Science.gov

Sample records for intracellular actin pedestals

  1. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  2. Actin-Based Motility of Intracellular Microbial Pathogens

    PubMed Central

    Goldberg, Marcia B.

    2001-01-01

    A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review. PMID:11729265

  3. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector

    PubMed Central

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area. PMID:25482634

  4. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.

    PubMed

    Arnette, Christopher; Frye, Keyada; Kaverina, Irina

    2016-01-01

    The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.

  5. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    PubMed

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  6. Intracellular calcium rise is not a necessary step for the stimulated actin polymerization

    SciTech Connect

    Yassin, R.

    1986-03-01

    Stimulation of rabbit peritoneal neutrophils by many chemotactic (formyl Methionyl-Leucyl-Phenylalanine (fMLP), Leukotriene B/sub 4/ (LTB/sub 4/)) and non-chemotactic (phorbol 12-myristate, 13-acetate (PMA), platelet activating factor (PAF), and the calcium ionophore A23187) factors produces rapid and dose dependent increases in the amount of actin associated with the cytoskeleton. The stimulated increase in cytoskeletal actin does not appear to require a rise in the intracellular concentration of free calcium. The increase in cytoskeletal actin produced by A23187 is transient and does not depend on the presence of calcium in the suspending medium. In the presence of extracellular calcium, the effect of the ionophore is biphasic with respect to concentration. The increases in actin association with cytoskeletal produced by fMLP, LTB/sub 4/, and A23187 but not by PMA, are inhibited by hyperosmolarity and pertussis toxin pretreatment. On the other hand, the addition of hyperosmolarity or pertussis toxin has small effect on the rise in the intracellular calcium produced by A23187. The results presented here suggest that an increase in the intracellular concentration of free calcium is not necessary for the stimulated increases in cytoskeletal actin.

  7. Viral infectivity and intracellular distribution of matrix (M) protein of canine distemper virus are affected by actin filaments.

    PubMed

    Klauschies, F; Gützkow, T; Hinkelmann, S; von Messling, V; Vaske, B; Herrler, G; Haas, L

    2010-09-01

    To investigate the role of cytoskeletal components in canine distemper virus (CDV) replication, various agents were used that interfere with turnover of actin filaments and microtubules. Only inhibition of actin filaments significantly reduced viral infectivity. Analysis of the intracellular localization of the viral matrix (M) protein revealed that it aligned along actin filaments. Treatment with actin filament-disrupting drugs led to a marked intracellular redistribution of M protein during infection as well as transfection. In contrast, the localization of the CDV fusion (F) protein was not significantly changed during transfection. Thus, a M protein-actin filament interaction appears to be important for generation of infectious CDV.

  8. Pedestal Grinder.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to the pedestal grinder for use at the postsecondary level. The first of eight sections defines 14 important terms. The second section outlines 16 rules for safe use of the pedestal grinder. The third section covers grinding wheels for five different types of materials. The fourth section…

  9. Host actin polymerization tunes the cell division cycle of an intracellular pathogen.

    PubMed

    Siegrist, M Sloan; Aditham, Arjun K; Espaillat, Akbar; Cameron, Todd A; Whiteside, Sarah A; Cava, Felipe; Portnoy, Daniel A; Bertozzi, Carolyn R

    2015-04-28

    Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.

  10. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    PubMed

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system.

  11. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens

    PubMed Central

    Colonne, Punsiri M.; Winchell, Caylin G.; Voth, Daniel E.

    2016-01-01

    Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions. PMID:27713866

  12. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes.

    PubMed

    Kanzaki, M; Watson, R T; Khan, A H; Pessin, J E

    2001-12-28

    Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.

  13. Intracellular Theileria annulata Promote Invasive Cell Motility through Kinase Regulation of the Host Actin Cytoskeleton

    PubMed Central

    Ma, Min; Baumgartner, Martin

    2014-01-01

    The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities. PMID:24626571

  14. Dual chemotaxis signalling regulates Dictyostelium development: intercellular cyclic AMP pulses and intracellular F-actin disassembly waves induce each other.

    PubMed

    Vicker, Michael G; Grutsch, James F

    2008-10-01

    Aggregating Dictyostelium discoideum amoebae periodically emit and relay cAMP, which regulates their chemotaxis and morphogenesis into a multicellular, differentiated organism. Cyclic AMP also stimulates F-actin assembly and chemotactic pseudopodium extension. We used actin-GFP expression to visualise for the first time intracellular F-actin assembly as a spatio-temporal indicator of cell reactions to cAMP, and thus the kinematics of cell communication, in aggregating streams. Every natural cAMP signal pulse induces an autowave of F-actin disassembly, which propagates from each cell's leading end to its trailing end at a linear rate, much slower than the calculated and measured velocities of cAMP diffusion in aggregating Dictyostelium. A sequence of transient reactions follows behind the wave, including anterior F-actin assembly, chemotactic pseudopodium extension and cell advance at the cell front and, at the back, F-actin assembly, extension of a small retrograde pseudopodium (forcing a brief cell retreat) and chemotactic stimulation of the following cell, yielding a 20s cAMP relay delay. These dynamics indicate that stream cell behaviour is mediated by a dual signalling system: a short-range cAMP pulse directed from one cell tail to an immediately following cell front and a slower, long-range wave of intracellular F-actin disassembly, each inducing the other.

  15. Actin-based mechanisms for light-dependent intracellular positioning of nuclei and chloroplasts in Arabidopsis.

    PubMed

    Iwabuchi, Kosei; Takagi, Shingo

    2010-08-01

    The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.

  16. Pedestal stability comparison and ITER pedestal prediction

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Aiba, N.; Beurskens, M.; Groebner, R. J.; Horton, L. D.; Hubbard, A. E.; Hughes, J. W.; Huysmans, G. T. A.; Kamada, Y.; Kirk, A.; Konz, C.; Leonard, A. W.; Lönnroth, J.; Maggi, C. F.; Maingi, R.; Osborne, T. H.; Oyama, N.; Pankin, A.; Saarelma, S.; Saibene, G.; Terry, J. L.; Urano, H.; Wilson, H. R.

    2009-08-01

    The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling-ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

  17. Actin-based motility of the intracellular pathogen Listeria monocytogenes: assessing the inhibitory specificity of ABM-1 peptide analogues.

    PubMed

    Purich, D L; Southwick, F S

    1999-06-01

    Actin-Based Motility motifs [ABM-1 sequence = (D/E)FPPPPX(D/E), where X = P or T, and ABM-2 sequence = XPPPPP, where X denotes G, A, L, P, and S] facilitate assembly of an activated motility complex. Potent inhibition of intracellular motility of pathogens by ABM-1 and ABM-2 peptide analogues has served as a criterion for investigating actin-based motility. To assess the specificity of ABM-1 peptide inhibitors, we microinjected proline-rich peptides into Listeria-infected PtK2 host cells. Use of a combinatorial ABM-1 peptide library (empirical formula = D1E2F2P4T1) demonstrated that high-potency inhibition requires a precise sequence, and not merely a particular amino acid composition. Calculated concentrations of specific sequences in this library indicate that the entire (D/E)FPPPPX(D/E) motif is needed to achieve high-affinity inhibition in living cells. The failure of the well known proline-rich SH3 binding antagonists VSL-12 or APP-12 to inhibit Listeria motility also indicates that SH3 interactions are unlikely to control actin-based motility directly.

  18. Effect of the Fructus Ligustri Lucidi extract and its monomers quercetin and oleanolic acid on the adhesion and migration of melanocytes and intracellular actin

    PubMed Central

    WU, YANHUA; LI, QILIN; LI, XIANGJUN; HE, DANHUA; NIU, MU; LU, XIAOJUAN; LI, HUI

    2016-01-01

    The present study aimed to investigate the effects of the Fructus Ligustri Lucidi (FLL) extract and its monomers quercetin and oleanolic acid on the adhesion and migration of human epidermal melanocytes (MCs) and intracellular actin. The human epidermal MCs were cultured and identified. The cells were treated with different concentrations of FLL extract, quercetin and oleanolic acid. The adhesion and migration abilities of the cells were determined by the fibronectin-coated culture experiment and Transwell assay, respectively. The structure and distribution of intracellular actin were observed by confocal laser microscopy, with semi-quantitative analysis. Results showed that compared with the control group, 0.0375–0.3 mg/ml of the FLL extract and 40 µM quercetin significantly improved the adhesion rate of MCs (P<0.05). The numbers of MCs permeating the microporous membrane in the 0.15 mg/ml FLL extract and 12 µM oleanolic acid groups were 43.7 and 30.3, respectively, significantly higher compared to the control group (P<0.01). In the control group, the intracellular actin was less, and the stress fiber structure was not clear. In the 0.15 mg/ml FLL extract, 12 µM oleanolic acid and 40 µM quercetin groups, there were numerous bunched stress fibers, indicating the aggregation of filamentous fibrous actin. The mean optical densities of actin expression in the 0.15 mg/ml FLL extract, 12 µM oleanolic acid and 40 µM quercetin groups were significantly higher compared to the control group (P<0.05). The FLL extract has a significant stimulatory effect on the adhesion and migration of human epidermal MCs. The mechanism may be associated with the promotion of intracellular actin cytoskeleton aggregation. PMID:27123251

  19. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors

    NASA Astrophysics Data System (ADS)

    Bruno, L.; Levi, V.; Brunstein, M.; Despósito, M. A.

    2009-07-01

    Intracellular transport of large cargoes, such as organelles, vesicles, or large proteins, is a complex dynamical process that involves the interplay of adenosine triphosphate-consuming molecular motors, cytoskeleton filaments, and the viscoelastic cytoplasm. In this work we investigate the motion of pigment organelles (melanosomes) driven by myosin-V motors in Xenopus laevis melanocytes using a high-spatio-temporal resolution tracking technique. By analyzing the obtained trajectories, we show that the melanosomes mean-square displacement undergoes a transition from a subdiffusive to a superdiffusive behavior. A stochastic theoretical model, which explicitly considers the collective action of the molecular motors, is introduced to generalize the interpretation of our data. Starting from a generalized Langevin equation, we derive an analytical expression for the mean square displacement, which also takes into account the experimental noise. By fitting theoretical expressions to experimental data we were able to discriminate the exponents that characterize the passive and active contributions to the dynamics and to estimate the “global” motor forces correctly. Then, our model gives a quantitative description of active transport in living cells with a reduced number of parameters.

  20. Burkholderia pseudomallei type III secreted protein BipC: role in actin modulation and translocation activities required for the bacterial intracellular lifecycle

    PubMed Central

    Kang, Wen Tyng; Vellasamy, Kumutha Malar; Rajamani, Lakshminarayanan; Beuerman, Roger W.

    2016-01-01

    Melioidosis, an infection caused by the facultative intracellular pathogen Burkholderia pseudomallei, has been classified as an emerging disease with the number of patients steadily increasing at an alarming rate. B. pseudomalleipossess various virulence determinants that allow them to invade the host and evade the host immune response, such as the type III secretion systems (TTSS). The products of this specialized secretion system are particularly important for the B. pseudomallei infection. Lacking in one or more components of the TTSS demonstrated different degrees of defects in the intracellular lifecycle of B. pseudomallei. Further understanding the functional roles of proteins involved in B. pseudomallei TTSS will enable us to dissect the enigma of B. pseudomallei-host cell interaction. In this study, BipC (a translocator), which was previously reported to be involved in the pathogenesis of B. pseudomallei, was further characterized using the bioinformatics and molecular approaches. The bipCgene, coding for a putative invasive protein, was first PCR amplified from B. pseudomallei K96243 genomic DNA and cloned into an expression vector for overexpression in Escherichia coli. The soluble protein was subsequently purified and assayed for actin polymerization and depolymerization. BipC was verified to subvert the host actin dynamics as demonstrated by the capability to polymerize actin in vitro. Homology modeling was also attempted to predict the structure of BipC. Overall, our findings identified that the protein encoded by the bipC gene plays a role as an effector involved in the actin binding activity to facilitate internalization of B. pseudomalleiinto the host cells. PMID:28028452

  1. Microinstabilities in the pedestal region

    NASA Astrophysics Data System (ADS)

    Dickinson, David; Dudson, Benjamin; Wilson, Howard; Roach, Colin

    2014-10-01

    The regulation of transport at the pedestal top is important for the inter-ELM pedestal dynamics. Linear gyrokinetic analysis of the pedestal region during an ELM cycle on MAST has shown kinetic ballooning modes to be unstable at the knee of the pressure profile and in the steep pedestal region whilst microtearing modes (MTMs) dominate in the shallow gradient region inboard of the pedestal top. The transition between these instabilities at the pedestal knee has been observed in low and high collisionality MAST pedestals, and is likely to play an important role in the broadening of the pedestal. Nonlinear simulations are needed in this region to understand the microturbulence, the corresponding transport fluxes, and to gain further insight into the processes underlying the pedestal evolution. Such gyrokinetic simulations are numerically challenging and recent upgrades to the GS2 gyrokinetic code help improve their feasibility. We are also exploring reduced models that capture the relevant physics using the plasma simulation framework BOUT + + . An electromagnetic gyrofluid model has recently been implemented with BOUT + + that has significantly reduced computational cost compared to the gyrokinetic simulations against which it will be benchmarked. This work was funded by the RCUK Energy programme, EURATOM and a EUROFusion fellowship WP14-FRF-CCFE/Dickinson and was carried out using: HELIOS at IFERC, Japan; ARCHER (EPSRC Grant No. EP/L000237/1); HECToR (EPSRC Grant No. EP/H002081/1).

  2. Magnetohydrodynamic mechanism for pedestal formation.

    PubMed

    Guazzotto, L; Betti, R

    2011-09-16

    Time-dependent two-dimensional magnetohydrodynamic simulations are carried out for tokamak plasmas with edge poloidal flow. Differently from conventional equilibrium theory, a density pedestal all around the edge is obtained when the poloidal velocity exceeds the poloidal sound speed. The outboard pedestal is induced by the transonic discontinuity, the inboard one by mass redistribution. The density pedestal follows the formation of a highly sheared flow at the transonic surface. These results may be relevant to the L-H transition and pedestal formation in high performance tokamak plasmas.

  3. Paleoclassical Model of Pedestal Structure

    NASA Astrophysics Data System (ADS)

    Callen, J. D.

    2010-11-01

    Predictions are developed for the structure of plasma parameter profiles of H-mode pedestals in transport quasi-equilibrium in tokamak plasmas. They are based on assuming paleoclassical radial plasma transport processes dominate throughout the pedestal. The natural level of paleoclassical density transport is large in the pedestal compared to edge fueling due to neutral recycling. Thus, in this model the pedestal density profile is determined not by edge source fueling but rather by the density profile needed for the outward paleoclassical diffusive flux to be nearly balanced by the inward paleoclassical pinch flow. Specific predictions are given for the electron temperature and density gradients, profiles and magnitudes in the pedestal. The transition into ETG-driven anomalous radial electron heat transport in the core plasma determines the height of the electron pressure pedestal. Also, the profile of the toroidal plasma rotation in the pedestal is predicted. Model predictions are found to agree quantitatively (within a factor of 2) with the interpretive transport results obtained for the 98889 DIII-D pedestal [1]. 6pt[1] J.D. Callen et al., Nucl. Fusion 50, 064004 (2010).

  4. Intracellular motility and the evolution of the actin cytoskeleton during development of the male gametophyte of wheat (Triticum aestivum L.)

    PubMed Central

    Heslop-Harrison, J.; Heslop-Harrison, Y.

    1997-01-01

    The uniaperturate pollen of wheat is dispersed in a partially hydrated condition. Amyloplasts are concentrated in the apertural hemisphere where they surround the two sperms, while vigorously moving polysaccharide-containing wall precursor bodies (P-particles) together with the vegetative nucleus occupy the other. This disposition is the product of a post-meiotic developmental sequence apparently peculiar to the grasses. During vacuolation of the spore after release from the tetrad, the nucleus is displaced to the pole of the cell opposite the site of the germination aperture, already defined in the tetrad. Following pollen mitosis, the vegetative nucleus migrates along the wall of the vegetative cell towards the aperture, leaving the generative cell at the opposite pole isolated by a callose wall. As the vacuole is resorbed, the generative cell rounds up, loses its wall and follows the vegetative nucleus, passing along the wall of the vegetative cell towards the aperture where it eventually divides to produce the two sperms. Throughout this period of nucleus and cell manoeuvrings, minor inclusions of the vegetative cell cytoplasm, including mitochondria, lipid globuli and developing amyloplasts, move randomly. Coordinated vectorial movement begins after the main period of starch accumulation, when the amyloplasts migrate individually into the apertural hemisphere of the grain, a final redistribution betokening the attainment of germinability. In the present paper we correlate aspects of the evolution of the actin cytoskeleton with these events in the developing grain, and relate the observations to published evidence from another monocotyledonous species concerning the timing of the expression of actin genes during male gametophyte development, as revealed in the synthesis of actin mRNA.

  5. Identification of a Novel Member of the Chloride Intracellular Channel Gene Family (CLIC5) That Associates with the Actin Cytoskeleton of Placental Microvilli

    PubMed Central

    Berryman, Mark; Bretscher, Anthony

    2000-01-01

    The chloride intracellular channel (CLIC) gene family has been implicated in chloride ion transport within various subcellular compartments. We report here the molecular, biochemical, and cellular characterization of a new member of this gene family termed CLIC5. CLIC5 was isolated from extracts of placental microvilli as a component of a multimeric complex consisting of several known cytoskeletal proteins, including actin, ezrin, α-actinin, gelsolin, and IQGAP1. We cloned human cDNAs and generated antibodies specific for CLIC5, CLIC1/NCC27, and CLIC4/huH1/p64H1. CLIC5 shares 52–76% overall identity with human CLIC1, CLIC2, CLIC3, and CLIC4. Northern blot analysis showed that CLIC5 has a distinct pattern of expression compared with CLIC1 and CLIC4. Immunoblot analysis of extracts from placental tissues demonstrated that CLIC4 and CLIC5 are enriched in isolated placental microvilli, whereas CLIC1 is not. Moreover, in contrast to CLIC1 and CLIC4, CLIC5 is associated with the detergent-insoluble cytoskeletal fraction of microvilli. Indirect immunofluorescence microscopy revealed that CLIC4 and CLIC5 are concentrated within the apical region of the trophoblast, whereas CLIC1 is distributed throughout the cytoplasm. These studies suggest that CLIC1, CLIC4, and CLIC5 play distinct roles in chloride transport and that CLIC5 interacts with the cortical actin cytoskeleton in polarized epithelial cells. PMID:10793131

  6. A GTD analysis of ogive pedestal

    NASA Technical Reports Server (NTRS)

    Lai, Kin-Yue Albert; Burnside, Walter D.

    1987-01-01

    The metal ogive pedestal is claimed to have low radar cross section and low observability features. This study uses the Geometric Theory of Diffraction (GTD) to analyze the pedestal scattering for three cases: direct backscattered field, backscattered field structure, and target/pedestal multiple scattering. This study can be used to evaluate the various ways that the metal conical ogive pedestal can effect the performance of a high quality radar cross section measurement system.

  7. Pedestal substrate for coated optics

    DOEpatents

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  8. Why is Actin Patchy?

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2009-03-01

    The intracellular protein actin, by reversibly polymerizing into filaments, generates forces for motion and shape changes of many types of biological cells. Fluorescence imaging studies show that actin often occurs in the form of localized patches of size roughly one micrometer at the cell membrane. Patch formation is most prevalent when the free-actin concentration is low. I investigate possible mechanisms for the formation of actin patches by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations include filament growth, capping, branching, severing, and debranching. The attachment of membrane-bound activators to actin filaments, and subsequent membrane diffusion of unattached activators, are also included. It is found that as the actin concentration increases from zero, the actin occurs in patches at lower actin concentrations, and the size of the patches increases with increasing actin concentration. At a critical value of the actin concentration, the system undergoes a transition to complete coverage. The results are interpreted within the framework of reaction-diffusion equations in two dimensions.

  9. Microtearing Instability In The ITER Pedestal

    SciTech Connect

    Wong, K. L.; Mikkelsen, D. R.; Rewoldt, G. M.; Budny, R.

    2010-12-01

    Unstable microtearing modes are discovered by the GS2 gyrokinetic siimulation code, in the pedestal region of a simulated ITER H-mode plasma with approximately 400 WM DT fusion power. Existing nonlinear theory indicates that these instabilities should produce stochastic magnetic fields and broaden the pedestal. The resulted electron thermal conductivity is estimated and the implications of these findings are discussed.

  10. Pedestal crater deposits as seen by SHARAD

    NASA Astrophysics Data System (ADS)

    Nunes, D. C.; Fisher, B.; Smrekar, S. E.; Plaut, J. J.; Holt, J. W.; Phillips, R. J.; Seu, R.; Head, J. W.

    2009-12-01

    Early in the exploration of Mars, Mariner 9 revealed a distinct morphologic class of craters that lie above the surrounding terrain atop steep-sided mesas roughly concentric to the craters. The predominant interpretation of these features argues that the crest of a pedestal represents the level of the surface at the time of the impact event that formed the central crater. Subsequent deflation lowered the surface pervasively, where as the pedestal remained due to increased resistance to removal via armoring or lag layers provided by the ejected blanket. Different models have been proposed to explain pedestal formation and persistence, and they generally involve the presence of a paleo-unit that was either friable or rich in volatiles. Given that pedestal craters occur dominantly in the mid-latitudes, with some cases also reported in the equatorial and polar regions, removal of extensive friable or volatile units at least as thick as the pedestals has occurred throughout Mars. We have analyzed data from the Shallow Radar (SHARAD) sounding instrument onboard the Mars Reconnaissance Orbiter to investigate the nature of the material composing the pedestals. Of the 60 pedestals examined, ranging a few to ~100 kilometers in diameter, we have identified several cases where the pedestal material is transparent to the SHARAD signal and a basal reflection is observed. These are cases where the pedestal is tens to ~ 100 kilometers in diameter. Subsurface reflections are not seen in every large pedestal, and for pedestals only a few kilometers wide we have not been able to unambiguously identify a basal reflector apart from surface clutter. In at least one case (in Malea Planum) internal layering between the surface and basal reflections is seen in SHARAD data. These layers appear to follow the shape of the basal topography and likely reflect past depositional events; layering is also seen at the edges of this pedestal in visible imagery from multiple orbiting cameras in this

  11. Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity.

    PubMed Central

    Jung, E; Fucini, P; Stewart, M; Noegel, A A; Schleicher, M

    1996-01-01

    Comitin is a 24 kDa actin-binding protein from Dictyostelium discoideum that is located primarily on Golgi and vesicle membranes. We have probed the molecular basis of comitin's interaction with both actin and membranes using a series of truncation mutants obtained by expressing the appropriate cDNA in Escherichia coli. Comitin dimerizes in solution; its principle actin-binding activity is located between residues 90 and 135. The N-terminal 135 'core' residues of comitin contain a 3-fold sequence repeat that is homologous to several monocotyledon lectins and which retains key residues that determine these lectins' three-dimensional structure and mannose binding. These repeats of comitin appear to mediate its interaction with mannose residues in glycoproteins or glycolipids on the cytoplasmic surface of membrane vesicles from D.discoideum, and comitin can be released from membranes with mannose. Our data indicate that comitin binds to vesicle membranes via mannose residues and, by way of its interaction with actin, links these membranes to the cytoskeleton. Images PMID:8635456

  12. Dynamics of Actin Stress Fibers and Focal Adhesions during Slow Migration in Swiss 3T3 Fibroblasts: Intracellular Mechanism of Cell Turning

    PubMed Central

    Miyoshi, Hiromi; Miura, Takuya; Tanaka, Hiroto; Tsubota, Ken-ichi; Liu, Hao

    2016-01-01

    To understand the mechanism regulating the spontaneous change in polarity that leads to cell turning, we quantitatively analyzed the dynamics of focal adhesions (FAs) coupling with the self-assembling actin cytoskeletal structure in Swiss 3T3 fibroblasts. Fluorescent images were acquired from cells expressing GFP-actin and RFP-zyxin by laser confocal microscopy. On the basis of the maximum area, duration, and relocation distance of FAs extracted from the RFP-zyxin images, the cells could be divided into 3 regions: the front region, intermediate lateral region, and rear region. In the intermediate lateral region, FAs appeared close to the leading edge and were stabilized gradually as its area increased. Simultaneously, bundled actin stress fibers (SFs) were observed vertically from the positions of these FAs, and they connected to the other SFs parallel to the leading edge. Finally, these connecting SFs fused to form a single SF with matured FAs at both ends. This change in SF organization with cell retraction in the first cycle of migration followed by a newly formed protrusion in the next cycle is assumed to lead to cell turning in migrating Swiss 3T3 fibroblasts. PMID:28119928

  13. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar); Skin lesion - actinic keratosis ... likely to develop it if you: Have fair skin, blue or green eyes, or blond or red ...

  14. Role of the Arf6 GDP/GTP cycle and Arf6 GTPase-activating proteins in actin remodeling and intracellular transport.

    PubMed

    Klein, Stéphanie; Franco, Michel; Chardin, Pierre; Luton, Frédéric

    2006-05-05

    We have analyzed both biochemically and functionally a series of Arf6 mutants, providing new insights into the molecular mode of action of the small G protein Arf6. First, by comparing a fast-cycling mutant (Arf6(T157N)) and a GTPase-deficient mutant (Arf6(Q67L)), we established the necessity for completion of the Arf6 GDP/GTP cycle for recycling of major histocompatibility complex molecules to the plasma membrane. Second, we found that aluminum fluoride (AlF), known for inducing membrane protrusion in cells expressing exogenous wild-type Arf6, stabilized a functional wild-type Arf6.AlF(x) . GTPase-activating protein (GAP) complex in vitro and in vivo. We also found that the tandem mutation Q37E/S38I prevented the binding of two Arf GAPs, but not the effector ARHGAP10, and blocked the formation of membrane protrusion and actin reorganization. Together, our results with AlF(x) and Arf6(Q37E/S38I) demonstrate the critical role of the Arf6 GAPs as effectors for Arf6-regulated actin cytoskeleton remodeling. Finally, competition experiments conducted in vivo suggest the existence of a membrane receptor for GDP-bound Arf6.

  15. Bacterial nucleators: actin' on actin

    PubMed Central

    Bugalhão, Joana N.; Mota, Luís Jaime; Franco, Irina S.

    2015-01-01

    The actin cytoskeleton is a key target of numerous microbial pathogens, including protozoa, fungi, bacteria and viruses. In particular, bacterial pathogens produce and deliver virulence effector proteins that hijack actin dynamics to enable bacterial invasion of host cells, allow movement within the host cytosol, facilitate intercellular spread or block phagocytosis. Many of these effector proteins directly or indirectly target the major eukaryotic actin nucleator, the Arp2/3 complex, by either mimicking nucleation promoting factors or activating upstream small GTPases. In contrast, this review is focused on a recently identified class of effector proteins from Gram-negative bacteria that function as direct actin nucleators. These effector proteins mimic functional activities of formins, WH2-nucleators and Ena/VASP assembly promoting factors demonstrating that bacteria have coopted the complete set of eukaryotic actin assembly pathways. Structural and functional analyses of these nucleators have revealed several motifs and/or mechanistic activities that are shared with eukaryotic actin nucleators. However, functional effects of these proteins during infection extend beyond plain actin polymerization leading to interference with other host cell functions such as vesicle trafficking, cell cycle progression and cell death. Therefore, their use as model systems could not only help in the understanding of the mechanistic details of actin polymerization but also provide novel insights into the connection between actin dynamics and other cellular pathways. PMID:26416078

  16. Actinous enigma or enigmatic actin

    PubMed Central

    Povarova, Olga I; Uversky, Vladimir N; Kuznetsova, Irina M; Turoverov, Konstantin K

    2014-01-01

    Being the most abundant protein of the eukaryotic cell, actin continues to keep its secrets for more than 60 years. Everything about this protein, its structure, functions, and folding, is mysteriously counterintuitive, and this review represents an attempt to solve some of the riddles and conundrums commonly found in the field of actin research. In fact, actin is a promiscuous binder with a wide spectrum of biological activities. It can exist in at least three structural forms, globular, fibrillar, and inactive (G-, F-, and I-actin, respectively). G-actin represents a thermodynamically instable, quasi-stationary state, which is formed in vivo as a result of the energy-intensive, complex posttranslational folding events controlled and driven by cellular folding machinery. The G-actin structure is dependent on the ATP and Mg2+ binding (which in vitro is typically substituted by Ca2+) and protein is easily converted to the I-actin by the removal of metal ions and by action of various denaturing agents (pH, temperature, and chemical denaturants). I-actin cannot be converted back to the G-form. Foldable and “natively folded” forms of actin are always involved in interactions either with the specific protein partners, such as Hsp70 chaperone, prefoldin, and the CCT chaperonin during the actin folding in vivo or with Mg2+ and ATP as it takes place in the G-form. We emphasize that the solutions for the mysteries of actin multifunctionality, multistructurality, and trapped unfolding can be found in the quasi-stationary nature of this enigmatic protein, which clearly possesses many features attributed to both globular and intrinsically disordered proteins.

  17. Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.

    PubMed

    Jiwani, Shahanawaz; Alvarado, Stephenie; Ohr, Ryan J; Romero, Adriana; Nguyen, Brenda; Jewett, Travis J

    2013-02-01

    All species of Chlamydia undergo a unique developmental cycle that transitions between extracellular and intracellular environments and requires the capacity to invade new cells for dissemination. A chlamydial protein called Tarp has been shown to nucleate actin in vitro and is implicated in bacterial entry into human cells. Colocalization studies of ectopically expressed enhanced green fluorescent protein (EGFP)-Tarp indicate that actin filament recruitment is restricted to the C-terminal half of the effector protein. Actin filaments are presumably associated with Tarp via an actin binding alpha helix that is also required for actin nucleation in vitro, but this has not been investigated. Tarp orthologs from C. pneumoniae, C. muridarum, and C. caviae harbor between 1 and 4 actin binding domains located in the C-terminal half of the protein, but C. trachomatis serovar L2 has only one characterized domain. In this work, we examined the effects of domain-specific mutations on actin filament colocalization with EGFP-Tarp. We now demonstrate that actin filament colocalization with Tarp is dependent on two novel F-actin binding domains that endow the Tarp effector with actin-bundling activity. Furthermore, Tarp-mediated actin bundling did not require actin nucleation, as the ability to bundle actin filaments was observed in mutant Tarp proteins deficient in actin nucleation. These data shed molecular insight on the complex cytoskeletal rearrangements required for C. trachomatis entry into host cells.

  18. Actinic reticuloid

    SciTech Connect

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  19. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  20. Compatibility of Detached Divertor Operation with Robust Edge Pedestal Performance

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; Osborne, T. H.; Snyder, P. B.; Makowski, M. A.; McLean, A. G.

    2014-10-01

    The compatibility of radiative detached divertor operation with the maintenance of a robust H-mode pedestal is examined in DIII-D. A density scan with deuterium injection into H-mode spanned a range of divertor conditions from fully attached, ~30 eV at the target, with little divertor radiation to a fully detached with Te < 5 eV throughout the divertor up to the X-point. Over this scan of pedestal density from n /nGW = 30% to 60% the pedestal Te was reduced from 800 eV to 350 eV, representing a ~20% reduction in pedestal pressure with a similar reduction in normalized energy confinement. The reduction in pedestal pressure at high density was found to be consistent with a reduced pedestal ELM MHD stability limit at high collisionality. The scaling of the pedestal top pressure with density was also consistent with the EPED model, which assumes an additional constraint on the local pressure gradient. The MHD stability limit at the highest collisionality depends on details of the ELM instability growth rate normalization. This result is encouraging for future burning plasmas where a low collisionality pedestal is expected to be maintained even for high density detached divertor operation. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  1. The actin cytoskeleton in endothelial cell phenotypes

    PubMed Central

    Prasain, Nutan; Stevens, Troy

    2009-01-01

    Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell’s interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but interrelated structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes. PMID:19028505

  2. Compatibility of detached divertor operation with robust edge pedestal performance

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Osborne, T. H.; Snyder, P. B.

    2015-08-01

    The compatibility of detached radiative divertor operation with a robust H-mode pedestal is examined in DIII-D. A density scan produced low temperature plasmas at the divertor target, Te ⩽ 2 eV, with high radiation leading to a factor of ⩾4 drop in peak divertor heat flux. The cold radiative plasma was confined to the divertor and did not extend across the separatrix in X-point region. A robust H-mode pedestal was maintained with a small degradation in pedestal pressure at the highest densities. The response of the pedestal pressure to increasing density is reproduced by the EPED pedestal model. However, agreement of the EPED model with experiment at high density requires an assumption of reduced diamagnetic stabilization of edge Peeling-Ballooning modes.

  3. The ability of an attaching and effacing pathogen to trigger localized actin assembly contributes to virulence by promoting mucosal attachment

    PubMed Central

    Mallick, Emily M.; Garber, John J.; Vanguri, Vijay K.; Balasubramanian, Sowmya; Blood, Timothy; Clark, Stacie; Vingadassalom, Didier; Louissaint, Christopher; McCormick, Beth; Snapper, Scott B.; Leong, John M.

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC) adheres to intestinal epithelial cells, then stimulates the actin nucleation promoting factor N-WASP to induce localized actin assembly resulting in an actin “pedestal”, the function of which is poorly understood. EHEC also produces Shiga toxin (Stx), which penetrates the intestinal epithelium to cause a life-threatening renal and systemic disease. To assess the role of pedestal formation in colonization and disease, we utilized the murine pathogen Citrobacter rodentium, which also forms actin pedestals, and the genetically engineered C. rodentium (Φstx2dact), which additionally triggers Stx-mediated systemic disease. We found that an intestine-specific N-WASP-deficient (iNWKO) mouse suffered dramatically less colonization and disease than N-WASP-proficient littermate controls when infected with either strain. In addition, upon infection of wild type mice, mutants of C. rodentium or C. rodentium (Φstx2dact) that are specifically defective in pedestal formation demonstrated a relatively modest defect in cecal colonization and fecal shedding, but a more severe defect in colonization of the colonic mucosa. The C. rodentium (Φstx2dact) pedestal-defective mutant did not cause renal disease and, after normalizing for fecal bacterial load, was associated with a 16-fold lower risk of lethality. These findings suggest that the ability of an attaching and effacing pathogen to promote localized actin assembly contributes to virulence by promoting mucosal attachment. PMID:24780054

  4. Rho GTPases, phosphoinositides, and actin

    PubMed Central

    Croisé, Pauline; Estay-Ahumada, Catherine; Gasman, Stéphane; Ory, Stéphane

    2014-01-01

    Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments. PMID:24914539

  5. Actin dynamics and cofilin-actin rods in Alzheimer disease

    PubMed Central

    Bamburg, James R.; Bernstein, Barbara W.

    2017-01-01

    Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. PMID:26873625

  6. Repair of the DSS-14 Pedestal Concrete

    NASA Technical Reports Server (NTRS)

    Mcclure, D.

    1985-01-01

    About three years after the Goldstone Deep Space Station antenna was dedicated, grout under the hydrostatic bearing runner was found to be interacting with the runner, causing rust to form between the runner and the sole plates upon which it rests. The rust formed unevenly and the runner could not be kept flat so in 1969 the grout was removed and replaced with a Portland cement and sand dry pack grout that was less likely to produce rust. In the years that followed, oil leaking from the runner assembly caused progressive deterioration of the drypack grout. In 1982 over one thousand hours of spacecraft tracking time were lost due to this deterioration. A plan was developed to rehabilitate the bearing. The plan called for raising the rotating structure free from the concrete pedestal and placing it on three pairs of external support columns. With the weight of the structure transferred to the columns, the pads and runner could be removed and the repair started. The very successful repair included the replacement of a significant portion of the antenna pedestal.

  7. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.

    PubMed

    Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi

    2013-04-01

    The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.

  8. Predictive modeling of pedestal structure in KSTAR using EPED model

    NASA Astrophysics Data System (ADS)

    Han, Hyunsun; Kwon, Ohjin; Kim, J. Y.

    2013-10-01

    A predictive calculation is given for the structure of edge pedestal in the H-mode plasma of the KSTAR (Korea Superconducting Tokamak Advanced Research) device using the EPED model. Particularly, the dependence of pedestal width and height on various plasma parameters is studied in detail. The two codes, ELITE and HELENA, are utilized for the stability analysis of the peeling-ballooning and kinetic ballooning modes, respectively. Summarizing the main results, the pedestal slope and height have a strong dependence on plasma current, rapidly increasing with it, while the pedestal width is almost independent of it. The plasma density or collisionality gives initially a mild stabilization, increasing the pedestal slope and height, but above some threshold value its effect turns to a destabilization, reducing the pedestal width and height. Among several plasma shape parameters, the triangularity gives the most dominant effect, rapidly increasing the pedestal width and height, while the effect of elongation and squareness appears to be relatively weak. Implication of these edge results, particularly in relation to the global plasma performance, is discussed.

  9. Predictive modeling of pedestal structure in KSTAR using EPED model

    SciTech Connect

    Han, Hyunsun; Kim, J. Y.; Kwon, Ohjin

    2013-10-15

    A predictive calculation is given for the structure of edge pedestal in the H-mode plasma of the KSTAR (Korea Superconducting Tokamak Advanced Research) device using the EPED model. Particularly, the dependence of pedestal width and height on various plasma parameters is studied in detail. The two codes, ELITE and HELENA, are utilized for the stability analysis of the peeling-ballooning and kinetic ballooning modes, respectively. Summarizing the main results, the pedestal slope and height have a strong dependence on plasma current, rapidly increasing with it, while the pedestal width is almost independent of it. The plasma density or collisionality gives initially a mild stabilization, increasing the pedestal slope and height, but above some threshold value its effect turns to a destabilization, reducing the pedestal width and height. Among several plasma shape parameters, the triangularity gives the most dominant effect, rapidly increasing the pedestal width and height, while the effect of elongation and squareness appears to be relatively weak. Implication of these edge results, particularly in relation to the global plasma performance, is discussed.

  10. Enhancement of the Bootstrap Current in a Tokamak Pedestal

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Catto, Peter J.

    2010-07-01

    The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression for the pedestal bootstrap current is presented. The prescription for inserting the modification into any existing banana regime bootstrap current expression is given.

  11. ELM Suppression and Pedestal Structure in I-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Walk, John

    2013-10-01

    The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.

  12. Signalling Pathways Controlling Cellular Actin Organization.

    PubMed

    Steffen, Anika; Stradal, Theresia E B; Rottner, Klemens

    2017-01-01

    The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.

  13. 8. SOUTH PLANT SHELL OIL COMPANY FACILITIES, WITH PIPELINE PEDESTALS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SOUTH PLANT SHELL OIL COMPANY FACILITIES, WITH PIPELINE PEDESTALS IN FOREGROUND. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  14. 50. (no plate) Lens, lens pedestal, mercury float, drawing # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. (no plate) Lens, lens pedestal, mercury float, drawing # 3101, sheet 1 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  15. 51. (no plate) Lens, lens pedestal, mercury float, shade holder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. (no plate) Lens, lens pedestal, mercury float, shade holder installation, drawing # 3101, sheet 2 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  16. 4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL NEEDLE VALVE CASTING HANGING ON THE WALL ABOVE THE FORGE. VIEW TO NORTH. - Santa Ana River Hydroelectric System, SAR-1 Machine Shop, Redlands, San Bernardino County, CA

  17. MLP SUPPORT PEDESTAL 4 AT PARKING SITE Cape Canaveral ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MLP SUPPORT PEDESTAL 4 AT PARKING SITE - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. MLP SUPPORT PEDESTAL 2 AT PARKING SITE Cape Canaveral ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MLP SUPPORT PEDESTAL 2 AT PARKING SITE - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. MLP SUPPORT PEDESTAL 1 AT PARKING SITE Cape Canaveral ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MLP SUPPORT PEDESTAL 1 AT PARKING SITE - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. DETAIL VIEW OF A CAMERA PEDESTAL ON THE BLAST DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF A CAMERA PEDESTAL ON THE BLAST DECK OF THE 0 LEVEL - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. Actinic Prurigo.

    PubMed

    Rodríguez-Carreón, Alma Angélica; Rodríguez-Lobato, Erika; Rodríguez-Gutiérrez, Georgina; Cuevas-González, Juan Carlos; Mancheno-Valencia, Alexandra; Solís-Arias, Martha Patricia; Vega-Memije, María Elisa; Hojyo-Tomoka, María Teresa; Domínguez-Soto, Luciano

    2015-01-01

    Actinic prurigo is an idiopathic photodermatosis that affects the skin, as well as the labial and conjunctival mucosa in indigenous and mestizo populations of Latin America. It starts predominantly in childhood, has a chronic course, and is exacerbated with solar exposure. Little is known of its pathophysiology, including the known mechanisms of the participation of HLA-DR4 and an abnormal immunologic response with increase of T CD4+ lymphocytes. The presence of IgE, eosinophils, and mast cells suggests that it is a hypersensitivity reaction (likely type IVa or b). The diagnosis is clinical, and the presence of lymphoid follicles in the mucosal histopathologic study of mucosa is pathognomonic. The best available treatment to date is thalidomide, despite its secondary effects.

