate intestinal function with the start and completion of each meal, respectively. The downregulatory response with fasting for infrequently feeding snakes is hypothesized to be a selective attribute that reduces energy expenditure between meals. To ascertain the links between feeding habit, whole-animal metabolism, and GI function and metabolism, we measured preprandial and postprandial metabolic rates and gastric and intestinal acid-base secretion, epithelial conductance and oxygen consumption for the frequently feeding diamondback water snake (Nerodia rhombifer) and the infrequently feeding Burmese python (Python molurus). Independent of body mass, Burmese pythons possess a significantly lower standard metabolic rate and respond to feeding with a much larger metabolic response compared with water snakes. While fasting, pythons cease gastric acid and intestinal base secretion, both of which are stimulated with feeding. In contrast, fasted water snakes secreted gastric acid and intestinal base at rates similar to those of digesting snakes. We observed no difference between fasted and fed individuals for either species in gastric or intestinal transepithelial potential and conductance, with the exception of a significantly greater gastric transepithelial potential for fed pythons at the start of titration. Water snakes experienced no significant change in gastric or intestinal metabolism with feeding. Fed pythons, in contrast, experienced a near-doubling of gastric metabolism and a tripling of intestinal metabolic rate. For fasted individuals, the metabolic rate of the stomach and small intestine was significantly lower for pythons than for water snakes. The fasting downregulation of digestive function for pythons is manifested in a depressed gastric and intestinal metabolism, which selectively serves to reduce basal metabolism and hence promote survival between infrequent meals. By maintaining elevated GI performance between meals, fasted water snakes incur the additional cost of tissue activity, which is expressed in a higher standard metabolic rate.

  16. Expression of intestinal trefoil factor, proliferating cell nuclear antigen and histological changes in intestine of rats after intrauterine asphyxia

    PubMed Central

    Xu, Ling-Fen; Li, Jun; Sun, Mei; Sun, Hong-Wei

    2005-01-01

    AIM: To study the expressions of intestinal trefoil factor (ITF) and proliferating cell nuclear antigen (PCNA) and histologic changes in intestine, to investigate the relationship between ITF and intestinal damage and repair after intrauterine hypoxia so as to understand the mechanism of intestinal injury and to find a new way to prevent and treat gastrointestinal diseases. METHODS: Wistar rats, pregnant for 21 d, were used to establish animal models of intrauterine asphyxia by clamping one side of vessels supplying blood to uterus for 20 min, another side was regarded as sham operation group. Intestinal tissues were taken away at 0, 24, 48 and 72 h after birth and stored in different styles. ITF mRNA was detected by RT-PCR. PCNA expression was measured by immunohistochemistry. Intestinal tissues were studied histologically by HE staining in order to observe the areas and degree of injury and to value the intestinal mucosa injury index (IMDI). RESULTS: ITF mRNA appeared in full-term rats and increased with age. After ischemia, ITF mRNA was decreased to the minimum (0.59±0.032) 24 h after birth, then began to increase higher after 72 h than it was in the control group (P<0.01). PCNA positive staining located in goblet cell nuclei. The PCNA level had a remarkable decline (53.29±1.97) 48 h after ischemia. Structure changes were obvious in 48-h group, IMDI (3.40±0.16) was significantly increased. Correlation analyses showed that IMDI had a negative correlation with ITF mRNA and PCNA (r = -0.543, P<0.05; r = -0.794, P<0.01, respectively). CONCLUSION: Intrauterine ischemia can result in an early decrease of ITF mRNA expression. ITF and PCNA may play an important role in the damage and repair of intestinal mucosa. PMID:15818741

  17. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  18. Alterations to metabolically active bacteria in the mucosa of the small intestine predict anti-obesity and anti-diabetic activities of grape seed extract in mice.

    PubMed

    Griffin, Laura E; Witrick, Katherine A; Klotz, Courtney; Dorenkott, Melanie R; Goodrich, Katheryn M; Fundaro, Gabrielle; McMillan, Ryan P; Hulver, Matthew W; Ponder, Monica A; Neilson, Andrew P

    2017-10-18

    Epidemiological and clinical studies suggest that grapes and grape-derived products may reduce the risk for chronic disease. Grape seed extract specifically has been gaining interest due to its reported ability to prevent weight gain, moderate hyperglycemia, and reduce inflammation. The purpose of this study was to examine the long-term effects of two doses of grape seed extract (10 and 100 mg kg -1 body wt per d in mice) on markers of metabolic syndrome in the context of a moderately high-fat diet. After 12 weeks, the lower dose of grape seed extract was more effective at inhibiting fat gain and improving glucose tolerance and insulin sensitivity. Neither the high fat diet nor grape seed extract altered skeletal muscle substrate metabolism. Most interestingly, when examining the profile of metabolically active microbiota in the mucosa of the small intestine, cecum, and colonic tissue, grape seed extract seemed to have the most dramatic effect on small intestinal tissue, where the population of Firmicutes was lower compared to control groups. This effect was not observed in the cecal or colonic tissues, suggesting that the main alterations to gut microbiota due to flavan-3-ol supplementation occur in the small intestine, which has not been reported previously. These findings suggest that grape seed extract can prevent early changes in glucose tolerance and alter small intestinal gut microbiota, prior to the onset of skeletal muscle metabolic derangements, when grape seed extract is consumed at a low dose in the context of a moderately high fat diet.

  19. Mechanisms of the anti-inflammatory effects of the natural secosteroids physalins in a model of intestinal ischaemia and reperfusion injury

    PubMed Central

    Vieira, Angélica T; Pinho, Vanessa; Lepsch, Lucilia B; Scavone, Cristóforo; Ribeiro, Ivone M; Tomassini, Therezinha; Ribeiro-dos-Santos, Ricardo; Soares, Milena B P; Teixeira, Mauro M; Souza, Danielle G

    2005-01-01

    Reperfusion of an ischaemic tissue is associated with an intense inflammatory response and inflammation-mediated tissue injury. Physalins, a group of substances with secosteroidal chemical structure, are found in Physalis angulata stems and leaves. Here, we assessed the effects of physalins on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in mice and compared with the effects of dexamethasone. Following I/R injury, dexamethasone (10 mg kg−1) or physalin B or F markedly prevented neutrophil influx, the increase in vascular permeability in the intestine and the lungs. Maximal inhibition occurred at 20 mg kg−1. Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. Dexamethasone or physalins effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF-α. Interestingly, treatment with the compounds was associated with enhancement of IL-10. The anti-inflammatory effects of dexamethasone or physalins were reversed by pretreatment with the corticoid receptor antagonist RU486 (25 mg kg−1). The drug compounds suppressed steady-state concentrations of corticosterone, but did not alter the reperfusion-associated increase in levels of corticosterone. The IL-10-enhancing effects of the drugs were not altered by RU486. In conclusion, the in vivo anti-inflammatory actions of physalins, natural steroidal compounds, appear to be mostly due to the activation of glucocorticoid receptors. Compounds derived from these natural secosteroids may represent novel therapeutic options for the treatment of inflammatory diseases. PMID:16025143

  20. Molecular cloning, tissue expression of gene Muc2 in blunt snout bream Megalobrama amblycephala and regulation after re-feeding

    NASA Astrophysics Data System (ADS)

    Xue, Chunyu; Xi, Bingwen; Ren, Mingchun; Dong, Jingjing; Xie, Jun; Xu, Pao

    2015-03-01

    Mucins are important components of mucus, which form a natural, physical, biochemical and semipermeable mucosal layer on the epidermis of fish gills, skin, and the gastrointestinal tract. As the first step towards characterizing the function of Muc2, we cloned a partial Megalobrama amblycephala Muc2 cDNA of 2 175 bp, and analyzed its tissue-specific expression pattern by quantitative real-time PCR (qPCR). The obtained sequence comprised 41 bp 5'-untranslated region (5'-UTR), 2 134 bp open reading frame encoding a protein of 711 amino acids. BLAST searching and phylogenetic analysis showed that the predicted protein contained several common secreted mucin-module domains (VWD-C8-TIL-VWD-C8) and had high homology with mucins from other vertebrates. Among four candidate reference genes ( β- Actin, RPI13α, RPII, 18S) for the qPCR, RPII was chosen as an appropriate reference gene because of its lowest variation in different tissues. M. amblycephala Muc2 was mainly expressed in the intestine, in the order (highest to lowest) middle-intestine > fore-intestine > hind-intestine. Muc2 was expressed relatively poorly in other organs (brain, liver, kidney, spleen, skin and gill). Furthermore, after 20-days of starvation, M. amblycephala Muc2 expressions after refeeding for 0 h, 3 h, 16 h, 3 d, and 10 d were significantly decreased in the three intestinal segments ( P<0.05) at 16 h, and were then upregulated to near the initial level at 10 d.

  1. HLA-G is expressed in intestinal samples of ulcerative colitis and Crohn's disease patients and HLA-G5 expression is differentially correlated with TNF and IL-10 cytokine expression.

    PubMed

    Gomes, Renan Garcia; Brito, Carlos Alexandre Antunes de; Martinelli, Valéria Ferreira; Santos, Rossana Nascimento Dos; Gomes, Fabiana Oliveira Dos Santos; Peixoto, Christina Alves; Crispim, Janaína Oliveira; Diniz, George Tadeu Nunes; Donadi, Eduardo Antônio; Lucena-Silva, Norma

    2018-06-01

    HLA-G is an immunomodulatory molecule that can be produced by epithelial cells. Considering that TNF and IL-10 participate in bowel inflammatory disorders and that both cytokines modulate HLA-G, we evaluated HLA-G, TNF and IL-10 mRNA expression by qPCR and HLA-G protein levels by immunohistochemistry in two intestinal samples exhibiting different degree of inflammation within a patient suffering from Crohn's disease (CD) or ulcerative colitis (UC). Tissue HLA-G5 (P < 0.0001), TNF (P = 0.0004) and IL-10 (P = 0.0169) mRNA expression levels were higher in intestinal areas exhibiting intense inflammation compared to areas of low inflammation, and HLA-G protein levels were not associated with degree of mucosal inflammation. In CD, the expression of TNF was correlated with IL-10 in low inflamed areas, exhibiting a TNF:IL-10 ratio = 3, but in inflamed areas the ratio increased to 9-folds. In UC, the expression of TNF was correlated to IL-10, irrespective of the inflammation grade, with little variation of the TNF:IL-10 ratio in the various inflamed areas. TNF and IL-10 expression was correlated with HLA-G5 expression in mild inflamed areas. Both CD and UC samples exhibited gene and protein expression of HLA-G; and the HLA-G5 expression is differentially correlated with TNF and IL-10 levels depending on the type of the underlying inflammatory bowel disorder. Copyright © 2018 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. In vitro effects of bethanechol on specimens of intestinal smooth muscle obtained from the duodenum and jejunum of healthy dairy cows

    PubMed Central

    Pfeiffer, Julia B. R.; Mevissen, Meike; Steiner, Adrian; Portier, Christopher J.; Meylan, Mireille

    2009-01-01

    Objective To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. Sample Population Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. Procedures Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (Amax), and area under the curve (AUC) were evaluated. Results Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M3 antagonists (more commonly for basal tone than for Amax and AUC). The M2 receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M3 receptor antagonists were generally more potent than the M2 receptor antagonists. In a protection experiment, an M3 receptor antagonist was less potent than when used in combination with an M2 receptor antagonist. Receptor antagonists for M1 and M4 did not affect contractility variables. Conclusions and Clinical Relevance Bethanechol acting on muscarinic receptor subtypes M2 and M3 may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows. PMID:17331022

  3. [Effects of prebiotics and probiotics on gastrointestinal tract lymphoid tissue in hiv infected patients].

    PubMed

    Feria, Manuel G; Taborda, Natalia A; Hernandez, Juan C; Rugeles, María T

    2017-02-01

    HIV infection induces alterations in almost all immune cell populations, mainly in CD4+ T cells, leading to the development of opportunistic infections. The gut-associated lymphoid tissue (GALT) constitutes the most important site for viral replication, because the main target cells, memory T-cells, reside in this tissue. It is currently known that alterations in GALT are critical during the course of the infection, as HIV-1 induces loss of tissue integrity and promotes translocation of microbial products from the intestinal lumen to the systemic circulation, leading to a persistent immune activation state and immune exhaustion. Although antiretroviral treatment decreases viral load and substantially improves the prognosis of the infection, the alterations in GALT remains, having a great impact on the ability to establish effective immune responses. This emphasizes the importance of developing new therapeutic alternatives that may promote structural and functional integrity of this tissue. In this regard, therapy with probiotics/prebiotics has beneficial effects in GALT, mainly in syndromes characterized by intestinal dysbiosis, including the HIV-1 infection. In these patients, the consumption of probiotics/prebiotics decreased microbial products in plasma and CD4+ T cell activation, increased CD4+ T cell frequency, in particular Th17, and improved the intestinal flora. In this review, the most important findings on the potential impact of the probiotics/prebiotics therapy are discussed.

