Science.gov

Sample records for intracellular chloride level

  1. Effects of ammonium and bicarbonate-CO2 on intracellular chloride levels in Aplysia neurons.

    PubMed Central

    Russell, J M

    1978-01-01

    The level of intracellular free chloride in Aplysia giant neurons can be made to decline by pretreatment with 50 mM NH4+ solution followed by washing with 10 mM HCO3-/0.4% CO2-containing fluids. This effect can be completely blocked by the anion flux inhibitor, 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulfonic acid (SITS). The net change of free chloride in the cell cannot be explained by changes in the electrochemical gradient of chloride. These results support the hypothesis that at least one mechanism for intracellular pH regulation involves a Cl-/HCO-3 exchange process. PMID:25096

  2. Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells

    PubMed Central

    Miraucourt, Loïs S; Tsui, Jennifer; Gobert, Delphine; Desjardins, Jean-François; Schohl, Anne; Sild, Mari; Spratt, Perry; Castonguay, Annie; De Koninck, Yves; Marsh-Armstrong, Nicholas; Wiseman, Paul W; Ruthazer, Edward S

    2016-01-01

    Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl− levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl− regulation. DOI: http://dx.doi.org/10.7554/eLife.15932.001 PMID:27501334

  3. Acute effects of mercuric chloride on intracellular GSH levels and mercury distribution in the fish Oreochromic aureus

    SciTech Connect

    Allen, P.; Min, S.Y.; Keong, W.M.

    1988-02-01

    In recent years there has been much interest in the effects of trace metals on intracellular levels of reduced glutathione (GSH). Most of the research has been performed on rats. As GSH is ubiquitous in living organisms it is of interest to establish a relationship between mercury intoxication and intracellular GSH levels in fish; especially as fish living in rivers and coastal areas are often expose to mercury as an aquatic pollutant. The role of GSH in fish trace metal toxicity has not been thoroughly investigated. The distribution of total glutathione (oxidized + reduced) in selected black sea bass organs seems to follow the established pattern for mammalian organs. Thus, it would appear that teleostian and mammalian glutathione metabolism may have many similarities. There are few reports concerning the effects of mercury during the first few hours of exposure. The aim of this investigation is to establish any changes in organ GSH and mercury levels following just 2 h exposure to mercuric chloride (HgCl/sub 2/).

  4. High Intracellular Chloride Slows the Decay of Glycinergic Currents

    PubMed Central

    Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco

    2009-01-01

    The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182

  5. Twenty years of fluorescence imaging of intracellular chloride

    PubMed Central

    Arosio, Daniele; Ratto, Gian Michele

    2014-01-01

    Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments. PMID:25221475

  6. Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation.

    PubMed

    Untiet, Verena; Kovermann, Peter; Gerkau, Niklas J; Gensch, Thomas; Rose, Christine R; Fahlke, Christoph

    2017-02-01

    Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl(-) ]int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na(+) -K(+) -2Cl(-) cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl(-) ]int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl(-) ]int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl(-) ]int . Other tested chloride channels or chloride transporters do not contribute to [Cl(-) ]int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K(+) -Cl(-) cotransporter change resting Bergmann glial [Cl(-) ]int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400.

  7. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor.

    PubMed

    Arosio, Daniele; Ricci, Fernanda; Marchetti, Laura; Gualdani, Roberta; Albertazzi, Lorenzo; Beltram, Fabio

    2010-07-01

    Chloride and protons perform important closely related roles in many cellular responses. Here we developed a ratiometric biosensor, ClopHensor, based on a highly chloride-sensitive Aequorea victoria GFP variant that is suited for the combined real-time optical detection of pH changes and chloride fluxes in live cells. We detected high chloride concentration in large dense-core exocytosis granules by targeting ClopHensor to these intracellular compartments.

  8. Intracellular chloride activities in canine tracheal epithelium. Direct evidence for sodium-coupled intracellular chloride accumulation in a chloride-secreting epithelium.

    PubMed Central

    Welsh, M J

    1983-01-01

    Canine tracheal epithelium secretes Cl via an electrogenic transport process that appears to apply to a wide variety of secretory epithelia. To examine the mechanisms involved, intracellular chloride activity, acCl, was measured with Cl-selective intracellular microelectrodes. The results indicate that when the rate of secretion was minimal acCl was 37 mM; with stimulation of secretion the intracellular voltage depolarized, but acCl was not significantly altered, at 39 mM. These findings indicate that: (a) Cl is accumulated across the basolateral membrane under nonsecreting and secreting conditions at an activity 3.8 and 2.4 times, respectively, that predicted for an equilibrium distribution; (b) Cl exit across the apical membrane may be passive with an electrochemical driving force of 22 mV; and (c) stimulation of secretion enhanced the rate of Cl entry across the basolateral membrane, since Cl transport increased without a change in acCl. In the absence of Na in the extracellular fluid, acCl approached the value expected for an equilibrium distribution. This finding suggests that "uphill" entry of Cl into the cell against its electrochemical gradient is dependent upon, and energized by, the entry of Na down its gradient. Submucosal bumetanide, a loop diuretic, also decreased the rate of Cl secretion and decreased acCl, indicating an inhibition of Cl entry. These findings indicate that Cl entry into the cell is directed against its electrochemical gradient and is mediated by a Na-coupled, bumetanide-inhibitable, transport process at the basolateral membrane and that Cl may exit passively down a favorable electrochemical gradient across the apical membrane. PMID:6853719

  9. A Sensitive Membrane-Targeted Biosensor for Monitoring Changes in Intracellular Chloride in Neuronal Processes

    PubMed Central

    Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.

    2012-01-01

    Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 =  41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078

  10. Modeling spontaneous activity in the developing spinal cord using activity-dependent variations of intracellular chloride.

    PubMed

    Marchetti, Cristina; Tabak, Joel; Chub, Nikolai; O'Donovan, Michael J; Rinzel, John

    2005-04-06

    We investigated how spontaneous activity is generated in developing, hyperexcitable networks. We focused our study on the embryonic chick spinal cord, a preparation that exhibits rhythmic discharge on multiple timescales: slow episodes (lasting minutes) and faster intraepisode cycling (approximately 1 Hz frequency). For this purpose, we developed a mean field model of a recurrent network with slow chloride dynamics and a fast depression variable. We showed that the model, in addition to providing a biophysical mechanism for the slow dynamics, was able to account for the experimentally observed activity. The model made predictions on how interval and duration of episodes are affected when changing chloride-mediated synaptic transmission or chloride flux across cell membrane. These predictions guided experiments, and the model results were compared with experimental data obtained with electrophysiological recordings. We found agreement when transmission was affected through changes in synaptic conductance and good qualitative agreement when chloride flux was varied through changes in external chloride concentration or in the rate of the Na+-K+-2Cl- cotransporter. Furthermore, the model made predictions about the time course of intracellular chloride concentration and chloride reversal potential and how these are affected by changes in synaptic conductance. Based on the comparison between modeling and experimental results, we propose that chloride dynamics could be an important mechanism in rhythm generation in the developing chick spinal cord.

  11. Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride

    PubMed Central

    Batti, Laura; Mukhtarov, Marat; Audero, Enrica; Ivanov, Anton; Paolicelli, Rosa Chiara; Zurborg, Sandra; Gross, Cornelius; Bregestovski, Piotr; Heppenstall, Paul A.

    2013-01-01

    Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo. PMID:23734096

  12. Chloride conductance and intracellular chloride accumulation in mouse Peyer's patch enterocytes.

    PubMed Central

    Cremaschi, D; James, P S; Rossetti, C; Smith, M W

    1990-01-01

    1. Measurements of membrane potential, Cl- conductance and intracellular Cl-, K+, Na+ and H+ activities have been carried out in the follicle-associated epithelium of the mouse Peyer's patch to characterize further the physiological properties of antigen-transporting M cells, enterocytes and intraepithelial lymphocytes. 2. Intraepithelial lymphocytes, identified in random impalements as a second negative jump in membrane potential (Vm), were found to have higher K+ and H+ activities, lower Na+ and Cl- activities and higher negative values for Vm than either of the other two epithelial cell types. Cl- activity in these cells was higher than that predicted from the Nernst equation. 3. M cells identified as having the first negative jump in Vm in impalements involving intraepithelial lymphocytes were unable to accumulate Cl-. They also had a lower Vm than that found in apparently fully differentiated enterocytes. This Vm was partly depolarized at a low Cl- concentration. 4. Apparently fully differentiated enterocytes could be further divided into two populations depending on whether the Vm could or could not be partly depolarized by a low Cl- concentration. The mean Vm and intracellular Cl- activity of Cl(-)-sensitive cells, measured in high Cl- medium, were less than values found for Cl(-)-insensitive enterocytes. Cl- was only accumulated by enterocytes showing no depolarization at low external Cl- concentration. 5. The Vm of mature villus enterocytes was the same as that determined for Cl(-)-insensitive follicle-associated enterocytes. Villus enterocyte Vm was not depolarized at a low Cl- concentration. 6. The present ability to distinguish two apparently large populations of follicle-associated enterocytes having M cell-like or villus enterocyte-like properties is discussed in relation to current theories describing how M cells might be formed. The presence of a Cl- conductance in M cell enterocytes, the inability to accumulate Cl- and the maintenance of a low Vm

  13. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle

    PubMed Central

    Bolton, T. B.; Vaughan-Jones, R. D.

    1977-01-01

    1. Ion-sensitive electrodes (made with a chloride-sensitive ion-exchange resin) were used to measure the internal chloride activity (aiCl) of frog sartorius fibres at 25° C. 2. The internal pH (pHi) of other sartorius fibres was measured with a recessed tip pH-sensitive electrode (made with pH-sensitive glass). 3. In normal bicarbonate-free solution (containing 2·5 mM potassium), the average chloride equilibrium potential, ECl (calculated from aiCl and the measured chloride activity of the external solution (aoCl) was 87·7 ± 1·7 mV (mean ± S.E.; n = 16) in fibres where the average membrane potential, Em, was 88·3 ± 1·5 mV (mean ± S.E.; n = 16). In experiments where aiCl was varied between about 1 and 10 mM (which corresponds to values of Em between about -105 and -50 mV) ECl was within 1-3 mV of Em at equilibrium. These measurements of aiCl were obtained from the potential difference between the chloride-sensitive electrode and an intracellular indifferent micro-electrode filled with potassium chloride. If a potassium sulphate-filled indifferent micro-electrode was used, then values of aiCl below about 5 mM were erroneously high, probably due to interference from other sarcoplasmic ions at the indifferent electrode. 4. In solutions containing 15 mM bicarbonate and gassed with 5% CO2, pHi was 6·9, corresponding to an internal bicarbonate concentration of 7·6 mM. ECl measured in this solution was some 4 mV positive to Em. Most of the difference between ECl and Em could be ascribed to interference by sarcoplasmic bicarbonate on the basis of selectivity measurements of chloride against bicarbonate made on the ion-exchange resin in the relevant range of aCl. 5. If bicarbonate/CO2 in the external solution was replaced by HEPES/pure O2 at constant pH, then pHi rose from 6·88 ± 0·02 (mean ± S.E.) to 7·05 ± 0·02. A change in external pH of 1 unit caused pHi to change by about 0·02 unit and the intracellular buffering power was calculated to be about 35

  14. Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride.

    PubMed Central

    Ebihara, S; Shirato, K; Harata, N; Akaike, N

    1995-01-01

    1. By the development of a new perforated patch method using gramicidin, the effects of GABA on neurones dissociated from the rat substantia nigra pars reticulata (SNR) were examined without disturbing the intracellular chloride concentration. 2. Using the patch pipette solution containing gramicidin (100 micrograms ml-1), the access resistance dropped to less than 20 M omega within 40 min after making the gigaohm seal. 3. Under current-clamp conditions, GABA caused a hyperpolarization accompanied by a blockade of spontaneous firing. Under voltage clamp at a holding potential (Vh) of -50 mV, GABA evoked an outward current by way of bicuculline- and picrotoxin-sensitive GABAA receptors. 4. A 10-fold change of extracellular chloride concentration resulted in a 58 mV shift of the reversal potential of GABA-induced outward current (EGABA), indicating that the membrane behaves like a chloride electrode in the presence of GABA. 5. The intracellular chloride activities (aCli), calculated with the Nernst equation using both extracellular chloride activity and EGABA values, ranged from 2.8 to 19.7 mM with a mean value of 9.5 mM. The aCli was not affected either by different pipette solutions or by different holding potentials more hyperpolarized than -40 mV. 6. In the recording from SNR neurones in brain slice using the gramicidin-perforated patch-clamp technique, the inhibitory and excitatory postsynaptic currents were recorded in different current directions and the former was blocked by bicuculline. 7. In conclusion, the gramicidin-perforated patch method will disclose previously unknown aspects of biological responses involving Cl-. PMID:7541464

  15. A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium

    PubMed Central

    Di Angelantonio, S; Murana, E; Cocco, S; Scala, F; Bertollini, C; Molinari, M G; Lauro, C; Bregestovski, P; Limatola, C; Ragozzino, D

    2014-01-01

    Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc–mediated disruption of neuronal chloride homeostasis. PMID:25356870

  16. A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium.

    PubMed

    Di Angelantonio, S; Murana, E; Cocco, S; Scala, F; Bertollini, C; Molinari, M G; Lauro, C; Bregestovski, P; Limatola, C; Ragozzino, D

    2014-10-30

    Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc-mediated disruption of neuronal chloride homeostasis.

  17. Fluorescence imaging of changes in intracellular chloride in living brain slices.

    PubMed

    Inglefield, J R; Schwartz-Bloom, R D

    1999-06-01

    In brain slice preparations, chloride movements across the cell membrane of living cells are measured traditionally with 36Cl- tracer methods, Cl--selective microelectrodes, or whole-cell recording using patch clamp analysis. We have developed an alternative, noninvasive technique that uses the fluorescent Cl- ion indicator, 6-methoxy-N-ethylquinolinium iodide (MEQ), to study changes in intracellular Cl- by epifluorescence or UV laser scanning confocal microscopy. In brain slices taken from rodents younger than 22 days of age, excellent cellular loading is achieved with the membrane-permeable form of the dye, dihydro-MEQ. Subsequent intracellular oxidation of dihydro-MEQ to the Cl--sensitive MEQ traps the polar form of the dye inside the neurons. Because MEQ is a single-excitation and single-emission dye, changes in intracellular Cl- concentrations can be calibrated from the Stern-Volmer relationship, determined in separate experiments. Using MEQ as the fluorescent indicator for Cl-, Cl- flux through the gamma-aminobutyric acid (GABA)-gated Cl- channel (GABAA receptor) can be studied by dynamic video imaging and either nonconfocal (epifluorescence) or confocal microscopy in the acute brain slice preparation. Increases in intracellular Cl- quench MEQ fluorescence, thereby reflecting GABAA receptor activation. GABAA receptor functional activity can be measured in discrete cells located in neuroanatomically defined populations within areas such as the neocortex and hippocampus. Changes in intracellular Cl- can also be studied under various conditions such as oxygen/glucose deprivation ("in vitro ischemia") and excitotoxicity. In such cases, changes in cell volume may also occur due to the dependence of cell volume regulation on Na+, K+, and Cl- flux. Because changes in cell volume can affect optical fluorescence measurements, we assess cell volume changes in the brain slice using the fluorescent indicator calcein-AM. Determination of changes in MEQ fluorescence versus

  18. Umami changes intracellular Ca2+ levels using intracellular and extracellular sources in mouse taste receptor cells.

    PubMed

    Narukawa, Masataka; Mori, Tomohiko; Hayashi, Yukako

    2006-11-01

    Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.

  19. Control of volume-sensitive chloride channel inactivation by the coupled action of intracellular chloride and extracellular protons.

    PubMed

    Hernández-Carballo, Carmen Y; De Santiago-Castillo, José A; Rosales-Saavedra, Teresa; Pérez-Cornejo, Patricia; Arreola, Jorge

    2010-08-01

    The volume-sensitive chloride current (I(ClVol)) exhibit a time-dependent decay presumably due to channel inactivation. In this work, we studied the effects of chloride ions (Cl(-)) and H(+) ions on I(ClVol) decay recorded in HEK-293 and HL-60 cells using the whole-cell patch clamp technique. Under control conditions ([Cl(-)](e) = [Cl(-)](i) = 140 mM and pH(i) = pH(e) = 7.3), I(ClVol) in HEK cells shows a large decay at positive voltages but in HL-60 cells I(ClVol) remained constant independently of time. In HEK-293 cells, simultaneously raising the [Cl(-)](e) and [Cl(-)](i) from 25 to 140 mM (with pH(e) = pH(i) = 7.3) increased the fraction of inactivated channels (FIC). This effect was reproduced by elevating [Cl(-)](i) while keeping the [Cl(-)](e) constant. Furthermore, a decrease in pH(e) from 7.3 to 5.5 accelerated current decay and increased FIC when [Cl(-)] was 140 mM but not 25 mM. In HL-60 cells, a slight I(ClVol) decay was seen when the pH(e) was reduced from 7.3 to 5.5. Our data show that inactivation of I(ClVol) can be controlled by changing either the Cl(-) or H(+) concentration or both. Based on our results and previously published data, we have built a model that explains VRAC inactivation. In the model the H(+) binding site is located outside the electrical field near the extracellular entry whilst the Cl(-) binding site is intracellular. The model depicts inactivation as a pore constriction that happens by simultaneous binding of H(+) and Cl(-) ions to the channel followed by a voltage-dependent conformational change that ultimately causes inactivation.

  20. Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity.

    PubMed

    Al Khamici, Heba; Brown, Louise J; Hossain, Khondker R; Hudson, Amanda L; Sinclair-Burton, Alxcia A; Ng, Jane Phui Mun; Daniel, Elizabeth L; Hare, Joanna E; Cornell, Bruce A; Curmi, Paul M G; Davey, Mary W; Valenzuela, Stella M

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function.

  1. S-Nitrosylation Regulates Nuclear Translocation of Chloride Intracellular Channel Protein CLIC4*

    PubMed Central

    Malik, Mariam; Shukla, Anjali; Amin, Palak; Niedelman, Wendy; Lee, Jessica; Jividen, Kasey; Phang, Juanita M.; Ding, Jinhui; Suh, Kwang S.; Curmi, Paul M. G.; Yuspa, Stuart H.

    2010-01-01

    Nuclear translocation of chloride intracellular channel protein CLIC4 is essential for its role in Ca2+-induced differentiation, stress-induced apoptosis, and modulating TGF-β signaling in mouse epidermal keratinocytes. However, post-translational modifications on CLIC4 that govern nuclear translocation and thus these activities remain to be elucidated. The structure of CLIC4 is dependent on the redox environment, in vitro, and translocation may depend on reactive oxygen and nitrogen species in the cell. Here we show that NO directly induces nuclear translocation of CLIC4 that is independent of the NO-cGMP pathway. Indeed, CLIC4 is directly modified by NO through S-nitrosylation of a cysteine residue, as measured by the biotin switch assay. NO enhances association of CLIC4 with the nuclear import proteins importin α and Ran. This is likely a result of the conformational change induced by S-nitrosylated CLIC4 that leads to unfolding of the protein, as exhibited by CD spectra analysis and trypsinolysis of the modified protein. Cysteine mutants of CLIC4 exhibit altered nitrosylation, nuclear residence, and stability, compared with the wild type protein likely as a consequence of altered tertiary structure. Moreover, tumor necrosis factor α-induced nuclear translocation of CLIC4 is dependent on nitric-oxide synthase activity. Inhibition of nitric-oxide synthase activity inhibits tumor necrosis factor α-induced nitrosylation and association with importin α and Ran and ablates CLIC4 nuclear translocation. These results suggest that S-nitrosylation governs CLIC4 structure, its association with protein partners, and thus its intracellular distribution. PMID:20504765

  2. Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes.

    PubMed Central

    Alvarez-Leefmans, F J; Gamiño, S M; Giraldez, F; Noguerón, I

    1988-01-01

    1. Intracellular Cl- activity (aiCl) and membrane potential (Em) were measured in frog dorsal root ganglion neurones (DRG neurones) using double-barrelled Cl- -selective microelectrodes. In standard Ringer solution buffered with HEPES (5 mM), equilibrated with air or 100% O2, the resting membrane potential was -57.7 +/- 1.0 mV and aiCl was 23.6 +/- 1.0 mM (n = 53). The value of aiCl was 2.6 times the activity expected for an equilibrium distribution and the difference between Em and ECl was 25 mV. 2. Removal of external Cl- led to a reversible fall in aiCl. Initial rates of decay and recovery of aiCl were 4.1 and 3.3 mM min-1, respectively. During the recovery of aiCl following return to standard Ringer solution, most of the movement of Cl- occurred against the driving force for a passive distribution. Changes in aiCl were not associated with changes in Em. Chloride fluxes estimated from initial rates of change in aiCl when external Cl- was removed were too high to be accounted for by electrodiffusion. 3. The intracellular accumulation of Cl- was dependent on the extracellular Cl- activity (aoCl). The relationship between aiCl and aoCl had a sigmoidal shape with a half-maximal activation of about 50 mM-external Cl-. 4. The steady-state aiCl depended on the simultaneous presence of extracellular Na+ and K+. Similarly, the active reaccumulation of Cl- after intracellular Cl- depletion was abolished in the absence of either Na+ or K+ in the bathing solution. 5. The reaccumulation of Cl- was inhibited by furosemide (0.5-1 x 10(-3) M) or bumetanide (10(-5) M). The decrease in aiCl observed in Cl- -free solutions was also inhibited by bumetanide. 6. Cell volume changes were calculated from the observed changes in aiCl. Cells were estimated to shrink in Cl- -free solutions to about 75% their initial volume, at an initial rate of 6% min-1. 7. The present results provide direct evidence for the active accumulation of Cl- in DRG neurones. The mechanism of Cl- transport is

  3. Identification and Characterization of a Bacterial Homolog of Chloride Intracellular Channel (CLIC) Protein.

    PubMed

    Gururaja Rao, Shubha; Ponnalagu, Devasena; Sukur, Sowmya; Singh, Harkewal; Sanghvi, Shridhar; Mei, Yixiao; Jin, Ding J; Singh, Harpreet

    2017-08-17

    Chloride intracellular channels (CLIC) are non-classical ion channels lacking a signal sequence for membrane targeting. In eukaryotes, they are implicated in cell volume regulation, acidification, and cell cycle. CLICs resemble the omega class of Glutathione S-transferases (GST), yet differ from them in their ability to form ion channels. They are ubiquitously found in eukaryotes but no prokaryotic homolog has been characterized. We found that indanyloxyacetic acid-94 (IAA-94), a blocker of CLICs, delays the growth of Escherichia coli. In silico analysis showed that the E. coli stringent starvation protein A (SspA) shares sequence and structural homology with CLICs. Similar to CLICs, SspA lacks a signal sequence but contains an omega GST fold. Electrophysiological analysis revealed that SspA auto-inserts into lipid bilayers and forms IAA-94-sensitive ion channels. Substituting the ubiquitously conserved residue leucine 29 to alanine in the pore-forming region increased its single-channel conductance. SspA is essential for cell survival during acid-induced stress, and we found that acidic pH increases the open probability of SspA. Further, IAA-94 delayed the growth of wild-type but not sspA null mutant E. coli. Our results for the first time show that CLIC-like proteins exist in bacteria in the form of SspA, forming functional ion channels.

  4. Chloride intracellular channel 1 regulates the antineoplastic effects of metformin in gallbladder cancer cells.

    PubMed

    Liu, Yongchen; Wang, Zheng; Li, Maolan; Ye, Yuanyuan; Xu, Yi; Zhang, Yichi; Yuan, Ruiyan; Jin, Yunpeng; Hao, Yajuan; Jiang, Lin; Hu, Yunping; Chen, Shili; Liu, Fatao; Zhang, Yijian; Wu, Wenguang; Liu, Yingbin

    2017-06-01

    Metformin is the most commonly used drug for type 2 diabetes and has potential benefit in treating and preventing cancer. Previous studies indicated that membrane proteins can affect the antineoplastic effects of metformin and may be crucial in the field of cancer research. However, the antineoplastic effects of metformin and its mechanism in gallbladder cancer (GBC) remain largely unknown. In this study, the effects of metformin on GBC cell proliferation and viability were evaluated using the Cell Counting Kit-8 (CCK-8) assay and an apoptosis assay. Western blotting was performed to investigate related signaling pathways. Of note, inhibition, knockdown and upregulation of the membrane protein Chloride intracellular channel 1 (CLIC1) can affect GBC resistance in the presence of metformin. Our data demonstrated that metformin apparently inhibits the proliferation and viability of GBC cells. Metformin promoted cell apoptosis and increased the number of early apoptotic cells. We found that metformin can exert growth-suppressive effects on these cell lines via inhibition of p-Akt activity and the Bcl-2 family. Notably, either dysfunction or downregulation of CLIC1 can partially decrease the antineoplastic effects of metformin while upregulation of CLIC1 can increase drug sensitivity. Our findings provide experimental evidence for using metformin as an antitumor treatment for gallbladder carcinoma. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Effect of external sodium on intracellular chloride activity in the surface cells of frog gastric mucosa. Microelectrode studies.

    PubMed

    Curci, S; Schettino, T

    1984-06-01

    The intracellular chloride activity and its dependence on ionic substitutions in the bathing media was studied in individual surface cells of resting gastric mucosa using conventional and Cl- selective microelectrodes. When the tissue was perfused with control NaCl-Ringer the cell membrane p.d.'s, cell-lumen (psi cm) and cell-serosa (psi cs) were -40.9 +/- 0.6 mV and -66.8 +/- 0.5 mV (n = 175) respectively and the p.d. measured by the Cl- selective microelectrodes across the serosal membrane (psi csCl-) averaged -32.4 +/- 0.7 mV (n = 138). From these values an intracellular Cl- activity (acCl-) of 15.3 mmol/l can be estimated. The data indicate that chloride ion is distributed close to equilibrium at the luminal membrane while it is accumulated by an energy requiring step at the serosal membrane. Reduction (2 mmol/l) or absence of chloride from the luminal bath did not result in any detectable change of acCl-; on the other hand, after removal of Cl- from the serosal bath the intracellular Cl- activity fell to 7.1 mmol/l. When the tissue was exposed to serosal Na+-free Ringer (Na+ replaced by choline or TMA), although the acCl- remained unaffected, a marked reduction of the electrochemical gradient for Cl- at the serosal membrane was observed. These data indicate that: chloride is accumulated in the surface cells against its electrochemical potential difference at the serosal membrane; the luminal membrane has a negligible conductance to Cl-, while the serosal membrane represents a conductive pathway to chloride; the uphill entry of chloride at the serosal membrane seems to be, at least partially, Na+-dependent.

  6. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W

    2013-08-26

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. This manuscript addresses the importance of distinguishing between protein homologs and isoforms when identifying and validating cancer biomarkers in plasma or serum. Specifically, it describes the use of targeted in-depth LC-MS/MS analysis to determine the members of two protein families, chloride intracellular channel (CLIC) and tropomyosin (TPM) proteins that are detectable in sera of ovarian cancer patients. It then establishes a multiplexed isoform- and homology-specific MRM assay to quantify all observed gene products in these two protein

  7. Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo.

    PubMed

    Sulis Sato, Sebastian; Artoni, Pietro; Landi, Silvia; Cozzolino, Olga; Parra, Riccardo; Pracucci, Enrico; Trovato, Francesco; Szczurkowska, Joanna; Luin, Stefano; Arosio, Daniele; Beltram, Fabio; Cancedda, Laura; Kaila, Kai; Ratto, Gian Michele

    2017-09-26

    Intracellular chloride ([Cl(-)]i) and pH (pHi) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl(-)]i and pHi, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl(-) and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl(-)]i and pHi at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl(-)]i and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pHi and [Cl(-)]i in response to hypercapnia and seizure activity.

  8. Chloride intracellular channel 4 is required for maturation of the cerebral collateral circulation.

    PubMed

    Lucitti, Jennifer L; Tarte, Natalie J; Faber, James E

    2015-10-01

    The number and diameter of native collaterals in tissues of healthy mice vary widely, resulting in large differences in tissue injury in occlusive diseases. Recent studies suggest similar variation may exist in humans. Collateral variation in mice is determined by genetic background-dependent differences in embryonic collateral formation, by variation in maturation of the nascent collaterals, and by environmental factors such as aging that cause collateral rarefaction in the adult. Recently, formation of the collateral circulation in the brain was found to involve a unique VEGF-A-dependent "arteriolar" angiogenic sprouting-like mechanism. Elsewhere, chloride intracellular protein 4 (CLIC4) was implicated but not investigated directly, prompting the present study. Deletion of Clic4 had no effect on embryonic collaterogenesis. However, during collateral maturation from embryonic day 18.5 to postnatal day 7, reduced mural cell investment was observed and excessive pruning of collaterals occurred. Growth in collateral diameter was reduced. This resulted in 50% fewer collaterals of smaller diameter in the adult and thus larger infarct volume after middle cerebral artery occlusion. During collateral maturation, CLIC4 deficiency resulted in reduced expression of Vegfr2, Vegfr1, Vegfc, and mural cell markers, but not notch-pathway genes. Overexpression of VEGF-A in Clic4(-/-) mice had no effect on collaterogenesis, but rescued the above defects in collateral maturation by preventing mural cell loss and collateral pruning, thus restoring collateral number and diameter and reducing stroke severity in the adult. CLIC4 is not required for collaterogenesis but is essential for perinatal maturation of nascent collaterals through a mechanism that supports VEGF signaling.

  9. Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain.

    PubMed

    Chalothorn, Dan; Zhang, Hua; Smith, Jennifer E; Edwards, John C; Faber, James E

    2009-07-02

    The capacity of the collateral circulation to lessen injury in occlusive vascular disease depends on the density and caliber of native (preexisting) collaterals, as well as their ability to outwardly remodel in ischemia. Native collateral conductance varies widely among healthy individuals, yet little is known about what specifies collateral formation. Chloride intracellular channel (CLIC)4 protein is required for endothelial cell hollowing, a process necessary for vessel formation during embryogenesis and ischemia. Whether CLIC4 has other physiological roles in vascular biology is uncertain. We studied collateral formation and remodeling in mice deficient in CLIC1 and CLIC4. Vascular responses to femoral artery ligation were similar in Clic1(-/-) and wild-type mice. In contrast, immediately after ligation perfusion dropped more in Clic4(-/-) than wild-type mice, suggesting fewer preexisting collaterals, a finding confirmed by angiography, greater ischemia, and worse recovery of perfusion; however, collateral remodeling was unaffected. Likewise, native cerebral collateral density in Clic4(-/-) (but not Clic1(-/-)) mice was reduced, resulting in severe infarctions. This was associated with impaired perinatal formation and stabilization of nascent collaterals. Clic4 hemizygous mice had intermediate deficits in the above parameters, suggesting a gene-dose effect. Ischemia augmented CLIC1 and CLIC4 expression similarly in wild-type mice. However, CLIC1 increased 3-fold more in Clic4(-/-) mice, suggesting compensation. Despite greater ischemia in Clic4(-/-) mice, hypoxia-inducible factor-1alpha, vascular endothelial growth factor (VEGF) and angiopoietin-2 increased less compared to wild-type, suggesting CLIC4 exerts influences upstream of hypoxia-inducible factor-1alpha-VEGF signaling. Hence, CLIC4 represents the second gene that, along with VEGF shown by us previously, specifies native collateral formation.

  10. Chloride intracellular channel 4 is required for maturation of the cerebral collateral circulation

    PubMed Central

    Lucitti, Jennifer L.; Tarte, Natalie J.

    2015-01-01

    The number and diameter of native collaterals in tissues of healthy mice vary widely, resulting in large differences in tissue injury in occlusive diseases. Recent studies suggest similar variation may exist in humans. Collateral variation in mice is determined by genetic background-dependent differences in embryonic collateral formation, by variation in maturation of the nascent collaterals, and by environmental factors such as aging that cause collateral rarefaction in the adult. Recently, formation of the collateral circulation in the brain was found to involve a unique VEGF-A-dependent “arteriolar” angiogenic sprouting-like mechanism. Elsewhere, chloride intracellular protein 4 (CLIC4) was implicated but not investigated directly, prompting the present study. Deletion of Clic4 had no effect on embryonic collaterogenesis. However, during collateral maturation from embryonic day 18.5 to postnatal day 7, reduced mural cell investment was observed and excessive pruning of collaterals occurred. Growth in collateral diameter was reduced. This resulted in 50% fewer collaterals of smaller diameter in the adult and thus larger infarct volume after middle cerebral artery occlusion. During collateral maturation, CLIC4 deficiency resulted in reduced expression of Vegfr2, Vegfr1, Vegfc, and mural cell markers, but not notch-pathway genes. Overexpression of VEGF-A in Clic4−/− mice had no effect on collaterogenesis, but rescued the above defects in collateral maturation by preventing mural cell loss and collateral pruning, thus restoring collateral number and diameter and reducing stroke severity in the adult. CLIC4 is not required for collaterogenesis but is essential for perinatal maturation of nascent collaterals through a mechanism that supports VEGF signaling. PMID:26276819

  11. Intracellular GTP level determines cell's fate toward differentiation and apoptosis

    SciTech Connect

    Meshkini, Azadeh; Yazdanparast, Razieh Nouri, Kazem

    2011-06-15

    Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

  12. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets.

    PubMed

    Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele

    2015-10-01

    In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers."