  2. The Research of EAST Pedestal Structure and Preliminary Application

    NASA Astrophysics Data System (ADS)

    Wang, Tengfei; Zang, Qing; Han, Xiaofeng; Xiao, Shumei; Hu, Ailan; Zhao, Junyu

    2016-10-01

    The pedestal characteristic is an important basis for high confinement mode (H-mode) research. Because of the finite spatial resolution of Thomson scattering (TS) diagnostic on Experimental Advanced Superconducting Tokamak (EAST), it is necessary to characterize the pedestal with a suitable functional form. Based on simulated and experimental data of EAST, it is shown that the two-line method with a bilinear fitting has better reproducibility of pedestal parameters than hyperbolic tangent (tanh) and modified hyperbolic tangent (mtanh) methods. This method has been applied to EAST type I edge localized mode (ELM) discharges, and the electron pedestal density is found to be proportional to the line-averaged density and the edge pressure gradient is found to be proportional to the pedestal pressure. Furthermore, the ion poloidal gyro-radius has been identified as the suitable parameter to describe the pedestal pressure width. supported by National Natural Science Foundation of China (Nos. 11275233 and 11405206), and the National Magnetic Confinement Fusion Science Program of China (No. 2013GB112003), and Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-15-JC01)

  3. Global performance enhancements via pedestal optimisation on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team

    2017-02-01

    Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.

  4. Stability and ELM Characterization in I-Mode Pedestals

    NASA Astrophysics Data System (ADS)

    Walk, J. R.; Hughes, J. W.; Snyder, P. B.; Hubbard, A. E.; Terry, J. L.; White, A. E.; Whyte, D. G.; Baek, S. G.; Cziegler, I.; Edlund, E.

    2014-10-01

    The I-mode is a novel high-confinement regime explored on Alcator C-Mod, notable for its formation of an H-mode-like temperature pedestal without the accompanying density pedestal, maintaining L-mode particle confinement. I-mode exhibits a number of desirable properties for a reactor regime: among them, it naturally lacks large ELMs, avoiding the need for externally-applied ELM suppression. However, under certain conditions small, intermittent ELM-like events are seen. These events exhibit a range of phenomena in terms of edge and pedestal behavior, particularly for the ELM trigger - the majority of events are synchronized with the sawtooth heat pulse reaching the edge. The stationary pedestal structure is stable against peeling-ballooning MHD as calculated by ELITE in all cases, necessitating treatment of transient pedestal modification to characterize these events. We characterize these ELM events in terms of edge behavior, particularly the modification of the temperature pedestal, edge turbulence and fluctuations, and peeling-ballooning MHD stability. This work is supported by USDoE Award DE-FC02-99ER54512.

  5. Dendritic Actin Nucleation Causes Traveling Waves and Patches

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    2010-03-01

    Reversible polymerization of the intracellular protein actin into semiflexible filaments is crucial for cell motion and environmental sensing. Recent studies have shown that polymerized actin can spontaneously form traveling waves and/or moving patches. I investigate possible mechanisms for such phenomena by numerically simulating the ``dendritic nucleation'' model of actin network growth. The simulations treat the growth of an actin network on a flat portion of a cell membrane, using a stochastic-growth method which calculates an explicit three-dimensional network structure. The calculations treat processes including filament growth, capping, branching, severing, and Brownian motion. The dynamics of membrane proteins stimulating actin polymerization are also included: they diffuse in the membrane, and detach/deactivate in the presence of polymerized actin. The simulations show three types of polymerized-actin behavior: 1) traveling waves, 2) coherently moving patches, and 3) random fluctuations with occasional moving patches. Wave formation is favored at low free-actin concentrations by a long reattachment time for the membrane proteins, and by weakness of the attractive interaction between filaments and the membrane. Raising the free-actin concentration results in a randomly varying distribution of polymerized actin. Lowering the free-actin concentration below the optimal value for waves causes the waves to break up into patches which, however, move coherently. Effects of similar magnitude are predicted when other intracellular protein concentrations are varied. Diffusion of the membrane proteins slows the waves, and, if fast enough, stops them completely, resulting in the formation of a static spot.

  6. Unconventional actins and actin-binding proteins in human protozoan parasites.

    PubMed

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  7. A gyrokinetic perspective on the JET-ILW pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Liu, X.

    2017-03-01

    JET has been unable to recover historical confinement levels when operating with an ITER-like wall (ILW) due largely to the inaccessibility of high pedestal temperatures. Finding a path to overcome this challenge is of utmost importance for both a prospective JET DT campaign and for future ITER operation. Gyrokinetic simulations (using the Gene code) quantitatively capture experimental transport levels for a representative experimental discharge and qualitatively recover the major experimental trends. Microtearing turbulence is a major transport mechanisms for the low-temperature pedestals characteristic of unseeded JET-ILW discharges. At higher temperatures and/or lower {ρ\\ast} , we identify electrostatic ITG transport of a type that is strongly shear-suppressed on smaller machines. Consistent with observations, this transport mechanism is strongly reduced by the presence of a low-Z impurity (e.g. carbon or nitrogen at the level of {{Z}\\text{eff}}∼ 2 ), recovering the accessibility of high pedestal temperatures. Notably, simulations based on dimensionless {ρ\\ast} scans recover historical scaling behavior except in the unique JET-ILW parameter regime where ITG turbulence becomes important. Our simulations also elucidate the observed degradation of confinement caused by gas puffing, emphasizing the important role of the density pedestal structure. This study maps out important regions of parameter space, providing insights that may point to optimal physical regimes that can enable the recovery of high pedestal temperatures on JET.

  8. Neoclassical transport in density pedestals with non-trace impurities

    NASA Astrophysics Data System (ADS)

    Buller, Stefan; Pusztai, Istvan; Landreman, Matt

    2016-10-01

    We study neoclassical transport in steady-state density pedestals with non-trace impurities using the Eulerian δf code Perfect, with an emphasis on radially global effects and the effects of impurities. To properly describe transport in a tokamak pedestal, radial coupling must be included, which strongly affects the transport. We find that radial coupling reduces the pedestal heat flux compared to local predictions. Furthermore, the influence of the pedestal persists several orbit widths into the core. The electron flux is significant in the pedestal, and global neoclassical transport is not intrinsically ambipolar. Thus, the impurity flux is not simply opposing the ion flux. The resulting radial current gives a torque that is balanced by a non-negligible radial transport of toroidal momentum. The effective Prandtl number is comparable to typical turbulent values in the core (0.1 - 0.3), and is sensitive to the impurity content. Global effects have a strong contribution to the poloidal flows of low- Z ions, which give rise to larger in-out flow asymmetries. Supported by the INCA Grant of Vetenskapsrådet (Dnr. 330-2014-6313). ML is supported by the USDoE Grants DEFG0293ER54197 and DEFC0208ER54964. The simulations used computational resources of Hebbe at C3SE (C3SE2016-1-10 & SNIC2016-1-161).

  9. Actin dynamics shape microglia effector functions.

    PubMed

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

  10. Progress in characterizing pedestal stability on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Hughes, J. W.; Churchill, R. M.; Cziegler, I.; Davis, E. M.; Dominguez, A.; Ennever, P.; Ernst, D.; Hubbard, A. E.; Lipschultz, B.; Ma, Y.; Walk, J. R.; Wolfe, S. M.; Snyder, P. B.; Osborne, T.; Xu, X.; Sugiyama, L.

    2011-10-01

    Experimental studies on Alcator C-Mod explore pedestal structure and edge relaxation mechanisms primarily in three high confinement regimes: ELMy H-mode, EDA H-mode and I-mode. Extensive scans of BT, IP, ne, Pnet and shaping parameters have been carried out in these regimes, allowing the characterization of the operating space for ELMs as well as benign pedestal relaxation mechanisms (e.g. quasi- and weakly coherent modes). Well resolved edge profiles and accurate equilibrium reconstructions are produced from typical discharges, enabling evaluation of edge stability using various computational tools, such as ELITE, BOUT++, M3D and GS2. Relationships among dominant edge instabilities, radial transport and pedestal structure will be discussed. Supported by US DoE Award DE-FC02-99-ER54512.

  11. Chromatic discrimination in the presence of incremental and decremental rod pedestals.

    PubMed

    Cao, Dingcai; Zele, Andrew J; Pokorny, Joel

    2008-01-01

    Signals from rods can alter chromatic discrimination. Here, chromatic discrimination ellipses were determined in the presence of rod incremental and decremental pedestals at mesopic light levels. The data were represented in a relative cone Troland space, normalized by discrimination thresholds measured along the cardinal axes without a rod pedestal. In the quadrant of cone space where L-cone relative to M-cone excitation increased, and S-cone excitation decreased, rod incremental pedestals degraded chromatic discrimination, and rod decremental pedestals improved chromatic discrimination. Discrimination in the other three quadrants of cone space was unaffected by the incremental or decremental rod pedestals. A second experiment measured chromatic discrimination under conditions where cone pedestals were matched to the appearances of the incremental and decremental rod pedestals. Based on the matching pedestal data, discrimination then could be measured independently along the cardinal axes using either chromatic [L/(L + M); S/(L + M)] or luminance (L + M) pedestal components. The discrimination data altered by the rod pedestals were similar to chromatic cone pedestals for L/M increment discrimination, but similar to luminance cone pedestals for S decrement discrimination. The results indicated that the rod and cone signals combined differently in determining chromatic discrimination for different post-receptoral pathways.

  12. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  13. Pharmacological characterization of actin-binding (-)-doliculide.

    PubMed

    Foerster, Florian; Braig, Simone; Chen, Tao; Altmann, Karl-Heinz; Vollmar, Angelika M

    2014-09-15

    Natural compounds offer a broad spectrum of potential drug candidates against human malignancies. Several cytostatic drugs, which are in clinical use for decades, derive directly from natural sources or are synthetically optimized derivatives of natural lead structures. An eukaryote target molecule to which many natural derived anti-cancer drugs bind to is the microtubule network. Of similar importance for the cell is the actin cytoskeleton, responsible for cell movements, migration of cells and cytokinesis. Nature provides also a broad range of compounds directed against actin as intracellular target, but none of these actin-targeting compounds has ever been brought to clinical trials. One reason why actin-binding compounds have not yet been considered for further clinical investigations is that little is known about their pharmacological properties in cancer cells. Herein, we focused on the closer characterization of doliculide, an actin binding natural compound of marine origin in the breast cancer cell lines MCF7 and MDA-MB-231. We used fluorescence-recovery-after-photobleaching (FRAP) analysis to determine doliculide's early effects on the actin cytoskeleton and rhodamin-phalloidin staining for long-term effects on the actin CSK. After validating the disruption of the actin network, we further investigated the functional effects of doliculide. Doliculide treatment leads to inhibition of proliferation and impairs the migratory potential. Finally, we could also show that doliculide leads to the induction of apoptosis in both cell lines. Our data for the first time provide a closer characterization of doliculide in breast cancer cells and propagate doliculide for further investigations as lead structure and potential therapeutic option as actin-targeting compound.

  14. Thymosin beta4: actin regulation and more.

    PubMed

    Yarmola, Elena G; Klimenko, Evguenia S; Fujita, Go; Bubb, Michael R

    2007-09-01

    The intracellular function of thymosin beta(4) is not limited to simple sequestration of globular actin. Our recent studies revealed that thymosin beta(4) affects actin critical concentration and forms a ternary complex with actin and profilin. The consequences of this complex formation can be very significant. Our new data demonstrate that it is likely that profilin affects binding of thymosin beta(4) to actin in the ternary complex through allosteric changes in actin rather than through competition for the binding site. The N- and C-terminal thymosin beta(4) helices are known to be unstructured in aqueous solution and to adopt helical conformation in organic solvents or upon binding to actin. Osmolytes stabilize protein structure, and TMAO (trimethylamine N-oxide) specifically stabilizes hydrogen bonds. This increases affinity of intact thymosin beta(4) to actin significantly, but the increase is much less for thymosin beta(4) sulfoxide. Our data show that oxidation does not alter binding of profilin to form a ternary complex, and therefore it is very likely that there is no direct steric interference by methionine 6 of thymosin beta(4). Rather, since TMAO has little effect on thymosin beta(4) sulfoxide, this observation is consistent with the hypothesis that methionine oxidation prevents helix transition. The experiment with truncated versions of thymosin beta(4) also supports this hypothesis. Oxidation and formation of the helices are important for both intra- and extracellular properties of thymosin beta(4). We found that actin and, in lesser extent, profilin-actin complex protect thymosin beta(4) from oxidation.

  15. Kinetic neoclassical transport in the H-mode pedestal

    SciTech Connect

    Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A.; Burrell, K. H.; Grassie, J. S. de

    2014-07-15

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E{sub r}) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E{sub r} inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I{sub p} parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer.

  16. Kinetic neoclassical transport in the H-mode pedestal

    SciTech Connect

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; Ku, S.; deGrassie, J. S.; Grierson, B. A.

    2014-07-16

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Er inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.

  17. Control of bootstrap current in the pedestal region of tokamaks

    SciTech Connect

    Shaing, K. C.; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  18. Kinetic neoclassical transport in the H-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2014-07-16

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Ermore » inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.« less

  19. Observation of Pedestal Plasma Turbulence on EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Tao; Han, Xiang; Zhang, Shoubiao; Wang, Yumin; Liu, Zixi; Yang, Yao; Liu, Shaocheng; Shi, Nan; Ling, Bili; Li, Jiangang; The EAST Team

    2013-08-01

    Pedestal plasma turbulence was experimentally studied by microwave reflectometry on EAST tokamak. The characteristics of edge pedestal turbulence during dithering L-H transition, ELM-free H-mode phase and inter-ELM phase have recently been studied on EAST. An edge spatial structure of density fluctuation and its dithering temporal evolution is observed for the first time on the EAST tokamak during the L-H transition phase. A coherent mode usually appears during the ELM-free phase prior to the first ELM on EAST tokamak. The mode frequency gradually decreases as the pedestal evolves. Analysis shows that the coherent mode is in the pedestal region inside the separatrix. In plasma with type-III ELMs, a precursor mode before ELM is usually observed. The frequency of the precursor was initially about 150 kHz and gradually decreased till the next ELM. The mode amplitude increases or shows saturation before ELM. In the plasma with compound ELMs composed of high and low frequency ELMs, the precursor was also observed before the high frequency ELM while the harmonic oscillations with frequencies of 20 kHz, 40 kHz and 60 kHz appear before the low frequency ELM.

  20. 24. A SECTION OF OPEN BALUSTRADE AND AN INTERMEDIATE PEDESTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A SECTION OF OPEN BALUSTRADE AND AN INTERMEDIATE PEDESTAL (CENTERED ON A PYLON) OVER THE CENTRAL PORTIONS OF THE BRIDGE. THE WALKS ARE CONCRETE, WITH AN INTEGRAL CURB. THE ROADWAY IS ASPHALT. - Main Street Bridge, Spanning East Fork Whitewater River, Richmond, Wayne County, IN

  1. Placed on a Pedestal: Famous Faces in Clay

    ERIC Educational Resources Information Center

    Walkup, Nancy

    2010-01-01

    Artists have created portraits of people for thousands of years. In sculpture, a portrait of a person's face often includes the neck and part of the shoulders and chest. These artworks are called portrait busts. In this article, the author describes how her fifth-grade students created clay portrait busts on pedestal columns. The objectives are…

  2. Edge-localized mode avoidance and pedestal structure in I-mode plasmasa)

    NASA Astrophysics Data System (ADS)

    Walk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A.; Cziegler, I.

    2014-05-01

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n ¯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n ¯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of

  3. Global and pedestal confinement and pedestal structure in dimensionless collisionality scans of low-triangularity H-mode plasmas in JET-ILW

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Beurskens, M. N. A.; Saarelma, S.; Boom, J. E.; Delabie, E.; Flanagan, J.; Kempenaars, M.; Giroud, C.; Lomas, P.; Meneses, L.; Maggi, C. S.; Menmuir, S.; Nunes, I.; Rimini, F.; Stefanikova, E.; Urano, H.; Verdoolaege, G.; Contributors, JET

    2017-01-01

    A dimensionless collisionality scan in low-triangularity plasmas in the Joint European Torus with the ITER-like wall (JET-ILW) has been performed. The increase of the normalized energy confinement (defined as the ratio between thermal energy confinement and Bohm confinement time) with decreasing collisionality is observed. Moreover, at low collisionality, a confinement factor H98, comparable to JET-C, is achieved. At high collisionality, the low normalized confinement is related to a degraded pedestal stability and a reduction in the density-profile peaking. The increase of normalized energy confinement is due to both an increase in the pedestal and in the core regions. The improvement in the pedestal is related to the increase of the stability. The improvement in the core is driven by (i) the core temperature increase via the temperature-profile stiffness and by (ii) the density-peaking increase driven by the low collisionality. Pedestal stability analysis performed with the ELITE (edge-localized instabilities in tokamak equilibria) code has a reasonable qualitative agreement with the experimental results. An improvement of the pedestal stability with decreasing collisionality is observed. The improvement is ascribed to the reduction of the pedestal width, the increase of the bootstrap current and the reduction of the relative shift between the positions of the pedestal density and pedestal temperature. The EPED1 model predictions for the pedestal pressure height are qualitatively well correlated with the experimental results. Quantitatively, EPED1 overestimates the experimental pressure by 15-35%. In terms of the pedestal width, a correct agreement (within 10-15%) between the EPED1 and the experimental width is found at low collisionality. The experimental pedestal width increases with collisionality. Nonetheless, an extrapolation to low-collisionality values suggests that the width predictions from the KBM constraint are reasonable for ITER.

  4. Actin dynamics in Phytophthora infestans; rapidly reorganizing cables and immobile, long-lived plaques.

    PubMed

    Meijer, Harold J G; Hua, Chenlei; Kots, Kiki; Ketelaar, Tijs; Govers, Francine

    2014-06-01

    The actin cytoskeleton is a dynamic but well-organized intracellular framework that is essential for proper functioning of eukaryotic cells. Here, we use the actin binding peptide Lifeact to investigate the in vivo actin cytoskeleton dynamics in the oomycete plant pathogen Phytophthora infestans. Lifeact-eGFP labelled thick and thin actin bundles and actin filament plaques allowing visualization of actin dynamics. All actin structures in the hyphae were cortically localized. In growing hyphae actin filament cables were axially oriented in the sub-apical region whereas in the extreme apex in growing hyphae, waves of fine F-actin polymerization were observed. Upon growth termination, actin filament plaques appeared in the hyphal tip. The distance between a hyphal tip and the first actin filament plaque correlated strongly with hyphal growth velocity. The actin filament plaques were nearly immobile with average lifetimes exceeding 1 h, relatively long when compared to the lifetime of actin patches known in other eukaryotes. Plaque assembly required ∼30 s while disassembly was accomplished in ∼10 s. Remarkably, plaque disassembly was not accompanied with internalization and the formation of endocytic vesicles. These findings suggest that the functions of actin plaques in oomycetes differ from those of actin patches present in other organisms.

  5. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    PubMed Central

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; Nakayasu, Ernesto S.; Staiger, Christopher J.

    2017-01-01

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen. PMID:28129393

  6. Relative effects of increment and pedestal duration on the detection of intensity increments a

    PubMed Central

    Valente, Daniel L.; Patra, Harisadhan; Jesteadt, Walt

    2011-01-01

    The detection of a brief increment in the intensity of a longer duration pedestal is commonly used as a measure of intensity-resolution. Increment detection is known to improve with increasing duration of the increment and also with increasing duration of the pedestal, but the relative effects of these two parameters have not been explored in the same study. In several past studies of the effects of increment duration, pedestal duration was increased as increment duration increased. In the present study, increment and pedestal duration were independently manipulated. Increment-detection thresholds were determined for four subjects with normal-hearing using a 500- or 4000-Hz pedestal presented at 60 dB sound pressure level (SPL). Increment durations were 10, 20, 40, 80, 160, and 320 ms. Pedestal durations were 20, 40, 80, 160, and 320 ms. Each increment duration was combined with all pedestals of equal or greater duration. Multiple-regression analyses indicate that increment detection under these conditions is determined primarily by pedestal duration. Follow-up experiments ruled out effects of off-frequency listening or overshoot. The results suggest that effects of increment duration have been confounded by effects of pedestal duration in studies that co-varied increment and pedestal duration. Implications for models of temporal integration are discussed. PMID:21476665

  7. H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET

    SciTech Connect

    Beurskens, M. N. A.; Lomas, P.; Saarelma, S.; Scannell, R.; Balboa, I.; Brix, M.; Flanagan, J.; Giroud, C.; Kempenaars, M.; Maddison, G.; McDonald, D.; Schneider, P. A.; Wolfrum, E.; Maggi, C. F.; Frassinetti, L.; Nunes, I.

    2011-05-15

    Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width {Delta}/a {proportional_to} {rho}*{sup 1/2} to {rho}* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the ExB velocity. In the multidevice experiment where {rho}* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with {rho}* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}. All three devices show a scaling of the pedestal width in normalised poloidal flux as {Delta}{sub {psi} {proportional_to}} {beta}{sub p}{sup 1/2}, as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.

  8. Advancing the predictive capability for pedestal structure through experiment and modeling

    NASA Astrophysics Data System (ADS)

    Hughes, Jerry

    2012-10-01

    Prospects for predictive capability of the edge pedestal in magnetic fusion devices have been dramatically enhanced due to recent research, which was conducted jointly by the US experimental and theory communities. Studies on the C-Mod, DIII-D and NSTX devices have revealed common features, including an upper limit on pedestal pressure in ELMy H-mode determined by instability to peeling-ballooning modes (PBMs), and pedestal width which scales approximately as βpol^1/2. The width dependence is consistent with a pedestal regulated by kinetic ballooning modes (KBMs). Signatures of KBMs have been actively sought both in experimental fluctuation measurements and in gyrokinetic simulations of the pedestal, with encouraging results. Studies of the temporal evolution of the pedestal during the ELM cycle reveal a tendency for the pressure gradient to saturate in advance of the ELM, with a steady growth in the pedestal width occurring prior to the ELM crash, which further supports a model for KBMs and PBMs working together to set the pedestal structure. Such a model, EPED, reproduces the pedestal height and width to better than 20% accuracy on existing devices over a range of more than 20 in pedestal pressure. Additional transport processes are assessed for their impact on pedestal structure, in particular the relative variation of the temperature and density pedestals due, for example, to differences in edge neutral sources. Such differences are observed in dimensionlessly matched discharges on C-Mod and DIII-D, despite their having similar calculated MHD stability and similar edge fluctuations. In certain high performance discharges, such as EDA H-mode, QH-mode and I-mode, pedestal relaxation is accomplished by continuous edge fluctuations, avoiding peeling-ballooning instabilities and associated ELMs. Progress in understanding these regimes will be reported.

  9. A Gyrokinetic Perspective on the JET-ILW Pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, David; Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant; Liu, Xing

    2016-10-01

    Simulations using the GENE code based on JET-ILW profiles and equilibria quantitatively capture experimental transport levels for a representative experimental discharge and qualitatively recover the major experimental trends. Microtearing turbulence is a major transport mechanism for the low-temperature pedestals characteristic of unseeded JET-ILW discharges. At higher temperatures, we identify electrostatic ITG-like transport of a type that is strongly shear-suppressed on smaller machines. Consistent with observations, this transport mechanism is substantially reduced by the presence of a low-Z impurity (e.g., carbon or nitrogen at the level of Z-effective 2). Multiple transport mechanisms, including ITG, ETG, microtearing modes, and neoclassical transport are found to play important roles depending on the pedestal parameters. The picture that emerges involves several parameters-notably, rho*, Z-effective, pedestal top temperature, and separatrix density-mediating the relative roles of these transport mechanisms. This study maps out important regions of this parameter space, providing insights that may point to optimal physical regimes that can enable the recovery of high temperatures on JET.

  10. Gyrokinetic simulations of microturbulence in DIII-D tokamak pedestal

    NASA Astrophysics Data System (ADS)

    Holod, Ihor; Fulton, Daniel; Taimourzadeh, Sam; Lin, Zhihong; Nazikian, Raffi; Spong, Donald

    2015-11-01

    The characteristics of H-mode pedestal are generally believed to be constrained by current-driven peeling-ballooning modes and pressure-driven instabilities, such as kinetic ballooning mode (KBM). In this work we use global gyrokinetic code (GTC) to identify and study the edge pressure-driven instabilities in the H-mode pedestal using realistic geometry and plasma profiles of DIII-D shot 131997. In our simulations we observe the KBM mode marginally dominant in the steep gradient region (ψN = 0 . 98), in the range of kθ ~ 1 cm-1 which corresponds to the most unstable mode number in the nonlinearly saturated state. For shorter wavelengths the trapped electron mode becomes dominant since its linear growth rate increases with the mode number, while the KBM gets saturated. In the pedestal top region (ψN = 0 . 95) the ITG dominates. Resonant magnetic perturbations (RMP) are widely applied for ELM mitigation. During RMP suppression, the increase of edge turbulence is often observed. To understand this phenomena we use gyrokinetic simulations to address the direct effect of magnetic perturbations on the microturbulence. Simulations with 3D equilibrium reconstructed by VMEC code have been compared with toroidally averaged equilibrium, using identical pressure profiles. Work supported by DOE grant DE-SC0010416 and by General Atomics subcontract.

  11. Scaling studies of the H-mode pedestal

    SciTech Connect

    Groebner, R.J.; Osborne, T.H.

    1998-01-01

    The structure and scaling of the H-mode pedestal are examined for discharges in the DIII-D tokamak. For typical conditions, the pedestal values of the ion and electron temperatures T{sub i} and T{sub e} are comparable. Measurements of main ion and C{sup 6+} profiles indicate that the ion pressure gradient in the barrier is 50%--100% of the electron pressure gradient for deuterium plasmas. The magnitude of the pressure gradient in the barrier often exceeds the predictions of infinite-n ballooning mode theory by a factor of two. Moreover, via the bootstrap current, the finite pressure gradient acts to entirely remove ballooning stability limits for typical discharges. For a large dataset, the width of the pressure barrier {delta} is best described by the dimensionless scaling {delta}/R {proportional_to} ({beta}{sub pol}{sup ped}){sup 0.4} where ({beta}{sub pol}{sup ped}) is the pedestal value of poloidal beta and R is the major radius. Scalings based on the poloidal ion gyroradius or the edge density gradient do not adequately describe overall trends in the data set and the propagation of the pressure barrier observed between edge-localized modes. The width of the T{sub i} barrier is quite variable and is not a good measure of the width of the pressure barrier.

  12. Degradation of picosecond temporal contrast of Ti:sapphire lasers with coherent pedestals.

    PubMed

    Khodakovskiy, Nikita; Kalashnikov, Mikhail; Gontier, Emilien; Falcoz, Franck; Paul, Pierre-Mary

    2016-10-01

    Recompressed pulses from Ti:sapphire chirped-pulse lasers are accompanied by a slowly decaying post-pulse pedestal that is coherent with the main pulse. The pedestal typically consists of numerous pulses with temporal separation in the picosecond range. The source of this artifact lies in the Ti:sapphire active medium itself, both in the Kerr-lens mode-locked oscillator and in subsequent amplifiers. In the presence of substantial self-phase modulation, after recompression the post-pedestal generates a mirror-symmetric pre-pulse pedestal. This pedestal severely degrades the leading edge of the output pulse. This degradation is far more limiting than the original post-pedestal and severely lowers the achievable temporal contrast.

  13. Correlation of Density Pedestal Width and Neutral Penetration

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Nevins, W. M.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.

    2003-10-01

    Pedestal studies in DIII-D and C-Mod find a good correlation between the width of the H-mode density barrier and the neutral penetration length.[1][2] These results suggest that the width may be set by the combined effects of neutral and plasma transport. This paper is a report on fluid simulations of boundary plasma using BOUT code [3] with neutral source added. Thus both neutral and plasma physics are treated. The plasma transport is self-consistently driven by boundary turbulence due to the resistive X-point mode, while neutral is described by a simple fluid diffusive model. The plasma profiles are evolved on the same time scale as the turbulence for the given heat source from the core plasma and particle source from the neutrals. For prescribed neutral profiles, we find the formation of a density pedestal inside the separatrix in the L-mode even though the calculated plasma diffusion coefficients are almost radially constant and without the formation of a temperature pedestal. These results support the hypothesis that particle fueling can provide the dominant control for the size of the H-mode density barrier. The width of the density barrier, and its relationship to pedestal height and neutral penetration length at the midplane, will be given by using hyperbolic-tangent fit to the simulation data. [1] R.J.Groebner, M.A.Mahdavi, A.W.Leonard, 19th IAEA Fusion Energy Conference(Lyon, France, 14 to 19 October 2002), IAEA-CN-94/EX/C2-3. [2] D.Mossessian, J.W.Hughes, M.Greenwald, et al., ``Local dimensionless identity method as a tool for studying H-mode pedestal'', The 9th Joint US-European TTF workshop (Madison, Wisconsin, April 2nd - 5th, 2003). [3] X.Q.Xu, R.H.Cohen, T.D.Rognlien and J.R.Myra, Physics of Plasma, Vol. 7, 1951-1958 (2000).

  14. Role of Actin Polymerization in Cell Locomotion: Molecules and Models

    PubMed Central

    Bearer, E. L.

    2015-01-01

    Actin filaments forming at the anterior margin of a migrating cell are essential for the formation of filopodia, lamellipodia, and pseudopodia, the “feet” that the cell extends before it. These structures in turn are required for cell locomotion. Yet the molecular nature of the “nucleator” that seeds the polymerization of actin at the leading edge is unknown. Recent advances, including video microscopy of actin dynamics, discovery of proteins unique to the leading edge such as ponticulin, the Mab 2E4 antigen, and ABP 120, and novel experimental models of actin polymerization such as the actin-based movements of intracellular parasites, promise to shed light on this problem in the near future. PMID:8323743

  15. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast

    PubMed Central

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  16. Dynamical Evolution of Pedestal Parameters in ELMy H-mode in the National Spherical Torus Experiment

    SciTech Connect

    Diallo, A.; Maingi, Rajesh; Kubota, S.; Sontag, Aaron C; Osborne, T.; Podesta, M.; Bell, R. E.; LeBlanc, B. P.; Menard, J.; Sabbagh, S. A.

    2011-01-01

    Characterizations of the pedestal parameter dynamics throughout the edge localized mode (ELM) cycles are performed on the National Spherical Torus Experiment (NSTX, (Ono et al 2000 Nucl. Fusion 40 557)). A clear buildup of the pedestal height between ELMs is observed for three different plasma currents. This buildup tends to saturate at low and medium plasma currents. Similarly, the pedestal width increases with no clear evidence of saturation during an ELM cycle. The maximum pedestal gradient increases as a function of plasma current, reaches a nominal value after the ELM crash, and remains constant until the end of the ELM cycle. The pedestal height just prior to the onset of ELM is shown to increase quadratically with plasma current. The pedestal width (Delta) scales as Delta = 0.17 root beta(ped)(theta). with the poloidal beta at the top of the pedestal. Coherent density fluctuations strongly increasing at the plasma edge are observed to be maximum after the ELM crash and to decay during the rest of the ELM cycle. Finally, the evolution of the pedestal height and width during the ELM cycle as well as the scaling with I(p) of the pedestal pressure prior to the onset ELM are found to be qualitatively consistent with the peeling-ballooning theory.

  17. Dynamical Evolution of Pedestal Parameters in ELMy H-mode in the National Spherical Torus Experiment

    SciTech Connect

    Diallo, A; Kubota, S; Sontag, A; Osborne, T; Podesta, M; Bell, R E; LeBlanc, B P; Menard, J

    2011-07-27

    Characterizations of the pedestal parameter dynamics throughout the edge localized modes(ELM) cycles are performed on the National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]). A clear buildup of the pedestal height is observed between ELMs for three di erent plasma currents, which tends to saturate prior to the onset of ELM at low and medium plasma current. Similarly, the pedestal width increases with no clear evidence of saturation during an ELM cycle. The maximum pedestal gradient increases as a function of plasma current, reaches a nominal value after the ELM crash, and remains constant until the end of the ELM cycle. The pedestal height just prior to the onset of ELM is shown to increase quadratically with plasma current. The pedestal width Δ is proportional to the square-root of the poloidal Β at the top of the pedestal. Coherent density uctuations strongly increasing at the plasma edge are observed to be maximum after the ELM crash and to decay during the rest of the ELM cycle. Finally, the pedestal parameters evolution during the ELM cycle as well as the scaling with Ip of the pedestal pressure prior to the onset ELM are found to be qualitatively consistent with the peeling ballooning theory.

  18. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  19. The centrosome is an actin-organizing center

    PubMed Central

    Farina, Francesca; Gaillard, Jérémie; Guérin, Christophe; Couté, Yohann; Sillibourne, James; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing center. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) appeared to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin filament-organizing center. PMID:26655833

  20. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells

    PubMed Central

    Dugina, Vera; Alieva, Irina; Khromova, Natalya; Kireev, Igor; Gunning, Peter W.; Kopnin, Pavel

    2016-01-01

    Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of β-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells. PMID:27683037

  1. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells.

    PubMed

    Dugina, Vera; Alieva, Irina; Khromova, Natalya; Kireev, Igor; Gunning, Peter W; Kopnin, Pavel

    2016-11-08

    Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1. EB1-positive comet distribution analysis and quantification have shown more effective microtubule growth in the absence of β-actin. Our data represent the first demonstration that microtubule +TIPs protein EB1 interacts mainly with γ-cytoplasmic actin in epithelial cells.

  2. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    PubMed

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.

  3. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  4. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  5. Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER

    NASA Astrophysics Data System (ADS)

    Groebner, R. J.; Chang, C. S.; Hughes, J. W.; Maingi, R.; Snyder, P. B.; Xu, X. Q.; Boedo, J. A.; Boyle, D. P.; Callen, J. D.; Canik, J. M.; Cziegler, I.; Davis, E. M.; Diallo, A.; Diamond, P. H.; Elder, J. D.; Eldon, D. P.; Ernst, D. R.; Fulton, D. P.; Landreman, M.; Leonard, A. W.; Lore, J. D.; Osborne, T. H.; Pankin, A. Y.; Parker, S. E.; Rhodes, T. L.; Smith, S. P.; Sontag, A. C.; Stacey, W. M.; Walk, J.; Wan, W.; Wang, E. H.-J.; Watkins, J. G.; White, A. E.; Whyte, D. G.; Yan, Z.; Belli, E. A.; Bray, B. D.; Candy, J.; Churchill, R. M.; Deterly, T. M.; Doyle, E. J.; Fenstermacher, M. E.; Ferraro, N. M.; Hubbard, A. E.; Joseph, I.; Kinsey, J. E.; LaBombard, B.; Lasnier, C. J.; Lin, Z.; Lipschultz, B. L.; Liu, C.; Ma, Y.; McKee, G. R.; Ponce, D. M.; Rost, J. C.; Schmitz, L.; Staebler, G. M.; Sugiyama, L. E.; Terry, J. L.; Umansky, M. V.; Waltz, R. E.; Wolfe, S. M.; Zeng, L.; Zweben, S. J.

    2013-09-01

    Joint experiment/theory/modelling research has led to increased confidence in predictions of the pedestal height in ITER. This work was performed as part of a US Department of Energy Joint Research Target in FY11 to identify physics processes that control the H-mode pedestal structure. The study included experiments on C-Mod, DIII-D and NSTX as well as interpretation of experimental data with theory-based modelling codes. This work provides increased confidence in the ability of models for peeling-ballooning stability, bootstrap current, pedestal width and pedestal height scaling to make correct predictions, with some areas needing further work also being identified. A model for pedestal pressure height has made good predictions in existing machines for a range in pressure of a factor of 20. This provides a solid basis for predicting the maximum pedestal pressure height in ITER, which is found to be an extrapolation of a factor of 3 beyond the existing data set. Models were studied for a number of processes that are proposed to play a role in the pedestal ne and Te profiles. These processes include neoclassical transport, paleoclassical transport, electron temperature gradient turbulence and neutral fuelling. All of these processes may be important, with the importance being dependent on the plasma regime. Studies with several electromagnetic gyrokinetic codes show that the gradients in and on top of the pedestal can drive a number of instabilities.

  6. Axonal actin in action: Imaging actin dynamics in neurons.

    PubMed

    Ladt, Kelsey; Ganguly, Archan; Roy, Subhojit

    2016-01-01

    Actin is a highly conserved, key cytoskeletal protein involved in numerous structural and functional roles. In neurons, actin has been intensively investigated in axon terminals-growth cones-and dendritic spines, but details about actin structure and dynamics in axon shafts have remained obscure for decades. A major barrier in the field has been imaging actin. Actin exists as soluble monomers (G-actin) as well as actin filaments (F-actin), and labeling actin with conventional fluorescent probes like GFP/RFP typically leads to a diffuse haze that makes it difficult to discern kinetic behaviors. In a recent publication, we used F-actin selective probes to visualize actin dynamics in axons, resolving striking actin behaviors that have not been described before. However, using these probes to visualize actin dynamics is challenging as they can cause bundling of actin filaments; thus, experimental parameters need to be strictly optimized. Here we describe some practical methodological details related to using these probes for visualizing F-actin dynamics in axons.

  7. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    SciTech Connect

    Walk, J. R. Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A; Cziegler, I.

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  8. In-out impurity density asymmetry in the pedestal region of Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Lipschultz, B.; Theiler, C.; the Alcator C-Mod Team

    2013-12-01

    Measurements are presented of the boron (B5+) density in the pedestal region at the low-field side (LFS) midplane and the high-field side (HFS) midplane of Alcator C-Mod. In H-mode plasmas, a large (≳10x) in-out asymmetry in impurity density forms, with larger densities at the HFS. In contrast, there is no impurity density asymmetry in L-mode or I-mode plasmas. A comparison of pedestal parameters in H-mode plasmas shows that the HFS impurity density pedestal width and position remain fairly fixed over a range of plasma conditions, while the LFS pedestal width widens, and the pedestal position shifts in towards the core as the plasma current is lowered, indicating a change in the underlying transport.

  9. Collapse of density pedestal by giant ELM on JT-60U

    NASA Astrophysics Data System (ADS)

    Oyama, N.; Shinohara, K.; Kamada, Y.; Miura, Y.; Oikawa, T.; Takeji, S.

    2001-05-01

    In JT-60U ELMy H-mode discharges, the detailed behaviour of giant (type I) ELMs was measured using a heterodyne reflectometer system in order to understand the collapse mechanism of the pedestal structure and consequences on the core/edge plasma. The phase signal of the reflectometer exhibits the movement of the cutoff layer (density layer) due to the collapse of the pedestal in a density profile by an ELM. An ELM event can be classified into a precursor phase, collapse phase, recovery phase and a relaxation phase. A certain density layer measured near the shoulder of the pedestal moves about 7 cm inside the plasma in the collapse phase. The precursor oscillation in a pedestal density and the relationship between the collapse of the pedestal structure and a Dα burst are also studied.

  10. Differences in the H-mode pedestal width of temperature and density

    NASA Astrophysics Data System (ADS)

    Schneider, P. A.; Wolfrum, E.; Groebner, R. J.; Osborne, T. H.; Beurskens, M. N. A.; Dunne, M. G.; Ferron, J. R.; Günter, S.; Kurzan, B.; Lackner, K.; Snyder, P. B.; Zohm, H.; the ASDEX Upgrade Team; the DIII-D Team; EFDA Contributors, JET

    2012-10-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates ΨN and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of \\Delta_{T_\\rme} and \\Delta_{n_\\rme} . In dimensionless form the density pedestal width in ΨN scales with \\rho^{0.6}_{i\\star} , the temperature pedestal width with \\beta_p,ped^{0.5} . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal.

  11. Curvature and torsion in growing actin networks

    PubMed Central

    Shaevitz, Joshua W; Fletcher, Daniel A

    2011-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043

  12. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  13. Theoretical explanation for strong poloidal impurity asymmetry in tokamak pedestals

    NASA Astrophysics Data System (ADS)

    Espinosa, Silvia

    2016-10-01

    Stronger impurity density in-out poloidal asymmetries than predicted by the most comprehensive neoclassical models have been measured in H-mode tokamak pedestals during the last decade. However, these pioneering theories neglect the impurity diamagnetic drift, while recent measurements indicate that it can be of the same order as the ExB drift that is retained. In order to keep both drifts self-consistently, stronger radial gradients of the impurity density must be allowed. As a result, radial impurity flow effects need to be included for the first time. These effects substantially alter the parallel impurity flow. The resulting modification in the impurity friction with the banana regime background ions then allows stronger poloidal variation of the impurity density, temperature and potential. Even the six-fold high field side accumulation of boron density measured on Alcator C-Mod can be explained without invoking anomalous transport. Moreover, the potential can no longer be assumed to be a flux function since the impurity density variation gives a poloidally varying potential that results in strong poloidal variation of the radial electric field. The fact that the magnitude of the negative radial electric field and the impurity temperature are both larger on the low field side is also correctly predicted. Finally, this pedestal neoclassical model with radial flows may provide insight on how to control impurity accumulation in JET. Supported by DOE Grant DE-FG0291ER54109 and La Caixa Fellowship.