  4. Current status of tissue engineering applied to bladder reconstruction in humans.

    PubMed

    Gasanz, C; Raventós, C; Morote, J

    2018-01-11

    Bladder reconstruction is performed to replace or expand the bladder. The intestine is used in standard clinical practice for tissue in this procedure. The complications of bladder reconstruction range from those of intestinal resection to those resulting from the continuous contact of urine with tissue not prepared for this contact. In this article, we describe and classify the various biomaterials and cell cultures used in bladder tissue engineering and reviews the studies performed with humans. We conducted a review of literature published in the PubMed database between 1950 and 2017, following the principles of the PRISM declaration. Numerous in vitro and animal model studies have been conducted, but only 18 experiments have been performed with humans, with a total of 169 patients. The current evidence suggests that an acellular matrix, a synthetic polymer with urothelial and autologous smooth muscle cells attached in vitro or stem cells would be the most practical approach for experimental bladder reconstruction. Bladder replacement or expansion without using intestinal tissue is still a challenge, despite progress in the manufacture of biomaterials and the development of cell therapy. Well-designed studies with large numbers of patients and long follow-up times are needed to establish an effective clinical translation and standardisation of the check-up functional tests. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate

    PubMed Central

    Hamarneh, Sulaiman R.; Mohamed, Mussa M. Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N.; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S.; Narisawa, Sonoko; Millán, José Luis; Warren, H. Shaw; Hohmann, Elizabeth; Malo, Madhu S.; Hodin, Richard A.

    2013-01-01

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP. PMID:23306083

  6. Waterborne Zn influenced Zn uptake and lipid metabolism in two intestinal regions of juvenile goby Synechogobius hasta.

    PubMed

    Ling, Shi-Cheng; Luo, Zhi; Chen, Guang-Hui; Zhang, Dian-Guang; Liu, Xu

    2018-02-01

    The present study explored the influence of Zn addition in the water on Zn transport and lipid metabolism of two intestinal regions in goby Synechogobius hasta. Zn contents in water were 0.004 (control), 0.181 and 0.361mg Zn L -1 , respectively. The experiment lasted for 28 days. TG and Zn contents, mRNA contents of genes of Zn transport and lipid metabolism, and enzyme activity from anterior and mid-intestine tissues were analyzed. In anterior intestine, Zn addition in the water increased Zn contents, and mRNA concentrations of ZIP4, ZIP5, ATGL, PPARα, ZNF202 and KLF7, decreased TG contents, 6PGD and G6PD activities, and mRNA contents of 6PGD, G6PD, FAS, PPARγ, ICDH and KLF4. In mid-intestine tissue, the highest Zn and TG contents were observed for 0.18mg Zn/l group, in parallel with the highest expressions of ZnT1, ZIP4, ZIP5, 6PGD, FAS, ICDH, PPARγ, PPARα, ZNF202, KLF4 and KLF7, and with the highest FAS, 6PGD and G6PD activities. Thus, in the anterior intestine, Zn addition increased lipolysis and decreased lipogenesis, and accordingly reduced TG content. However, the highest mid-intestinal TG content in 0.18mg Zn/l group was due to the up-regulated lipogenesis. Although lipolysis was also increased, the incremental lipid synthesis was enough to compensate for lipid degradation, which led TG accumulation. Our results, for the first time, show an anterior/mid functional regionalization of the intestine in lipid metabolism and Zn transport of S. hasta following Zn exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Intestinal lymphocyte subsets and turnover are affected by chronic alcohol consumption: implications for SIV/HIV infection.

    PubMed

    Poonia, Bhawna; Nelson, Steve; Bagby, Greg J; Veazey, Ronald S

    2006-04-15

    We recently demonstrated that simian immunodeficiency virus (SIV) viral loads were significantly higher in the plasma of rhesus macaques consuming alcohol compared with controls following intrarectal SIV infection. To understand the possible reasons behind increased viral replication, here we assessed the effects of chronic alcohol consumption on distribution and cycling of various lymphocyte subsets in the intestine. Macaques were administered alcohol (n = 11) or sucrose (n = 12), and percentages of memory and naive and activated lymphocyte subsets were compared in the blood, lymph nodes, and intestines. Although minimal differences were detected in blood or lymph nodes, there were significantly higher percentages of central memory (CD95+CD28+) CD4+ lymphocytes in the intestines from alcohol-receiving animals before infection compared with controls. In addition, higher percentages of naive (CD45RA+CD95-) as well as CXCR4+CD4 cells were detected in intestines of alcohol-treated macaques. Moreover, alcohol consumption resulted in significantly lower percentages of effector memory (CD95+CD28-) CD8 lymphocytes as well as activated Ki67+CD8 cells in the intestines. A subset (7 receiving alcohol and 8 receiving sucrose) were then intrarectally inoculated with SIV(mac251). Viral RNA was compared in different tissues using real-time PCR and in situ hybridization. Higher levels of SIV replication were observed in tissues from alcohol-consuming macaques compared with controls. Central memory CD4 lymphocytes were significantly depleted in intestines and mesenteric lymph nodes from all alcohol animals at 8 weeks postinfection. Thus, changes in the mucosal immune compartment (intestines) in response to alcohol are likely the major reasons behind higher replication of SIV observed in these animals.

  8. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    PubMed

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Protectin D1n-3 DPA and resolvin D5n-3 DPA are effectors of intestinal protection

    PubMed Central

    Gobbetti, Thomas; Dalli, Jesmond; Colas, Romain A.; Federici Canova, Donata; Aursnes, Marius; Bonnet, Delphine; Alric, Laurent; Vergnolle, Nathalie; Deraison, Celine; Hansen, Trond V.; Serhan, Charles N.

    2017-01-01

    The resolution of inflammation is an active process orchestrated by specialized proresolving lipid mediators (SPM) that limit the host response within the affected tissue; failure of effective resolution may lead to tissue injury. Because persistence of inflammatory signals is a main feature of chronic inflammatory conditions, including inflammatory bowel diseases (IBDs), herein we investigate expression and functions of SPM in intestinal inflammation. Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was used to identify SPMs from n-3 polyunsaturated fatty acids in human IBD colon biopsies, quantifying a significant up-regulation of the resolvin and protectin pathway compared with normal gut tissue. Systemic treatment with protectin (PD)1n-3 DPA or resolvin (Rv)D5n-3 DPA protected against colitis and intestinal ischemia/reperfusion-induced inflammation in mice. Inhibition of 15-lipoxygenase activity reduced PD1n-3 DPA and augmented intestinal inflammation in experimental colitis. Intravital microscopy of mouse mesenteric venules demonstrated that PD1n-3 DPA and RvD5n-3 DPA decreased the extent of leukocyte adhesion and emigration following ischemia-reperfusion. These data were translated by assessing human neutrophil–endothelial interactions under flow: PD1n-3 DPA and RvD5n-3 DPA reduced cell adhesion onto TNF-α–activated human endothelial monolayers. In conclusion, we propose that innovative therapies based on n-3 DPA-derived mediators could be developed to enable antiinflammatory and tissue protective effects in inflammatory pathologies of the gut. PMID:28356517

  10. Activation of Wnt signalling promotes development of dysplasia in Barrett's oesophagus.

    PubMed

    Moyes, Lisa H; McEwan, Hamish; Radulescu, Sorina; Pawlikowski, Jeff; Lamm, Catherine G; Nixon, Colin; Sansom, Owen J; Going, James J; Fullarton, Grant M; Adams, Peter D

    2012-09-01

    Barrett's oesophagus is a precursor of oesophageal adenocarcinoma, via intestinal metaplasia and dysplasia. Risk of cancer increases substantially with dysplasia, particularly high-grade dysplasia. Thus, there is a clinical need to identify and treat patients with early-stage disease (metaplasia and low-grade dysplasia) that are at high risk of cancer. Activated Wnt signalling is critical for normal intestinal development and homeostasis, but less so for oesophageal development. Therefore, we asked whether abnormally increased Wnt signalling contributes to the development of Barrett's oesophagus (intestinal metaplasia) and/or dysplasia. Forty patients with Barrett's metaplasia, dysplasia or adenocarcinoma underwent endoscopy and biopsy. Mice with tamoxifen- and β-naphthoflavone-induced expression of activated β-catenin were used to up-regulate Wnt signalling in mouse oesophagus. Immunohistochemistry of β-catenin, Ki67, a panel of Wnt target genes, and markers of intestinal metaplasia was performed on human and mouse tissues. In human tissues, expression of nuclear activated β-catenin was found in dysplasia, particularly high grade. Barrett's metaplasia did not show high levels of activated β-catenin. Up-regulation of Ki67 and Wnt target genes was also mostly associated with high-grade dysplasia. Aberrant activation of Wnt signalling in mouse oesophagus caused marked tissue disorganization with features of dysplasia, but only selected molecular indicators of metaplasia. Based on these results in human tissues and a mouse model, we conclude that abnormal activation of Wnt signalling likely plays only a minor role in initiation of Barrett's metaplasia but a more critical role in progression to dysplasia. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Paraneoplastic antigen Ma2 autoantibodies as specific blood biomarkers for detection of early recurrence of small intestine neuroendocrine tumors.

    PubMed

    Cui, Tao; Hurtig, Monica; Elgue, Graciela; Li, Su-Chen; Veronesi, Giulia; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Pelosi, Giuseppe; Alimohammadi, Mohammad; Öberg, Kjell; Giandomenico, Valeria

    2010-12-30

    Small intestine neuroendocrine tumors (SI-NETs) belong to a rare group of cancers. Most patients have developed metastatic disease at the time of diagnosis, for which there is currently no cure. The delay in diagnosis is a major issue in the clinical management of the patients and new markers are urgently needed. We have previously identified paraneoplastic antigen Ma2 (PNMA2) as a novel SI-NET tissue biomarker. Therefore, we evaluated whether Ma2 autoantibodies detection in the blood stream is useful for the clinical diagnosis and recurrence of SI-NETs. A novel indirect ELISA was set up to detect Ma2 autoantibodies in blood samples of patients with SI-NET at different stages of disease. The analysis was extended to include typical and atypical lung carcinoids (TLC and ALC), to evaluate whether Ma2 autoantibodies in the blood stream become a general biomarker for NETs. In total, 124 blood samples of SI-NET patients at different stages of disease were included in the study. The novel Ma2 autoantibody ELISA showed high sensitivity, specificity and accuracy with ROC curve analysis underlying an area between 0.734 and 0.816. Ma2 autoantibodies in the blood from SI-NET patients were verified by western blot and sequential immunoprecipitation. Serum antibodies of patients stain Ma2 in the tumor tissue and neurons. We observed that SI-NET patients expressing Ma2 autoantibody levels below the cutoff had a longer progression and recurrence-free survival compared to those with higher titer. We also detected higher levels of Ma2 autoantibodies in blood samples from TLC and ALC patients than from healthy controls, as previously shown in small cell lung carcinoma samples. Here we show that high Ma2 autoantibody titer in the blood of SI-NET patients is a sensitive and specific biomarker, superior to chromogranin A (CgA) for the risk of recurrence after radical operation of these tumors.

  12. Characterization of In Vitro Glucuronidation Clearance of a Range of Drugs in Human Kidney Microsomes: Comparison with Liver and Intestinal Glucuronidation and Impact of Albumin

    PubMed Central

    Gill, Katherine L.; Houston, J. Brian

    2012-01-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CLint, UGT) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CLint, UGT on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CLint, UGT in different tissues. Although BSA increased CLint, UGT in all tissues, the extent was tissue- and drug-dependent. Scaled CLint, UGT in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min−1 · g tissue−1 in liver, kidney, and intestinal microsomes. Renal CLint, UGT (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CLint, UGT for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CLint, UGT (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CLint, UGT is particularly important for UGT1A9 substrates. PMID:22275465

  13. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis.

    PubMed

    Zenobia, Camille; Luo, Xiao Long; Hashim, Ahmed; Abe, Toshiharu; Jin, Lijian; Chang, Yucheng; Jin, Zhi Chao; Sun, Jian Xun; Hajishengallis, George; Curtis, Mike A; Darveau, Richard P

    2013-08-01

    The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific-pathogen-free and germ-free wild-type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment of neutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88-dependent way that correlates with increased neutrophil recruitment as compared with germ-free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue. © 2013 John Wiley & Sons Ltd.

  14. The Short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction

    PubMed Central

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, E lizabeth M.; da Cunha, Andre Pires; Flak, Magdalena B.; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, J anelle C.; Dery, Ken J.; Nagaishi, Takashi; Beauchemin, Nicole; Holmes, Kathryn V.; Ho, Joshua W. K.; Shively, John E.; Jobin, Christian; Onderdonk, Andrew B.; Bry, Lynn; Weiner, Howard L.; Higgins, Darren E.; Blumberg, Richard S.