  13. Intracellular calcium levels as screening tool for nanoparticle toxicity

    PubMed Central

    Meindl, Claudia; Kueznik, Tatjana; Bösch, Martina; Roblegg, Eva; Fröhlich, Eleonore

    2015-01-01

    The use of engineered nano-sized materials led to revolutionary developments in many industrial applications and in the medical field. These materials, however, also may cause cytotoxicity. In addition to size, surface properties and shape were identified as relevant parameters for cell damage. Cell damage may occur as disruption of membrane integrity, induction of apoptosis and by organelle damage. Generation of oxidative stress may serve as an indicator for cytotoxicity. Effects occurring upon short contact of particles with cells, for instance in the systemic blood circulation, could be identified according to increases of intracellular [Ca2+] levels, which are caused by variety of toxic stimuli. Negatively charged, neutral and positively charged polystyrene particles of different sizes were used to study the role of size and surface properties on viability, membrane disruption, apoptosis, lysosome function, intracellular [Ca2+] levels and generation of oxidative stress. Silica particles served to test this hypothesis. Twenty nm polystyrene particles as well as 12 nm and 40 nm silica particles caused membrane damage and apoptosis with no preference of the surface charge. Only 20 nm plain and amine functionalized polystyrene particles cause oxidative stress and only the plain particles lysosomal damage. A potential role of surface charge was identified for 200 nm polystyrene particles, where only the amidine particles caused lysosomal damage. Increases in intracellular [Ca2+] levels and cytotoxicity after 24 h was often linked but determination of intracellular [Ca2+] levels could serve to characterize further the type of membrane damage. © 2015 The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Nano-sized materials may cause cytotoxicity. Negatively charged, neutral and positively charged polystyrene particles of different sizes and silica nanoparticles were used to study the role of size and surface properties on viability, membrane

  14. Trigeminal Ganglion Neurons of Mice Show Intracellular Chloride Accumulation and Chloride-Dependent Amplification of Capsaicin-Induced Responses

    PubMed Central

    Schöbel, Nicole; Radtke, Debbie; Lübbert, Matthias; Gisselmann, Günter; Lehmann, Ramona; Cichy, Annika; Schreiner, Benjamin S. P.; Altmüller, Janine; Spector, Alan C.; Spehr, Jennifer; Hatt, Hanns; Wetzel, Christian H.

    2012-01-01

    Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs. PMID:23144843

  15. A flow cytometric method for measurement of intracellular chloride concentration in lymphocytes using the halide-specific probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ).

    PubMed

    Pilas, B; Durack, G

    1997-08-01

    A flow cytometry method using the halide-specific fluorescent dye, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ), has been developed to measure intracellular chloride concentration in single cells. Collisions with chloride quench the fluorescence of SPQ, making it possible to relate the measured fluorescence intensity to chloride concentration with a Stern-Volmer equation. To demonstrate the method, porcine lymphocytes were loaded in vitro, using a hypotonic method, with 5 mM SPQ. Fluorescence excitation was provided by a UV laser and the fluorescence emission intensity at 485 nm was recorded. Calibration was performed by using 7 microM nigericin (a K/H antiporter) and 10 microM tributyltin (a Cl/OH antiporter) to equilibrate the concentrations of intracellular and extracellular chloride. Calibration measurements were made for chloride concentrations between 0 mM and 140 mM. The calibration produced a Stern-Volmer quenching constant of 16.2 M(-1) which was used to relate measured cell fluorescence to intracellular chloride concentration. The intracellular chloride concentration for fresh porcine lymphocytes was determined to be 56.2 +/- 3.3 mM. Stable loading of cells with 5 mM SPQ was accomplished in 15 minutes, leakage of SPQ from the cells was minimal, and over 95% of the cells remained viable after loading.

  16. ClC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance.

    PubMed

    Guzman, Raul E; Grieschat, Matthias; Fahlke, Christoph; Alekov, Alexi K

    2013-06-19

    The chloride/proton exchangers ClC-3, ClC-4 and ClC-5 are localized in distinct intracellular compartments and regulate their luminal acidity. We used electrophysiology combined with fluorescence pH measurements to compare the functions of these three transporters. Since the expression of WT ClC-3 in the surface membrane was negligible, we removed an N-terminal retention signal for standard electrophysiological characterization of this isoform. This construct (ClC-313-19A) mediated outwardly rectifying coupled Cl(-)/H(+) antiport resembling the properties of ClC-4 and ClC-5. In addition, ClC-3 exhibited large electric capacitance, exceeding the nonlinear capacitances of ClC-4 and ClC-5. Mutations of the proton glutamate, a conserved residue at the internal side of the protein, decreased ion transport but increased nonlinear capacitances in all three isoforms. This suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner. However, the voltage dependence and the amplitudes of these capacitances differed strongly between the investigated isoforms. Our results indicate that ClC-3 is specialized in mainly performing incomplete capacitive nontransporting cycles, that ClC-4 is an effective coupled transporter, and that ClC-5 displays an intermediate phenotype. Mathematical modeling showed that such functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments.

  17. Intracellular Assessment of ATP Levels in Caenorhabditis elegans

    PubMed Central

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    Eukaryotic cells heavily depend on adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS) within mitochondria. ATP is the major energy currency molecule, which fuels cell to carry out numerous processes, including growth, differentiation, transportation and cell death among others (Khakh and Burnstock, 2009). Therefore, ATP levels can serve as a metabolic gauge for cellular homeostasis and survival (Artal-Sanz and Tavernarakis, 2009; Gomes et al., 2011; Palikaras et al., 2015). In this protocol, we describe a method for the determination of intracellular ATP levels using a bioluminescence approach in the nematode Caenorhabditis elegans. PMID:28194429

  18. Intracellular chloride ions regulate the time-course of GABA-mediated inhibitory synaptic transmission

    PubMed Central

    Houston, Catriona M.; Bright, Damian P.; Sivilotti, Lucia G; Beato, Marco; Smart, Trevor G.

    2009-01-01

    The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time-course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl− concentrations than with symmetrical Cl− solutions. This effect of intracellular Cl− is due to a direct modulation of the GABAA receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, compared to that previously measured using high internal Cl−. This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl− concentrations can be altered. PMID:19692617

  19. Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission.

    PubMed

    Houston, Catriona M; Bright, Damian P; Sivilotti, Lucia G; Beato, Marco; Smart, Trevor G

    2009-08-19

    The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl(-) concentrations than with symmetrical Cl(-) solutions. This effect of intracellular Cl(-) is due to a direct modulation of the GABA(A) receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, than that previously measured using high internal Cl(-). This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl(-) concentrations can be altered.

  20. Regulation of the Membrane Insertion and Conductance Activity of the Metamorphic Chloride Intracellular Channel Protein CLIC1 by Cholesterol

    PubMed Central

    Valenzuela, Stella M.; Alkhamici, Heba; Brown, Louise J.; Almond, Oscar C.; Goodchild, Sophia C.; Carne, Sonia; Curmi, Paul M. G.; Holt, Stephen A.; Cornell, Bruce A.

    2013-01-01

    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer. PMID:23457643

  1. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    PubMed

    Valenzuela, Stella M; Alkhamici, Heba; Brown, Louise J; Almond, Oscar C; Goodchild, Sophia C; Carne, Sonia; Curmi, Paul M G; Holt, Stephen A; Cornell, Bruce A

    2013-01-01

    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  2. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels.

    PubMed

    Muro-Pastor, M I; Reyes, J C; Florencio, F J

    2001-10-12

    The regulatory circuits that control nitrogen metabolism are relatively well known in several bacterial model groups. However, much less is understood about how the nitrogen status of the cell is perceived in vivo. In cyanobacteria, the transcription factor NtcA is required for regulation (activation or repression) of an extensive number of genes involved in nitrogen metabolism. In contrast, how NtcA activity is regulated is largely unknown. Assimilation of ammonium by most microorganisms occurs through the sequential action of two enzymes: glutamine synthetase (GS) and glutamate synthase. Interestingly, regulation of the expression of NtcA-dependent genes in the cyanobacterium Synechocystis sp. PCC 6803 is altered in mutants with modified levels of GS activity. Two types of mutants were analyzed: glnA null mutants that lack GS type I and gif mutants unable to inactivate GS in the presence of ammonium. Changes in the intracellular pools of 19 different amino acids and the keto acid 2-oxoglutarate were recorded in wild-type and mutant strains under different nitrogen conditions. Our data strongly indicate that the nitrogen status in cyanobacteria is perceived as changes in the intracellular 2-oxoglutarate pool.

  3. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    PubMed

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.

  4. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  5. Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells.

    PubMed

    Heimlich, Gerd; Cidlowski, John A

    2006-01-27

    Apoptosis is a genetic program for the removal of unwanted cells from an organism, which is distinct from necrosis by its characteristic volume loss or apoptotic volume decrease. This cell shrinkage is the result of ion redistribution that is crucial for both the activation and execution of apoptosis. Here we report that UV-C but not Fas ligand treatment results in a significant decrease in intracellular chloride that can be abolished by modulation of chloride flux using either the chloride channel inhibitor SITS or medium with a reduced chloride concentration. Accordingly, downstream events are diminished during UV-C-induced apoptosis following chloride flux modulation, whereas Fas ligand-induced apoptotic characteristics are not affected. Moreover, the activation of the mitogen-activated protein kinase signal transduction pathway early in the apoptotic signaling cascade was affected by chloride flux in Jurkat T-cells. Thus, an alteration of intracellular chloride plays an important role in the activation of signaling molecules upstream of the mitochondria, specifically impairing the intrinsic but not extrinsic apoptotic pathway.

  6. Control of intracellular heme levels: Heme transporters and Heme oxygenases

    PubMed Central

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. PMID:21238504

  7. A new solid-state microelectrode for measuring intracellular chloride activities.

    PubMed

    Armstrong, W M; Wojtkowski, W; Bixenman, W R

    1977-02-14

    Solid-state microelectrodes from measuring intracellular Cl activity (alphaiCl) were made by sealing the tips of tapered glass capillaries (tip diameter 0.3 mum), coating them under vacuum with a 0.2-0.3 mum thick layer of spectrscopic grade silver, and sealing them (except for the terminal 2-5 mum of the tip) inside tapered glass shields. 106 microelectrodes had an average slope of 55.0+/- 0.6 m V (S,E,) per decade c hange in alphaCl. Tip resistance was (77.1+/- 3.1) x 10(9) omega(n=30). Electrode response was rapid (10-20 s), was unaffected by HCO3, H2PO4, HPO42 or protein, and remained essentially unchanged over a 24-h period. AlphaiCl in frog sartorius muscle fibers and epithelial cells of bullfrog small intestine was measured in vitro. In both tissues, alphaiCl significantly exceeded the value corresponding to equlibrium ditribution of Cl across the cell membrane.

  8. Antagonists of the TMEM16A Calcium-Activated Chloride Channel Modulate Airway Smooth Muscle Tone and Intracellular Calcium

    PubMed Central

    Danielsson, Jennifer; Perez-Zoghbi, Jose; Bernstein, Kyra; Barajas, Matthew B.; Zhang, Yi; Kumar, Satish; Sharma, Pawan K.; Gallos, George; Emala, Charles W.

    2015-01-01

    Background Perioperative bronchospasm refractory to β-agonists continues to challenge anesthesiologists and intensivists. The TMEM16A calcium-activated chloride channel modulates airway smooth muscle (ASM) contraction. We hypothesized that TMEM16A antagonists would relax ASM contraction by modulating membrane potential and calcium flux. Methods Human ASM, guinea pig tracheal rings or mouse peripheral airways were contracted with acetylcholine (Ach) or leukotriene D4 (LTD4) and then treated with the TMEM16A antagonists: benzbromarone, T16Ainh-A01, MONNA or B25. In separate studies, guinea pig tracheal rings were contracted with Ach and then exposed to increasing concentrations of isoproterenol (0.01nM-10μM) ± benzbromarone. Plasma membrane potential and intracellular calcium concentrations were measured in human ASM cells. Results Benzbromarone was the most potent TMEM16A antagonist tested for relaxing an Ach-induced contraction in guinea pig tracheal rings (n=6). Further studies were done to investigate benzbromarone’s clinical utility. In human ASM, benzbromarone relaxed either an acetylcholine- or LTD4-induced contraction (n=8). Benzbromarone was also effective in relaxing peripheral airways (n=9) and potentiating relaxation by β-agonists (n=5–10). In cellular mechanistic studies, benzbromarone hyperpolarized human ASM cells (n=9–12) and attenuated intracellular calcium flux from both the plasma membrane and sarcoplasmic reticulum (n=6–12). Conclusions TMEM16A antagonists work synergistically with β-agonists and through a novel pathway of interrupting ion flux both at the plasma membrane and sarcoplasmic reticulum to acutely relax human airway smooth muscle. PMID:26181339

  9. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  10. Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Stoychev, Stoyan H; Nathaniel, Christos; Fanucchi, Sylvia; Brock, Melissa; Li, Sheng; Asmus, Kyle; Woods, Virgil L; Dirr, Heini W

    2009-09-08

    Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2, and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilizing domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix alpha1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand beta2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer.

  11. Modulation of intracellular Ca2+ levels by Scorpaenidae venoms.

    PubMed

    Church, Jarrod E; Moldrich, Randal X; Beart, Philip M; Hodgson, Wayne C

    2003-05-01

    The crude venoms of the soldierfish (Gymnapistes marmoratus), the lionfish (Pterois volitans) and the stonefish (Synanceia trachynis) display pronounced neuromuscular activity. Since [Ca(2+)](i) is a key regulator in many aspects of neuromuscular function we sought to determine its involvement in the neuromuscular actions of the venoms. In the chick biventer cervicis muscle, all three venoms produced a sustained contraction (approx 20-30% of 1mM acetylcholine). Blockade of nicotinic receptors with tubocurarine (10 micro M) failed to attenuate the contractile response to either G. marmoratus venom or P. volitans venom, but produced slight inhibition of the response to S. trachynis venom. All three venoms produced a rise in intracellular Ca(2+) (approx. 200-300% of basal) in cultured murine cortical neurons. The Ca(2+)-channel blockers omega-conotoxin MVIIC, omega-conotoxin GVIA, omega-agatoxin IVa and nifedipine (each at 1 micro M) potentiated the increase in [Ca(2+)](i) in response to G. marmoratus venom and P. volitans venom, while attenuating the response to S. trachynis venom. Removal of extracellular Ca(2+), replacement of Ca(2+) with La(3+) (0.5mM), or addition of stonefish antivenom (3units/ml) inhibited both the venom-induced increase in [Ca(2+)](i) in cultured neurones and contraction in chick biventer cervicis muscle. Venom-induced increases in [Ca(2+)](i) correlated with an increased cell death of cultured neurones as measured using propidium iodide (1 micro g/ml). Morphological analysis revealed cellular swelling and neurite loss consistent with necrosis. These data indicate that the effects of all three venoms are due in part to an increase in intracellular Ca(2+), possibly via the formation of pores in the cellular membrane which, under certain conditions, can lead to necrosis.

  12. Zinc-related actions of sublethal levels of benzalkonium chloride: Potentiation of benzalkonium cytotoxicity by zinc.

    PubMed

    Mitani, Tsuyoshi; Elmarhomy, Ahmed Ibrahim Elhossany; Dulamjav, Luvsandorj; Anu, Enkhtumur; Saitoh, Shohei; Ishida, Shiro; Oyama, Yasuo

    2017-04-25

    Benzalkonium chloride (BZK) is a common preservative used in pharmaceutical and personal care products. ZnCl2 was recently reported to significantly potentiate the cytotoxicity of some biocidal compounds. In the present study, therefore, we compared the cytotoxic potency of BZK and then further studied the Zn(2+)-related actions of the most cytotoxic agent among BZK, using flow cytometric techniques with appropriate fluorescent probes in rat thymocytes. Cytotoxicity of benzylcetyldimethylammonium (BZK-C16) was more potent that those of benzyldodecyldimethylammonium and benzyldimethyltetradecylammonium. ZnCl2 (1-10 μM) significantly potentiated the cytotoxicity of BZK-C16 at a sublethal concentration (1 μM). The co-treatment of cells with 3 μM ZnCl2 and 1 μM BZK-C16 increased the population of both living cells with phosphatidylserine exposed on membrane surfaces and dead cells. BZK-C16 at 0.3-1.0 μM elevated intracellular Zn(2+) levels by increasing Zn(2+) influx, and augmented the cytotoxicity of 100 μM H2O2. Zn(2+) is concluded to facilitate the toxicity of BZK. We suggest that the toxicity of BZK is determined after taking extracellular (plasma) and/or environmental Zn(2+) levels into account. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Influence of GABA-gated bicarbonate conductance on potential, current and intracellular chloride in crayfish muscle fibres.

    PubMed Central

    Kaila, K; Pasternack, M; Saarikoski, J; Voipio, J

    1989-01-01

    1. The effects of gamma-aminobutyric acid (GABA) on membrane potential and conductance as well as on the intracellular Cl- activity (aiCl) and intracellular pH (pHi) were studied in crayfish muscle fibres using a three-microelectrode voltage clamp and ion-selective microelectrodes. In the presence of CO2-HCO3-, the intracellular HCO3- activity (aiHCO3) was estimated from pHi. 2. In a nominally HCO3(-)-free solution, a near-saturating concentration of GABA (0.2 mM) produced a marked increase in membrane conductance but little change in potential. In a solution containing 30 mM-HCO3- (equilibrated with 5% CO2 + 95% air; pH 7.4), the GABA-induced increase in conductance was associated with a depolarization of about 15 mV, with an increase in aiCl and with a decrease in aiHCO3. All these effects were blocked by picrotoxin (PTX). The depolarizing action of GABA was augmented following depletion of extracellular and intracellular Cl-. 3. The GABA-induced increase in aiCl which took place in the presence of HCO3- was blocked by clamping the membrane potential at its resting level. This indicates that the increase in aiCl was due to passive redistribution of Cl-. In both the presence and absence of HCO3-, the GABA-activated transmembrane flux of Cl- showed reversal at the level of the resting potential, which indicates that under steady-state conditions the Cl- equilibrium potential (ECl) is identical to the resting potential. 4. In a Cl(-)-free, 30 mM-HCO3(-)-containing solution, 0.5 mM-GABA produced a PTX-sensitive increase in conductance which amounted to 15% of the conductance activated in the presence of Cl-. In the absence of both Cl- and HCO3-, the respective figure was 2.8%. Assuming constant-field conditions, the conductance data yielded a permeability ratio PHCO3/PCl of 0.42 for the GABA-activated channels. 5. In a Cl(-)-containing, HCO3(-)-free solution, the reversal potential of the GABA-activated current (EGABA) was, by about 1 mV, less negative than the

  14. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels.

    PubMed

    Palmieri, Erika Mariana; Spera, Iolanda; Menga, Alessio; Infantino, Vittoria; Iacobazzi, Vito; Castegna, Alessandra

    2014-12-20

    The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels. Furthermore, LPS-activated mature adipocytes were unable to produce inflammatory mediators; LPS sensitivity was rescued following GS inhibition and the associated drop in intracellular glutamine levels. The ability of adipocytes to differentially respond to LPS during differentiation negatively correlates to GS expression and intracellular glutamine levels. Hence, modulation of intracellular glutamine levels by GS expression represents an endogenous mechanism through which mature adipocytes control the inflammatory response.

  15. Cyanide-resistant alternative respiration is strictly correlated to intracellular peroxide levels in Acremonium chrysogenum.

    PubMed

    Karaffa, L; Váczy, K; Sándor, E; Biró, S; Szentirmai, A; Pócsi, I

    2001-04-01

    A strict correlation between the intensity of the cyanide-resistant alternative respiratory pathway and the intracellular peroxide levels in the cephalosporin C producer filamentous fungus Acremonium chrysogenum was demonstrated. Intracellular peroxide levels increased in a dose-dependent manner after addition of H2O2 to the culture media. A similar phenomenon was observed due to the specific inhibition of catalase by salicylic acid. In both cases, cyanide-resistant respiration was markedly stimulated. On the other hand, both cyanide-resistant respiration and intracellular peroxide levels were effectively suppressed by the lipid peroxyl radical scavenger DL-alpha-tocopherol, which breaks lipid peroxidation chains effectively. Our findings firmly supported the assumption that there is a connection between the intracellular peroxide levels and the intensity of the alternative respiratory pathway in fungi.

  16. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes.

  17. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle

    PubMed Central

    Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S. F.; Bishop, David J.

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% V˙O2peak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0–2 h) of post-exercise recovery during ACID, PGC-1α, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  18. Identification of a Novel Member of the Chloride Intracellular Channel Gene Family (CLIC5) That Associates with the Actin Cytoskeleton of Placental Microvilli

    PubMed Central

    Berryman, Mark; Bretscher, Anthony

    2000-01-01

    The chloride intracellular channel (CLIC) gene family has been implicated in chloride ion transport within various subcellular compartments. We report here the molecular, biochemical, and cellular characterization of a new member of this gene family termed CLIC5. CLIC5 was isolated from extracts of placental microvilli as a component of a multimeric complex consisting of several known cytoskeletal proteins, including actin, ezrin, α-actinin, gelsolin, and IQGAP1. We cloned human cDNAs and generated antibodies specific for CLIC5, CLIC1/NCC27, and CLIC4/huH1/p64H1. CLIC5 shares 52–76% overall identity with human CLIC1, CLIC2, CLIC3, and CLIC4. Northern blot analysis showed that CLIC5 has a distinct pattern of expression compared with CLIC1 and CLIC4. Immunoblot analysis of extracts from placental tissues demonstrated that CLIC4 and CLIC5 are enriched in isolated placental microvilli, whereas CLIC1 is not. Moreover, in contrast to CLIC1 and CLIC4, CLIC5 is associated with the detergent-insoluble cytoskeletal fraction of microvilli. Indirect immunofluorescence microscopy revealed that CLIC4 and CLIC5 are concentrated within the apical region of the trophoblast, whereas CLIC1 is distributed throughout the cytoplasm. These studies suggest that CLIC1, CLIC4, and CLIC5 play distinct roles in chloride transport and that CLIC5 interacts with the cortical actin cytoskeleton in polarized epithelial cells. PMID:10793131

  19. Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae.

    PubMed Central

    Warth, A D

    1991-01-01

    Low concentrations of benzoic acid stimulated fermentation rates in Saccharomyces cerevisiae. At concentrations near the maximum permitting growth, there was inhibition of fermentation, lowered ATP and intracellular pH, and relatively greater accumulation of benzoate. Changes in the levels of glycolytic intermediates suggested that fermentation was inhibited as a result of high ATP usage rather than of lowered intracellular pH. Specific inhibition of phosphofructokinase or of several other glycolytic enzymes was not observed. PMID:1785917

  20. Assessment of Correlation between Sweat Chloride Levels and Clinical Features of Cystic Fibrosis Patients

    PubMed Central

    Raina, Manzoor A.; Khan, Mosin S.; Malik, Showkat A.; Raina, AB Hameed; Makhdoomi, Mudassir J.; Bhat, Javed I.

    2016-01-01

    Introduction Cystic Fibrosis (CF) is an autosomal recessive disorder and the incidence of this disease is undermined in Northern India. The distinguishable salty character of the sweat belonging to individuals suffering from CF makes sweat chloride estimation essential for diagnosis of CF disease. Aim The aim of this prospective study was to elucidate the relationship of sweat chloride levels with clinical features and pattern of CF. Materials and Methods A total of 182 patients, with clinical features of CF were included in this study for quantitative measurement of sweat chloride. Sweat stimulation and collection involved pilocarpine iontophoresis based on the Gibson and Cooks methodology. The quantitative estimation of chloride was done by Schales and Schales method with some modifications. Cystic Fibrosis Trans Membrane Conductance Regulator (CFTR) mutation status was recorded in case of patients with borderline sweat chloride levels to correlate the results and for follow-up. Results Out of 182 patients having clinical features consistent with CF, borderline and elevated sweat chloride levels were present in 9 (5%) and 41 (22.5%) subjects respectively. Elevated sweat chloride levels were significantly associated with wheeze, Failure To Thrive (FTT), history of CF in Siblings, product of Consanguineous Marriage (CM), digital clubbing and steatorrhoea on univariate analysis. On multivariate analysis only wheeze, FTT and steatorrhoea were found to be significantly associated with elevated sweat chloride levels (p<0.05). Among the nine borderline cases six cases were positive for at least two CFTR mutations and rest of the three cases were not having any mutation in CFTR gene. Conclusion The diagnosis is often delayed and the disease is advanced in most patients at the time of diagnosis. Sweat testing is a gold standard for diagnosis of CF patients as genetic mutation profile being heterozygous and unlikely to become diagnostic test. PMID:28208841

  1. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    PubMed

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism.

  2. Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury.

    PubMed

    Jiang, L; Zhong, J; Dou, X; Cheng, C; Huang, Z; Sun, X

    2015-08-20

    The current study aimed to explore the effects of apolipoprotein e (ApoE) on intracellular calcium ([Ca(2+)]i) and apoptosis of neurons after mechanical injury in vitro. A neuron mechanical injury model was established after primary neurons obtained from APOE knockout and wild-type (WT) mice, and four experimental groups were generated: Group-ApoE4, Group-ApoE3, Group-ApoE(-) and Group-WT. Recombinant ApoE4 and ApoE3 were added to Group-ApoE4 and Group-ApoE3 respectively, and Group-ApoE(-) and Group-WT were control groups. Intracellular calcium was labeled by fluo-3/AM and examined using laser scanning confocal microscope and flow cytometry, and the apoptosis of neurons was also evaluated. The intracellular calcium levels and apoptosis rates of mice neurons were significantly higher in Group-ApoE4 than in Group-ApoE3 and Group-WT after mechanical injury. However, without mechanical injury on neurons, no significant differences in intracellular calcium levels and apoptosis rates were found among all four experimental groups. The effects of ApoE4 on intracellular calcium levels and apoptosis rates of injured neurons were partly decreased by EGTA treatment. Compared with ApoE3-treatment and WT neurons, ApoE4 caused higher intracellular calcium levels and apoptosis rates of neurons after mechanical injury. This suggested APOE polymorphisms may affect neuron apoptosis after mechanical injury through different influences on intracellular calcium levels. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Water-level measurements and chloride concentrations for selected wells in Louisiana, January 1988-October 1997

    USGS Publications Warehouse

    Lovelace, Wendell M.

    2002-01-01

    This report presents water-level measurements and chlorideconcentrations in water from selected wells completed in aquifers in Louisiana. The data were collected during the period January1988-October 1997. Water-level data are presented for 109 wells, and chloride data are presented for 45 wells. Hydrographs and summaries of water-level trends are presented for wellscompleted in aquifers throughout the State. Chlorographs and summaries of chloride trends are presented for wells completed in the Mississippi River alluvial and Sparta aquifers; Chicot aquifer system; and Gramercy, Norco, and Gonzales-New Orleans aquifers. Data are presented in graphical and tabular formats.

  4. 5,5'-Dithio-bis(2-nitrobenzoic acid) modification of cysteine improves the crystal quality of human chloride intracellular channel protein 2

    SciTech Connect

    Mi Wei; Li Lanfen; Su Xiaodong

    2008-04-18

    Structural studies of human chloride intracellular channel protein 2 (CLIC2) had been hampered by the problem of generating suitable crystals primarily due to the protein containing exposed cysteines. Several chemical reagents were used to react with the cysteines on CLIC2 in order to modify the redox state of the protein. We have obtained high quality crystals that diffracted to better than 2.5 A at a home X-ray source by treating the protein with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). After solving the crystal structure of CLIC2, we found that the DTNB had reacted with the Cys{sup 114}, and made CLIC2 in a homogenous oxidized state. This study demonstrated that the DTNB modification drastically improved the crystallization of CLIC2, and it implied that this method may be useful for other proteins containing exposed cysteines in general.

  5. Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium

    PubMed Central

    Liantonio, A; Giannuzzi, V; Picollo, A; Babini, E; Pusch, M; Conte Camerino, D

    2006-01-01

    Background and purpose: Given the crucial role of the skeletal muscle chloride conductance (gCl), supported by the voltage-gated chloride channel CLC-1, in controlling muscle excitability, the availability of ligands modulating CLC-1 are of potential medical as well as toxicological importance. Here, we focused our attention on niflumic acid (NFA), a molecule belonging to the fenamates group of non-steroidal anti-inflammatory drugs (NSAID). Experimental approach: Rat muscle Cl− conductance (gCl) and heterologously expressed CLC-1 currents were evaluated by means of current-clamp (using two-microelectrodes) and patch-clamp techniques, respectively. Fura-2 fluorescence was used to determine intracellular calcium concentration, [Ca2+]i, in native muscle fibres. Key results: NFA inhibited native gCl with an IC50 of 42 μM and blocked CLC-1 by interacting with an intracellular binding site. Additionally, NFA increased basal [Ca2+]i in myofibres by promoting a mitochondrial calcium efflux that was not dependent on cyclooxygenase or CLC-1. A structure-activity study revealed that the molecular conditions that mediate the two effects are different. Pretreatment with the Ca-dependent protein kinase C (PKC) inhibitor chelerythrine partially inhibited the NFA effect. Therefore, in addition to direct channel block, NFA also inhibits gCl indirectly by promoting PKC activation. Conclusions and Implications: These cellular effects of NFA on skeletal muscle demonstrate that it is possible to modify CLC-1 and consequently gCl directly by interacting with channel proteins and indirectly by interfering with the calcium-dependent regulation of the channel. The effect of NFA on mitochondrial calcium stores suggests that NSAIDs, widely used drugs, could have potentially dangerous side-effects. PMID:17128287

  6. Extracellular zinc stimulates a calcium-activated chloride conductance through mobilisation of intracellular calcium in renal inner medullary collecting duct cells.

    PubMed

    Linley, J E; Simmons, N L; Gray, M A

    2007-01-01

    We have used the perforated patch clamp and fura-2 fluorescence techniques to study the effect of extracellular Zn(2+) on whole-cell Ca(2+)-activated Cl(-) currents (I (CLCA)) in mouse inner medullary collecting duct cells (mIMCD-3). I (CLCA) was spontaneously active in 74% of cells under basal conditions and displayed time and voltage-independent kinetics and an outwardly rectifying current/voltage relationship (I/V). Addition of zinc chloride (10-400 microM) to the bathing solution resulted in a dose-dependent increase in I (CLCA) with little change in Cl(-) selectivity or biophysical characteristics, whereas gadolinium chloride (30 microM) and lanthanum chloride (100 microM) had no significant effect on the whole-cell current. Using fura-2-loaded mIMCD-3 cells, extracellular Zn(2+) (400 microM) stimulated an increase in intracellular Ca(2+) to an elevated plateau. The Zn(2+)-stimulated [Ca(2+)](i) increase was inhibited by thapsigargin (200 nM), the IP(3) receptor antagonist 2-aminoethoxydiphenyl borate (10 microM) and removal of bath Ca(2+). Pre-exposure to Zn(2+) (400 microM) markedly attenuated the ATP (100 microM)-stimulated [Ca(2+)](i) increase. These data are consistent with the hypothesis that extracellular Zn(2+) stimulates an increase in [Ca(2+)](i) by a release of calcium from thapsigargin/IP(3) sensitive stores. A possible physiological role for a divalent metal ion receptor, distinct from the extracellular Ca(2+)-sensing receptor, in IMCD cells is discussed.

  7. Fecundity of Cryptosporidium parvum is Correlated with Intracellular Levels of the Viral Symbiont CPV

    USDA-ARS?s Scientific Manuscript database

    Differences in the virulence and fecundity of Cryptosporidium parvum isolates have been observed by several researchers studying cryptosporidiosis. The purpose of the present study was to determine if there was a correlation between intracellular levels of the viral symbiont CPV in C. parvum and fe...

  8. Relationship between Intracellular Magnesium Level, Lung Function, and Level of Asthma Control in Children with Chronic Bronchial Asthma

    PubMed Central

    SEIN, Htwe Htwe; Whye Lian, CHEAH; Juan Loong, KOK; SL NG, Josephine; RAHARDJAI, Andy; SULTAN, Mohamed Ameenudeen

    2014-01-01

    Background: This study aimed to determine the intracellular (red blood cell (RBC)) magnesium levels in children with chronic bronchial asthma and to determine the relationship between the magnesium level and peak expiratory flow rate (PEFR), type of asthma treatment, and level of asthma control. Methods: A cross-sectional study was conducted at the Paediatric Clinic, Sarawak General Hospital. A total of 100 children, aged 6–12 years with chronic bronchial asthma, were recruited according to the study criteria. Venous blood samples were obtained to measure the intracellular (RBC) magnesium level using the GBC Avanta Flame Atomic Absorption Spectrophotometer. Results: Mean age was 8.57 (SD 1.18) years, and 63% of the participants were male. Mean duration of asthma was 62.2 (SD 32.3) months. A normal intracellular magnesium level was found in 95% of the participants, with a mean of 2.27 (SD 0.33) mmol/L. Two-thirds of the participants had a normal peak flow expiratory rate (> 80% of predicted value). About 85% were using both reliever and controller. Almost half of the participants (49%) had chronic asthma that was well-controlled. No significant relationship was found between magnesium level and age (r = –0.089, P = 0.379), gender (t = 0.64, P = 0.52), duration of asthma (r = –0.03, P = 0.74), PEFR (t = 0.41, P = 0.68), current level of asthma control (t = 0.02, P = 0.97), and current treatment (t = 0.414, P = 0.680). Conclusion: There was no significant intracellular magnesium deficiency in children with chronic bronchial asthma. There was no significant relationship between therapeutic medications used for treatment of children with chronic asthma and intracellular magnesium levels. PMID:25977631

  9. Ets-1 regulates intracellular glutathione levels: key target for resistant ovarian cancer.

    PubMed

    Verschoor, Meghan L; Singh, Gurmit

    2013-11-15

    Ovarian cancer is characterized by high rates of metastasis and therapeutic resistance. Many chemotherapeutic agents rely on the induction of oxidative stress to cause cancer cell death, thus targeting redox regulation is a promising strategy to overcome drug resistance. We have used a tetracycline-inducible Ets-1 overexpression model derived from 2008 ovarian cancer cells in the present study. To examine the role of Ets-1 in glutathione regulation we have measured intracellular reactive oxygen species and glutathione levels, as well as glutathione peroxidase enzyme activity. Glutathione synthesis was limited using transsulfuration or Sx(c)- pathway blocking agents, and glutamate release was measured to confirm Sx(c)- blockade. Cell viability following drug treatment was assessed via crystal violet assay. Oxidative stress was induced through glucose oxidase treatment, which produces hydrogen peroxide by glucose oxidation. The protein expressions of redox-related factors were measured through western blotting. Overexpression of Ets-1 was associated with decreased intracellular ROS, concomitantly with increased intracellular GSH, GPX antioxidant activity, and Sx(c)- transporter activity. Under basal conditions, inhibition of the transsulfuration pathway resulted in decreased GSH levels and GPX activity in all cell lines, whereas inhibition of Sx(c)- by sulfasalazine decreased GPX activity in Ets-1-expressing cells only. However, under oxidative stress the intracellular GSH levels decreased significantly in correlation with increased Ets-1 expression following sulfasalazine treatment. In this study we have identified a role for proto-oncogene Ets-1 in the regulation of intracellular glutathione levels, and examined the effects of the anti-inflammatory drug sulfasalazine on glutathione depletion using an ovarian cancer cell model. The findings from this study show that Ets-1 mediates enhanced Sx(c)- activity to increase glutathione levels under oxidative stress

  10. Biochemical manipulation of intracellular glutathione levels influences cytotoxicity to isolated human lymphocytes by sulfur mustard

    SciTech Connect

    Gross, C.L.; Innace, J.K.; Hovatter, R.C.; Meier, H.L.; Smith, W.J.