  14. Removal of pedestals and directional ambiguity of optical anemometer signals.

    PubMed

    Durst, F; Zaré, M

    1974-11-01

    Laser Doppler anemometry permits, in principle, the measurement of both magnitude and direction of components of a particle's velocity vector. Most exiting anemometers, however, permit measurements only with a directional ambiguity of 180 degrees , resulting in errors in certain flow fields. Available methods of eliminating the directional ambiguity of Laser Doppler anemometers are reviewed, covering frequency shifting of the incident and scattered light beams, the use of beams with different polarization properties, and employment of multicolor laser beams. The advantages and disadvantages of existing methods are summarized, and suggestions for alterations are made. Different techniques used to remove the pedestal of laser Doppler anemometer signals are also reviewed. Optical techniques should be employed in any advanced optical anemometer system to avoid dynamic range limitations by electronic bandpass filters. Suggestions are made for advanced optical anemometers employing multielement avalanche photodiodes that can be used for simultaneous measurements of two velocity components. These anemometers incorporate devices to sense the direction of the velocity components and to eliminate optically the pedestal of laser Doppler signals.

  15. Bacillus anthracis Edema Toxin Impairs Neutrophil Actin-Based Motility▿

    PubMed Central

    Szarowicz, Sarah E.; During, Russell L.; Li, Wei; Quinn, Conrad P.; Tang, Wei-Jen; Southwick, Frederick S.

    2009-01-01

    Inhalation anthrax results in high-grade bacteremia and is accompanied by a delay in the rise of the peripheral polymorphonuclear neutrophil (PMN) count and a paucity of PMNs in the infected pleural fluid and mediastinum. Edema toxin (ET) is one of the major Bacillus anthracis virulence factors and consists of the adenylate cyclase edema factor (EF) and protective antigen (PA). Relatively low concentrations of ET (100 to 500 ng/ml of PA and EF) significantly impair human PMN chemokinesis, chemotaxis, and ability to polarize. These changes are accompanied by a reduction in chemoattractant-stimulated PMN actin assembly. ET also causes a significant decrease in Listeria monocytogenes intracellular actin-based motility within HeLa cells. These defects in actin assembly are accompanied by a >50-fold increase in intracellular cyclic AMP and a >4-fold increase in the phosphorylation of protein kinase A. We have previously shown that anthrax lethal toxin (LT) also impairs neutrophil actin-based motility (R. L. During, W. Li, B. Hao, J. M. Koenig, D. S. Stephens, C. P. Quinn, and F. S. Southwick, J. Infect. Dis. 192:837-845, 2005), and we now find that LT combined with ET causes an additive inhibition of PMN chemokinesis, polarization, chemotaxis, and FMLP (N-formyl-met-leu-phe)-induced actin assembly. We conclude that ET alone or combined with LT impairs PMN actin assembly, resulting in paralysis of PMN chemotaxis. PMID:19349425

  16. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  17. Cofilin is a Component of Intranuclear and Cytoplasmic Actin Rods Induced in Cultured Cells

    NASA Astrophysics Data System (ADS)

    Nishida, Eisuke; Iida, Kazuko; Yonezawa, Naoto; Koyasu, Shigeo; Yahara, Ichiro; Sakai, Hikoichi

    1987-08-01

    Incubation of cultured cells under specific conditions induces a dramatic change in the actin organization: induction of intranuclear and/or cytoplasmic actin rods (actin paracrystal-like intracellular structures). We have found that cofilin, a 21-kDa actin-binding protein, is a component of these rods. Antibodies directed against cofilin labeled intranuclear actin rods induced in cells treated with dimethyl sulfoxide or exposed to heat shock and also labeled cytoplasmic actin rods induced in cells incubated in specific salt buffers. Moreover, we found that these actin rods are not stained with fluorescent phalloidin derivatives at all and appear to be right-handed helices, different from straight bundles of F-actin such as stress fibers. In vitro experiments revealed that cofilin and phalloidin compete with each other for binding to F-actin. Since cofilin and phalloidin have the ability to stoichiometrically bind actin molecule in the filament in vitro, the above results seem to suggest that cofilin directly binds to actin molecule in nearly an equimolar ratio in these rods. We call these rods ``actin/cofilin rods.''

  18. Actin-dependent propulsion of endosomes and lysosomes byrecruitment of n-wasp

    SciTech Connect

    Taunton J; Rowning BA; Coughlin ML; Wu M; Moon RT; Mitchison TJ; Larabell CA

    2000-02-07

    We examined the spatial and temporal control of actin assembly in living Xenopus eggs. Within minutes of egg activation,dynamic actin-rich comet tails appeared on a subset of cytoplasmic vesicles that were enriched in protein kinase C (PKC), causing the vesicles to move through the cytoplasm. Actin comet tail formation in vivo was stimulated by the PKC activator phorbol myristate acetate (PMA),and this process could be reconstituted in a cell-free system. We used this system to define the characteristics that distinguish vesicles associated with actin comet tails from other vesicles in the extract. We found that the protein, N-WASP, was recruited to the surface of every vesicle associated with an actin comet tail, suggesting that vesicle movement results from actin assembly nucleated by the Arp2/3 complex, the immediate downstream target of N-WASP, The motile vesicles accumulated the dye acridine orange, a marker for endosomes and lysosomes. Furthermore, vesicles associated with actin comet tails had the morphological features of multivesicular endosomes as revealed by electron microscopy. Endosomes and lysosomes from mammalian cells preferentially nucleated actin assembly and moved in the Xenopus egg extract system. These results define endosomes and lysosomes as recruitment sites for the actin nucleation machinery and demonstrate that actin assembly contributes to organelle movement. Conversely, by nucleating actin assembly, intracellular membranes may contribute to the dynamic organization of the actin cytoskeleton.

  19. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    PubMed

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  20. Polycation induced actin bundles.

    PubMed

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder.

  1. Villin severing activity enhances actin-based motility in vivo.

    PubMed

    Revenu, Céline; Courtois, Matthieu; Michelot, Alphée; Sykes, Cécile; Louvard, Daniel; Robine, Sylvie

    2007-03-01

    Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.

  2. Villin Severing Activity Enhances Actin-based Motility In Vivo

    PubMed Central

    Revenu, Céline; Courtois, Matthieu; Michelot, Alphée; Sykes, Cécile; Louvard, Daniel

    2007-01-01

    Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition. PMID:17182858

  3. Growing actin networks regulated by obstacle size and shape

    NASA Astrophysics Data System (ADS)

    Gong, Bo; Lin, Ji; Qian, Jin

    2017-01-01

    Growing actin networks provide the driving force for the motility of cells and intracellular pathogens. Based on the molecular-level processes of actin polymerization, branching, capping, and depolymerization, we have developed a modeling framework to simulate the stochastic and cooperative behaviors of growing actin networks in propelling obstacles, with an emphasis on the size and shape effects on work capacity and filament orientation in the growing process. Our results show that the characteristic size of obstacles changes the protrusion power per unit length, without influencing the orientation distribution of actin filaments in growing networks. In contrast, the geometry of obstacles has a profound effect on filament patterning, which influences the orientation of filaments differently when the drag coefficient of environment is small, intermediate, or large. We also discuss the role of various parameters, such as the aspect ratio of obstacles, branching rate, and capping rate, in affecting the protrusion power of network growth.

  4. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    SciTech Connect

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  5. Preservation of layered paleodeposits in high-latitude pedestal craters on Mars

    NASA Astrophysics Data System (ADS)

    Kadish, Seth J.; Head, James W.

    2011-06-01

    An outstanding question in Mars' climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions.

  6. Characterization of the Pedestal in I-Mode Plasmas on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Walk, J. R.; Hughes, J. W.; Terry, J. L.; Hubbard, A. E.; Whyte, D. G.; White, A. E.; Marmar, E. S.; Rice, J. E.; Churchill, R. M.; Theiler, C.; Labombard, B.; Brunner, D.; Reinke, M. L.; Dominguez, A.; Sung, C.

    2012-10-01

    I-mode is an improved energy confinement regime on C-Mod, notably featuring an edge temperature pedestal without the accompanying density pedestal found in H-mode operation. I-mode has been shown to be capable of stationary operation, with the mode sustained for ˜10 energy confinement times, and to have a pedestal naturally lacking large ELMs. Combined with comparable performance to H-mode operation and weaker degradation with input power, this makes I-modes potentially favorable as a reactor regime. A full characterization using the suite of high-resolution edge diagnostics on C-Mod of the pedestal in reversed-field, lower-single-null I-modes (therefore with the ion ∇B drift away from the x-point) is presented here. The presented discharges primarily feature detailed scans of plasma current and ICRF heating power at several density values. The pedestal structure found in these I-modes is also contrasted with previous studies of the pedestal in EDA and ELMy H-modes, particularly potential scalings with βp,ped consistent with the KBM-limited pedestals found in these H-modes.

  7. Baseline neoclassical scaling law on H-mode pedestal width from XGC0 kinetic simulation

    NASA Astrophysics Data System (ADS)

    Park, Gunyoung; Chang, C. S.; Ku, S.

    2009-11-01

    In the H-mode pedestal before the ELM onset, nonlocal neoclassical self-organization is an important physical effect, to set the baseline pedestal width scaling law. Deviation from the neoclassical scaling will define the anomalous scaling. The neoclassical self-organization includes effects from the self-consistent radial electric field shear, strong magnetic field shear, ion-orbit loss across the last closed magnetic surface, finite ion banana width, particle source from neutral ionization, heat flux from the core plasma, and collisional transport. XGC0 code is used to perform an inter-machine study of the neoclassical pedestal scaling law between two representative devices DIII-D (low-B, low collisionality) and C- Mod (high-B, high collisionality). Anomalous scaling component in the experimental pedestal width data will be separated out from the neoclassical component. Prediction for ITER pedestal will be attempted based upon the combined neoclassical (theoretical) and anomalous (empirical) scaling laws obtained in this study. This ion-electron study indicates that the neoclassical pedestal width is broader than the previous ion only study results, closer to experimental pedestal width.

  8. Pedestal shape, stability and inter-ELM evolution for different main ion species in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Laggner, Florian M.

    2016-10-01

    In tokamak plasmas with different main ion species as hydrogen isotopes or helium, a change of confinement occurs, known as isotope effect. To identify the processes defining the pedestal structure and evolution, experiments comparing hydrogen (H), deuterium (D) and helium (He) plasmas have been performed. Their goal was to match the pedestal top electron density and temperatures and compare the pedestal shape and stability. A factor of almost 10 higher gas puff as well as a factor of 2 higher heating power were required in H to achieve the same pedestal top values as in the D reference. While the pedestal electron temperature profiles do not differ, the density profile in H has shallower gradients. These can be explained by a lower particle confinement in H, if the ionization source profile is assumed to be similar. In He plasmas owing to the larger effective charge, the stored energy at similar pedestal top electron density is roughly a factor of 1.5 smaller than in the references, leading to the absence of ELMs. In summary the experimental results suggest different particle and energy confinement for different main ion species, however, peeling-ballooning theory can sufficiently describe the pedestal stability and ELM behavior. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053.

  9. RefilinB (FAM101B) targets FilaminA to organize perinuclear actin networks and regulates nuclear shape

    PubMed Central

    Gay, Olivia; Gilquin, Benoît; Nakamura, Fumihiko; Jenkins, Zandra A.; McCartney, Rosannah; Krakow, Deborah; Deshiere, Alexandre; Assard, Nicole; Hartwig, John H.; Robertson, Stephen P.; Baudier, Jacques

    2011-01-01

    The intracellular localization and shape of the nucleus plays a central role in cellular and developmental processes. In fibroblasts, nuclear movement and shape are controlled by a specific perinuclear actin network made of contractile actin filament bundles called transmembrane actin-associated nuclear (TAN) lines that form a structure called the actin cap. The identification of regulatory proteins associated with this specific actin cytoskeletal dynamic is a priority for understanding actin-based changes in nuclear shape and position in normal and pathological situations. Here, we first identify a unique family of actin regulators, the refilin proteins (RefilinA and RefilinB), that stabilize specifically perinuclear actin filament bundles. We next identify the actin-binding filamin A (FLNA) protein as the downstream effector of refilins. Refilins act as molecular switches to convert FLNA from an actin branching protein into one that bundles. In NIH 3T3 fibroblasts, the RefilinB/FLNA complex organizes the perinuclear actin filament bundles forming the actin cap. Finally, we demonstrate that in epithelial normal murine mammary gland (NmuMG) cells, the RefilinB/FLNA complex controls formation of a new perinuclear actin network that accompanies nuclear shape changes during the epithelial–mesenchymal transition (EMT). Our studies open perspectives for further functional analyses of this unique actin-based network and shed light on FLNA function during development and in human syndromes associated with FLNA mutations. PMID:21709252

  10. Validation of the cuff pedestal technique for rapid eye movement sleep (REMs) deprivation by electrophysiological recordings.

    PubMed

    Hilakivi, I; Peder, M; Elomaa, E; Johansson, G

    1984-06-01

    Twenty-four-hour recordings of electrophysiological correlates of the sleep-waking cycle in the rat were performed during different stages of cuff pedestal treatment. It was found that rats adapted to live on pedestals with the cuff raised displayed undisturbed patterns of sleep and wakefulness. Lowering the cuff for three days resulted in virtually total disappearance of rapid eye movement sleep (REMs), while slow wave sleep (SWs) was only slightly reduced. Raising the cuff induced a prominent rebound increase of REMs. These results accord with data obtained by means of the conventional flowerpot procedure and corroborate the validity of the cuff pedestal technique.

  11. Impact of zonal flows on edge pedestal collapse

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kaang, Helen H.; Kim, S. S.; Rhee, T.; Singh, R.; Hahm, T. S.

    2017-02-01

    We perform a computational study of the role of zonal flows in edge pedestal collapse on the basis of a nonlinear three-field reduced magnetohydrodynamic (MHD) model. A dramatic change of dynamics takes place when ideal ballooning modes are completely stabilized. Analyses show that a new instability is developed due to a strong excitation of zonal vorticity, resulting in a series of secondary crashes. The presence of subsidiary bursts after a main crash increases the effective crash time and energy loss. These simulation results resemble the behavior of compound edge localized modes (ELMs). Analyses in this paper indicate that a complete understanding of ELM crash dynamics requires the self-consistent inclusion of nonlinear zonal flows-MHD interaction and transport physics.

  12. ECE-imaging of the H-mode pedestal (invited).

    PubMed

    Tobias, B J; Austin, M E; Boom, J E; Burrell, K H; Classen, I G J; Domier, C W; Luhmann, N C; Nazikian, R; Snyder, P B

    2012-10-01

    A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T(e) and n(e) contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.

  13. ECE-imaging of the H-mode pedestal (invited)

    SciTech Connect

    Tobias, B. J.; Nazikian, R.; Austin, M. E.; Boom, J. E.; Classen, I. G. J.; Burrell, K. H.; Snyder, P. B.; Domier, C. W.; Luhmann, N. C. Jr.

    2012-10-15

    A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T{sub e} and n{sub e} contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.

  14. Directed actin assembly and motility.

    PubMed

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  15. Cytoplasmic Actin Is an Extracellular Insect Immune Factor which Is Secreted upon Immune Challenge and Mediates Phagocytosis and Direct Killing of Bacteria, and Is a Plasmodium Antagonist

    PubMed Central

    Sandiford, Simone L.; Dong, Yuemei; Pike, Andrew; Blumberg, Benjamin J.; Bahia, Ana C.; Dimopoulos, George

    2015-01-01

    Actin is a highly versatile, abundant, and conserved protein, with functions in a variety of intracellular processes. Here, we describe a novel role for insect cytoplasmic actin as an extracellular pathogen recognition factor that mediates antibacterial defense. Insect actins are secreted from cells upon immune challenge through an exosome-independent pathway. Anopheles gambiae actin interacts with the extracellular MD2-like immune factor AgMDL1, and binds to the surfaces of bacteria, mediating their phagocytosis and direct killing. Globular and filamentous actins display distinct functions as extracellular immune factors, and mosquito actin is a Plasmodium infection antagonist. PMID:25658622

  16. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  17. Amplification of actin polymerization forces.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2016-03-28

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments.

  18. Actinic keratosis. Current treatment options.

    PubMed

    Jeffes, E W; Tang, E H

    2000-01-01

    Actinic keratoses are hyperkeratotic skin lesions that represent focal abnormal proliferation of epidermal keratinocytes. Some actinic keratoses evolve into squamous cell carcinoma of the skin, while others resolve spontaneously. The conversion rate of actinic keratosis to squamous cell carcinoma is not accurately known, but appears to be in the range of 0.25 to 1% per year. Although there is a low rate of conversion of actinic keratoses to squamous cell carcinoma, 60% of squamous cell carcinomas of the skin probably arise from actinic keratoses. The main cause of actinic keratoses in otherwise healthy Caucasians appears to be the sun. Therapy for actinic keratoses begins with prevention which starts with sun avoidance and physical protection. Sunprotection with sunscreens actually slows the return of actinic keratoses in patients already getting actinic keratoses. Interestingly, a few studies are available that demonstrate that a high fat diet is associated with the production of more actinic keratoses than is a low fat diet. One of the mainstays of therapy has been local destruction of the actinic keratoses with cryotherapy, and curettage and electrodesiccation. A new addition to this group of therapies to treat individual actinic keratoses is photodynamic therapy with topical aminolevulinic acid and light. In patients who have numerous actinic keratoses in an area of severely sun damaged skin, therapies which are applied to the whole actinic keratosis area are used. The goal of treating such an area of skin is to treat all of the early as well as the numerous clinically evident actinic keratoses at the same time. The classical approaches for treating areas of photodamaged skin without treating actinic keratoses individually include: the use of topically applied fluorouracil cream, dermabrasion, and cutaneous peels with various agents like trichloroacetic acid. Both topically as well as orally administered retinoids have been used to treat actinic keratoses but

  19. Impact of fuelling and impurity on pedestal dynamics and instabilities in the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, W. L.; Zou, X. L.; Gao, J. M.; Shi, Z. B.; Feng, B. B.; Cui, Z. Y.; Xu, M.; Shen, Y.; Dong, J. Q.; Ding, X. T.; Duan, X. R.; Liu, Yong; HL-2A Team

    2017-01-01

    In recent experiments of the HL-2A tokamak, the effect on the pedestal dynamics by the plasma fuelling with supersonic molecular beam injection (SMBI) has been intensively investigated. Experimental results in several tokamaks suggested that SMBI is a promising technique for ELM mitigation. In addition to the fuelling, the impact of impurities on the pedestal dynamics and instabilities has been investigated in HL-2A. Experimental results have shown that during the H-mode phase, a broadband electromagnetic (EM) turbulence was driven by peaked impurity density profile at the edge plasma region, and governed by double critical gradients of the impurity density. The absolute value of the threshold in positive gradient region is much lower than that in the negative region. This strong asymmetry in the critical gradients has been predicted by theoretical simulation. The results reveal that pedestal dynamics and heat loads can be actively controlled by exciting or changing pedestal instabilities.

  20. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    NASA Astrophysics Data System (ADS)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  1. Theory and Modeling of ELMs and Constraints on the H-Mode Pedestal

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Ferron, J. R.; Lao, L. L.; Leonard, A. W.; Osborne, T. H.; Turnbull, A. D.; Wilson, H. R.; Webster, A. J.; Xu, X. Q.; Mossessian, D.; Murakami, M.

    2002-11-01

    We present a theory of edge localized modes (ELMs) and constraints on the H-mode pedestal, based on the stability of intermediate wavelength peeling-ballooning modes driven by the strong pressure gradient and resulting bootstrap current in the pedestal region. Detailed studies of ideal MHD pedestal stability bounds are presented using the ELITE code, and are compared to data from multiple tokamaks. Observed ELM onset times and characteristics, as well as variation in pedestal behavior with discharge shape and collisionality, are studied. In addition, the impact of diamagnetic stabilization and rotation shear are assessed, and progress on dynamic modeling of the ELM cycle which couples transport codes to stability calculations and ELM crash models is briefly discussed. Nonlinear simulations using the BOUT code are used to provide further insight on non-ideal effects and ELM crash dynamics.

  2. Neoclassical ion heat flux and poloidal flow in a tokamak pedestal

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Catto, Peter J.

    2010-05-01

    In the core of a tokamak, turbulent transport normally dominates over neoclassical. The situation could be different in a high confinement (or H) mode pedestal, where the former may be suppressed by a strongly sheared equilibrium electric field. On the other hand, this very field makes conventional neoclassical results inapplicable in the pedestal by significantly modifying ion drift orbits. We present the first calculation of the banana regime neoclassical ion heat flux and poloidal flow in the pedestal accounting for the strong E × B drift inherent to this tokamak region. Interestingly, we find that due to the electric field the pedestal poloidal ion flow can change its direction as compared with its core counterpart. This result elucidates the discrepancy between the conventional banana regime predictions and recent experimental measurements of the impurity flow performed at Alcator C-Mod.

  3. Finite element analysis of bridge steel pedestal anchor bolts in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Logan Hancock, B.; Hite Head, Monique

    2009-10-01

    Steel pedestals are short, column-like structures currently being used to elevate highway bridges to reduce the risk of collisions with over-height vehicles. Previous full-scale experimental research has been done to examine the efficacy of these steel pedestals and their components under quasi-static loading to evaluate any added instability in the event of an earthquake. As part of the Undergraduate Summer Research Grant (USRG) program at Texas A&M University, this specific project was focused on observing the behavior of the post-installed steel pedestal anchor bolts under applied shear and tensile loading using the finite element (FE) software Abaqus. The results from some of the preliminary analyses are compared to theoretical anchorage calculations with the aim of producing a benchmark for future steel pedestal anchor bolt embedment design. Future research improvements regarding FE modeling and structural design suggestions are proposed as well.

  4. Visualization of actin polymerization in invasive structures of macrophages and carcinoma cells using photoconvertible β-actin-Dendra2 fusion proteins.

    PubMed

    Dovas, Athanassios; Gligorijevic, Bojana; Chen, Xiaoming; Entenberg, David; Condeelis, John; Cox, Dianne

    2011-02-14

    Actin polymerization controls a range of cellular processes, from intracellular trafficking to cell motility and invasion. Generation and elongation of free barbed ends defines the regions of actively polymerizing actin in cells and, consequently, is of importance in the understanding of the mechanisms through which actin dynamics are regulated. Herein we present a method that does not involve cell permeabilization and provides direct visualization of growing barbed ends using photoswitchable β-actin-Dendra2 constructs expressed in murine macrophage and rat mammary adenocarcinoma cell lines. The method exploits the ability of photoconverted (red) G-actin species to become incorporated into pre-existing (green) actin filaments, visualized in two distinct wavelengths using TIRF microscopy. In growing actin filaments, photoconverted (red) monomers are added to the barbed end while only green monomers are recycled from the pointed end. We demonstrate that incorporation of actin into intact podosomes of macrophages occurs constitutively and is amenable to inhibition by cytochalasin D indicating barbed end incorporation. Additionally, actin polymerization does not occur in quiescent invadopodial precursors of carcinoma cells suggesting that the filaments are capped and following epidermal growth factor stimulation actin incorporation occurs in a single but extended peak. Finally, we show that Dendra2 fused to either the N- or the C-terminus of β-actin profoundly affects its localization and incorporation in distinct F-actin structures in carcinoma cells, thus influencing the ability of monomers to be photoconverted. These data support the use of photoswitchable actin-Dendra2 constructs as powerful tools in the visualization of free barbed ends in living cells.

  5. Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Hughes, J. W.; Snyder, P. B.; Walk, J. R.; Davis, E. M.; Diallo, A.; LaBombard, B.; Baek, S. G.; Churchill, R. M.; Greenwald, M.; Groebner, R. J.; Hubbard, A. E.; Lipschultz, B.; Marmar, E. S.; Osborne, T.; Reinke, M. L.; Rice, J. E.; Theiler, C.; Terry, J.; White, A. E.; Whyte, D. G.; Wolfe, S.; Xu, X. Q.

    2013-04-01

    New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling-ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of βpol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices.

  6. Clamped-filament elongation model for actin-based motors.

    PubMed Central

    Dickinson, Richard B; Purich, Daniel L

    2002-01-01

    Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility. PMID:11806905

  7. Metallothionein immunolocalization in actinic skin nonmelanoma carcinomas.

    PubMed

    Borges Júnior, Paulo C; Ribeiro, Rosy I M A; Cardoso, Sérgio V; Berbet, Alceu L C; Rocha, Ademir; Espindola, Foued S; Loyola, Adriano M

    2007-06-01

    Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most frequent skin cancer. Its pathogeny is linked to genotoxic effects of actinic radiation exposure, especially to ultraviolet wavelength. Metallothionein (MT) is a low-molecular weight protein with high affinity for heavy metal. Its intracellular function has been related to heavy metals and free-radical detoxification, although many studies linked MT to protective action against actinic mutagenesis. In other way, overexpression in malignant tumors has been related to worse prognosis. We aimed to evaluate MT immunohistochemical expression in skin cancer associated to actinic radiation. Twenty-six BCC cases, 20 SCC, and 6 normal skin fragments were investigated. Immunohistochemical assay were performed by streptavidin-biotin-peroxidase technique with standard monoclonal antibody (E9). In normal skin, immunostaining was observed in basal layer of the epithelium. In the epithelium adjacent to tumors, suprabasal layer was also intensely labeled. Mean MT immunostaining indices were 18.5+21.2% for BCC and 69.1+14.4% for SCC. This difference was statistically significant. Higher MT expression in SCC as compared with BCC suggests association with tumoral aggressiveness.

  8. Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal

    NASA Astrophysics Data System (ADS)

    Guazzotto, L.; Betti, R.

    2011-09-01

    Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.

  9. Probe Measurements in the H-mode Pedestal Region in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Thome, K. E.; Thompson, D. S.

    2014-10-01

    In near-unity aspect ratio Pegasus discharges, Ohmic heating and high-field-side fueling together trigger an L-H mode transition in both limited and diverted configurations. H-mode plasmas are predicted to exhibit pedestals in both the pressure and current density profiles. Operation at A ~ 1 allows for the use of local magnetic and Langmuir probes in the pedestal region. A current pedestal is routinely observed in Pegasus H-mode plasmas, but not in L-mode plasmas or during ELMs. Conventionally, edge pedestal measurements are observed in the edge pressure profile. A triple Langmuir probe has recently been installed in order to investigate the structure of the edge pressure pedestal in Pegasus H-mode discharges and complement the current density profile measurements. Local density and temperature measurements will be collected using the triple Langmuir probe at varying spatial locations to identify edge pressure profiles. These pressure profiles will be measured in both the L-mode and H-mode regimes. The triple probe will additionally be used to observe the turbulence levels before, during, and after the L-H mode transition. Complete density and temperature profiles including the pedestal will be obtained using a combination of Langmuir probe and Thomson scattering measurements. Work supported by US DOE Grant DE-FG02-96ER54375.

  10. Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal

    SciTech Connect

    Guazzotto, L.; Betti, R.

    2011-09-15

    Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.

  11. Actin dynamics at the Golgi complex in mammalian cells.

    PubMed

    Egea, Gustavo; Lázaro-Diéguez, Francisco; Vilella, Montserrat

    2006-04-01

    Secretion and endocytosis are highly dynamic processes that are sensitive to external stimuli. Thus, in multicellular organisms, different cell types utilize specialised pathways of intracellular membrane traffic to facilitate specific physiological functions. In addition to the complex internal molecular factors that govern sorting functions and fission or fusion of transport carriers, the actin cytoskeleton plays an important role in both the endocytic and secretory pathways. The interaction between the actin cytoskeleton and membrane trafficking is not restricted to transport processes: it also appears to be directly involved in the biogenesis of Golgi-derived transport carriers (budding and fission processes) and in the maintenance of the unique flat shape of Golgi cisternae.

  12. REM sleep deprivation attenuates actin-binding protein cortactin: a link between sleep and hippocampal plasticity.

    PubMed

    Davis, Christopher J; Meighan, Peter C; Taishi, Ping; Krueger, James M; Harding, Joseph W; Wright, John W

    2006-06-12

    Rapid eye-movement sleep (REMS) is thought to affect synaptic plasticity. Cortactin is a cytoskeletal protein critically involved in the regulation of actin branching and stabilization including the actin backbone of dendritic spines. Hippocampal cortactin levels, phosphorylation, and processing appear to be altered during learning and long-term potentiation (LTP); consistent with a role for cortactin in the dendritic restructuring that accompanies synaptic plasticity. In this study juvenile male Sprague-Dawley rats were selectively REMS-deprived (RD) for 48 h by the flowerpot method. Cage control (CC) and large pedestal control (PC) animals were used for comparison. Animals were euthanized immediately, or 12 h, after removal from the pedestal. The hippocampus was dissected, flash-frozen, and stored for subsequent Western blot or quantitative RT-PCR analysis of cortactin. Cortactin mRNA/cDNA levels initially rose in PC and RD rats but returned to CC levels by 12 h after removal from the pedestal. Predictably cortactin protein levels were initially unchanged but were up-regulated after 12 h. The PC group had more total and tyrosine-phosphorylated cortactin protein expression than the RD and CC groups. This increase in cortactin was likely due to the exposure of the rats to the novel environment of the deprivation chambers thus triggering plasticity events. The lack of REMS, however, severely hampered cortactin protein up-regulation and phosphorylation observed in the PC group suggesting an attenuation of plasticity-related events. Thus, these data support a functional link between REMS and cytoskeletal reorganization in the hippocampus, a process that is essential for synaptic plasticity.

  13. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    PubMed

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  14. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    PubMed Central

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408

  15. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors

    PubMed Central

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  16. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics

    PubMed Central

    Appaduray, Mark A.; Masedunskas, Andrius; Lucas, Christine A.; Warren, Sean C.; Timpson, Paul; Stear, Jeffrey H.

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin. PMID:27977753

  17. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  18. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells.

    PubMed Central

    Lang, T; Wacker, I; Wunderlich, I; Rohrbach, A; Giese, G; Soldati, T; Almers, W

    2000-01-01

    In neuroendocrine PC-12 cells, evanescent-field fluorescence microscopy was used to track motions of green fluorescent protein (GFP)-labeled actin or GFP-labeled secretory granules in a thin layer of cytoplasm where cells adhered to glass. The layer contained abundant filamentous actin (F-actin) locally condensed into stress fibers. More than 90% of the granules imaged lay within the F-actin layer. One-third of the granules did not move detectably, while two-thirds moved randomly; the average diffusion coefficient was 23 x 10(-4) microm(2)/s. A small minority (<3%) moved rapidly and in a directed fashion over distances more than a micron. Staining of F-actin suggests that such movement occurred along actin bundles. The seemingly random movement of most other granules was not due to diffusion since it was diminished by the myosin inhibitor butanedione monoxime, and blocked by chelating intracellular Mg(2+) and replacing ATP with AMP-PNP. Mobility was blocked also when F-actin was stabilized with phalloidin, and was diminished when the actin cortex was degraded with latrunculin B. We conclude that the movement of granules requires metabolic energy, and that it is mediated as well as limited by the actin cortex. Opposing actions of the actin cortex on mobility may explain why its degradation has variable effects on secretion. PMID:10827968

  19. Ca2+ regulation of gelsolin activity: binding and severing of F-actin.

    PubMed Central

    Kinosian, H J; Newman, J; Lincoln, B; Selden, L A; Gershman, L C; Estes, J E

    1998-01-01

    Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow. PMID:9826630

  20. Integrity of the actin cytoskeleton of host macrophages is essential for Leishmania donovani infection.

    PubMed

    Roy, Saptarshi; Kumar, G Aditya; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2014-08-01

    Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis.

  1. Global and pedestal confinement in JET with a Be/W metallic wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Giroud, C.; Saarelma, S.; Alper, B.; Angioni, C.; Bilkova, P.; Bourdelle, C.; Brezinsek, S.; Buratti, P.; Calabro, G.; Eich, T.; Flanagan, J.; Giovannozzi, E.; Groth, M.; Hobirk, J.; Joffrin, E.; Leyland, M. J.; Lomas, P.; de la Luna, E.; Kempenaars, M.; Maddison, G.; Maggi, C.; Mantica, P.; Maslov, M.; Matthews, G.; Mayoral, M.-L.; Neu, R.; Nunes, I.; Osborne, T.; Rimini, F.; Scannell, R.; Solano, E. R.; Snyder, P. B.; Voitsekhovitch, I.; de Vries, Peter; Contributors, JET-EFDA

    2014-04-01

    Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called critical type I-type III transition temperature reported in JET-C experiments. Furthermore, the confinement factor H98(y,2) in type I ELMy H-mode baseline plasmas is generally lower in JET-ILW compared to JET-C at low power fractions Ploss/Pthr,08 < 2 (where Ploss is (Pin - dW/dt), and Pthr,08 the L-H power threshold from Martin et al 2008 (J. Phys. Conf. Ser. 123 012033)). Higher power fractions have thus far not been achieved in the baseline plasmas. At Ploss/Pthr,08 > 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H98(y,2) = 0.8 is obtained, compared to H98(y,2) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H98(y,2) ⩽ 1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling-ballooning stability limit and the ELM collapse time has increased to 2 ms from typically 200 µs in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured pped)/(predicted pped,EPED) < 1.2, but that the role of triangularity is generally

  2. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri.

    PubMed Central

    Suzuki, T; Miki, H; Takenawa, T; Sasakawa, C

    1998-01-01

    Shigella, the causative agent of bacillary dysentery, is capable of directing its own movement in the cytoplasm of infected epithelial cells. The bacterial surface protein VirG recruits host components mediating actin polymerization, which is thought to serve as the propulsive force. Here, we show that neural Wiskott-Aldrich syndrome protein (N-WASP), which is a critical target for filopodium formation downstream of Cdc42, is required for assembly of the actin tail generated by intracellular S.flexneri. N-WASP accumulates at the front of the actin tail and is capable of interacting with VirG in vitro and in vivo, a phenomenon that is not observed in intracellular Listeria monocytogenes. The verprolin-homology region in N-WASP was required for binding to the glycine-rich repeats domain of VirG, an essential domain for recruitment of F-actin on intracellular S.flexneri. Overexpression of a dominant-negative N-WASP mutant greatly inhibited formation of the actin tail by intracellular S.flexneri. Furthermore, depletion of N-WASP from Xenopus egg extracts shut off Shigella actin tail assembly, and this was restored upon addition of N-WASP protein, suggesting that N-WASP is a critical host factor for the assembly of the actin tail by intracellular Shigella. PMID:9582270

  3. Laser heated pedestal growth system commissioning and fiber processing

    NASA Astrophysics Data System (ADS)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  4. A study of poloidal asymmetries in the pedestal region

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Lipschultz, B.; Lisgo, S.; Reimold, F.; Goldstein, J.; Alcator C-Mod Team Team

    2011-10-01

    Simultaneous CXRS measurements of boron density, velocity, and temperature in the pedestal region (0 . 8 < r / a < 1 . 05) at the low- and high-field sides (LFS and HFS) of Alcator C-Mod allow studies of variations in boron density and total velocity on a flux surface. While previous studies used different neutral sources (a 50keV hydrogen neutral beam at the LFS and a thermal D2 gas puff at the HFS) to localize CXRS measurements we have recently expanded our diagnostic set to allow thermal gas CXRS at both locations, thus removing uncertainties due to different measurement techniques and cross-section. We have also upgraded our modelling capability to utilize the DIVIMP code, which uses the plasma-neutral code combination of OSM-EIRENE to determine the local neutral density. Comparisons between CXRS methods using different neutral sources will be shown as well as an exploration of whether the constants K(ψ) and ω(ψ) in the description of V =K/(ψ) n B + ω (ψ)R2 ∇ ϕ are constant on a flux surface as typically assumed. The above comparisons will be shown for a variety of H-mode and I-mode plasmas. Supported by USDoE award DE-FC02-99ER54512.

  5. Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton.

    PubMed

    Tian, Xin; Yang, Zaixing; Duan, Guangxin; Wu, Anqing; Gu, Zonglin; Zhang, Leili; Chen, Chunying; Chai, Zhifang; Ge, Cuicui; Zhou, Ruhong

    2017-01-01

    Graphene and graphene-based nanomaterials are broadly used for various biomedical applications due to their unique physiochemical properties. However, how graphene-based nanomaterials interact with biological systems has not been thoroughly studied. This study shows that graphene oxide (GO) nanosheets retard A549 lung carcinoma cell migration through nanosheet-mediated disruption of intracellular actin filaments. After GO nanosheets treatment, A549 cells display slower migration and the structure of the intracellular actin filaments is dramatically changed. It is found that GO nanosheets are capable of absorbing large amount of actin and changing the secondary structures of actin monomers. Large-scale all-atom molecular dynamics simulations further reveal the interactions between GO nanosheets and actin filaments at molecular details. GO nanosheets can insert into the interstrand gap of actin tetramer (helical repeating unit of actin filament) and cause the separation of the tetramer which eventually leads to the disruption of actin filaments. These findings offer a novel mechanism of GO nanosheet induced biophysical responses and provide more insights into their potential for biomedical applications.

  6. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    behavior as in cancer metastasis. In addition to stiffness, the local geometry or topography of the surface has been shown to modulate the movement, morphology, and cytoskeletal organization of cells. However, the effect of topography on fluctuations of intracellular structures, which arise from motor driven activity on a viscoelastic actin network are not known. I have used nanofabricated substrates with parallel ridges to show that the cell shape, the actin cytoskeleton and focal adhesions all align along the direction of the ridges, exhibiting a biphasic dependence on the spacing between ridges. I further demonstrated that palladin bands along actin stress fibers undergo a complex diffusive motion with velocities aligned along the direction of ridges. These results provide insight into the mechanisms of cellular mechanosensing of the environment, suggesting a complex interplay between the actin cytoskeleton and cellular adhesions in coordinating cellular response to surface topography. Overall, this work has advanced our understanding of mechanisms that govern cellular responses to their physical environment.

  7. Computational Tension Mapping of Adherent Cells Based on Actin Imaging.

    PubMed

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension.

  8. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  9. Optimization of CFETR baseline performance by controlling rotation shear and pedestal collisionality through integrated modeling

    NASA Astrophysics Data System (ADS)

    Jian, Xiang; Chen, Jiale; Chan, Vincent S.; Zhuang, Ge; Li, Guoqiang; Deng, Zhao; Shi, Nan; Xu, Guoliang; Staebler, Gary M.; Guo, Wenfeng

    2017-04-01

    The optimization of a CFETR baseline scenario (Chan et al 2015 Nucl. Fusion 55 023017) with an electron cyclotron (EC) wave and neutral beam (NB) is performed using a multi-dimensional code suite. TGLF and NEO are used to calculate turbulent and neoclassical transport. The evaluation of sources and sinks, as well as the current evolution, are performed using ONETWO, and the equilibrium is updated using EFIT. The pedestal is consistent with the EPED model. Rotation shear is controlled using NB. It has been found that both fusion gain Q and NB power deposited in the edge increase with decreasing NB energy, with NB providing current drive, torque, energy and particle source simultaneously. By using an optimized combination of two NBs, Q can be kept at a high level while the NB edge power is reduced. Pedestal collisionality is controlled to find an optimization path for Q by trading off between the pedestal density and temperature with the pedestal pressure fixed. It has been found that Q increases with pedestal collisionality, while the density peaking factor (DPF) remains almost unchanged. The invariance of DPF can be explained by the change of the dominant type of turbulence from the core to the edge (i.e. trapped electron mode in the core and ion temperature gradient mode at the edge), and collisionality has the opposite effect on particle transport for these two modes. A weaker dependence of DPF on collisionality makes a higher density operation more favorable for fusion gain.

  10. Flux Surface Variation of Impurity Density and Flows in the Pedestal Region

    NASA Astrophysics Data System (ADS)

    Churchill, Michael; Lipschultz, Bruce; Theiler, Christian; Alcator C-Mod Team

    2013-10-01

    Measured impurity density and flows in the pedestal region of Alcator C-Mod can deviate significantly on a flux surface from current model predictions. Comparing localized measurements at the low-field side (LFS) midplane and the high-field side (HFS) midplane, boron (B5 +) impurity density asymmetries larger than 10x are observed in H-mode plasmas, with larger densities at the HFS. The LFS density pedestal varies in position and width with varying plasma conditions, while the HFS impurity density profile remains rather fixed. Impurity density asymmetries are not observed in plasmas with small gradients, i.e L-mode, suggesting the drive for the asymmetry may be the strong gradients in the H-mode pedestal region. However, impurity density asymmetries are also absent in I-mode plasmas, despite the presence of a strong radial gradient in temperature (with no main ion density pedestal). This indicates an interplay between the gradient scale lengths of the main ion density and temperature in the drive of the impurity density asymmetry. Impurity flows in the pedestal show the opposite behavior; flows measured in H-mode plasmas are close to the expected in-out variation, while in I-mode they deviate significantly. Supported by USDoE award DE-FC02-99ER54512.