    2012-01-01

    Summary Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens. PMID:23123061

  15. The protective effect of infliximab on cisplatin-induced intestinal tissue toxicity.

    PubMed

    Aydin, I; Kalkan, Y; Ozer, E; Yucel, A F; Pergel, A; Cure, E; Cure, M C; Sahin, D A

    2014-01-01

    Cisplatin (CP) is a popular chemotherapeutic agent. However, high doses of CP may lead to severe side effects to the gastrointestinal system. The aim of this study was to investigate the protective effects of infliximab on small intestine injury induced by high doses of CP. The A total of 30 rats were equally divided into three groups, including sham (C), cisplatin (CP), and cisplatin + infliximab (CPI). The CP group was treated with 7 mg/kg intraperitoneal cisplatin, and a laparotomy was performed 5 days later. The CPI group received 7 mg/kg infliximab intraperitoneally, were administered 7 mg/kg cisplatin 4 days later, and a laparotomy was performed 5 days after receiving cisplatin. Histopathological and immunohistochemical analysis of small intestine tissue sections were performed, and superoxide dismutase, malondialdehyde, and TNF-α levels were measured. Histopathological evaluation revealed that the CP group had damage in the epithelium and connective tissue, but this damage was significantly improved in the CPI group (p < 0.05). In addition, these histopathological findings were confirmed by biochemical analyses. These results suggest that infliximab is protective against the adverse effects of CP.

  16. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch.

    PubMed

    Lohrenz, A-K; Duske, K; Schönhusen, U; Losand, B; Seyfert, H M; Metges, C C; Hammon, H M

    2011-09-01

    Diets containing corn starch may improve glucose supply by providing significant amounts of intestinal starch and increasing intestinal glucose absorption in dairy cows. Glucose absorption in the small intestine requires specific glucose transporters; that is, sodium-dependent glucose co-transporter-1 (SGLT1) and facilitated glucose transporter (GLUT2), which are usually downregulated in the small intestine of functional ruminants but are upregulated when luminal glucose is available. We tested the hypothesis that mRNA and protein expression of intestinal glucose transporters and mRNA expression of enzymes related to gluconeogenesis are affected by variable starch supply. Dairy cows (n=9/group) were fed for 4 wk total mixed rations (TMR) containing either high (HS) or low (LS) starch levels in the diet. Feed intake and milk yield were measured daily. After slaughter, tissue samples of the small intestinal mucosa (mid-duodenum and mid-jejunum) were taken for determination of mRNA concentrations of SGLT1 and GLUT2 as well as pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase by real-time reverse transcription PCR relative to a housekeeping gene. Protein expression of GLUT2 in crude mucosal membranes and of SGLT1 and GLUT2 in brush-border membrane vesicles was quantified by sodium dodecyl sulfate-PAGE and immunoblot. A mixed model was used to examine feeding and time-related changes on feed intake and milk yield and to test feeding and gut site effects on gene or protein expression of glucose transporters and enzymes in the intestinal mucosa. Dry matter intake, but not energy intake, was higher in cows fed HS compared with LS. Abundance of SGLT1 mRNA tended to be higher in duodenal than in jejunal mucosa, and mRNA abundances of pyruvate carboxylase tended to be higher in jejunal than in duodenal mucosa. In brush-border membrane vesicles, SGLT1 and GLUT2 protein expression could be demonstrated. No diet-dependent differences were found concerning mRNA and protein contents of glucose transporter or mRNA level of gluconeogenic enzymes. In conclusion, our investigations on glucose transporters and gluconeogenic enzymes in the small intestinal mucosa of dairy cows did not show significant diet regulation when TMR with different amounts of intestinal starch were fed. Therefore, predicted intestinal glucose absorption after enhanced starch feeding is probably not supported by changes of intestinal glucose transporters in dairy cows. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus).

    PubMed

    Ruiz-Jarabo, I; Gregório, S F; Gaetano, P; Trischitta, F; Fuentes, J

    2017-05-01

    Osmoregulation in fish is a complex process that requires the orchestrated cooperation of many tissues. In fish facing hyperosmotic environments, the intestinal absorption of some monovalent ions and the secretion of bicarbonate are key processes to favor water absorption. In the present study, we showed that bicarbonate levels in the intestinal fluid are several fold higher in seawater than in freshwater acclimated tilapia (Oreochromis mossambicus). In addition, we analyzed gene expression of the main molecular mechanisms involved in HCO 3 - movements i.e. slc26a6, slc26a3, slc4a4 and v-type H-ATPase sub C in the intestine of tilapia acclimated to both seawater and freshwater. Our results show an anterior/posterior functional regionalization of the intestine in tilapia in terms of expression patterns, which is affected by environmental salinity mostly in the anterior and mid intestine. Analysis of bicarbonate secretion using pH-Stat in tissues mounted in Ussing chambers reveals high rates of bicarbonate secretion in tilapia acclimated to seawater from anterior intestine to rectum ranging between ~900 and ~1700nmolHCO 3 - cm -2 h -1 . However, a relationship between the expression of slc26a6, slc26a3, slc4a4 and the rate of bicarbonate secretion seems to be compromised in the rectum. In this region, the low expression of the bicarbonate transporters could not explain the high bicarbonate secretion rates here described. However, we postulate that the elevated v-type H-ATPase mRNA expression in the rectum could be involved in this process. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury.

    PubMed

    Wang, J; Hauer-Jensen, M

    2007-09-01

    Intestinal radiation injury is characterized by breakdown of the epithelial barrier and mucosal inflammation. In addition to replicative and apoptotic cell death, radiation also induces changes in cellular function, as well as alterations secondary to tissue injury. The recognition of these "non-cytocidal" radiation effects has enhanced the understanding of normal tissue radiation toxicity, thus allowing an integrated systems biology-based approach to modulating radiation responses and providing a mechanistic rationale for interventions to mitigate or treat radiation injuries. The enteric nervous system regulates intestinal motility, blood flow and enterocyte function. The enteric nervous system also plays a central role in maintaining the physiological state of the intestinal mucosa and in coordinating inflammatory and fibroproliferative processes. The afferent component of the enteric nervous system, in addition to relaying sensory information, also exerts important effector functions and contributes critically to preserving mucosal integrity. Interactions between afferent nerves, mast cells as well as other cells of the resident mucosal immune system serve to maintain mucosal homeostasis and to ensure an appropriate response to injury. Notably, enteric sensory neurons regulate the activation threshold of mast cells by secreting substance P, calcitonin gene-related peptide and other neuropeptides, whereas mast cells signal to enteric nerves by the release of histamine, nerve growth factor and other mediators. This article reviews how enteric neurons interact with mast cells and other immune cells to regulate the intestinal radiation response and how these interactions may be modified to mitigate intestinal radiation toxicity. These data are not only applicable to radiation therapy, but also to intestinal injury in a radiological terrorism scenario.

  19. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats.

    PubMed

    Turan, Inci; Ozacmak, Hale Sayan; Ozacmak, V Haktan; Barut, Figen; Araslı, Mehmet

    2017-11-15

    Oxidative stress and inflammatory response are major factors causing several tissue injuries in intestinal ischemia and reperfusion (I/R). Agmatine has been reported to attenuate I/R injury of various organs. The present study aims to analyze the possible protective effects of agmatine on intestinal I/R injury in rats. Four groups were designed: sham control, agmatine-treated control, I/R control, and agmatine-treated I/R groups. IR injury of small intestine was induced by the occlusion of the superior mesenteric artery for half an hour to be followed by a 3-hour-long reperfusion. Agmatine (10mg/kg) was administered intraperitoneally before reperfusion period. After 180min of reperfusion period, the contractile responses to both carbachol and potassium chloride (KCl) were subsequently examined in an isolated-organ bath. Malondialdehyde (MDA), reduced glutathione (GSH), and the activity of myeloperoxidase (MPO) were measured in intestinal tissue. Plasma cytokine levels were determined. The expression of the intestinal inducible nitric oxide synthase (iNOS) was also assessed by immunohistochemistry. The treatment with agmatine appeared to be significantly effective in reducing the MDA content and MPO activity besides restoring the content of GSH. The treatment also attenuated the histological injury. The increases in the I/R induced expressions of iNOS, IFN-γ, and IL-1α were brought back to the sham control levels by the treatment as well. Our findings indicate that the agmatine pretreatment may ameliorate reperfusion induced injury in small intestine mainly due to reducing inflammatory response and oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Intra-abdominal infection combined with intra-abdominal hypertension aggravates the intestinal mucosal barrier dysfunction.

    PubMed

    Li, Yuan; Ren, Jianan; Wu, Xiuwen; Li, Jieshou

    2018-02-28

    Some patients with intra-abdominal infection (IAI) may develop intra-abdominal hypertension (IAH) during treatment. The present study investigated the impact of IAI combined with IAH on the intestinal mucosal barrier in a rabbit model. Forty-eight New Zealand white rabbits were randomly divided into four groups: (i) IAI and IAH; (ii) IAI alone; (iii) IAH alone; and (iv) Control group. IAI model: cecal ligation and puncture for 48 h; IAH model: raised intra-abdominal pressure (IAP) of 20 mmHg for 4 h. Pathological changes in intestinal mucosa were confirmed by light and scanning electron microscopy. FITC-conjugated dextran (FITC-dextran) by gavage was used to measure intestinal mucosal permeability in plasma. Endotoxin, d-Lactate, and diamine oxidase (DAO) in plasma were measured to determine intestinal mucosal damage. Malonaldehyde (MDA), superoxide dismutase (SOD), and GSH in ileum tissues were measured to evaluate intestinal mucosal oxidation and reducing state. Histopathologic scores were significantly higher in the IAI and IAH group, followed by IAI alone, IAH alone, and the control group. FITC-dextran, d-Lactate, DAO, and endotoxin in plasma and MDA in ileum tissues had similar trends. GSH and SOD were significantly lowest the in IAI and IAH group. Occludin levels were lowest in the ileums of the IAI and IAH group. All differences were statistically significant ( P -values <0.001). IAI combined with IAH aggravates damage of the intestinal mucosal barrier in a rabbit model. The combined effects were significantly more severe compared with a single factor. IAI combined with IAH should be prevented and treated effectively. © 2018 The Author(s).

  1. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration

    PubMed Central

    Flores, Natasha M.; Oviedo, Néstor J.; Sage, Julien

    2016-01-01

    The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians. PMID:27542689

  2. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration.

    PubMed

    Flores, Natasha M; Oviedo, Néstor J; Sage, Julien

    2016-10-01

    The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Action of Escherichia coli Enterotoxin: Adenylate Cyclase Behavior of Intestinal Epithelial Cells in Culture

    PubMed Central

    Kantor, Harvey S.; Tao, Pearl; Wisdom, Charlene

    1974-01-01

    Heat-labile enterotoxin preparations obtained from two enteropathogenic strains of Escherichia coli of porcine and human origin were shown to stimulate adenylate cyclase activity of human embryonic intestinal epithelial cells in culture. Comparable results were also obtained when cholera toxin was used. The degree of enzyme stimulation was proportional to the concentration of enterotoxin. Similar preparations from two strains of non-enterotoxigenic E. coli had no effect on adenylate cyclase activity. Cells exposed to enterotoxin could be washed after 1 min of contact time without altering the subsequent course of maximum adenylate cyclase activity, which was maintained for at least 18 h at 37 C. During long periods (18 h) of tissue culture incubation, the determination of adenylate cyclase activity was 200- to 300-fold more sensitive than quantitating fluid accumulation in the adult rabbit ileal loop model. Decreasing the incubation time appreciably reduced the sensitivity of the epithelial cells to enterotoxin. E. coli enterotoxin is an effective activator of nonintestinal adenylate cyclase systems. Treatment of KB and HEp-2 cell lines with enterotoxin also resulted in significant enzyme stimulation. The intestinal epithelial cell tissue culture model provides a sensitive homogenous biological system for studying the response of intestinal adenylate cyclase to enterotoxin while eliminating the numerous cellular and tissue components present in the ligated ileal loop model. PMID:4364505

  4. Expression of digestive enzymes and nutrient transporters in the small intestine of Eimeria acervulina-infected chickens

    USDA-ARS?s Scientific Manuscript database

    Coccidiosis is a major disease of poultry caused by the intestinal protozoa Eimeria. Eimeria acervulina mainly infects the duodenum, causing lesions in epithelial tissue. The objective of this study was to investigate the effect of E. acervulina infection on the expression of 18 nutrient transport...

  5. Intestinal adhesion to the abdominal wall after skin closure with octylcyanoacrylate.

    PubMed

    Chaya, Miguel; Reyes-Cuervo, Humberto; Cruz, Vivian; Barroso, Gerardo; Garcia-León, Fernando

    2004-08-01

    Octylcyanoacrylate tissue adhesive glue is a wound closure device recently approved by the U.S. Food and Drug Administration. Few complications have been reported regarding the liquid adhesive entering the wound. The following report involves a patient who developed intestinal occlusion secondary to octylcyanoacrylate used for skin closure in laparoscopic surgery.

  6. Low abdominal NIRS values and elevated plasma intestinal fatty acid-binding protein in a premature piglet model of necrotizing enterocolitis

    USDA-ARS?s Scientific Manuscript database

    To identify early markers of necrotizing enterocolitis (NEC), we hypothesized that continuous abdominal near-infrared spectroscopy (A-NIRS) measurement of splanchnic tissue oxygen saturation and intermittent plasma intestinal fatty-acid binding protein (pI-FABP) measured every 6 hours can detect NEC...