    1993-12-31

    Glutathione (GSH) is the major nonprotein thiol that can protect cells from damage due to electrophilic alkylating agents by forming conjugates with the agent. Sulfur mustard (HD) is an electrophilic alkylating agent that has potent mutagenic, carcinogenic, cytotoxic, and vesicant properties. Compounds that elevate or reduce intracellular levels of GSH may produce changes in cytotoxicity induced by sulfur mustard. Pretreatment of human peripheral blood lymphocytes (PBL) for 72 hr with 1 mM buthionine sulfoximine (BSO), which reduces intracellular GSH content to approximately 26% of control, appears to sensitize these in vitro cells to the cytotoxic effects of 10 AM HD but not to higher HD concentrations. Pretreatment of PBL for 48 hr with 10 mM N-acetyl cysteine (NA C), which elevates intracellular glutathione levels to 122% of control, appears to partially protect these in vitro cells from the cytotoxic effects of 10 LAIHD but not to higher HD concentrations. Augmentation of intracellular levels of glutathione may provide partial protection against cytotoxicity of sulfur mustard.

  11. Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level.

    PubMed

    Ng, Kwong-Man; Chan, Yau-Chi; Lee, Yee-Ki; Lai, Wing-Hon; Au, Ka-Wing; Fung, Man-Lung; Siu, Chung-Wah; Li, Ronald A; Tse, Hung-Fat

    2011-12-01

    Our previous study demonstrated the direct involvement of the HIF-1α subunit in the promotion of cardiac differentiation of murine embryonic stem cells (ESCs). We report the use of cobalt chloride to induce HIF-1α stabilization in human ESCs to promote cardiac differentiation. Treatment of undifferentiated hES2 human ESCs with 50 μM cobalt chloride markedly increased protein levels of the HIF-1α subunit, and was associated with increased expression of early cardiac specific transcription factors and cardiotrophic factors including NK2.5, vascular endothelial growth factor, and cardiotrophin-1. When pretreated cells were subjected to cardiac differentiation, a notable increase in the occurrence of beating embryoid bodies and sarcomeric actinin-positive cells was observed, along with increased expression of the cardiac-specific markers, MHC-A, MHC-B, and MLC2V. Electrophysiological study revealed increased atrial- and nodal-like cells in the cobalt chloride-pretreated group. Confocal calcium imaging analysis indicated that the maximum upstroke and decay velocities were significantly increased in both noncaffeine and caffeine-induced calcium transient in cardiomyocytes derived from the cobalt chloride-pretreated cells, suggesting these cells were functionally more mature. In conclusion, our study demonstrated that cobalt chloride pretreatment of hES2 human ESCs promotes cardiac differentiation and the maturation of calcium homeostasis of cardiomyocytes derived from ESCs.

  12. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    PubMed Central

    Wing, Boswell A.; Halevy, Itay

    2014-01-01

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2S⋅cell−1⋅d−1). PMID:25362045

  13. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration.

    PubMed

    Wing, Boswell A; Halevy, Itay

    2014-12-23

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<1 fmol H2S⋅cell(-1)⋅d(-1)).

  14. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    NASA Astrophysics Data System (ADS)

    Wing, Boswell A.; Halevy, Itay

    2014-12-01

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2Sṡcell-1ṡd-1).

  15. Dithiocarbamate fungicides increase intracellular Zn(2+) levels by increasing influx of Zn(2+) in rat thymic lymphocytes.

    PubMed

    Kanemoto-Kataoka, Yumiko; Oyama, Tomohiro M; Ishibashi, Hitoshi; Oyama, Yasuo

    2015-07-25

    Dithiocarbamate fungicides are used as alternative antifouling agents to highly toxic organotin antifouling agents, such as tri-n-butyltin and triphenyltin. There are some concerns regarding their environmental and health risks. It has been shown that tri-n-butyltin increases intracellular Zn(2+) levels of mammalian lymphocytes. Therefore, we examined the effects of dithiocarbamate fungicides (Ziram, Thiram, and Zineb) on rat thymic lymphocytes using a flow-cytometric technique to elucidate how these fungicides affect intracellular Zn(2+) levels. We further determined whether the agents increase intracellular Zn(2+) and/or Ca(2+), because both Zn(2+) and Ca(2+) are intracellular signals in lymphocytes, and excessive increases in their intracellular concentrations can have adverse effects. Dithiocarbamate fungicides increased intracellular Zn(2+) levels, without affecting intracellular Ca(2+) levels. Ziram was the most potent compound, increasing intracellular Zn(2+) levels via Zn(2+) influx. Ziram (1μM) greatly decreased the cellular nonprotein thiol content, and Zn(2+) chelators attenuated the Ziram-induced decrease. Ziram increased the population of annexin V-positive cells in a Zn(2+)-dependent manner. Therefore, we propose that dithiocarbamate fungicides induce Zn(2+) influx, resulting in an excessive elevation of intracellular Zn(2+) levels, leading to the induction of apoptosis. This study gives a basic insight into the mechanisms of dithiocarbamate fungicide-induced adverse events.

  16. Lanthanum chloride suppresses oxysterol-induced ECV-304 cell apoptosis via inhibition of intracellular Ca(2+) concentration elevation, oxidative stress, and activation of ERK and NF-κB signaling pathways.

    PubMed

    Liu, Hongmei; Zhang, Congcong; Huang, Kaixun

    2011-06-01

    Experimental studies have demonstrated that oral administration of lanthanum chloride (LaCl(3)) inhibits the development of atherosclerosis, but the related mechanism has not been fully elucidated. Oxysterols are toxic to the vascular endothelial cells which are important in preventing the formation and progression of atheromatous plaque. In this study, we examined the effect of LaCl(3) on oxysterol cholestane-3β,5α,6β-triol (Triol)-induced apoptosis and the related mechanisms in ECV-304 cells, a presumptive endothelial cell line. Incubation with Triol resulted in apoptosis of ECV-304 cells, as determined by Hoechst 33342 staining, fluorescein isothiocyanate labeled annexin V/propidium iodide double staining, and the loss of mitochondrial membrane potential. Triol activated extracellular-signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), and inhibition of Triol-activated ERK and NF-κB signaling by specific inhibitors attenuated apoptosis induction by Triol in ECV-304 cells. Pretreatment with LaCl(3) (1 μM) for 12 h before exposure to Triol decreased Triol-mediated apoptosis as well as activation of ERK and NF-κB. In addition, Triol induced oxidative stress in ECV-304 cells, manifested by the increase of intracellular reactive oxygen species generation and malondialdehyde level, and the reduction of the content of total protein thiols and the activity of antioxidant glutathione peroxidases; LaCl(3) pretreatment significantly reversed these effects. Finally, LaCl(3) pretreatment significantly inhibited the increases of intracellular Ca(2+) concentration induced by Triol. Our study suggests that Triol induced ECV-304 cell apoptosis, and LaCl(3) could suppress this effect probably by inhibiting intracellular Ca(2+) concentration elevation, oxidative stress, as well as activation of ERK and NF-κB signaling pathways.

  17. Glutamate-induced elevations in intracellular chloride concentration in hippocampal cell cultures derived from EYFP-expressing mice.

    PubMed

    Slemmer, Jennifer E; Matsushita, Shinichi; De Zeeuw, Chris I; Weber, John T; Knöpfel, Thomas

    2004-06-01

    The homeostasis of intracellular Cl(-) concentration ([Cl(-)](i)) is critical for neuronal function, including gamma-aminobutyric acid (GABA)ergic synaptic transmission. Here, we investigated activity-dependent changes in [Cl(-)](i) using a transgenetically expressed Cl(-)-sensitive enhanced yellow-fluorescent protein (EYFP) in cultures of mouse hippocampal neurons. Application of glutamate (100 microm for 3 min) in a bath perfusion to cell cultures of various days in vitro (DIV) revealed a decrease in EYFP fluorescence. The EYFP signal increased in amplitude with increasing DIV, reaching a maximal response after 7 DIV. Glutamate application resulted in a slight neuronal acidification. Although EYFP fluorescence is sensitive to pH, EYFP signals were virtually abolished in Cl(-)-free solution, demonstrating that the EYFP signal represented an increase in [Cl(-)](i). Similar to glutamate, a rise in [Cl(-)](i) was also induced by specific ionotropic glutamate receptor agonists and by increasing extracellular [K(+)], indicating that an increase in driving force for Cl(-) suffices to increase [Cl(-)](i). To elucidate the membrane mechanisms mediating the Cl(-) influx, a series of blockers of ion channels and transporters were tested. The glutamate-induced increase in [Cl(-)](i) was resistant to furosemide, bumetanide and 4,4'-diisothiocyanato-stilbene-2,2'-disulphonic acid (DIDS), was reduced by bicuculline to about 80% of control responses, and was antagonized by niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We conclude that membrane depolarization increases [Cl(-)](i) via several pathways involving NFA- and NPPB-sensitive anion channels and GABA(A) receptors, but not through furosemide-, bumetanide- or DIDS-sensitive Cl(-) transporters. The present study highlights the vulnerability of [Cl(-)](i) homeostasis after membrane depolarization in neurons.

  18. Radiation response of Chinese hamster cells after elevation of intracellular glutathione levels

    SciTech Connect

    Russo, A.; Mitchell, J.B.

    1984-08-01

    Cellular glutathione (GSH) levels were modulated by either inhibition of GSH synthesis by buthionine sulfoximine (BSO) or elevation of GSH by treatment with 2-oxo-thiazolidine-4-carboxylate (OTZ), cobaltous chloride, or cysteamine. Using these agents, x ray survival in air was assessed as a function of cellular GSH levels. Depletion of GSH by GSO resulted in slight sensitization of the aerated curve. However, elevation of GSH by as much as 200 to 300% of controls provided no radioprotection in air. These data are discussed in the context of the role of GSH and GSH peroxidase in the detoxification of peroxides produced by x rays.

  19. Modulation of glutathione intracellular levels alters the spontaneous proliferation of lymphocyte from HTLV-1 infected patients.

    PubMed

    Novaes, Renata; Freire-de-Lima, Célio G; de Albuquerque, Raquel Cavalcanti; Affonso-Mitidieri, Ottilia R; Espindola, Otávio; Lima, Marco Antonio; de Andrada Serpa, Maria José; Echevarria-Lima, Juliana

    2013-09-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus associated with neoplasias and inflammatory diseases, such as adult T-cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1-infected individuals present a spontaneous T lymphocyte proliferation. This phenomenon is related to the HTLV-1-proviral load and the persistence of the infection. Viral proteins induce many cellular mediators, which can be associated with the abnormal cellular proliferation. The intracellular levels of glutathione (GSH) are important to modulate the cellular proliferation. The aim of this study was to investigate the correlation between the modulation of intracellular GSH levels and the spontaneous lymphocyte proliferation during the HTLV-1 infection. Intracellular GSH level can be modulated by using dl-buthionine-[S,R]-sulfoximine (BSO, GSH synthesis inhibitor) and N-acetylcysteine (NAC, peptide precursor). Our results demonstrated that BSO was capable of inducing a decrease in the spontaneous proliferation of PBMC derived from HTLV-1 carriers. On the other hand, the GSH precursor induces an increase in mitogen-stimulated cellular proliferation in infected and uninfected individuals. Similar results were observed by the inhibition of ABCC1/MRP1 protein, augmenting the mitogen-induced proliferation. This effect can be related with an increase in the GSH levels since ABCC1/MRP1 transports GSH to the extracellular medium. There was a significant difference on the expression of CD69 and CD25 molecules during the lymphocyte activation. We did not observe any alterations on CD25 expression induced by BSO or NAC. However, our results demonstrated that NAC treatment induced an increase in CD69 expression on unstimulated CD8(+) T lymphocytes obtained from HTLV-1 infected individuals, healthy donors and HTLV carriers. Therefore, our results suggest that the cellular proliferation promoted by the infection with HTLV-1 and the activation

  20. Increase in intracellular Ca(2+) level by phenylsulfamide fungicides, tolylfluanid and dichlofluanid, in rat thymic lymphocytes.

    PubMed

    Fukunaga, Eri; Enma, Kana; Saitoh, Shohei; Nishimura-Danjyobara, Yumiko; Oyama, Yasuo; Akaike, Norio

    2015-07-01

    Tolylfluanid, a phenylsulfamide fungicide, is one of the many pesticides that are frequently detected in crops. Therefore, its health risk is a concern. Micromolar concentrations of tolylfluanid induce chromosomal aberrations and micronuclei in mammalian lymphocytes. The findings prompted us to study the cellular actions of tolylfluanid and another frequently detected pesticide, dichlofluanid, at submicromolar and micromolar concentrations. Of the cellular actions of chemicals, the action on cellular Ca(2+) homeostasis is important since Ca(2+) is involved in cell signaling and death. Consequently, in this study, the effects of phenylsulfamide fungicides were examined on rat thymocytes by using fluorescent probes in order to further characterize the cellular actions of phenylsulfamide fungicides. Both phenylsulfamide fungicides exhibited biphasic, early and late, increase in intracellular Ca(2+) levels. The early phase was dependent on intracellular Ca(2+) release and increased membrane Ca(2+) permeability. The late phase was owing to Ca(2+) influx via activation of store-operated Ca(2+) channels and the further increase of membrane ionic permeability. Voltage-dependent Ca(2+) channels were not involved. The increases in intracellular Ca(2+) levels by phenylsulfamide fungicides were observed at drug concentrations of 0.1 μM or more (up to 10 μM). Thus, it is plausible that micromolar concentrations of phenylsulfamide fungicides deregulate intracellular Ca(2+) homeostasis in rat thymocytes. Both phenylsulfamide fungicides at 10 μM promoted the transition from intact living cells to living cells with phosphatidylserine-exposed membranes. This was not the case for phenylsulfamide fungicides at 3 μM. The potency of tolylfluanid was similar to that of dichlofluanid. Although the information on residual concentrations of tolylfluanid and dichlofluanid is very limited, their residual concentrations do not reach micromolar levels. It is unlikely that humans will

  1. Association of Thymidylate Synthase Gene Polymorphisms with Stavudine Triphosphate Intracellular Levels and Lipodystrophy▿

    PubMed Central

    Domingo, Pere; Cabeza, M. Carmen; Pruvost, Alain; Torres, Ferran; Salazar, Juliana; del Mar Gutierrez, M.; Mateo, M. Gracia; Fontanet, Angels; Fernandez, Irene; Domingo, Joan C.; Villarroya, Francesc; Vidal, Francesc; Baiget, Montserrat

    2011-01-01

    The antiviral activity and toxicity of stavudine (d4T) depend on its triphosphate metabolite, stavudine triphosphate (d4T-TP). Therefore, modifications in intracellular levels of d4T-TP may change the toxicity profile of stavudine. d4T-TP intracellular levels in peripheral blood mononuclear cells were determined with a prominence liquid chromatograph connected to a triple-quadruple mass spectrometer. Polymorphisms in the thymidylate synthase (TS), methylenetetrahydrofolate reductase (MTHFR), dihydrofolate reductase (DHFR), reduced folate carrier 1 (RFC1; SLC19A1), and cyclin D1 (CCND1) genes were determined by direct sequencing using an ABI Prism 3100 genetic analyzer or Fluidigm's Biomark system. The Mann-Whitney test, rank analysis of variance (with Bonferroni's adjusted post hoc comparisons), and logistic regression were used for the inferential analyses. Thirty-three stavudine-treated patients were enrolled in this cross-sectional study. d4T-TP intracellular levels were 11.50 fmol/106 cells (interquartile range [IQR] = 8.12 to 13.87 fmol/106 cells) in patients with a high-expression TS genotype (2/3G, 3C/3G, and 3G/3G), whereas in those with a low-expression TS genotype (2/2, 2/3C, and 3C/3C), they were 21.40 fmol/106 cells (IQR = 18.90 to 27.0 fmol/106 cells) (P < 0.0001). Polymorphisms in the MTHFR, DHFR, RFC1, and CCND1 genes did not influence the intracellular concentration of d4T-TP. d4T-TP levels were independently associated with the TS genotype (low versus high expression; odds ratio [OR] = 86.22; 95% confidence interval [CI] = 8.48 to nonestimable; P = 0.0023). The low-expression TS genotype was associated with the development of HIV/highly active antiretroviral therapy-associated lypodystrophy syndrome (HALS) (OR = 14.0; 95% CI = 2.09 to 108.0; P = 0.0032). Our preliminary data show that polymorphisms in the thymidylate synthase gene are strongly associated with d4T-TP intracellular levels and with development of HALS. PMID:21282454

  2. Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum.

    PubMed

    Shi, Deng-Ke; Zhu, Jing; Sun, Ze-Hua; Zhang, Guang; Liu, Rui; Zhang, Tian-Jun; Wang, Sheng-Li; Ren, Ang; Zhao, Ming-Wen

    2017-09-13

    The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.

  3. Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression.

    PubMed

    Chen, Ming-Ming; Yin, Zhi-Qi; Zhang, Lu-Yong; Liao, Hong

    2015-09-01

    The present study was designed to investigate the role of quercetin on neurite growth in N1E-115 cells and the underlying mechanisms. Quercetin was evaluated for its effects on cell numbers of neurites, neurite length, intracellular cAMP content, and Gap-43 expression in N1E-115 cells in vitro by use of microscopy, LANCE(tm) cAMP 384 kit, and Western blot analysis, respectively. Our results showed that quercetin could increase the neurite length in a concentration-dependent manner, but had no effect on the numbers of cells. Quercetin significantly increased the expression of cellular cAMP in a time- and concentration-dependent manner. The Gap-43 expression was up-regulated in a time-dependent manner. In conclusion, quercetin could promote neurite growth through increasing the intracellular cAMP level and Gap-43 expression.

  4. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.

  5. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics.

    PubMed

    Wagner, David J; Hu, Tao; Wang, Joanne

    2016-09-01

    Most drugs are intended to act on molecular targets residing within a specific tissue or cell type. Therefore, the drug concentration within the target tissue or cells is most relevant to its pharmacological effect. Increasing evidences suggest that drug transporters not only play a significant role in governing systemic drug levels, but are also an important gate keeper for intra-tissue and intracellular drug concentrations. This review focuses on polyspecific organic cation transporters, which include the organic cation transporters 1-3 (OCT1-3), the multidrug and toxin extrusion proteins 1-2 (MATE1-2) and the plasma membrane monoamine transporter (PMAT). Following an overview of the tissue distribution, transport mechanisms, and functional characteristics of these transporters, we highlight the studies demonstrating the ability of locally expressed OCTs to impact intracellular drug concentrations and directly influence their pharmacological and toxicological activities. Specifically, OCT1-mediated metformin access to its site of action in the liver is impacted by genetic polymorphisms and chemical inhibition of OCT1. The impact of renal OCT2 and MATE1/2-K in cisplatin intrarenal accumulation and nephrotoxicity is reviewed. New data demonstrating the role of OCT3 in salivary drug accumulation and secretion is discussed. Whenever possible, the pharmacodynamic response and toxicological effects is presented and discussed in light of intra-tissue and intracellular drug exposure. Current challenges, knowledge gaps, and future research directions are discussed. Understanding the impact of transporters on intra-tissue and intracellular drug concentrations has important implications for rational-based optimization of drug efficacy and safety.

  6. Polyspecific Organic Cation Transporters and their Impact on Drug Intracellular Levels and Pharmacodynamics

    PubMed Central

    Wagner, David J.; Hu, Tao; Wang, Joanne

    2017-01-01

    Most drugs are intended to act on molecular targets residing within a specific tissue or cell type. Therefore, the drug concentration within the target tissue or cells is most relevant to its pharmacological effect. Increasing evidences suggest that drug transporters not only play a significant role in governing systemic drug levels, but are also an important gate keeper for intra-tissue and intracellular drug concentrations. This review focuses on polyspecific organic cation transporters, which include the organic cation transporters 1-3 (OCT1-3), the multidrug and toxin extrusion proteins 1-2 (MATE1-2) and the plasma membrane monoamine transporter (PMAT). Following an overview of the tissue distribution, transport mechanisms, and functional characteristics of these transporters, we highlight the studies demonstrating the ability of locally expressed OCTs to impact intracellular drug concentrations and directly influence their pharmacological and toxicological activities. Specifically, OCT1-mediated metformin access to its site of action in the liver is impacted by genetic polymorphisms and chemical inhibition of OCT1. The impact of renal OCT2 and MATE1/2-K in cisplatin intrarenal accumulation and nephrotoxicity is reviewed. New data demonstrating the role of OCT3 in salivary drug accumulation and secretion is discussed. Whenever possible, the pharmacodynamic response and toxicological effects is presented and discussed in light of intra-tissue and intracellular drug exposure. Current challenges, knowledge gaps, and future research directions are discussed. Understanding the impact of transporters on intra-tissue and intracellular drug concentrations has important implications for rationale-based optimization of drug efficacy and safety. PMID:27317943

  7. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-08

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

  8. Stress induced lipid production in Chlorella vulgaris: relationship with specific intracellular reactive species levels.

    PubMed

    Menon, Kavya R; Balan, Ranjini; Suraishkumar, G K

    2013-06-01

    Microalgae have significant potential to be an important alternative energy source, but the challenges to the commercialization of bio-oil from microalgae need to be overcome for the potential to be realized. The application of stress can be used to improve bio-oil yields from algae. Nevertheless, the understanding of stress effects is fragmented due to the lack of a suitable, direct quantitative marker for stress. The lack of understanding seems to have limited the development of stress based strategies to improve bio-oil yields, and hence the commercialization of microalgae-based bio-oil. In this study, we have proposed and used the specific intracellular reactive species levels (siROS) particularly hydroxyl and superoxide radical levels, separately, as direct, quantitative, markers for stress, irrespective of the type of stress induced. Although ROS reactions are extremely rapid, the siROS level can be assumed to be at pseudo-steady state compared to the time scales of metabolism, growth and production, and hence they can be effective stress markers at particular time points. Also, the specific intracellular (si-) hydroxyl and superoxide radical levels are easy to measure through fluorimetry. Interestingly, irrespective of the conditions employed in this study, that is, nutrient excess/limitation or different light wavelengths, the cell concentrations are correlated to the siROS levels in an inverse power law fashion. The composite plots of cell concentration (y) and siROS (x) yielded the correlations of y = k1  · x(-0.7) and y = k2  · x(-0.79) , for si-hydroxyl and si-superoxide radical levels, respectively. The specific intracellular (si-) neutral lipid levels, which determine the bio-oil productivity, are related in a direct power law fashion to the specific hydroxyl radical levels. The composite plot of si-neutral lipid levels (z) and si-hydroxyl radical level (x) yielded a correlation of z = k3  · x(0.65) . More interestingly, a

  9. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery

    PubMed Central

    2014-01-01

    Background CLIC4, a member of the CLIC family of proteins, was recently demonstrated to translocate to the nucleus in differentiating keratinocytes where it potentiates TGFβ-driven gene regulation. Since TGFβ signaling is known to play important roles in the fibrotic response to acute kidney injury, and since CLIC4 is abundantly expressed in kidney, we hypothesized that CLIC4 may play a role in the response to acute kidney injury. Methods Previously described Clic4 null mice were analyzed for the effect of absence of CLIC4 on growth, development and response to kidney injury. Kidney size, glomerular counts and density of peritubular capillaries of matched WT and Clic4 null mice were determined. Cohorts of WT and Clic4 null mice were subjected to the folic acid model of acute kidney injury. Extent of acute injury and long term functional recovery were assessed by plasma blood urea nitrogen (BUN); long term fibrosis/scarring was determined by histochemical assessment of kidney sections and by residual renal mass. Activation of the TGFβ signaling pathway was assessed by semi-quantitative western blots of phosphorylated SMADs 2 and 3. Results CLIC4 is abundantly expressed in the apical pole of renal proximal tubule cells, and in endothelial cells of glomerular and peritubular capillaries. CLIC4 null mice are small, have smaller kidneys with fewer glomeruli and less dense peritubular capillary networks, and have increased proteinuria. The Clic4 null mice show increased susceptibility to folic acid-induced acute kidney injury but no difference in recovery from acute injury, no nuclear redistribution of CLIC4 following injury, and no significant difference in activation of the TGFβ-signaling pathway as reflected in the level of phosphorylation of SMADs 2 and 3. Conclusions Absence of CLIC4 results in morphologic changes consistent with its known role in angiogenesis. These changes may be at least partially responsible for the increased susceptibility to acute kidney

  10. Effect of altitude on brain intracellular pH and inorganic phosphate levels.

    PubMed

    Shi, Xian-Feng; Carlson, Paul J; Kim, Tae-Suk; Sung, Young-Hoon; Hellem, Tracy L; Fiedler, Kristen K; Kim, Seong-Eun; Glaeser, Breanna; Wang, Kristina; Zuo, Chun S; Jeong, Eun-Kee; Renshaw, Perry F; Kondo, Douglas G

    2014-06-30

    Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720ft/1438m), compared with residents of Belmont, MA (20ft/6m). Brain intracellular pH at the altitude of 4720ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes.

  11. Effect of altitude on brain intracellular pH and inorganic phosphate levels

    PubMed Central

    Shi, Xian-Feng; Carlson, Paul J.; Kim, Tae-Suk; Sung, Young-Hoon; Hellem, Tracy L.; Fiedler, Kristen K.; Kim, Seong-Eun; Glaeser, Breanna; Wang, Kristina; Zuo, Chun S.; Jeong, Eun-Kee; Renshaw, Perry F.; Kondo, Douglas G.

    2015-01-01

    Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720 ft/1438 m), compared with residents of Belmont, MA (20 ft/6 m). Brain intracellular pH at the altitude of 4720 ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes. PMID:24768210

  12. Effects of low-level laser exposure on calcium channels and intracellular release in cultured astrocytes

    NASA Astrophysics Data System (ADS)

    Mang, Thomas S.; Maneshi, Mohammed M.; Shucard, David W.; Hua, Susan; Sachs, Frederick

    2016-03-01

    Prompted by a study of traumatic brain injury (TBI) in a model system of cultured astrocytes, we discovered that low level laser illumination (LLL) at 660nm elevates the level of intracellular Ca2+. The coherence of the illumination was not essential since incoherent red light also worked. For cells bathed in low Ca2+ saline so that influx was suppressed, the Ca2+ level rose with no significant latency following illumination and consistent with a slow leak of Ca2+ from storage such as from the endoplasmic reticulum and/or mitochondria. When the cells were bathed in normal Ca2+ saline, the internal Ca2+ rose, but with a latency of about 17 seconds from the beginning of illumination. Pharmacologic studies with ryanodine inhibited the light effect. Testing the cells with fluid shear stress as used in the TBI model showed that mechanically induced elevation of cell Ca2+ was unaffected by illumination.

  13. Wogonin enhances intracellular adiponectin levels and suppresses adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Yang, Tan; Liu, Hua; Zhao, Bo; Xia, Zhongyuan; Zhang, Yemin; Zhang, Deling; Li, Mingxin; Cao, Yingkang; Zhang, Zhijiang; Bi, Yongyi; Wang, Changhua

    2017-01-30

    As an insulin sensitizer and modulator of inflammatory responses, adiponectin has become a therapeutic target for insulin resistance, diabetes, and diabetes-related complications. Wogonin possesses anti-oxidative, anti-inflammatory, and anti-diabetic abilities. However, its effect on generation and secretion of adiponectin is ill-defined in adipocytes. Here, we demonstrated that wogonin administration augmented intracellular adiponectin levels and attenuated adiponectin release in a dose- and time-dependent manner in mature 3T3-L1 adipocytes, along with a suppression of PKCδ phosphorylation. Wogonin treatment also prevented PKCδ overexpression-induced reduction of intracellular adiponectin levels and enhancement of adiponectin release. In addition, wogonin supplementation dramatically increased AMPK phosphorylation and SirT1 expression. Inhibition of either AMPK or SirT1 mitigated wogonin action on adiponectin production and release. Furthermore, inhibition of AMPK by its specific inhibitor markedly reduced wogonin-enhanced mRNA and protein expressions of SirT1. These results suggested that wogonin regulated expression and secretion of adiponectin via PKCδ/AMPK/SirT1 signaling pathway in mature 3T3-L1 adipocytes.

  14. High Levels of Intracellular Cysteine Promote Oxidative DNA Damage by Driving the Fenton Reaction

    PubMed Central

    Park, Sunny; Imlay, James A.

    2003-01-01

    Escherichia coli is generally resistant to H2O2, with >75% of cells surviving a 3-min challenge with 2.5 mM H2O2. However, when cells were cultured with poor sulfur sources and then exposed to cystine, they transiently exhibited a greatly increased susceptibility to H2O2, with <1% surviving the challenge. Cell death was due to an unusually rapid rate of DNA damage, as indicated by their filamentation, a high rate of mutation among the survivors, and DNA lesions by a direct assay. Cell-permeable iron chelators eliminated sensitivity, indicating that intracellular free iron mediated the conversion of H2O2 into a hydroxyl radical, the direct effector of DNA damage. The cystine treatment caused a temporary loss of cysteine homeostasis, with intracellular pools increasing about eightfold. In vitro analysis demonstrated that cysteine reduces ferric iron with exceptional speed. This action permits free iron to redox cycle rapidly in the presence of H2O2, thereby augmenting the rate at which hydroxyl radicals are formed. During routine growth, cells maintain small cysteine pools, and cysteine is not a major contributor to DNA damage. Thus, the homeostatic control of cysteine levels is important in conferring resistance to oxidants. More generally, this study provides a new example of a situation in which the vulnerability of cells to oxidative DNA damage is strongly affected by their physiological state. PMID:12618458

  15. Latrepirdine (Dimebon™) enhances autophagy and reduces intracellular GFP-Aβ42 levels in yeast

    PubMed Central

    Bharadwaj, Prashant R.; Verdile, Giuseppe; Barr, Renae K.; Gupta, Veer; Steele, John W.; Lachenmayer, M. Lenard; Yue, Zhenyu; Ehrlich, Michelle E.; Petsko, Gregory; Ju, Shulin; Ringe, Dagmar; Sankovich, Sonia E.; Caine, Joanne M.; Macreadie, Ian G.; Gandy, Sam; Martins, Ralph N.

    2012-01-01

    Latrepirdine (Dimebon™), an anti-histamine, has shown some benefits in trials of neurodegenerative diseases characterized by accumulation of aggregated or misfolded protein such as Alzheimer’s disease (AD) and has been shown to promote the removal of α-synuclein protein aggregates in vivo. An important pathway for removal of aggregated or misfolded proteins is the autophagy-lysosomal pathway, which has been implicated in AD pathogenesis, and enhancing this pathway has been shown to have therapeutic potential in AD and other proteinopathies. Here we use a yeast model Saccharomyces cerevisiae, to investigate whether latrepirdine can enhance autophagy and reduce levels of Aβ42 aggregates. Latrepirdine was shown to up-regulate yeast vacuolar (lysosomal) activity and promote transport of the autophagic marker (Atg8) to the vacuole. Using an in vitro GFP tagged Aβ yeast expression system, we investigated whether latrepirdine-enhanced autophagy was associated with a reduction in levels of intracellular GFP-Aβ42. GFP-Aβ42 was localized into punctate patterns compared to the diffuse cytosolic pattern of GFP and the GFP-Aβ42 (19:34), which does not aggregate. In the autophagy deficient mutant (Atg8Δ), GFP-Aβ42 showed a more diffuse cytosolic localization, reflecting the inability of this mutant to sequester GFP-Aβ42. Similar to rapamycin, we observed that latrepirdine significantly reduced GFP-Aβ42 in wild-type compared to the Atg8Δ mutant. Further, latrepirdine treatment attenuated Aβ42-induced toxicity in wild-type cells but not in the Atg8Δ mutant. Together, our findings provide evidence for a novel mechanism of action for latrepirdine in inducing autophagy and reducing intracellular levels of GFP-Aβ42. PMID:22903131

  16. Structural Dynamics of Soluble Chloride Intracellular Channel Protein CLIC1 Examined by Amide Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS)†

    PubMed Central

    Stoychev, Stoyan H.; Nathaniel, Christos; Fanucchi, Sylvia; Brock, Melissa; Li, Sheng; Asmus, Kyle; Woods, Virgil L.; Dirr, Heini W.

    2009-01-01

    Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1 but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2 and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilising domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix α1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand β2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer. PMID:19650640

  17. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives.