  11. Impact of the Pedestal on Global Performance and Confinement Scalings in I-mode

    NASA Astrophysics Data System (ADS)

    Walk, John; Hughes, Jerry; Hubbard, Amanda; Whyte, Dennis; White, Anne; Alcator C-Mod Team

    2015-11-01

    The I-mode is a novel high-confinement regime pioneered on Alcator C-Mod, notable for its strong temperature pedestal without the accompanying density pedestal found in conventional H-modes. This separation in transport channels gives the desired improved energy confinement while maintaining low particle confinement, avoiding excessive impurity accumulation. Moreover, I-mode operation is naturally free of deleterious Edge-Localized Modes (ELMs). Recent experiments on Alcator C-Mod have characterized the pedestal structure in I-mode. The impact of the pedestal response (particularly to fueling and heating power) and core profile stiffness on global performance and confinement have demonstrated confinement metrics competitive with H-mode operation on Alcator C-Mod, and consistent with concepts for I-mode access & operation on ITER. Following the practice of the ITER89 and ITER98 scaling laws for L- and H-mode energy confinement, an initial, illustrative attempt at an I-mode confinement scaling has also been developed. The initial characterization from C-Mod data is consistent with the observed pedestal properties in I-mode, particularly the weak degradation of energy confinement with heating power, and comparatively strong positive response to fueling and increased magnetic field. Supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, a DOE Office of Science User Facility.

  12. Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.

    2017-02-01

    Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.

  13. Neoclassical ion heat flux and poloidal flow in a tokamak pedestal

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Catto, Peter J.

    2009-11-01

    In the core of a tokamak, neoclassical transport normally dominates over classical while itself being dominated by turbulent transport. The situation may be different in a high confinement (or H) mode pedestal, where the latter is effectively suppressed by a strongly sheared equilibrium electric field. On the other hand, this very field makes conventional neoclassical results inapplicable in the pedestal by significantly modifying ion drift orbits. We present the first calculation of the banana regime neoclassical ion heat flux and poloidal flow in the pedestal accounting for the strong ExB drift inherent to this tokamak region. Interestingly, the fact that ion heat conductivity depends on the local values of the electric field and its shear allows us to hypothesize about possible shapes of the global electric field and density profiles in the pedestal. We also find that due to the electric field the pedestal poloidal ion flow is likely to change its direction as compared to its core counterpart. This result elucidates the discrepancy between the conventional banana regime predictions and recent experimental measurements of the impurity flow performed at Alcator C-Mod.

  14. On the recovery of pedestal temperature of JET-ILW plasmas with injection of low-Z impurities

    NASA Astrophysics Data System (ADS)

    Giroud, Carine

    2016-10-01

    The pedestal confinement has significantly decreased in JET with its metallic ITER-like wall with reference to the carbon wall phase of JET (JET-C). A reduction in pedestal temperature is observed in all scenarios regardless of the level of D-gas injection or value of βN. In particular, the JET-ILW 2.5MA/2.7T high- δ (δ = 0.4) plasmas at nped/nGW >= 0.7, discharges most comparable with JET-C, the pedestal pressure has reduced by 40% with a decrease in pedestal temperature from 0.9keV to 0.5keV with the change of wall. The pedestal stability has been modified with the new wall: the reference JET-C plasmas pedestals had an operational point in the corner of the Peeling-Ballooning (PB) diagram, with pressure limited by intermediate n-numbers (n =5-20), whereas the JET-ILW unseeded plasmas have a lower pressure gradient limited by high n-numbers >=70 (ballooning modes). Seeding N, a low-Z impurity, almost recovers the thermal stored energy, pedestal pressure and pedestal temperature to JET-C levels and with an operation point in the corner of the PB diagram. The mechanisms linked to the pedestal recovery with N are likely related to the mechanisms leading to a decrease in pedestal temperature in the absence of C in the plasma composition. The improved pedestal stability with N is not solely linked to the ideal linear PB stability since N-seeded plasmas in JET-ILW can be in type-III ELM regime and have a higher pedestal pressure than unseeded type-I ELMy H-mode. An increased pedestal pressure via an inward movement of the pedestal pressure from the separatrix is not observed with N seeding. However, we have identified two mechanisms responsible. A first initial mechanism linked to the change in ELM energy losses which raises modestly the average global beta by 10% but allows in return a second mechanism to take place. The considered high- δ plasmas can then benefit, if in type-I ELM regime, from the virtuous cycle (2nd mechanisms) of an increased Shafranov shift

  15. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    PubMed Central

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIα impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIα contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors. PMID:11739797

  16. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells.

    PubMed

    Laine, R O; Phaneuf, K L; Cunningham, C C; Kwiatkowski, D; Azuma, T; Southwick, F S

    1998-08-01

    The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed

  17. Participation of Actin on Giardia lamblia Growth and Encystation

    PubMed Central

    Castillo-Romero, Araceli; Leon-Avila, Gloria; Perez Rangel, Armando; Cortes Zarate, Rafael; Garcia Tovar, Carlos; Hernandez, Jose Manuel

    2009-01-01

    Background Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. Methodology and Principal Findings By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of flourescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%). Conclusions and Significance All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression. PMID:19774081

  18. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    SciTech Connect

    Fujiwara, Satoru; Plazanet, Marie; Oda, Toshiro

    2013-02-15

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D{sub 2}O and H{sub 2}O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydrated either with D{sub 2}O or H{sub 2}O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D{sub T}) of the hydration water in the first layer were found to be 1.2 × 10{sup −5} cm{sup 2}/s and 1.7 × 10{sup −5} cm{sup 2}/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10{sup −5} cm{sup 2}/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D{sub T} values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the

  19. A RhoA and Rnd3 cycle regulates actin reassembly during membrane blebbing.

    PubMed

    Aoki, Kana; Maeda, Fumiyo; Nagasako, Tomoya; Mochizuki, Yuki; Uchida, Seiichi; Ikenouchi, Junichi

    2016-03-29

    The actin cytoskeleton usually lies beneath the plasma membrane. When the membrane-associated actin cytoskeleton is transiently disrupted or the intracellular pressure is increased, the plasma membrane detaches from the cortex and protrudes. Such protruded membrane regions are called blebs. However, the molecular mechanisms underlying membrane blebbing are poorly understood. This study revealed that epidermal growth factor receptor kinase substrate 8 (Eps8) and ezrin are important regulators of rapid actin reassembly for the initiation and retraction of protruded blebs. Live-cell imaging of membrane blebbing revealed that local reassembly of actin filaments occurred at Eps8- and activated ezrin-positive foci of membrane blebs. Furthermore, we found that a RhoA-ROCK-Rnd3 feedback loop determined the local reassembly sites of the actin cortex during membrane blebbing.

  20. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    SciTech Connect

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  1. Integrated fusion simulation with self-consistent core-pedestal coupling

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Snyder, P. B.; Smith, S. P.; Candy, J.; Staebler, G. M.; Belli, E. A.; Lao, L. L.; Park, J. M.; Green, D. L.; Elwasif, W.; Grierson, B. A.; Holland, C.

    2016-04-01

    Accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile, and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self-consistent solution to this strongly coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Testing against a DIII-D discharge shows that the workflow is capable of robustly predicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in a good agreement with the experiments. An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Zeff .

  2. Integrated fusion simulation with self-consistent core-pedestal coupling

    SciTech Connect

    Meneghini, O.; Snyder, P. B.; Smith, S. P.; Candy, J.; Staebler, G. M.; Belli, E. A.; Lao, L. L.; Park, J. M.; Green, D. L.; Elwasif, W.; Grierson, B. A.; Holland, C.

    2016-04-20

    In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments. An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Zeff.

  3. Optimization of CFETR confinement by controlling rotation shear and pedestal collisionality

    NASA Astrophysics Data System (ADS)

    Jian, Xiang; Chen, Jiale; Chan, Vincent; Li, Guoqiang; Zhuang, Ge; Cfetr Physics Team

    2016-10-01

    Optimization of a CFETR baseline scenario (Chan et al. 2015 Nucl. Fusion. 55) with EC and NB H&CD is performed using a multi-dimensional code suite. Rotation shear is controlled using NB, with injection angle being constrained to avoid edge heating and to maintain q_min >2. The NB power is adjusted to keep the plasma fully non-inductive. The NB energy that maximize the fusion gain Q is identified. Trade-off between the pedestal density and temperature is performed with the pedestal pressure fixed. It is found that Q increases with pedestal density, while the density peaking factor (DPF) remains unchanged. Linear analysis shows that the transport is dominated by TEM and ITG turbulence. Collisionality affects these turbulences in such a way that the induced changes in DPF cancel out. A weaker dependence of DPF makes higher density operation more favorable for fusion gain.

  4. Integrated fusion simulation with self-consistent core-pedestal coupling

    DOE PAGES

    Meneghini, O.; Snyder, P. B.; Smith, S. P.; ...

    2016-04-20

    In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments.more » An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Zeff.« less

  5. Ring closure in actin polymers

    NASA Astrophysics Data System (ADS)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  6. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

    PubMed Central

    Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus

    2017-01-01

    Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189

  7. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria

    PubMed Central

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-01-01

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  8. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  9. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    SciTech Connect

    Wang, Zhehui

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  10. Microturbulence in DIII-D tokamak pedestal. IV. Electrostatic turbulent transport

    NASA Astrophysics Data System (ADS)

    Liao, X.; Lin, Z.; Holod, I.; Li, B.; Sun, G. Y.

    2016-12-01

    Gyrokinetic simulations of electrostatic microturbulence in the edge plasmas of DIII-D shot 131997 find that the geodesic acoustic mode (GAM) is generated after nonlinear saturation both at the pedestal top and in the peak gradient region, and in turn, regulates the turbulence in both regions. Collisions significantly reduce the GAM amplitude and the associated GAM modulation of the turbulence in both regions. Collisions have little effects on the ion temperature gradient turbulent transport level at the pedestal top. On the other hand, collisional damping of the TEM significantly reduces the turbulent transport level in the peak gradient region.

  11. Retired NASA F-18 being lowered on to pedestal mount at Lancaster California Municipal Baseball Stad

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As news media and city officials watch from the balcony of the city baseball stadium in Lancaster, California, a crane gently positions an F/A-18 Hornet aircraft for mounting on a steel pedestal. The F/A-18 was recently retired by NASA's Dryden Flight Research Center, Edwards, California, after being flown as a safety chase and support aircraft over the past nine years. The aircraft is now mounted nose skyward on the 28-foot-tall pedestal in front of the Lancaster Municipal Stadium, know as 'The Hangar.' The stadium is the home field of the Lancaster Jethawks, a Class-A farm team of the Seattle Mariners.

  12. Design of the exhaust device for light vehicle engine pedestal experiment

    NASA Astrophysics Data System (ADS)

    Sun, Shuguang

    2017-01-01

    In view of the shortcomings and the insufficiency of the existing exhaust device for light vehicle engine pedestal experiment, improvement scheme is proposed to design a suitable multi-type exhaust device for light vehicle engine pedestal experiment, which has flex space and a certain degree of freedom in six directions x, y, z, x, y, z, so the problem of interference during the process of installation can be solved, the cost on research and development and test can be reduced and the development cycle can be shorten and it can also be multi-usage.

  13. Microturbulence in DIII-D tokamak pedestal. III. Effects of collisions

    NASA Astrophysics Data System (ADS)

    Liao, X.; Lin, Z.; Holod, I.; Xiao, Y.; Li, B.; Snyder, P. B.

    2016-12-01

    Gyrokinetic simulations of the H-mode pedestal in DIII-D discharge 145701 find that the kinetic ballooning mode (KBM) is the most unstable mode for low toroidal numbers (n ≤ 25) and that the trapped electron mode (TEM) dominates over the KBM at higher toroidal mode numbers for realistic pressure gradients in the pedestal. Collisions reduce the TEM growth rate but have little effects on the KBM. KBM has the conventional ballooning mode structure peaking at the outer mid-plane, while TEM has an unconventional mode structure peaking at the top and bottom of the poloidal plane.

  14. LIM Kinase 1 Modulates Cortical Actin and CXCR4 Cycling and Is Activated by HIV-1 to Initiate Viral Infection*

    PubMed Central

    Vorster, Paul J.; Guo, Jia; Yoder, Alyson; Wang, Weifeng; Zheng, Yanfang; Xu, Xuehua; Yu, Dongyang; Spear, Mark; Wu, Yuntao

    2011-01-01

    Almost all viral pathogens utilize a cytoskeleton for their entry and intracellular transport. In HIV-1 infection, binding of the virus to blood resting CD4 T cells initiates a temporal course of cortical actin polymerization and depolymerization, a process mimicking the chemotactic response initiated from chemokine receptors. The actin depolymerization has been suggested to promote viral intracellular migration through cofilin-mediated actin treadmilling. However, the role of the virus-mediated actin polymerization in HIV infection is unknown, and the signaling molecules involved remain unidentified. Here we describe a pathogenic mechanism for triggering early actin polymerization through HIV-1 envelope-mediated transient activation of the LIM domain kinase (LIMK), a protein that phosphorylates cofilin. We demonstrate that HIV-mediated LIMK activation is through gp120-triggered transient activation of the Rack-PAK-LIMK pathway, and that knockdown of LIMK through siRNA decreases filamentous actin, increases CXCR4 trafficking, and diminishes viral DNA synthesis. These results suggest that HIV-mediated early actin polymerization may directly regulate the CXCR4 receptor during viral entry and is involved in viral DNA synthesis. Furthermore, we also demonstrate that in resting CD4 T cells, actin polymerization can be triggered through transient treatment with a pharmacological agent, okadaic acid, that activates LIMK and promotes HIV latent infection of resting CD4 T cells. Taken together, our results suggest that HIV hijacks LIMK to control the cortical actin dynamics for the initiation of viral infection of CD4 T cells. PMID:21321123

  15. Reaction-diffusion waves of actin filament polymerization/depolymerization in Dictyostelium pseudopodium extension and cell locomotion.

    PubMed

    Vicker, M G

    2000-04-14

    Cell surface movements and the intracellular spatial patterns and dynamics of actin filament (F-actin) were investigated in living and formalin-fixed cells of Dictyostelium discoideum by confocal microscopy. Excitation waves of F-actin assembly developed and propagated several micrometers at up to 26 microm/min in cells which had been intracellularly loaded with fluorescently labeled actin monomer. Wave propagation and extinction corresponded with the initiation and attenuation of pseudopodium extension and cell advance, respectively. The identification of chemical waves was supported by the ring, sphere, spiral and scroll wave patterns, which were observed in the extensions of fixed cells stained with phalloidin-rhodamine, and by the similar, asymmetrical [F-actin] distribution in wavefronts in living and fixed cells. These F-actin patterns and dynamics in Dictyostelium provide evidence for a new supramolecular state of actin, which propagates as a self-organized, reaction-diffusion wave of reversible F-actin assembly and affects pseudopodium extension. Actin's properties of oscillation and self-organization might also fundamentally determine the nature of the eukaryotic cell's reactions of adaptation, timing and signal response.

  16. Novel actin depolymerizing macrolide aplyronine A.

    PubMed

    Saito, S; Watabe, S; Ozaki, H; Kigoshi, H; Yamada, K; Fusetani, N; Karaki, H

    1996-09-01

    Aplyronine A is a macrolide isolated from Aplysia kurodai. By monitoring fluorescent intensity of pyrenyl-actin, it was found that aplyronine A inhibited both the velocity and the degree of actin polymerization. Aplyronine A also quickly depolymerized F-actin. The kinetics of depolymerization suggest that aplyronine A severs F-actin. The relationship between the concentration of total actin and F-actin at different concentrations of aplyronine A suggests that aplyronine A forms a 1:1 complex with G-actin. From these results, it is concluded that aplyronine A inhibits actin polymerization and depolymerizes F-actin by nibbling. Comparison of the chemical structure of aplyronine A and another actin-depolymerizing macrolide, mycalolide B, suggests that the side-chain but not the macrolide ring of aplyronine A may account for its actin binding and severing activity.

  17. Bacterial Actins and Their Interactors.

    PubMed

    Gayathri, Pananghat

    2017-01-01

    Bacterial actins polymerize in the presence of nucleotide (preferably ATP), form a common arrangement of monomeric interfaces within a protofilament, and undergo ATP hydrolysis-dependent change in stability of the filament-all of which contribute to performing their respective functions. The relative stability of the filament in the ADP-bound form compared to that of ATP and the rate of addition of monomers at the two ends decide the filament dynamics. One of the major differences between eukaryotic actin and bacterial actins is the variety in protofilament arrangements and dynamics exhibited by the latter. The filament structure and the polymerization dynamics enable them to perform various functions such as shape determination in rod-shaped bacteria (MreB), cell division (FtsA), plasmid segregation (ParM family of actin-like proteins), and organelle positioning (MamK). Though the architecture and dynamics of a few representative filaments have been studied, information on the effect of interacting partners on bacterial actin filament dynamics is not very well known. The chapter reviews some of the structural and functional aspects of bacterial actins, with special focus on the effect that interacting partners exert on the dynamics of bacterial actins, and how these assist them to carry out the functions within the bacterial cell.

  18. erythro-9-[3-(2-Hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly.

    PubMed Central

    Schliwa, M; Ezzell, R M; Euteneuer, U

    1984-01-01

    erythro-9-[3-(2-Hydroxynonyl)]adenine (EHNA) has been reported previously to be an agent that arrests sperm motility by inhibiting the axonemal dynein ATPase activity and has been used to probe the involvement of putative cytoplasmic dyneins in mitosis and intracellular organelle transport. We report here that EHNA profoundly and reversibly affects several actin-dependent processes, both in vivo and in vitro. It induces dramatic changes in actin organization in cultured cells, inhibits cell translocation, blocks actin-dependent cytoplasmic streaming, interferes with actin-dependent gelation of cytoplasmic extracts, and inhibits actin assembly. Just as the cytochalasins, EHNA appears to be a highly effective inhibitor of actin-based motility, whose effects in complex biological systems should be interpreted with caution. Images PMID:6385006

  19. Actin cytoskeleton: putting a CAP on actin polymerization.

    PubMed

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  20. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  1. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  2. A Scaling for the H--mode Edge Pedestal in DIII--D

    NASA Astrophysics Data System (ADS)

    Yushmanov, P.; Groebner, R. J.; Lao, L. L.; Carlstrom, T. N.

    1996-11-01

    A database characterizing the edge pedestal of H--mode plasmas in a wide variety of DIII--D operational conditions is being collected and analyzed by regression methods. The edge density and pressure pedestals are described by the amplitude and the width of the high gradient region. The set of regression parameters includes global discharge characteristics such as toroidal magnetic field, plasma current, stored energy, average density, energy flux through the separatrix as well as local values of electron and ion temperatures and plasma density at the inner side of the edge pedestal. The parameters of the magnetic configuration are described by the critical pressure gradient and the width of the second stability region in the vicinity of the separatrix. These parameters are obtained from magnetic and kinetic measurements with the use of the EFIT equilibrium code and the CAMINO stability code. The goal of this work is to develop a scaling for the H--mode edge pedestal in terms of local plasma parameters which may be used for comparison with the data from other tokamaks and for developing ITER confinement models.

  3. Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D

    SciTech Connect

    King, J. D.; Makowski, M. A.; Holcomb, C. T.; Allen, S. L.; Hill, D. N.; Meyer, W. H.; Geer, R.; La Haye, R. J.; Petty, C. C.; Van Zeeland, M. A.; Turco, F.; Rhodes, T. L.; Morse, E. C.

    2011-03-15

    Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at {rho}{>=} 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies.

  4. H-mode pedestal turbulence in DIII-D and NSTX using BOUT++

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dudson, B. D.; Joseph, I.; Groebner, R. J.; Maingi, R.

    2011-10-01

    In this work, we will report BOUT++ simulations for H-mode pedestal instabilities and turbulent transport. For DIII-D H-mode discharges, the BOUT++ peeling-ballooning ELM model including electron inertia was used to analyze the ideal linear stability and ELM dynamics. The beta scan is carried out from a series of self-consistent MHD equilibria generated from EFIT by varying pressure and/or current. For typical tokamak pedestal plasmas with high temperature and low collisionality, we found that the collisionless ballooning modes driven by electron inertia are unstable in the H-mode pedestal and have a lower beta threshold than ideal peeling-ballooning modes, which are the triggers for Edge Localized Modes. The growth rate of electron inertia ballooning modes is found to increase with the magnitude of the electron skin depth de=c/ωpe. Thus, collisionless (electron inertia) ballooning modes might be responsible for H-mode turbulence transport when the pedestal is stable to peeling-ballooning modes. BOUT++ calculations also show that NSTX Elm stability boundaries are sensitive to flow shear profile. Attempts are underway to calculate nonlinear turbulence and transport in H-mode discharges due to the non-ideal effects. Performed for USDoE by LLNL under Contract DE-AC52-07NA27344.

  5. Gyrokinetic simulation of I-mode C-Mod pedestal using GENE

    NASA Astrophysics Data System (ADS)

    Liu, Xing; David, H.; Kotschenreuther, M.; Mahajan, S.; Huges, J.; Hubbard, A.; Valanju, P.

    2016-10-01

    Naturally stable to ELMs, and with widths larger than EPED predictions, the I-modes are an excellent laboratory for investigating the role of drift microinstabilities in pedestal formation since I-mode pedestal are not ``limited'' by MHD instabilities-Peeling Ballooning or the Kinetic Ballooning. Because the Weakly Coherent Mode (WCM) is shown to be correlated, primarily, to particle transport, the pedestal heat transport, in some sense, must be controlled by drift-type modes. We present here a study based on gyrokinetic simulations (using GENE) to model heat transport in the I-mode pedestals in C-Mod. Nonlinear ETG simulations, found to be streamer-dominated, can match experimental heat flux with profile adjustment well within experimental error bars. The ETG simulations reveal very notable fine-scale structure (in the parallel direction) of the eigenfunctions in both linear and nonlinear simulations. Simulations, varying impurity level (Zeff) and temperature and density profiles (within experimental error bars), are used to probe the sensitivity of ETG heat transport to the most important input parameters. Efforts to identify an instability corresponding to the WCM will also be discussed. Work supported by USDOE Grant DE-FG02-04ER54742.

  6. The role of the density profile in the ASDEX-Upgrade pedestal structure

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Potzel, S.; Reimold, F.; Wischmeier, M.; Wolfrum, E.; Frassinetti, L.; Beurskens, M.; Bilkova, P.; Cavedon, M.; Fischer, R.; Kurzan, B.; Laggner, F. M.; McDermott, R. M.; Tardini, G.; Trier, E.; Viezzer, E.; Willensdorfer, M.; The EUROfusion MST1 Team; The ASDEX-Upgrade Team

    2017-01-01

    Experimental evidence for the impact of a region of high density localised in the high-field side scrape-off layer (the HFSHD) on plasma confinement is shown in various dedicated experiments on ASDEX Upgrade (AUG). Increasing main ion fuelling is shown to increase the separatrix density and shift the density profile outwards. Predictive pedestal modelling of this shift indicates a 25% decrease in the attainable pedestal top pressure, which compares well with experimental observations in the gas scan. Since the HFSHD can be mitigated by applying nitrogen seeding, a combined scan in fuelling rate, heating power, and nitrogen seeding is presented. Significant increases in the achievable pedestal top pressure are observed with seeding, in particular at high heating powers, and are correlated with inward shifted density profiles and a reduction of the HFSHD and separatrix density. Interpretive linear stability analysis also confirms the impact of a radially shifted pressure profile on peeling-ballooning stability, with an inward shift allowing access to higher pressure gradients and pedestal widths.

  7. Neoclassical Toroidal Viscosity Torque Induced by Plasma Response in a Low- β Tokamak with Edge Pedestal

    NASA Astrophysics Data System (ADS)

    Yan, Xingting; Zhu, Ping; Sun, Youwen

    2016-10-01

    The characteristic profile and magnitude are predicted in theory for the neoclassical toroidal viscosity (NTV) torque induced by the plasma response to the resonant magnetic perturbation (RMP) in a tokamak with an edge pedestal, using the newly developed module coupling the NIMROD and the NTVTOK codes. For a low β equilibrium, the NTV torque is mainly induced by the dominant toroidal mode of plasma response. The NTV torque profile is radially localized and peaked, which is determined by profiles of both the equilibrium temperature and the plasma response fields. In general, the peak of NTV torque profile is found to trace the pedestal location. The magnitude of NTV torque is extremely sensitive to the β of pedestal top; for a given plasma response, the peak value of NTV torque can increase by three orders of magnitude, when the pedestal β increases by only one order of magnitude. This suggests a more significant role of NTV torque in higher plasma β regimes. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, and the 100 Talent Program of the Chinese Academy of Sciences.

  8. Free Actin Impairs Macrophage Bacterial Defenses via Scavenger Receptor MARCO Interaction, with Reversal by Plasma Gelsolin.

    PubMed

    Ordija, Christine M; Chiou, Terry Ting-Yu; Yang, Zhiping; Deloid, Glen M; de Oliveira Valdo, Melina; Wang, Zhi; Bedugnis, Alice; Noah, Terry L; Jones, Samuel; Koziel, Henry; Kobzik, Lester

    2017-04-06

    Lung injury can release intracellular actin into the alveolar milieu, and is also associated with increased susceptibility to secondary infections. We investigated the effect of free (extracellular) actin on lung macrophage host defense functions. Western blot analysis demonstrated free actin release into the lung lavage fluids of mouse models of ozone injury, influenza infection and secondary pneumococcal pneumonia, and in samples from patients following burn and inhalation injury. Using levels comparable to those observed in lung injury, we found that free actin markedly inhibited murine lung macrophage binding and uptake in vitro of S. pneumoniae, S. aureus and E. coli e.g., S. pneumoniae, mean % inhibition, actin vs vehicle: 85 ± 0.3 (SD), n = 22, p <.001). Similar effects were observed on the ability of primary human macrophages to bind and ingest fluorescent S. aureus (~75 % inhibition). Plasma gelsolin (pGSN), a protein that functions to bind and cleave actin, restored bacterial binding and uptake by both murine and human macrophages. Scavenger receptor inhibitors reduced binding of fluorescent actin by murine macrophages (fluorescence index (x 10-3) after incubation with vehicle, actin, or actin + polyinosinic acid, respectively: 0.8 ± 0.7, 101.7 ± 50.7, 52.7 ± 16.9, n = 5-6, p < 0.05). In addition, actin binding was reduced in a MARCO / SR-AI/II deficient cell line and by normal AMs obtained from MARCO -/- mice. After release from injured cells during lung injury, free actin likely contributes to impaired host defense by blocking scavenger receptor binding of bacteria. This mechanism for increased risk of secondary infections after lung injury or inflammation may represent another target for therapeutic intervention with pGSN.

  9. Dual pools of actin at presynaptic terminals.

    PubMed

    Bleckert, Adam; Photowala, Huzefa; Alford, Simon

    2012-06-01

    We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.

  10. [Photodynamic therapy for actinic cheilitis].

    PubMed

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  11. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  12. Multi-device studies of pedestal physics and confinement in the I-mode regime

    NASA Astrophysics Data System (ADS)

    Hubbard, A. E.; Osborne, T.; Ryter, F.; Austin, M.; Barrera Orte, L.; Churchill, R. M.; Cziegler, I.; Fenstermacher, M.; Fischer, R.; Gerhardt, S.; Groebner, R.; Gohil, P.; Happel, T.; Hughes, J. W.; Loarte, A.; Maingi, R.; Manz, P.; Marinoni, A.; Marmar, E. S.; McDermott, R. M.; McKee, G.; Rhodes, T. L.; Rice, J. E.; Schmitz, L.; Theiler, C.; Viezzer, E.; Walk, J. R.; White, A.; Whyte, D.; Wolfe, S.; Wolfrum, E.; Yan, Z.; Alcator C-Mod, the; Upgrade, ASDEX; DIII-D Teams

    2016-08-01

    This paper describes joint ITPA studies of the I-mode regime, which features an edge thermal barrier together with L-mode-like particle and impurity transport and no edge localized modes (ELMs). The regime has been demonstrated on the Alcator C-Mod, ASDEX Upgrade and DIII-D tokamaks, over a wide range of device parameters and pedestal conditions. Dimensionless parameters at the pedestal show overlap across devices and extend to low collisionality. When they are matched, pedestal temperature profiles are also similar. Pedestals are stable to peeling-ballooning modes, consistent with lack of ELMs. Access to I-mode is independent of heating method (neutral beam injection, ion cyclotron and/or electron cyclotron resonance heating). Normalized energy confinement H 98,y2  ⩾  1 has been achieved for a range of 3  ⩽  q 95  ⩽  4.9 and scales favourably with power. Changes in turbulence in the pedestal region accompany the transition from L-mode to I-mode. The L-I threshold increases with plasma density and current, and with device size, but has a weak dependence on toroidal magnetic field B T. The upper limit of power for I-modes, which is set by I-H transitions, increases with B T and the power range is largest on Alcator C-Mod at B  >  5 T. Issues for extrapolation to ITER and other future fusion devices are discussed.

  13. Pressure-Gradient-Limiting Instability Dynamics in the H-mode Pedestal on DIII-D

    NASA Astrophysics Data System (ADS)

    Yan, Z.

    2010-11-01

    Detailed 2D measurements of long-wavelength density fluctuations in the pedestal region with beam emission spectroscopy during the inter-ELM phase indicate two distinct bands of fluctuations propagating in opposite poloidal directions in the plasma frame: one lower frequency band (20-150 kHz) advects in the ion-diamagnetic drift direction (ion mode), and a higher frequency band (200-400 kHz) advects in the electron diamagnetic drift direction (electron mode). Interestingly, the mode amplitudes are modulated with the ELM cycle with the ion mode having some features qualitatively similar to those predicted for kinetic ballooning modes (KBM). Experiments have focused on determining the role of current and pressure gradient-driven instabilities in determining the H-mode pedestal structure. Detailed analysis of the temporal evolution reveals complex dynamics. The ion mode amplitude increases rapidly after an ELM and then saturates, consistent with the dynamics of the pedestal electron pressure, while the electron mode is quasi-stationary between ELMs. The decorrelation time of the ion mode is <5,s (τcxcs/a<=1), the radial correlation length is of order 10,ρi and the poloidal wave-number kθρi˜0.1. The mode velocity is comparable to the diamagnetic velocity. In related Quiescent H-mode experiments, pedestals with high electron pressure and high ExB shearing rates exhibit a set of high-frequency coherent modes propagating in the ion diamagnetic direction. These modes also exhibit KBM-like characteristics, but do not develop into fully turbulent structures. Numerical simulations are in progress to help identify the underlying instabilities and nature of these modes, and ultimately help validate nonlinear models of the H-mode pedestal structure.

  14. The trinity of the cortical actin in the initiation of HIV-1 infection

    PubMed Central

    2012-01-01

    For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard, the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly, in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this review to examine, in detail, the manifestation of viral dependence on the actin cytoskeleton, and present a model of how HIV utilizes actin dynamics to initiate infection. PMID:22640593

  15. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development

    PubMed Central

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-01-01

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated. PMID:27385345

  16. Mechanics of biomimetic systems propelled by actin comet tails

    NASA Astrophysics Data System (ADS)

    Kang, Hyeran; Tambe, Dhananjay; Shenoy, Vivek; Tang, Jay

    2009-03-01

    The motility of intracellular bacterial pathogens such as Listeria monocytogenes is driven by filamentous actin comet tails in a variety of trajectories. Here, we present the in vitro study on the actin-based movements using spherical beads of different sizes coated with VCA protein, a partial domain of N-Wasp, in platelet extracts. Long term two-dimensional trajectories of the spherical beads motility show characteristic difference than those observed for bacteria, which have both elongated shape and asymmetric expression of the polymerization inducing enzyme. The trajectories also vary sensitively with the bead size and shape. These results provide a useful test to our new analytical model including the rotation of the bead relative to the tail.

  17. Intermediate-k density and magnetic field fluctuations during inter-ELM pedestal evolution in MAST

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Dickinson, D.; Roach, C. M.; Saarelma, S.; Scannell, R.; Kirk, A.; Crocker, N. A.; Peebles, W. A.; Meyer, H.; the MAST Team

    2016-01-01

    Measurements of local density and magnetic field fluctuations near the pedestal top, conditionally averaged over the edge localized mode (ELM) cycle, have been made in Mega Amp Spherical Tokamak (MAST). A Doppler backscattering (DBS) system installed at MAST was used to measure intermediate-k ≤ft({{k}\\bot}{ρi}≈ 3~\\text{to}~4\\right) density fluctuations at the top of the pedestal. A novel diagnostic technique combining DBS with cross-polarization scattering (CP-DBS) enabled magnetic field fluctuations to also be locally measured at similar wave numbers. Polarization isolation and other effects for CP-DBS are discussed. Both measurements were used in a series of high-β ≤ft({βn}≈ 4.0\\right. -4.5) MAST plasmas with large type-I ELMs with an ˜ 8~\\text{to}~9~\\text{ms} period where microtearing modes (MTMs) had been predicted to be unstable in similar conditions (Dickinson 2012 Phys. Rev. Lett. 108 135002). The measured density fluctuation level increased by a factor of about 4 between 2 and 4 ms after the ELM, which was correlated with the recovery of the density profile while the temperature pedestal height continued to increase slowly. Magnetic field fluctuations showed different temporal behaviors, slowly increasing throughout the ELM cycle as the local β increased. Linear GS2 calculations show both MTM and electron temperature gradient (ETG) modes unstable at similar wave numbers as the measurements (although with more overlap between ETG wave numbers and diagnostic spectral resolution) at the top of the pedestal, along with kinetic ballooning modes are unstable lower in the pedestal (at larger wavelengths). The inferred ratio of fluctuation levels from experiment was ≤ft(δ B/B\\right)/≤ft(δ n/n\\right)≈ 1/20 . The comparable ratios from GS2 were ≤ft(δ B/B\\right)/≤ft(δ n/n\\right)≈ 0.4 for the MTM and ≤ft(δ B/B\\right)/≤ft(δ n/n\\right)≈ 0.02 for the ETG. Both the experimental wave number range and the fluctuation ratio

  18. The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments

    PubMed Central

    Pandzic, Elvis; Gelissen, Ingrid C.; Whan, Renee; Barter, Philip J.; Sviridov, Dmitri; Gaus, Katharina; Rye, Kerry-Anne; Cochran, Blake J.

    2017-01-01

    The ATP-binding cassette sub-family G member 1 (ABCG1) exports cellular cholesterol to high-density lipoproteins (HDL). However, a number of recent studies have suggested ABCG1 is predominantly localised to intracellular membranes. In this study, we found that ABCG1 was organized into two distinct cellular pools: one at the plasma membrane and the other associated with the endoplasmic reticulum (ER). The plasma membrane fraction was organized into filamentous structures that were associated with cortical actin filaments. Inhibition of actin polymerization resulted in complete disruption of ABCG1 filaments. Cholesterol loading of the cells increased the formation of the filamentous ABCG1, the proximity of filamentous ABCG1 to actin filaments and the diffusion rate of membrane associated ABCG1. Our findings suggest that the actin cytoskeleton plays a critical role in the plasma membrane localization of ABCG1. PMID:28165022

  19. Nucleus-associated actin in Amoeba proteus.

    PubMed

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  20. Kinetic instabilities that limit β in the edge of a tokamak plasma: a picture of an H-mode pedestal.

    PubMed

    Dickinson, D; Roach, C M; Saarelma, S; Scannell, R; Kirk, A; Wilson, H R

    2012-03-30

    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM, steep gradients in pressure, P, and density, n(e), form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes in the pedestal and microtearing modes in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.

  1. Kinetic Instabilities that Limit β in the Edge of a Tokamak Plasma: A Picture of an H-Mode Pedestal

    NASA Astrophysics Data System (ADS)

    Dickinson, D.; Roach, C. M.; Saarelma, S.; Scannell, R.; Kirk, A.; Wilson, H. R.

    2012-03-01

    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM, steep gradients in pressure, P, and density, ne, form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes in the pedestal and microtearing modes in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.

  2. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  3. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    PubMed

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  4. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-05-01

    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  5. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    PubMed Central

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  6. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  7. Effects of solution crowding on actin polymerization reveal the energetic basis for nucleotide-dependent filament stability

    PubMed Central

    Frederick, Kendra B.; Sept, David; De La Cruz, Enrique M.

    2008-01-01

    Actin polymerization is a fundamental cellular process involved in cell structure maintenance, force generation, and motility. Phosphate release from filament subunits following ATP hydrolysis destabilizes the filament lattice and increases the critical concentration (Cc) for assembly. The structural differences between ATP- and ADP-actin are still debated, as well as the energetic factors that underlie nucleotide-dependent filament stability, particularly under crowded intracellular conditions. Here, we investigate the effect of crowding agents on ATP- and ADP-actin polymerization, and find that ATP-actin polymerization is largely unaffected by solution crowding, while crowding agents lower the Cc of ADP-actin in a concentration-dependent manner. The stabilities of ATP- and ADP-actin filaments are comparable in the presence of physiological amounts (~30% w/v) and types (sorbitol) of low molecular weight crowding agents. Crowding agents act to stabilize ADP-F-actin by slowing subunit dissociation. These observations suggest that nucleotide hydrolysis and phosphate release per se do not introduce intrinsic differences in the in vivo filament stability. Rather, the preferential disassembly of ADP-actin filaments in cells is driven through interactions with regulatory proteins. Interpretation of the experimental data according to osmotic stress theory implicates water as an allosteric regulator of actin activity and hydration as the molecular basis for nucleotide-dependent filament stability. PMID:18374941

  8. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  9. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  10. Actin polymerization is stimulated by actin cross-linking protein palladin.

    PubMed

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G; Orlova, Albina; Egelman, Edward H; Beck, Moriah R

    2016-02-15

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the co-ordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. In the present study, we show that the actin-binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro cross-linking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of globular or monomeric actin (G-actin), akin to metal ions, either through charge neutralization or through conformational changes.

  11. Ballooning Stability Of Tokamak Pedestals In The Presence Of Applied 3D Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Cote, T. B.; Hegna, C. C.; Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Zohm, H.

    2016-10-01

    Applied 3d magnetic perturbations can destabilize ideal mhd ballooning modes in tokamak pedestals. In this work, we describe techniques for studying infinite-n ballooning stability of 3d equilibria deduced from vmec calculations. Full magnetic profiles from vmec are used to construct local equilibria for flux surfaces in and around the edge pedestal region. These local equilibrium calculations are coupled with ideal ballooning stability analysis to determine stability of the system for given rmp configurations. This theoretical development is motivated by recent asdex-u experiments, where toroidally localized high-n mhd activity is observed in the presence of applied 3d fields. We will attempt to explain these observations. Supported by US DOE under Grant No. DE-FG02-86ER53218.

  12. NASTRAN structural model for the large ground antenna pedestal with applications to hydrostatic bearing of film

    NASA Technical Reports Server (NTRS)

    Chian, C. T.

    1986-01-01

    Investigations were conducted on the 64-meter antenna hydrostatic bearing oil film thickness under a variety of loads and elastic moduli. These parametric studies used a NASTRAN pedestal structural model to determine the deflections under the hydrostatic bearing pad. The deflections formed the input for a computer program to determine the hydrostratic bearing oil film thickness. For the future 64-meter to 70-meter antenna extension and for the 2.2-meter (86-in.) haunch concrete replacement cases, the program predicted safe oil film thickness (greater than 0.13 mm (0.005 in.) at the corners of the pad). The effects of varying moduli of elasticity for different sections of the pedestal and the film height under stressed runner conditions were also studied.

  13. Characterization and parametric dependencies of low wavenumber pedestal turbulence in the National Spherical Torus Experiment

    SciTech Connect

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S.; Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M.

    2013-05-15

    The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.

  14. Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Webbon, Waylon Willard; Bagepalli, Radhakrishna; Burdgick, Steven Sebastian; Kellock, Iain Robertson

    2002-01-01

    A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.

  15. Effect of Pedestal Temperature on Bonding Strength and Deformation Characteristics for 5N Copper Wire Bonding

    NASA Astrophysics Data System (ADS)

    Singh, Gurbinder; Haseeb, A. S. M. A.

    2016-06-01

    In recent years, copper has increasingly been used to replace gold to create wire-bonded interconnections in microelectronics. While engineers and researchers in the semiconductor packaging field are continuously working on this transition from gold to copper wires to reduce costs, the challenge remains in producing robust and reliable joints for semiconductor devices. This research paper investigates the effect of pedestal temperature on bonding strength and deformation for 99.999% purity (5N) copper wire bonding on nickel-palladium-gold (NiPdAu) bond pads. With increasing pedestal temperature, significant thinning of the copper ball bond can be achieved, resulting in higher as-bonded ball shear strengths while producing no pad damage. This can be helpful for low-k devices with thin structures, so as to prevent the use of excessive bond force and ultrasonic energy during copper wire bonding.