  7. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon.

    PubMed

    Kortner, Trond M; Penn, Michael H; Bjӧrkhem, Ingemar; Måsøval, Kjell; Krogdahl, Åshild

    2016-09-07

    The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements, and other combinations of supplements might prevent or ameliorate inflammation in the distal intestine.

  8. Local and systemic inflammatory and immunologic reactions to cyathostomin larvicidal therapy in horses.

    PubMed

    Nielsen, M K; Loynachan, A T; Jacobsen, S; Stewart, J C; Reinemeyer, C R; Horohov, D W

    2015-12-15

    Encysted cyathostomin larvae are ubiquitous in grazing horses. Arrested development occurs in this population and can lead to an accumulation of encysted larvae. Large numbers of tissue larvae place the horse at risk for developing larval cyathostominosis. This disease complex is caused by mass emergence of these larvae and is characterized by a generalized acute typhlocolitis and manifests itself as a profuse protein-losing watery diarrhea with a reported case-fatality rate of about 50%. Two anthelmintic formulations have a label claim for larvicidal therapy of these encysted stages; moxidectin and a five-day regimen of fenbendazole. There is limited knowledge about inflammatory and immunologic reactions to larvicidal therapy. This study was designed to evaluate blood acute phase reactants as well as gene expression of pro-inflammatory cytokines, both locally in the large intestinal walls and systemically. Further, mucosal tissue samples were evaluated histopathologically as well as analyzed for gene expression of pro- and anti-inflammatory cytokines, cluster of differentiation (CD) cell surface proteins, and select transcription factors. Eighteen juvenile horses with naturally acquired cyathostomin infections were randomly assigned to three treatment groups; one group served as untreated controls (Group 1), one received a five-day regimen of fenbendazole (10mg/kg) (Group 2), and one group received moxidectin (0.4mg/kg) (Group 3). Horses were treated on day 0 and euthanatized on days 18-20. Serum and whole blood samples were collected on days 0, 5, and 18. All horses underwent necropsy with collection of tissue samples from the ventral colon and cecum. Acute phase reactants measured included serum amyloid A, iron and fibrinogen, and the cytokines evaluated included interferon γ, tumor necrosis factor α, transforming growth factor (TGF)-β, and interleukins 1β, 4, 5, 6, and 10. Transcription factors evaluated were FoxP3, GATA3 and tBet, and CD markers included CD163, CD3z, CD4, CD40, and CD8b. Histopathology revealed an inflammatory reaction with higher levels of lymphocytes, T cells, B cells, eosinophils and fibrous tissue in the moxidectin-treated group compared to controls or horses treated with fenbendazole. No apparent systemic reactions were observed. Expression of IL-5 and TGF-β in intestinal tissues was significantly lower in Group 3 compared to Group 1. This study revealed a subtle inflammatory reaction to moxidectin, which is unlikely to cause clinical issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats.

    PubMed

    Boutry, Claire; Bos, Cecile; Matsumoto, Hideki; Even, Patrick; Azzout-Marniche, Dalila; Tome, Daniel; Blachier, Francois

    2011-01-01

    Monosodium glutamate (MSG) is a worldwide used flavor enhancer. Supplemental glutamate may impact physiological functions. The aim of this study was to document the metabolic and physiological consequences of supplementation with 2% MSG (w/w) in rats. After 15 days-supplementation and following the ingestion of a test meal containing 2% MSG, glutamic acid accumulated for 5h in the stomach and for 1h in the small intestine. This coincided with a significant decrease of intestinal glutaminase activity, a marked specific increase in plasma glutamine concentration and a transient increase of plasma insulin concentration. MSG after chronic or acute supplementation had no effect on food intake, body weight, adipose tissue masses, gastric emptying rate, incorporation of dietary nitrogen in gastrointestinal and other tissues, and protein synthesis in intestinal mucosa, liver and muscles. The only significant effects of chronic supplementation were a slightly diminished gastrocnemius muscle mass, increased protein mass in intestinal mucosa and decreased protein synthesis in stomach. It is concluded that MSG chronic supplementation promotes glutamine synthesis in the body but has little effect on the physiological functions examined.

  10. Canine parvovirus-2b-associated erythema multiforme in a litter of English Setter dogs.

    PubMed

    Woldemeskel, Moges; Liggett, Alan; Ilha, Marcia; Saliki, Jeremiah T; Johnson, Leslie P

    2011-05-01

    Erythema multiforme (EM) was diagnosed in a litter of English Setter puppies. The puppies developed erythematous cutaneous lesions at the age of 2 weeks. Microscopically, there was individual keratinocyte apoptosis associated with lymphocyte exocytosis in all layers of the epidermis. Intranuclear viral inclusions were seen in multiple tissues and organs. Tissues from the tongue, lymph node, spleen, skin, and small intestine were positive for Canine parvovirus-2 (CPV-2) and negative for Canine distemper virus (CDV) and Canid herpesvirus 1 by fluorescent antibody test. Negative-staining electron microscopy detected parvovirus particles in the intestinal contents. The skin and small intestine were positive for CPV-2b and negative for CDV by polymerase chain reaction. The mucocutaneous junctions and small intestines stained positive for CPV by immunohistochemistry. The present report documents CPV-2b-associated EM in a litter of English Setters and substantiates the single previous report associating EM with CPV-2. The finding suggests that CPV should be considered as a possible cause of EM in dogs. © 2011 The Author(s)

  11. Survival after total body irradiation: Effects of irradiation of exteriorized small intestine. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.

    1993-12-31

    Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes inmore » small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.« less

  12. Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine

    NASA Astrophysics Data System (ADS)

    Candeo, Alessia; Sana, Ilenia; Ferrari, Eleonora; Maiuri, Luigi; D'Andrea, Cosimo; Valentini, Gianluca; Bassi, Andrea

    2016-05-01

    Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.

  13. Ghrelin clearance is reduced at the late stage of polymicrobial sepsis.

    PubMed

    Wu, Rongqian; Zhou, Mian; Cui, Xiaoxuan; Simms, H Hank; Wang, Ping

    2003-11-01

    The cardiovascular response to sepsis is characterized by an early, hyperdynamic phase followed by a late, hypodynamic phase. Ghrelin, a newly-identified endogenous ligand for growth hormone secretagogue receptor (i.e., ghrelin receptor), was recently demonstrated to be a potent vasoactive peptide in addition to its effects on growth hormone release and energy homeostasis. We have shown that ghrelin (via its receptor) may play an important role in regulating cardiovascular responses in the progression of polymicrobial sepsis. However, it remains unknown whether the clearance of this peptide is altered in sepsis. To determine this, male adult rats were injected with 125I-ghrelin through the jugular vein at 5 or 20 h after cecal ligation and puncture (CLP, i.e., sepsis model) or sham operation. The blood sample was collected every 2 min for 30 min for determining half-life (t1/2). Tissue samples (i.e., kidneys, liver, brain, heart, lungs, spleen, stomach, small intestine, large intestine, skin and muscle) were then harvested. The radioactivities of samples were counted. The results indicate that 125I-ghrelin's t1/2 and its distribution were not significantly altered in early sepsis (5 h after CLP). However, the t1/2 increased significantly in late sepsis (20 h after CLP). Tissue distribution of 125I-ghrelin was far greater in the kidneys than in any other tissues tested in both sham and septic animals. Moreover, the kidneys and liver had significantly less radioactive uptake at 20 h after CLP, but the radioactivity in blood was much higher at the same time point. There were no significant changes in 125I-ghrelin distribution in other organs at the late stage of sepsis. These results indicate that the kidneys are the primary site of ghrelin clearance, which is significantly diminished in late sepsis. In addition, the liver also plays a role in the clearance of ghrelin, which was also reduced in late sepsis. The decreased clearance of ghrelin by the kidneys and liver may be due to renal and hepatic dysfunctions under such conditions.

  14. Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues

    PubMed Central

    Rhee, Ki-Jong; Jasper, Paul J.; Sethupathi, Periannan; Shanmugam, Malathy; Lanning, Dennis; Knight, Katherine L.

    2005-01-01

    Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express VHn allotype immunoglobulin (Ig)M. Within weeks, the number of VHn B cells decreases, whereas VHa allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from VHn to VHa B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the VHn to VHa repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of VHa B cells. By comparing amino acid sequences of VHn and VHa Ig, we identified a putative VH ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with VHa B cells results in their selective expansion. PMID:15623575

  15. Intestinal PPARγ signalling is required for sympathetic nervous system activation in response to caloric restriction

    PubMed Central

    Duszka, Kalina; Picard, Alexandre; Ellero-Simatos, Sandrine; Chen, Jiapeng; Defernez, Marianne; Paramalingam, Eeswari; Pigram, Anna; Vanoaica, Liviu; Canlet, Cécile; Parini, Paolo; Narbad, Arjan; Guillou, Hervé; Thorens, Bernard; Wahli, Walter

    2016-01-01

    Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes. PMID:27853235

  16. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-Q-TOF-MS.

    PubMed

    Cui, Qingling; Pan, Yingni; Xu, Xiaotong; Zhang, Wenjie; Wu, Xiao; Qu, Shouhe; Liu, Xiaoqiu

    2016-03-01

    Acteoside, the main and representative phenylethanoid glycosides of Herba Cistanches, possesses wide bioactivities but low oral bioavailability. It may serve as the prodrug and be converted into the active forms in gastrointestinal tract, which mainly occurred in intestinal tract composed of intestinal bacteria and intestinal enzyme. Intestinal bacteria, a new drug target, take a significant role on exerting pharmacological effects of drugs by oral administration. In this paper, acteoside was incubated with human or rat intestinal bacteria or rat intestinal enzyme for 36 h to seek metabolites responsible for pharmacodynamics. The samples were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Besides the parent compound, 14 metabolites were detected and identified based on their retention times and fragmentation patterns in their MS spectra including 8 degradation metabolites, 2 isomers in intestinal bacteria and intestinal enzyme samples and 4 parent metabolites only found in intestinal enzymes. The metabolic pathway of acteoside was thus proposed. Identification of these metabolites of acteoside by the intestinal bacteria or intestinal enzyme gave an insight to clarify pharmacological mechanism of traditional Chinese medicines and identify the real active molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Glycosaminoglycans and fibrillar collagen in Priapulida: a histo- and cytochemical study.

    PubMed

    Welsch, U; Erlinger, R; Storch, V

    1992-12-01

    The distribution of glycosaminoglycans and fibrillar collagen was studied in various tissues of priapulids, which represent an ancient group of marine metazoa. Sulphated glycosaminoglycans, as demonstrated at the electron microscopical level by Cupromeronic blue, were predominantly found in the cuticle, in basement membranes and also in the narrow connective tissue space below epidermis and anterior intestine. On the basis of their morphology the Cupromeronic blue precipitates could be divided into several groups. Fibrillar collagen occurred in the connective tissue under the epidermis and the epithelium of the anterior intestine. The spatial interrelationship between fibrillar collagen and glycosaminoglycans lacked with some exceptions, the high regularity found in connective tissues of other invertebrates and of vertebrates. This might be related to the special skeletal system of priapulids, consisting mainly of a strong extracellular cuticle and the turgor of the fluid-filled body cavity. In such a system the usual supportive structures seem to be of less functional significance.

  18. Primary intestinal lymphangiectasia diagnosed by double-balloon enteroscopy and treated by medium-chain triglycerides: a case report.

    PubMed

    Lai, Yu; Yu, Tao; Qiao, Xiao-Yu; Zhao, Li-Na; Chen, Qi-Kui

    2013-01-14

    Primary intestinal lymphangiectasia is a disorder characterized by exudative enteropathy resulting from morphologic abnormalities of the intestinal lymphatics. Intestinal lymphangiectasia can be primary or secondary, so the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A double-balloon enteroscopy and biopsy, as well as the pathology can be used to confirm the diagnosis of intestinal lymphangiectasia. A polymeric diet containing medium-chain triglycerides and total parenteral nutrition may be a useful therapy. A 17-year-old girl of Mongoloid ethnicity was admitted to our hospital with a history of diarrhea and edema. She was diagnosed with protein-losing enteropathy caused by intestinal lymphangiectasia. This was confirmed by a double-balloon enteroscopy and multi-dot biopsy. After treatment with total parenteral nutrition in hospital, which was followed by a low-fat and medium-chain triglyceride diet at home, she was totally relieved of her symptoms. Intestinal lymphangiectasia can be diagnosed with a double-balloon enteroscopy and multi-dot biopsy, as well as the pathology of small intestinal tissue showing edema of the submucosa and lymphangiectasia. Because intestinal lymphangiectasia can be primary or secondary, the diagnosis of primary intestinal lymphangiectasia must first exclude the possibility of secondary intestinal lymphangiectasia. A positive clinical response to the special diet therapy, namely a low-fat and medium-chain triglyceride diet, can further confirm the diagnosis of primary intestinal lymphangiectasia.