  18. Determination of Vinyl Chloride at ug/l. Level in Water by Gas Chromatography

    ERIC Educational Resources Information Center

    Bellar, Thomas A.; And Others

    1976-01-01

    A quantitative method for the determination of vinyl chloride in water is presented. Vinyl chloride is transfered to the gas phase by bubbling inert gas through the water. After concentration on silica gel or Carbosieve-B, determination is by gas chromatography. Confirmation of vinyl chloride is by gas chromatography-mass spectrometry. (Author/BT)

  19. Determination of Vinyl Chloride at ug/l. Level in Water by Gas Chromatography

    ERIC Educational Resources Information Center

    Bellar, Thomas A.; And Others

    1976-01-01

    A quantitative method for the determination of vinyl chloride in water is presented. Vinyl chloride is transfered to the gas phase by bubbling inert gas through the water. After concentration on silica gel or Carbosieve-B, determination is by gas chromatography. Confirmation of vinyl chloride is by gas chromatography-mass spectrometry. (Author/BT)

  20. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization.

    PubMed

    Miele, Claudia; Paturzo, Flora; Teperino, Raffaele; Sakane, Fumio; Fiory, Francesca; Oriente, Francesco; Ungaro, Paola; Valentino, Rossella; Beguinot, Francesco; Formisano, Pietro

    2007-11-02

    Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism.

  1. Circadian Clock in a Mouse Colon Tumor Regulates Intracellular Iron Levels to Promote Tumor Progression*

    PubMed Central

    Okazaki, Fumiyasu; Matsunaga, Naoya; Okazaki, Hiroyuki; Azuma, Hiroki; Hamamura, Kengo; Tsuruta, Akito; Tsurudome, Yuya; Ogino, Takashi; Hara, Yukinori; Suzuki, Takuya; Hyodo, Kenji; Ishihara, Hiroshi; Kikuchi, Hiroshi; To, Hideto; Aramaki, Hironori; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-01-01

    Iron is an important biological catalyst and is critical for DNA synthesis during cell proliferation. Cellular iron uptake is enhanced in tumor cells to support increased DNA synthesis. Circadian variations in DNA synthesis and proliferation have been identified in tumor cells, but their relationship with intracellular iron levels is unclear. In this study, we identified a 24-h rhythm in iron regulatory protein 2 (IRP2) levels in colon-26 tumors implanted in mice. Our findings suggest that IRP2 regulates the 24-h rhythm of transferrin receptor 1 (Tfr1) mRNA expression post-transcriptionally, by binding to RNA stem-loop structures known as iron-response elements. We also found that Irp2 mRNA transcription is promoted by circadian clock genes, including brain and muscle Arnt-like 1 (BMAL1) and the circadian locomotor output cycles kaput (CLOCK) heterodimer. Moreover, growth in colon-26(Δ19) tumors expressing the clock-mutant protein (CLOCKΔ19) was low compared with that in wild-type colon-26 tumor. The time-dependent variation of cellular iron levels, and the proliferation rate in wild-type colon-26 tumor was decreased by CLOCKΔ19 expression. Our findings suggest that circadian organization contributes to tumor cell proliferation by regulating iron metabolism in the tumor. PMID:26797126

  2. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    USGS Publications Warehouse

    Hughes, J.D.; Vacher, H.L.; Sanford, W.E.

    2009-01-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick. ?? US Government 2008.

  3. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.

    2009-06-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

  4. Comparison of the biological effects of {sup 18}F at different intracellular levels

    SciTech Connect

    Kashino, Genro; Hayashi, Kazutaka; Douhara, Kazumasa; Kobashigawa, Shinko; Mori, Hiromu

    2014-11-07

    Highlights: • We estimated the inductions of DNA DSB in cell treated with {sup 18}F-FDG. • We found that inductions of DNA DSB are dependent on accumulation of {sup 18}F in cell. • Accumulation of {sup 18}F in cell may be indispensable for risk estimation of PET. - Abstract: We herein examined the biological effects of cells treated with {sup 18}F labeled drugs for positron emission tomography (PET). The relationship between the intracellular distribution of {sup 18}F and levels of damaged DNA has yet to be clarified in detail. We used culture cells (Chinese Hamster Ovary cells) treated with two types of {sup 18}F labeled drugs, fluorodeoxyglucose (FDG) and fluorine ion (HF). FDG efficiently accumulated in cells, whereas HF did not. To examine the induction of DNA double strand breaks (DSB), we measured the number of foci for 53BP1 that formed at the site of DNA DSB. The results revealed that although radioactivity levels were the same, the induction of 53BP1 foci was stronger in cells treated with {sup 18}F-FDG than in those treated with {sup 18}F-HF. The clonogenic survival of cells was significantly lower with {sup 18}F-FDG than with {sup 18}F-HF. We concluded that the efficient accumulation of {sup 18}F in cells led to stronger biological effects due to more severe cellular lethality via the induction of DNA DSB.

  5. Overexpression of Sly41 suppresses COPII vesicle–tethering deficiencies by elevating intracellular calcium levels

    PubMed Central

    Mukherjee, Indrani; Barlowe, Charles

    2016-01-01

    SLY41 was identified as a multicopy suppressor of loss of Ypt1, a Rab GTPase essential for COPII vesicle tethering at the Golgi complex. SLY41 encodes a polytopic membrane protein with homology to a class of solute transporter proteins, but how overexpression suppresses vesicle-tethering deficiencies is not known. Here we show that Sly41 is efficiently packaged into COPII vesicles and actively cycles between the ER and Golgi compartments. SLY41 displays synthetic negative genetic interactions with PMR1, which encodes the major Golgi-localized Ca2+/Mn2+ transporter and suggests that Sly41 influences cellular Ca2+ and Mn2+ homeostasis. Experiments using the calcium probe aequorin to measure intracellular Ca2+ concentrations in live cells reveal that Sly41 overexpression significantly increases cytosolic calcium levels. Although specific substrates of the Sly41 transporter were not identified, our findings indicate that localized overexpression of Sly41 to the early secretory pathway elevates cytosolic calcium levels to suppress vesicle-tethering mutants. In vitro SNARE cross-linking assays were used to directly monitor the influence of Ca2+ on tethering and fusion of COPII vesicles with Golgi membranes. Strikingly, calcium at suppressive concentrations stimulated SNARE-dependent membrane fusion when vesicle-tethering activity was reduced. These results show that calcium positively regulates the SNARE-dependent fusion stage of ER–Golgi transport. PMID:27030673

  6. Sodium Chloride Increases Aβ Levels by Suppressing Aβ Clearance in Cultured Cells

    PubMed Central

    Cheng, Xiao-Juan; Gao, Yuan; Zhao, Yu-Wu; Cheng, Xiao-Dong

    2015-01-01

    Recent studies suggest that high-salt diet is associated with cognitive decline in human and mouse. The fact that genetic factors account for less than 50% cases of sporadic Alzheimer’s disease (AD) highlights the important contribution of environmental factors, such as high-salt diet, in AD pathogenesis. However, whether and how high-salt diet fits the “amyloid cascade” hypothesis remains unexplored. Here, we show sodium chloride (NaCl) could increase Aβ levels in the medium of HEK293 cells overexpressing amyloid precursor protein (APP) or C99 fragment. NaCl treatment dose not affect APP level, gamma secretase level or activity. Instead, NaCl treatment suppresses the capacity of cells to clear Aβ and reduces Apolipoprotein E (ApoE) level. Finally, NaCl treated THP-1 or BV2 cells are inefficient in clearing Aβ when co-cultured with rat primary neurons. Our study suggests that high-salt diet may increase AD risk by directly modulating Aβ levels. PMID:26075716

  7. Sodium Chloride Increases Aβ Levels by Suppressing Aβ Clearance in Cultured Cells.

    PubMed

    Cheng, Xiao-Juan; Gao, Yuan; Zhao, Yu-Wu; Cheng, Xiao-Dong

    2015-01-01

    Recent studies suggest that high-salt diet is associated with cognitive decline in human and mouse. The fact that genetic factors account for less than 50% cases of sporadic Alzheimer's disease (AD) highlights the important contribution of environmental factors, such as high-salt diet, in AD pathogenesis. However, whether and how high-salt diet fits the "amyloid cascade" hypothesis remains unexplored. Here, we show sodium chloride (NaCl) could increase Aβ levels in the medium of HEK293 cells overexpressing amyloid precursor protein (APP) or C99 fragment. NaCl treatment dose not affect APP level, gamma secretase level or activity. Instead, NaCl treatment suppresses the capacity of cells to clear Aβ and reduces Apolipoprotein E (ApoE) level. Finally, NaCl treated THP-1 or BV2 cells are inefficient in clearing Aβ when co-cultured with rat primary neurons. Our study suggests that high-salt diet may increase AD risk by directly modulating Aβ levels.

  8. Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical substrate features.

    PubMed

    Li, Shufeng; Tuft, Bradley; Xu, Linjing; Polacco, Marc; Clarke, Joseph C; Guymon, C Allan; Hansen, Marlan R

    2016-08-01

    Micro- and nanoscale surface features have emerged as potential tools to direct neurite growth into close proximity with next generation neural prosthesis electrodes. However, the signaling events underlying the ability of growth cones to respond to topographical features remain largely unknown. Accordingly, this study probes the influence of [Ca(2+) ]i and cyclic nucleotide levels on the ability of neurites from spiral ganglion neurons (SGNs) to precisely track topographical micropatterns. Photopolymerization and photomasking were used to generate micropatterned methacrylate polymer substrates. Dissociated SGN cultures were plated on the micropatterned surfaces. Calcium influx and release from internal stores were manipulated by elevating extracellular K(+) , maintenance in calcium-free media, or bath application of various calcium channel blockers. Cyclic nucleotide activity was increased by application of cpt-cAMP or 8-Br-cGMP. Elevation of [Ca(2+) ]i by treatment of cultures with elevated potassium reduced neurite alignment to physical microfeatures. Maintenance of cultures in Ca(2+) -free medium or treatment with the non-selective voltage-gated calcium channel blocker cadmium or L-type Ca(2+) channel blocker nifedipine did not signficantly alter SGN neurite alignment. By contrast, ryanodine or xestospongin C, which block release of internal calcium stores via ryanodine-sensitive channels or inositol-1,4,5-trisphosphate receptors respectively, each significantly decreased neurite alignment. Cpt-cAMP significantly reduced neurite alignment while 8-Br-cGMP significantly enhanced neurite alignment. Manipulation of [Ca(2+) ]i or cAMP levels significantly disrupts neurite guidance while elevation of cGMP levels increases neurite alignment. The results suggest intracellular signaling pathways similar to those recruited by chemotactic cues are involved in neurite guidance by topographical features. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2037

  9. Extracellular NAD+ regulates intracellular calcium levels and induces activation of human granulocytes

    PubMed Central

    2005-01-01

    β-NAD+e (extracellular β-NAD+), present at nanomolar levels in human plasma, has been implicated in the regulation of [Ca2+]i (the intracellular calcium concentration) in various cell types, including blood cells, by means of different mechanisms. Here, we demonstrate that micromolar NAD+e (both the α and the β extracellular NAD+ forms) induces a sustained [Ca2+]i increase in human granulocytes by triggering the following cascade of causally related events: (i) activation of adenylate cyclase and overproduction of cAMP; (ii) activation of protein kinase A; (iii) stimulation of ADP-ribosyl cyclase activity and consequent overproduction of cADP-ribose, a universal Ca2+ mobilizer; and (iv) influx of extracellular Ca2+. The NAD+e-triggered [Ca2+]i elevation translates into granulocyte activation, i.e. superoxide and nitric oxide generation, and enhanced chemotaxis in response to 0.1–10 μM NAD+e. Thus extracellular β-NAD+e behaves as a novel pro-inflammatory cytokine, stimulating human granulocytes and potentially recruiting them at sites of inflammation. PMID:16225456

  10. Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons.

    PubMed

    Himi, T; Ikeda, M; Yasuhara, T; Nishida, M; Morita, I

    2003-12-01

    Cysteine uptake is the rate-limiting process in glutathione synthesis. Previously we have shown that the inhibitors of excitatory amino acid transporters (EAATs) significantly enhance glutamate toxicity via depletion of intracellular glutathione. In this study we show evidence that the neuronal glutamate transporter EAAT3 is directly enrolled in cysteine uptake in cultured neurons. Neuronal cysteine uptake was dependent on the extracellular sodium, and was suppressed by EAAT inhibitors. Cysteine uptake was suppressed by extracellular glutamate and aspartate, substrates of EAATs, and not by substrates of cysteine transporters. Intracellular glutathione levels were reduced by EAAT inhibitors, and not by inhibitors of cysteine transporters. Knock down of EAAT3 expression using antisense oligonucleotide significantly reduced cysteine uptake, intracellular glutathione level, and neuronal viability against oxidative stress. These facts indicate that EAAT3 functions as a cysteine transporter, and this function seems to be unique and distinct from cysteine transporters that have been reported.

  11. Simultaneous monitoring of intracellular ATP and oxygen levels in chondrogenic differentiation using a dual-color bioluminescence reporter.

    PubMed

    Kwon, Hyuck Joon; Ohmiya, Yoshihiro; Yasuda, Kazunori

    2014-12-01

    A number of assay methods which measure cellular metabolic activity have only measured intracellular ATP levels because it has been speculated that ATP production and oxygen consumption are obligatorily coupled to each other under normal conditions. However, there exist many cases in which ATP production and oxygen consumption are uncoupled. Therefore, measurement of only intracellular ATP levels has a limit for understanding the overall metabolic states during various cellular functions. Here, we report a novel system for simultaneously monitoring intracellular ATP and oxygen levels using a red-emitting Phrixothrix hirtus luciferase (PxRe) and a blue-emitting Renilla luciferase (Rluc). Using this system, we monitored the dynamic changes in both intracellular ATP and oxygen levels during chondrogenesis. We found that the oxygen level oscillated at twice the frequency of ATP in chondrogenesis and the oxygen oscillations have an antiphase mode to the ATP oscillations; we also found an independent mode for the ATP oscillations. This result indicates that both mitochondrial and non-mitochondrial respiration oscillate and thus play a role in chondrogenesis. This dual-color monitoring system is useful for studying metabolic regulations that underlie diverse cellular processes.

  12. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    PubMed

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.

  13. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans

    PubMed Central

    Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Passos, Renata L. Freitas; Fonseca, Michele Atalla; Oliveira, Kenya Paula Moreira; Lima, Milene Rodrigues Malheiros; Guimarães, Juliana Bohen; Ferreira-Júnior, João Batista; Martini, Angelo R. P.; Lima, Nilo R. V.; Soares, Danusa Dias; Oliveira, Edilamar Menezes

    2010-01-01

    In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL−1; p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL−1; p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = −0

  14. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans.

    PubMed

    Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Passos, Renata L Freitas; Fonseca, Michele Atalla; Oliveira, Kenya Paula Moreira; Lima, Milene Rodrigues Malheiros; Guimarães, Juliana Bohen; Ferreira-Júnior, João Batista; Martini, Angelo R P; Lima, Nilo R V; Soares, Danusa Dias; Oliveira, Edilamar Menezes; Rodrigues, Luiz Oswaldo Carneiro

    2010-11-01

    In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL(-1); p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL(-1); p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = -0.85, p

  15. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7.

    PubMed

    Hosein, Althea M; Breidt, Frederick; Smith, Charles E

    2011-02-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

  16. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion

    PubMed Central

    Tochhawng, Lalchhandami; Deng, Shuo; Pugalenthi, Ganesan; Kumar, Alan Prem; Lim, Kiat Hon; Tan, Tuan Zea; Yang, Henry; Hooi, Shing Chuan; Goh, Yaw Chong; Maciver, Sutherland K.; Pervaiz, Shazib; Yap, Celestial T.

    2016-01-01

    The actin-binding protein, gelsolin, is a well known regulator of cancer cell invasion. However, the mechanisms by which gelsolin promotes invasion are not well established. As reactive oxygen species (ROS) have been shown to promote cancer cell invasion, we investigated on the hypothesis that gelsolin-induced changes in ROS levels may mediate the invasive capacity of colon cancer cells. Herein, we show that increased gelsolin enhances the invasive capacity of colon cancer cells, and this is mediated via gelsolin's effects in elevating intracellular superoxide (O2.-) levels. We also provide evidence for a novel physical interaction between gelsolin and Cu/ZnSOD, that inhibits the enzymatic activity of Cu/ZnSOD, thereby resulting in a sustained elevation of intracellular O2.-. Using microarray data of human colorectal cancer tissues from Gene Omnibus, we found that gelsolin gene expression positively correlates with urokinase plasminogen activator (uPA), an important matrix-degrading protease invovled in cancer invasion. Consistent with the in vivo evidence, we show that increased levels of O2.- induced by gelsolin overexpression triggers the secretion of uPA. We further observed reduction in invasion and intracellular O2.- levels in colon cancer cells, as a consequence of gelsolin knockdown using two different siRNAs. In these cells, concurrent repression of Cu/ZnSOD restored intracellular O2.- levels and rescued invasive capacity. Our study therefore identified gelsolin as a novel regulator of intracellular O2.- in cancer cells via interacting with Cu/ZnSOD and inhibiting its enzymatic activity. Taken together, these findings provide insight into a novel function of gelsolin in promoting tumor invasion by directly impacting the cellular redox milieu. PMID:27391159

  17. Cystic fibrosis mutations for p.F508del compound heterozygotes predict sweat chloride levels and pancreatic sufficiency

    PubMed Central

    Sebro, R; Levy, H; Schneck, K; Dimmock, D; Raby, BA; Cannon, CL; Broeckel, U; Risch, NJ

    2014-01-01

    Cystic fibrosis (CF) is a monogenetic disease with a complex phenotype. Over 1500 mutations in the CFTR gene have been identified; however, the p.F508del mutation is most common. There has been limited correlation between the CFTR mutation genotype and the disease phenotypes. We evaluated the non-p.F508del mutation of 108 p.F508del compound heterozygotes using the biological classification method, Grantham and Sorting Intolerant from Tolerant (SIFT) scores to assess whether these scoring systems correlated with sweat chloride levels, pancreatic sufficiency, predicted FEV1, and risk of infection with Pseudomonas aeruginosa in the last year. Mutations predicted to be ‘mild’ by the biological classification method are associated with more normal sweat chloride levels (p < 0.001), pancreatic sufficiency (p < 0.001) and decreased risk of infection with Pseudomonas in the last year (p = 0.014). Lower Grantham scores are associated with more normal sweat chloride levels (p < 0.001), and pancreatic sufficiency (p = 0.014). Higher SIFT scores are associated with more normal sweat chloride levels (p < 0.001) and pancreatic sufficiency (p = 0.011). There was no association between pulmonary function measured by predicted FEV1 and the biological classification (p = 0.98), Grantham (p = 0.28) or SIFT scores (p = 0.62), which suggests the pulmonary disease related to CF may involve other modifier genes and environmental factors. PMID:22035343

  18. Using targeted variants of aequorin to measure Ca2+ levels in intracellular organelles.

    PubMed

    Granatiero, Veronica; Patron, Maria; Tosatto, Anna; Merli, Giulia; Rizzuto, Rosario

    2014-01-01

    Aequorin is a Ca(2+)-sensitive photoprotein isolated from the jellyfish Aequorea victoria. It is an ideal probe for measuring Ca(2+) concentration ([Ca(2+)]) in intracellular organelles because it can be modified to include specific targeting sequences. On the binding of Ca(2+) to three high-affinity sites in aequorin, an irreversible reaction occurs in which the prosthetic group coelenterazine is released and a photon is emitted. This protocol presents procedures for expressing, targeting, and reconstituting aequorin in intact and permeabilized mammalian cells and describes how to use this photoprotein to measure intracellular [Ca(2+)] in various subcellular compartments.

  19. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling.

    PubMed

    Paul, Manash K; Bisht, Bharti; Darmawan, Daphne O; Chiou, Richard; Ha, Vi L; Wallace, William D; Chon, Andrew T; Hegab, Ahmed E; Grogan, Tristan; Elashoff, David A; Alva-Ornelas, Jackelyn A; Gomperts, Brigitte N

    2014-08-07

    Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation. Changing ROS levels activate Nrf2, which activates the Notch pathway to stimulate ABSC self-renewal and an antioxidant program that scavenges intracellular ROS, returning overall ROS levels to a low state to maintain homeostatic balance. This redox-mediated regulation of lung stem cell function has significant implications for stem cell biology, repair of lung injuries, and diseases such as cancer.

  20. Taurodeoxycholate activates potassium and chloride conductances via an IP3-mediated release of calcium from intracellular stores in a colonic cell line (T84)

    PubMed Central

    Devor, D C; Sekar, M C; Frizzell, R A; Duffey, M E

    1993-01-01

    Whole-cell patch-clamp techniques and fluorescence measurements of intracellular Ca2+ concentration, (Ca2+)i, were used to investigate the mechanism of taurodeoxycholate (TDC) stimulation of Cl- secretion in the T84 colonic cell line. During perforated whole-cell recordings, the cell membrane voltage was alternately clamped to EK and ECl. Initially, TDC (0.75 mM) stimulated inward nonselective cation currents that were composed of discrete large conductance single-channel events. This initial response was followed by activation of K+ and Cl- currents with peak values of 385 +/- 41 pA and 98 +/- 28 pA, respectively (n = 12). The K+ and Cl- currents oscillated while TDC was present and returned to baseline levels upon its removal. The threshold for activation of the oscillatory currents was 0.1 mM TDC. Taurocholate, a bile acid that does not stimulate colonic Cl- secretion, induced no current response. The TDC-induced currents could be activated in Ca(2+)-free bathing solutions. Preincubation of cells with the Ca2+ chelator, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethy)-ester (20 microM), (BAPTA-AM), eliminated the K+ and Cl- current responses, although the nonselective cation channel events were still present. Replacement of bath Na+ with NMDG+ inhibited the TDC-induced nonselective cation current but did not affect the K+ or Cl- currents. TDC induced a transient (Ca2+)i rise of 575 +/- 70 nM from a baseline of 71 +/- 5 nM (n = 15); thereafter, (Ca2+)i either plateaued or oscillated. TDC-induced (Ca2+)i oscillations were observed in the absence of bath Ca2+; however, removal of bath Ca2+ during the TDC response caused (Ca2+)i to return to near baseline values. Simultaneous K+ current and (Ca2+)i measurements confirmed that the initial nonselective cation current was independent of (Ca2+)i, while K+ current oscillations were in phase with the (Ca2+)i oscillations. TDC induced inositol monophosphate (IP) accumulation, reflecting

  1. Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells

    PubMed Central

    Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948

  2. The relationship between the violet pigment PP-V production and intracellular ammonium level in Penicillium purpurogenum.

    PubMed

    Kojima, Ryo; Arai, Teppei; Matsufuji, Hiroshi; Kasumi, Takafumi; Watanabe, Taisuke; Ogihara, Jun

    2016-12-01

    Penicillium purpurogenum is the fungus that produces an azaphilone pigment. However, details about the pigment biosynthesis pathway are unknown. The violet pigment PP-V is the one of the main pigments biosynthesized by this fungus. This pigment contains an amino group in a pyran ring as its core structure. We focused on this pigment and examined the relationship between intracellular ammonium concentration and pigment production using glutamine as a nitrogen source. The intracellular ammonium level decreased about 1.5-fold in conditions favoring PP-V production. Moreover, P. purpurogenum was transferred to medium in which it commonly produces the related pigment PP-O after cultivating it in the presence or absence of glutamine to investigate whether this fungus biosynthesizes PP-V using surplus ammonium in cells. Only mycelia cultured in medium containing 10 mM glutamine produced the violet pigment, and simultaneously intracellular ammonium levels decreased under this condition. From comparisons of the amount of PP-V that was secreted with quantity of surplus intracellular ammonium, it is suggested that P. purpurogenum maintains ammonium homeostasis by excreting waste ammonium as PP-V.

  3. Elevated level of nitric oxide mediates the anti-depressant effect of rubidium chloride in mice.

    PubMed

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Kordjazy, Mehdi; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza

    2015-09-05

    Rubidium has been used to treat psychiatric conditions including depression. We examined the antidepressant activity of rubidium chloride (RbCl) in male mice and the possible interference of nitric oxide (NO) in this effect. Mouse forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant-like effect of RbCl. These drugs were used in this study: N(G)-l-arginine methyl ester (l-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, 7-Nitroindazole and aminoguanidine, selective neuronal and inducible NOS inhibitors, respectively, and l-arginine, an NO precursor. We studied the changes of serum and hippocampus nitrite level after different treatments. RbCl (30mg/kg), when administered 60min before the tests, significantly reduced the immobility time. Non-effective doses of l-NAME (10mg/kg) and aminoguanidine (50mg/kg), co-administered with the effective dose of RbCl (30mg/kg), reversed the anti-immobility effect of RbCl, while 7-NI (25mg/kg) could not prevent the diminishing effect of RbCl on immobility time. Moreover, co-administration of non-effective doses of l-arginine (750mg/kg) and RbCl (10mg/kg) decreased the immobility time. None of the mentioned treatments altered the locomotor activity of mice in open-field test. Nitrite level was significantly increased in serum and hippocampus of animals after RbCl (30mg/kg) administration and this nitrite level elevation was reversed by non-effective dose of l-NAME and aminoguanidine, but not 7-NI. Our data for the first time reveal the role of NO pathway in the antidepressant-like activity of RbCl, concluding that this effect results from elevation of NO through involvement of iNOS in mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Toxicity of triphenyltin chloride to the rotifer Brachionus koreanus across different levels of biological organization.

    PubMed

    Yi, Andy Xianliang; Han, Jeonghoon; Lee, Jae-Seong; Leung, Kenneth M Y

    2016-01-01

    Although triphenyltin (TPT) compounds are ubiquitous pollutants in urbanised coastal environments in Asian regions, their toxicities to marine organisms are still poorly known. This study was designed to investigate the toxicity of triphenyltin chloride (TPTCl) on the rotifer Brachionus koreanus across different levels of biological organisation. Firstly, we concurrently performed a 24 h static-acute toxicity test and a 6-day semi-static multigenerational life-cycle test using the rotifer. Our results demonstrated that the 24-h median lethal concentration of TPTCl for the rotifer was 29.6 μg/L and the 6-day median effect concentration, based on the population growth inhibition, was 3.31 μg/L. Secondly, we examined the expression of 12 heat shock protein (hsp) genes, four glutathione S-transferase (GST) genes, one retinoid X receptor (RXR) gene and 13 cytochrome P450 (CYP) genes in the rotifers after exposure to 20 µg/L TPTCl for 24 h. Among these studied genes, hsp90α2, GST-O and CYP3045C1 were the most significantly up-regulated genes with a relative expression level up to 32.9, 4.4 and 62.6 folds, respectively. The expression of these three genes in the rotifers showed an increasing trend in the first few hours of TPTCl exposure, peaked at 3 h (hsp90α2 and GST-O) and 12 h (CYP3045C1) respectively, and then gradually returned to a lower level at 24 h. Such up-regulations of hsp and GST genes probably offer cellular protection against the TPT-mediated oxidative stress while the accelerated induction of CYP genes possibly facilitates the detoxification of this toxicant in the rotifer.

  5. Plasticizer-level study of poly(vinyl chloride) ion-selective membranes.

    PubMed

    Simon, M A; Kusy, R P

    1996-03-01

    Highly plasticized poly(vinyl chloride) (PVC) membranes (200 per hundred resin [phr]) form the basis of one class of ion-selective electrodes (ISEs). In previous work on the mechanical properties of membranes, the optimal ratio of plasticizer level employed to minimal level required for complete plasticization (phr(exp)/phrmin) was found to be 2.0. The current study was designed to determine whether this ratio is necessary or sufficient for proper ISE function. Dynamic mechanical analysis (DMA) was used to examine the effects of five plasticizers on the dynamic mechanical properties of membranes at three frequencies (110, 11.0, and 1.1 Hz) as a function of temperature (-100 degrees C to +100 degrees C); dioctyl sebacate (DOS), epoxidized propylene glycol dioleate (PGDO), ortho-nitrophenyl octyl ether (o-NPOE), epoxidized soybean oil (ESO), and epoxidized linseed oil (ELO). The glass transition temperature of PVC, which was found to be +77.1 degrees C at 11.0 Hz, was depressed by the addition of 200 phr of each plasticizer from a high of -1.4 degrees C (PGDO at 110 Hz) to a low of -70.2 degrees C (DOS at 1.1 Hz). DMA and electromotive-force (EMF) measurements on membranes plasticized with o-NPOE through a range of phr(exp)/phrmin from 0.5 to 9.3 indicated that a "transition window" occurs between phr(exp)/phrmin of 2.0 and 3.3 in which the membranes change from minimally plasticized polymer films to predictable ion-selective membranes, coinciding with the optimal mechanical properties observed previously. Based on dynamic mechanical properties and EMF response data, the optimal phr(exp)/phrmin++ ratios for membranes as a function of plasticizer were proposed: 0.8 for ESO and ELO, 1.3 for PGDO, 1.7 for DOS, and 3.0 for o-NPOE.

  6. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.

    PubMed

    Abraham, Bobin George; Santala, Ville; Tkachenko, Nikolai V; Karp, Matti

    2014-11-01

    Monitoring of intracellular redox status in a bacterial cell provides vital information about the physiological status of the cell, which can be exploited in several applications such as metabolic engineering and computational modeling. Fluorescent protein-based genetically encoded sensors can be used to monitor intracellular oxidation/reduction status. This study reports the development of a redox sensor for intracellular measurements using fluorescent protein pairs and the phenomenon of Förster resonance energy transfer (FRET). For the development of the sensor, fluorescent proteins Citrine and Cerulean were genetically modified to carry reactive cysteine residues on the protein surface close to the chromophore and a constructed FRET pair was fused using a biotinylation domain as a linker. In oxidized state, the FRET pairs are in close proximity by labile disulfide bond formation resulting in higher FRET efficiency. In reducing environment, the FRET is diminished due to the increased distance between FRET pairs providing large dynamic measurement range to the sensor. Intracellular studies in Escherichia coli mutants revealed the capability of the sensor in detecting real-time redox variations at single cell level. The results were validated by intensity based and time resolved measurements. The functional immobilization of the fluorescent protein-based FRET sensor at solid surfaces for in vitro applications was also demonstrated.

  7. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop

    PubMed Central

    Xiao, Qinghuan; Yu, Kuai; Perez-Cornejo, Patricia; Cui, Yuanyuan; Arreola, Jorge; Hartzell, H. Criss

    2011-01-01

    Ca2+-activated Cl− channels (CaCCs) are exceptionally well adapted to subserve diverse physiological roles, from epithelial fluid transport to sensory transduction, because their gating is cooperatively controlled by the interplay between ionotropic and metabotropic signals. A molecular understanding of the dual regulation of CaCCs by voltage and Ca2+ has recently become possible with the discovery that Ano1 (TMEM16a) is an essential subunit of CaCCs. Ano1 can be gated by Ca2+ or by voltage in the absence of Ca2+, but Ca2+- and voltage-dependent gating are very closely coupled. Here we identify a region in the first intracellular loop that is crucial for both Ca2+ and voltage sensing. Deleting 448EAVK in the first intracellular loop dramatically decreases apparent Ca2+ affinity. In contrast, mutating the adjacent amino acids 444EEEE abolishes intrinsic voltage dependence without altering the apparent Ca2+affinity. Voltage-dependent gating of Ano1 measured in the presence of intracellular Ca2+ was facilitated by anions with high permeability or by an increase in [Cl−]e. Our data show that the transition between closed and open states is governed by Ca2+ in a voltage-dependent manner and suggest that anions allosterically modulate Ca2+-binding affinity. This mechanism provides a unified explanation of CaCC channel gating by voltage and ligand that has long been enigmatic. PMID:21555582

  8. The voltage dependence of the TMEM16B/anoctamin2 calcium-activated chloride channel is modified by mutations in the first putative intracellular loop

    PubMed Central

    Cenedese, Valentina; Betto, Giulia; Celsi, Fulvio; Cherian, O. Lijo; Pifferi, Simone

    2012-01-01

    Ca2+-activated Cl− channels (CaCCs) are involved in several physiological processes. Recently, TMEM16A/anoctamin1 and TMEM16B/anoctamin2 have been shown to function as CaCCs, but very little information is available on the structure–function relations of these channels. TMEM16B is expressed in the cilia of olfactory sensory neurons, in microvilli of vomeronasal sensory neurons, and in the synaptic terminals of retinal photoreceptors. Here, we have performed the first site-directed mutagenesis study on TMEM16B to understand the molecular mechanisms of voltage and Ca2+ dependence. We have mutated amino acids in the first putative intracellular loop and measured the properties of the wild-type and mutant TMEM16B channels expressed in HEK 293T cells using the whole cell voltage-clamp technique in the presence of various intracellular Ca2+ concentrations. We mutated E367 into glutamine or deleted the five consecutive glutamates 386EEEEE390 and 399EYE401. The EYE deletion did not significantly modify the apparent Ca2+ dependence nor the voltage dependence of channel activation. E367Q and deletion of the five glutamates did not greatly affect the apparent Ca2+ affinity but modified the voltage dependence, shifting the conductance–voltage relations toward more positive voltages. These findings indicate that glutamates E367 and 386EEEEE390 in the first intracellular putative loop play an important role in the voltage dependence of TMEM16B, thus providing an initial structure–function study for this channel. PMID:22412191

  9. Levels of transaminases, alkaline phosphatase, and protein in tissues of Clarias gariepienus fingerlings exposed to sublethal concentrations of cadmium chloride.