  16. Predictive modelling of the impact of a radiative divertor on pedestal confinement on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, Mike; Potzel, Steffen; Wischmeier, Marco; Wolfrum, Elisabeth; Frassinetti, Lorenzo; Reimold, Felix; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2015-11-01

    In future devices, tailoring of the edge density profile and radiation profile for power exhaust control via a deuterium gas puff and extrinsic impurity seeding will be necessary. It has been observed on present day machines that high D fuelling can reduce the plasma stored energy while adding impurity seeding can act to improve confinement by up to 40%. This study presents a combination of observations and modelling completed on AUG with the aim of determining the mechanisms behind the confinement degradation with a gas puff and improvement with impurity seeding. In particular, predictive modelling, based on the EPED pedestal model, has been extensively used. Alterations of the temperature and density at the separatrix are found to have large impacts on pedestal stability. Measured changes in divertor properties are used to inform the direction and magnitude of these alterations, with experimentally relevant confinement changes being recovered via pressure profile shifts. http://www.euro-fusionscipub.org/mst1

  17. Formation and Destabilization of Actin Filaments with Tetramethylrhodamine-Modified Actin

    PubMed Central

    Kudryashov, Dmitry S.; Phillips, Martin; Reisler, Emil

    2004-01-01

    Actin labeling at Cys374 with tethramethylrhodamine derivatives (TMR-actin) has been widely used for direct observation of the in vitro filaments growth, branching, and treadmilling, as well as for the in vivo visualization of actin cytoskeleton. The advantage of TMR-actin is that it does not lock actin in filaments (as rhodamine-phalloidin does), possibly allowing for its use in investigating the dynamic assembly behavior of actin polymers. Although it is established that TMR-actin alone is polymerization incompetent, the impact of its copolymerization with unlabeled actin on filament structure and dynamics has not been tested yet. In this study, we show that TMR-actin perturbs the filaments structure when copolymerized with unlabeled actin; the resulting filaments are more fragile and shorter than the control filaments. Due to the increased severing of copolymer filaments, TMR-actin accelerates the polymerization of unlabeled actin in solution also at mole ratios lower than those used in most fluorescence microscopy experiments. The destabilizing and severing effect of TMR-actin is countered by filament stabilizing factors, phalloidin, S1, and tropomyosin. These results point to an analogy between the effects of TMR-actin and severing proteins on F-actin, and imply that TMR-actin may be inappropriate for investigations of actin filaments dynamics. PMID:15298916

  18. Optimal treatment of actinic keratoses

    PubMed Central

    Uhlenhake, Elizabeth E

    2013-01-01

    The most compelling reason and primary goal of treating actinic keratoses is to prevent malignant transformation into invasive squamous cell carcinoma, and although there are well established guidelines outlining treatment modalities and regimens for squamous cell carcinoma, the more commonly encountered precancerous actinic lesions have no such standard. Many options are available with variable success and patient compliance rates. Prevention of these lesions is key, with sun protection being a must in treating aging patients with sun damage as it is never too late to begin protecting the skin. PMID:23345970

  19. Fascin regulates nuclear actin during Drosophila oogenesis

    PubMed Central

    Kelpsch, Daniel J.; Groen, Christopher M.; Fagan, Tiffany N.; Sudhir, Sweta; Tootle, Tina L.

    2016-01-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  20. High-Precision Dispensing of Nanoliter Biofluids on Glass Pedestal Arrays for Ultrasensitive Biomolecule Detection.

    PubMed

    Chen, Xiaoxiao; Liu, Yang; Xu, QianFeng; Zhu, Jing; Poget, Sébastien F; Lyons, Alan M

    2016-05-04

    Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 μL) on isolated hydrophilic glass pedestals (500 μm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence

  1. Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase.

    PubMed

    Barth, Brian M; Stewart-Smeets, Shelli; Kuhn, Thomas B

    2009-06-01

    The proinflammatory cytokines TNFalpha and Il-1beta orchestrate the progression of CNS inflammation, which substantially contributes to neurodegeneration in many CNS pathologies. TNFalpha and Il-1beta stimulate actin filament reorganization in non-neuronal cells often accompanied by the formation of reactive oxygen species (ROS). Actin filament dynamics is vital for cellular plasticity, mitochondrial function, and gene expression despite being highly susceptible to oxidative damage. We demonstrated that, in neuronal cells, TNFalpha and Il-1beta stimulate a transient, redox-dependent reorganization of the actin cytoskeleton into lamellipodia under the regulation of Rac1 and a neuronal NADPH oxidase as the source of ROS. The persistent presence of intracellular ROS provoked oxidative damage (carbonylation) to actin coinciding with the loss of lamellipodia and arrest of cellular plasticity. Inhibition of NADPH oxidase activity or Rac1 abolished the adverse effects of cytokines. These findings suggest that oxidative damage to the neuronal actin cytoskeleton could represent a key step in CNS neurodegeneration.

  2. High resolution equilibrium calculations of pedestal and SOL plasma in tokamaks

    NASA Astrophysics Data System (ADS)

    Medvedev, S. Yu; Martynov, A. A.; Drozdov, V. V.; Ivanov, A. A.; Poshekhonov, Yu Yu

    2017-02-01

    For integrated modeling of equilibrium, stability and dynamics of the divertor tokamak plasma with scrape-off layer (SOL) high resolution equilibrium calculations are needed. A new version of the CAXE equilibrium code computes the tokamak equilibrium on a numerical grid adaptive to magnetic surfaces both in the plasma region with closed flux surfaces and in the SOL region with open magnetic lines. The plasma profiles can be prescribed independently in each region with nested flux surfaces, and realistic SOL profiles with very short pressure drop off length can be accurately treated. The influence of the finite current density in SOL on the connection length is studied. From the point of view of the MHD equilibrium and stability modeling, self-consistent calculations of diverted tokamak configurations with finite current density at the separatrix require taking into account plasma outside the separatrix. Calculated high resolution equilibria provide an input to new versions of the ideal MHD stability codes treating tokamak plasma with SOL. The study of the influence of the pressure gradient profile in the pedestal plasma inside and outside the separatrix on the pedestal height limit set by external kink-ballooning mode stability is presented. Another possible application of the high resolution pedestal and SOL equilibrium code is a coupling to the SOLPS code with a purpose to increase equilibrium accuracy and support self-consistent plasma flow/equilibrium modeling.

  3. Characterization of broadband fluctuations in wide-pedestal QH-mode plasmas on DIII-D

    NASA Astrophysics Data System (ADS)

    Muscatello, C. M.; Burrell, K. H.; Luhmann, N. C., Jr.; McKee, G. R.; Tobias, B.

    2016-10-01

    Edge broadband fluctuations observed in wide pedestal quiescent H-mode plasmas may play an important role in driving transport necessary for stabilizing the edge to kink-peeling modes, thought to lead to ELMs. Density fluctuation measurements from BES and MIR independently observe periodic bursts in the pedestal that show up spectrally as broadband fluctuations. The period of the fluctuation bursts correlate with the period of enhanced bicoherence in the frequency range of the fluctuations, suggesting nonlinear coupling of turbulence. Time-delay estimation analysis of the 2D BES data shows strong evidence of a low-frequency zonal flow in the pedestal with a period matching that of the bursts. The carbon pressure gradient and E × B velocity, determined from CER, and ECE emission also oscillate with the same period. This behavior can be described as a quasi-stationary, limit-cycle oscillation and modeled by a set of predator-prey equations relating the zonal flow, equilibrium flow, and turbulence amplitude. Supported by the US DOE under DE-FC02-04ER54698, DE-FG02-99ER54531, DE-AC02-09CH11466.

  4. MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Wilson, H. R.; Konz, C.

    2005-10-01

    The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for edge localized modes (ELMs) and impose constraints on the pedestal height. In typical discharges with ELMs, the pedestal goes unstable to coupled peeling-ballooning or pure ballooning modes shortly before an ELM is observed. However, at very low collisionality, the bootstrap current in the pedestal region can be large, even very near the separatrix, and the discharge can be most unstable to current-driven kink/peeling modes, typically at relatively low mode number (n˜,1-10). Recently, interesting ELM-free regimes, including both Quiescent (QH) and Resonant Magnetic Perturbation (RMP) H-mode, have been observed to occur in this low collisionality regime. Here we systematically explore MHD stability in this regime, including the effects of a conducting wall and sheared toroidal flow. We consider the implications for both RMP and QH discharges, including possible connections between the EHO observed in QH mode and low-n kink/peeling modes.

  5. The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX

    SciTech Connect

    D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team

    2012-08-17

    Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused the density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX

  6. Impact of plasma core profiles on MHD stability at tokamak edge pedestal

    NASA Astrophysics Data System (ADS)

    Aiba, N.; Urano, H.

    2014-11-01

    Impact of plasma core profiles on magnetohydrodynamics (MHD) stability at tokamak edge pedestal is investigated numerically to extend an operation regime for small amplitude grassy edge localized mode (ELM). With the hypotheses that pedestal pressure profile can be predicted with the EPED1 model and the trigger of grassy ELM is an ideal ballooning mode, the impacts of plasma poloidal beta and plasma internal inductance on edge MHD stability are investigated, the parameters of which are related to plasma core profiles and are important parameters for grassy ELMy H-modes in JET quasi-double null plasma. The numerical results indicate that a ballooning mode can be destabilized by decreasing poloidal beta and/or internal inductance. In contrast, it is confirmed that pedestal density, which is also an important parameter for realizing grassy ELMy H-mode, can stabilize a ballooning mode. In combination with these trends, it is possible to relax the necessary conditions for grassy ELMy H-mode by adjusting the parameters carefully, though this relaxation destabilizes type-I ELM more easily due to the increase in edge current density.

  7. The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX

    SciTech Connect

    Boyle, D. P.; Maingi, R.; Snyder, P. B.; Manickam, J.; Osborne, T.H.; Bell, R. E.; LeBlanc, B. P.

    2011-01-01

    Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused the density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.

  8. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    PubMed

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  9. Red light, Phot1 and JAC1 modulate Phot2-dependent reorganization of chloroplast actin filaments and chloroplast avoidance movement.

    PubMed

    Ichikawa, Satoshi; Yamada, Noboru; Suetsugu, Noriyuki; Wada, Masamitsu; Kadota, Akeo

    2011-08-01

    The phototropin (phot)-dependent intracellular relocation of chloroplasts is a ubiquitous phenomenon in plants. We have previously revealed the involvement of a short cp-actin (chloroplast actin) filament-based mechanism in this movement. Here, the reorganization of cp-actin filaments during the avoidance movement of chloroplasts was analyzed in higher time resolution under blue GFP (green fluorescent protein) excitation light in an actin filament-visualized line of Arabidopsis thaliana. Under standard background red light of 89 μmol m(-2) s(-1), cp-actin filaments transiently disappeared at approximately 30 s and reappeared in a biased configuration on chloroplasts approximately 70 s after blue excitation light irradiation. The timing of biased cp-actin reappearance was delayed under the background of strong red light or in the absence of red light. Consistently, chloroplast movement was delayed under these conditions. In phot1 mutants, acceleration of both the disappearance and reappearance of cp-actin filaments occurred, indicating an inhibitory action of phot1 on reorganization of cp-actin filaments. Avoidance movements began sooner in phot1 than in wild-type plants. No reorganization of cp-actin filaments was seen in phot2 or phot1phot2 mutants lacking phot2, which is responsible for avoidance movements. Surprisingly, jac1 (j-domain protein required for chloroplast accumulation response 1) mutants, lacking the accumulation response, showed no avoidance movements under the whole-cell irradiation condition for GFP observation. Cp-actin filaments in jac1 did not show a biased distribution, with a small or almost no transient decrease in the number. These results indicate a close association between the biased distribution of cp-actin filaments and chloroplast movement. Further, JAC1 is suggested to function in the biased cp-actin filament distribution by regulating their appearance and disappearance.

  10. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling.

  11. Antibodies to Actin in Autoimmune Neutropenia

    DTIC Science & Technology

    1990-02-01

    protein as actin. Purified Acanthamoeba actin by anti-neutrophil antibodies in autoimmune neutropenia, comigrated with the protein and was specifically...anti-rabbit IgG were obtained from ICN Immunobiolog- formed using purified Acanthamoeba actin (gift of Dr Blair Bowers. icals, Naperville, IL. Cells...preparations𔃼 1 - was the protein recognized by these anti-neutrophil antibody 6 .2- positive sera, lgG, and F(ab’) 2. Purified Acanthamoeba actin

  12. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    PubMed Central

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host. PMID:21444821

  13. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    PubMed

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  14. Actinic cheilitis in dental practice.

    PubMed

    Savage, N W; McKay, C; Faulkner, C

    2010-06-01

    Actinic cheilitis is a potentially premalignant condition involving predominantly the vermilion of the lower lip. The aim of the current paper was to review the clinical presentation of actinic cheilitis and demonstrate the development of management plans using a series of cases. These are designed to provide immediate treatment where required but also to address the medium and long-term requirements of the patient. The authors suggest that the clinical examination of lips and the assessment of actinic cheilitis and other lip pathology become a regular part of the routine soft tissue examination undertaken as a part of the periodic examination of dental patients. Early recognition of actinic cheilitis can allow the development of strategies for individual patients that prevent progression. These are based on past sun exposure, future lifestyle changes and the daily use of emollient sunscreens, broad-brimmed hats and avoidance of sun exposure during the middle of the day. This is a service that is not undertaken as a matter of routine in general medical practice as patients are not seen with the regularity of dental patients and generally not under the ideal examination conditions available in the dental surgery.

  15. Impact of impurity seeding and divertor conditions on transitions, pedestal structure and ELMs

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.

    2017-02-01

    Future devices will require a high scrape-off later (SOL) density and impurity seeding to avoid high-Z sputtering. However, these operational parameters are not included in present-day scaling laws, making extrapolations to larger devices difficult. As such, understanding the physics of such effects is vital in order to design the operational scenarios most favorable to high fusion gain. This review presents the favorable lowering of L-H transition power by changing to metal walled devices and sumarises the effects currently thought to be responsible for how SOL geometry can play a role in determining this threshold. Experimental observations on changes to the pedestal structure with main ion fuelling and low-, medium-, and high-Z impurity seeding are presented. These results, from several devices, show that main ion fuelling or high density operation can result in a lower pedestal top pressure, and hence reduced stored energy, while impurity seeding can recover this lost pressure. Particular focus is given to nitrogen seeded discharges and the recovery of pedestal parameters (notably high {{T}\\text{e,\\text{ped}}} ) in JET and AUG since the changeover to metal walls in these devices. Lithium seeding is also emerging as a strong actuator in pedestal dynamics, with results ranging from a prolonged inter-ELM period to completely ELM-free scenarios on different devices. ELM dynamics are also presented in each section, with nitrogen seeding offering a probe into the structure of the ELM and demonstrating the difference between the initial ELM crash, likely due to a sharp MHD event, and a prolonged second phase, the origin of which remains unkown. Finally, modelling of the pedestal in impurity seeded scenarios reveals a common effect in the position of the density profile. Either through mode excitation near to the separatrix or an altered fuelling profile, seeding of impurities results in an inward shift of the density profile. This inward shift improves MHD stability

  16. Actin crosslinkers: repairing the sense of touch.

    PubMed

    Sun, Sean X; Walcott, Sam

    2010-10-26

    Cells use actin bundles infused with myosin to exert contractile forces on the extracellular environment. This active tension is essential for cellular mechanosensation. Now, the role of actin crosslinkers in stabilizing and repairing the actin bundles is coming into clearer view.

  17. Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; Solomon, W. M.; Barada, K.; Garofalo, A. M.; Groebner, R. J.; Luhmann, N. C.; McKee, G. R.; Muscatello, C. M.; Ono, M.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Staebler, G. M.; Tobias, B. J.; Yan, Z.; the DIII-D Team

    2017-02-01

    A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge E  ×  B rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. At the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by  ⩽60%) and width (by  ⩽50%). We posit that the enhanced edge turbulence-driven transport, enabled by the lower edge E  ×  B flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8  ⩽  ρ  ⩽0.9) owing to increased E  ×  B flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. These findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.

  18. Regulatory mimicry in Listeria monocytogenes actin-based motility

    PubMed Central

    Chong, Ryan; Swiss, Rachel; Briones, Gabriel; Stone, Kathryn L.; Gulcicek, Erol E.; Agaisse, Hervé

    2009-01-01

    Summary The actin-based motility of the intracellular pathogen Listeria monocytogenes relies on ActA, a bacterial factor mimicking the activity of host cell nucleation-promoting factors of the WASP/WAVE family. The activity of WASP and WAVE is tightly regulated in cells. However, it is not known whether the activity of ActA is regulated upon L. monocytogenes infection. Here, we used an RNAi-based genetic approach in combination with computer-assisted image analysis to investigate the role of host factors in L. monocytogenes spread from cell to cell. We showed that the host cell serine/threonine kinase CK2 is required for efficient actin tail formation. We demonstrated that, similar to WASP and WAVE, the affinity of ActA for the ARP2/3 complex is regulated by CK2-mediated phosphorylation. We also demonstrated the importance of this regulatory mechanism in a mouse model of infection. Our work suggests that ActA is a bacterial virulence factor that not only displays a structural mimic of the VCA domain of WASP/WAVE family members, but also co-opted CK2 as the host cell factor regulating its activity, a form of mimicry that we refer to as regulatory mimicry. We present comparative evidence supporting the notion that unrelated pathogens displaying actin-based motility may have evolved a similar strategy. PMID:19748468

  19. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  20. Nuclear Actin in Development and Transcriptional Reprogramming.

    PubMed

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  1. Actin Dynamics: From Nanoscale to Microscale

    PubMed Central

    Carlsson, Anders E.

    2010-01-01

    The dynamic nature of actin in cells manifests itself in many ways: Polymerization near the cell edge is balanced by depolymerization in the interior, externally induced actin polymerization is followed by depolymerization, and spontaneous oscillations of the cell periphery are frequently seen. I discuss how mathematical modeling relates quantitative measures of actin dynamics to the rates of underlying molecular level processes. The rate of actin incorporation at the leading edge of a moving cell is roughly consistent with existing theories, and the factors determining the characteristic time of actin polymerization are fairly well understood. However, our understanding of actin disassembly is limited, in particular the interplay between severing and depolymerization and the role of specific combinations of proteins in implementing disassembly events. The origins of cell-edge oscillations, and their possible relation to actin waves, are a fruitful area of future research. PMID:20462375

  2. Repeated Cycles of Rapid Actin Assembly and Disassembly on Epithelial Cell PhagosomesV⃞

    PubMed Central

    Yam, Patricia T.; Theriot, Julie A.

    2004-01-01

    We have found that early in infection of the intracellular pathogen Listeria monocytogenes in Madin-Darby canine kidney epithelial cells expressing actin conjugated to green fluorescent protein, F-actin rapidly assembles (∼25 s) and disassembles (∼30 s) around the bacteria, a phenomenon we call flashing. L. monocytogenes strains unable to perform actin-based motility or unable to escape the phagosome were capable of flashing, suggesting that the actin assembly occurs on the phagosome membrane. Cycles of actin assembly and disassembly could occur repeatedly on the same phagosome. Indirect immunofluorescence showed that most bacteria were fully internalized when flashing occurred, suggesting that actin flashing does not represent phagocytosis. Escherichia coli expressing invA, a gene product from Yersinia pseudotuberculosis that mediates cellular invasion, also induced flashing. Furthermore, polystyrene beads coated with E-cadherin or transferrin also induced flashing after internalization. This suggests that flashing occurs downstream of several distinct molecular entry mechanisms and may be a general consequence of internalization of large objects by epithelial cells. PMID:15456901

  3. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis.

    PubMed

    Schnoor, Michael; García Ponce, Alexander; Vadillo, Eduardo; Pelayo, Rosana; Rossaint, Jan; Zarbock, Alexander

    2017-02-02

    Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.

  4. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations

    PubMed Central

    Wales, Pauline; Schuberth, Christian E; Aufschnaiter, Roland; Fels, Johannes; García-Aguilar, Ireth; Janning, Annette; Dlugos, Christopher P; Schäfer-Herte, Marco; Klingner, Christoph; Wälte, Mike; Kuhlmann, Julian; Menis, Ekaterina; Hockaday Kang, Laura; Maier, Kerstin C; Hou, Wenya; Russo, Antonella; Higgs, Henry N; Pavenstädt, Hermann; Vogl, Thomas; Roth, Johannes; Qualmann, Britta; Kessels, Michael M; Martin, Dietmar E; Mulder, Bela; Wedlich-Söldner, Roland

    2016-01-01

    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress. DOI: http://dx.doi.org/10.7554/eLife.19850.001 PMID:27919320

  5. Diffusion Rate Limitations in Actin-Based Propulsion of Hard and Deformable Particles

    PubMed Central

    Dickinson, Richard B.; Purich, Daniel L.

    2006-01-01

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism. PMID:16731556

  6. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    SciTech Connect

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; Canik, J. M.; Canal, G. P.; Diallo, A.; Kaye, S.; Kramer, G. J.; Maingi, R.

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for ηe, exp ~2.2 with higher growth rates for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.

  7. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    DOE PAGES

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; ...

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for ηe, exp ~2.2 with higher growth rates formore » the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less

  8. Intracellular Pressure Dynamics in Blebbing Cells.

    PubMed

    Strychalski, Wanda; Guy, Robert D

    2016-03-08

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.

  9. Formation of actin filament bundles in the ring canals of developing Drosophila follicles

    PubMed Central

    1996-01-01

    Growing the intracellular bridges that connect nurse cells with each o ther and to the developing oocyte is vital for egg development. These ring canals increase from 0.5 microns in diameter at stage 2 to 10 microns in diameter at stage 11. Thin sections cut horizontally as you would cut a bagel, show that there is a layer of circumferentially oriented actin filaments attached to the plasma membrane at the periphery of each canal. By decoration with subfragment 1 of myosin we find actin filaments of mixed polarities in the ring such as found in the "contractile ring" formed during cytokinesis. In vertical sections through the canal the actin filaments appear as dense dots. At stage 2 there are 82 actin filaments in the ring, by stage 6 there are 717 and by stage 10 there are 726. Taking into account the diameter, this indicates that there is 170 microns of actin filaments/canal at stage 2 (pi x 0.5 microns x 82), 14,000 microns at stage 9 and approximately 23,000 microns at stage 11 or one inch of actin filament! The density of actin filaments remains unchanged throughout development. What is particularly striking is that by stages 4-5, the ring of actin filaments has achieved its maximum thickness, even though the diameter has not yet increased significantly. Thereafter, the diameter increases. Throughout development, stages 2-11, the canal length also increases. Although the density (number of actin filaments/micron2) through a canal remains constant from stage 5 on, the actin filaments appear as a net of interconnected bundles. Further information on this net of bundles comes from studying mutant animals that lack kelch, a protein located in the ring canal that has homology to the actin binding protein, scruin. In this mutant, the actin filaments form normally but individual bundles that comprise the fibers of the net are not bound tightly together. Some bundles enter into the ring canal lumen but do not completely occlude the lumen. all these observations lay

  10. Activation of endothelial nitric oxide synthase is dependent on its interaction with globular actin in human umbilical vein endothelial cells.

    PubMed

    Mi, Qiongyu; Chen, Nan; Shaifta, Yasin; Xie, Liping; Lu, Hui; Liu, Zhen; Chen, Qi; Hamid, Colleen; Becker, Silke; Ji, Yong; Ferro, Albert

    2011-09-01

    Endothelial nitric oxide synthase (eNOS) has been reported to associate with globular actin, and this association increases eNOS activity. Adenosine, histamine, salbutamol and thrombin cause activation of eNOS through widely different mechanisms. Whether these eNOS agonists can regulate eNOS activity through affecting its association with actin is unknown. As previously reported, we confirmed in cultured human umbilical vein endothelial cells (HUVEC) that histamine and thrombin increased intracellular Ca(2+) whereas adenosine and salbutamol did not, and that these four agonists caused different effects on actin filament structure. Nevertheless, despite their divergent effects on intracellular Ca(2+) and on actin filament structure, we found by immunoprecipitation that adenosine, histamine, salbutamol and thrombin all caused an increase in association between eNOS and globular actin. This increase of association was inhibited by pre-treatment with phalloidin, an actin filament stabilizer. All of these agonists also increased phosphorylation of eNOS on serine residue 1177, eNOS activity, and cyclic guanosine-3', 5'-monophosphate, and these increases were all attenuated by phalloidin. Agonist-induced phosphorylation of eNOS on serine 1177 was attenuated by Akt inhibition, whereas association of eNOS with actin was not. We also found, in HEK-293 cells transfected with the eNOS mutants eNOS-S1177A or eNOS-S1177D, that the association between eNOS and globular actin was decreased as compared to cells transfected with wild-type eNOS. We conclude that association of globular actin with eNOS plays an essential and necessary role in agonist-induced eNOS activation, through enabling its phosphorylation by Akt at serine residue 1177.

  11. Nucleocapsid of Tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K.

    PubMed

    Feng, Zhike; Chen, Xiaojiao; Bao, Yiqun; Dong, Jiahong; Zhang, Zhongkai; Tao, Xiaorong

    2013-12-01

    A number of viral proteins from plant viruses, other than movement proteins, have been shown to traffic intracellularly along actin filaments and to be involved in viral infection. However, there has been no report that a viral capsid protein may traffic within a cell by utilizing the actin/endoplasmic reticulum (ER) network. We used Tomato spotted wilt tospovirus (TSWV) as a model virus to study the cell biological properties of a nucleocapsid (N) protein. We found that TSWV N protein was capable of forming highly motile cytoplasmic inclusions that moved along the ER and actin network. The disruption of actin filaments by latrunculin B, an actin-depolymerizing agent, almost stopped the intracellular movement of N inclusions, whereas treatment with a microtubule-depolymerizing reagent, oryzalin, did not. The over-expression of a myosin XI-K tail, functioning in a dominant-negative manner, completely halted the movement of N inclusions. Latrunculin B treatment strongly inhibited the formation of TSWV local lesions in Nicotiana tabacum cv Samsun NN and delayed systemic infection in N. benthamiana. Collectively, our findings provide the first evidence that the capsid protein of a plant virus has the novel property of intracellular trafficking. The findings add capsid protein as a new class of viral protein that traffics on the actin/ER system.

  12. Measurement of edge currents in DIII-D and their implication for pedestal stabilitya)

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Leonard, A. W.; Groebner, R. J.; Osborne, T. H.; Casper, T. A.; Snyder, P. B.; Lao, L. L.

    2005-05-01

    The present performance limits of tokamak discharges are strongly coupled to the stability and transport properties of the edge plasma. Both experimental and modeling efforts have shown a clear connection between the edge pressure pedestal height and core plasma confinement. The key to understanding the stability and performance limits of the pedestal revolves around an accurate knowledge of the plasma current in this region. Using the Zeeman effect in an injected 30keV lithium beam, we have measured the currents in the edge of the DIII-D [J. L. Luxon, Nucl. Fusion 42, 6114 (2002)] tokamak for various confinement modes. This method of determining j(r ) is insensitive to the large electric fields which coexist in the pedestal region and which complicate motional Stark effect measurements. For the high confinement cases, where substantial pedestal pressures exist, we find large (~MA/m2), localized (ΔR ˜1-2cm) currents in the pedestal region, located near the maximum in the pressure gradient. These values are consistent with calculations of edge bootstrap current using the neoclassical NCLASS [W. A. Houlberg, K. C. Shaing, S. P. Hirshman, and M. C. Zarnstorff, Phys. Plasmas 4, 3230 (1997)] and Sauter [O. Sauter, C. Angioni, and Y. R. Lin-Lin, Phys. Plasmas 6, 2834 (1999)] models and the measured pedestal density and temperature profiles. The apparent consistency of the measured jEDGE with neoclassical predictions occurs despite the violation of one of the fundamental tenets of the theory, namely, ɛ =ρi/LP≪1, where ρi is the ion poloidal gyroradius and Lp is the pressure gradient scale length. The measured jEDGE has also been used to generate self-consistent reconstructions using the free boundary equilibrium solvers CORSICA [T. A. Casper, T. B. Kaiser, R. A. Jong, L. L. LoDestro, J. Moller, and L. D. Pearlstein, Plasma Phys. Controlled Fusion 45, 1193 (2003)] and EFIT [L. L. Lao, H. E. St. John, R. D. Stambough, A. G. Kellman, and W. Pfeiffer, Nucl. Fusion 25

  13. Measurement of edge currents in DIII-D and their implication for pedestal stability

    SciTech Connect

    Thomas, D.M.; Leonard, A.W.; Groebner, R.J.; Osborne, T.H.; Casper, T.A.; Snyder, P.B.; Lao, L.L.

    2005-05-15

    The present performance limits of tokamak discharges are strongly coupled to the stability and transport properties of the edge plasma. Both experimental and modeling efforts have shown a clear connection between the edge pressure pedestal height and core plasma confinement. The key to understanding the stability and performance limits of the pedestal revolves around an accurate knowledge of the plasma current in this region. Using the Zeeman effect in an injected 30 keV lithium beam, we have measured the currents in the edge of the DIII-D [J. L. Luxon, Nucl. Fusion 42, 6114 (2002)] tokamak for various confinement modes. This method of determining j(r) is insensitive to the large electric fields which coexist in the pedestal region and which complicate motional Stark effect measurements. For the high confinement cases, where substantial pedestal pressures exist, we find large ({approx}MA/m{sup 2}), localized ({delta}R{approx}1-2 cm) currents in the pedestal region, located near the maximum in the pressure gradient. These values are consistent with calculations of edge bootstrap current using the neoclassical NCLASS [W. A. Houlberg, K. C. Shaing, S. P. Hirshman, and M. C. Zarnstorff, Phys. Plasmas 4, 3230 (1997)] and Sauter [O. Sauter, C. Angioni, and Y. R. Lin-Lin, Phys. Plasmas 6, 2834 (1999)] models and the measured pedestal density and temperature profiles. The apparent consistency of the measured j{sub EDGE} with neoclassical predictions occurs despite the violation of one of the fundamental tenets of the theory, namely, {epsilon}={rho}{sub i}/L{sub P}<<1, where {rho}{sub i} is the ion poloidal gyroradius and L{sub p} is the pressure gradient scale length. The measured j{sub EDGE} has also been used to generate self-consistent reconstructions using the free boundary equilibrium solvers CORSICA [T. A. Casper, T. B. Kaiser, R. A. Jong, L. L. LoDestro, J. Moller, and L. D. Pearlstein, Plasma Phys. Controlled Fusion 45, 1193 (2003)] and EFIT [L. L. Lao, H. E. St

  14. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening.

    PubMed

    Cuttitta, Christina M; Ericson, Daniel L; Scalia, Alexander; Roessler, Christian G; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S

    2015-01-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s(-1)) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  15. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  16. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    DOE PAGES

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; ...

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from themore » inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  17. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    SciTech Connect

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-06-01

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s-1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  18. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    SciTech Connect

    R. Maingi; C.E. Bush; E.D. Fredrickson; D.A. Gates; S.M. Kaye; B.P. LeBlanc; J.E. Menard; H. Meyer; D. Mueller; N. Nishino; A.L. Roquemore; S.A. Sabbagh; K. Tritz; S.J. Zweben; M.G. Bell; R.E. Bell; T. Biewer; J.A. Boedo; D.W. Johnson; R. Kaita; H.W. Kugel; R.J. Maqueda; T. Munsat; R. Raman; V.A. Soukhanovskii; T. Stevenson; D. Stutman

    2004-10-28

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a {approx}100 {micro}sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value.

  19. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules.

    PubMed

    Chun, Jong T; Limatola, Nunzia; Vasilev, Filip; Santella, Luigia

    2014-08-01

    We previously demonstrated that many aspects of the intracellular Ca(2+) increase in fertilized eggs of starfish are significantly influenced by the state of the actin cytoskeleton. In addition, the actin cytoskeleton appeared to play comprehensive roles in modulating cortical granules exocytosis and sperm entry during the early phase of fertilization. In the present communication, we have extended our work to sea urchin which is believed to have bifurcated from the common ancestor in the phylogenetic tree some 500 million years ago. To corroborate our earlier findings in starfish, we have tested how the early events of fertilization in sea urchin eggs are influenced by four different actin-binding drugs that promote either depolymerization or stabilization of actin filaments. We found that all the actin drugs commonly blocked sperm entry in high doses and significantly reduced the speed of the Ca(2+) wave. At low doses, however, cytochalasin B and phalloidin increased the rate of polyspermy. Overall, certain aspects of Ca(2+) signaling in these eggs were in line with the morphological changes induced by the actin drugs. That is, the time interval between the cortical flash and the first Ca(2+) spot at the sperm interaction site (the latent period) was significantly prolonged in the eggs pretreated with cytochalasin B or latrunculin A, whereas the Ca(2+) decay kinetics after the peak was specifically attenuated in the eggs pretreated with jasplakinolide or phalloidin. In addition, the sperm interacting with the eggs pretreated with actin drugs often generated multiple Ca(2+) waves, but tended to fail to enter the egg. Thus, our results indicated that generation of massive Ca(2+) waves is neither indicative of sperm entry nor sufficient for cortical granules exocytosis in the inseminated sea urchin eggs, whereas the structure and functionality of the actin cytoskeleton are the major determining factors in the two processes.

  20. Native globular actin has a thermodynamically unstable quasi-stationary structure with elements of intrinsic disorder.

    PubMed

    Kuznetsova, Irina M; Povarova, Olga I; Uversky, Vladimir N; Turoverov, Konstantin K

    2016-02-01

    The native form of globular actin, G-actin, is formed in vivo as a result of complex post-translational folding processes that require ATP energy expenditure and are assisted by the 70 kDa heat shock protein, prefoldin and chaperonin containing TCP-1. G-actin is stabilized by the binding of one ATP molecule and one Ca(2+) ion (or Mg(2+) in vivo). Chemical denaturants, heating or Ca(2+) removal transform native actin (N) into 'inactivated actin' (I), a compact oligomer comprising 14-16 subunits. Viscogenic and crowding agents slow this process but do not stop it. The lack of calcium in the solution accelerates the spontaneous N → I transition. Thus, native G-actin has a kinetically stable (as a result of the high free energy barrier between the N and I states) but thermodynamically unstable structure, which, in the absence of Ca(2+) or other bivalent metal ions, spontaneously converts to the thermodynamically stable I state. It was noted that native actin has much in common with intrinsically disordered proteins: it has functionally important disordered regions; it is constantly in complex with one of its numerous partners; and it plays key roles in many cellular processes, in a manner similar to disordered hub proteins. By analyzing actin folding in vivo and unfolding in vitro, we advanced the hypothesis that proteins in a native state may have a thermodynamically unstable quasi-stationary structure. The kinetically stable native state of these proteins appears forcibly under the influence of intracellular folding machinery. The denaturation of such proteins is always irreversible because the inactivated state, for which the structure is determined by the amino acid sequence of a protein, comprises the thermodynamically stable state under physiological conditions.

  1. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  2. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1997-09-23

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  3. Evaluation of DSS-14 pedestal-review of top surface repair procedures

    NASA Technical Reports Server (NTRS)

    Oesterle, R. G.; Musser, D. W.; Salse, E. A. B.

    1983-01-01

    Proposed repair procedures for the top surface of the pedestal supporting the hydrostatic bearing runner for the 64m Antenna are presented. These procedures included: (1) removal of existing grout and concrete to approximately 8 in. below original concrete surface using a presplitting technique with expansive cement followed by secondary breaking; (2) preparation of exposed concrete surface including an epoxy bonding agent; and (3) replacement of material removed with 8 in. of new concrete surface including an epoxy bonding agent; and (4) replacement of material removed with 8 in. of new concrete and 4 in. of new grout.

  4. Retired NASA F-18 being mounted on pedestal mount at Lancaster California Municipal Baseball Stadium

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers carefully align a mounting bracket attached to an F/A-18 Hornet aircraft with the top of a pedestal in front of the municipal baseball stadium in the city of Lancaster, California. The Blue-and-white twin-jet aircraft, formerly flown as a safety chase and support aircraft by NASA's Dryden Flight Research Center, Edwards, California, was loaned to the city for display following its recent retirement. Known as 'The Hangar,' the stadium is the home field of the Lancaster Jethawks, a Class-A farm team of the Seattle Mariners.

  5. Retired NASA F-18 being mounted on pedestal mount at Lancaster California Municipal Baseball Stadium

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An F/A-18 Hornet aircraft formerly flown by NASA's Dryden Flight Research Center, Edwards, California, is sandwiched between two groups of workers as they mount it atop a pedestal at the municipal baseball stadium in the city of Lancaster, California. NASA Dryden had flown the blue-and-white twin-jet as a safety chase and support aircraft for about nine years prior to its recent retirement. The aircraft is now in loan to the city for public display. Known as 'The Hangar,' the stadium is the home field of the Lancaster Jethawks, a Class-A farm team of the Seattle Mariners.

  6. Retired NASA F-18 being lowered on to pedestal mount at Lancaster California Municipal Baseball Stad

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A large crane gingerly lowers an F/A-18 Hornet aircraft onto a 28-foot-tall pedestal in front of the municipal baseball stadium in the city of Lancaster, California. The blue-and-white F/A-18 was recently loaned to the city by NASA's Dryden Flight Research Center, Edwards, California. NASA Dryden had flown the twin-jet aircraft as a safety chase and support aircraft over the past nine years. The stadium, known as 'The Hangar,' is the home field of the Lancaster Jethawks, a Class-A farm team of the Seattle Mariners.

  7. TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal

    SciTech Connect

    Xu, X; Xiong, Z; Nevins, W; McKee, G

    2007-05-31

    The fully nonlinear 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of geodesic-acoustic mode (GAM) and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.

  8. TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal

    SciTech Connect

    Xu, X Q; Xiong, Z; Nevins, W M; McKee, G R

    2007-05-30

    The fully nonlinear (full-f) 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.

  9. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1997-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  10. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  11. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.

    PubMed

    Marsick, Bonnie M; Letourneau, Paul C

    2011-03-17

    The motile tips of growing axons are called growth cones. Growth cones lead navigating axons through developing tissues by interacting with locally expressed molecular guidance cues that bind growth cone receptors and regulate the dynamics and organization of the growth cone cytoskeleton. The main target of these navigational signals is the actin filament meshwork that fills the growth cone periphery and that drives growth cone motility through continual actin polymerization and dynamic remodeling. Positive or attractive guidance cues induce growth cone turning by stimulating actin filament (F-actin) polymerization in the region of the growth cone periphery that is nearer the source of the attractant cue. This actin polymerization drives local growth cone protrusion, adhesion of the leading margin and axonal elongation toward the attractant. Actin filament polymerization depends on the availability of sufficient actin monomer and on polymerization nuclei or actin filament barbed ends for the addition of monomer. Actin monomer is abundantly available in chick retinal and dorsal root ganglion (DRG) growth cones. Consequently, polymerization increases rapidly when free F-actin barbed ends become available for monomer addition. This occurs in chick DRG and retinal growth cones via the local activation of the F-actin severing protein actin depolymerizing factor (ADF/cofilin) in the growth cone region closer to an attractant. This heightened ADF/cofilin activity severs actin filaments to create new F-actin barbed ends for polymerization. The following method demonstrates this mechanism. Total content of F-actin is visualized by staining with fluorescent phalloidin. F-actin barbed ends are visualized by the incorporation of rhodamine-actin within growth cones that are permeabilized with the procedure described in the following, which is adapted from previous studies of other motile cells. When rhodamine-actin is added at a concentration above the critical concentration

  12. Nuclear Actin in Development and Transcriptional Reprogramming

    PubMed Central

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin’s roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation. PMID:28326098

  13. TccP2-mediated subversion of actin dynamics by EPEC 2 - a distinct evolutionary lineage of enteropathogenic Escherichia coli.