  19. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    PubMed Central

    Metzger, Rebecca N.; Krug, Anne B.; Eisenächer, Katharina

    2018-01-01

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis. PMID:29570694

  20. Rebamipide attenuates 5-Fluorouracil-induced small intestinal mucositis in a mouse model.

    PubMed

    Kim, Hyun Jin; Kim, Jin Hyun; Moon, Won; Park, Jongha; Park, Seun Ja; Song, Geun Am; Han, Seung Hee; Lee, Jong Hun

    2015-01-01

    5-Fluorouracil (5-FU)-induced intestinal mucositis is one of the most common morbidities in chemotherapy and involves the reactive oxygen species (ROS) system, apoptosis, and inflammatory cytokines. Rebamipide exerts a mucosal-protective effect, mediated through several mechanisms. The aim of this study was to evaluate the effects of rebamipide in 5-FU-induced mouse small-intestinal mucositis. BALB/c mice were assigned randomly to four groups; (1) control group (n=10; receiving saline orally for 6 d), (2) rebamipide group (n=10; 150 mg/kg rebamipide for 6 d orally), (3) 5-FU group (n=10; 30 mg/kg 5-FU for 5 d, intraperitoneally (i.p.)), and (4) rebamipide +5-FU group (n=10; 150 mg/kg rebamipide for 6 d orally and 30 mg/kg 5-FU for 5 d, i.p.). Body weights and diarrhea scales were assessed. At day 5, the mice were sacrificed. Small intestinal tissue was used for: (1) hematoxylin and eosin (HE) staining for determination of small intestinal villi height, (2) terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay, (3) immunohistochemistry for inducible nitric oxide synthase (iNOS), F4/80, and transforming growth factor (TGF)-β1, (4) measurement of serum and tissue GSH levels, and (5) measurement of serum tumor necrosis factor (TNF)-α levels. Rebamipide attenuated the severity of mucosal injury reflected by body weight changes, degrees of diarrhea, and heights of villi. Rebamipide reduced the expression of iNOS and TGF-β1, apoptosis, macrophage accumulation, serum TNF-α levels, and prevented reductions in serum and tissue glutathione (GSH) levels by 5-FU administration. These results suggest that rebamipide promotes several mechanisms of mucosal protection and attenuated the 5-FU-induced mucosal injury. In conclusion, administration of rebamipide may have significant protective effects against 5-FU-induced intestinal mucositis.

  1. Lack of anti-tumor activity with the β-catenin expression inhibitor EZN-3892 in the C57BL/6J Min/+ model of intestinal carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasson, Rian M.; Briggs, Alexandra; Rizvi, Hira

    2014-02-14

    Highlights: • Wnt/β-catenin signaling is aberrantly activated in most colorectal cancers. • Locked nucleic acid (LNA)-based antisense is a novel tool for cancer therapy. • β-Catenin inhibition was observed in mature intestinal tissue of LNA-treated mice. • Further investigation of Wnt/β-catenin targeted therapies is warranted. - Abstract: Background: Previously, we showed that short-term inhibition of β-catenin expression and reversal of aberrant β-catenin subcellular localization by the selective COX-2 inhibitor celecoxib is associated with adenoma regression in the C57BL/6J Min/+ mouse. Conversly, long-term administration resulted in tumor resistance, leading us to investigate alternative methods for selective β-catenin chemoprevention. In this study,more » we hypothesized that disruption of β-catenin expression by EZN-3892, a selective locked nucleic acid (LNA)-based β-catenin inhibitor, would counteract the tumorigenic effect of Apc loss in Min/+ adenomas while preserving normal intestinal function. Materials and methods: C57BL/6J Apc{sup +/+} wild-type (WT) and Min/+ mice were treated with the maximum tolerated dose (MTD) of EZN-3892 (30 mg/kg). Drug effect on tumor numbers, β-catenin protein expression, and nuclear β-catenin localization were determined. Results: Although the tumor phenotype and β-catenin nuclear localization in Min/+ mice did not change following drug administration, we observed a decrease in β-catenin expression levels in the mature intestinal tissue of treated Min/+ and WT mice, providing proof of principle regarding successful delivery of the LNA-based antisense vehicle. Higher doses of EZN-3892 resulted in fatal outcomes in Min/+ mice, likely due to β-catenin ablation in the intestinal tissue and loss of function. Conclusions: Our data support the critical role of Wnt/β-catenin signaling in maintaining intestinal homeostasis and highlight the challenges of effective drug delivery to target disease without permanent toxicity to normal cellular function.« less

  2. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    PubMed Central

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2018-01-01

    Epithelial surfaces line the body and provide a critical interface between the body and the external environment which is essential to maintaining the symbiotic relationship between the host and the microbiome. Tissue-resident epithelial γδ T cells represent a major T cell population in epithelia and are ideally positioned to perform barrier surveillance and aid in tissue homeostasis and repair. In this review we focus on the intraepithelial γδ compartment in the two largest epithelial tissues in the body, namely the epidermis and intestine, and provide a comprehensive overview of the crucial contributions of intraepithelial γδ cells at these sites to tissue integrity and repair, host homeostasis and host protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we address epithelia-specific butyrophilin-like molecules and touch upon their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires. PMID:28920588

  3. TFDP3 was expressed in coordination with E2F1 to inhibit E2F1-mediated apoptosis in prostate cancer.

    PubMed

    Ma, Yueyun; Xin, Yijuan; Li, Rui; Wang, Zhe; Yue, Qiaohong; Xiao, Fengjing; Hao, Xiaoke

    2014-03-10

    TFDP3 has been previously identified as an inhibitor of E2F molecules. It has been shown to suppress E2F1-induced apoptosis dependent P53 and to play a potential role in carcinogenesis. However, whether it indeed helps cancer cells tolerate apoptosis stress in cancer tissues remains unknown. TFDP3 expression was assessed by RT-PCR, in situ hybridization and immunohistochemistry in normal human tissues, cancer tissues and prostate cancer tissues. The association between TFDP3 and E2F1 in prostate cancer development was analyzed in various stages. Apoptosis was evaluated with annexin-V and propidium iodide staining and flow-cytometry. The results show that, in 96 samples of normal human tissues, TFDP3 could be detected in the cerebrum, esophagus, stomach, small intestine, bronchus, breast, ovary, uterus, and skin, but seldom in the lung, muscles, prostate, and liver. In addition, TFDP3 was highly expressed in numerous cancer tissues, such as brain-keratinous, lung squamous cell carcinoma, testicular seminoma, cervical carcinoma, skin squamous cell carcinoma, gastric adenocarcinoma, liver cancer, and prostate cancer. Moreover, TFDP3 was positive in 23 (62.2%) of 37 prostate cancer samples regardless of stage. Furthermore, immunohistochemistry results show that TFDP3 was always expressed in coordination with E2F1 at equivalent expression levels in prostate cancer tissues, and was highly expressed particularly in samples of high stage. When E2F1 was extrogenously expressed in LNCap cells, TFDP3 could be induced, and the apoptosis induced by E2F1 was significantly decreased. It was demonstrated that TFDP3 was a broadly expressed protein corresponding to E2F1 in human tissues, and suggested that TFDP3 is involved in prostate cancer cell survival by suppressing apoptosis induced by E2F1. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    PubMed

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  5. Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine

    PubMed Central

    Peyric, Elodie; Moore, Helen A.; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905

  6. A sutureless technique using cyanoacrylate adhesives when creating a stoma for extremely low birth weight infants.

    PubMed

    Nose, Satoko; Sasaki, Takashi; Saka, Ryuta; Minagawa, Kyoko; Okuyama, Hiroomi

    2016-01-01

    Intestinal perforation and necrotizing enterocolitis (NEC) are neonatal intestinal emergencies that are especially common in premature infants. While prompt surgical intervention, including stoma creation, is often required, the optimal surgical treatment has been controversial because of the substantial risks related to the stoma creation and management. The use of a tissue adhesive may have some advantages over the use of sutures when creating an intestinal stoma in extremely low birth weight (ELBW) infants. The purpose of this report was to present a novel approach for creating a stoma using a tissue adhesive in ELBW infants. A total of eight ELBW infants that underwent laparotomy with the creation of intestinal stomas using cyanoacrylate adhesive at our institution between 2009 and 2014 were enrolled. The clinical parameters, including the length of the operation, intra- and postoperative complications and the outcomes were evaluated. The median body weight and gestational age at birth were 630 g and 24.3 weeks, respectively. The median age at referral was 11.5 days. The median length of the procedure was 58.5 min, including the inspection and resection of the intestine. All procedures were completed without any intraoperative complications. There were no postoperative complications associated with the stoma. Two patients died of the associated septic status. Sutureless enterostomy using cyanoacrylate adhesive is a simple technique which has the potential to reduce the incidence of complications related to the intestinal stoma in ELBW infants.

  7. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster.

    PubMed

    Richter, Jonathan W; Shull, Gabriella M; Fountain, John H; Guo, Zhongyuan; Musselman, Laura P; Fiumera, Anthony C; Mahler, Gretchen J

    2018-06-01

    Nanosized titanium dioxide (TiO 2 ) is a common additive in food and cosmetic products. The goal of this study was to investigate if TiO 2 nanoparticles affect intestinal epithelial tissues, normal intestinal function, or metabolic homeostasis using in vitro and in vivo methods. An in vitro model of intestinal epithelial tissue was created by seeding co-cultures of Caco-2 and HT29-MTX cells on a Transwell permeable support. These experiments were repeated with monolayers that had been cultured with the beneficial commensal bacteria Lactobacillus rhamnosus GG (L. rhamnosus). Glucose uptake and transport in the presence of TiO 2 nanoparticles was assessed using fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). When the cell monolayers were exposed to physiologically relevant doses of TiO 2 , a statistically significant reduction in glucose transport was observed. These differences in glucose absorption were eliminated in the presence of beneficial bacteria. The decrease in glucose absorption was caused by damage to intestinal microvilli, which decreased the surface area available for absorption. Damage to microvilli was ameliorated in the presence of L. rhamnosus. Complimentary studies in Drosophila melanogaster showed that TiO 2 ingestion resulted in decreased body size and glucose content. The results suggest that TiO 2 nanoparticles alter glucose transport across the intestinal epithelium, and that TiO 2 nanoparticle ingestion may have physiological consequences.

  8. Characterization of the host response to the myxosporean parasite, Ceratomyxa shasta (Noble), by histology, scanning electron microscopy, and immunological techniques

    USGS Publications Warehouse

    Bartholomew, J.L.; Smith, C.E.; Rohovec, J.S.; Fryer, J.L.

    1989-01-01

    The tissue response of Salmo gairdneri Richardson, against the myxosporean parasite. Ceratomyxa shasta (Noble), was investigated using histological techniques, scanning electron microscopy and immunological methods. The progress of infection in C. shasta-susceptible and resistant steelhead and rainbow trout was examined by standard histological techniques and by indirect fluorescent antibody methods using monoclonal antibodies directed against C. shasta antigens. Trophozoite stages were first observed in the posterior intestine and there was indication that resistance was due to the inability of the parasite to penetrate this tissue rather than to an inflammatory response. Examination of a severely infected intestine by scanning electron microscopy showed extensive destruction of the mucosal folds of the posterior intestine. Western blotting and indirect fluorescent antibody techniques were used to investigate the immunological component of the host response. No antibodies specific for C. shasta were detected by either method.

  9. Comparison of Low-Molecular-Weight Heparins Prepared From Bovine Heparins With Enoxaparin.

    PubMed

    Liu, Xinyue; St Ange, Kalib; Fareed, Jawed; Hoppensteadt, Debra; Jeske, Walter; Kouta, Ahmed; Chi, Lianli; Jin, Caijuan; Jin, Yongsheng; Yao, Yiming; Linhardt, Robert J

    2017-09-01

    Heparin and its low-molecular-weight heparin (LMWH) derivatives are widely used clinical anticoagulants. These drugs are critical for the practice of medicine in applications including kidney dialysis, cardiopulmonary bypass, and in the management of venous thromboembolism. Currently, these drugs are derived from livestock, primarily porcine intestine. The worldwide dependence on a single animal species has made the supply chain for this critical drug quite fragile, leading to the search for other sources of these drugs, including bovine tissues such as bovine intestine or lung. A number of laboratories are currently examining the similarities and differences between heparins prepared from porcine and bovine tissues. The current study is designed to compare LMWH prepared from bovine heparins through chemical β-elimination, a process currently used to prepare the LMWH, enoxaparin, from porcine heparin. Using top-down, bottom-up, compositional analysis and bioassays, LMWHs, derived from bovine lung and intestine, are shown to closely resemble enoxaparin.

  10. Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system.