    PubMed

    Velmurugan, Babu; Selvanayagam, Mariadoss; Cengiz, Elif I; Uysal, Ersin

    2008-12-01

    The freshwater fish, Clarias gariepienus fingerlings, were exposed to sublethal concentrations (1.7 and 3.4 mg/L) of cadmium chloride for 12 days. Aspartate aminotransferase (AAT), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total protein levels were assayed in the gill, brain, and muscle of the fish at regular intervals of 6 and 12 days. The activities of AAT, ALT, and ALP of the treated fishes increased significantly in all the tissues compared with the control fish. Protein level in all the tissues showed a significant decrease in comparison to unexposed controls throughout the experimental periods. These results revealed that cadmium chloride effects the intermediary metabolism of C. gariepienus fingerlings and that the assayed enzymes can work as good biomarkers of contamination.

  10. Chloride Test

    MedlinePlus

    ... practitioner determine if there is also an acid-base imbalance and helps to guide treatment. ^ Back to top What does the test result mean? An increased level of blood chloride (called hyperchloremia) usually indicates ... too much base is lost from the body (producing metabolic acidosis ) ...

  11. Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels.

    PubMed Central

    Tapia, Lucía; González-Agüero, Mauricio; Cisternas, Mónica F; Suazo, Miriam; Cambiazo, Verónica; Uauy, Ricardo; González, Mauricio

    2004-01-01

    MTs (metallothioneins) increase the resistance of cells to exposure to high Cu (copper) levels. Characterization of the MT-Cu complex suggests that MT has an important role in the cellular storage and/or delivery of Cu ions to cuproenzymes. In this work we investigate how these properties contribute to Cu homoeostasis by evaluating the uptake, accumulation and efflux of Cu in wild-type and MT I/II null rat fibroblast cell lines. We also assessed changes in the expression of Cu metabolism-related genes in response to Cu exposure. At sub-physiological Cu levels (0.4 microM), the metal content was not dependent on MT; however, when extracellular Cu was increased to physiological levels (10 microM), MTs were required for the cell's ability to accumulate the metal. The subcellular localization of the accumulated metal in the cytoplasm was MT-dependent. Following supra-physiological Cu exposure (>50 microM), MT null cells had a decreased capacity for Cu storage and an elevated sensitivity to a minor increment in intracellular metal levels, suggesting that intracellular Cu toxicity is due not to the metal content but to the interactions of the metal with cellular components. Moreover, MT null cells failed to show increased levels of mRNAs encoding MT I, SOD1 (superoxide dismutase 1) and Ccs1 (Cu chaperone for SOD) in response to Cu exposure. These results support a role for MT in the storage of Cu in a safe compartment and in sequestering an intracellular excess of Cu in response to supra-physiological Cu exposure. Gene expression analysis suggests the necessity of having MT as part of the signalling pathway that induces gene expression in response to Cu. PMID:14627437

  12. Intracellular levels of glutamate in swollen astrocytes are preserved via neurotransmitter reuptake and de novo synthesis: implications for hyponatremia.

    PubMed

    Schober, Alexandra L; Mongin, Alexander A

    2015-10-01

    Hyponatremia and several other CNS pathologies are associated with substantial astrocytic swelling. To counteract cell swelling, astrocytes lose intracellular osmolytes, including l-glutamate and taurine, through volume-regulated anion channel. In vitro, when swollen by exposure to hypo-osmotic medium, astrocytes lose endogenous taurine faster, paradoxically, than l-glutamate or l-aspartate. Here, we explored the mechanisms responsible for differences between the rates of osmolyte release in primary rat astrocyte cultures. In radiotracer assays, hypo-osmotic efflux of preloaded [(14) C]taurine was indistinguishable from d-[(3) H]aspartate and only 30-40% faster than l-[(3) H]glutamate. However, when we used HPLC to measure the endogenous intracellular amino acid content, hypo-osmotic loss of taurine was approximately fivefold greater than l-glutamate, and no loss of l-aspartate was detected. The dramatic difference between loss of endogenous taurine and glutamate was eliminated after inhibition of both glutamate reuptake [with 300 μM dl-threo-β-benzyloxyaspartic acid (TBOA)] and glutamate synthesis by aminotransferases [with 1 mM aminooxyacetic acid (AOA)]. Treatment with TBOA+AOA made reductions in the intracellular taurine and l-glutamate levels approximately equal. Taken together, these data suggest that swollen astrocytes actively conserve intracellular glutamate via reuptake and de novo synthesis. Our findings likely also explain why in animal models of acute hyponatremia, extracellular levels of taurine are dramatically elevated with minimal impact on extracellular l-glutamate. We identified mechanisms that allow astrocytes to conserve intracellular l-glutamate (Glu) upon exposure to hypo-osmotic environment. Cell swelling activates volume-regulated anion channel (VRAC) and triggers loss of Glu, taurine (Tau), and other cytosolic amino acids. Glu is conserved via reuptake by Na(+) -dependent transporters and de novo synthesis in the reactions of

  13. A 5-month-old boy with recurrent respiratory infections, failure to thrive, and borderline elevated sweat chloride levels.

    PubMed

    Wang, Helen C; Whelan, Meg A; McGeady, Stephen J; Yousef, Ejaz

    2006-01-01

    Both severe combined immunodeficiency (SCID) and cystic fibrosis (CF) may present in infancy with a history of respiratory infections and failure to thrive. Elevated sweat chloride levels on multiple sweat tests is diagnostic of CF; transient elevation of sweat chloride has been reported in patients with hypogammaglobulinemia and antibody deficiency without CF. This article presents a case report of a 5-month-old boy with recurrent respiratory infections, failure to thrive, and two borderline elevated sweat test levels. Laboratory evaluation including testing for CF as well as immune deficiency was performed in this patient. Two borderline abnormal sweat chloride tests together with isolation of Pseudomonas from the airway caused clinicians initially to suspect CF; however, mutation in gene coding for the gamma-chain of the IL-2 receptor and a negative CF genetic mutation analysis ultimately led to the final diagnosis of SCID. It is essential to make the diagnosis of SCID as early as possible because infants with SCID who do not undergo reconstitution of their immune system universally die in infancy because of infection. Early diagnosis and intervention can lead to an excellent prognosis in a previously fatal disease.

  14. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels.

    PubMed

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-12-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while it upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5'UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Distinct Regulatory Mechanisms of the Human Ferritin Gene by Hypoxia and Hypoxia Mimetic Cobalt Chloride at the Transcriptional and Post-transcriptional Levels

    PubMed Central

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-01-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5′UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels. PMID:25172425

  16. Modulation of intracellular Ca2+ levels in chromaffin cells by nanoelectropulses.

    PubMed

    Craviso, Gale L; Choe, Sophie; Chatterjee, Indira; Vernier, P Thomas

    2012-10-01

    Exposing chromaffin cells to a single 5 ns, 5 MV/m pulse causes Ca(2+) influx and a rapid, transient rise in intracellular calcium concentration ([Ca(2+)](i)). A comparison of responses at room temperature versus 37°C revealed no effect of temperature on the magnitude of the increase in [Ca(2+)](i). The Ca(2+) transient, however, was shortened in duration almost twofold at 37°C, indicating that the rate of recovery was temperature-sensitive. Temperature also affected the interval required for a second pulse to elicit another maximal rise in [Ca(2+)](i), which was shorter at the higher temperature. In addition, a second pulse applied 5s after the first pulse was sufficient to cause cells at room temperature to become refractory to subsequent stimulation. At 37°C, cells became refractory after 5 pulses regardless of whether pulse delivery was at low (1 and 10 Hz) or high (1 kHz) rates. When refractory, cells showed no signs of swelling or uptake of the impermeant dye YO-PRO-1. These results demonstrate that temperature plays a role in determining how chromaffin cells respond to and become refractory to nanoelectropulses. They also indicate that despite the ultra-short duration of the pulses, pronounced effects on cell excitability result from the application of only very few pulses.

  17. miR-92a enhances recombinant protein productivity in CHO cells by increasing intracellular cholesterol levels.

    PubMed

    Loh, Wan Ping; Yang, Yuansheng; Lam, Kong Peng

    2017-04-01

    MicroRNAs (miRNAs) have emerged as promising targets for engineering of CHO cell factories to enhance recombinant protein productivity. Manipulation of miRNA levels in CHO cells have been shown to improve product yield by increasing proliferation and specific productivity (qP), resisting apoptosis and enhancing oxidative metabolism. The authors previously demonstrated that over-expressing miR-92a results in increases in qP and titer of CHO-IgG cells. However, the mechanisms by which miR-92a enhances qP in CHO cells are still uninvestigated. Here, the authors report the identification of insig1, a regulator of cholesterol biosynthesis, as a target of miR-92a using computational prediction. Both transient and stable over-expression of miR-92a decreased the expression levels of insig1. Insig1 was further validated as a target of miR-92a using 3' UTR reporter assay. Intracellular cholesterol concentration of two high-producing miR-92a clones were significantly increased by ≈30% compared to the blank-transfected pool. Relative Golgi surface area was also found to be 18-26% higher in these clones. Our findings suggest that miR-92a may affect cholesterol metabolism by repressing insig1, resulting in raised intracellular cholesterol levels and Golgi volume and hence enhanced protein secretion. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Association between intracellular zinc levels and nutritional status in HIV-infected and uninfected children exposed to the virus].

    PubMed

    Gómez G, Erika María; Maldonado C, María Elena; Rojas L, Mauricio; Posada J, Gladys

    2015-01-01

    Malnutrition, growth retardation and opportunistic infections outlast the metabolic, immune and gastrointestinal disorders produced by HIV. Zinc deficiency has been associated with deteriorating nutritional status, growth failure, and risk of infection. The aim of this study is to determine the association between zinc levels in peripheral blood mononuclear cells (PBMC) and the nutritional status of HIV-infected and uninfected children exposed to the virus. An analytical, observational, cross-sectional study was conducted on 17 infected and 17 exposed children, aged 2-10 years. Anthropometric measurements, clinical and nutritional history, 24h recall, measurement of physical activity, and zinc in PBMC by flow cytometry analysis were recorded. Height according to age, energy consumption and adequacy of energy, protein and dietary zinc were significantly higher in children exposed to the virus compared to those infected with HIV (P <.05). No significant differences were found in BMI, levels of zinc in monocytes, CD4 + and CD4- lymphocytes between the two study groups (P >.05). However, the median levels of zinc in monocytes of infected patients was higher (218.6) compared to the control group (217.0). No association was found between zinc intake and levels of intracellular zinc. The deterioration of nutritional status and growth retardation in children were associated with HIV, but not with the levels of intracellular zinc. The dietary intake of this nutrient was not associated with levels of zinc in monocytes or CD4 + and CD4- lymphocytes. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  19. Morton lentil extract attenuated angiotensin II-induced cardiomyocyte hypertrophy via inhibition of intracellular reactive oxygen species levels in vitro.

    PubMed

    Yao, Fan-Rong; Sun, Cheng-Wen; Chang, Sam K C

    2010-10-13

    The objective was to investigate whether a lentil (Morton) extract had any protective effect on cardiac hypertrophy, which is one of the most significant sequelae of cardiovascular diseases. High phenolic compounds (43.4 mg of GAE/g), including thirteen phenolic acid and two flavonoids, were detected in the acetone/water/acetic acid lentil extract. The extract showed strong antioxidant ability (105 μmol of TE/g). The effect of lentil extract on angiotensin (Ang) II-induced cardiac hypertrophy was examined. Results showed that pretreatment with lentil extract (25, 50, 100 μg/mL) significantly attenuated Ang II (0.1 μM)-induced hypertrophy by 18, 28, and 36% in rat cardiomycytes, respectively; lentil extract (12.5, 25, 50 μg/mL) attenuated Ang II (0.1 μM)-induced hypertrophy by 9, 17, and 25% in human cardiomycytes, respectively. Intracellular reactive oxygen species (ROS) levels were enhanced by Ang II treatment, and this stimulatory action was significantly attenuated (33% inhibition) by lentil extract (100 μg/mL) in rat cardiomyocytes and attenuated by 22% by 50 μg/mL lentil extract in human cardiomyocytes. In conclusion, Morton lentil extracts attenuated Ang II-induced rat and human cardiomyocytes hypertrophy via decreasing intracellular ROS levels.

  20. MicroRNA-150 modulates intracellular Ca (2+) levels in naïve CD8(+) T cells by targeting TMEM20.

    PubMed

    Kim, Tae-Don; Jung, Hong-Ryul; Seo, Sang-Hwan; Oh, Se-Chan; Ban, Youngho; Tan, Xiaoxia; Min Kim, Jung; Hyun Lee, Sang; Koh, Duk-Su; Jung, Haiyoung; Park, Young-Jun; Ran Yoon, Suk; Doh, Junsang; Ha, Sang-Jun; Choi, Inpyo; Greenberg, Philip D

    2017-06-01

    Regulation of intracellular Ca(2+) signaling is a major determinant of CD8(+) T cell responsiveness, but the mechanisms underlying this regulation of Ca(2+) levels, especially in naïve CD8(+) T cells, are not fully defined. Here, we showed that microRNA-150 (miR-150) controls intracellular Ca(2+) levels in naïve CD8(+) T cells required for activation by suppressing TMEM20, a negative regulator of Ca(2+) extrusion. miR-150 deficiency increased TMEM20 expression, which resulted in increased intracellular Ca(2+) levels in naïve CD8(+) T cells. The subsequent increase in Ca(2+) levels induced expression of anergy-inducing genes, such as Cbl-b, Egr2, and p27, through activation of NFAT1, as well as reduced cell proliferation, cytokine production, and the antitumor activity of CD8(+) T cells upon antigenic stimulation. The anergy-promoting molecular milieu and function induced by miR-150 deficiency were rescued by reinstatement of miR-150. Additionally, knockdown of TMEM20 in miR-150-deficient naïve CD8(+) T cells reduced intracellular Ca(2+) levels. Our findings revealed that miR-150 play essential roles in controlling intracellular Ca(2+) level and activation in naïve CD8(+) T cells, which suggest a mechanism to overcome anergy induction by the regulation of intracellular Ca(2+) levels.

  1. Effects of crocin and zinc chloride on blood levels of zinc and metabolic and oxidative parameters in streptozotocin-induced diabetic rats

    PubMed Central

    Asri-Rezaei, Siamak; Tamaddonfard, Esmaeal; Ghasemsoltani-Momtaz, Behnaz; Erfanparast, Amir; Gholamalipour, Sima

    2015-01-01

    Objectives: Crocin is one of constituents of saffron and has antioxidant property. Zinc chloride is one of the common compounds of zinc with antioxidant activity. The present study was aimed to investigate separate and combined treatment effects of crocin and zinc chloride on blood levels of zinc and metabolic and oxidative parameters in diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (i.p.) injection of 50 mg/kg of streptozotocin (STZ) and was confirmed by blood glucose levels higher than 250 mg/dL. After confirmation of diabetes, injections (i.p.) of crocin and zinc chloride were performed for six weeks. At the end of the experiment, blood levels of zinc, glucose, insulin, malodialdehyde (MDA), and total antioxidant capacity (TAC) were measured. ‎ Results: Crocin (25 and 50 mg/kg) and zinc chloride (5 mg/kg) significantly recovered the decreased levels of zinc, insulin, and TAC and improved the increased levels of glucose and MDA in STZ-induced diabetic rats. In a combination treatment performed with an ineffective dose of crocin (12.5 mg/kg) and a low dose of zinc chloride (1.25 mg/kg), improving effects were observed on the above-mentioned biochemical parameters.‎ Conclusion: The results indicated that separate and combined treatments with crocin and zinc chloride produced improving effects on the blood levels of zinc, glucose, insulin, MDA and TAC in STZ-induced diabetic rats. PMID:26468459

  2. Metabolic and transcriptomic analysis of Huntington's disease model reveal changes in intracellular glucose levels and related genes.

    PubMed

    Chaves, Gepoliano; Özel, Rıfat Emrah; Rao, Namrata V; Hadiprodjo, Hana; Costa, Yvonne Da; Tokuno, Zachary; Pourmand, Nader

    2017-08-01

    Huntington's Disease (HD) is a neurodegenerative disorder caused by an expansion in a CAG-tri-nucleotide repeat that introduces a poly-glutamine stretch into the huntingtin protein (mHTT). Mutant huntingtin (mHTT) has been associated with several phenotypes including mood disorders and depression. Additionally, HD patients are known to be more susceptible to type II diabetes mellitus (T2DM), and HD mice model develops diabetes. However, the mechanism and pathways that link Huntington's disease and diabetes have not been well established. Understanding the underlying mechanisms can reveal potential targets for drug development in HD. In this study, we investigated the transcriptome of mHTT cell populations alongside intracellular glucose measurements using a functionalized nanopipette. Several genes related to glucose uptake and glucose homeostasis are affected. We observed changes in intracellular glucose concentrations and identified altered transcript levels of certain genes including Sorcs1, Hh-II and Vldlr. Our data suggest that these can be used as markers for HD progression. Sorcs1 may not only have a role in glucose metabolism and trafficking but also in glutamatergic pathways affecting trafficking of synaptic components.

  3. CalQuo (2) : Automated Fourier-space, population-level quantification of global intracellular calcium responses.

    PubMed

    Lee, Angela M; Colin-York, Huw; Fritzsche, Marco

    2017-07-14

    Intracellular calcium acts as a secondary messenger in a wide variety of crucial biological signaling processes. Advances in fluorescence microscopy and calcium sensitive dyes has led to the routine quantification of calcium responses in non-excitable cells. However, the automatization of global intracellular calcium analysis at the single-cell level within a large population simultaneously remains challenging. One software, CalQuo (Calcium Quantification), offers some automatic features in calcium analysis. Here, we present an advanced version of the software package: CalQuo (2) . CalQuo (2) analyzes the calcium response in the Fourier-domain, allowing the number of user-defined filtering parameters to be reduced to one and a greater diversity of calcium responses to be recognized, compared to CalQuo that directly interprets the calcium intensity signal. CalQuo (2) differentiates cells that release a single calcium response and those that release oscillatory calcium fluxes. We have demonstrated the use of CalQuo (2) by measuring the calcium response in genetically modified Jurkat T-cells under varying ligand conditions, in which we show that peptide:MHCs and anti-CD3 antibodies trigger a fraction of T cells to release oscillatory calcium fluxes that increase with increasing koff rates. These results show that CalQuo (2) is a robust and user-friendly tool for characterizing global, single cell calcium responses.

  4. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    PubMed Central

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  5. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity.

    PubMed

    Fulcher, Nanette B; Holliday, Phillip M; Klem, Erich; Cann, Martin J; Wolfgang, Matthew C

    2010-05-01

    Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signalling molecule adenosine 3', 5'-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems.

  6. Sodium Fluoride Induces Apoptosis in H9c2 Cardiomyocytes by Altering Mitochondrial Membrane Potential and Intracellular ROS Level.

    PubMed

    Yan, Xiaoyan; Yang, Xia; Hao, Xianhui; Ren, Qiurong; Gao, Jiping; Wang, Yu; Chang, Na; Qiu, Yulan; Song, Guohua

    2015-08-01

    Chronic excessive fluoride intake is known to be toxic, and effects of long-term fluorosis on different organ systems have been examined. However, there are few studies about the effects of fluorosis on cardiovascular systems. Here, we studied the fluoride-induced apoptosis in H9c2 cells and determined the underlying molecular mechanisms including the cell viability, intracellular reactive oxygen species (ROS) level, the changes of mitochondrial membrane potential (ΔΨm), and the cell apoptosis. Sodium fluoride (NaF) at concentrations of 0, 2, 4, 8, and 16 mg/L was administered to cultured H9c2 cells for up to 48 h. After the treatment, H9c2 cells were collected and the associated parameters were measured by flow cytometry. Our study found that fluoride not only inhibited H9c2 cell proliferation but also induced cell apoptosis. With the increment of NaF concentration, the apoptotic rates and ROS generation were increased, while the ΔΨm was decreased. In summary, these data suggested that NaF-induced H9c2 cell apoptosis is mediated by direct increased intracellular ROS and downregulated ΔΨm.

  7. Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide.

    PubMed

    Donnelly, Paul S; Caragounis, Aphrodite; Du, Tai; Laughton, Katrina M; Volitakis, Irene; Cherny, Robert A; Sharples, Robyn A; Hill, Andrew F; Li, Qiao-Xin; Masters, Colin L; Barnham, Kevin J; White, Anthony R

    2008-02-22

    Copper and zinc play important roles in Alzheimer disease pathology with recent reports describing potential therapeutics based on modulation of metal bioavailability. We examined the ability of a range of metal bis(thiosemicarbazonato) complexes (MII(btsc), where M=CuII or ZnII) to increase intracellular metal levels in Chinese hamster ovary cells overexpressing amyloid precursor protein (APP-CHO) and the subsequent effect on extracellular levels of amyloid-beta peptide (Abeta). The CuII(btsc) complexes were engineered to be either stable to both a change in oxidation state and dissociation of metal or susceptible to intracellular reduction and dissociation of metal. Treatment of APP-CHO cells with stable complexes resulted in elevated levels of intracellular copper with no effect on the detected levels of Abeta. Treatment with complexes susceptible to intracellular reduction increased intracellular copper levels but also resulted in a dose-dependent reduction in the levels of monomeric Abeta. Treatment with less stable ZnII(btsc) complexes increased intracellular zinc levels with a subsequent dose-dependent depletion of monomeric Abeta levels. The increased levels of intracellular bioavailable copper and zinc initiated a signaling cascade involving activation of phosphoinositol 3-kinase and c-Jun N-terminal kinase. Inhibition of these enzymes prevented Abeta depletion induced by the MII(btsc) complexes. Inhibition of metalloproteases also partially restored Abeta levels, implicating metal-driven metalloprotease activation in the extracellular monomeric Abeta depletion. However, a role for alternative metal-induced Abeta metabolism has not been ruled out. These studies demonstrate that MII(btsc) complexes have potential for Alzheimer disease therapy.

  8. Changes in cytosolic ATP levels and intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time fluorescence microscopy imaging.

    PubMed

    Hatsugai, Noriyuki; Perez Koldenkova, Vadim; Imamura, Hiromi; Noji, Hiroyuki; Nagai, Takeharu

    2012-10-01

    Hypersensitive cell death is known to involve dynamic remodeling of intracellular structures that uses energy released during ATP hydrolysis. However, the relationship between intracellular structural changes and ATP levels during hypersensitive cell death remains unclear. Here, to visualize ATP dynamics directly in real time in individual living plant cells, we applied a genetically encoded Förster resonance energy transfer (FRET)-based fluorescent ATP indicator, ATeam1.03-nD/nA, for plant cells. Intracellular ATP levels increased approximately 3 h after inoculation with the avirulent strain DC3000/avrRpm1 of Pseudomonas syringae pv. tomato (Pst), which was accompanied by the simultaneous disappearance of transvacuolar strands and appearance of bulb-like structures within the vacuolar lumen. Approximately 5 h after bacterial inoculation, the bulb-like structures disappeared and ATP levels drastically decreased. After another 2 h, the large central vacuole was disrupted. In contrast, no apparent changes in intracellular ATP levels were observed in the leaves inoculated with the virulent strain Pst DC3000. The Pst DC3000/avrRpm1-induced hypersensitive cell death was strongly suppressed by inhibiting ATP synthesis after oligomycin A application within 4 h after bacterial inoculation. When the inhibitor was applied 7 h after bacterial inoculation, cell death was unaffected. These observations show that changes in intracellular ATP levels correlate with intracellular morphological changes during hypersensitive cell death, and that ATP is required just before vacuolar rupture in response to bacterial infection.

  9. Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution.

    PubMed

    Bianchi-Smiraglia, Anna; Rana, Mitra S; Foley, Colleen E; Paul, Leslie M; Lipchick, Brittany C; Moparthy, Sudha; Moparthy, Kalyana; Fink, Emily E; Bagati, Archis; Hurley, Edward; Affronti, Hayley C; Bakin, Andrei V; Kandel, Eugene S; Smiraglia, Dominic J; Feltri, Maria Laura; Sousa, Rui; Nikiforov, Mikhail A

    2017-10-01

    GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. We report the development and characterization of genetically encoded GTP sensors, which we constructed by inserting a circularly permuted yellow fluorescent protein (cpYFP) into a region of the bacterial G protein FeoB that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP created a series of sensors with a wide dynamic range. Critically, in mammalian cells the sensors showed consistent changes in ratiometric signal upon depletion or restoration of GTP pools. We show that these GTP evaluators (GEVALs) are suitable for detection of spatiotemporal changes in GTP levels in living cells and for high-throughput screening of molecules that modulate GTP levels.

  10. Increased intracellular levels of lysosomal beta-glucuronidase in peripheral blood PMNs from humans with rapidly progressive periodontitis.

    PubMed

    Pippin, D J; Cobb, C M; Feil, P

    1995-01-01

    Release of potent lysosomal enzymes by degranulation of polymorphonuclear leukocytes (PMNs) in host gingiva may contribute significantly to tissue destruction and the pathogenesis of periodontal disease. A pilot study established that peripheral blood PMNs from humans with rapidly progressive periodontitis (RPP) contained significantly increased amounts of intracellular lysosomal beta-glucuronidase as compared to healthy controls. This investigation gained insight into the question: are the increased levels of beta-glucuronidase in persons with RPP an a priori genetically determined PMN characteristic, or a reactive phenomenon induced by the periodontal disease process during granulopoiesis? Twelve healthy controls and twelve otherwise healthy individuals with RPP participated in a repeated measures design to T0 (initial, baseline), T1 (four weeks after disease control therapy), and T2 (two months later). At each visit clinical indices (GI, pocket depths, GCF flow, plaque index) were performed and peripheral blood obtained. PMNs were isolated and suspended as 5 x 10(6) cells in 2.0 ml of HBSS. PMN suspensions were tested for total intracellular beta-glucuronidase, degranulation induced by 1 x 10(-6)M and 5 x 10(-7) M FMLP challenges, and unchallenged for non-specific enzyme release. PMNs from individuals with RPP contained significantly higher absolute amounts of beta-glucuronidase and released greater absolute amounts at FMLP challenge at T0, T1, and T2 compared to controls. No relationship was found between any of the clinical indices and beta-glucuronidase levels and no pattern was discovered relating to the repeated measures over time. We conclude that RPP peripheral blood PMNs contain elevated levels of beta-glucuronidase that are not induced by the periodontal disease process.

  11. Levels of intracellular HIV-DNA in patients with suppressive antiretroviral therapy.

    PubMed

    Cuzin, Lise; Pugliese, Pascal; Sauné, Karine; Allavena, Clotilde; Ghosn, Jade; Cottalorda, Jacqueline; Rodallec, Audrey; Chaix, Marie Laure; Fafi-Kremer, Samira; Soulié, Cathia; Ouka, Marlène; Charpentier, Charlotte; Bocket, Laurence; Mirand, Audrey; Guiguet, Marguerite

    2015-08-24

    The objective of this study is to study factors associated with HIV-DNA levels in chronically infected patients on long-term suppressive antiretroviral therapy (ART). A cross-sectional, multicentre study of patients receiving ART for more than 3 years, HIV-RNA less than 50 copies/ml for more than 2 years and CD4 cell count more than 350 cells/μl. Factors associated with low (<150) or high (>1000), compared with intermediate (150-1000 copies/10 PBMCs) levels of HIV-DNA were investigated using multinomial logistic regression. Five hundred and twenty-two patients who initiated ART during the chronic phase were included (71% male; median peak HIV-RNA: 4.88 log10 copies/ml, CD4 cell count nadir: 222 cells/μl). Median ART duration was 13 years [interquartile range (IQR) 7-17], viral suppression was 5.7 years (IQR 3.9-8.5) and 66% of the patients never experienced ART failure. Median HIV-DNA was 323 copies/10 PBMCs (IQR, 129-717) with low, intermediate and high levels observed in 28.3, 55.4 and 16.3%, respectively. In multivariable analysis, women were more likely to achieve a low level of HIV-DNA. Each additional year with suppressed HIV-RNA increased the likelihood of low level and decreased the likelihood of high level of HIV-DNA. Peak HIV-RNA higher than 5log10 was always associated with a decreased risk of low and an increased risk of high HIV-DNA. For patients with peak HIV-RNA lower than 5log10, past ART failure was associated with high level of HIV-DNA. Chronically HIV-infected patients with long-term suppressive ART can achieve low total HIV-DNA but one over six still presented HIV-DNA above 1000 copies/10 PBMCs despite long-term viral suppression.

  12. Hydroxyl radicals cause fluctuation in intracellular ferrous ion levels upon light exposure during photoreceptor cell death.

    PubMed

    Imamura, Tomoyo; Hirayama, Tasuku; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Nagasawa, Hideko; Hara, Hideaki

    2014-12-01

    Iron accumulation is a potential pathogenic event often seen in age-related macular degeneration (AMD) patients. In this study, we focused on the relationship between AMD pathology and concentrations of ferrous ion, which is a highly reactive oxygen generator in biological systems. Murine cone-cells-derived 661 W cells were exposed to white fluorescence light at 2500 lx for 1, 3, 6, or 12 h. Levels of ferrous ions, reactive oxygen species (ROS), and hydroxyl radicals were detected by RhoNox-1, a novel fluorescent probe for the selective detection of ferrous ion, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), and 3'-p-(aminophenyl) fluorescein, respectively. Reduced glutathione, total iron levels and photoreceptor cell death were also measured. Two genes related to iron metabolism, transferrin receptor 1 (TfR1) and H ferritin (HFt), were quantified by RT-PCR. The effects of ferrous ion on cell death and hydroxyl radical production were determined by treatment with a ferrous ion chelating agent, 2,2'-bipyridyl. We found that the ferrous ion level decreased with light exposure in the short time frame, whereas it was upregulated during a 6-h light exposure. Total iron, ROS, cell death rate, and expression of TfR and HFt genes were significantly increased in a time-dependent manner in 661 W cells exposed to light. Chelation with 2,2'-bipyridyl reduced the level of hydroxyl radicals and protected against light-induced cell death. These results suggest that light exposure decreases ferrous ion levels and enhances iron uptake in photoreceptor cells. Ferrous ion may be involved in light-induced photoreceptor cell death through production of hydroxyl radicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment.

    PubMed

    Magazinovic, Rodney S; Nicholson, Brenton C; Mulcahy, Dennis E; Davey, David E

    2004-10-01

    South Australian freshwaters from a wide variety of environments were analysed for bromide and the results correlated with both chloride and total dissolved solids (TDS) concentrations. A linear relationship was obtained which allows chloride data to be successfully used to estimate bromide concentrations. Bromide displayed a slightly better correlation with TDS indicating that an improved estimate of bromide could be made by reference to TDS data which is more easily and commonly obtained, and generally available extensively as historical data. The bromide content in relation to its ratio with both chloride and TDS contents was around seventy percent of the corresponding ratios found in seawater, a finding reported in other published data. The ability to estimate bromide concentrations is a potentially useful tool in the drinking water industry as it enables the assessment of the extent of bromate formation (predicted through the use of mathematical models and other water quality data) which is an important factor when ozonation is being considered as a treatment option, particularly as many water industry regulatory bodies have imposed stringent limits on the levels of acceptable bromate.

  14. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  15. Monitoring yeast intracellular Ca2+ levels using an in vivo bioluminescence assay.

    PubMed

    Tisi, Renata; Martegani, Enzo; Brandão, Rogelio L

    2015-02-02

    This protocol describes the use of the jellyfish Aequorea victoria aequorin protein to measure Ca(2+) levels in living yeast cells. All yeast strains to be analyzed must express the A. victoria apoprotein of the aequorin calcium biosensor, to be reconstituted into fully active aequorin by association with its cofactor, coelenterazine, which cannot be synthesized by yeast itself. The simplest way to achieve reconstitution is to transform yeast cells with a vector driving apoaequorin expression, and then supply commercially available coelenterazine cofactor in the medium. Coelenterazine is a hydrophobic molecule and is able to permeate yeast cells.

  16. Protection of Cells against Oxidative Stress by Nanomolar Levels of Hydroxyflavones Indicates a New Type of Intracellular Antioxidant Mechanism

    PubMed Central

    Hájek, Jan; Staňková, Veronika; Filipský, Tomáš; Balducci, Valentina; De Vito, Paolo; Leone, Stefano; Bavavea, Eugenia I.; Silvestri, Ilaria Proietti; Righi, Giuliana; Luly, Paolo; Saso, Luciano; Bovicelli, Paolo; Pedersen, Jens Z.; Incerpi, Sandra

    2013-01-01

    Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous

  17. Hexabromocyclododecane inhibits depolarization-induced increase in intracellular calcium levels and neurotransmitter release in PC12 cells.

    PubMed

    Dingemans, Milou M L; Heusinkveld, Harm J; de Groot, Aart; Bergman, Ake; van den Berg, Martin; Westerink, Remco H S

    2009-02-01

    Environmental levels of the brominated flame retardant (BFR) hexabromocyclododecane (HBCD) have been increasing. HBCD has been shown to cause adverse effects on learning and behavior in mice, as well as on dopamine uptake in rat synaptosomes and synaptic vesicles. For other BFRs, alterations in the intracellular Ca(2+) homeostasis have been observed. Therefore, the aim of this study was to investigate whether the technical HBCD mixture and individual stereoisomers affect the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a neuroendocrine in vitro model (PC12 cells). [Ca(2+)](i) and vesicular catecholamine release were measured using respectively single-cell Fura-2 imaging and amperometry. Exposure of PC12 cells to the technical HBCD mixture or individual stereoisomers did neither affect basal [Ca(2+)](i), nor the frequency of basal neurotransmitter release. However, exposure to HBCD (0-20 microM) did cause a dose-dependent reduction of a subsequent depolarization-evoked increase in [Ca(2+)](i). This effect was apparent only when HBCD was applied at least 5 min before depolarization (maximum effect after 20 min exposure). The effects of alpha- and beta-HBCD were comparable to that of the technical mixture, whereas the inhibitory effect of gamma-HBCD was larger. Using specific blockers of L-, N- or P/Q-type voltage-gated Ca(2+) channels (VGCCs) it was shown that the inhibitory effect of HBCD is not VGCC-specific. Additionally, the number of cells showing depolarization-evoked neurotransmitter release was markedly reduced following HBCD exposure. Summarizing, HBCD inhibits depolarization-evoked [Ca(2+)](i) and neurotransmitter release. As increasing HBCD levels should be anticipated, these findings justify additional efforts to establish an adequate exposure, hazard and risk assessment.