    PubMed

    Whale, Andrew D; Hernandes, Rodrigo T; Ooka, Tadasuke; Beutin, Lothar; Schüller, Stephanie; Garmendia, Junkal; Crowther, Lynette; Vieira, Mônica A M; Ogura, Yoshitoshi; Krause, Gladys; Phillips, Alan D; Gomes, Tania A T; Hayashi, Tetsuya; Frankel, Gad

    2007-06-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhoea in developing countries. While colonizing the gut mucosa, EPEC triggers extensive actin-polymerization activity at the site of intimate bacterial attachment, which is mediated by avid interaction between the outer-membrane adhesin intimin and the type III secretion system (T3SS) effector Tir. The prevailing dogma is that actin polymerization by EPEC is achieved following tyrosine phosphorylation of Tir, recruitment of Nck and activation of neuronal Wiskott-Aldrich syndrome protein (N-WASP). In closely related enterohaemorrhagic E. coli (EHEC) O157 : H7, actin polymerization is triggered following recruitment of the T3SS effector TccP/EspF(U) (instead of Nck) and local activation of N-WASP. In addition to tccP, typical EHEC O157 : H7 harbour a pseudogene (tccP2). However, it has recently been found that atypical, sorbitol-fermenting EHEC O157 carries functional tccP and tccP2 alleles. Interestingly, intact tccP2 has been identified in the incomplete genome sequence of the prototype EPEC strain B171 (serotype O111 : H-), but it is missing from another prototype EPEC strain E2348/69 (O127 : H7). E2348/69 and B171 belong to two distinct evolutionary lineages of EPEC, termed EPEC 1 and EPEC 2, respectively. Here, it is reported that while both EPEC 1 and EPEC 2 triggered actin polymerization via the Nck pathway, tccP2 was found in 26 of 27 (96.2 %) strains belonging to EPEC 2, and in none of the 34 strains belonging to EPEC 1. It was shown that TccP2 was: (i) translocated by the locus of enterocyte effacement-encoded T3SS; (ii) localized at the tip of the EPEC 2-induced actin-rich pedestals in infected HeLa cells and human intestinal in vitro organ cultures ex vivo; and (iii) essential for actin polymerization in infected Nck-/- cells. Therefore, unlike strains belonging to EPEC 1, strains belonging to EPEC 2 can trigger actin polymerization using both Nck and TccP2 actin

  14. Investigation of inter-ELM ion heat transport in the H-mode pedestal of ASDEX Upgrade plasmas

    NASA Astrophysics Data System (ADS)

    Viezzer, E.; Fable, E.; Cavedon, M.; Angioni, C.; Dux, R.; Laggner, F. M.; Bernert, M.; Burckhart, A.; McDermott, R. M.; Pütterich, T.; Ryter, F.; Willensdorfer, M.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The ion heat transport in the pedestal of H-mode plasmas is investigated in various H-mode discharges with different pedestal ion collisionalities. Interpretive modelling suggests that in all analyzed discharges the ion heat diffusivity coefficient, {χ\\text{i}} , in the pedestal is close to the neoclassical prediction within the experimental uncertainties. The impact of changing the deposition location of the electron cyclotron resonance heating on the ion heat transport has been studied. The effect on the background profiles is small. The pre-ELM (edge localized modes) edge profiles as well as the behaviour of the electron temperature and density, ion temperature and impurity toroidal rotation during the ELM cycle are very similar in discharges with on- and off-axis ECRH heating. No significant deviation of {χ\\text{i}} from neoclassics is observed when changing the ECRH deposition location to the plasma edge.

  15. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    PubMed Central

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  16. Actin dynamics in mouse fibroblasts in microgravity

    NASA Astrophysics Data System (ADS)

    Moes, Maarten J. A.; Bijvelt, Jose J.; Boonstra, Johannes

    2007-09-01

    After stimulating with the growth factor PDGF, cells exhibit abundant membrane ruffling and other morphological changes under normal gravity conditions. These morphological changes are largely determined by the actin microfilament system. Now these actin dynamics were studied under microgravity conditions in mouse fibroblasts during the DELTA mission. The aim of the present study was to describe the actin morphology in detail, to establish the effect of PDGF on actin morphology and to study the role of several actin-interacting proteins involved in introduced actin dynamics in microgravity. Identical experiments were conducted at 1G on earth as a reference. No results in microgravity were obtained due to a combination of malfunctioning hardware and unfulfilled temperature requirements.

  17. Polymerization of actin by positively charged liposomes

    PubMed Central

    1988-01-01

    By cosedimentation, spectrofluorimetry, and electron microscopy, we have established that actin is induced to polymerize at low salt concentrations by positively charged liposomes. This polymerization occurs only at the surface of the liposomes, and thus monomers not in direct contact with the liposome remain monomeric. The integrity of the liposome membrane is necessary to maintain actin in its polymerized state since disruption of the liposome depolymerizes actin. Actin polymerized at the surface of the liposome is organized into two filamentous structures: sheets of parallel filaments in register and a netlike organization. Spectrofluorimetric analysis with the probe N- pyrenyl-iodoacetamide shows that actin is in the F conformation, at least in the environment of the probe. However, actin assembly induced by the liposome is not accompanied by full ATP hydrolysis as observed in vitro upon addition of salts. PMID:3360852

  18. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells.

    PubMed

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-09-30

    Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.

  19. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    PubMed

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  20. Neural-network accelerated fusion simulation with self-consistent core-pedestal coupling

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Candy, J.; Snyder, P. B.; Staebler, G.; Belli, E.

    2016-10-01

    Practical fusion Whole Device Modeling (WDM) simulations require the ability to perform predictions that are fast, but yet account for the sensitivity of the fusion performance to the boundary constraint that is imposed by the pedestal structure of H-mode plasmas due to the stiff core transport models. This poster presents the development of a set of neural-network (NN) models for the pedestal structure (as predicted by the EPED model), and the neoclassical and turbulent transport fluxes (as predicted by the NEO and TGLF codes, respectively), and their self-consistent coupling within the TGYRO transport code. The results are benchmarked with the ones obtained via the coupling scheme described in [Meneghini PoP 2016]. By substituting the most demanding codes with their NN-accelerated versions, the solution can be found at a fraction of the computation cost of the original coupling scheme, thereby combining the accuracy of a high-fidelity model with the fast turnaround time of a reduced model. Work supported by U.S. DOE DE-FC02-04ER54698 and DE-FG02-95ER54309.

  1. Evolution of edge pedestal transport between edge-localized modes in DIII-D

    SciTech Connect

    Floyd, J.-P.; Stacey, W. M.; Mellard, S. C.; Groebner, R. J.

    2015-02-15

    Evolution of measured profiles of densities, temperatures, and velocities in the edge pedestal region between successive ELM (edge-localized mode) events are analyzed and interpreted in terms of the constraints imposed by particle, momentum and energy balance in order to gain insights regarding the underlying evolution of transport processes in the edge pedestal between ELMs in a series of DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharges. The data from successive inter-ELM periods during an otherwise steady-state phase of the discharges were combined into a composite inter-ELM period for the purpose of increasing the number of data points in the analysis. Variation of diffusive and non-diffusive (pinch) particle, momentum, and energy transport over the inter-ELM period are interpreted using the GTEDGE code for discharges with plasma currents from 0.5 to 1.5 MA and inter-ELM periods from 50 to 220 ms. Diffusive transport is dominant for ρ < 0.925, while non-diffusive and diffusive transport are very large and nearly balancing in the sharp gradient region 0.925 < ρ < 1.0. During the inter-ELM period, diffusive transport increases slightly more than non-diffusive transport, increasing total outward transport. Both diffusive and non-diffusive transport have a strong inverse correlation with plasma current.

  2. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    SciTech Connect

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; deGrassie, J. S.; Grierson, B. A.; Groebner, R. J.; Hager, R.

    2016-07-15

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistently in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E-r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T-i profile.

  3. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; deGrassie, J. S.; Grierson, B. A.; Groebner, R. J.; Hager, R.

    2016-08-01

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistently in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field ({{E}\\text{r}} ) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the {{T}i} profile.

  4. Progress in understanding the enhanced pedestal H-mode in NSTX

    DOE PAGES

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; ...

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from themore » plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.« less

  5. Pedestal density fluctuation dynamics during the inter-ELM cycle in DIII-D

    SciTech Connect

    Yan, Z.; McKee, G. R.; Groebner, R. J.; Snyder, P. B.; Osborne, T. H.; Burrell, K. H.; Beurskens, M. N.

    2011-05-15

    Detailed 2D measurements of long-wavelength density fluctuations in the pedestal region with beam emission spectroscopy during the period between edge localized modes (ELMs) indicate two distinct bands of fluctuations propagating in opposite poloidal directions in the plasma frame: one lower frequency band (50-150 kHz) advects in the ion-diamagnetic drift direction (ion mode) and a higher frequency band (200-400 kHz) advects in the electron diamagnetic drift direction (electron mode). The ion mode amplitude is modulated with the ELM cycle: it increases rapidly after an ELM and then saturates, similar to the evolution of the pedestal electron pressure and density gradients. The electron mode, in contrast, has no significant time evolution between ELMs. The decorrelation time of the ion mode is <5 {mu}s[{tau}{sub c}(c{sub s}/c{sub s}aa){<=}1], the radial correlation length is of order 10 {rho}{sub i} and has poloidal wave-number k{sub {theta}{rho}i{approx}}0.1, and the mode advects at near the ion diamagnetic velocity in the plasma frame. These spatiotemporal dynamics are qualitatively similar to features predicted for kinetic ballooning modes.

  6. Development of a Lithium Beam Probe and Measurement of Density Pedestal in JT-60U

    NASA Astrophysics Data System (ADS)

    Kojima, Atsushi; Kamiya, Kensaku; Fujita, Takaaki; Kubo, Hirotaka; Iguchi, Harukazu; Oyama, Naoyuki; Suzuki, Takahiro; Kamada, Yutaka; JT-60 Team

    A lithium beam probe (LiBP) has been developed for the measurement of electron density profiles with highly spatial and temporal resolutions in JT-60U. Using an electron beam heating ion source with a capability of 10 mA extraction, a 5.5 mA beam has been injected to the plasmas. It corresponds to the equivalent neutral beam current of 2 mA. A spectrum width of the beam emission has been small enough to separate Zeeman splitting. By use of the LiBP, time evolutions of pedestal density profiles during type I and grassy edge localized modes (ELMs) have been obtained for the first time. After a type I ELM crash, the drop of the line-integrated density measured by an interferometer delays by 2 ms later than that of the pedestal density. Comparing the line-integrated density to the line integration of the edge density profile measured by the LiBP, it is found that the recovery from the type I ELM crash is correlated with the reduction of core plasma density. As for grassy ELMs, grassy ELMs have smaller density crashes than that of type I ELMs, which is mainly derived from the narrower ELM affected area.

  7. Progress in understanding the enhanced pedestal H-mode in NSTX

    SciTech Connect

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; Battaglia, D.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Smith, D. R.; Yuh, H.; Sabbagh, S.

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from the plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.

  8. Pedestal density fluctuation dynamics during the inter-ELM cycle in DIII-D a)

    NASA Astrophysics Data System (ADS)

    Yan, Z.; McKee, G. R.; Groebner, R. J.; Snyder, P. B.; Osborne, T. H.; Beurskens, M. N.; Burrell, K. H.

    2011-05-01

    Detailed 2D measurements of long-wavelength density fluctuations in the pedestal region with beam emission spectroscopy during the period between edge localized modes (ELMs) indicate two distinct bands of fluctuations propagating in opposite poloidal directions in the plasma frame: one lower frequency band (50-150 kHz) advects in the ion-diamagnetic drift direction (ion mode) and a higher frequency band (200-400 kHz) advects in the electron diamagnetic drift direction (electron mode). The ion mode amplitude is modulated with the ELM cycle: it increases rapidly after an ELM and then saturates, similar to the evolution of the pedestal electron pressure and density gradients. The electron mode, in contrast, has no significant time evolution between ELMs. The decorrelation time of the ion mode is <5 μs [τc(cs/csa a)≤1], the radial correlation length is of order 10 ρi and has poloidal wave-number kθρi~0.1, and the mode advects at near the ion diamagnetic velocity in the plasma frame. These spatiotemporal dynamics are qualitatively similar to features predicted for kinetic ballooning modes.

  9. Calibration of Model for Tokamak H-mode Pedestal and ELMs

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Bateman, G.; Kritz, A. H.; McElhenny, J.; Osborne, T.; Pankin, A. Y.

    2004-11-01

    Experimental data is used to calibrate a model for the pedestal and Edge Localized Modes (ELMs) implemented in the ASTRA integrated code. The model is calibrated to predict the frequency of the ELMs and the height of the electron and ion temperature pedestals just before an ELM crash. Detailed comparisons are made with experimental data from the DIII-D 98889 discharge, in which the noise in the data is reduced by overlaying the plasma profiles from a sequence of consecutive, nearly identical ELM cycles. The model includes neoclassical transport and transport driven by ion drift modes, resistive ballooning modes, and the electron gradient temperature mode. The criterion for triggering ELM crashes allows for access to second stability. The calibration is carried out by adjusting: (1) The flow shear rates for individual modes of long wavelength turbulent transport; (2) the stability criterion that is used to trigger ELM crashes; and (3) the shapes of the plasma profiles and plasma energy lost after each ELM crash. The calibration is presented as well as the sensitivity to the coefficients in the model.

  10. OVERVIEW OF H-MODE PEDESTAL RESEARCH ON DIII-D

    SciTech Connect

    T.H. OSBORNE; K.H. BURRELL; T.N. CARLSTROM; M.S. CHU; E.J. DOYLE; J.R. FERRON; R.J. GROEBNER; R.J. LA HAYE; L.L. LAO; A.W. LEONARD; M.A. MAHDAVI; G.R. PORTER; P.B. SNYDER; E.J. STRAIT; G.M. STAEBLER; D.M. THOMAS; A.D. TURNBULL; M.R. WADE; THE DIII-D TEAM

    2001-07-01

    Developing an understanding of the processes that control the H-mode transport barrier is motivated by the significant impact this small region (typically <2% of the minor radius) can have on overall plasma performance. Conditions at the inner edge of the H-mode transport barrier can strongly influence the overall energy confinement, and the maximum density, and therefore fusion power, that can be achieved with the typically flat H-mode density profiles [1,2]. The ELM instability, which usually regulates the pressure gradient in the H-mode edge, can result in large power loads to, and erosion of, the divertor targets in a reactor scale device [3]. The goal of H-mode pedestal research at DIII-D is to: (1) develop a physics based model that would allow prediction of the conditions at the top of the H-mode pedestal, (2) develop an understanding of processes which control Type I ELM effects in the core and divertor, and (3) explore alternatives to the Type I ELM regime.

  11. Collisional Ion and Electron Scale Gyrokinetic Simulations in the Tokamak Pedestal

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.; Snyder, P. B.

    2016-10-01

    A new gyrokinetic solver, CGYRO, has been developed for precise studies of high collisionality regimes, such as the H-mode pedestal and L-mode edge. Building on GYRO and NEO, CGYRO uses the same velocity-space coordinates as NEO to optimize the accuracy of the collision dynamics and allow for advanced operators beyond the standard Lorentz pitch-angle scattering model. These advanced operators include energy diffusion and finite-FLR collisional effects. The code is optimized for multiscale (coupled electron and ion turbulence scales) simulations, employing a new spatial discretization and array distribution scheme that targets scalability on next-generation (exascale) HPC systems. In this work, CGYRO is used to study the complex spectrum of modes in the pedestal region. The onset of the linear KBM with full collisional effects is assessed to develop an improved KBM/RBM model for EPED. The analysis is extended to high k to explore the role of electron-scale (ETG-range) physics. Comparisons with new analytic collisional theories are made. Inclusion of sonic toroidal rotation (including full centrifugal effects) for studies including heavy wall impurities is also reported. Work supported in part by the US DOE under DE-FC02-06ER54873 and DE-FC02-08ER54963.

  12. Modeling actin waves in dictyostelium cells

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Mukhopadhyay, Ranjan

    2011-03-01

    Actin networks in living cells demonstrate a high capacity for self-organization and are responsible for the formation of a variety of structures such as lamellopodia, phagocytic cups, and cleavage furrows. Recent experiments have studied actin waves formed on the surface of dictyostelium cells that have been treated with a depolymerizing agent. These waves are believed to be physiologically important, for example, for the formation of phagocytic cups. We propose and study a minimal model, based on the dendritic nucleation of actin polymers, to explain the formation of these waves. This model can be extended to study the dynamics of the coupled actin-membrane system.

  13. GPCRs and actin-cytoskeleton dynamics.

    PubMed

    Vázquez-Victorio, Genaro; González-Espinosa, Claudia; Espinosa-Riquer, Zyanya P; Macías-Silva, Marina

    2016-01-01

    A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.

  14. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-07

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  15. Bioinformatics study of the mangrove actin genes

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  16. Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii

    NASA Astrophysics Data System (ADS)

    Reverey, Julia F.; Jeon, Jae-Hyung; Bao, Han; Leippe, Matthias; Metzler, Ralf; Selhuber-Unkel, Christine

    2015-06-01

    Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.

  17. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.

  18. Photodynamic therapy for actinic keratoses.

    PubMed

    Kalisiak, Michal S; Rao, Jaggi

    2007-01-01

    Actinic keratoses (AKs) are one of the most common conditions that are treated by dermatologists and they have the potential to progress to squamous cell carcinoma if left untreated. Photodynamic therapy (PDT) has emerged as a novel and versatile method of treating those lesions. Topical preparations of aminolevulinic acid and methyl aminolevulinate are commercially available photosensitizers, and numerous light sources may be used for photoactivation. This article focuses on practical aspects of PDT in the treatment of AKs, outcomes of relevant clinical trials, and special applications of PDT in transplant recipients and other who are predisposed to AK formation. Step-by-step descriptions of PDT sessions are presented.

  19. Actin-based motility drives baculovirus transit to the nucleus and cell surface

    PubMed Central

    Ohkawa, Taro; Volkman, Loy E.

    2010-01-01

    Most viruses move intracellularly to and from their sites of replication using microtubule-based mechanisms. In this study, we show that nucleocapsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus undergo intracellular motility driven by actin polymerization. Motility requires the viral P78/83 capsid protein and the host Arp2/3 complex. Surprisingly, the virus directs two sequential and coordinated phases of actin-based motility. Immediately after cell entry, motility enables exploration of the cytoplasm and collision with the nuclear periphery, speeding nuclear entry and the initiation of viral gene expression. Nuclear entry itself requires transit through nuclear pore complexes. Later, after the onset of early gene expression, motility is required for accumulation of a subpopulation of nucleocapsids in the tips of actin-rich surface spikes. Temporal coordination of actin-based nuclear and surface translocation likely enables rapid transmission to neighboring cells during infection in insects and represents a distinctive evolutionary strategy for overcoming host defenses. PMID:20660627

  20. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments

    PubMed Central

    Heaslip, Aoife T.; Nelson, Shane R.; Warshaw, David M.

    2016-01-01

    The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite’s intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein–tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen. PMID:27146112

  1. Reconstitution of a Minimal Actin Cortex by Coupling Actin Filaments to Reconstituted Membranes.

    PubMed

    Vogel, Sven K

    2016-01-01

    A thin layer of actin filaments in many eukaryotic cell types drives pivotal aspects of cell morphogenesis and is generally cited as the actin cortex. Myosin driven contractility and actin cytoskeleton membrane interactions form the basis of fundamental cellular processes such as cytokinesis, cell migration, and cortical flows. How the interplay between the actin cytoskeleton, the membrane, and actin binding proteins drives these processes is far from being understood. The complexity of the actin cortex in living cells and the hardly feasible manipulation of the omnipotent cellular key players, namely actin, myosin, and the membrane, are challenging in order to gain detailed insights about the underlying mechanisms. Recent progress in developing bottom-up in vitro systems where the actin cytoskeleton is combined with reconstituted membranes may provide a complementary route to reveal general principles underlying actin cortex properties. In this chapter the reconstitution of a minimal actin cortex by coupling actin filaments to a supported membrane is described. This minimal system may be very well suited to study for example protein interactions on membrane bound actin filaments in a very controlled and quantitative manner as it may be difficult to perform in living systems.

  2. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    PubMed

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  3. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    PubMed Central

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2015-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling

  4. Intracellular Trafficking Modulation by Ginsenoside Rg3 Inhibits Brucella abortus Uptake and Intracellular Survival within RAW 264.7 Cells.

    PubMed

    Huy, Tran Xuan Ngoc; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2017-03-28

    Ginsenoside Rg3, a saponin extracted from ginseng, has various pharmacological and biological activities; however, its effects against Brucella infection are still unclear. Herein, the inhibitory effects of ginsenoside Rg3 against intracellular parasitic Brucella infection were evaluated through bacterial infection, adherence assays, and LAMP-1 colocalization, as well as immunoblotting and FACS for detecting MAPK signaling proteins and F-actin polymerization, respectively. The internalization, intracellular growth, and adherence of Brucella abortus in Rg3-treated RAW 264.7 cells were significantly decreased compared with the Rg3-untreated control. Furthermore, an apparent reduction of F-actin content and intensity of F-actin fluorescence in Rg3-treated cells was observed compared with B. abortus-infected cells without treatment by flow cytometry analysis and confocal microscopy, respectively. In addition, treating cells with Rg3 decreased the phosphorylation of MAPK signaling proteins such as ERK 1/2 and p38 compared with untreated cells. Moreover, the colocalization of B. abortus-containing phagosomes with LAMP-1 was markedly increased in Rg3-treated cells. These findings suggest that ginsenoside Rg3 inhibits B. abortus infection in mammalian cells and can be used as an alternative approach in the treatment of brucellosis.

  5. Force of an actin spring

    NASA Astrophysics Data System (ADS)

    Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul

    2003-03-01

    The acrosomal process of the horseshoe crab sperm is a novel mechanochemical molecular spring that converts its elastic stain energy to mechanical work upon the chemical activation by Ca2+. Twisted and bent, the initial state of the acrosomal bundle features a high degree of complexity in its structure and the energy is believed to be stored in the highly strained actin filaments as an elastic potential energy. When activated, the bundle relaxes from the coil of the highly twisted and bent filaments to its straight conformation at a mean velocity of 15um/s. The mean extension velocity increases dramatically from 3um/s to 27um/s when temperature of the medium is changed from 9.6C to 32C (respective viscosities of 1.25-0.75cp), yet it exhibits a very weak dependence on changes in the medium viscosity (1cp-33cp). These experiments suggest that the uncoiling of the actin spring should be limited not by the viscosity of the medium but by the unlatching events of involved proteins at a molecular level. Unlike the viscosity-limited processes, where force is directly related to the rate of the reaction, a direct measurement is required to obtain the spring force of the acrosomal process. The extending acrosomal bundle is forced to push against a barrier and its elastic buckling response is analyzed to measure the force generated during the uncoiling.

  6. Actin-Regulator Feedback Interactions during Endocytosis

    PubMed Central

    Wang, Xinxin; Galletta, Brian J.; Cooper, John A.; Carlsson, Anders E.

    2016-01-01

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  7. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection.

    PubMed

    Man, Si Ming; Ekpenyong, Andrew; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Wright, John A; Cicuta, Pietro; Guck, Jochen R; Bryant, Clare E

    2014-12-09

    Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1β recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1β production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.

  8. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-09-15

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

  9. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles.

    PubMed

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P; Osorio-Fuentealba, Cesar; Antonescu, Costin N; Bayer, K Ulrich; Bilan, Philip J; Klip, Amira

    2012-10-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.

  10. Auxins and Cytokinins as Antipodal Modulators of Elasticity within the Actin Network of Plant Cells.

    PubMed Central

    Grabski, S.; Schindler, M.

    1996-01-01

    The cytoskeleton of plant and animal cells serves as a transmitter, transducer, and effector of cell signaling mechanisms. In plants, pathways for proliferation, differentiation, intracellular vesicular transport, cell-wall biosynthesis, symbiosis, secretion, and membrane recycling depend on the organization and dynamic properties of actin- and tubulin-based structures that are either associated with the plasma membrane or traverse the cytoplasm. Recently, a new in vivo cytoskeletal assay (cell optical displacement assay) was introduced to measure the tension within subdomains (cortical, transvacuolar, and perinuclear) of the actin network in living plant cells. Cell optical displacement assay measurements within soybean (Glycine max [L.]) root cells previously demonstrated that lipophilic signals, e.g. linoleic acid and arachidonic acid or changes in cytoplasmic pH gradients, could induce significant reductions in the tension within the actin network of transvacuolar strands. In contrast, enhancement of cytoplasmic free Ca2+ resulted in an increase in tension. In the present communication we have used these measurements to show that a similar antipodal pattern of activity exists for auxins and cytokinins (in their ability to modify the tension within the actin network of plant cells). It is suggested that these growth substances exert their effect on the cytoskeleton through the activation of signaling cascades, which result in the production of lipophilic and ionic second messengers, both of which have been demonstrated to directly effect the tension within the actin network of soybean root cells. PMID:12226233

  11. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  12. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility.

    PubMed

    Kleba, Betsy; Clark, Tina R; Lutter, Erika I; Ellison, Damon W; Hackstadt, Ted

    2010-05-01

    Rickettsii rickettsii, the etiologic agent of Rocky Mountain spotted fever, replicates within the cytosol of infected cells and uses actin-based motility to spread inter- and intracellularly. Although the ultrastructure of the actin tail and host proteins associated with it are distinct from those of Listeria or Shigella, comparatively little is known regarding the rickettsial proteins involved in its organization. Here, we have used random transposon mutagenesis of R. rickettsii to generate a small-plaque mutant that is defective in actin-based motility and does not spread directly from cell to cell as is characteristic of spotted fever group rickettsiae. The transposon insertion site of this mutant strain was within Sca2, a member of a family of large autotransporter proteins. Sca2 exhibits several features suggestive of its apparent role in actin-based motility. It displays an N-terminal secretory signal peptide, a C-terminal predicted autotransporter domain, up to four predicted Wasp homology 2 (WH2) domains, and two proline-rich domains, one with similarity to eukaryotic formins. In a guinea pig model of infection, the Sca2 mutant did not elicit fever, suggesting that Sca2 and actin-based motility are virulence factors of spotted fever group rickettsiae.

  13. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment.

    PubMed

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.

  14. Calcium dependence of integrity of the actin cytoskeleton of proximal tubule cell microvilli.

    PubMed

    Sogabe, K; Roeser, N F; Davis, J A; Nurko, S; Venkatachalam, M A; Weinberg, J M

    1996-08-01

    To better define the role of Ca2+ in pathophysiological alterations of the proximal tubule microvillus actin cytoskeleton, we studied freshly isolated tubules in which intracellular free Ca2+ was equilibrated with highly buffered, precisely defined medium Ca2+ levels using a combination of the metabolic inhibitor, antimycin, and the ionophore, ionomycin, in the presence of glycine, to prevent lethal membrane damage and resulting nonspecific changes. Increases of Ca2+ to > or = 10 microM were sufficient to initiate concurrent actin depolymerization, fragmentation of F-actin into forms requiring high-speed centrifugation for recovery, redistribution of villin to sedimentable fractions, and structural microvillar damage consisting of severe swelling and fragmentation of actin cores. These observations implicate Ca(2+)-dependent, villin-mediated actin cytoskeletal disruption in tubule cell microvillar damage under conditions conceivably present during pathophysiological states. However, despite prior evidence for cytosolic free Ca2+ increases of the same order of magnitude and similar structural microvillar alterations, Ca(2+)- and villin-mediated events did not appear to account for the initial microvillar damage that occurs during ATP depletion induced by antimycin alone or hypoxia.

  15. Detection of a weak maser emission pedestal associated with the SiO maser. [in variable late stars

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Dickinson, D. F.; Brown, L. W.; Buhl, D.

    1978-01-01

    Results are reported for high-spectral-resolution observations of the v = 1, J = 1-0 SiO maser sources at 43,122.027 MHz (6.95 mm wavelength) associated with the variable stars Omega Cet, NML Tau, VY CMa, R Leo, W Hya, VX Sgr, NML Cyg, and R Cas. A weak underlying maser emission pedestal is clearly observed in the spectra of all but NML Cyg and R Cas. The data indicate that the underlying pedestal of SiO emission appears to originate in a shell-like region around the star, has a thermal appearance even though it must be due to weak maser emission, and appears to be part of the spectral signature of SiO maser emission from late-type stars. It is found that the center velocities of the pedestals may be used to determine stellar radial velocities. Observations of large-scale time variations in the intensity of the Ori A SiO maser and the detection of weak maser pedestals associated with each of the two strong emission-feature groups in Orion are also discussed. It is suggested that the Orion molecular cloud might contain two late-type long-period variable stars that may be semiregular variables.

  16. Synthetic peptides that cause F-actin bundling and block actin depolymerization

    DOEpatents

    Sederoff, Heike [Raleigh, NC; Huber, Steven C [Savoy, IL; Larabell, Carolyn A [Berkeley, CA

    2011-10-18

    Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.

  17. Growing an actin gel on spherical surfaces.

    PubMed Central

    Noireaux, V; Golsteyn, R M; Friederich, E; Prost, J; Antony, C; Louvard, D; Sykes, C

    2000-01-01

    Inspired by the motility of the bacteria Listeria monocytogenes, we have experimentally studied the growth of an actin gel around spherical beads grafted with ActA, a protein known to be the promoter of bacteria movement. On ActA-grafted beads F-actin is formed in a spherical manner, whereas on the bacteria a "comet-like" tail of F-actin is produced. We show experimentally that the stationary thickness of the gel depends on the radius of the beads. Moreover, the actin gel is not formed if the ActA surface density is too low. To interpret our results, we propose a theoretical model to explain how the mechanical stress (due to spherical geometry) limits the growth of the actin gel. Our model also takes into account treadmilling of actin. We deduce from our work that the force exerted by the actin gel on the bacteria is of the order of 10 pN. Finally, we estimate from our theoretical model possible conditions for developing actin comet tails. PMID:10692348

  18. Profilin connects actin assembly with microtubule dynamics

    PubMed Central

    Nejedla, Michaela; Sadi, Sara; Sulimenko, Vadym; de Almeida, Francisca Nunes; Blom, Hans; Draber, Pavel; Aspenström, Pontus; Karlsson, Roger

    2016-01-01

    Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro­tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element. PMID:27307590

  19. Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides.

    PubMed

    Lin, Pao Tai; Singh, Vivek; Hu, Juejun; Richardson, Kathleen; Musgraves, J David; Luzinov, Igor; Hensley, Joel; Kimerling, Lionel C; Agarwal, Anu

    2013-06-07

    Towards a future lab-on-a-chip spectrometer, we demonstrate a compact chip-scale air-clad silicon pedestal waveguide as a Mid-Infrared (Mid-IR) sensor capable of in situ monitoring of organic solvents. The sensor is a planar crystalline silicon waveguide, which is highly transparent, between λ = 1.3 and 6.5 μm, so that its operational spectral range covers most characteristic chemical absorption bands due to bonds such as C-H, N-H, O-H, C-C, N-O, C=O, and C≡N, as opposed to conventional UV, Vis, Near-IR sensors, which use weaker overtones of these fundamental bands. To extend light transmission beyond λ = 3.7 μm, a spectral region where a typical silicon dioxide under-clad is absorbing, we fabricate a unique air-clad silicon pedestal waveguide. The sensing mechanism of our Mid-IR waveguide sensor is based on evanescent wave absorption by functional groups of the surrounding chemical molecules, which selectively absorb specific wavelengths in the mid-IR, depending on the nature of their chemical bonds. From a measurement of the waveguide mode intensities, we demonstrate in situ identification of chemical compositions and concentrations of organic solvents. For instance, we show that when testing at λ = 3.55 μm, the Mid-IR sensor can distinguish hexane from the rest of the tested analytes (methanol, toluene, carbon tetrachloride, ethanol and acetone), since hexane has a strong absorption from the aliphatic C-H stretch at λ = 3.55 μm. Analogously, applying the same technique at λ = 3.3 μm, the Mid-IR sensor is able to determine the concentration of toluene dissolved in carbon tetrachloride, because toluene has a strong absorption at λ = 3.3 μm from the aromatic C-H stretch. With our demonstration of an air-clad silicon pedestal waveguide sensor, we move closer towards the ultimate goal of an ultra-compact portable spectrometer-on-a-chip.

  20. Ground-penetrating radar investigation of the cylindrical pedestal of a monument

    NASA Astrophysics Data System (ADS)

    Bonomo, Néstor; Bullo, Darío; Villela, Almendra; Osella, Ana

    2015-02-01

    We describe a GPR methodology used to investigate the internal structure of three consecutive sections of the cylindrical pedestal of a monument that had to be disassembled for relocation. We acquired constant-offset circular profiles and non-standard variable-offset profiles at different heights along the pedestal. In the raw data sections, the reflections of interest were hidden by significant environmental noise with frequencies that overlapped those of the transmitted pulses and varied from trace to trace. We successfully eliminated the noise by iteratively fitting sinusoidal waves in different x-t windows and by subtracting the results from the traces. The resulting sections were interesting because they exhibited numerous and varied reflections. We analysed these sections using a combination of procedures previously used for cylindrical structures and other procedures adapted from protocols commonly used for plane semi-spaces. In particular, we evaluated the information provided by the variable-offset profiles and determined how it complemented the information obtained from the constant-offset profiles. In the variable-offset profiles, multiple reflections produced at the cylinder-air interface were reliably distinguished up to the fifth-order of reflection by taking advantage of their distinctive shapes. In the constant-offset profiles, this information was used to distinguish the multiples from possible signals of internal structures or their multiples and from unwanted signals produced by the GPR system, which can be confused with the multiples. We also considered obtaining the propagation velocity across the structure with a high degree of reliability by including the travel times of higher-order multiples in the calculations. Fitting of the theoretical curves, migration and polar representations allowed for a thorough interpretation of the reflectors present in the structures. Probable reinforcement bars, circular ties, natural veins of the material and

  1. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network

    PubMed Central

    Luo, Weiwei; Lieu, Zi Zhao; Manser, Ed; Bershadsky, Alexander D.; Sheetz, Michael P.

    2016-01-01

    A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization. PMID:27760153

  2. The Yeast V159N Actin Mutant Reveals Roles for Actin Dynamics In Vivo

    PubMed Central

    Belmont, Lisa D.; Drubin, David G.

    1998-01-01

    Actin with a Val 159 to Asn mutation (V159N) forms actin filaments that depolymerize slowly because of a failure to undergo a conformational change after inorganic phosphate release. Here we demonstrate that expression of this actin results in reduced actin dynamics in vivo, and we make use of this property to study the roles of rapid actin filament turnover. Yeast strains expressing the V159N mutant (act1-159) as their only source of actin have larger cortical actin patches and more actin cables than wild-type yeast. Rapid actin dynamics are not essential for cortical actin patch motility or establishment of cell polarity. However, fluid phase endocytosis is defective in act1-159 strains. act1-159 is synthetically lethal with cofilin and profilin mutants, supporting the conclusion that mutations in all of these genes impair the polymerization/ depolymerization cycle. In contrast, act1-159 partially suppresses the temperature sensitivity of a tropomyosin mutant, and the loss of cytoplasmic cables seen in fimbrin, Mdm20p, and tropomyosin null mutants, suggesting filament stabilizing functions for these actin-binding proteins. Analysis of the cables in these double-mutant cells supports a role for fimbrin in organizing cytoplasmic cables and for Mdm20p and tropomyosin in excluding cofilin from the cables. PMID:9732289

  3. Morphological changes in liposomes caused by polymerization of encapsulated actin and spontaneous formation of actin bundles.

    PubMed Central

    Miyata, H; Hotani, H

    1992-01-01

    Spherical giant liposomes that had encapsulated skeletal-muscle G-actin were made by swelling a dried lipid mixture of dimyristoyl phosphatidylcholine/cardiolipin, 1:1 (wt/wt), in a solution of G-actin/CaCl2 at 0 degree C. Polymerization of the encapsulated G-actin into actin filaments was achieved by raising the temperature to 30 degrees C. We observed the subsequent shape changes of the liposomes by dark-field and differential interference-contrast light microscopy. After approximately 40 min, which was required for completion of actin polymerization, two shapes of liposome were evident: dumbbell and disk. Elongation of the dumbbell-shaped liposomes was concomitant with actin polymerization. Polarization microscopy showed that actin filaments formed thick bundles in the liposomes and that these filaments lay contiguous to the periphery of the liposome. Localization of actin filaments in the liposomes was confirmed by observation of rhodamine phalloidin-conjugated actin filaments by fluorescence microscopy. Both dumbbell- and disk-shaped liposomes were rigid and kept their shapes as far as actin filaments were stabilized. In contrast, liposomes containing bovine serum albumin were fragile, and their shapes continually fluctuated from Brownian motion, indicating that the actin bundles served as mechanical support for the liposome shapes. Images PMID:1454846

  4. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.

    PubMed

    Higashida, Chiharu; Kiuchi, Tai; Akiba, Yushi; Mizuno, Hiroaki; Maruoka, Masahiro; Narumiya, Shuh; Mizuno, Kensaku; Watanabe, Naoki

    2013-04-01

    Physical force evokes rearrangement of the actin cytoskeleton. Signalling pathways such as tyrosine kinases, stretch-activated Ca(2+) channels and Rho GTPases are involved in force sensing. However, how signals are transduced to actin assembly remains obscure. Here we show mechanosensitive actin polymerization by formins (formin homology proteins). Cells overexpressing mDia1 increased the amount of F-actin on release of cell tension. Fluorescence single-molecule speckle microscopy revealed rapid induction of processive actin assembly by mDia1 on cell cortex deformation. mDia1 lacking the Rho-binding domain and other formins exhibited mechanosensitive actin nucleation, suggesting Rho-independent activation. Mechanosensitive actin nucleation by mDia1 required neither Ca(2+) nor kinase signalling. Overexpressing LIM kinase abrogated the induction of processive mDia1. Furthermore, s-FDAPplus (sequential fluorescence decay after photoactivation) analysis revealed a rapid actin monomer increase on cell cortex deformation. Our direct visualization of the molecular behaviour reveals a mechanosensitive actin filament regeneration mechanism in which G-actin released by actin remodelling plays a pivotal role.

  5. Lifeact: a versatile marker to visualize F-actin.

    PubMed

    Riedl, Julia; Crevenna, Alvaro H; Kessenbrock, Kai; Yu, Jerry Haochen; Neukirchen, Dorothee; Bista, Michal; Bradke, Frank; Jenne, Dieter; Holak, Tad A; Werb, Zena; Sixt, Michael; Wedlich-Soldner, Roland

    2008-07-01

    Live imaging of the actin cytoskeleton is crucial for the study of many fundamental biological processes, but current approaches to visualize actin have several limitations. Here we describe Lifeact, a 17-amino-acid peptide, which stained filamentous actin (F-actin) structures in eukaryotic cells and tissues. Lifeact did not interfere with actin dynamics in vitro and in vivo and in its chemically modified peptide form allowed visualization of actin dynamics in nontransfectable cells.

  6. Synthetic mimetics of actin-binding macrolides: rational design of actin-targeted drugs.

    PubMed

    Perrins, Richard D; Cecere, Giuseppe; Paterson, Ian; Marriott, Gerard

    2008-03-01

    Actin polymerization and dynamics are involved in a wide range of cellular processes such as cell division and migration of tumor cells. At sites of cell lysis, such as those occurring during a stroke or inflammatory lung diseases, actin is released into the serum where it polymerizes, leading to problems with clot dissolution and sputum viscosity. Therefore, drugs that target these actin-mediated processes may provide one mechanism to treat these conditions. Marine-organism-derived macrolides, such as reidispongiolide A, can bind to, sever, and inhibit polymerization of actin. Our studies show that the function of these complex macrolides resides in their tail region, whereas the head group stabilizes the actin-drug complex. Synthetic compounds derived from this tail region could therefore be used as a mimetic of the natural product, providing a range of designer compounds to treat actin-associated diseases or as probes to study actin polymerization.

  7. F-actin aggregates in transformed cells

    PubMed Central

    1981-01-01

    Polymerized actin has been found aggregated into distinctive patches inside transformed cells in culture. The F-actin-specific fluorescent probe, nitrobenzoxadiazole-phallacidin, labels these F-actin aggregates near the ventral cell surface of cells transformed by RNA or DNA tumor viruses, or by chemical mutagens, or spontaneously. Their appearance in all eight transformed cell types studied suggests their ubiquity and involvement in transformation morphology. Actin patches developed in normal rat kidney (NRK) cells transformed by a temperature-sensitive mutant of Rous sarcoma virus (LA23-NRK) within 30 min after a shift from the nonpermissive (39 degrees C) to the permissive temperature (32 degrees C). Patch appearance paralleling viral src gene expression tends to implicate pp60src kinase activity in destabilizing the cytoskeleton. However, appearance of the actin aggregates in cells not transformed by retrovirus calls for alternative mechanisms, perhaps involving an endogenous kinase, for this apparently common trait. PMID:6270163

  8. Xenopus egg cytoplasm with intact actin.

    PubMed

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  9. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE PAGES

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  10. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Hager, Robert; Chang, C. S.