    PubMed

    Pron, B; Boumaila, C; Jaubert, F; Sarnacki, S; Monnet, J P; Berche, P; Gaillard, J L

    1998-02-01

    The intestinal stage of listeriosis was studied in a rat ligated ileal loop system. Listeria monocytogenes translocated to deep organs with similar efficiencies after inoculation of loops with or without Peyer's patches. Bacterial seeding of deep organs was demonstrated as early as 15 min after inoculation. It was dose dependent and nonspecific, as the delta inlAB, the delta hly, and the delta actA L. monocytogenes mutants and the nonpathogenic species, Listeria innocua, translocated similarly to wild-type L. monocytogenes strains. The levels of uptake of listeriae by Peyer's patches and villous intestine were similar and low, 50 to 250 CFU per cm2 of tissue. No listeria cells crossing the epithelial sheet of Peyer's patches and villous intestine were observed by transmission electron microscopy. The lack of significant interaction of listeriae and the follicle-associated epithelium of Peyer's patches was confirmed by scanning electron microscopy. The follicular tissue of Peyer's patches was a preferential site of Listeria replication. With all doses tested, the rate of bacterial growth was 10 to 20 times higher in Peyer's patches than in villous intestine. At early stages of Peyer's patch infection, listeriae were observed inside mononuclear cells of the dome area. Listeriae then disseminated throughout the follicular tissue except for the germinal center. The virulence determinants hly and, to a lesser extent, actA, but not inlAB, were required for the completion of this process. This study suggests that Peyer's patches are preferential sites for replication rather than for entry of L. monocytogenes, due to the presence of highly permissive mononuclear cells whose nature remains to be defined.

  11. Comprehensive Study of the Intestinal Stage of Listeriosis in a Rat Ligated Ileal Loop System

    PubMed Central

    Pron, Benedicte; Boumaila, Claire; Jaubert, Francis; Sarnacki, Sabine; Monnet, Jean-Paul; Berche, Patrick; Gaillard, Jean-Louis

    1998-01-01

    The intestinal stage of listeriosis was studied in a rat ligated ileal loop system. Listeria monocytogenes translocated to deep organs with similar efficiencies after inoculation of loops with or without Peyer’s patches. Bacterial seeding of deep organs was demonstrated as early as 15 min after inoculation. It was dose dependent and nonspecific, as the ΔinlAB, the Δhly, and the ΔactA L. monocytogenes mutants and the nonpathogenic species, Listeria innocua, translocated similarly to wild-type L. monocytogenes strains. The levels of uptake of listeriae by Peyer’s patches and villous intestine were similar and low, 50 to 250 CFU per cm2 of tissue. No listeria cells crossing the epithelial sheet of Peyer’s patches and villous intestine were observed by transmission electron microscopy. The lack of significant interaction of listeriae and the follicle-associated epithelium of Peyer’s patches was confirmed by scanning electron microscopy. The follicular tissue of Peyer’s patches was a preferential site of Listeria replication. With all doses tested, the rate of bacterial growth was 10 to 20 times higher in Peyer’s patches than in villous intestine. At early stages of Peyer’s patch infection, listeriae were observed inside mononuclear cells of the dome area. Listeriae then disseminated throughout the follicular tissue except for the germinal center. The virulence determinants hly and, to a lesser extent, actA, but not inlAB, were required for the completion of this process. This study suggests that Peyer’s patches are preferential sites for replication rather than for entry of L. monocytogenes, due to the presence of highly permissive mononuclear cells whose nature remains to be defined. PMID:9453636

  12. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    PubMed

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  13. Effect of lidocaine on inflammation in equine jejunum subjected to manipulation only and remote to intestinal segments subjected to ischemia.

    PubMed

    Bauck, Anje G; Grosche, Astrid; Morton, Alison J; Graham, A Sarah; Vickroy, Thomas W; Freeman, David E

    2017-08-01

    OBJECTIVE To examine effects of continuous rate infusion of lidocaine on transmural neutrophil infiltration in equine intestine subjected to manipulation only and remote to ischemic intestine. ANIMALS 14 healthy horses. PROCEDURES Ventral midline celiotomy was performed (time 0). Mild ischemia was induced in segments of jejunum and large colon. A 1-m segment of jejunum was manipulated by massaging the jejunal wall 10 times. Horses received lidocaine (n = 7) or saline (0.9% NaCl) solution (7) throughout anesthesia. Biopsy specimens were collected and used to assess tissue injury, neutrophil influx, cyclooxygenase expression, and hypoxia-inducible factor 1α (HIF-1α) expression at 0, 1, and 4 hours after manipulation and ischemia. Transepithelial resistance (TER) and mannitol flux were measured by use of Ussing chambers. RESULTS Lidocaine did not consistently decrease neutrophil infiltration in ischemic, manipulated, or control tissues at 4 hours. Lidocaine significantly reduced circular muscle and overall scores for cyclooxygenase-2 expression in manipulated tissues. Manipulated tissues had significantly less HIF-1α expression at 4 hours than did control tissues. Mucosa from manipulated and control segments obtained at 4 hours had lower TER and greater mannitol flux than did control tissues at 0 hours. Lidocaine did not significantly decrease calprotectin expression. Severity of neutrophil infiltration was similar in control, ischemic, and manipulated tissues at 4 hours. CONCLUSIONS AND CLINICAL RELEVANCE Manipulated jejunum did not have a significantly greater increase in neutrophil infiltration, compared with 4-hour control (nonmanipulated) jejunum remote to sites of manipulation, ischemia, and reperfusion. Lidocaine did not consistently reduce neutrophil infiltration in jejunum.

  14. Postconditioning: "Toll-erating" mesenteric ischemia-reperfusion injury?

    PubMed

    Rosero, Olivér; Ónody, Péter; Kovács, Tibor; Molnár, Dávid; Fülöp, András; Lotz, Gábor; Harsányi, László; Szijártó, Attila

    2017-04-01

    Postconditioning may prove to be a suitable method to decrease ischemia-reperfusion injury of intestine after mesenteric arterial occlusion. Toll-like-receptor-4 is involved in the pathophysiology of organ damage after ischemia-reperfusion; therefore, the aim of our study was to investigate the effect of postconditioning on the mucosal expression of toll-like-receptor-4. Male Wistar rats (n = 10/group) underwent 60 minutes of superior mesenteric artery occlusion followed by 6 hours of reperfusion in 3 groups: sham-operated, ischemia-reperfusion, and a postconditioned group. Postconditioning was performed by 6 alternating cycles of 10 seconds of reperfusion/reocclusion. Blood and tissue samples were collected at the end of reperfusion. Intestinal histopathologic changes and immunohistochemical expression of mucosal caspase-3, antioxidant status, and protein levels of high-mobility group box-1 and toll-like-receptor-4 were assessed. Immunofluorescent labeling and confocal microscopic analysis of toll-like-receptor-4 were performed. Mucosal and serum levels of interleukin-6 and tumor necrosis factor-α protein were measured. Histologic alterations in the postconditioned group were associated with decreased caspase-3 positivity, less toll-like-receptor-4 mRNA, and less protein expression of high-mobility group box-1 and toll-like-receptor-4 in the intestinal villi compared with the ischemia-reperfusion group. Furthermore, a significantly improved antioxidant state of the intestinal mucosa and less mucosal and serum protein levels of interleukin-6 and tumor necrosis factor-α were detected in the postconditioned group. Small intestinal ischemia-reperfusion injury in male Wistar rats caused by the occlusion of the superior mesenteric artery was ameliorated by the use of postconditioning, showing a more favorable inflammatory response, which may be attributed to the decreased mucosal expression of toll-like-receptor-4. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8.

    PubMed

    Mishiro, Tsuyoshi; Kusunoki, Ryusaku; Otani, Aya; Ansary, Md Mesbah Uddin; Tongu, Miki; Harashima, Nanae; Yamada, Takaya; Sato, Shuichi; Amano, Yuji; Itoh, Kazuhito; Ishihara, Shunji; Kinoshita, Yoshikazu

    2013-07-01

    Butyric acid, a short-chain fatty acid and one of the main metabolites of intestinal microbial fermentation of dietary fiber, has been shown to have an important role in maintaining the integrity of the intestinal mucosa, while it also has been shown to exert potent anti-inflammatory effects both in vitro and in vivo. However, the precise mechanisms underlying those effects have not been fully identified. We exposed colonic epithelial cells to butyric acid, then extracted total RNA samples, and subsequently hybridized them to microarray chips. Among the upregulated genes, milk fat globule-epidermal growth factor 8 (MFG-E8) was elevated by approximately fivefold. We previously reported that the potential therapeutic benefits of MFG-E8 in intestinal tissue injury were dependent not only on enhanced clearance of apoptotic cells but also required diverse cellular events for maintaining epithelial integrity. The influence of butyric acid on cell function is often attributed to its inhibition of histone deacetylases (HDACs). We found that acetylation on histone 3 lysine 9 (acetyl-H3K9) around the MFG-E8 promoter was significantly increased with butyric acid exposure. Experimental colitis was induced by administration of dextran sodium sulfate (DSS) in C57BL/6N (MFG-E8+/+) and MFG-E8-/- mice. Although the colonic bacterial compositions in wild-type (WT) and MFG-E8-/- mice were not significantly different, intrarectal administration of butyric acid during an acute phase of colitis attenuated intestinal inflammatory parameters and inhibited body weight loss in the WT mice. Our novel findings suggest that butyric acid has significant anti-inflammatory effects partly via MFG-E8 on DSS-induced murine experimental colitis.

  16. Expression of nestin in embryonic tissues and its effects on clinicopathological characteristics of patients with placenta previa.

    PubMed

    Qiao, Yan-Yan; Chu, Ping

    2018-02-01

    In this study, we examined expression of nestin in the spinal cord, lung, kidney, stomach, colon, and intestine tissues at different stages of embryos in patients with placenta previa. Fetuses of 75 patients with placenta previa were assigned to case group and 80 fetuses from healthy pregnant women with normal placenta who voluntarily terminated pregnancy to control group. Clinical data of pregnant women were collected at the time of admission. Blood from elbow vein was collected to determine expression of serum nestin. Tissues from spinal cord, lung, kidney, stomach, colon, and intestine in 3-7 months fetuses of the two groups were extracted. Expression of nestin in tissues was detected by immunohistochemistry, Western blotting and RT-qPCR. The mRNA expression of nestin in the case group was increased. Nestin expression was correlated with the gestational age, age of foetus, and type of placenta previa in patients with placenta previa. Positive nestin expression was detected in the spinal cord, lung, kidney, stomach, intestine, and colon tissues in normal and placenta previa embryo at Stage I. The positive cell density and nestin expression decreased at Stage II, and further decreased at Stage III. The case group had higher nestin mRNA and protein levels throughout human fetal development. Findings of this study suggested that, nestin, as a specific marker of neural precursor cells, was expressed in various tissues of the embryo in patients with placenta previa and nestin expression was lower with increased maturation of the embryo. © 2017 Wiley Periodicals, Inc.

  17. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    PubMed

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  18. Constant replenishment from circulating monocytes maintains the macrophage pool in adult intestine

    PubMed Central

    Scott, Charlotte L.; Perdiguero, Elisa Gomez; Geissmann, Frederic; Henri, Sandrine; Malissen, Bernard; Osborne, Lisa C.; Artis, David; Mowat, Allan McI.

    2014-01-01

    The paradigm that resident macrophages in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate mapping models and monocytopenic mice, together with bone marrow chimeric and parabiotic models, we show that embryonic precursors seeded the intestinal mucosa and demonstrated extensive in situ proliferation in the neonatal period. However these cells did not persist in adult intestine. Instead, they were replaced around the time of weaning by the CCR2-dependent influx of Ly6Chi monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool. PMID:25151491

  19. Proteomic identification of processes and pathways characteristic of osmoregulatory tissues in spiny dogfish shark (Squalus acanthias).

    PubMed

    Lee, Jinoo; Valkova, Nelly; White, Mark P; Kültz, Dietmar

    2006-09-01

    We used dogfish shark (Squalus acanthias) as a model for proteome analysis of six different tissues to evaluate tissue-specific protein expression on a global scale and to deduce specific functions and the relatedness of multiple tissues from their proteomes. Proteomes of heart, brain, kidney, intestine, gill, and rectal gland were separated by two-dimensional gel electrophoresis (2DGE), gel images were matched using Delta 2D software and then evaluated for tissue-specific proteins. Sixty-one proteins (4%) were found to be in only a single type of tissue and 535 proteins (36%) were equally abundant in all six tissues. Relatedness between tissues was assessed based on tissue-specific expression patterns of all 1465 consistently resolved protein spots. This analysis revealed that tissues with osmoregulatory function (kidney, intestine, gill, rectal gland) were more similar in their overall proteomes than non-osmoregulatory tissues (heart, brain). Sixty-one proteins were identified by MALDI-TOF/TOF mass spectrometry and biological functions characteristic of osmoregulatory tissues were derived from gene ontology and molecular pathway analysis. Our data demonstrate that the molecular machinery for energy and urea metabolism and the Rho-GTPase/cytoskeleton pathway are enriched in osmoregulatory tissues of sharks. Our work provides a strong rationale for further study of the contribution of these mechanisms to the osmoregulation of marine sharks.