  18. Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells.

    PubMed

    Hou, Bi-Huei; Takanaga, Hitomi; Grossmann, Guido; Chen, Li-Qing; Qu, Xiao-Qing; Jones, Alexander M; Lalonde, Sylvie; Schweissgut, Oliver; Wiechert, Wolfgang; Frommer, Wolf B

    2011-10-27

    Knowledge of the in vivo levels, distribution and flux of ions and metabolites is crucial to our understanding of physiology in both healthy and diseased states. The quantitative analysis of the dynamics of ions and metabolites with subcellular resolution in vivo poses a major challenge for the analysis of metabolic processes. Genetically encoded Förster resonance energy transfer (FRET) sensors can be used for real-time in vivo detection of metabolites. FRET sensor proteins, for example, for glucose, can be targeted genetically to any cellular compartment, or even to subdomains (e.g., a membrane surface), by adding signal sequences or fusing the sensors to specific proteins. The sensors can be used for analyses in individual mammalian cells in culture, in tissue slices and in intact organisms. Applications include gene discovery, high-throughput drug screens or systematic analysis of regulatory networks affecting uptake, efflux and metabolism. Quantitative analyses obtained with the help of FRET sensors for glucose or other ions and metabolites provide valuable data for modeling of flux. Here we provide a detailed protocol for monitoring glucose levels in the cytosol of mammalian cell cultures through the use of FRET glucose sensors; moreover, the protocol can be used for other ions and metabolites and for analyses in other organisms, as has been successfully demonstrated in bacteria, yeast and even intact plants. The whole procedure typically takes ∼4 d including seeding and transfection of mammalian cells; the FRET-based analysis of transfected cells takes ∼5 h.

  19. Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels.

    PubMed

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F; Dickman, Martin B

    2006-06-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.

  20. Tomato QM-Like Protein Protects Saccharomyces cerevisiae Cells against Oxidative Stress by Regulating Intracellular Proline Levels

    PubMed Central

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F.; Dickman, Martin B.

    2006-01-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants. PMID:16751508

  1. Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels.

    PubMed

    Cordes, Thekla; Wallace, Martina; Michelucci, Alessandro; Divakaruni, Ajit S; Sapcariu, Sean C; Sousa, Carole; Koseki, Haruhiko; Cabrales, Pedro; Murphy, Anne N; Hiller, Karsten; Metallo, Christian M

    2016-07-01

    Metabolic reprogramming is emerging as a hallmark of the innate immune response, and the dynamic control of metabolites such as succinate serves to facilitate the execution of inflammatory responses in macrophages and other immune cells. Immunoresponsive gene 1 (Irg1) expression is induced by inflammatory stimuli, and its enzyme product cis-aconitate decarboxylase catalyzes the production of itaconate from the tricarboxylic acid cycle. Here we identify an immunometabolic regulatory pathway that links Irg1 and itaconate production to the succinate accumulation that occurs in the context of innate immune responses. Itaconate levels and Irg1 expression correlate strongly with succinate during LPS exposure in macrophages and non-immune cells. We demonstrate that itaconate acts as an endogenous succinate dehydrogenase inhibitor to cause succinate accumulation. Loss of itaconate production in activated macrophages from Irg1(-/-) mice decreases the accumulation of succinate in response to LPS exposure. This metabolic network links the innate immune response and tricarboxylic acid metabolism to function of the electron transport chain.

  2. Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels*

    PubMed Central

    Cordes, Thekla; Wallace, Martina; Michelucci, Alessandro; Divakaruni, Ajit S.; Sapcariu, Sean C.; Sousa, Carole; Koseki, Haruhiko; Cabrales, Pedro; Murphy, Anne N.; Hiller, Karsten; Metallo, Christian M.

    2016-01-01

    Metabolic reprogramming is emerging as a hallmark of the innate immune response, and the dynamic control of metabolites such as succinate serves to facilitate the execution of inflammatory responses in macrophages and other immune cells. Immunoresponsive gene 1 (Irg1) expression is induced by inflammatory stimuli, and its enzyme product cis-aconitate decarboxylase catalyzes the production of itaconate from the tricarboxylic acid cycle. Here we identify an immunometabolic regulatory pathway that links Irg1 and itaconate production to the succinate accumulation that occurs in the context of innate immune responses. Itaconate levels and Irg1 expression correlate strongly with succinate during LPS exposure in macrophages and non-immune cells. We demonstrate that itaconate acts as an endogenous succinate dehydrogenase inhibitor to cause succinate accumulation. Loss of itaconate production in activated macrophages from Irg1−/− mice decreases the accumulation of succinate in response to LPS exposure. This metabolic network links the innate immune response and tricarboxylic acid metabolism to function of the electron transport chain. PMID:27189937

  3. The association of serum sodium and chloride levels with blood pressure and estimated glomerular filtration rate.

    PubMed

    Nakajima, Kei; Oda, Eiji; Kanda, Eiichiro

    2016-01-01

    High serum sodium (sNa) concentrations may be associated with hypertension, which deteriorates kidney function. However, it is equivocal whether high sNa concentrations are associated with impaired kidney function independently of blood pressure (BP) or serum chloride (sCl). Therefore, we addressed this issue in an apparently healthy population. Clinical variables including estimated glomerular filtration rate (eGFR) were examined in 3603 men and women (aged 25-75 years) who underwent health-screening check-ups. sNa concentrations were classified into five categories. Most parameters, including age and BP, increased with increasing sNa, whereas eGFR decreased. Logistic regression analysis showed that, compared with low-normal sNa (≤ 140 mEq/l), high sNa (≥ 144 mEq/l) was significantly associated with elevated BP (≥ 130/85 mmHg) even after adjustment for blood hematocrit, eGFR, serum potassium (sK) concentration and sCl. The highest sNa category was significantly associated with reduced eGFR (< 60 ml/min/1.73 m(2)) independently of elevated BP. Unlike adjustment for sK, adjustment for sCl strengthened the association between high sNa and elevated BP but attenuated the association between high sNa and reduced eGFR. These results suggest that high sNa concentrations, even within the normal range, are independently associated with elevated BP and impaired kidney function. These associations may be substantially modified by sCl.

  4. Increased levels of sodium chloride directly increase osteoclastic differentiation and resorption in mice and men.

    PubMed

    Wu, L; Luthringer, B J C; Feyerabend, F; Zhang, Z; Machens, H G; Maeda, M; Taipaleenmäki, H; Hesse, E; Willumeit-Römer, R; Schilling, A F

    2017-08-29

    To better understand the association between high salt intake and osteoporosis, we investigated the effect of sodium chloride (NaCl) on mice and human osteoclastogenesis. The results suggest a direct, activating role of NaCl supplementation on bone resorption. High NaCl intake is associated with increased urinary calcium elimination and parathyroid hormone (PTH) secretion which in turn stimulates the release of calcium from the bone, resulting in increased bone resorption. However, while calciuria after NaCl loading could be shown repeatedly, several studies failed to reveal a significant increase in PTH in response to a high-sodium diet. Another possible explanation that we investigated here could be a direct effect of high-sodium concentration on bone resorption. Mouse bone marrow macrophage and human peripheral blood mononuclear cells (PBMC) driven towards an osteoclastogenesis pathway were cultivated under culture conditions mimicking hypernatremia environments. In this study, a direct effect of increased NaCl concentrations on mouse osteoclast differentiation and function was observed. Surprisingly, in a human osteoclast culture system, significant increases in the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, calcitonin receptor (CTR)-positive osteoclasts, nuclear factor-activated T cells c1 (NFATc1) gene expression, and areal and volumetric resorptions were observed for increasing concentrations of NaCl. This suggests a direct, activating, cell-mediated effect of increased concentrations of NaCl on osteoclasts. The reported that enhanced bone resorption after high-sodium diets may not only be secondary to the urinary calcium loss but may also be a direct, cell-mediated effect on osteoclastic resorption. These findings allow us to suggest an explanation for the clinical findings independent of a PTH-mediated regulation.

  5. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells.

    PubMed

    Oliynyk, Igor; Hussain, Rashida; Amin, Ahmad; Johannesson, Marie; Roomans, Godfried M

    2013-06-01

    Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that

  6. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells.

    PubMed

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-06-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier

  7. The transmissibility of Trypanosoma congolense seems to be associated with its level of resistance to isometamidium chloride.

    PubMed

    van den Bossche, P; Akoda, K; Kubi, C; Marcotty, T

    2006-02-18

    In large parts of Africa the control of livestock trypanosomiasis relies on the use of trypanocidal drugs. Resistance against the available compounds is developing rapidly in the trypanosome population. The effect of the development of drug resistance on the fitness of the trypanosome is not well known. To determine the effect of the development of resistance to isometamidium chloride on the trypanosome's transmissibility, transmission experiments were conducted. Use was made of three isogenic clones of Trypanosoma congolense with different susceptibility to the drug. The infection rate in Glossina morsitans morsitans differed significantly between clones and was significantly higher in tsetse flies infected with the T. congolense clone with the highest level of drug resistance.

  8. Novel agmatine analogue, {gamma}-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    SciTech Connect

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur; Simonian, Alina R.; Soininen, Pasi; Vepsalainen, Jouko; Khomutov, Alex R.; Madhubala, Rentala

    2008-10-10

    The efficacy of {gamma}-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K{sub i} value of {approx}60 {mu}M. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK{sub a} 6.71 and at physiological pH the analogue can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels.

  9. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  10. Therapeutic activity of isometamidium chloride in Boran cattle against a tsetse-transmitted clone of Trypanosoma congolense with a low level of drug resistance.

    PubMed

    Sutherland, I A; Codjia, V; Moloo, S K; Holmes, P H; Peregrine, A S

    1992-08-01

    Experiments were conducted with a clone of Trypanosoma congolense, IL 3580, which exhibited a low level of resistance to isometamidium chloride. Five cattle were treated intramuscularly with isometamidium chloride at a dose rate of 0.5 mg kg-1 body weight (BW) and challenged 28 days later with 5 Glossina morsitans centralis infected with T. congolense IL 3580. All 5 cattle and 15 untreated steers challenged on the same day became parasitaemic by day 15 post-infection. Thus, at a dose of 0.5 mg kg-1 BW, the prophylactic action of isometamidium chloride did not extend to 28 days following treatment. Subsequently, the 20 steers were divided into 4 groups of 5 animals each and treated with isometamidium chloride at one of the following dose rates; 0.5 or 1.0 mg kg-1 BW intramuscularly and 0.5 or 1.0 mg kg-1 BW intravenously (Groups A, B, C and D, respectively). Group A consisted of the 5 animals that had previously been treated with isometamidium chloride. Animals relapsed in all groups except those in Group B, treated intramuscularly with isometamidium chloride at a dose of 1.0 mg kg-1 BW. Four of the 5 animals in Group A, treated intramuscularly with isometamidium chloride at a dose of 0.5 mg kg-1 BW relapsed following a mean interval of 16 days post-treatment. Similarly, infections in all animals in Groups C and D, given intravenous injections of isometamidium chloride at a dose of 0.5 and 1.0 mg kg-1 BW, respectively, were not eliminated as a result of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. A Fiber-Optic Sensor Using an Aqueous Solution of Sodium Chloride to Measure Temperature and Water Level Simultaneously

    PubMed Central

    Yoo, Wook Jae; Sim, Hyeok In; Shin, Sang Hun; Jang, Kyoung Won; Cho, Seunghyun; Moon, Joo Hyun; Lee, Bongsoo

    2014-01-01

    A fiber-optic sensor system using a multiplexed array of sensing probes based on an aqueous solution of sodium chloride (NaCl solution) and an optical time-domain reflectometer (OTDR) for simultaneous measurement of temperature and water level is proposed. By changing the temperature, the refractive index of the NaCl solution is varied and Fresnel reflection arising at the interface between the distal end of optical fiber and the NaCl solution is then also changed. We measured the modified optical power of the light reflected from the sensing probe using a portable OTDR device and also obtained the relationship between the temperature of water and the optical power. In this study, the water level was simply determined by measuring the signal difference of the optical power due to the temperature difference of individual sensing probes placed inside and outside of the water. In conclusion, we demonstrate that the temperature and water level can be obtained simultaneously by measuring optical powers of light reflected from sensing probes based on the NaCl solution. It is anticipated that the proposed fiber-optic sensor system makes it possible to remotely monitor the real-time change of temperature and water level of the spent fuel pool during a loss of power accident. PMID:25310471

  12. Elevation of ouabainlike compound levels with hypertonic sodium chloride load in rat plasma and tissues.

    PubMed

    Yamada, K; Goto, A; Nagoshi, H; Terano, Y; Omata, M

    1997-07-01

    A major biologically active endogenous digitalis-like factor in the mammalian body may be an isomer of ouabain (ouabainlike compound, OLC). However, the exact role of OLC in sodium homeostasis is still unclear, and acute isotonic volume expansion does not enhance the secretion of OLC. We tested the hypothesis that OLC may be more important in the response to acute hypertonic NaCl load rather than isotonic volume expansion. We injected intraperitoneally 2 mL of 20% NaCl solution into male Wistar rats (n=34) and measured OLC levels in plasma, hypothalamus, pituitary, and adrenal at baseline (n=10) and 1, 2, and 4 hours (n=8 for each). In response to hypertonic NaCl loading, plasma Na-K ratio was elevated at 2 and 4 hours (P<.01). OLC levels in pituitary increased (P<.01) at 1 hour. Thereafter, plasma OLC levels increased at 2 and 4 hours (P<.05; basal, 75+/-11 pmol/L [+/-SEM]; 1 hour, 55+/-11; 2 hours, 130+/-24; 4 hours, 156+/-20). Concomitantly, OLC levels in adrenal increased at 2 and 4 hours (P<.01; basal, 1.7+/-0.2 pmol/g; 1 hour, 4.5+/-0.9; 2 hours, 5.0+/-0.7; 4 hours, 6.8+/-2.2). A significant correlation was observed between OLC levels in plasma and adrenal (P<.05). Plasma Na-K ratio positively correlated with OLC levels in plasma (r=.51, P<.01) and adrenal (r=.48, P<.01). Similar injection of physiological saline solution or hypertonic sucrose solution in physiological saline did not increase OLC levels in plasma and tissues. These findings indicate the elevation of OLC levels in plasma, pituitary, and adrenal in response to acute hypertonic NaCl load in rats and suggest that OLC may be involved in the response to the hypernatremic state.

  13. Impact of Cadmium on Intracellular Zinc Levels in HepG2 Cells: Quantitative Evaluations and Molecular Effects

    PubMed Central

    Urani, Chiara; Melchioretto, Pasquale; Bruschi, Maurizio; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura

    2015-01-01

    Cadmium is classified as a human carcinogen, and its disturbance in zinc homeostasis has been well established. However, its extent as well as molecular mechanisms involved in cadmium carcinogenesis has yet to be fully clarified. To this end, we used the zinc specific probe Zinquin to visualize and to quantitatively evaluate changes in the concentration of labile zinc, in an in vitro model of human hepatic cells (HepG2) exposed to cadmium. A very large increase (+93%) of intracellular labile zinc, displaced by cadmium from the zinc proteome, was measured when HepG2 were exposed to 10 µM cadmium for 24 hrs. Microarray expression profiling showed that in cells, featuring an increase of labile zinc after cadmium exposure, one of the top regulated genes is Snail1 (+3.6), which is included in the adherens junction pathway and linked to cancer. In the same pathway MET, TGF-βR, and two members of the Rho-family GTPase, Rac, and cdc42 all implicated in the loss of adherence features and acquisition of migratory and cancer properties were regulated, as well. The microRNAs analysis showed a downregulation of miR-34a and miR-200a, both implicated in the epithelial-mesenchymal transition. These microRNAs results support the role played by zinc in affecting gene expression at the posttranscriptional level. PMID:26339654

  14. Intracellular pH of Mycobacterium avium subsp. paratuberculosis following exposure to antimicrobial compounds monitored at the single cell level.

    PubMed

    Gaggìa, Francesca; Nielsen, Dennis Sandris; Biavati, Bruno; Siegumfeldt, Henrik

    2010-07-31

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease; moreover, it seems to be implicated in the development of Crohn's disease in humans. In the present study, fluorescence ratio imaging microscopy (FRIM) was used to assess changes in intracellular pH (pH(i)) of one strain of MAP after exposure to nisin and neutralized cell-free supernatants (NCSs) from five bacteriocin-producing lactic acid bacteria (LAB) with known probiotic properties. The evaluation of pH(i) by FRIM provides information about the physiological state of bacterial cells, bypassing the long and problematic incubations needed for methods relying upon growth of MAP such as determination of colony forming units. The FRIM results showed that both nisin and the cell-free supernatant from Lactobacillus plantarum PCA 236 affected the pH(i) of MAP within a few hours. However, monitoring the population for 24h revealed the presence of a subpopulation of cells probably resistant to the antimicrobial compounds tested. Use of nisin and bacteriocin-producing LAB strains could lead to new intervention strategies for the control of MAP based on in vivo application of probiotic cultures as feed additives at farm level.

  15. Tissue accumulation and urinary excretion of chromium in rats fed diets containing graded levels of chromium chloride or chromium picolinate.

    PubMed

    Yoshida, Munehiro; Hatakeyama, Erika; Hosomi, Ryota; Kanda, Seiji; Nishiyama, Toshimasa; Fukunaga, Kenji

    2010-08-01

    To attempt a risk assessment of the excess intake of trivalent chromium (Cr), tissue Cr accumulation and urinary Cr excretion were examined in weanling rats fed experimental diets containing graded levels of Cr chloride (CrCl3) or Cr picolinate (CrPic). Thirty-six male weanling 4-weeks-old Wistar rats were divided into six groups and fed a casein-based semi-purified diet (Cr content: <0.02 microg/g) supplemented with 1, 10, or 100 microg Cr/g as CrCl3 or CrPic for 28 days. Among the experimental groups, no significant difference was observed in body weight; however, supplementation of 100 microg Cr/g to the diets caused a significant low liver weight irrespective of the chemical species of Cr. Activities of serum aspartate aminotransferase and alanine aminotransferase were significantly elevated in rats given CrPic at 100 microg Cr/g. In the liver, kidney and femur, Cr accumulation increased with elevation of the dietary Cr level. No influence of the difference in the chemical species of supplemented Cr was observed in the liver and kidney, but CrCl3 caused significantly higher Cr accumulation than CrPic in the femur of rats given 100 microg Cr/g. Daily urinary Cr excretion elevated with the increase of the dietary Cr level. Rats given CrPic showed significantly higher daily urinary Cr excretion than those given CrCl3, particularly at a dietary Cr level of 100 microg/g. The rate of urinary Cr excretion in rats given CrPic was constant, irrespective of the dietary Cr level, but that of rats given CrCl3 fell with the increase of the dietary Cr level. These results indicate that the lowest adverse effect level of dietary Cr is less than 100 microg/g, irrespective of the chemical species of Cr.

  16. Phg1/TM9 Proteins Control Intracellular Killing of Bacteria by Determining Cellular Levels of the Kil1 Sulfotransferase in Dictyostelium

    PubMed Central

    Le Coadic, Marion; Froquet, Romain; Lima, Wanessa C.; Dias, Marco; Marchetti, Anna; Cosson, Pierre

    2013-01-01

    Dictyostelium discoideum has largely been used to study phagocytosis and intracellular killing of bacteria. Previous studies have shown that Phg1A, Kil1 and Kil2 proteins are necessary for efficient intracellular killing of Klebsiella bacteria. Here we show that in phg1a KO cells, cellular levels of lysosomal glycosidases and lysozyme are decreased, and lysosomal pH is increased. Surprisingly, overexpression of Kil1 restores efficient killing in phg1a KO cells without correcting these lysosomal anomalies. Conversely, kil1 KO cells are defective for killing, but their enzymatic content and lysosomal pH are indistinguishable from WT cells. The killing defect of phg1a KO cells can be accounted for by the observation that in these cells the stability and the cellular amount of Kil1 are markedly reduced. Since Kil1 is the only sulfotransferase characterized in Dictyostelium, an (unidentified) sulfated factor, defective in both phg1a and kil1 KO cells, may play a key role in intracellular killing of Klebsiella bacteria. In addition, Phg1B plays a redundant role with Phg1A in controlling cellular amounts of Kil1 and intracellular killing. Finally, cellular levels of Kil1 are unaffected in kil2 KO cells, and Kil1 overexpression does not correct the killing defect of kil2 KO cells, suggesting that Kil2 plays a distinct role in intracellular killing. PMID:23301051

  17. Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater.

    PubMed

    Cho, J H; Lee, J E; Ra, C S

    2010-08-15

    The effects of electric voltage and NaCl concentration on the removal of pollutants in swine wastewater were investigated to determine the optimum operation conditions for a designed electrolysis process. An up-flow electrolytic reactor was fabricated from Plexiglas, and one titanium anode coated with iridium oxide (IrO(2)) and two stainless steel cathodes were installed in it. The anode surface area was 80 cm(2)/L and the hydraulic retention time (HRT) was 6h. The results indicated that the pollutant removal was highly proportional to the electric voltage and removal could be enhanced by adding NaCl. The removal efficiencies of NH(4)-N, soluble nitrogen (NH(4)-N plus NO(x)-N), soluble total organic carbon (STOC), and color were proportional to the NaCl level up to 0.05% NaCl level, beyond which no further enhancement in removal was observed. However, such a tendency was not observed in the case of PO(4)-P removal. The obtained results indicate that 7 V and 0.05% (8.56 mM) NaCl level would be the optimum conditions for the designed electrolysis process. Under these conditions, the average removal efficiencies of NH(4)-N, soluble nitrogen, PO(4)-P, STOC, and color were 99%, 94%, 59%, 64%, and 93%, respectively.

  18. Effect of allyl sulfides from garlic essential oil on intracellular ca2+ levels in renal tubular cells.

    PubMed

    Jan, Chung-Ren; Lo, Horng-Ren; Chen, Chung-Yi; Kuo, Soong-Yu

    2012-12-28

    Diallyl sulfide (1), diallyl disulfide (2), and diallyl trisulfide (3), which are major organosulfur compounds of garlic (Allium sativum), are recognized as a group of potential chemopreventive compounds. In this study, the early signaling effects of 3 were examined on Madin-Darby canine kidney (MDCK) cells loaded with the Ca(2+)-sensitive dye fura-2. It was found that 3 caused an immediate and sustained increase of [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 40 μM). Compound 3 also induced a [Ca(2+)](i) elevation when extracellular Ca(2+) was removed, but the magnitude was reduced by 45%. In Ca(2+)-free medium, the 3-induced [Ca(2+)](i) level was abolished by depleting stored Ca(2+) with 1 μM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). Elevation of [Ca(2+)](i) caused by 3 in the Ca(2+)-containing medium was not affected by modulation of protein kinase C activity. The 3-induced Ca(2+) influx was inhibited by nifedipine and nicardipine (1 μM). U73122, an inhibitor of phospholipase C, abolished ATP (but not the 3-induced [Ca(2+)](i) level). These findings suggest that 3 induced a significant [Ca(2+)](i) elevation in MDCK renal tubular cells by stimulating both extracellular Ca(2+) influx and thapsigargin-sensitive intracellular Ca(2+) release via as yet unidentified mechanisms. Furthermore, the order of the allyl sulfide-induced [Ca(2+)](i) elevation and cell viability was 1 < 2 < 3. The differential effect of allyl sulfides on Ca(2+) signaling and cell death appears to correlate with the number of sulfur atoms in the structure of these allyl sulfides.

  19. Neurotoxicity of a polybrominated diphenyl ether mixture (DE-71) in mouse neurons and astrocytes is modulated by intracellular glutathione levels

    SciTech Connect

    Giordano, Gennaro; Kavanagh, Terrance J.; Costa, Lucio G.

    2008-10-15

    Polybrominated diphenyl ether (PBDE) flame retardants have become widespread environmental contaminants. Body burden in the U.S. population has been shown to be higher than in other countries, and infants and toddlers have highest exposure through maternal breast milk and household dust. The primary concern for adverse health effects of PBDEs relates to their potential developmental neurotoxicity, which has been found in a number of animal studies. Information on the possible mechanisms of PBDE neurotoxicity is limited, though some studies have suggested that PBDEs may elicit oxidative stress. The present study examined the in vitro neurotoxicity of DE-71, a penta-BDE mixture, in primary neurons and astrocytes obtained from wild-type and Gclm knockout mice, which lack the modifier subunit of glutamate-cysteine ligase and, as a consequence, have very low levels of glutathione (GSH). These experiments show that neurotoxicity of DE-71 in these cells is modulated by cellular GSH levels. Cerebellar granule neurons (CGNs) from Gclm (-/-) mice displayed a higher sensitivity to DE-71 toxicity compared to CGNs from wild-type animals. DE-71 neurotoxicity in CGNs from Gclm (+/+) mice was exacerbated by GSH depletion, and in CGNs from both genotypes it was antagonized by increasing GSH levels and by antioxidants. DE-71 caused an increase in reactive oxygen species and in lipid peroxidation in CGNs, that was more pronounced in Gclm (-/-) mice. Toxicity of DE-71 was mostly due to the induction of apoptotic cell death. An analysis of DE-71-induced cytotoxicity and apoptosis in neurons and astrocytes from different brain areas (cerebellum, hippocampus, cerebral cortex) in both mouse genotypes showed a significant correlation with intracellular GSH levels. As an example, DE-71 caused cytotoxicity in hippocampal neurons with IC50s of 2.2 and 0.3 {mu}M, depending on genotype, and apoptosis with IC50s of 2.3 and 0.4 {mu}M, respectively. These findings suggest that the developmental

  20. Chloride removal from vitrification offgas

    SciTech Connect

    Slaathaug, E.J.

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  1. Lithium chloride has a biphasic effect on prostate cancer stem cells and a proportional effect on midkine levels

    PubMed Central

    Erguven, Mine; Oktem, Gulperi; Kara, Ali Nail; Bilir, Ayhan

    2016-01-01

    Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide and the levels of differentiation growth factor midkine (MK) are increased in PCa. Cancer and/or the treatment process itself may lead to psychiatric disorders. Lithium chloride (LiCl) has anti-manic properties and has been used in cancer therapy; however, it has a queried safety profile. In addition, cancer stem cells are responsible for the heterogeneous phenotype of tumor cells; they are involved in progression, metastasis, recurrence and therapy resistance in various cancer types. The aims of the present study were to investigate the effect of different concentrations of LiCl on PCa stem cells (whether a shift from tumorigenic to non-tumorigenic cells occurs) and to determine if these results can be explained through changes in MK levels. Monolayer and spheroid cultures of human prostate stem cells and non-stem cells were incubated with low (1, 10 µM) and high (100, 500 µM) concentrations of LiCl for 72 h. Cell proliferation, apoptotic indices, MK levels and ultrastructure were evaluated. Cells stimulated with low concentrations showed high proliferation, low apoptotic indices, high MK levels and more healthy ultrastructure. Opposite results were obtained at high concentrations. Furthermore, stem cells were more sensitive to stimulation and more resistant to inhibition than non-stem cells. LiCl exhibited concentration-dependent effects on stem cell and non-stem cell groups. MK levels were not involved in the biphasic effect of LiCl; however, they were proportionally affected. To the best of our knowledge, the present study was the first to show the effect of LiCl on PCa stem cells through MK. PMID:27703531

  2. The Environmental Pollutant Tributyltin Chloride Disrupts the Hypothalamic-Pituitary-Adrenal Axis at Different Levels in Female Rats.

    PubMed

    Merlo, Eduardo; Podratz, Priscila L; Sena, Gabriela C; de Araújo, Julia F P; Lima, Leandro C F; Alves, Izabela S S; Gama-de-Souza, Letícia N; Pelição, Renan; Rodrigues, Lívia C M; Brandão, Poliane A A; Carneiro, Maria T W D; Pires, Rita G W; Martins-Silva, Cristina; Alarcon, Tamara A; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2016-08-01

    Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.

  3. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  4. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain

    PubMed Central

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer. PMID:25629974

  5. Two Phosphodiesterase Genes, PDEL and PDEH, Regulate Development and Pathogenicity by Modulating Intracellular Cyclic AMP Levels in Magnaporthe oryzae

    PubMed Central

    Zhang, Haifeng; Liu, Kaiyue; Zhang, Xing; Tang, Wei; Wang, Jiansheng; Guo, Min; Zhao, Qian; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2011-01-01

    Cyclic AMP (cAMP) signaling plays an important role in regulating multiple cellular responses, such as growth, morphogenesis, and/or pathogenicity of eukaryotic organisms such as fungi. As a second messenger, cAMP is important in the activation of downstream effector molecules. The balance of intracellular cAMP levels depends on biosynthesis by adenylyl cyclases (ACs) and hydrolysis by cAMP phosphodiesterases (PDEases). The rice blast fungus Magnaporthe oryzae contains a high-affinity (PdeH/Pde2) and a low-affinity (PdeL/Pde1) PDEases, and a previous study showed that PdeH has a major role in asexual differentiation and pathogenicity. Here, we show that PdeL is required for asexual development and conidial morphology, and it also plays a minor role in regulating cAMP signaling. This is in contrast to PdeH whose mutation resulted in major defects in conidial morphology, cell wall integrity, and surface hydrophobicity, as well as a significant reduction in pathogenicity. Consistent with both PdeH and PdeL functioning in cAMP signaling, disruption of PDEH only partially rescued the mutant phenotype of ΔmagB and Δpka1. Further studies suggest that PdeH might function through a feedback mechanism to regulate the expression of pathogenicity factor Mpg1 during surface hydrophobicity and pathogenic development. Moreover, microarray data revealed new insights into the underlying cAMP regulatory mechanisms that may help to identify potential pathogenicity factors for the development of new disease management strategies. PMID:21386978

  6. Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina

    PubMed Central

    Babai, Norbert; Thoreson, Wallace B

    2009-01-01

    We tested whether horizontal cells (HCs) provide feedback that regulates the Ca2+ current (ICa) of rods in salamander and mouse retinas. In both species, hyperpolarizing HCs by puffing a glutamate antagonist, 6,7-dinitro-quinoxaline-2,3-dione (DNQX), onto HC processes caused a negative shift in the voltage dependence of rod ICa and increased its peak amplitude. Conversely, depolarizing HCs by puffing kainic acid (KA) into the outer plexiform layer (OPL) caused a positive voltage shift and decreased rod ICa. Experiments on salamander retina showed that these effects were blocked by addition of the pH buffer, Hepes. Intracellular calcium concentration ([Ca2+]i) was examined in rods by confocal microscopy after loading salamander and mouse retinal slices with Fluo-4. Rods were depolarized to near the dark resting potential by bath application of high K+ solutions. Hyperpolarizing HCs with 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]quinoxaline (NBQX) enhanced high K+-evoked Ca2+ increases whereas depolarizing HCs with KA inhibited Ca2+ increases. In both species these effects of NBQX and KA were blocked by addition of Hepes. Thus, like HC feedback in cones, changes in HC membrane potential modulate rod ICa thereby regulating rod [Ca2+]i at physiological voltages, in both mouse and salamander retinas. By countering the reduced synaptic output that accompanies hyperpolarization of rods to light, HC feedback will subtract spatially averaged luminance levels from the responses of individual rods to local changes. The finding that HC to rod feedback is present in both amphibian and mammalian species shows that this mechanism is highly conserved across vertebrate retinas. PMID:19332495

  7. Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina.

    PubMed

    Babai, Norbert; Thoreson, Wallace B

    2009-05-15

    We tested whether horizontal cells (HCs) provide feedback that regulates the Ca(2+) current (I(Ca)) of rods in salamander and mouse retinas. In both species, hyperpolarizing HCs by puffing a glutamate antagonist, 6,7-dinitro-quinoxaline-2,3-dione (DNQX), onto HC processes caused a negative shift in the voltage dependence of rod I(Ca) and increased its peak amplitude. Conversely, depolarizing HCs by puffing kainic acid (KA) into the outer plexiform layer (OPL) caused a positive voltage shift and decreased rod I(Ca.) Experiments on salamander retina showed that these effects were blocked by addition of the pH buffer, Hepes. Intracellular calcium concentration ([Ca(2+)](i)) was examined in rods by confocal microscopy after loading salamander and mouse retinal slices with Fluo-4. Rods were depolarized to near the dark resting potential by bath application of high K(+) solutions. Hyperpolarizing HCs with 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]quinoxaline (NBQX) enhanced high K(+)-evoked Ca(2+) increases whereas depolarizing HCs with KA inhibited Ca(2+) increases. In both species these effects of NBQX and KA were blocked by addition of Hepes. Thus, like HC feedback in cones, changes in HC membrane potential modulate rod I(Ca) thereby regulating rod [Ca(2+)](i) at physiological voltages, in both mouse and salamander retinas. By countering the reduced synaptic output that accompanies hyperpolarization of rods to light, HC feedback will subtract spatially averaged luminance levels from the responses of individual rods to local changes. The finding that HC to rod feedback is present in both amphibian and mammalian species shows that this mechanism is highly conserved across vertebrate retinas.

  8. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  9. Effects of ATP on the intracellular calcium level in the osteoblastic TBR31-2 cell line.