    2016-04-01

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  11. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    SciTech Connect

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  12. Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Saarelma, S.; Lomas, P.; Nunes, I.; Rimini, F.; Beurskens, M. N. A.; Bilkova, P.; Boom, J. E.; de la Luna, E.; Delabie, E.; Drewelow, P.; Flanagan, J.; Garzotti, L.; Giroud, C.; Hawks, N.; Joffrin, E.; Kempenaars, M.; Kim, Hyun-Tae; Kruezi, U.; Loarte, A.; Lomanowski, B.; Lupelli, I.; Meneses, L.; Maggi, C. F.; Menmuir, S.; Peterka, M.; Rachlew, E.; Romanelli, M.; Stefanikova, E.; Contributors, JET

    2017-01-01

    Three dimensionless scans in the normalized Larmor radius ρ *, normalized collisionality ν * and normalized plasma pressure β have been performed in JET with the ITER-like wall (JET-ILW). The normalized energy confinement and the thermal diffusivity exhibit a scaling with ρ * consistent with the earlier results obtained in the carbon wall JET (JET-C) and with a gyro-Bohm scaling. In the pedestal, experimental results show that the stability is not dependent on ρ *, qualitatively in agreement with the peeling-ballooning (P-B) model. The ν * dimensionless scaling shows that JET-ILW normalized confinement has a stronger dependence on collisionality than JET-C. This leads to a reduction of the difference in the confinement between JET-ILW and JET-C to  ≈10% at low ν *. The pedestal stability shows an improvement with decreasing ν *. This is ascribed to the increase of the bootstrap current, to the reduction of the pedestal width and to the reduction of the relative shift between pedestal density and temperature position. The β dimensionless scan shows that, at low collisionality, JET-ILW normalized confinement has no clear dependence with β, in agreement with part of the earlier scalings. At high collisionality, a reduction of the normalized confinement with increasing β is observed. This behaviour is driven mainly by the pedestal where the stability is reduced with increasing β. The P-B analysis shows that the stability reduction with increasing β at high ν * is due to the destabilizing effect of the increased relative shift.

  13. Inter-ELM evolution of the pedestal structures in type-I ELMy H-mode plasmas with LHW and NBI heating on EAST

    NASA Astrophysics Data System (ADS)

    Han, X.; Zang, Q.; Xiao, S.; Wang, T.; Hu, A.; Tian, B.; Li, D.; Zhou, H.; Zhao, J.; Hsieh, C.; Li, M.; Yan, N.; Gong, X.; Hu, L.; Xu, G.; Gao, X.; the EAST Team

    2017-04-01

    The evolution characteristics of type-I ELMy high-confinement mode pedestal are examined in EAST based on the recently developed Thomson scattering system. The influence of the plasma current on pedestal evolvement has been confirmed experimentally. In the higher I p case (500 kA) the pedestal height shows an increase trend until the onset of next ELM and in the lower I p cases (300 and 400 kA), however, this buildup saturates at the first ∼30% of the ELM cycle. In contrast, the width increases only during the first ∼70% of the ELM cycle and then keeps almost stable in three I p cases, but resulting in different widening size of ∼1.5, 1 and 0.5 cm for 300, 400 and 500 kA respectively. Experimental results show that the pedestal pressure width has good correlation with poloidal beta as {{{Δ }}}{{p}{{e}},\\psi }=0.16\\sqrt{{{β }}{{p}{{o}}{{l}}}}, where the fitting coefficient 0.16 is not changed with different plasma currents but a little larger than that of other machines. For each current level, the pedestal density increases while the pedestal temperature decreases. But with increasing {I}{{p}} platforms, the pedestal height prior to the ELM onset shows a near quadratic (within error bars) increase. Experimental measurements demonstrate that the decrease of {{Δ }}{W}{{E}{{L}}{{M}}} with increasing {ν }{{p}{{e}}{{d}}}* comes mostly from the reduction of the plasma temperature drop, while the pedestal density height keeps relatively stable. Additional injection of LHW has been proved to modify the pedestal structure which should be responsible for the remaining scatter of the experimental data.

  14. Dynamics of an actin spring

    NASA Astrophysics Data System (ADS)

    Riera, Christophe; Mahadevan, L.; Shin, Jennifer; Matsudaira, Paul

    2003-03-01

    The acrosome of the sperm of the horseshoe crab (Limulus Polyphemus) is an unusual actin based system that shows a spectacular dynamical transition in the presence of Ca++ that is present in abundance in the neighborhood of the egg. During this process, the bundle, which is initially bent and twisted uncoils and becomes straight in a matter of a few seconds. Based on microstructural data, we propose a model for the dynamics of uncoiling that is best represented by a triple-well potential corresponding to the different structural arrangements of the supertwisted filaments. Each of the false, true and coiled states corresponds to a local minimum of the energy, with the true state being the one with the lowest energy. Using an evolution equation derived by balancing torques, we investigate the nucleation and propagation of the phase transition and compare the results with those of experiments. Our model quantifies the hypothesis that the acrosomal bundle behaves like a mechano-chemical spring.

  15. Retired NASA F-18 being mounted on pedestal mount at Lancaster California Municipal Baseball Stadium

    NASA Technical Reports Server (NTRS)

    1997-01-01

    While workers on the ground steady the craft with guy ropes, workers atop a high-lift truck align the mounting plates as an F/A-18 Hornet airplane formerly flown by NASA's Dryden Flight Research Center is mounted on a 28-foot-tall pedestal in front of the municipal baseball stadium in the city of Lancaster, California. The aircraft was loaned to the city for pulbic display after its recent retirement by Dryden, which is located at nearby Edwards, California. The blue-and-white twin-jet aircraft was flown as a safety chase and support aircraft by NASA Dryden for about nine years before being retired. Known as 'The Hangar,' the stadium is the home field of the Lancaster Jethawks, a Class-A farm team of the Seattle Mariners.

  16. ECE-Imaging of the H-mode Pedestal on DIII-D

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Austin, M. E.

    2012-10-01

    Forward modeling of ECE originating near the edge of DIII-D plasmas has improved our understanding of radiation properties in this region and enabled interpretation of ECE-Imaging and radiation temperature profiles of the H-mode pedestal. A variety of coherent edge modes have been imaged, revealing the nature of the edge harmonic oscillation (EHO) present in QH-mode plasmas, as well as directly diagnosing the plasma response to RMP fields applied for ELM suppression. Attempts to image the most fleeting aspects of ELMs in low density H-mode discharges have revealed intense bursts of millimeter wave radiation. Initiating during ELM precursor oscillations and prevalent at ITER relevant collisionality, these bursts appear to be coherent, stimulated emission from thermal electrons interacting with a non-axisymmetric perturbation of the plasma boundary.

  17. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Arredondo Parra, R.; Moreno Quicios, R.; Ploeckl, B.; Birkenmeier, G.; Herrmann, A.; Kocsis, G.; Laggner, F. M.; Lang, P. T.; Lunt, T.; Macian-Juan, R.; Rohde, V.; Sellmair, G.; Szepesi, T.; Wolfrum, E.; Zeidner, W.; Neu, R.

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 1019 atoms (0.21 mg) to 1.64 × 1020 atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  18. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2016-07-15

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E-r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T-i profile.« less

  19. Pedestal characterization and stability of small-ELM regimes in NSTX

    SciTech Connect

    Sontag, Aaron C; Canik, John; Maingi, Rajesh; Manickam, J.; Snyder, P.; Bell, R. E.; Gerhardt, S.P.; Kubota, S.; LaBlanc, B. P.; Mueller, D.; Osborne, T.; Tritz, K.

    2011-01-01

    An instability near the plasma edge known as the edge harmonic oscillation (EHO) is thought to enable access to the ELM-free quiescent H-mode (QH-mode) in tokamaks, which is a highly desirable operational regime for ITER because of the avoidance of periodic ELM heat loads. The EHO has been hypothesized to be a saturated kink driven unstable by toroidal rotational shear that provides sufficient transport near the plasma edge to keep the edge plasma below the peeling-ballooning stability limit. NSTX has observed unstable modes with similar characteristics to the EHO coincident with transition to a small-ELM regime (called Type-V). These small ELMs do not have a measurable effect on the plasma stored energy (< 1%). Transition to this regime is associated with a downward biased plasma as evidenced by drsep < -5 mm. Soft x-ray emission indicates that these modes are localized just inside the pedestal and are correlated with increased density fluctuations in the pedestal as measured by microwave reflectometry. The lowest order mode rotates at the plasma rotation frequency, indicating n=1, and harmonics up to n=6 have been observed simultaneously with the n=1, as determined by the rotation frequency of the higher harmonics. Increased edge collisionality is required to access Type-V ELMs. Stability analysis during the observed modes indicates instability to n=1-3 with n=3 having the highest growth rate and unstable mode eigenfunctions peaked near the plasma edge. Discharges with Type-V and Type-I ELMs are both calculated to be on the peeling unstable side of the peeling ballooning stability curve, with the Type-V case at higher normalized pressure gradient.

  20. Pedestal Characterization and Stability of Small-ELM Regimes in NSTX

    SciTech Connect

    Sontag, Aaron C; Canik, John; Maingi, Rajesh; Manickam, J.; Snyder, P.; Bell, R. E.; Gerhardt, S.P.; Kubota, S.; LaBlanc, B. P.; Mueller, D.; Osborne, T.; Tritz, K.

    2010-01-01

    An instability near the plasma edge known as the edge harmonic oscillation (EHO) is thought to enable access to the ELM-free quiescent H-mode (QH-mode) in tokamaks, which is a highly desirable operational regime for ITER because of the avoidance of periodic ELM heat loads. The EHO has been hypothesized to be a saturated kink driven unstable by toroidal rotational shear that provides sufficient transport near the plasma edge to keep the edge plasma below the peeling-ballooning stability limit. NSTX has observed unstable modes with similar characteristics to the EHO coincident with transition to a small-ELM regime (called Type-V). These small ELMs do not have a measurable effect on the plasma stored energy (< 1%). Transition to this regime is associated with a downward biased plasma as evidenced by drsep < -5 mm. Soft x-ray emission indicates that these modes are localized just inside the pedestal and are correlated with increased density fluctuations in the pedestal as measured by microwave reflectometry. The lowest order mode rotates at the plasma rotation frequency, indicating n=1, and harmonics up to n=6 have been observed simultaneously with the n=1, as determined by the rotation frequency of the higher harmonics. Increased edge collisionality is required to access Type-V ELMs. Stability analysis during the observed modes indicates instability to n=1-3 with n=3 having the highest growth rate and unstable mode eigenfunctions peaked near the plasma edge. Discharges with Type-V and Type-I ELMs are both calculated to be on the peeling unstable side of the peeling ballooning stability curve, with the Type-V case at higher normalized pressure gradient.

  1. A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.

    PubMed

    Arredondo Parra, R; Moreno Quicios, R; Ploeckl, B; Birkenmeier, G; Herrmann, A; Kocsis, G; Laggner, F M; Lang, P T; Lunt, T; Macian-Juan, R; Rohde, V; Sellmair, G; Szepesi, T; Wolfrum, E; Zeidner, W; Neu, R

    2016-02-01

    Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

  2. Vinculin Proteolysis Unmasks an ActA Homolog for Actin-based Shigella Motility

    PubMed Central

    Laine, Roney O.; Zeile, William; Kang, Fan; Purich, Daniel L.; Southwick, Frederick S.

    1997-01-01

    To generate the forces needed for motility, the plasma membranes of nonmuscle cells adopt an activated state that dynamically reorganizes the actin cytoskeleton. By usurping components from focal contacts and the actin cytoskeleton, the intracellular pathogens Shigella flexneri and Listeria monocytogenes use molecular mimicry to create their own actin-based motors. We raised an antibody (designated FS-1) against the FEFPPPPTDE sequence of Listeria ActA, and this antibody: (a) localized at the trailing end of motile intracellular Shigella, (b) inhibited intracellular locomotion upon microinjection of Shigella-infected cells, and (c) cross-reacted with the proteolytically derived 90-kD human vinculin head fragment that contains the Vinc-1 oligoproline sequence, PDFPPPPPDL. Antibody FS-1 reacted only weakly with full-length vinculin, suggesting that the Vinc-1 sequence in full-length vinculin may be masked by its tail region and that this sequence is unmasked by proteolysis. Immunofluoresence staining with a monoclonal antibody against the head region of vinculin (Vin 11-5) localized to the back of motile bacteria (an identical staining pattern observed with the anti-ActA FS-1 antibody), indicating that motile bacteria attract a form of vinculin containing an unmasked Vinc-1 oligoproline sequence. Microinjection of submicromolar concentrations of a synthetic Vinc-1 peptide arrested Shigella intracellular motility, underscoring the functional importance of this sequence. Western blots revealed that Shigella infection induces vinculin proteolysis in PtK2 cells and generates p90 head fragment over the same 1–3 h time frame when intracellular bacteria move within the host cell cytoplasm. We also discovered that microinjected p90, but not full-length vinculin, accelerates rates of pathogen motility by a factor of 3 ± 0.4 in Shigella-infected PtK2 cells. These experiments suggest that vinculin p90 is a rate-limiting component in actin-based Shigella motility, and that

  3. Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots

    PubMed Central

    Katrukha, Eugene A.; Mikhaylova, Marina; van Brakel, Hugo X.; van Bergen en Henegouwen, Paul M.; Akhmanova, Anna; Hoogenraad, Casper C.; Kapitein, Lukas C.

    2017-01-01

    The cytoplasm is a highly complex and heterogeneous medium that is structured by the cytoskeleton. How local transport depends on the heterogeneous organization and dynamics of F-actin and microtubules is poorly understood. Here we use a novel delivery and functionalization strategy to utilize quantum dots (QDs) as probes for active and passive intracellular transport. Rapid imaging of non-functionalized QDs reveals two populations with a 100-fold difference in diffusion constant, with the faster fraction increasing upon actin depolymerization. When nanobody-functionalized QDs are targeted to different kinesin motor proteins, their trajectories do not display strong actin-induced transverse displacements, as suggested previously. Only kinesin-1 displays subtle directional fluctuations, because the subset of microtubules used by this motor undergoes prominent undulations. Using actin-targeting agents reveals that F-actin suppresses most microtubule shape remodelling, rather than promoting it. These results demonstrate how the spatial heterogeneity of the cytoskeleton imposes large variations in non-equilibrium intracellular dynamics. PMID:28322225

  4. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation

    NASA Astrophysics Data System (ADS)

    McAndrews, Kathleen M.; McGrail, Daniel J.; Quach, Nhat D.; Dawson, Michelle R.

    2014-10-01

    The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.

  5. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation.

    PubMed

    McAndrews, Kathleen M; McGrail, Daniel J; Quach, Nhat D; Dawson, Michelle R

    2014-08-26

    The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.

  6. Actin from pig and rat uterus.

    PubMed Central

    Elce, J S; Elbrecht, A S; Middlestadt, M U; McIntyre, E J; Anderson, P J

    1981-01-01

    Smooth-muscle actin was isolated from pig uterus and from pregnant-rat uterus. Methods involving acetone-dried powders were unsuccessful, and a column-chromatographic procedure was developed, with proteinase inhibitors and avoiding polymerization as a purification step. The yield of pure actin was 0.8--1.5 mg/g wet wt. of uterus, which should be compared with an expected yield of actin from skeletal muscle of 2--4 mg/g wet wt. The actin was pure as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and exhibited alpha-, beta-, and gamma-forms on isoelectric focusing. It possessed a blocked N-terminal amino acid residue, and its amino acid analysis conformed to those of other actins. The rat uterine actin was available only in small amounts (5--10 mg) and did not polymerize. The pig uterine actin could be obtained in amounts up to 30 mg, polymerized reversibly, and activated a skeletal myosin Mg2+-dependent ATPase. Images Fig. 2. Fig. 4. PMID:6458278

  7. Reversible stress softening of actin networks

    PubMed Central

    Chaudhuri, Ovijit; Parekh, Sapun H.; Fletcher, Daniel A.

    2011-01-01

    The mechanical properties of cells play an essential role in numerous physiological processes. Organized networks of semiflexible actin filaments determine cell stiffness and transmit force during mechanotransduction, cytokinesis, cell motility and other cellular shape changes1–3. Although numerous actin-binding proteins have been identified that organize networks, the mechanical properties of actin networks with physiological architectures and concentrations have been difficult to measure quantitatively. Studies of mechanical properties in vitro have found that crosslinked networks of actin filaments formed in solution exhibit stress stiffening arising from the entropic elasticity of individual filaments or crosslinkers resisting extension4–8. Here we report reversible stress-softening behaviour in actin networks reconstituted in vitro that suggests a critical role for filaments resisting compression. Using a modified atomic force microscope to probe dendritic actin networks (like those formed in the lamellipodia of motile cells), we observe stress stiffening followed by a regime of reversible stress softening at higher loads. This softening behaviour can be explained by elastic buckling of individual filaments under compression that avoids catastrophic fracture of the network. The observation of both stress stiffening and softening suggests a complex interplay between entropic and enthalpic elasticity in determining the mechanical properties of actin networks. PMID:17230186

  8. Erbium laser resurfacing for actinic cheilitis.

    PubMed

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA).

  9. Actin dynamics: old friends with new stories.

    PubMed

    Staiger, Christopher J; Blanchoin, Laurent

    2006-12-01

    Actin dynamics, or the rapid turnover of actin filaments, play a central role in numerous cellular processes. A large and diverse cast of characters, accessory proteins known as actin-binding proteins, modulate actin dynamics. They do this by binding to the monomer pool, interacting with the side and ends of filaments, creating breaks along a filament, and generating new filaments de novo. Recent biochemical and single-filament imaging analyses of several conserved classes of plant actin-binding proteins reveal unusual and unexpected properties. Examples that are highlighted in this review include: an abundant monomer-binding protein that catalyzes nucleotide exchange; a barbed-end capping protein that is dissociated from filament ends by the signaling lipid, phosphatidic acid; a villin-like bundling protein that lacks all Ca(2+)-regulated activities; and a formin family member that is non-processive and is sufficient to generate actin filament bundles. These and other stories motivate a careful description of the properties of plant proteins in vitro as a prelude to greater insight into the molecular mechanism(s) underlying the regulation of actin dynamics in vivo.

  10. Actin as a potential target for decavanadate.

    PubMed

    Ramos, Susana; Moura, José J G; Aureliano, Manuel

    2010-12-01

    ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

  11. Dynamic reorganization of the actin cytoskeleton

    PubMed Central

    Gressin, Laurène; Théry, Manuel; Blanchoin, Laurent

    2015-01-01

    Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations. PMID:26989473

  12. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    PubMed Central

    Phasukthaworn, Ruedee; Chanprapaph, Kumutnart; Vachiramon, Vasanop

    2016-01-01

    Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies. PMID:27293392

  13. Actin-based propulsion of a microswimmer.

    PubMed

    Leshansky, A M

    2006-07-01

    A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.

  14. Navigating the plant cell: intracellular transport logistics in the green kingdom

    PubMed Central

    Geitmann, Anja; Nebenführ, Andreas

    2015-01-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. PMID:26416952

  15. Ca2+-dependent actin coating of lamellar bodies after exocytotic fusion: a prerequisite for content release or kiss-and-run.

    PubMed

    Miklavc, Pika; Wittekindt, Oliver H; Felder, Edward; Dietl, Paul

    2009-01-01

    Type II pneumocytes secrete surfactant, a lipoprotein-like substance reducing the surface tension in the lung, by regulated exocytosis of secretory vesicles termed lamellar bodies (LBs). This secretory process is characterized by a protracted postfusion phase in which fusion pores open slowly and may act as mechanical barriers for release. Combining dark-field with fluorescence microscopy, we show in ss-actin green fluorescent protein-transfected pneumocytes that LB fusion with the plasma membrane is followed by actin coating of the fused LB. This is inhibited by cytoplasmic Ca(2+) chelation or the phospholipase D inhibitor C2 ceramide. Actin coating occurs by polymerization of actin monomers, as evidenced by staining with Alexa 568 phalloidin. After actin coating of the fused LB, it either shrinks while releasing surfactant ("kiss-coat-and-release"), remains in this fused state without further action ("kiss-coat-and-wait"), or is retrieved and pushed forward in the cell on top of an actin tail ("kiss-coat-and-run"). In the absence of actin coating, no release or run was observed. These data suggest that actin coating creates a force needed for either extrusion of vesicle contents or retrieval and intracellular propulsion.

  16. Damage effects of protoporphyrin IX - sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells.

    PubMed

    Zhao, Xia; Liu, Quanhong; Tang, Wei; Wang, Xiaobing; Wang, Pan; Gong, Liyan; Wang, Yuan

    2009-01-01

    In this study, we report evidence of the damage effects of sonodynamic therapy (SDT) on a novel intracellular target, cytoskeletal F-actin, that has great importance for cancer treatment. Ehrlich ascites carcinoma (EAC) cells suspended in PBS were exposed to ultrasound at 1.34 MHz for up to 60s in the presence and absence of protoporphyrin IX (PPIX). To evaluate the polymeric state and distribution of actin filaments (AF) we employed FITC-Phalloidin staining. The percentage of cells with intact AF was decreased with 10-80 microM PPIX after ultrasonic exposure, while only few cells with disturbed F-actin were observed with 80 microM PPIX alone. The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry. The morphological changes of EAC cells were observed by scanning electron microscope (SEM). The nuclei were stained with Hoechst 33258 to determine apoptosis. Cytoskeletal F-actin and cell morphological changes were dependent on the time after SDT. Some cells suffered deformations of plasma membrane as blebs that reacted positively to FITC-Phalloidin at 2h after SDT treatment. Many of the cells showed the typically apoptotic chromatin fragmentation. The alterations were more significant 4h later. Our results showed that cytoskeletal F-actin might represent an important target for the SDT treatment and the observed effect on F-actin and the subsequent bleb formation mainly due to apoptosis formation due to the treatment.

  17. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β

    PubMed Central

    Kim, Man Lyang; Chae, Jae Jin; Park, Yong Hwan; De Nardo, Dominic; Stirzaker, Roslynn A.; Ko, Hyun-Ja; Tye, Hazel; Cengia, Louise; DiRago, Ladina; Metcalf, Donald; Roberts, Andrew W.; Kastner, Daniel L.; Lew, Andrew M.; Lyras, Dena; Kile, Benjamin T.; Croker, Ben A.

    2015-01-01

    Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease. PMID:26008898

  18. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β.

    PubMed

    Kim, Man Lyang; Chae, Jae Jin; Park, Yong Hwan; De Nardo, Dominic; Stirzaker, Roslynn A; Ko, Hyun-Ja; Tye, Hazel; Cengia, Louise; DiRago, Ladina; Metcalf, Donald; Roberts, Andrew W; Kastner, Daniel L; Lew, Andrew M; Lyras, Dena; Kile, Benjamin T; Croker, Ben A; Masters, Seth L

    2015-06-01

    Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease.

  19. Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin.

    PubMed

    Clifton, Dawn R; Dooley, Cheryl A; Grieshaber, Scott S; Carabeo, Reynaldo A; Fields, Kenneth A; Hackstadt, Ted

    2005-07-01

    Chlamydiae are obligate intracellular pathogens that efficiently induce their endocytosis by susceptible eukaryotic host cells. Recently, a Chlamydia trachomatis type III secreted effector protein, Tarp, was found to be translocated and tyrosine phosphorylated at the site of entry and associated with the recruitment of actin that coincides with endocytosis. C. trachomatis Tarp possesses up to six direct repeats of approximately 50 amino acids each. The majority of the tyrosine residues are found within this repeat region. Here we have ectopically expressed distinct domains of Tarp in HeLa 229 cells and demonstrated that tyrosine phosphorylation occurs primarily within the repeat region, while recruitment of actin is mediated by the C-terminal domain of the protein. A comparison of other sequenced chlamydial genomes revealed that each contains an ortholog of Tarp, although Chlamydia muridarum, Chlamydophila caviae, and Chlamydophila pneumoniae Tarp lack the large repeat region. Immunofluorescence and immunoblotting using an antiphosphotyrosine antibody show no evidence of phosphotyrosine at the site of entry of C. muridarum, C. caviae, and C. pneumoniae, although each species similarly recruits actin. Ectopic expression of full-length C. trachomatis and C. caviae Tarp confirmed that both recruit actin but only C. trachomatis Tarp is tyrosine phosphorylated. The data indicate that the C-terminal domain of Tarp is essential for actin recruitment and that tyrosine phosphorylation may not be an absolute requirement for actin recruitment. The results further suggest the potential for additional, unknown signal transduction pathways associated specifically with C. trachomatis.

  20. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  1. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.

    PubMed

    Sui, Zhenhua; Nowak, Roberta B; Sanada, Chad; Halene, Stephanie; Krause, Diane S; Fowler, Velia M

    2015-07-23

    The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing.

  2. Cargo Transport by Two Coupled Myosin Va Motors on Actin Filaments and Bundles.

    PubMed

    Ali, M Yusuf; Vilfan, Andrej; Trybus, Kathleen M; Warshaw, David M

    2016-11-15

    Myosin Va (myoVa) is a processive, actin-based molecular motor essential for intracellular cargo transport. When a cargo is transported by an ensemble of myoVa motors, each motor faces significant physical barriers and directional challenges created by the complex actin cytoskeleton, a network of actin filaments and actin bundles. The principles that govern the interaction of multiple motors attached to the same cargo are still poorly understood. To understand the mechanical interactions between multiple motors, we developed a simple in vitro model in which two individual myoVa motors labeled with different-colored Qdots are linked via a third Qdot that acts as a cargo. The velocity of this two-motor complex was reduced by 27% as compared to a single motor, whereas run length was increased by only 37%, much less than expected from multimotor transport models. Therefore, at low ATP, which allowed us to identify individual motor steps, we investigated the intermotor dynamics within the two-motor complex. The randomness of stepping leads to a buildup of tension in the linkage between motors-which in turn slows down the leading motor-and increases the frequency of backward steps and the detachment rate. We establish a direct relationship between the velocity reduction and the distribution of intermotor distances. The analysis of run lengths and dwell times for the two-motor complex, which has only one motor engaged with the actin track, reveals that half of the runs are terminated by almost simultaneous detachment of both motors. This finding challenges the assumptions of conventional multimotor models based on consecutive motor detachment. Similar, but even more drastic, results were observed with two-motor complexes on actin bundles, which showed a run length that was even shorter than that of a single motor.

  3. Structural Differences Explain Diverse Functions of Plasmodium Actins

    PubMed Central

    Vahokoski, Juha; Martinez, Silvia Muñico; Ignatev, Alexander; Lepper, Simone; Frischknecht, Friedrich; Sidén-Kiamos, Inga; Sachse, Carsten; Kursula, Inari

    2014-01-01

    Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. PMID:24743229

  4. F-actin staining of Drosophila testes.

    PubMed

    Bonaccorsi, Silvia; Giansanti, Maria G; Cenci, Giovanni; Gatti, Maurizio

    2012-01-01

    Preparations of Drosophila testes fixed with paraformaldehyde can be stained for F-actin according to the protocol described here. This staining procedure is particularly suitable for staining the male fusome and the cytokinetic contractile ring.

  5. [Actin in the wound healing process].

    PubMed

    Nowak, Dorota; Popow-Woźniak, Agnieszka; Raźnikiewicz, Linda; Malicka-Błaszkiewicz, Maria

    2009-01-01

    Wound healing is an important biological process of crucial value for organisms survival and retention of its proper functions. The recognition of molecular mechanisms of these phenomenon is still under investigation. The transition of mesenchymal fibroblasts to myofibroblasts is a key point in wound healing. The contraction ability of myofibroblast enables the shrinkage of a wound and closes its edges. Alpha smooth muscle actin (alpha-SMA), one of six actin isoforms, is a marker of compeletely differentiated myofibroblast. The regulation of differentiation process depends on many growth factors (especially TGF beta 1), the level of active thymosin beta 4, extracellular matrix proteins--including fibronectin, and also on specificity of microenvironment. Thymosin beta 4 is responsible for maintenance of pool of monomeric actin and actin filaments depolymerization. It can also act as a transcription factor, migration stimulator and immunomodulator, so this protein deserves for more attention in wound healing research field.

  6. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  7. Mechanics model for actin-based motility.

    PubMed

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  8. Actin binding domain of filamin distinguishes posterior from anterior actin filaments in migrating Dictyostelium cells

    PubMed Central

    Shibata, Keitaro; Nagasaki, Akira; Adachi, Hiroyuki; Uyeda, Taro Q. P.

    2016-01-01

    Actin filaments in different parts of a cell interact with specific actin binding proteins (ABPs) and perform different functions in a spatially regulated manner. However, the mechanisms of those spatially-defined interactions have not been fully elucidated. If the structures of actin filaments differ in different parts of a cell, as suggested by previous in vitro structural studies, ABPs may distinguish these structural differences and interact with specific actin filaments in the cell. To test this hypothesis, we followed the translocation of the actin binding domain of filamin (ABDFLN) fused with photoswitchable fluorescent protein (mKikGR) in polarized Dictyostelium cells. When ABDFLN-mKikGR was photoswitched in the middle of a polarized cell, photoswitched ABDFLN-mKikGR rapidly translocated to the rear of the cell, even though actin filaments were abundant in the front. The speed of translocation (>3 μm/s) was much faster than that of the retrograde flow of cortical actin filaments. Rapid translocation of ABDFLN-mKikGR to the rear occurred normally in cells lacking GAPA, the only protein, other than actin, known to bind ABDFLN. We suggest that ABDFLN recognizes a certain feature of actin filaments in the rear of the cell and selectively binds to them, contributing to the posterior localization of filamin.

  9. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    PubMed

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  10. Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors

    PubMed Central

    Chia, Jonathan X.; Efimova, Nadia; Svitkina, Tatyana M.

    2016-01-01

    Actin polymerization is a universal mechanism to drive plasma membrane protrusion in motile cells. One apparent exception to this rule is continuing or even accelerated outgrowth of neuronal processes in the presence of actin polymerization inhibitors. This fact, together with the key role of microtubule dynamics in neurite outgrowth, led to the concept that microtubules directly drive plasma membrane protrusion either in the course of polymerization or by motor-driven sliding. The possibility that unextinguished actin polymerization drives neurite outgrowth in the presence of actin drugs was not explored. We show that cultured hippocampal neurons treated with cytochalasin D or latrunculin B contained dense accumulations of branched actin filaments at ∼50% of neurite tips at all tested drug concentrations (1–10 μM). Actin polymerization is required for neurite outgrowth because only low concentrations of either inhibitor increased the length and/or number of neurites, whereas high concentrations inhibited neurite outgrowth. Of importance, neurites undergoing active elongation invariably contained a bright F-actin patch at the tip, whereas actin-depleted neurites never elongated, even though they still contained dynamic microtubules. Stabilization of microtubules by Taxol treatment did not stop elongation of cytochalasin–treated neurites. We conclude that actin polymerization is indispensable for neurite elongation. PMID:27682586

  11. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro.

    PubMed Central

    Bains, W; Ponte, P; Blau, H; Kedes, L

    1984-01-01

    We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated. Images PMID:6493226

  12. Actin-binding proteins take the reins in growth cones.

    PubMed

    Pak, Chi W; Flynn, Kevin C; Bamburg, James R

    2008-02-01

    Higher-order actin-based networks (actin superstructures) are important for growth-cone motility and guidance. Principles for generating, organizing and remodelling actin superstructures have emerged from recent findings in cell-free systems, non-neuronal cells and growth cones. This Review examines how actin superstructures are initiated de novo at the leading-edge membrane and how the spontaneous organization of actin superstructures is driven by ensembles of actin-binding proteins. How the regulation of actin-binding proteins can affect growth-cone turning and axonal regeneration is also discussed.

  13. Time-resolved fluorescence measurements of actin-phalloidin interactions

    NASA Astrophysics Data System (ADS)

    Helms, Michael K.; French, Todd E.

    2000-03-01

    Compounds that interact with the cytoskeleton affect mobility and division, making them useful for treatment of certain types of cancer. Actin binding drugs such as the phallotoxins (small, bicyclic peptides) bind to and stabilize actin polymers (F-actin) without binding to actin monomers (G-actin). It has been shown that the intensity of fluorescently labeled phallotoxins such as fluorescein- phalloidin and rhodamine-phalloidin increases upon bind F- actin. We used LJL BioSystems' new FLAReTM technology to measure excited state lifetime changes of fluorescein- phalloidin and rhodamine-phalloidin upon binding to F- actin.

  14. Mechanism of Actin Filament Bundling by Fascin

    SciTech Connect

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  15. Effects of an Early-Time Impact Generated Vapor Blast in the Martian Atmosphere: Formation of High-Latitude Pedestal Craters

    NASA Technical Reports Server (NTRS)

    Wrobel, K. E.; Schultz, P. H.; Crawford, D. A.

    2005-01-01

    Following impact, vapor expansion creates an intense airblast that interacts with the ambient atmosphere. The resulting hemi-spherical shock wave leaves a signature on the surface that is dependent on initial atmospheric and surface conditions. Here we propose that the formation of pedestal craters (craters surrounded by an erosion-resistant pedestal) may be a direct consequence of extreme winds and elevated temperatures generated by such an impact-induced atmospheric blast. Pedestal craters, first recognized in Mariner 9 data, are a unique feature on Mars and likely a signature of near-surface volatiles. They are found at high latitudes (small pedestals, Amazonian to Late Hesperian in age) and in thick equatorial mantling deposits (larger pedestals, early Hesperian to Noachian in age). Previously suggested mechanisms for pedestal crater formation (e.g., wind: ejecta curtain vortices or vapor blast; and ejecta dust: armoring) do not provide a complete picture. The clear evidence for near-surface volatiles at high latitudes requires a re-evaluation of these alternative models. The results presented here suggest that a combined atmospheric blast/thermal model provides a plausible formation hypothesis.

  16. Retired NASA F-18 being hoisted up by crane to pedestal mount at Lancaster California Municipal Base

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An F/A-18 aircraft formerly flown by NASA's Dryden Flight Research Center, Edwards, California, is lifted by crane towards what has become its new home - a pedestal in front of the municipal baseball stadium in the city of Lancaster, California. The F/A-18 had been flown by NASA Dryden as a safety chase aircraft on research missions and for various other pilot proficiency and support duties prior to its recent retirement. The aircraft is now mounted nose skyward on the 28-foot-tall pedestal in front of the stadium, appropriately named 'The Hangar.' The stadium is the home field of the Lancaster Jethawks, a Class-A farm team of the Seattle Mariners.

  17. Retired NASA F-18 being hoisted up by crane to pedestal mount at Lancaster California Municipal Base

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under the watchful eyes of news media and officials of the city of Lancaster, California, from a balcony, workers steady an F/A-18 Hornet airframe as it is gently lifted into the air prior to mounting on a pedestal in front of 'The Hangar,' the city's municipal stadium. The F/A-18 was formerly flown by NASA's Dryden Flight Research Center, Edwards, California, as a safety chase and support aircraft prior to its recent retirement. The aircraft is now mounted nose skyward on a 28-foot-tall pedestal on front of the stadium. The stadium is the home field of the Lancaster Jethawks, a Class-A farm team of the Seattle Mariners.

  18. Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC

    SciTech Connect

    Chang, C S; Ku, Seung-Hoe; Adams, Mark; D'Azevedo, Eduardo; Chen, Yang; Cummings, Julian; Ethier, Stephane; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Keyes, David E; Klasky, Scott A; Lee, Wei-Li; Lin, Zhihong; Nishimura, Yasutaro; Parker, Scott; Samtaney, Ravi; Stotler, D.; Weitzner, Harold; Worley, Patrick H; Zorin, Denis

    2007-01-01

    An integrated gyrokinetic particle simulation with turbulence and neoclassical physics in a diverted tokamak edge plasma has been performed. Neoclassical equilibrium gyrokinetic solutions in the whole edge plasma have been separated from the turbulence activities for the first time, using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The equilibrium solutions in an H-mode-like edge plasma condition show strongly sheared global ExB and parallel flows in the entire edge plasma including the pedestal and scrape-off regions. In an L-mode-like edge plasma condition, the sheared flows in the pedestal layer are much weaker, supporting the conjecture that the neoclassical flow-shear may play a significant role in the H-mode physics.

  19. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  20. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  1. Evolution of intracellular compartmentalization.

    PubMed

    Diekmann, Yoan; Pereira-Leal, José B

    2013-01-15

    Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.

  2. Role of Proteins of the Ena/VASP Family in Actin-based Motility of Listeria monocytogenes

    PubMed Central

    Laurent, Valérie; Loisel, Thomas P.; Harbeck, Birgit; Wehman, Ann; Gröbe, Lothar; Jockusch, Brigitte M.; Wehland, Jürgen; Gertler, Frank B.; Carlier, Marie-France

    1999-01-01

    Intracellular propulsion of Listeria monocytogenes is the best understood form of motility dependent on actin polymerization. We have used in vitro motility assays of Listeria in platelet and brain extracts to elucidate the function of the focal adhesion proteins of the Ena (Drosophila Enabled)/VASP (vasodilator-stimulated phosphoprotein) family in actin-based motility. Immunodepletion of VASP from platelet extracts and of Evl (Ena/VASP-like protein) from brain extracts of Mena knockout (−/−) mice combined with add-back of recombinant (bacterial or eukaryotic) VASP and Evl show that VASP, Mena, and Evl play interchangeable roles and are required to transform actin polymerization into active movement and propulsive force. The EVH1 (Ena/VASP homology 1) domain of VASP is in slow association–dissociation equilibrium high-affinity binding to the zyxin-homologous, proline-rich region of ActA. VASP also interacts with F-actin via its COOH-terminal EVH2 domain. Hence VASP/ Ena/Evl link the bacterium to the actin tail, which is required for movement. The affinity of VASP for F-actin is controlled by phosphorylation of serine 157 by cAMP-dependent protein kinase. Phospho-VASP binds with high affinity (0.5 × 108 M−1); dephospho-VASP binds 40-fold less tightly. We propose a molecular ratchet model for insertional polymerization of actin, within which frequent attachment–detachment of VASP to F-actin allows its sliding along the growing filament. PMID:10087267

  3. In Vitro Biochemical Characterization of Cytokinesis Actin-Binding Proteins.

    PubMed

    Zimmermann, Dennis; Morganthaler, Alisha N; Kovar, David R; Suarez, Cristian

    2016-01-01

    Characterizing the biochemical and biophysical properties of purified proteins is critical to understand the underlying molecular mechanisms that facilitate complicated cellular processes such as cytokinesis. Here we outline in vitro assays to investigate the effects of cytokinesis actin-binding proteins on actin filament dynamics and organization. We describe (1) multicolor single-molecule TIRF microscopy actin assembly assays, (2) "bulk" pyrene actin assembly/disassembly assays, and (3) "bulk" sedimentation actin filament binding and bundling assays.

  4. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  5. Single-crystal Rare-earth Doped YAG Fiber Lasers Grown by the Laser-heated Pedestal Growth Technique

    DTIC Science & Technology

    2014-02-04

    thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated pedestal growth...holmium and thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated...Ann Arbor, MI 48109 dSPAWAR System Center, San Diego, CA ABSTRACT High concentrations of the rare-earth elements erbium, holmium and thulium

  6. Bacterial Shape and ActA Distribution Affect Initiation of Listeria monocytogenes Actin-Based Motility

    PubMed Central

    Rafelski, Susanne M.; Theriot, Julie A.

    2005-01-01

    We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed. PMID:15980176

  7. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  8. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    PubMed

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  9. Detailed heat transfer coefficient measurements and thermal analysis at engine conditions of a pedestal with fillet radii

    SciTech Connect

    Wang, Z.; Ireland, P.T.; Jones, T.V.

    1995-04-01

    Short pin-fin and pin-fin arrays are frequently used in turbine blade internal cooling systems to enhance cooling and stiffen the structure. The present work has shown that a knowledge of the detailed heat transfer coefficient distribution is required to predict the cooling effect of such devices accurately. The heat flow process has been numerically modeled at typical engine conditions with the detailed heat transfer distribution measured by the transient heat transfer method being used as the thermal boundary conditions. The heat transfer coefficient over the surface of a pedestal with fillet radii has been measured using thermochromic liquid crystals and the transient heat transfer method. The tests were performed at engine representative Reynolds numbers for a geometry typical of those used in turbine blade cooling systems. The heat conduction process that occurs in the engine was subsequently modeled numerically with a finite element discretization of the solid pedestal. The measured heat transfer coefficients were used to derive the exact boundary conditions applicable to the engine. The temperature field within the pedestal, calculated using the correct heat transfer coefficient distribution, is compared to that calculated using an area-averaged heat transfer coefficient. Metal temperature differences of 90 K are predicted across the blade wall.

  10. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    SciTech Connect

    Russell, D. A. D'Ippolito, D. A.; Myra, J. R.; Canik, J. M.; Gray, T. K.; Zweben, S. J.

    2015-09-15

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (SOL Turbulence) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured in the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infrared thermography and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.

  11. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    SciTech Connect

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  12. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    SciTech Connect

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  13. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    DOE PAGES

    Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; ...

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured inmore » the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.« less

  14. Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

    SciTech Connect

    Russell, David A.; D'Ippolito, Daniel A.; Myra, James R.; Canik, John M.; Gray, Travis K.; Zweben, Stewart J.

    2015-09-01

    The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (“SOL Turbulence”) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured in the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measured in the experiments is matched in the simulations by adjusting “free” dissipation parameters (e.g., diffusion coefficients) that are not measured directly in the experiments. With power-matching, (a) the heat flux SOL width is smaller, as observed experimentally by infra-red thermography, and (b) the simulated density fluctuation amplitudes are reduced with Li, as inferred for the experiments as well from reflectometry analysis. The instabilities and saturation mechanisms that underlie the SOLT model equilibria are also discussed.

  15. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    DOE PAGES

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lowermore » n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.« less

  16. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A.; Bobrek, M.

    2016-11-01

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.