  20. Enterocyte fatty acid-binding proteins (FABPs): different functions of liver and intestinal FABPs in the intestine.

    PubMed

    Gajda, Angela M; Storch, Judith

    2015-02-01

    Fatty acid-binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both liver- (LFABP; FABP1) and intestinal FABPs (IFABP; FABP2) are expressed. These proteins display high-affinity binding for long-chain fatty acids (FA) and other hydrophobic ligands; thus, they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand-binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have different functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Ectopic Enterobius vermicularis

    PubMed Central

    McDonald, G. S. A.; Hourihane, D. O'B.

    1972-01-01

    Enterobius vermicularis (the pinworm) commonly infests the lumen of the intestine but on rare occasions has been found in the wall or in the tissues outside the gastrointestinal tract. Three such patients have been encountered in whom Enterobius vermicularis was found in the wall of the colon, in the retrocaecal tissues, and on the peritoneum. The pathological lesions and their relationship to the clinical features are discussed. A brief review of the literature is given. It is concluded that Enterobius vermicularis can only penetrate the wall of the gastrointestinal tract if this is diseased. Once in the tissues the worms can cause an inflammatory reaction simulating carcinoma and Crohn's disease, and, by perforation of the intestine, cause a generalized peritonitis. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:5077172

  2. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development. Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science return. Livers and spleens from mice were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection procedures including storage at minus 80 degrees Centigrade for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RNA Integrity Number (RIN) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNA, later) and liver (fast-freezing) at various time points post-euthanasia (from 5 minutes up to 105 minutes). The RNA recovered was of high quality (spleen, RIN greater than 8; liver, RIN greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at 105 minutes. Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The protocols developed for future flight experiments will support science return despite delayed preservation post-euthanasia or prolonged storage, and 2) High-quality RNA samples from many different tissues can be recovered by dissection following prolonged storage of the tissue in situ at minus 80 degrees Centigrade. These findings have relevance both to high-value, ground-based experiments when sample collection capability is severely constrained, and to future spaceflight experiments that entail on-orbit sample recovery by the ISS crew.

  3. Accessory cells in physiological lymphoid tissue from the intestine: an immunohistochemical study.

    PubMed

    Sarsfield, P; Rinne, A; Jones, D B; Johnson, P; Wright, D H

    1996-03-01

    We report a study of the organization of accessory cell populations, in normal mucosal lymphoid tissue from small intestine (8 cases), large intestine (6) and appendix (9) using a panel of monoclonal antibodies and polyclonal antisera in paraffin-embedded tissue. Two populations were identified in dome areas, one positive for acid cysteine proteinase inhibitor and HLA class II (WR18) only and the second positive for S-100 protein, CD68, and WR18 and negative for acid cysteine proteinase inhibitor and factor XIIIa. Superficial colonic mucosal and small intestinal villous tip macrophages stained positively with CD68 and WR18 only, while deeper cryptal and submucosal populations exhibited additional positivity for factor XIIIa, but both populations were negative for acid cysteine proteinase inhibitor and S-100 protein. Germinal centre macrophages were positive for CD68, WR18 and acid cysteine proteinase inhibitor and negative for factor XIIIa, and S-100 protein. T zone dendritic cells included a population which stained positively for S-100 protien, WR18 and were negative for factor XIIIa, CD68 and acid cysteine proteinase inhibitor, an immunophenotype typical of interdigitating dendritic reticulum cells. This distribution of phenotypically identifiable accessory cell subpopulations was apparent at all three sites examined. We suggest that the specialized subpopulations of dendritic cells staining for S-100 protein and for acid cysteine proteinase inhibitor which are restricted to the dome areas, may have a potential role in the transfer of antigen across the epithelium to the germinal centres, while factor XIIIa appears to identify a tissue macrophage population with a potential role in stromal modulation distant from direct antigen challenge.

  4. Tissue underlying the intestinal epithelium elicits proliferation of intestinal stem cells following cytotoxic damage

    PubMed Central

    Seiler, Kristen M; Schenhals, Erica L; von Furstenberg, Richard J; Allena, Bhavya K; Smith, Brian J; Scaria, Denny; Bresler, Michele N; Dekaney, Christopher M; Henning, Susan J

    2015-01-01

    The goals of this study were to document the proliferative response of intestinal stem cells (ISCs) during regeneration after damage from doxorubicin (DXR) and to characterize the signals responsible for ISC activation. To this end, jejuni from DXR-treated mice were harvested for histology, assessment of ISC numbers and proliferation by flow cytometry, crypt culture, and RNA analyses. Histology showed that crypt depth and width were increased 4 days after DXR. At this time point, flow cytometry on tissue collected 1 hour after EdU administration revealed increased numbers of CD24loUEA− ISCs and increased percentage of ISCs cycling. In culture, crypts harvested from DXR-treated mice were equally proliferative as those of control mice. Addition of subepithelial intestinal tissue (SET) collected 4 days after DXR elicited increased budding (1.4 ± 0.3 vs. 5.1 ± 1.0 buds per enteroid). Microarray analysis of SET collected 4 days after DXR revealed 1,030 differentially expressed transcripts. Cross comparison of Gene Ontology terms considered relevant to ISC activation pointed to 10 candidate genes. Of these the epidermal growth factor (EGF) family member amphiregulin and the BMP antagonist chordin-like 2 were chosen for further study. In crypt culture, amphiregulin alone did not elicit significant budding, but amphiregulin in combination with BMP antagonism showed marked synergism (yielding 6.3 ± 0.5 buds per enteroid). These data suggest a critical role for underlying tissue in regulating ISC behavior after damage, and point to synergism between amphiregulin and chordin-like 2 as factors which may account for activation of ISCs in the regenerative phase. PMID:25693894

  5. Oxygen sensing in intestinal mucosal inflammation.

    PubMed

    Flück, Katharina; Fandrey, Joachim

    2016-01-01

    Hypoxia is a hallmark of chronically inflamed tissue. Hypoxia develops from vascular dysfunction and increased oxygen consumption by infiltrating leukocytes. With respect to inflammatory bowel disease (IBD), hypoxia is likely to be of particular importance: Impairment of the intestinal barrier during IBD allows anoxia from the lumen of the gut to spread to formerly normoxic tissue. In addition, disturbed perfusion of inflamed tissue and a higher oxygen demand of infiltrating immune cells lead to low oxygen levels in inflamed mucosal tissue. Here, cells become hypoxic and must now adapt to this condition. The hypoxia inducible factor (HIF)-1 complex is a key transcription factor for cellular adaption to low oxygen tension. HIF-1 is a heterodimer formed by two subunits: HIF-α (either HIF-1α or HIF-2α) and HIF-1β. Under normoxic conditions, hydroxylation of the HIF-α subunit by specific oxygen-dependent prolyl hydroxylases (PHDs) leads to ubiquitin proteasome-dependent degradation. Under hypoxic conditions, however, PHD activity is inhibited; thus, HIF-α can translocate into the nucleus, dimerize with HIF-1β, and bind to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in intestinal epithelial cells and the effect of HIF stabilization by PHD inhibitors in murine models of colitis. Furthermore, the role of HIF-1α in immune cells becomes more and more important as T cells or dendritic cells for which HIF-1 is of critical importance are highly involved in the pathogenesis of IBD. This review will summarize the function of HIF-1α and the therapeutic prospects for targeting the HIF pathway in intestinal mucosal inflammation.

  6. Genotyping and pathobiologic characterization of canine parvovirus circulating in Nanjing, China

    PubMed Central

    2013-01-01

    Background Canine parvovirus (CPV) is an important pathogen that causes acute enteric disease in dogs. It has mutated and spread throughout the world in dog populations. We provide an update on the molecular characterization of CPV that circulated in Nanjing, a provincial capital in China between 2009 and 2012. Results Seventy rectal swab samples were collected from the dogs diagnosed with CPV infection in 8 animal hospitals of Nanjing. Sequence analysis of VP2 genes of 31 samples revealed that 29 viral strains belonged to CPV-2a subtype, while other two strains were classified into CPV-2b. To investigate the pathogenicity of the prevalent virus, we isolated CPV-2a and performed the animal experiment. Nine beagles were inoculated with 105.86 of 50% tissue culture infectious doses (TCID50) of the virus. All the experimentally infected beagles exhibited mild to moderate mucoid or watery diarrhea on day 4 post-infection (p.i.). On day 9 p.i., characteristic histopathological lesions were clearly observed in multiple organs of infected dogs, including liver, spleen, kidney, brain and all segments of the small and large intestines, while viral DNA and antigen staining could be detected in the sampled tissues. It is notable that canine parvovirus was isolated in one from two brain samples processed. Conclusion Our results indicated that CPV-2a is the predominant subtype in Nanjing of China. And this virus caused extensive lesions in a variety of tissues, including the brain. PMID:23988202

  7. Genotyping and pathobiologic characterization of canine parvovirus circulating in Nanjing, China.

    PubMed

    Zhao, Yanbing; Lin, Yan; Zeng, Xujian; Lu, Chengping; Hou, Jiafa

    2013-08-29

    Canine parvovirus (CPV) is an important pathogen that causes acute enteric disease in dogs. It has mutated and spread throughout the world in dog populations. We provide an update on the molecular characterization of CPV that circulated in Nanjing, a provincial capital in China between 2009 and 2012. Seventy rectal swab samples were collected from the dogs diagnosed with CPV infection in 8 animal hospitals of Nanjing. Sequence analysis of VP2 genes of 31 samples revealed that 29 viral strains belonged to CPV-2a subtype, while other two strains were classified into CPV-2b. To investigate the pathogenicity of the prevalent virus, we isolated CPV-2a and performed the animal experiment. Nine beagles were inoculated with 105.86 of 50% tissue culture infectious doses (TCID50) of the virus. All the experimentally infected beagles exhibited mild to moderate mucoid or watery diarrhea on day 4 post-infection (p.i.). On day 9 p.i., characteristic histopathological lesions were clearly observed in multiple organs of infected dogs, including liver, spleen, kidney, brain and all segments of the small and large intestines, while viral DNA and antigen staining could be detected in the sampled tissues. It is notable that canine parvovirus was isolated in one from two brain samples processed. Our results indicated that CPV-2a is the predominant subtype in Nanjing of China. And this virus caused extensive lesions in a variety of tissues, including the brain.

  8. Late effects of intraoperative radiation therapy on retroperitoneal tissues, intestine, and bile duct in a large animal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelar, W.F.; Tepper, J.E.; Kinslla, T.J.

    1994-07-01

    The late histopathological effects of intraoperative radiotherapy (IORT) on retroperitoneal tissues, intestine, and bile duct were investigated in dogs. Fourteen adult foxhounds were subjected to laparotomy and varying doses (0-45 Gy) of IORT (11 MeV electrons) delivered to retroperitoneal tissues including the great vessels and ureters, to a loop of defunctionalized small bowel, or to the extrahepatic bile duct. One control animal received an aortic transection and reanastomosis at the time of laparotomy; another control received laparotomy alone. This paper describes the late effects of single-fraction IORT occurring 3-5 years following treatment. Dogs receiving IORT to the retroperitoneum through amore » 4 X 15 cm portal showed few gross or histologic abnormalities at 20 Gy. At doses ranging from 30-45 Gy, radiation changes in normal tissues were consistently observed. Retroperitoneal fibrosis with encasement of the ureters and great vessels developed at doses {ge}30 Gy. Radiation changes were present in the aorta and vena cava at doses {ge}40 Gy. A 30 Gy dog developed an in-field malignant osteosarcoma at 3 years which invaded the vertebral column and compressed the spinal cord. A 40 Gy animal developed obstruction of the right ureter with fatal septic hydronephrosis at 4 years. Animals receiving IORT through a 5 cm IORT portal to an upper abdominal field which included a defunctionalized loop of small bowel, showed few gross or histologic abnormalities at a dose of 20 Gy. At 30 Gy, hyaline degeneration of the intestinal muscularis layer of the bowel occurred. At a dose of 45 Gy, internal intestinal fistulae developed. One 30 Gy animal developed right ureteral obstruction and hydronephrosis at 5 years. A dog receiving 30 Gy IORT through a 5 cm portal to the extrahepatic bile duct showed diffuse fibrosis through the gastroduodenal ligament. These canine studies contribute to the area of late tissue tolerance to IORT. 7 refs., 3 figs., 5 tabs.« less

  9. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  10. Copper Bioaccumulation and Depuration in Common Carp (Cyprinus carpio) Following Co-exposure to TiO2 and CuO Nanoparticles.