    PubMed

    Nishii, Naomi; Nejime, Namie; Yamauchi, Chisako; Yanai, Nobuaki; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu

    2009-01-01

    We investigated the effects of extracellular ATP on TBR31-2 cells established from the bone marrow of transgenic mice harboring the temperature-sensitive simian virus (SV) 40 T-antigen gene. These cells showed the capacity to differentiate toward osteoblasts and could be enhanced by bone morphogenetic protein (BMP)-2, an inducer of osteoblasts. The intracellular calcium ion level ([Ca(2+)](i)) in differentiating TBR31-2 cells was measured by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe, Calcium Green 1/AM. P2 receptor agonists, such as ATP (1 microM), uridine 5'-triphosphate (1 microM), and ADP (1 microM), significantly increased the [Ca(2+)](i) of TBR31-2 cells in 2-d and 5-d cultures, but a potent P2X receptor agonist, alpha,beta-methylene ATP (10 microM), did not increase [Ca(2+)](i). The increase in [Ca(2+)](i) induced by ATP in the 2-d culture tended to be higher than in the 5-d culture. The increase in [Ca(2+)](i) of both cultures was inhibited by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, a P2 receptor antagonist. However, in an external Ca(2+)-free condition ATP-induced increase in [Ca(2+)](i) was unchanged at either stage. U73122, phospholipase C inhibitor and Thapsigargin, a calcium-pump inhibitor, significantly inhibited the increase in [Ca(2+)](i) at both stages. Reverse transcription-polymerase chain reaction analysis showed that the expression of P2Y receptor mRNA was higher in the 2-d culture than in the 5-d culture. These results indicate that ATP induces the increase in [Ca(2+)](i) from the calcium store through activating P2Y receptors in TBR31-2 cells and that the 2-d culture can respond to ATP more than the 5-d culture due to the higher expression of P2Y receptors. This suggests that the physiological role of ATP in osteoblasts is altered during differentiation.

  10. Intracellular glutathione levels are involved in carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone-induced apoptosis in As4.1 juxtaglomerular cells.

    PubMed

    Han, Yong Hwan; Park, Woo Hyun

    2011-04-01

    Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. In the present study, we investigated the involvement of reactive oxygen species (ROS) and glutathione (GSH) in FCCP-induced As4.1 juxtaglomerular cell death. Intracellular ROS levels were decreased by FCCP at the early time points (10-150 min) and increased at 48 h. FCCP inhibited the activity of Mn-superoxide dismutase (Mn-SOD) via down-regulating its protein expression. Ebselen (an antioxidant) significantly attenuated ROS levels in FCCP-treated cells, but did not prevent FCCP-induced cell death. Moreover, intracellular GSH content was rapidly diminished within 10 min of FCCP treatment, which was accompanied by a reduction of the mitochondrial membrane potential [MMP (∆ψm)]. L-buthionine sulfoximine (BSO, a GSH synthesis inhibitor) significantly augmented As4.1 cell death by FCCP. However, N-acetylcysteine (NAC, a GSH precursor and antioxidant) attenuated GSH depletion, MMP (∆ψm) loss and cell death in FCCP-treated As4.1 cells. In addition, NAC increased Mn-SOD activity and decreased ROS levels in FCCP-treated As4.1 cells. In conclusion, these results suggest that compared to ROS levels, intracellular GSH levels are more closely linked to FCCP-induced apoptosis in As4.1 juxtaglomerular cells.

  11. Distinct subpopulations of head and neck cancer cells with different levels of intracellular reactive oxygen species exhibit diverse stemness, proliferation, and chemosensitivity.

    PubMed

    Chang, Ching-Wen; Chen, Yu-Syuan; Chou, Shiu-Huey; Han, Chia-Li; Chen, Yu-Ju; Yang, Cheng-Chieh; Huang, Chih-Yang; Lo, Jeng-Fan

    2014-11-01

    Head and neck squamous cell carcinoma (HNSCC) is driven by cancer-initiating cells (CIC), but their maintenance mechanisms are obscure. For hematopoietic stem cells, low levels of intracellular reactive oxygen species (ROS(Low)) is known to help sustain stemness properties. In this report, we evaluated the hypothesis that ROS(Low) character conferred CIC properties in HNSCC. Sphere cultures define CIC in HNSCC cell populations (HN-CIC). We found that ROS(Low) cells in HN-CIC defined in this manner were more numerous than in parental HNSCC cells. Further, ROS(Low) cells frequently coexpressed CIC surface markers such as memGrp78 and Glut3. Exploiting flow cytometry to sort cells on the basis of their ROS level, we found that isolated ROS(Low) cells displayed relatively more CIC properties, including quiescence, chemoresistance, in vitro malignant properties, and tumorigenicity. Pharmacological depletion of ROS modulators in cisplatin-treated HN-CIC reduced CIC properties, enhancing cell differentiation and enhancing cisplatin-induced cell death. Overall, our work defined cell subpopulations in HNSCC on the basis of differential intracellular ROS levels, which associated with stemness and chemoresistance properties. On the basis of our findings, we suggest that strategies to promote intracellular ROS levels may heighten the efficacy of conventional chemotherapy used for HNSCC treatment. ©2014 American Association for Cancer Research.

  12. Tetrandrine Inhibits the Intracellular Calcium Ion Level and Upregulates the Expression of Brg1 and AHNAK in Hep-2 Cells.

    PubMed

    Cui, Xiangyan; Zhu, Wei; Wang, Ping; Wang, Xin

    2015-01-01

    Tetrandrine has been found to inhibit the growth of various types of tumor cells, but the underlying molecular mechanism remains to be determined. We aimed to investigate the effects of tetrandrine on human laryngeal carcinoma Hep-2 cells. Cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle was analyzed using flow cytometric analysis. The intracellular Ca2+ concentration was monitored using the membrane-permeable Ca(2+)-sensitive fluorescent probe fluo-3 acetoxymethyl ester-AM (Fluo3-AM). The mRNA and protein expression of Brgl and AHNAK were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunocytochemistry, respectively. Tetrandrine significantly inhibited the proliferation of Hep-2 cells as indicated by an IC50 value of 13.28 μg/mL. Tetrandrine induced cell cycle arrest at the G1 phase and decreased the intracellular concentration of Ca2+ in a concentration dependent manner. Intriguingly, tetrandrine upregulated Brg1 expression in a dose-and time-dependent pattern and elevated the expression of AHNAK in Hep-2 cells. Our results suggest that tetrandrine may inhibit the growth of Hep-2 cells by decreasing the intracellular concentration of Ca2+ and upregulating the expressions of Brg1 and AHNAK.

  13. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  14. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  15. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  16. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  17. The effect of intracellular alkalinisation on intracellular Ca(2+) homeostasis in a human chondrocyte cell line.

    PubMed

    Browning, Joseph A; Wilkins, Robert J

    2002-09-01

    Intracellular pH (pH(i)) is a well-established determinant of cartilage matrix metabolism. Changes to chondrocyte pH(i), and therefore matrix turnover rates, arise following joint loading. It is not yet clear whether pH changes exert their effects on matrix metabolism directly, or by changing the concentration of another, as yet unidentified, intracellular factor. In this study the effect of intracellular alkalinisation on intracellular [Ca(2+)] has been examined using the human chondrocyte C-20/A4 cell line. pH(i) was manipulated by the addition of weak bases to suspensions of chondrocytes and fluorimetric techniques were employed to measure pH(i) and [Ca(2+)](i). The effect of pH(i) changes on intracellular inositol 1,4,5-trisphosphate (IP(3)) levels was also determined. The pH-sensitive properties of the Ca(2+)-sensitive fluoroprobe employed in this study, Fura-2, were investigated such that artefactual effects of pH changes upon the dye could be discounted. It was demonstrated that, for dye loaded into cells, alkalinisation resulted in a small increase in the affinity of the dye for Ca(2+) ions. Intracellular alkalinisation elicited by treatment with either of the weak bases trimethylamine or ammonium chloride initiated a rise in [Ca(2+)](i). This effect was too large to be explicable by the effects of pH changes on Fura-2 and was not dependent on the presence of extracellular Ca(2+) ions. Prior depletion of intracellular Ca(2+) stores by treatment with thapsigargin inhibited alkalinisation-induced increases in [Ca(2+)](i) and intracellular alkalinisation was also associated with increased levels of intracellular IP(3). These results confirm that alkaline pH(i) changes associated with dynamic loading of cartilage also result in knock-on alterations to [Ca(2+)](i). Given the sensitivity of cartilage matrix metabolism to [Ca(2+)](i) it is likely that this signalling cascade forms an important part of the mechanotransduction pathway that determines the response of

  18. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water.

    PubMed

    Stets, E G; Lee, C J; Lytle, D A; Schock, M R

    2017-08-07

    Corrosion in water-distribution systems is a costly problem and controlling corrosion is a primary focus of efforts to reduce lead (Pb) and copper (Cu) in tap water. High chloride concentrations can increase the tendency of water to cause corrosion in distribution systems. The effects of chloride are also expressed in several indices commonly used to describe the potential corrosivity of water, the chloride-sulfate mass ratio (CSMR) and the Larson Ratio (LR). Elevated CSMR has been linked to the galvanic corrosion of Pb whereas LR is indicative of the corrosivity of water to iron and steel. Despite the known importance of chloride, CSMR, and LR to the potential corrosivity of water, monitoring of seasonal and interannual changes in these parameters is not common among water purveyors. We analyzed long-term trends (1992-2012) and the current status (2010-2015) of chloride, CSMR, and LR in order to investigate the short and long-term temporal variability in potential corrosivity of US streams and rivers. Among all sites in the trend analyses, chloride, CSMR, and LR increased slightly, with median changes of 0.9mgL(-1), 0.08, and 0.01, respectively. However, urban-dominated sites had much larger increases, 46.9mgL(-1), 2.50, and 0.53, respectively. Median CSMR and LR in urban streams (4.01 and 1.34, respectively) greatly exceeded thresholds found to cause corrosion in water distribution systems (0.5 and 0.3, respectively). Urbanization was strongly correlated with elevated chloride, CSMR, and LR, especially in the most snow-affected areas in the study, which are most likely to use road salt. The probability of Pb action-level exceedances (ALEs) in drinking water facilities increased along with raw surface water CSMR, indicating a statistical connection between surface water chemistry and corrosion in drinking water facilities. Optimal corrosion control will require monitoring of critical constituents reflecting the potential corrosivity in surface waters. Published by

  19. Bergamot essential oil differentially modulates intracellular Ca2+ levels in vascular endothelial and smooth muscle cells: a new finding seen with fura-2.

    PubMed

    You, Ji H; Kang, Purum; Min, Sun Seek; Seol, Geun Hee

    2013-04-01

    In this study, we compared the effect of the essential oil of Citrus bergamia Risso [bergamot, bergamot essential oil (BEO)] on the intracellular Ca levels in vascular endothelial (EA) and mouse vascular smooth muscle (MOVAS) cells, using the fura-2 fluorescence technique. BEO caused an initial transient increase in intracellular Ca concentration ([Ca]i) in EA cells, followed by a decrease, whereas it induced a sustained increase in [Ca]i in MOVAS cells. Linalyl acetate (LA) as a major component of BEO-induced [Ca]i mobilization was similar to BEO in EA cells. The increase of [Ca]i by LA was higher in EA cells than in MOVAS cells. [Ca]i rise induced by extracellular Ca application was significantly blocked by BEO or LA in EA cells but not in MOVAS cells, suggesting that BEO and LA block Ca influx in EA cells. The present results suggest that BEO and LA differentially modulate intracellular Ca levels in vascular endothelial and smooth muscle cells. In addition, blockade of Ca influx by BEO and LA in EA cells may explain the protective effects of BEO on endothelial dysfunction associated with cardiovascular disease.

  20. A novel effect of bifemelane, a nootropic drug, on intracellular Ca2+ levels in rat cerebral astrocytes.

    PubMed

    Yoshida, Yoshitoku; Nakane, Akira; Morita, Mitsuhiro; Kudo, Yoshihisa

    2006-02-01

    We investigated the effects of bifemelane, a nootropic drug, on the intracellular calcium concentration ([Ca2+]i) in rat cerebral astrocytes using a Ca2+ imaging device. At concentrations of 10 - 30 microM, bifemelane induced a slow onset and small increase in the [Ca2+]i, while at higher concentrations (100 - 300 microM), it induced a rapid transient increase in the [Ca2+]i during administration and a second large increase was seen during drug washout. The first peak was observed in Ca2+-free medium, but its onset was significantly delayed, and no second peak was seen. Neither of these effects was seen in cells treated with thapsigargin, a specific inhibitor of endoplasmic reticulum Ca2+-ATPase, in Ca2+-free medium. When thapsigargin-treated astrocytes were returned to normal medium containing Ca2+ (1.8 mM), the [Ca2+]i increased significantly, and this effect was reversely inhibited by bifemelane. We conclude that bifemelane causes the first peak by stimulating release from intracellular Ca2+ stores and the second by capacitive entry through store-operated Ca2+ channels. Although the detail mechanisms of action of the drug are still unknown, bifemelane will be provided as a pharmacological tool for basic studies on astrocytes.

  1. Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants.

    PubMed

    Rocha-Frigoni, Nathália A S; Leão, Beatriz C S; Nogueira, Ériklis; Accorsi, Mônica F; Mingoti, Gisele Z

    2014-01-01

    The effects of intracellular (cysteine and β-mercaptoethanol) and extracellular (catalase) antioxidant supplementation at different times during in vitro production (IVM and/or in vitro culture (IVC)) on bovine embryo development, intracellular reactive oxygen species (ROS) levels, apoptosis and re-expansion rates after a vitrification-thawing process were examined. Blastocyst frequencies were not affected by either antioxidant supplementation (40.5%-56.4%) or the timing of supplementation (41.7%-55.4%) compared with control (48.7%; P>0.05). Similarly, antioxidants and the moment of supplementation did not affect (P>0.05) the total number of blastomeres (86.2-90.5 and 84.4-90.5, respectively) compared with control (85.7). However, the percentage of apoptotic cells was reduced (P<0.05) in groups supplemented during IVM (1.7%), IVC (2.0%) or both (1.8%) compared with control (4.3%). Intracellular ROS levels measured in Day 7 blastocysts were reduced (P<0.05) in all groups (0.60-0.78), with the exception of the group supplemented with β-mercaptoethanol during IVC (0.88), which did not differ (P>0.05) from that in the control group (1.00). Re-expansion rates were not affected (P>0.05) by the treatments (50.0%-93.0%). In conclusion, antioxidant supplementation during IVM and/or IVC reduces intracellular ROS and the rate of apoptosis; however, supplementation does not increase embryonic development and survival after vitrification.

  2. Intracellular ROS

    PubMed Central

    Leshem, Yehoram

    2007-01-01

    Intracellular localization of stress induced reactive oxygen species (ROS) has emerged as an important aspect towards understanding of cellular responses to environmental stimuli. Our recent study published in the PNAS (103:18008–13)1 shows that NaCl-induced ROS appear within endosomes on the way to tonoplast as part of the vacuolar vesicle trafficking. In addition to showing ROS damage to the tonoplast, this finding may shed light upon recently reported aspects of root water relations during salt stress, suggesting a new signaling role for intracellular ROS in Arabidopsis root cells, during salt stress: ROS that are compartmentalized in endosomes are delivered by the vacuolar vesicle trafficking pathway to the tonoplast, resulting in oxidative gating of TIPs water channels. The closure of the tonoplast aquaporins contributes to the observed reduction in root hydraulic conductivity during salt stress. PMID:19704741

  3. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water.

  4. Synthesis, structural characterization and effect on human granulocyte intracellular cAMP levels of abscisic acid analogs.

    PubMed

    Bellotti, Marta; Salis, Annalisa; Grozio, Alessia; Damonte, Gianluca; Vigliarolo, Tiziana; Galatini, Andrea; Zocchi, Elena; Benatti, Umberto; Millo, Enrico

    2015-01-01

    The phytohormone abscisic acid (ABA), in addition to regulating physiological functions in plants, is also produced and released by several mammalian cell types, including human granulocytes, where it stimulates innate immune functions via an increase of the intracellular cAMP concentration ([cAMP]i). We synthesized several ABA analogs and evaluated the structure-activity relationship, by the systematical modification of selected regions of these analogs. The resulting molecules were tested for their ability to inhibit the ABA-induced increase of [cAMP]i in human granulocytes. The analogs with modified configurations at C-2' and C-3' abrogated the ABA-induced increase of the [cAMP]i and also inhibited several pro-inflammatory effects induced by exogenous ABA on granulocytes and monocytes. Accordingly, these analogs could be suitable as novel putative anti-inflammatory compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Application of "FLUOR-P" device for analysis of the space flight effects on the intracellular level.

    NASA Astrophysics Data System (ADS)

    Grigorieva, Olga; Rudimov, Evgeny; Buravkova, Ludmila; Galchuk, Sergey

    The mechanisms of cellular gravisensitivity still remain unclear despite the intensive research in the hypogravity effects on cellular function. In most cell culture experiments on unmanned vehicles "Bion" and "Photon", as well as on the ISS only allow post-flight analysis of biological material, including fixed cells is provided. The dynamic evaluation cellular parameters over a prolonged period of time is not possible. Thus, a promising direction is the development of equipment for onboard autonomous experiments. For this purpose, the SSC RF IBMP RAS has developed "FLUOR-P" device for measurement and recording of the dynamic differential fluorescent signal from nano- and microsized objects of organic and inorganic nature (human and animal cells, unicellular algae, bacteria, cellular organelles suspension) in hermetically sealed cuvettes. Besides, the device allows to record the main physical factors affecting the analyzed object (temperature and gravity loads: position in space, any vector acceleration, shock) in sync with the main measurements. The device is designed to perform long-term programmable autonomous experiments in space flight on biological satellites. The device software of allows to carry out complex experiments using cell. Permanent registration of data on built-in flash will give the opportunity to analyze the dynamics of the estimated parameters. FLUOR-P is designed as a monobloc (5.5 kg weight), 8 functional blocks are located in the inner space of the device. Each registration unit of the FLUOR-P has two channels of fluorescence intensity and excitation light source with the wavelength range from 300 nm to 700 nm. During biosatellite "Photon" flight is supposed to conduct a full analysis of the most important intracellular parameters (mitochondria activity and intracellular pH) dynamics under space flight factors and to assess the possible contribution of temperature on the effects of microgravity. Work is supported by Roskosmos and the

  6. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH.

    PubMed Central

    Warth, A D

    1991-01-01

    The effects of benzoic acid in the preservative-resistant yeast Zygosaccharomyces bailii were studied. At concentrations of benzoic acid up to 4 mM, fermentation was stimulated and only low levels of benzoate were accumulated. Near the MIC (10 mM), fermentation was inhibited, ATP levels declined, and benzoate was accumulated to relatively higher levels. Intracellular pH was reduced but not greatly. Changes in the levels of metabolites at different external benzoic acid levels showed that glycolysis was limited at pyruvate kinase and glyceraldehyde dehydrogenase-phosphoglycerate kinase steps. Inhibition of phosphofructokinase and several other glycolytic enzymes was not responsible for the inhibition of fermentation. Instead, the results suggest that the primary action of benzoic acid in Z. bailii is to cause a general energy loss, i.e., ATP depletion. PMID:1785916

  7. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  8. The effects of changes in glutathione levels through exogenous agents on intracellular cysteine content and protein adduct formation in chronic alcohol-treated VL17A cells.

    PubMed

    Kumar, S Mathan; Haridoss, Madhumitha; Swaminathan, Kavitha; Gopal, Ramesh Kumar; Clemens, Dahn; Dey, Aparajita

    2017-02-01

    Alcohol-mediated liver injury is associated with changes in the level of the major cellular antioxidant glutathione (GSH). It is interesting to investigate if the changes in intracellular GSH level through exogenous agents affect the intracellular cysteine content and the protein adduct formation indicative of oxidative insult in chronic alcohol treated liver cells. In VL-17A cells treated with 2 mM N-acetyl cysteine (NAC) or 0.1 mM ursodeoxycholic acid (UDCA) plus 100 mM ethanol, an increase in cysteine concentration which was accompanied by decreases in hydroxynonenal (HNE) and glutathionylated protein adducts were observed. Pretreatment of 100 mM ethanol treated VL-17A cells with 0.4 mM buthionine sulfoximine (BSO) or 1 mM diethyl maleate (DEM) had opposite effects. Thus, altered GSH level through exogenous agents may either potentiate or ameliorate chronic alcohol-mediated protein adduct formation and change the cysteine level in chronic alcohol treated VL-17A cells. The gene expression of non-treated and ethanol-treated hepatocytes in 2 microarray datasets was also compared to locate differentially expressed genes involved in cysteine metabolism. The study demonstrates that increased protein adducts formation and changes in cysteine concentration occur under chronic alcohol condition in liver cells which may increase alcohol-mediated oxidative injury.

  9. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    PubMed Central

    2013-01-01

    Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP) was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA). The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds) than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio) and B. megaterium (from Mobitec), we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus. PMID:23374160

  10. DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions.

    PubMed

    Wu, Dan; Ma, Xiuli; Lin, Francis

    2013-01-01

    Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.

  11. Differential resistance of human embryonic stem cells and somatic cell types to hydrogen peroxide-induced genotoxicity may be dependent on innate basal intracellular ROS levels.

    PubMed

    Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Poonepalli, Anuradha; Hande, Manoor Prakash; Cao, Tong

    2015-01-01

    Previously, we demonstrated that undifferentiated human embryonic stem cells (hESC) displayed higher resistance to oxidative and genotoxic stress compared to somatic cells, but did not further probe the underlying mechanisms. Using H₂O₂-induced genotoxicity as a model, this study investigated whether higher resistance of hESC to oxidative and genotoxic stress could be due to lower innate basal intracellular levels of reactive oxygen species (ROS), as compared to their differentiated fibroblastic progenies (H1F) and two other somatic cell types - human embryonic palatal mesenchymal (HEPM) cells and peripheral blood lymphocytes (PBL). Comet assay demonstrated that undifferentiated hESC consistently sustained lower levels of DNA damage upon acute exposure to H₂O₂ for 30 min, compared to somatic cells. DCFDA and HE staining with flow cytometry showed that undifferentiated hESC had lower innate basal intracellular levels of reactive oxygen species compared to somatic cells, which could lead to their higher resistance to genotoxic stress upon acute exposure to H₂O₂.

  12. A new insight into the role of intracellular nickel levels for the stress response, surface properties and twitching motility by Haemophilus influenzae.

    PubMed

    Tikhomirova, Alexandra; Jiang, Donald; Kidd, Stephen P

    2015-04-01

    Nickel acts as a co-factor for a small number of enzymes in bacteria. Urease is one of the two nickel-dependent enzymes that have been identified in Haemophilus influenzae; glyoxalase I is the other. However, nickel has been suggested to have roles in H. influenzae that can not attributed to the function of these enzymes. We have previously shown that in the H. influenzae strain Rd KW20 the inability to acquire nickel led to alterations to the cell-type; an increased biofilm formation and changes in cell surface properties. Here we report the differences in the genome wide gene expression between Rd KW20 and a strain incapable of importing nickel (nikQ); revealing a link between intracellular nickel levels and genes involved in metabolic pathways, stress responses and genes associated with surface factors such as type IV pili. We have then taken a strain previously shown to use type IV pili both in biofilm formation and for twitching motility (86-028NP) and have shown its homologous genes (NTHI1417-1422; annotated as cobalt transporter, cbiKLMOQ) did import nickel and mutations in this locus had pleiotropic effects correlating to stress response and motility. Compared to wild type cells, the nickel depleted cells were more electronegativity charged, they aggregated and formed a biofilm. Correct intracellular nickel levels were also important for resistance to oxidative stress; the nickel depleted cells were more sensitive to oxidative stress. The nickel depleted cells were also non-motile, but the addition specifically of nickel returned these cells to a wild type motility state. We have also analysed the role of nickel uptake in a naturally, urease negative strain (the blood isolate R2866) and depleting intracellular nickel (a nikQ mutant) in this strain effected a similar range of cell functions. These data reveal a role for the capacity to acquire nickel from the environment and for the correct intracellular nickel levels as part of H. influenzae stress response

  13. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds.

    PubMed

    Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu

    2012-02-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.

  14. Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds

    PubMed Central

    Kim, Ha Won; Chan, Qilin; Afton, Scott E.; Caruso, Joseph A.; Lai, Barry; Weintraub, Neal L.; Qin, Zhenyu

    2013-01-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound

  15. Sperm motility-initiating substance in newt egg-jelly induces differential initiation of sperm motility based on sperm intracellular calcium levels.

    PubMed

    Watanabe, Akihiko; Takayama-Watanabe, Eriko; Vines, Carol A; Cherr, Gary N

    2011-01-01

    Sperm motility-initiating substance (SMIS), a novel motility inducer from newt egg-jelly, is activated by the release from associated jelly substances at the beginning of internal fertilization and affects female-stored sperm. We examined motility initiation kinetics of newt sperm in response to SMIS by monitoring the changes of sperm intracellular calcium ([Ca²(+)](i)). In quiescent non-motile sperm loaded with the Ca²(+) indicator Fluo-4, intracellular free Ca²(+) was observed around mitochondria using confocal scanning laser microscopy. A slight increase in [Ca²(+)](i) occurred simultaneously and transiently at motility initiation in sperm treated with either heated jelly extract (hJE) containing activated SMIS, or a low osmotic solution, which naturally initiates motility in externally-fertilizing amphibians and can initiate motility in urodele sperm. When the increase of [Ca²(+)](i) at motility-initiation was monitored using spectrofluorometry, large increases in [Ca²(+)](i) occurred immediately in the low osmotic solution and within 1.5 min in the hJE. In the intact jelly extract (no heating), small increases of [Ca²(+)](i) irregularly occurred from around 1 min and for about 4 min, during which motility was differentially initiated among sperm. These results indicate that the SMIS induces differential initiation of sperm motility depending on the activational states of the SMIS and its overall activity. The motility initiation in the jelly extract was delayed in sperm whose intracellular Ca²(+) had been chelated with BAPTA-AM. The relative levels of [Ca²(+)](i) were variable with a mean of 414 ± 256 nmol/L among resting sperm, suggesting that the level of [Ca²(+)](i) in the resting sperm modulates the responsiveness to the SMIS.

  16. Intracellular calcium level is an important factor influencing ion channel modulations by PLC-coupled metabotropic receptors in hippocampal neurons.

    PubMed

    Sugawara, Yuto; Echigo, Ryousuke; Kashima, Kousuke; Minami, Hanae; Watanabe, Megumi; Nishikawa, Yuiko; Muranishi, Miho; Yoneda, Mitsugu; Ohno-Shosaku, Takako

    2013-05-28

    Signaling pathways involving phospholipase C (PLC) are involved in various neural functions. Understanding how these pathways are regulated will lead to a better understanding of their roles in neural functions. Previous studies demonstrated that receptor-driven PLCβ activation depends on intracellular Ca(2+) concentration ([Ca(2+)]i), suggesting the possibility that PLCβ-dependent cellular responses are basically Ca(2+) dependent. To test this possibility, we examined whether modulations of ion channels driven by PLC-coupled metabotropic receptors are sensitive to [Ca(2+)]i using cultured hippocampal neurons. Muscarinic activation triggered an inward current at -100 mV (the equilibrium potential for K(+)) in a subpopulation of neurons. This current response was suppressed by pirenzepine (an M1-preferring antagonist), PLC inhibitor, non-selective cation channel blocker, and lowering [Ca(2+)]i. Using the neurons showing no response at -100 mV, effects of muscarinic activation on K(+) channels were examined at -40 mV. Muscarinic activation induced a transient decrease of the holding outward current. This current response was mimicked and occluded by XE991, an M-current K(+) channel blocker, suppressed by pirenzepine, PLC inhibitor and lowering [Ca(2+)]i, and enhanced by elevating [Ca(2+)]i. Similar results were obtained when group I metabotropic glutamate receptors were activated instead of muscarinic receptors. These results clearly show that ion channel modulations driven by PLC-coupled metabotropic receptors are dependent on [Ca(2+)]i, supporting the hypothesis that cellular responses induced by receptor-driven PLCβ activation are basically Ca(2+) dependent.

  17. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  18. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  19. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  20. Mepiquat chloride

    Integrated Risk Information System (IRIS)

    Mepiquat chloride ; CASRN 24307 - 26 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  1. Vinyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635R - 00 / 004 TOXICOLOGICAL REVIEW OF VINYL CHLORIDE ( CAS No . 75 - 01 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) May 2000 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance with U.S

  2. Methyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635 / R01 / 003 TOXICOLOGICAL REVIEW OF METHYL CHLORIDE ( CAS No . 74 - 87 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2001 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance with U.

  3. Benzyl chloride

    Integrated Risk Information System (IRIS)

    Benzyl chloride ; CASRN 100 - 44 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  4. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  5. Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice.

    PubMed

    Spencer, Brian; Marr, Robert A; Rockenstein, Edward; Crews, Leslie; Adame, Anthony; Potkar, Rewati; Patrick, Christina; Gage, Fred H; Verma, Inder M; Masliah, Eliezer

    2008-11-12

    Proteolytic degradation has emerged as a key pathway involved in controlling levels of the Alzheimer's disease (AD)-associated amyloid-beta (Abeta) peptide in the brain. The endopeptidase, neprilysin, has been implicated as a major Abeta degrading enzyme in mice and humans. Previous short and intermediate term studies have shown the potential therapeutic application of neprilysin by delivering this enzyme into the brain of APP transgenic mice using gene transfer with viral vectors. However the effects of long-term neprilysin gene transfer on other aspects of Abeta associated pathology have not been explored yet in APP transgenic mice. We show that the sustained expression of neprilysin for up to 6 months lowered not only the amyloid plaque load but also reduced the levels of intracellular Abeta immunoreactivity. This was associated with improved behavioral performance in the water maze and ameliorated the dendritic and synaptic pathology in the APP transgenic mice. These data support the possibility that long-term neprilysin gene therapy improves behavioral and neurodegenerative pathology by reducing intracellular Abeta.

  6. Examination of the Staphylococcus aureus Nitric Oxide Reductase (saNOR) Reveals its Contribution to Modulating Intracellular NO Levels and Cellular Respiration

    PubMed Central

    Lewis, A. M.; Matzdorf, S.S.; Endres, J. L.; Windham, I.H.; Bayles, K. W.; Rice, K. C.

    2015-01-01

    Staphylococcus aureus nitrosative stress resistance is due in part to flavohemoprotein (Hmp). Although hmp is present in all sequenced S. aureus genomes, 37% of analyzed strains also contain nor, encoding a predicted quinol-type NO reductase (saNOR). DAF-FM staining of NO-challenged wild-type, nor, hmp, and nor hmp mutant biofilms suggested that Hmp may have a greater contribution to intracellular NO detoxification relative to saNOR. However, saNOR still had a significant impact on intracellular NO levels, and complemented NO detoxification in a nor hmp mutant. When grown as NO-challenged static (low-oxygen) cultures, hmp and nor hmp mutants both experienced a delay in growth initiation, whereas the nor mutant's ability to initiate growth was comparable to the wild-type strain. However, saNOR contributed to cell respiration in this assay once growth had resumed, as determined by membrane potential and respiratory activity assays. Expression of nor was upregulated during low-oxygen growth and dependent on SrrAB, a two-component system that regulates expression of respiration and nitrosative stress resistance genes. High-level nor promoter activity was also detectable in a cell subpopulation near the biofilm substratum. These results suggest that saNOR contributes to NO-dependent respiration during nitrosative stress, possibly conferring an advantage to nor+ strains in vivo. PMID:25651868

  7. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  8. The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity

    PubMed Central

    Alfonsa, Hannah; Merricks, Edward M.; Codadu, Neela K.; Cunningham, Mark O.; Deisseroth, Karl; Racca, Claudia

    2015-01-01

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl−. Brief (1–10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl− level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). PMID:25995461

  9. Exercise modulates chloride homeostasis after spinal cord injury.

    PubMed

    Côté, Marie-Pascale; Gandhi, Sapan; Zambrotta, Marina; Houlé, John D

    2014-07-02

    Activity-based therapies are routinely integrated in spinal cord injury (SCI) rehabilitation programs because they result in a reduction of hyperreflexia and spasticity. However, the mechanisms by which exercise regulates activity in spinal pathways to reduce spasticity and improve functional recovery are poorly understood. Persisting alterations in the action of GABA on postsynaptic targets is a signature of CNS injuries, including SCI. The action of GABA depends on the intracellular chloride concentration, which is determined largely by the expression of two cation-chloride cotransporters (CCCs), KCC2 and NKCC1, which serve as chloride exporters and importers, respectively. We hypothesized that the reduction in hyperreflexia with exercise after SCI relies on a return to chloride homeostasis. Sprague Dawley rats received a spinal cord transection at T12 and were assigned to SCI-7d, SCI-14d, SCI-14d+exercise, SCI-28d, SCI-28d+exercise, or SCI-56d groups. During a terminal experiment, H-reflexes were recorded from interosseus muscles after stimulation of the tibial nerve and the low-frequency-dependent depression (FDD) was assessed. We provide evidence that exercise returns spinal excitability and levels of KCC2 and NKCC1 toward normal levels in the lumbar spinal cord. Acutely altering chloride extrusion using the KCC2 blocker DIOA masked the effect of exercise on FDD, whereas blocking NKCC1 with bumetanide returned FDD toward intact levels after SCI. Our results indicate that exercise contributes to reflex recovery and restoration of endogenous inhibition through a return to chloride homeostasis after SCI. This lends support for CCCs as part of a pathway that could be manipulated to improve functional recovery when combined with rehabilitation programs.

  10. Measurements of copper ground-state and metastable level population densities in a copper-chloride laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1977-01-01

    The population densities of both the ground and the 2D(5/2) metastable states of copper atoms in a double-pulsed copper-chloride laser are correlated with laser energy as a function of time after the dissociation current pulse. Time-resolved density variations of the ground and excited copper atoms were derived from measurements of optical absorption at 324.7 and 510.6 nm, respectively, over a wide range of operating conditions in laser tubes with diameters of 4 to 40 mm. The minimum delay between the two current pulses at which lasing was observed is shown to be a function of the initial density and subsequent decay of the metastable state. Similarly, the maximum delay is shown to be a function of the initial density and decay of the ground state.