  17. Models of motor-assisted transport of intracellular particles.

    PubMed Central

    Smith, D A; Simmons, R M

    2001-01-01

    One-dimensional models are presented for the macroscopic intracellular transport of vesicles and organelles by molecular motors on a network of aligned intracellular filaments. A motor-coated vesicle or organelle is described as a diffusing particle binding intermittently to filaments, when it is transported at the motor velocity. Two models are treated in detail: 1) a unidirectional model, where only one kind of motor is operative and all filaments have the same polarity; and 2) a bidirectional model, in which filaments of both polarities exist (for example, a randomly polarized actin network for myosin motors) and/or particles have plus-end and minus-end motors operating on unipolar filaments (kinesin and dynein on microtubules). The unidirectional model provides net particle transport in the absence of a concentration gradient. A symmetric bidirectional model, with equal mixtures of filament polarities or plus-end and minus-end motors of the same characteristics, provides rapid transport down a concentration gradient and enhanced dispersion of particles from a point source by motor-assisted diffusion. Both models are studied in detail as a function of the diffusion constant and motor velocity of bound particles, and their rates of binding to and detachment from filaments. These models can form the basis of more realistic models for particle transport in axons, melanophores, and the dendritic arms of melanocytes, in which networks of actin filaments and microtubules coexist and motors for both types of filament are implicated. PMID:11159382

  18. F-actin cytoskeleton and the fate of organelles in chromaffin cells.

    PubMed

    Villanueva, José; Gimenez-Molina, Yolanda; Viniegra, Salvador; Gutiérrez, Luis M

    2016-06-01

    In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss

  19. Resonant-magnetic-perturbation-induced plasma transport in H-mode pedestals

    SciTech Connect

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2012-11-15

    Plasma toroidal rotation reduces reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational (q = m/n) magnetic flux surfaces. Hence, it causes radial perturbations {delta}B{sub {rho}m/n} to be small there, and thus inhibits magnetic island formation and stochasticity in the edge of high (H-) mode confinement tokamak plasmas. However, electron collisional damping combined with the spatial magnetic flutter {delta}B{sub {rho}m/n} induced by RMPs in the vicinity of rational surfaces causes a radial electron heat diffusivity in which {chi}{sub e Parallel-To }{sup eff}{approx}(v{sub Te}{sup 2}/{nu}{sub e})/(1+x{sup 2}/{delta}{sub Parallel-To }{sup 2}) is an effective parallel electron thermal diffusivity. These effects are reduced by magnetic shear effects at a distance x from rational surfaces for |x|>{delta}{sub Parallel-To} but amplified for {delta}B-caret{sub {rho}m/n}(x)>{delta}B-caret{sub {rho}m/n}(0). A kinetic, toroidal model of these RMP-flutter-induced plasma transport effects is developed and compared to a previously developed cylindrical model. The RMP-induced increases in plasma transport can be large enough to reduce plasma gradients in H-mode pedestals. Thus, they may contribute to suppressing edge localized modes in tokamak plasmas.

  20. H-mode Edge Turbulence and Pedestal Measurements in Pegasus Plasmas using Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Kriete, D. M.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Thome, K. E.; Thompson, D. S.

    2015-11-01

    In Pegasus discharges, L-H mode transitions are induced using Ohmic heating and high-field-side fueling. H-mode plasmas have energy confinement consistent with the ITER98pb(y,2) scaling law, indications of increased electron and ion temperature, and an increase in core rotation compared to L-mode plasmas. Electron density and temperature profiles have been measured in the edge region using a scannable triple Langmuir probe on a shot-by-shot basis. In H-mode, a pressure pedestal that has a hyperbolic tangent shape and a ~ 2 cm ∇pe scale length is observed, in contrast to a linear shape in L-mode. Autopower spectra of the collected ion saturation current in H-mode discharges show a factor of ~ 3 reduction in fluctuations in the 50-200 kHz band with respect to L-mode. Two Langmuir probes with 8 cm poloidal separation have been installed on Pegasus. The turbulence correlation length in the edge will be measured by radially scanning the probes. Knowledge of the correlation length will be used to inform the design of a future 8-channel radial multiprobe array. This system will simultaneously measure the dynamic ne (R , t) , Te (R , t) , and Φ (R , t) profiles and fluctuations across the L-H mode transition and be used to investigate nonlinear ELM dynamics. Work supported by US DOE grant DE-FG02-96ER54375.

  1. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs.

    PubMed

    Chu, Leonard Y; Choi, Seong-O; Prausnitz, Mark R

    2010-10-01

    Dissolving microneedle patches offer promise as a simple, minimally invasive method of drug and vaccine delivery to the skin that avoids the need for hypodermic needles. However, it can be difficult to control the amount and localization of drug within microneedles. In this study, we developed novel microneedle designs to improve control of drug encapsulation and delivery using dissolving microneedles by (i) localizing drug in the microneedle tip, (ii) increasing the amount of drug loaded in microneedles while minimizing wastage, and (iii) inserting microneedles more fully into the skin. Localization of our model drug, sulforhodamine B in the microneedle tip by either casting a highly concentrated polymer solution as the needle matrix or incorporating an air bubble at the base of the microneedle achieved approximately 80% delivery within 10 min compared to 20% delivery achieved by the microneedles encapsulating nonlocalized drug. As another approach, a pedestal was introduced to elevate each microneedle for more complete insertion into the skin and to increase its drug loading capacity by threefold from 0.018 to 0.053 microL per needle. Altogether, these novel microneedle designs provide a new set of tools to fabricate dissolving polymer microneedles with improved control over drug encapsulation, loading, and delivery.

  2. Magnetic-perturbation-induced plasma transport in H-mode pedestals

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Cole, A. J.; Hegna, C. C.

    2012-03-01

    Plasma toroidal rotation can prevent reconnection of externally applied resonant magnetic perturbation (RMP) fields on rational surfaces and hence magnetic island formation and stochasticity in the edge of tokamak H-mode plasmas. However, magnetic flutter induced by RMPs off the rational surfaces causes a radial electron heat diffusivity χe^RMP˜(δBr/B0)^2χ| F(x) in which χ|˜vTe^2/νe is an effective parallel electron heat diffusivity and F is a spatially varying factor [1]. The flutter also diffuses electrons radially and causes a factor of about 3 smaller increases in density diffusion. Since the electron density transport is non-ambipolar, this flutter process also modifies the radial electric field and plasma toroidal rotation. This work extends the previously developed periodic cylinder screw pinch model [1] of RMP-flutter-induced plasma transport to a full toroidal model which is axisymmetric to lowest order plus gyroradius-small magnetic field perturbations. The possible role of the RMP-flutter-induced plasma transport in reducing pressure gradients in H-mode pedestals and thereby suppressing ELMs will be discussed.[4pt] [1] J.D. Callen et al., UW-CPTC 11-13, http://www.cptc.wisc.edu (submitted to Nucl. Fusion.)

  3. Comparison of Inboard-Outboard Pedestal Temperature Measurements in JET Using ECE Diagnostics

    SciTech Connect

    Barrera, L.; Luna, E. de la; Figini, L.

    2008-03-12

    Despite considerable effort, both theoretically and experimentally, a complete physical model to describe the particle and energy losses during ELMs is far from complete. On the experimental front, improved description of the spatial structure (poloidal asymmetry, radial distribution) and the dynamics of the ELM crash is a key requirement to answer some of the basic outstanding questions concerning the physics of ELMs. A significant number of diagnostics is now capable of fast measurements of the pedestal profile during an ELM, however, there is a lack of data from the inboard midplane, so assumptions of poloidal symmetry on the flux surfaces have often to be made. The aim of this work is to explore the capabilities of the electron cyclotron emission (ECE) diagnostics to provide simultaneous measurements of the edge temperature for both inboard and outboard plasma midplane. Access to the inboard region of the plasma is achieved in JET by using 1 harmonic/O-mode polarization, as it is not affected by harmonic overlap with the 2{sup nd} harmonic. This paper focuses on the validation of the inboard ECE data and the identification of the limitations of the measurements and the data analysis.

  4. Important role of pedestal ion temperature in the ELM mitigation by supersonic molecular beam injection

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Yu, D. L.; Chen, C. Y.; Wei, Y. L.; Zhong, W. L.; Zou, X. L.; Zuo, H. Y.; Du, J. L.; Liu, L.; Dong, C. F.; Shi, Z. B.; Zhao, K. J.; Feng, B. B.; Zhou, Y.; Wang, Z. H.; Xu, M.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Yao, L. H.; Ding, X. T.; Dong, J. Q.; Duan, X. R.; Liu, Yong; HL-2A Team

    2016-12-01

    Edge localized mode (ELM) is successfully mitigated by helium and deuterium supersonic molecular beam injections (SMBIs) on HL-2A. During the ELM mitigation by SMBIs, gradients of ion temperature (T i) and electron density are softened in the pedestal. It has been observed that the averaged gradient of the T i decreases around 44% and the well depth of radial electric field (E r) is reduced by the SMBI during ELM mitigation. Furthermore, at least 20% decrements of T i have to be attained to achieve a noticeable increase (decrease) of the ELM frequency (amplitude). In addition, the duration of ELM mitigation with helium SMBI is much longer than that with deuterium, likely due to the higher level of recycling neutral gas compared to that of deuterium; in the case of ELM mitigation by helium SMBI, the recovery duration of the density gradient is much shorter (10-20 ms) than that of T i (up to 40 ms or longer), indicating the importance of the T i in the ELM mitigation by SMBI. Finally, it has been observed that the T i is reduced before the beginning of the ELM mitigation, suggesting that the mechanism of the ELM mitigation by SMBI is closely related to the cooling effect.

  5. Progress in Understanding the Enhanced Pedestal H-mode in NSTX

    NASA Astrophysics Data System (ADS)

    Gerhardt, S.; Battaglia, D.; Bell, R. E.; Diallo, A.; Guttenfelder, W.; Leblanc, B. P.; Maingi, R.; Ren, Y.; Canik, J. M.; Snyder, P.; Kubota, S.; Smith, D. R.

    2013-10-01

    The enhanced pedestal H-mode (EP H-mode) is a high performance regime in NSTX, characterized by very steep ion temperature gradients and large edge flow shear. Recent research shows that the edge ion temperature shapes can very widely, from cases with the steep gradient region near the separatrix, to cases where the gradient is shifted inward by up to 10 cm. In all cases, however, the region of good confinement is coincident with a region of large toroidal flow shear. Typically 75% of the stored energy increase following the EP H-mode transition is through the ion channel, with the remaining 25% in the electron channel. While most EP H-mode examples are quite short, a number of quite quiescent long-pulse examples have been found in the NSTX database. Edge fluctuations in this regime have been assessed. There are some hints of an increase in magnetic fluctuations measured at the vessel wall, but no profound modifications in the turbulence measured by BES; reflectometer analysis is ongoing. Results of transport assessments with TRANSP and XGC-0, microstability calculations with GS-2, and edge macrostability with ELITE will be presented. This work was sponsored by the U.S. Department of Energy.

  6. First analysis of I-mode pedestals with the BOUT + + code

    NASA Astrophysics Data System (ADS)

    Liu, Zixi; Xu, Xueqiao; Gao, Xiang; Hubbard, A. E.; Hughes, Jerry; Xia, T. Y.; Walk, J. R.; Theiler, C.; Zhang, Tao; Li, J. G.; EAST Team; LLNL Collaboration; PSFC Collaboration

    2014-10-01

    Edge turbulence in I-mode is characterized by a strong reduction of mid-frequency turbulence and the appearance of a higher-frequency (about 200 to 400 kHz) fluctuation, dubbed the ``weakly-coherent mode'' (WCM). The WCM is well characterized experimentally, with density and temperature fluctuations visible on multiple diagnostics. First analysis of C-Mod I-mode pedestals with the BOUT + + code will be presented. The magnetic equilibrium is generated using the kinetic EFIT with measured pressure profile and the calculated bootstrap current from the Sauter model. The linear simulations are carried out using fits to measured plasma density and electron temperature profiles, assuming that electron and ion temperature are equal Te = Ti. The electric field is determined by the force balance relation assuming no net equilibrium flow. The preliminary simulation results show that there is no peeling-ballooning mode instability, consistent with earlier ELITE analysis. When turning off the parallel electron pressure gradient term in Ohm's law in 6-field two-fluid model, the linear growth rate is small, indicating that the drift-Alfven instability is dominant. The linear and nonlinear simulation results with experimentally measured Er profile will also be presented.

  7. Pearling instability of membrane tubes driven by curved proteins and actin polymerization

    NASA Astrophysics Data System (ADS)

    Jelerčič, U.; Gov, N. S.

    2015-12-01

    Membrane deformation inside living cells is crucial for the proper shaping of various intracellular organelles and is necessary during the fission/fusion processes that allow membrane recycling and transport (e.g. endocytosis). Proteins that induce membrane curvature play a key role in such processes, mostly by adsorbing to the membrane and forming a scaffold that deforms the membrane according to the curvature of the proteins. In this paper we explore the possibility of membrane tube destabilization through a pearling mechanism enabled by the combined effects of the adsorbed curved proteins and the actin polymerization that they recruit. The pearling instability can serve as the initiation for fission of the tube into vesicles. We find that adsorbed curved proteins are more likely to stabilize the tubes, while the actin polymerization can provide the additional constrictive force needed for the robust instability. We discuss the relevance of the theoretical results to in vivo and in vitro experiments.

  8. Bacterial spread from cell to cell: beyond actin-based motility.

    PubMed

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell.

  9. The actin multigene family and livestock speciation using the polymerase chain reaction.

    PubMed

    Fairbrother, K S; Hopwood, A J; Lockley, A K; Bardsley, R G

    1998-01-01

    Actins constitute a family of highly-conserved multifunctional intracellular proteins, best known as myofibrillar components in striated muscle fibres. Most vertebrate genomes contain numerous actin genes with high sequence homology in protein coding regions but considerable variability in intron number and sizes. This genetic diversity can be utilised for livestock speciation purposes. The high sequence conservation has enabled a single pair of oligonucleotides to be used to prime the polymerase chain reaction (PCR) with DNA extracted from all animals so far studied. Multiple amplification products were obtained which on gel electrophoresis constituted characteristic species-specific 'fingerprints'. The patterns were reproducible, did not vary between individuals of the same breed or between different breeds within a species, and could be generated even from heat-processed muscle held at 120 degrees C for one hour. Given the capacity of PCR to amplify relatively short sequences in highly-degraded DNA, this approach may be suitable for authentication of processed meat products.

  10. Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization.

    PubMed

    Vassilopoulos, Stéphane; Gentil, Christel; Lainé, Jeanne; Buclez, Pierre-Olivier; Franck, Agathe; Ferry, Arnaud; Précigout, Guillaume; Roth, Robyn; Heuser, John E; Brodsky, Frances M; Garcia, Luis; Bonne, Gisèle; Voit, Thomas; Piétri-Rouxel, France; Bitoun, Marc

    2014-05-12

    The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle CHC regulates the formation and maintenance of PM-sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.

  11. Time-resolved studies of actin organization by multivalent ions and actin-binding proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Purdy, Kirstin; Bartles, James R.; Chee Lai Wong, Gerard

    2007-03-01

    Actin is one of the principal components in the eukaryotic cytoskeleton, the architecture of which is highly regulated for a wide range of biological functions. In the presence of multivalent salts or actin-binding proteins, it is known that F-actin can organize into bundles or networks. In this work, we use time-resolved confocal microscopy to study the dynamics of actin bundle growth induced by multivalent ions and by espin, a prototypical actin binding protein that is known to induce bundles. For divalent ion induced bundles, we observe a rapid lateral saturation followed by longitudinal growth of bundles, in sharp contrast to the bundling mechanism of espin, which favors finite length bundles.

  12. In Vivo, Villin Is Required for Ca2+-Dependent F-Actin Disruption in Intestinal Brush Borders

    PubMed Central

    Ferrary, Evelyne; Cohen-Tannoudji, Michel; Pehau-Arnaudet, Gérard; Lapillonne, Alexandre; Athman, Rafika; Ruiz, Tereza; Boulouha, Lilia; El Marjou, Fatima; Doye, Anne; Fontaine, Jean-Jacques; Antony, Claude; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric; Robine, Sylvie

    1999-01-01

    Villin is an actin-binding protein localized in intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a Ca2+-dependent manner. We generated knockout mice to study the role of villin in vivo. In villin-null mice, no noticeable changes were observed in the ultrastructure of the microvilli or in the localization and expression of the actin-binding and membrane proteins of the intestine. Interestingly, the response to elevated intracellular Ca2+ differed significantly between mutant and normal mice. In wild-type animals, isolated brush borders were disrupted by the addition of Ca2+, whereas Ca2+ had no effect in villin-null isolates. Moreover, increase in intracellular Ca2+ by serosal carbachol or mucosal Ca2+ ionophore A23187 application abolished the F-actin labeling only in the brush border of wild-type animals. This F-actin disruption was also observed in physiological fasting/refeeding experiments. Oral administration of dextran sulfate sodium, an agent that causes colonic epithelial injury, induced large mucosal lesions resulting in a higher death probability in mice lacking villin, 36 ± 9.6%, compared with wild-type mice, 70 ± 8.8%, at day 13. These results suggest that in vivo, villin is not necessary for the bundling of F-actin microfilaments, whereas it is necessary for the reorganization elicited by various signals. We postulate that this property might be involved in cellular plasticity related to cell injury. PMID:10459016

  13. Arabidopsis ACTIN-DEPOLYMERIZING FACTOR7 Severs Actin Filaments and Regulates Actin Cable Turnover to Promote Normal Pollen Tube Growth[W

    PubMed Central

    Zheng, Yiyan; Xie, Yurong; Jiang, Yuxiang; Qu, Xiaolu; Huang, Shanjin

    2013-01-01

    Actin filaments are often arranged into higher-order structures, such as the longitudinal actin cables that generate the reverse fountain cytoplasmic streaming pattern present in pollen tubes. While several actin binding proteins have been implicated in the generation of these cables, the mechanisms that regulate their dynamic turnover remain largely unknown. Here, we show that Arabidopsis thaliana ACTIN-DEPOLYMERIZING FACTOR7 (ADF7) is required for turnover of longitudinal actin cables. In vitro biochemical analyses revealed that ADF7 is a typical ADF that prefers ADP-G-actin over ATP-G-actin. ADF7 inhibits nucleotide exchange on actin and severs filaments, but its filament severing and depolymerizing activities are less potent than those of the vegetative ADF1. ADF7 primarily decorates longitudinal actin cables in the shanks of pollen tubes. Consistent with this localization pattern, the severing frequency and depolymerization rate of filaments significantly decreased, while their maximum lifetime significantly increased, in adf7 pollen tube shanks. Furthermore, an ADF7–enhanced green fluorescent protein fusion with defective severing activity but normal G-actin binding activity could not complement adf7, providing compelling evidence that the severing activity of ADF7 is vital for its in vivo functions. These observations suggest that ADF7 evolved to promote turnover of longitudinal actin cables by severing actin filaments in pollen tubes. PMID:24058157

  14. Structure of the Rigor Actin-Tropomyosin-Myosin Complex

    PubMed Central

    Behrmann, Elmar; Müller, Mirco; Penczek, Pawel A.; Mannherz, Hans Georg; Manstein, Dietmar J.; Raunser, Stefan

    2014-01-01

    The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. Myosin converts the chemical energy stored in ATP into force and movement along actin filaments. Myosin binding to actin induces conformational changes that are coupled to the nucleotide-binding pocket and amplified by a specialized region of the motor domain for efficient force generation. Tropomyosin plays a key role in regulating the productive interaction between myosins and actin. Here, we report the 8 Å resolution structure of the actin-tropomyosin-myosin complex determined by cryo electron microscopy. The pseudo-atomic model of the complex obtained from fitting crystal structures into the map defines the large actin-myosin-tropomyosin interface and the molecular interactions between the proteins in detail and allows us to propose a structural model for tropomyosin dependent myosin binding to actin and actin-induced nucleotide release from myosin. PMID:22817895

  15. The unusual dynamics of parasite actin result from isodesmic polymerization.

    PubMed

    Skillman, Kristen M; Ma, Christopher I; Fremont, Daved H; Diraviyam, Karthikeyan; Cooper, John A; Sept, David; Sibley, L David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

  16. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons.

    PubMed

    Zhang, Xiao-Feng; Hyland, Callen; Van Goor, David; Forscher, Paul

    2012-12-01

    Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.

  17. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    SciTech Connect

    Hirano, Hidemi; Matsuura, Yoshiyuki

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  18. MARCKS actin-binding capacity mediates actin filament assembly during mitosis in human hepatic stellate cells.

    PubMed

    Rombouts, Krista; Mello, Tommaso; Liotta, Francesco; Galli, Andrea; Caligiuri, Alessandra; Annunziato, Francesco; Pinzani, Massimo

    2012-08-15

    Cross-linking between the actin cytoskeleton and plasma membrane actin-binding proteins is a key interaction responsible for the mechanical properties of the mitotic cell. Little is known about the identity, the localization, and the function of actin filament-binding proteins during mitosis in human hepatic stellate cells (hHSC). The aim of the present study was to identify and analyze the cross talk between actin and myristoylated alanine-rich kinase C substrate (MARCKS), an important PKC substrate and actin filament-binding protein, during mitosis in primary hHSC. Confocal analysis and chromosomal fraction analysis of mitotic hHSC demonstrated that phosphorylated (P)-MARCKS displays distinct phase-dependent localizations, accumulates at the perichromosomal layer, and is a centrosomal protein belonging to the chromosomal cytosolic fraction. Aurora B kinase (AUBK), an important mitotic regulator, β-actin, and P-MARCKS concentrate at the cytokinetic midbody during cleavage furrow formation. This localization is critical since MARCKS-depletion in hHSC is characterized by a significant loss in cytosolic actin filaments and cortical β-actin that induces cell cycle inhibition and dislocation of AUBK. A depletion of AUBK in hHSC affects cell cycle, resulting in multinucleation. Quantitative live cell imaging demonstrates that the actin filament-binding capacity of MARCKS is key to regulate mitosis since the cell cycle inhibitory effect in MARCKS-depleted cells caused abnormal cell morphology and an aberrant cytokinesis, resulting in a significant increase in cell cycle time. These findings implicate that MARCKS, an important PKC substrate, is essential for proper cytokinesis and that MARCKS and its partner actin are key mitotic regulators during cell cycle in hHSC.

  19. Regulation of Sodium Channel Activity by Capping of Actin Filaments

    PubMed Central

    Shumilina, Ekaterina V.; Negulyaev, Yuri A.; Morachevskaya, Elena A.; Hinssen, Horst; Khaitlina, Sofia Yu

    2003-01-01

    Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells. PMID:12686620

  20. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-09

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus.

  1. Crystal structure of a nuclear actin ternary complex

    PubMed Central

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-01-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT–associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  2. The Actinome of Dictyostelium discoideum in Comparison to Actins and Actin-Related Proteins from Other Organisms

    PubMed Central

    Joseph, Jayabalan M.; Fey, Petra; Ramalingam, Nagendran; Liu, Xiao I.; Rohlfs, Meino; Noegel, Angelika A.; Müller-Taubenberger, Annette; Glöckner, Gernot; Schleicher, Michael

    2008-01-01

    Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps). To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group). According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8) as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes. PMID:18612387

  3. Actin and Myosin in Pea Tendrils 1

    PubMed Central

    Ma, Yong-Ze; Yen, Lung-Fei

    1989-01-01

    We demonstrate here the presence of actin and myosin in pea (Pisum sativum L.) tendrils. The molecular weight of tendril actin is 43,000, the same as rabbit skeletal muscle actin. The native molecular weight of tendril myosin is about 440,000. Tendril myosin is composed of two heavy chains of molecular weight approximately 165,000 and four (two pairs) light chains of 17,000 and 15,000. At high ionic strength, the ATPase activity of pea tendril myosin is activated by K+-EDTA and Ca2+ and is inhibited by Mg2+. At low ionic strength, the Mg2+-ATPase activity of pea tendril myosin is activated by rabbit skeletal muscle F-actin. Superprecipitation occurred after incubation at room temperature when ATP was added to the crude actomyosin extract. It is suggested that the interaction of actin and myosin may play a role in the coiling movement of pea tendril. Images Figure 1 Figure 3 Figure 4 PMID:16666586

  4. Antibodies to actin in autoimmune haemolytic anaemia

    PubMed Central

    2010-01-01

    Background In autoimmune haemolytic anaemia (AIHA), autoreactive antibodies directed against red blood cells are up-regulated, leading to erythrocyte death. Mycoplasma suis infections in pigs induce AIHA of both the warm and cold types. The aim of this study was to identify the target autoantigens of warm autoreactive IgG antibodies. Sera from experimentally M. suis-infected pigs were screened for autoreactivity. Results Actin-reactive antibodies were found in the sera of 95% of all animals tested. The reactivity was species-specific, i.e. reactivity with porcine actin was significantly higher than with rabbit actin. Sera of animals previously immunised with the M. suis adhesion protein MSG1 showed reactivity with actin prior to infection with M. suis indicating that molecular mimicry is involved in the specific autoreactive mechanism. A potentially cross-reactive epitope was detected. Conclusions This is the first report of autoreactive anti-actin antibodies involved in the pathogenesis of autoimmune haemolytic anaemia. PMID:20353574

  5. Dynamic buckling of actin within filopodia

    PubMed Central

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Poul M

    2015-01-01

    Abstract Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.1 These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.2 Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft. PMID:26479403

  6. The role of actin in capacitation-related signaling: an in silico and in vitro study

    PubMed Central

    2011-01-01

    Background The signalling cascades involved in many biological processes require the coordination of different subcellular districts. It is the case of the pathways involved in spermatozoa acquisition of fertilizing ability (the so called "capacitation"). In the present work the coordination of subcellular signalling, during the boar sperm capacitation, was studied by a computational and experimental approach. As first the biological network representing all the molecular interactions involved in capacitation was build and analyzed, then, an experimental set up was carried out to confirm the computational model-based prediction. Results The analysis of computational model pointed out that the "actin polymerization" node had some important and unique features: - it is one of the most connected nodes, - it links in a specific manner all the intracellular compartments, - its removal from the network did not affect the global network topology but caused the loss of five important nodes (and among them the "plasma membrane" and "outer acrosome membrane" fusion). Thus, it was suggested that actin polymerization could be involved in the signaling coordination of different subcellular districts, and that its functional ablation could compromise spermatozoa ability to complete the capacitation (while the main signaling pathway remained unaffected). The experiments, carried out inhibiting the actin polymerization in capacitating boar spermatozoa by the administration of cytocalasin D (CD), demonstrated that the CD treatment inhibited spermatozoa ability to reach the full fertilizing ability, while, the examined signaling pathways (membrane acquisition of chlortetracicline pattern C, protein tyrosine phosphorylation, phospholipase C-γ1 relocalization, intracellular calcium response to zonae pellucidae) remained effective, thus, confirming the model-based hypothesis. Conclusions The model based-hypothesis was confirmed by the reported data obtained with the in vitro

  7. The Role of the Cytoskeleton in the Life Cycle of Viruses and Intracellular Bacteria: Tracks, Motors, and Polymerization Machines

    PubMed Central

    Bearer, E.L.; Satpute-Krishnan, P.

    2013-01-01

    Recent advances in microbiology implicate the cytoskeleton in the life cycle of some pathogens, such as intracellular bacteria, Rickettsia and viruses. The cellular cytoskeleton provides the basis for intracellular movements such as those that transport the pathogen to and from the cell surface to the nuclear region, or those that produce cortical protrusions that project the pathogen outwards from the cell surface towards an adjacent cell. Transport in both directions within the neuron is required for pathogens such as the herpesviruses to travel to and from the nucleus and perinuclear region where replication takes place. This trafficking is likely to depend on cellular motors moving on a combination of microtubule and actin filament tracks. Recently, Bearer et al. reconstituted retrograde transport of herpes simplex virus (HSV) in the giant axon of the squid. These studies identified the tegument proteins as the viral proteins most likely to recruit retrograde motors for the transport of HSV to the neuronal nucleus. Similar microtubule-based intracellular movements are part of the biological behavior of vaccinia, a poxvirus, and of adenovirus. Pathogen-induced surface projections and motility within the cortical cytoplasm also play a role in the life cycle of intracellular pathogens. Such motility is driven by pathogen-mediated actin polymerization. Virulence depends on this actin-based motility, since virulence is reduced in Listeria ActA mutants that lack the ability to recruit Arp2/3 and polymerize actin and in vaccinia virus mutants that cannot stimulate actin polymerization. Inhibition of intracellular movements provides a potential strategy to limit pathogenicity. The host cell motors and tracks, as well as the pathogen factors that interact with them, are potential targets for novel antimicrobial therapy. PMID:12462128

  8. Analysis of persistence during intracellular actin-based transport mediated by molecular motors

    NASA Astrophysics Data System (ADS)

    Pallavicini, C.; Despósito, M. A.; Levi, V.; Bruno, L.

    2010-09-01

    The displacement of particles or probes in the cell cytoplasm as a function of time is characterized by different anomalous diffusion regimes. The transport of large cargoes, such as organelles, vesicles or large proteins, involves the action of ATP-consuming molecular motors. We investigate the motion of pigment organelles driven by myosin-V motors in Xenopus laevis melanocytes using a high spatio-temporal resolution tracking technique. By analyzing the turning angles (phi) of the obtained 2D trajectories as a function of the time lag, we determine the critical time of the transition between anticorrelated and directed motion as the time when the turning angles begin to concentrate around phi = 0. We relate this transition with the crossover from subdiffusive to superdiffusive behavior observed in a previous work [5]. We also assayed the properties of the trajectories in cells with inhibited myosin activity, and we can compare the results in the presence and absence of active motors.

  9. Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: [Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries

    PubMed Central

    Hocking, Kyle M.; Baudenbacher, Franz J.; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm. PMID:23593369

  10. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries.

    PubMed

    Hocking, Kyle M; Baudenbacher, Franz J; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  11. Criticalities in crosslinked actin networks due to myosin activity

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  12. Recombinant alpha-actin for specific fluorescent labeling.

    PubMed

    Iwane, Atsuko H; Morimatsu, Masatoshi; Yanagida, Toshio

    2009-01-01

    Until recently, actin was thought to act merely as a passive track for its motility partner, myosin, during actomyosin interactions. Yet a recent report having observed dynamical conformational changes in labeled skeletal muscle alpha-actin suggests that actin has a more active role. Because the labeling technique was still immature, however, conclusions regarding the significance of the different conformations are difficult to make. Here, we describe the preparation of fully active alpha-actin obtained from a baculovirus expression system. We developed alpha-actin recombinants, of which subdomains 1 and 2 have specific sites for fluorescent probes. This specific labeling technique offers to significantly expand the information acquired from actin studies.

  13. Quantifying and localizing actin-free barbed ends in neutrophils.

    PubMed

    Glogauer, Michael

    2007-01-01

    We describe here a permeablization method that retains coupling between N-formylmethionyl-leucyl-phenylalanine (fMLP) receptor stimulation and barbed-end actin nucleation in neutrophils. Using fluorescently-tagged actin monomers, we are able to quantify and localize actin-free barbed ends generated downstream of chemoattractant receptors. Partial permeabilization of the neutrophils with the mild detergent n-octyl-beta-glucopyranoside maintains signaling from membrane receptor to the actin cytoskeleton while allowing for the introduction of inhibitors and activators of signal transduction pathways implicated in regulating actin cytoskeleton dynamics. This is a useful assay for studying signal transduction to the actin cytoskeleton in neutrophils.

  14. Selective chemical imaging of static actin in live cells.

    PubMed

    Milroy, Lech-Gustav; Rizzo, Stefano; Calderon, Abram; Ellinger, Bernhard; Erdmann, Silke; Mondry, Justine; Verveer, Peter; Bastiaens, Philippe; Waldmann, Herbert; Dehmelt, Leif; Arndt, Hans-Dieter

    2012-05-23

    We have characterized rationally designed and optimized analogues of the actin-stabilizing natural products jasplakinolide and chondramide C. Efficient actin staining was achieved in fixed permeabilized and non-permeabilized cells using different combinations of dye and linker length, thus highlighting the degree of molecular flexibility of the natural product scaffold. Investigations into synthetically accessible, non-toxic analogues have led to the characterization of a powerful cell-permeable probe to selectively image static, long-lived actin filaments against dynamic F-actin and monomeric G-actin populations in live cells, with negligible disruption of rapid actin dynamics.

  15. Structural Transitions of F-Actin:Espin Bundles

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin; Bartles, James; Wong, Gerard

    2006-03-01

    Espin is an actin bundling protein involved in the formation of the parallel bundles of filamentous actin in hair cell stereocilia. Mutations in espin are implicated in deafness phenotypes in mice and humans. We present measurements of the F-actin structures induced by wild type and by mutated espin obtained via small angle x-ray scattering and fluorescence microscopy. We found that wild type espin induced a paracrystalline hexagonal array of twisted F-actin, whereas the mutated espin only condensed the F-actin into a nematic-like phase. The possibility of coexisting nematic and bundled actin in mixtures containing both mutant and wild type espins was also investigated.

  16. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  17. Actin Out: Regulation of the Synaptic Cytoskeleton

    PubMed Central

    Spence, Erin F.; Soderling, Scott H.

    2015-01-01

    The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304

  18. Calcium Regulation of an Actin Spring

    PubMed Central

    Tam, Barney K.; Shin, Jennifer H.; Pfeiffer, Emily; Matsudaira, P.; Mahadevan, L.

    2009-01-01

    Abstract Calcium is essential for many biological processes involved in cellular motility. However, the pathway by which calcium influences motility, in processes such as muscle contraction and neuronal growth, is often indirect and complex. We establish a simple and direct mechanochemical link that shows how calcium quantitatively regulates the dynamics of a primitive motile system, the actin-based acrosomal bundle of horseshoe crab sperm. The extension of this bundle requires the continuous presence of external calcium. Furthermore, the extension rate increases with calcium concentration, but at a given concentration, we find that the volumetric rate of extension is constant. Our experiments and theory suggest that calcium sequentially binds to calmodulin molecules decorating the actin filaments. This binding leads to a collective wave of untwisting of the actin filaments that drives bundle extension. PMID:19686660

  19. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  20. In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

    PubMed Central

    Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche

    2009-01-01

    Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152

  1. Lamellipodin Is Important for Cell-to-Cell Spread and Actin-Based Motility in Listeria monocytogenes

    PubMed Central

    Wang, Jiahui; King, Jane E.; Goldrick, Marie; Lowe, Martin; Gertler, Frank B.

    2015-01-01

    Listeria monocytogenes is a foodborne pathogen capable of invading a broad range of cell types and replicating within the host cell cytoplasm. This paper describes the colocalization of host cell lamellipodin (Lpd) with intracellular L. monocytogenes detectable 6 h postinfection of epithelial cells. The association was mediated via interactions between both the peckstrin homology (PH) domain in Lpd and phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] on the bacterial surface and by interactions between the C-terminal EVH1 (Ena/VASP [vasodilator-stimulated phosphoprotein] homology domain 1) binding domains of Lpd and the host VASP (vasodilator-stimulated phosphoprotein) recruited to the bacterial cell surface by the listerial ActA protein. Depletion of Lpd by short interfering RNA (siRNA) resulted in reduced plaque size and number, indicating a role for Lpd in cell-to-cell spread. In contrast, overexpression of Lpd resulted in an increase in the number of L. monocytogenes-containing protrusions (listeriopods). Manipulation of the levels of Lpd within the cell also affected the intracellular velocity of L. monocytogenes, with a reduction in Lpd corresponding to an increase in intracellular velocity. These data, together with the observation that Lpd accumulated at the interface between the bacteria and the developing actin tail at the initiation of actin-based movement, indicate a possible role for Lpd in the actin-based movement and the cell-to-cell spread of L. monocytogenes. PMID:26169271

  2. Actin-binding proteins sensitively mediate F-actin bundle stiffness

    NASA Astrophysics Data System (ADS)

    Claessens, Mireille M. A. E.; Bathe, Mark; Frey, Erwin; Bausch, Andreas R.

    2006-09-01

    Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.

  3. Multiple crystal structures of actin dimers and their implications for interactions in the actin filament

    PubMed Central

    Sawaya, Michael R.; Kudryashov, D. S.; Pashkov, Inna; Adisetiyo, Helty; Reisler, Emil; Yeates, Todd O.

    2008-01-01

    The structure of actin in its monomeric form is known at high resolution, while the structure of filamentous F-actin is only understood at considerably lower resolution. Knowing pre­cisely how the monomers of actin fit together would lead to a deeper understanding of the dynamic behavior of the actin filament. Here, a series of crystal structures of actin dimers are reported which were prepared by cross-linking in either the longitudinal or the lateral direction in the filament state. Laterally cross-linked dimers, comprised of monomers belonging to different protofilaments, are found to adopt configurations in crystals that are not related to the native structure of filamentous actin. In contrast, multiple structures of longitudinal dimers consistently reveal the same interface between monomers within a single protofilament. The re­appearance of the same longitudinal interface in multiple crystal structures adds weight to arguments that the interface visualized is similar to that in actin filaments. Highly conserved atomic interactions involving residues 199–205 and 287–291 are highlighted. PMID:18391412

  4. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse

    PubMed Central

    Comrie, William A.; Babich, Alexander

    2015-01-01

    Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. PMID:25666810

  5. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells.

    PubMed

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B; Lienkamp, Soeren S; Walz, Gerd

    2015-12-07

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton.

  6. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  7. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells

    PubMed Central

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A.; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B.; Lienkamp, Soeren S.

    2015-01-01

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton. PMID:26644512

  8. Actin: its cumbersome pilgrimage through cellular compartments

    PubMed Central

    Schleicher, Michael

    2008-01-01

    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin. PMID:18438682

  9. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  10. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.

    PubMed

    Ramos, Susana; Manuel, Miguel; Tiago, Teresa; Duarte, Rui; Martins, Jorge; Gutiérrez-Merino, Carlos; Moura, José J G; Aureliano, Manuel

    2006-11-01

    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

  11. Expression of cardiac alpha-actin spares extraocular muscles in skeletal muscle alpha-actin diseases--quantification of striated alpha-actins by MRM-mass spectrometry.

    PubMed

    Ravenscroft, Gianina; Colley, Stephen M J; Walker, Kendall R; Clement, Sophie; Bringans, Scott; Lipscombe, Richard; Fabian, Victoria A; Laing, Nigel G; Nowak, Kristen J

    2008-12-01

    As with many skeletal muscle diseases, the extraocular muscles (EOMs) are spared in skeletal muscle alpha-actin diseases, with no ophthalmoplegia even in severely affected patients. We hypothesised that the extraocular muscles sparing in these patients was due to significant expression of cardiac alpha-actin, the alpha-actin isoform expressed in heart and foetal skeletal muscle. We have shown by immunochemistry, Western blotting and a novel MRM-mass spectrometry technique, comparable levels of cardiac alpha-actin in the extraocular muscles of human, pig and sheep to those in the heart. The sparing of extraocular muscles in skeletal muscle alpha-actin disease is thus probably due to greater levels of cardiac alpha-actin, than the negligible amounts in skeletal muscles, diluting out the effects of the mutant skeletal muscle alpha-actin.

  12. β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration

    PubMed Central

    Yu, Helen Wenshin; Chen, Yin-Quan; Huang, Chi-Ming; Liu, Ching-Yi; Chiou, Arthur; Wang, Yang-Kao; Tang, Ming-Jer; Kuo, Jean-Cheng

    2015-01-01

    Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β-PIX (PAK-interacting exchange factor-β). In H1299 cells, β-PIX's activity was found not to be down-regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β-PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β-PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β-PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity. PMID:25683605

  13. Advances on the fabrication process of Er3+/Yb3+:GeO2-PbO pedestal waveguides for integrated photonics

    NASA Astrophysics Data System (ADS)

    Bomfim, F. A.; da Silva, D. M.; Kassab, L. R. P.; de Assumpção, T. A. A.; Del Cacho, V. D.; Alayo, M. I.

    2015-11-01

    The present work reports the fabrication, passive and active characterization of Yb3+/Er3+ codoped GeO2-PbO pedestal waveguides. We show the advances obtained in pedestal fabrication by comparing waveguides obtained under different processes parameters. The thin films were deposited on previously oxidized silicon wafers in Ar plasma at 5 mTorr; pedestal waveguides, with 1-100 μm width range were defined by conventional lithography procedure, followed by reactive ion etching (RIE). A comparison between the results of propagation losses and internal gain is presented in order to show that the improvement of fabrication process contributed to enhance the performance of the pedestal waveguides. Reduction of about 50% was observed for the propagation losses at 632 and 1068 nm, whereas enhancement of approximately 50% was obtained for the internal gain at 1530 nm (4 and 6 dB/cm, for 70 μm waveguide width), under 980 nm excitation. The present results demonstrate the possibility of using Yb3+/Er3+ codoped GeO2-PbO as pedestal waveguide amplifiers.

  14. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    DOE PAGES

    Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thom