    PubMed

    Mansouri, Borhan; Maleki, Afshin; Johari, Seyed Ali; Shahmoradi, Behzad; Mohammadi, Ebrahim; Shahsavari, Siros; Davari, Behroz

    2016-11-01

    Metal oxide nanoparticles (NPs), such as TiO 2 and CuO, are widely applied in an increasing number of products and applications, and therefore their release to the aquatic ecosystems is unavoidable. However, little is known about joint toxicity of different NPs on tissues of aquatic organisms, such as fish. This study was conducted to assess the uptake and depuration of Cu following exposure to CuO NPs in the presence of TiO 2 NPs in the liver, intestine, muscle, and gill of common carp, Cyprinus carpio. Carps with a mean total length of 23 ± 1.5 cm and mean weight of 13 ± 1.3 g were divided into 6 groups of 15 each (1 control group) and exposed to TiO 2 NPs, CuO NPs, and a mixture of TiO 2 and CuO NPs for periods of 20 days for uptake and 10 days for depuration. The determination of total Cu concentration was carried out by an ICP-OES. The order of Cu uptake in different tissues of the carps was liver > gill > muscle > intestine in both levels of CuO NPs alone; results showed that the total Cu concentrations in the presence of TiO 2 nanoparticles were increased and were in the sequence of liver > gill > intestine > muscle. In depuration period, Cu concentrations were decreased in all treatments in the sequence of gill > intestine > muscle > liver. Uptake of Cu in different tissues of common carp increased with increasing concentration and time and was tissues- and time-dependent. In conclusion, this study suggested that the uptake of Cu in the tissues of common carp increased in the joint presence of TiO 2 NPs.

  11. Effect of L-cysteine on remote organ injury in rats with severe acute pancreatitis induced by bile-pancreatic duct obstruction.

    PubMed

    Yang, Li-Juan; Wan, Rong; Shen, Jia-Qing; Shen, Jie; Wang, Xing-Peng

    2013-08-01

    Remote organ failure occurs in cases of acute pancreatitis (AP); however, the reports on AP induced by pancreatic duct obstruction are rare. In this study we determined the effect of L-cysteine on pancreaticobiliary inflammation and remote organ damage in rats after pancreaticobiliary duct ligation (PBDL). AP was induced by PBDL in rats with 5/0 silk. Sixty rats were randomly divided into 4 groups. Groups A and B were sham-operated groups that received injections of saline or L-cysteine (10 mg/kg) intraperitoneally (15 rats in each group). Groups C and D were PBDL groups that received injections of saline or L-cysteine (10 mg/kg) intraperitoneally (15 rats in each group). The tissue samples of the pancreas and remote organs such as the lung, liver, intestine and kidney were subsequently examined for pathological changes under a light microscope. The samples were also stored for the determination of malondialdehyde and glutathione levels. Blood urea nitrogen (BUN), plasma amylase, ALT and AST levels were determined spectrophotometrically using an automated analyzer. Also, we evaluated the effect of L-cysteine on remote organ injury in rats with AP induced by retrograde infusion of 3.5% sodium taurocholate (NaTc) into the bile-pancreatic duct. Varying degrees of injury in the pancreas, lung, liver, intestine and kidney were observed in the rats 24 hours after PBDL. The severity of injury to the lung, liver and intestine was attenuated, while injury status was not changed significantly in the pancreas and kidney after L-cysteine treatment. Oxidative stress was also affected by L-cysteine in PBDL-treated rats. The concentration of tissue malondialdehyde decreased in the pancreas and remote organs of PBDL and L-cysteine administrated rats, and the concentration of glutathione increased more significantly than that of the model control group. However, L-cysteine administration reduced the severity of injury in remote organs but not in the pancreas in rats with NaTc-induced AP. L-cysteine treatment attenuated multiple organ damage at an early stage of AP in rats and modulated the oxidant/antioxidant imbalance.

  12. [Morphological changes of the intestine in experimental acute intestinal infection in the treatment of colloidal silver].

    PubMed

    Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N

    2012-06-01

    At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.

  13. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice.

    PubMed

    Bagarolli, Renata A; Tobar, Natália; Oliveira, Alexandre G; Araújo, Tiago G; Carvalho, Bruno M; Rocha, Guilherme Z; Vecina, Juliana F; Calisto, Kelly; Guadagnini, Dioze; Prada, Patrícia O; Santos, Andrey; Saad, Sara T O; Saad, Mario J A

    2017-12-01

    Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Alterations of telomerase activity and terminal restriction fragment in gastric cancer and its premalignant lesions.

    PubMed

    Yang, S M; Fang, D C; Luo, Y H; Lu, R; Battle, P D; Liu, W W

    2001-08-01

    In order to explore the role of alterations of telomerase activity and terminal restriction fragment (TRF) length in the development and progression of gastric cancer. Telomerase activity was detected in 176 specimens of gastric mucosa obtained through an operation or endoscopical biopsy by using the telomeric repeat amplification protocol (TRAP) assay. Meanwhile, the mean length of TRF was measured with the use of a Southern blot in part of those samples. Telomerase activity was detected in 14 of 57 (24.6%) chronic atrophy gastritis patients, six of 18 (33.3%) intestinal metaplasia patients, three of eight (37.5%) dysplasia patients and 60 of 65 (92.3%) gastric cancer patients, respectively. Normal gastric mucosa revealed no telomerase activity. No association was found between telomerase activity and any clinicopathological parameters. The mean TRF length was decreased gradually with age in normal mucosa and in gastric cancer tissue. Regression analysis demonstrated that the reduction rate in these tissues was 41 +/- 12 base pairs/year. Among 35 gastric cancers, TRF length was shown to be shorter in 20 cases (57.1%), similar in 12 cases (34.3%) and elongated in three cases (7.6%), compared to the corresponding adjacent tissues. The mean TRF length tended to decrease as the mucosa underwent chronic atrophy gastritis, intestinal metaplasia, dysplasia and into gastric cancer. The mean TRF length in gastric cancer was not statistically correlated with clinicopathological parameters and telomerase activity. Our results suggest that telomerase is expressed during the early stage of gastric carcinogenesis, and that the clinical significance of TRF length appears to be limited in gastric cancer.

  15. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling.

    PubMed

    Li, Yanli; Xu, Bin; Xu, Ming; Chen, Dapeng; Xiong, Yongjian; Lian, Mengqiao; Sun, Yuchao; Tang, Zeyao; Wang, Li; Jiang, Chunling; Lin, Yuan

    2017-05-01

    Intestinal ischemia reperfusion (I/R) injury caused by severe trauma, intestinal obstruction, and operation is one of the tough challenges in clinic. 6-Gingerol (6G), a main active ingredient of ginger, is found to have anti-microbial, anti-inflammatory, anti-oxidative, and anti-cancer activities. The present study was designed to characterize the potential protective effects of 6G on rat intestinal I/R injury and reveal the correlated mechanisms. Rat intestinal I/R model was established with clamping the superior mesenteric artery (SMA) and 6G was intragastrically administered for three consecutive days before I/R injury. Caco-2 and IEC-6 cells were incubated under hypoxia/reoxygenation (H/R) conditions to simulate I/R injury in vitro. The results showed that 6G significantly alleviated intestinal injury in I/R injured rats by reducing the generation of oxidative stress and inhibiting p38 MAPK signaling pathway. 6G significantly reduced MDA level and increased the levels of SOD, GSH, and GSH-Px in I/R injured intestinal tissues. 6G significantly decreased the production of proinflammatory cytokines including TNF-α, IL-1β, and IL-6, and inhibited the expression of inflammatory mediators iNOS/NO in I/R injured intestinal tissues. The impaired intestinal barrier function was restored by using 6G in I/R injured rats and in both Caco-2 and IEC-6 cells characterized by inhibiting p38 MAPK phosphorylation, nuclear translocation of NF-κB, and expression of myosin light chain kinase (MLCK) protein. 6G also reduced the generation of reactive oxygen species (ROS) in both Caco-2 and IEC-6 cells. In vitro transfection of p38 MAPK siRNA mitigated the impact of 6G on NF-κB and MLCK expression, and the results further corroborated the protective effects of 6G on intestinal I/R injury by repressing p38 MAPK signaling. In conclusion, the present study suggests that 6G exerts protective effects against I/R-induced intestinal mucosa injury by inhibiting the formation of ROS and p38 MAPK activation, providing novel insights into the mechanisms of this therapeutic candidate for the treatment of intestinal injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of Intestinal Tapeworm Clestobothrium crassiceps on Concentrations of Toxic Elements and Selenium in European Hake Merluccius merluccius from the Gulf of Lion (Northwestern Mediterranean Sea).

    PubMed

    Torres, Jordi; Eira, Catarina; Miquel, Jordi; Ferrer-Maza, Dolors; Delgado, Eulàlia; Casadevall, Margarida

    2015-10-28

    The capacity for heavy metal bioaccumulation by some fish parasites has been demonstrated, and their contribution to decreasing metal concentrations in tissues of parasitized fish has been hypothesized. The present study evaluated the effect of the cestode Clestobothrium crassiceps on the accumulation of trace elements in 30 European hake, Merluccius merluccius, in Spain (half of them infested by C. crassiceps). Tissue samples from all M. merluccius and specimens of C. crassiceps from the infected hakes were collected and stored until element analysis by inductively coupled plasma mass spectrometry (ICP-MS). Arsenic, mercury, and selenium were generally present in lower levels in the cestode than in all hake tissues. The mean value of the muscular Se:Hg molar ratio in the infested subsample was higher than that in hakes without cestodes. Values indicate that the edible part of infested hakes presents a lower amount of Cd and Pb in relation to noninfested hakes.

  17. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    PubMed Central

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs. PMID:28408906

  18. Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis--relationship with tissue anthocyanin levels.

    PubMed

    Cooke, Darren; Schwarz, Michael; Boocock, David; Winterhalter, Peter; Steward, William P; Gescher, Andreas J; Marczylo, Timothy H

    2006-11-01

    Anthocyanins are dietary flavonoids, which can prevent carcinogen-induced colorectal cancer in rats. Here, the hypotheses were tested that Mirtoselect, an anthocyanin mixture from bilberry, or isolated cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, interfere with intestinal adenoma formation in the Apc(Min) mouse, a genetic model of human familial adenomatous polyposis, and that consumption of C3G or Mirtoselect generates measurable levels of anthocyanins in the murine biophase. Apc(Min) mice ingested C3G or Mirtoselect at 0.03, 0.1 or 0.3% in the diet for 12 weeks, and intestinal adenomas were counted. Plasma, urine and intestinal mucosa were analyzed for presence of anthocyanins by high-pressure liquid chromatography with detection by UV spectrophotometry (520 nm) or tandem mass spectrometry (multiple reaction monitoring). Ingestion of either C3G or Mirtoselect reduced adenoma load dose-dependently. At the highest doses of C3G and Mirtoselect adenoma numbers were decreased by 45% (p < 0.001) or 30% (p < 0.05), respectively, compared to controls. Anthocyanins were found at the analytical detection limit in the plasma and at quantifiable levels in the intestinal mucosa and urine. Anthocyanin glucuronide and methyl metabolites were identified in intestine and urine. Total anthocyanin levels in mice on C3G or Mirtoselect were 43 ng and 8.1 microg/g tissue, respectively, in the intestinal mucosa, and 7.2 and 12.3 microg/ml in the urine. The efficacy of C3G and Mirtoselect in the Apc(Min) mouse renders the further development of anthocyanins as potential human colorectal cancer chemopreventive agents worthwhile.

  19. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    PubMed

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  20. Features of liver tissue remodeling in intestinal failure during and after weaning off parenteral nutrition.

    PubMed

    Mutanen, Annika; Lohi, Jouko; Sorsa, Timo; Jalanko, Hannu; Pakarinen, Mikko P

    2016-09-01

    Intestinal failure is associated frequently with liver injury, which persists after weaning off parenteral nutrition. We compared features of liver remodeling in intestinal failure during and after weaning off parenteral nutrition. Liver biopsies and serum samples were obtained from 25 intestinal failure patients at a median age of 9.7 years (interquartile range: 4.6-18) and from age-matched control patients. Seven patients had been receiving parenteral nutrition for 53 months (22-160), and 18 patients had been weaned off parenteral nutrition 6.3 years (2.4-17) earlier, after having received parenteral nutrition for 10 months (3.3-34). Expression of alpha-smooth muscle actin, collagen 1, proinflammatory cytokines, growth factors, and matrix metalloproteinases (MMPs) was measured. Significant increases in immunohistochemical expression of alpha-smooth muscle actin and collagen 1 were observed predominantly in portal areas and were similar to increases seen in patients currently receiving parenteral nutrition and in patients weaned off parenteral nutrition. Gene and protein expressions of alpha-smooth muscle actin and collagen were interrelated. Gene expression of ACTA2, encoding alpha-smooth muscle actin, was increased only in patients who were receiving parenteral nutrition currently. Comparable upregulation of interleukin-1 (α and ß), epidermal growth factor, integrin-ß6, and MMP9 gene expression was observed in both patient groups, irrespective of whether they were receiving parenteral nutrition currently. Liver expression and serum levels of TIMP1 and MMP7 were increased only in the patients on parenteral nutrition currently but were not increased after weaning off parenteral nutrition. Intestinal failure is characterized by abnormal activation of hepatic myofibroblast and accumulation of collagen both during and after weaning off parenteral nutrition. Persistent transcriptional upregulation of proinflammatory and fibrogenic cytokines after weaning off parenteral nutrition suggests that factors other than parenteral nutrition may contribute to intestinal failure-associated liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.

Top