  11. Activation of AMPK Inhibits Cholera Toxin Stimulated Chloride Secretion in Human and Murine Intestine

    PubMed Central

    Hoekstra, Nadia; Collins, Danielle; Collaco, Anne; Baird, Alan W.; Winter, Desmond C.; Ameen, Nadia; Geibel, John P.; Kopic, Sascha

    2013-01-01

    Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness. PMID:23935921

  12. MicroRNA-181a-mediated downregulation of AC9 protein decreases intracellular cAMP level and inhibits ATRA-induced APL cell differentiation.

    PubMed

    Zhuang, L K; Xu, G P; Pan, X R; Lou, Y J; Zou, Q P; Xia, D; Yan, W W; Zhang, Y T; Jia, P M; Tong, J H

    2014-04-10

    AC9 is one of the adenylate cyclase (AC) isoforms, which catalyze the conversion of ATP to cAMP, an important second messenger. We previously found that the integration of cAMP/PKA pathway with nuclear receptor-mediated signaling was required during all-trans retinoic acid (ATRA)-induced maturation of acute promyelocytic leukemia (APL) cells. Here we showed that AC9 could affect intracellular cAMP level and enhance the trans-activity of retinoic acid receptor. Knockdown of AC9 in APL cell line NB4 could obviously inhibit ATRA-induced differentiation. We also demonstrated that miR-181a could decrease AC9 expression by targeting 3'UTR of AC9 mRNA, finally controlling the production of intracellular cAMP. The expression of miR-181a itself could be inhibited by CEBPα, probably accounting for the differential expression of miR-181a in NB4 and ATRA-resistant NB4-R1 cells. Moreover, we found that AC9 expression was relatively lower in newly diagnosed or relapsed APL patients than in both complete remission and non-leukemia cases, closely correlating with the leukemogenesis of APL. Taken together, our studies revealed for the first time the importance of miR-181a-mediated AC9 downregulation in APL. We also suggested the potential value of AC9 as a biomarker in the clinical diagnosis and treatment of leukemia.

  13. Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione.

    PubMed

    Grabek-Lejko, Dorota; Kurylenko, Olena O; Sibirny, Vladimir A; Ubiyvovk, Vira M; Penninckx, Michel; Sibirny, Andriy A

    2011-11-01

    The ability of baker's yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.

  14. Combined effects of PI3K and SRC kinase inhibitors with imatinib on intracellular calcium levels, autophagy, and apoptosis in CML-PBL cells.

    PubMed

    Ciarcia, Roberto; Damiano, Sara; Montagnaro, Serena; Pagnini, Ugo; Ruocco, Antonio; Caparrotti, Giuseppe; d'Angelo, Danila; Boffo, Silvia; Morales, Fátima; Rizzolio, Flavio; Florio, Salvatore; Giordano, Antonio

    2013-09-01

    Imatinib induces a complete cytogenetic regression in a large percentage of patients affected by chronic myeloid leukemia (CML) until mutations in the kinase domain of BCR-ABL appear. Alternative strategies for CML patients include the inhibition of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which is constitutively activated in leukemia cells and seems important for the regulation of cell proliferation, viability, and autophagy. In this study, we verified the effect of imatinib mesylate (IM), alone or in association with LY294002 (LY) (a specific PI3K protein tyrosine kinase inhibitor) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) (a Src tyrosine kinase inhibitor), on viability, intracellular calcium mobilization, apoptosis, and autophagy, in order to verify possible mechanisms of interaction. Our data demonstrated that PP1 and LY interact synergistically with IM by inducing apoptosis and autophagy in Bcr/Abl+ leukemia cells and this mechanism is related to the stress of the endoplasmic reticulum (ER). Our findings suggest a reasonable relationship between apoptotic and autophagic activity of tyrosine kinase inhibitors (TKIs) and the functionality of smooth ER Ca (2+)-ATPase and inositol triphosphate receptors, independently of intracellular calcium levels. Therapeutic strategies combining imatinib with PI3K and/or Src kinase inhibitors warrant further investigations in Bcr/Abl+ malignancies, particularly in the cases of imatinib mesylate-resistant disease.

  15. Modifications in rat testicular morphology and increases in IFN-gamma serum levels by the oral administration of subtoxic doses of mercuric chloride.

    PubMed

    Penna, Salvador; Pocino, Marisol; Marval, Maria Josefina; Lloreta, José; Gallardo, Luis; Vila, Joan

    2009-01-01

    Mercury induces structural and functional damage in several organs, however the effects of subtoxic doses of the metal on the male reproductive system are not well defined. In order to analyze testicular and epididymal morphological alterations and changes in IL-4 or IFN-gamma serum levels, adult male Sprague-Dawley rats received 0.01, 0.05 or 0.1 microg/ml of mercuric chloride (HgCl(2)) in deionized water for 1 to 7 months by oral route. Controls received deionized water alone. Twenty rats, separated in four groups of five animals each, were used per time of exposure. Progressive degenerative lesions consisting of lack of germ cell cohesion and desquamation, arrest at spermatocyte stage and hypospermatogenesis were observed in seminiferous epithelium by light and electron microscopy. Leydig cells showed cytoplasmic vacuolation and nuclear signs of cell death. Loss of peritubular cell aggregation was evidenced in the epididymis. Mercury accumulation was detected in both organs by mass spectroscopy. Rats showed enhanced IFN-gamma serum levels as compared to controls but only reached significance after 7 months of mercury administration. Subtoxic doses of inorganic mercury could lead to reproductive and immunological alterations. The results demonstrate that sublethal concentrations of mercuric chloride are enough to induce morphological and ultrastructural modifications in male reproductive organs. These contribute to functional alterations of spermatogenesis with arrest at spermatocyte stage, hypospermatogenesis and possibly impaired steroidogenesis which together could affect male fertility.

  16. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    PubMed

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  17. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  18. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney.

    PubMed

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl--dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic.

  19. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney

    PubMed Central

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl−-dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic. PMID:27213818

  20. Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells.

    PubMed

    O'Donnell, M J; Rheault, M R; Davies, S A; Rosay, P; Harvey, B J; Maddrell, S H; Kaiser, K; Dow, J A

    1998-04-01

    Anion conductance across the Drosophila melanogaster Malpighian (renal) tubule was investigated by a combination of physiological and transgenic techniques. Patch-clamp recordings identified clusters of 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive "maxi-chloride" channels in a small domain of the apical membrane. Fluid secretion assays demonstrated sensitivity to the chloride channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid, diphenylamine-2-carboxylate, anthracene-9-carboxylic acid, and niflumic acid. Electrophysiological analysis showed that the calcium-mediated increase in anion conductance was blocked by the same agents. Vibrating probe analysis revealed a small number of current density hot spots, coincident with "stellate" cells, that were abolished by low-chloride saline or the same chloride channel blockers. GAL-4-targeted expression of an aequorin transgene revealed that the neurohormone leucokinin elicits a rapid increase in intracellular calcium levels in stellate cells that precedes the fastest demonstrable physiological effect. Taken together, these data show that leucokinins act on stellate cells through intracellular calcium to increase transcellular chloride conductance through channels. As electrogenic cation conductance is confined to principal cells, the two pathways are spatially segregated in this tissue.

  1. GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression.

    PubMed

    Tatham, Amy L; Crabtree, Mark J; Warrick, Nicholas; Cai, Shijie; Alp, Nicholas J; Channon, Keith M

    2009-05-15

    GTP cyclohydrolase I (GTPCH) is a key enzyme in the synthesis of tetrahydrobiopterin (BH4), a required cofactor for nitricoxide synthases and aromatic amino acid hydroxylases. Alterations of GTPCH activity and BH4 availability play an important role in human disease. GTPCH expression is regulated by inflammatory stimuli, in association with reduced expression of GTP cyclohydrolase feedback regulatory protein (GFRP). However, the relative importance of GTPCH expression versus GTPCH activity and the role of GFRP in relation to BH4 bioavailability remain uncertain. We investigated these relationships in a cell line with tet-regulated GTPCH expression and in the hph-1 mouse model of GTPCH deficiency. Doxycycline exposure resulted in a dose-dependent decrease in GTPCH protein and activity, with a strong correlation between GTPCH expression and BH4 levels (r(2) = 0.85, p < 0.0001). These changes in GTPCH and BH4 had no effect on GFRP expression or protein levels. GFRP overexpression and knockdown in tet-GCH cells did not alter GTPCH activity or BH4 levels, and GTPCH-specific knockdown in sEnd.1 endothelial cells had no effect on GFRP protein. In mouse liver we observed a graded reduction of GTPCH expression, protein, and activity, from wild type, heterozygote, to homozygote littermates, with a striking linear correlation between GTPCH expression and BH4 levels (r(2) = 0.82, p < 0.0001). Neither GFRP expression nor protein differed between wild type, heterozygote, nor homozygote mice, despite the substantial differences in BH4. We suggest that GTPCH expression is the primary regulator of BH4 levels, and changes in GTPCH or BH4 are not necessarily accompanied by changes in GFRP expression.

  2. Elevated levels of the norspermidine synthesis enzyme NspC enhance Vibrio cholerae biofilm formation without affecting intracellular norspermidine concentrations.

    PubMed

    Parker, Zachary M; Pendergraft, Samuel S; Sobieraj, Jim; McGinnis, Marcus M; Karatan, Ece

    2012-04-01

    Biofilm formation in Vibrio cholerae is in part regulated by norspermidine, a polyamine synthesized by the enzyme carboxynorspermidine decarboxylase (NspC). The absence of norspermidine in the cell leads to a marked reduction in V. cholerae biofilm formation by an unknown mechanism. In this work, we show that overexpression of nspC results in large increases in biofilm formation and vps gene expression as well as a significant decrease in motility. Interestingly, increased NspC levels do not lead to increased concentrations of norspermidine in the cell. Our results show that NspC levels inversely regulate biofilm and motility and implicate the presence of an effective feedback mechanism maintaining norspermidine homeostasis in V. cholerae. Moreover, we provide evidence that NspC and the norspermidine sensor protein, NspS, provide independent and distinct inputs into the biofilm regulatory network. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Effects of decreased ground-water withdrawal on ground-water levels and chloride concentrations in Camden County, Georgia, and ground-water levels in Nassau County, Florida, from September 2001 to May 2003

    USGS Publications Warehouse

    Peck, Michael F.; McFadden, Keith W.; Leeth, David C.

    2005-01-01

    the upper Brunswick aquifer was still rising as of May 2003. Chloride concentrations in the Upper Floridan aquifer in Camden County do not exceed the State and Federal drinking-water standard of 250 milligrams per liter (mg/L). With the exception of three wells located at St. Marys, all of the wells sampled during this study (from September 2002 to May 2003) had chloride concentrations ranging from 30 to 50 mg/L, which are considered within background levels for the Upper Floridan aquifer in this area. The three wellstwo at the Durango Paper Company and the other an old unused City of St. Marys wellhad chloride concentrations that ranged from 74 to 175 mg/L, which are above the background level, but were still below the 250-mg/L drinking-water standard. The source has not been determined for the elevated chloride concentration in these wells; the chloride concentration in one of the wells has decreased slightly since the paper-mill shutdown. Chloride concentrations throughout Camden County showed little change after the paper-mill shutdown.

  4. Global protein-level responses of Halobacterium salinarum NRC-1 to prolonged changes in external sodium chloride concentrations.

    PubMed

    Leuko, Stefan; Raftery, Mark J; Burns, Brendan P; Walter, Malcolm R; Neilan, Brett A

    2009-05-01

    Responses to changes in external salinity were examined in Halobacterium salinarum NRC-1. H. salinarum NRC-1 grows optimally at 4.3 M NaCl and is capable of growth between 2.6 and 5.1 M NaCl. Physiological changes following incubation at 2.6 M NaCl were investigated with respect to growth behavior and proteomic changes. Initial observations indicated delayed growth at low NaCl concentrations (2.6 M NaCl), and supplementation with different sugars, amino acids, or KCl to increase external osmotic pressure did not reverse these growth perturbations. To gain a more detailed insight into the adaptive responses of H. salinarum NRC-1 to changes in salinity, the proteome was characterized using iTRAQ (amine specific isobaric tagging reagents). Three hundred and nine differentially expressed proteins were shown to be associated with changes in the external sodium chloride concentration, with proteins associated with metabolism revealing the greatest response.

  5. Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes.

    PubMed

    Li, Yongguo; Fromme, Tobias; Schweizer, Sabine; Schöttl, Theresa; Klingenspor, Martin

    2014-10-01

    Thermogenesis in brown adipocytes, conferred by mitochondrial uncoupling protein 1 (UCP1), is receiving great attention because metabolically active brown adipose tissue may protect humans from metabolic diseases. In particular, the thermogenic function of brown-like adipocytes in white adipose tissue, known as brite (or beige) adipocytes, is currently of prime interest. A valid procedure to quantify the specific contribution of UCP1 to thermogenesis is thus of vital importance. Adrenergic stimulation of lipolysis is a common way to activate UCP1. We here report, however, that in this frequently applied setup, taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured brown and brite adipocytes. By the application of these findings, we demonstrate that UCP1 is functionally thermogenic in intact brite adipocytes and adrenergic UCP1 activation is largely dependent on adipose triglyceride lipase (ATGL) rather than hormone sensitive lipase (HSL).

  6. Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes

    PubMed Central

    Li, Yongguo; Fromme, Tobias; Schweizer, Sabine; Schöttl, Theresa; Klingenspor, Martin

    2014-01-01

    Thermogenesis in brown adipocytes, conferred by mitochondrial uncoupling protein 1 (UCP1), is receiving great attention because metabolically active brown adipose tissue may protect humans from metabolic diseases. In particular, the thermogenic function of brown-like adipocytes in white adipose tissue, known as brite (or beige) adipocytes, is currently of prime interest. A valid procedure to quantify the specific contribution of UCP1 to thermogenesis is thus of vital importance. Adrenergic stimulation of lipolysis is a common way to activate UCP1. We here report, however, that in this frequently applied setup, taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured brown and brite adipocytes. By the application of these findings, we demonstrate that UCP1 is functionally thermogenic in intact brite adipocytes and adrenergic UCP1 activation is largely dependent on adipose triglyceride lipase (ATGL) rather than hormone sensitive lipase (HSL). PMID:25135951

  7. Actions of mammalian insulin on a Neurospora variant: effects on intracellular metabolite levels as monitored by P-31 NMR spectroscopy

    SciTech Connect

    Greenfield, N.J.; McKenzie, M.A.; Jordan, F.; Takahashi, M.; Lenard, J.

    1986-05-01

    Fourier transform P-31 NMR spectroscopy (81 MHz) was used to investigate the biochemical nature of insulin action upon the cell wall-deficient slime mutant of Neurospora crassa. Spectra of oxygenated, living cells (ca.10/sup 9//ml.) in late logarithmic-early stationary phase of growth were accumulated for approximately 20 min. (350-450 pulses). Pronounced differences were seen in the metabolite levels of cells cultured for 18-21 hours in the presence of insulin (100 nM) as compared to cells cultured in its absence. Differences in the insulin-grown cells included higher levels of sugar phosphates, inorganic (cytoplasmic) phosphate, NAD+/NADH and UDP-glucose (UDPG) compared to control cells, in which UDP-N-acetylglucosamine (UDPNAG) was the prominent sugar nucleotide. When 100 mM glucose was administered with insulin immediately prior to measurement, short term effects were seen. There were significant increases of sugar phosphates, inorganic phosphate, NAD+/NADH, phosphodiesters and UDPG relative to the case of glucose addition alone. These results are wholly consistent with the known influence of insulin upon mammalian metabolism: stimulation of glucose uptake, phosphorylation and oxidation, phosphatide synthesis and Pi uptake.

  8. Triclocarban-induced change in intracellular Ca²⁺ level in rat thymocytes: cytometric analysis with Fluo-3 under Zn²⁺-free conditions.

    PubMed

    Miura, Yukari; Chen, Xiaohui; Yamada, Saki; Sugihara, Aya; Enkhjargal, Molomjamts; Sun, Yuanzhi; Kuroda, Keiko; Satoh, Masaya; Oyama, Yasuo

    2014-03-01

    Triclocarban (TCC) is an antimicrobial used in personal hygiene products. Recent health concerns arose after TCC was detected in the blood of human subjects who showered with soap containing TCC. In this study, the effect of TCC on intracellular Ca(2+) concentration in rat thymocytes was examined using Fluo-3, an indicator of intracellular Ca(2+). TCC at concentrations ranging from 0.1 μM to 3 μM increased intracellular Ca(2+) concentration biphasically: first by releasing Ca(2+) from intracellular Ca(2+) stores and then inducing Ca(2+) influx through store-operated Ca(2+) channels. The threshold TCC concentration to increase intracellular Ca(2+) concentration in this study was lower than the maximum TCC concentrations reported in human blood samples. Therefore, we anticipate that TCC at concentrations reported in human blood samples might disturb intracellular Ca(2+) signaling in human lymphocytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Differential effects of arsenic on intracellular free calcium levels and the proliferative response of murine mitogen-stimulated lymphocytes.

    PubMed

    Goytia-Acevedo, Raquel C; Cebrian, Mariano E; Calderon-Aranda, Emma S

    2003-08-01

    This study examined the effects of sodium arsenite treatment on free [Ca(2+)]i and cell death in mitogen-activated murine lymphocytes. The main findings of this study were that simultaneous sodium arsenite treatment inhibited PHA- but not Con A-induced T cell proliferation, induced a higher increase in free [Ca(2+)]i and an early increase in the proportion of dead cells in PHA than in Con A activated cells. Sodium arsenite pre-treatment reduced both PHA- and Con A-induced T-cell proliferation. Phorbol myristate ester (PMA) did not prevent the inhibitory effects of both sodium arsenite treatments, suggesting that sodium arsenite did not significantly decreased PKC activation or that its effects occurred on events parallel to PKC activation. Both PHA and Con A increased free [Ca(2+)]i after stimulation, yet the effect was more pronounced in mitogen-activated cells simultaneously treated with sodium arsenite and particularly in those activated with PHA. The increase in free [Ca(2+)]i was in agreement with the early cell death induced by sodium arsenite in PHA-activated cells, a finding consistent with the inhibitory effects on PHA-induced proliferation. Sodium arsenite-induced cell death occurred faster in PHA-activated cells. Further studies are needed to ascertain the relationships between the effects of sodium arsenite on free [Ca(2+)]i levels and the type of cell death induced by sodium arsenite and their relevance for the proliferative response of T cells.

  10. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein.

    PubMed Central

    Munemitsu, S; Albert, I; Souza, B; Rubinfeld, B; Polakis, P

    1995-01-01

    The APC tumor-suppressor protein associates with beta-catenin, a cell adhesion protein that is upregulated by the WNT1 oncogene. We examined the effects of exogenous APC expression on the distribution and amount of beta-catenin in a colorectal cancer cell containing only mutant APC. Expression of wild-type APC caused a pronounced reduction in total beta-catenin levels by eliminating an excessive supply of cytoplasmic beta-catenin indigenous to the SW480 colorectal cancer cell line. This reduction was due to an enhanced rate of beta-catenin protein degradation. Truncated mutant APC proteins, characteristic of those associated with cancer, lacked this activity. Mutational analysis revealed that the central region of the APC protein, which is typically deleted or severely truncated in tumors, was responsible for the down-regulation of beta-catenin. These results suggest that the tumor-suppressor activity of mutant APC may be compromised due to a defect in its ability to regulate beta-catenin. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7708772

  11. Contact inhibition modulates intracellular levels of miR-223 in a p27kip1-dependent manner

    PubMed Central

    Armenia, Joshua; Fabris, Linda; Lovat, Francesca; Berton, Stefania; Segatto, Ilenia; D'Andrea, Sara; Ivan, Cristina; Cascione, Luciano; Calin, George A.; Croce, Carlo M.; Colombatti, Alfonso; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2014-01-01

    MicroRNAs (miRs) are a large class of small regulatory RNAs that function as nodes of signaling networks. This implicates that miRs expression has to be finely tuned, as observed during cell cycle progression. Here, using an expression profiling approach, we provide evidence that the CDK inhibitor p27Kip1 regulates miRs expression following cell cycle exit. By using wild type and p27KO cells harvested in different phases of the cell cycle we identified several miRs regulated by p27Kip1 during the G1 to S phase transition. Among these miRs, we identified miR-223 as a miR specifically upregulated by p27Kip1 in G1 arrested cells. Our data demonstrate that p27Kip1 regulated the expression of miR-223, via two distinct mechanisms. p27Kip1 directly stabilized mature miR-223 expression, acting as a RNA binding protein and it controlled E2F1 expression that, in turn, regulated miR-223 promoter activity. The resulting elevated miR-223 levels ultimately participated to arresting cell cycle progression following contact inhibition. Importantly, this mechanism of growth control was conserved in human cells and deranged in breast cancers. Here, we identify a novel and conserved function of p27Kip1 that, by modulating miR-223 expression, contributes to proper regulation of cell cycle exit following contact inhibition. Thus we propose a new role for miR-223 in the regulation of breast cancer progression. PMID:24727437

  12. Contact inhibition modulates intracellular levels of miR-223 in a p27kip1-dependent manner.

    PubMed

    Armenia, Joshua; Fabris, Linda; Lovat, Francesca; Berton, Stefania; Segatto, Ilenia; D'Andrea, Sara; Ivan, Cristina; Cascione, Luciano; Calin, George A; Croce, Carlo M; Colombatti, Alfonso; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2014-03-15

    MicroRNAs (miRs) are a large class of small regulatory RNAs that function as nodes of signaling networks. This implicates that miRs expression has to be finely tuned, as observed during cell cycle progression. Here, using an expression profiling approach, we provide evidence that the CDK inhibitor p27Kip1 regulates miRs expression following cell cycle exit. By using wild type and p27KO cells harvested in different phases of the cell cycle we identified several miRs regulated by p27Kip1 during the G1 to S phase transition. Among these miRs, we identified miR-223 as a miR specifically upregulated by p27Kip1 in G1 arrested cells. Our data demonstrate that p27Kip1 regulated the expression of miR-223, via two distinct mechanisms. p27Kip1 directly stabilized mature miR-223 expression, acting as a RNA binding protein and it controlled E2F1 expression that, in turn, regulated miR-223 promoter activity. The resulting elevated miR-223 levels ultimately participated to arresting cell cycle progression following contact inhibition. Importantly, this mechanism of growth control was conserved in human cells and deranged in breast cancers. Here, we identify a novel and conserved function of p27Kip1 that, by modulating miR-223 expression, contributes to proper regulation of cell cycle exit following contact inhibition. Thus we propose a new role for miR-223 in the regulation of breast cancer progression.

  13. Measurement of atmospheric vinyl chloride.

    PubMed

    Lande, S S

    1979-02-01

    Methods for atmospheric vinyl chloride measurement have been reviewed. The lowest detection limits and most specific measurement are achieved by scrubbing atmospheric samples with activated charcoal, desorbing the vinyl chloride, and assaying it by gas chromatography (GC). NIOSH currently recommends collecting samples using tubes packed with 150 mg of coconut shell charcoal, desorbing with carbon disulfide, and analyzing by GC equipped with flame-ionization detection (FID); the method is capable of detecting less than 1 ppm vinyl chloride and has an apparent recovery of abo the ppb level with no loss of accuracy or precision. Some field methods, such as infrared analysis and conductivity measurement, are capable of detecting 1 ppm or lower but are subject to interferences by other contaminants; th-y could be useful for evaluating sources of vinyl chloride leaks and for continuous monitoring. Permeation tubes are superior to gravimetric or volumetric methods for generating atmospheres of known vinyl chloride concentration.

  14. Hydrogeology of, water withdrawal from, and water levels and chloride concentrations in the major Coastal Plain aquifers of Gloucester and Salem Counties, New Jersey

    USGS Publications Warehouse

    Cauller, S.J.; Carleton, G.B.; Storck, M.J.

    1999-01-01

    Eight aquifers underlying Gloucester and Salem Counties in the southwestern Coastal Plain of New Jersey provide nearly all the drinking water for the 295,000 people who live in the area. Ground-water withdrawals in the two-county area and adjoining counties have affected water levels in several of these aquifers. Ground-water withdrawals in the two-county area also have affected the quality of water, increasing the chloride concentration in several of the aquifers as a result of saltwater intrusion. This report contains hydrologic data from the two-county area, including geometry and extent of hydrogeologic units, thickness and altitude of each aquifer, withdrawals from and water levels in major aquifers, and chloride concentrations in water from each aquifer. Reported ground-water withdrawals in Gloucester and Salem Counties during 1975-95 averaged 7,800 Mgal/yr (million gallons per year) for public supply, 4,900 Mgal/yr for industrial use, 700 Mgal/yr for irrigation, 500 Mgal/yr for power plants, 50 Mgal/yr for commercial use, and about 40 Mgal/yr for mining. Withdrawals for domestic self-supply in 1994 are estimated to be about 2,600 Mgal/yr, but only about 20 percent (520 Mgal/yr) is thought to be consumptive use; the remainder is returned to the aquifer through septic systems. The most heavily used aquifer in Salem and Gloucester Counties is the Upper Potomac-Raritan-Magothy aquifer, followed by, in decreasing order of use, the Middle Potomac-Raritan-Magothy aquifer, the Lower Potomac-Raritan-Magothy aquifer, the Kirkwood-Cohansey aquifer system, and the Wenonah-Mount Laurel aquifer. Reported withdrawals from these aquifers during 1975-95 averaged 5,000, 3,700, 3,200, and 330 Mgal/yr, respectively. Withdrawals from the Wenonah-Mount Laurel aquifer in Gloucester County increased during 1993-96 because of New Jersey Department of Environmental Protection restrictions on new withdrawals from the deeper Potomac-Raritan-Magothy aquifer system. Because of the

  15. Intracellular Acidosis Enhances the Excitability of Working Muscle

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas H.; Nielsen, Ole B.; Lamb, Graham D.; Stephenson, D. George

    2004-08-01

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  16. Intracellular acidosis enhances the excitability of working muscle.

    PubMed

    Pedersen, Thomas H; Nielsen, Ole B; Lamb, Graham D; Stephenson, D George

    2004-08-20

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  17. Factors influencing electrochemical removal of chloride from concrete

    SciTech Connect

    Arya, C.; Sa`id-Shawqi, Q.; Vassie, P.R.W.

    1996-06-01

    Electrochemical chloride removal was studied using prisms made from concrete containing various levels of chlorides derived from sodium chloride added during mixing. The amount of chloride removed during the treatment was assessed by analyzing the anolyte. Chloride removal increased with increasing applied potential, number of reinforcing bars at a particular depth and initial chloride content of the concrete. A greater percentage of chloride was removed from prisms where the thickness of the chloride bearing layer of concrete was less than the depth of cover to the reinforcement. Where the thickness of the chloride bearing layer exceeded the cover to the reinforcement, the use of an external cathode significantly increased the total amount of chloride removed. Chloride removal from a face remote from the source of the chloride contamination (soffit desalination) was shown to be feasible.

  18. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    SciTech Connect

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated

  19. Development of an immune function assay by measuring intracellular adenosine triphosphate (iATP) levels in mitogen-stimulated CD4+ T lymphocytes.

    PubMed

    Naderi, Hadi; Najafi, Alireza; Khoshroo, Mohammad; Tajik, Nader

    2016-01-01

    We developed an immune function assay for monitoring CD4+ T cells activity based on changes in intracellular adenosine triphosphate (iATP) levels after phytohemagglutinin (PHA) stimulation. Blood samples were obtained from 40 healthy subjects and 30 RTRs and incubated with 5 µg/mL of PHA for 15-18 hr at 37°C and 5% CO2. Afterward, the CD4+ T cells were separated by antibody-coated magnetic beads and lysed. Then, iATP content in unstimulated and stimulated conditions was measured by luciferin-luciferase reaction using a log-log standard curve. The iATP levels showed significant increase in CD4+ T cells in both healthy persons (mean: 550 ± 142 ng/mL vs. 109 ± 54 ng/mL) and RTRs (mean: 394 ± 160 ng/mL vs. 52 ± 37 ng/mL) after PHA stimulation (P < 0.001). However, the iATP production in RTRs was significantly lower than that in healthy individuals; both prior to and after stimulation with PHA (P < 0.001). No gender-specific difference in iATP production was observed between women and men subjects. This rapid and low-cost assay reflects the degree of immune cell function through assessment of CD4+ T cells activation. Thus, it can be used for evaluation of immune system status in immunodeficient individuals as well as in immunosuppressed transplant recipients who needs drug adjustment.

  20. The level of an intracellular antioxidant during development determines the adult phenotype in a bird species: a potential organizer role for glutathione.

    PubMed

    Romero-Haro, Ana Angela; Alonso-Alvarez, Carlos

    2015-03-01

    Life-history traits are often involved in trade-offs whose outcome would depend on the availability of resources but also on the state of specific molecular signals. Early conditions can influence trade-offs and program the phenotype throughout the lifetime, with oxidative stress likely involved in many taxa. Here we address the potential regulatory role of a single intracellular antioxidant in life-history trade-offs. Blood glutathione levels were reduced in a large sample of birds (zebra finch Taeniopygia guttata) during development using the synthesis inhibitor buthionine sulfoximine (BSO). Results revealed several modifications in the adult phenotype. BSO-treated nestlings showed lower glutathione and plasma antioxidant levels. In adulthood, BSO birds endured greater oxidative damage in erythrocytes but stronger expression of a sexual signal. Moreover, adult BSO females also showed weaker resistance to oxidative stress but were heavier and showed better body condition. Results suggest that low glutathione values during growth favor the investment in traits that should improve fitness returns, probably in the form of early reproduction. Higher oxidative stress in adulthood may be endured if this cost is paid later in life. Either the presence of specific signaling mechanisms or the indirect effect of increased oxidative stress can explain our findings.

  1. Microtubule assembly and in vitro development of bovine oocytes with increased intracellular glutathione level prior to vitrification and in vitro fertilization.

    PubMed

    Hara, H; Yamane, I; Noto, I; Kagawa, N; Kuwayama, M; Hirabayashi, M; Hochi, S

    2014-11-01

    Although vitrification is a useful technique for preservation of bovine oocytes, the yield of blastocysts derived from the vitrified oocytes is still low. We have recently reported a new type of cryoinjury, multiple aster formation, by which pronuclear migration and development of vitrified-warmed and in vitro-fertilized bovine oocytes are impaired. The aim of the present study was to investigate the effect of glutathione (GSH) content of vitrified bovine oocytes on multiple aster formation and subsequent in vitro development. Treatment of bovine cumulus-oocyte complexes with β-mercaptoethanol (βME) and L-cysteine (Cys) during in vitro maturation resulted in 2.5-fold higher GSH content not only in fresh control but also in vitrified-warmed oocytes. The percentage of normally fertilized zygotes exhibiting sperm aster(s) was >95% in all four groups (with or without βME/Cys × fresh control or vitrified). The frequency of multiple aster formation in vitrified oocytes (three-fold higher than that in fresh control oocytes) was not affected by the increased level of intracellular GSH with βME/Cys. Consequently, the migration and development of pronuclei as well as the yield of blastocysts from vitrified-warmed oocytes (17 versus 41%) were not improved. In addition, there was no effect of increased GSH level on the yield of blastocysts in fresh control groups.

  2. Chloride: the queen of electrolytes?

    PubMed

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O B

    2012-04-01

    Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general do not allocate chapters exclusively on hypochloremia or hyperchloremia and information on chloride other than channelopathies is scattered in the literature. To systematically review the function of chloride in man, data for this review include searches of MEDLINE, PubMed, and references from relevant articles including the search terms "chloride," "HCl," "chloride channel" "acid-base," "acidosis," "alkalosis," "anion gap" "strong anion gap" "Stewart," "base excess" and "lactate." In addition, internal medicine, critical care, nephrology and gastroenterology textbooks were evaluated on topics pertaining the assessment and management of acid-base disorders, including reference lists from journals or textbooks. Chloride is, after sodium, the most abundant electrolyte in serum, with a key role in the regulation of body fluids, electrolyte balance, the preservation of electrical neutrality, acid-base status and it is an essential component for the assessment of many pathological conditions. When assessing serum electrolytes, abnormal chloride levels alone usually signify a more serious underlying metabolic disorder, such as metabolic acidosis or alkalosis. Chloride is an important component of diagnostic tests in a wide array of clinical situations. In these cases, chloride can be tested in sweat, serum, urine and feces. Abnormalities in chloride channel expression and function in many organs can cause a range of disorders. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  3. Higher serum levels of soluble intracellular cell adhesion molecule-1 and soluble vascular cell adhesion molecule predict peripheral artery disease in haemodialysis patients.

    PubMed

    Cheng, Chi-Hung; Chen, Yi-Shyan; Shu, Kuo-Hsiung; Chang, Horng-Rong; Chou, Ming-Chih

    2012-11-01

    Serum levels of soluble intracellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM) and monocyte chemotactic protein 1 (MCP-1), are elevated in patients with peripheral artery disease (PAD). However, the levels of these cell adhesion molecules in patients undergoing haemodialysis (HD) are unclear. A total of 112 HD patients were included and PAD was diagnosed using the ankle-brachial index and Doppler ultrasound. Serum levels of sICAM-1, sVCAM-1 and MCP-1 were assayed using enzyme linked immunosorbent assay. Out of 106 HD patients, 31 (27.7%) were diagnosed with PAD. After adjusting for risk factors, higher serum levels of sVCAM-1 and sICAM-1 were associated with PAD in HD patients, with an odds ratio of 5.3 (95% CI 3.3-65.5) and 2.7 (95% CI 1.2-21.8) respectively. Using sVCAM-1 and sICAM-1 for diagnosis of PAD in HD patients, sVCAM-1 had a sensitivity of 72.4% and specificity of 62.3% for sVCAM-1 and sICAM-1 had a sensitivity of 89.3% and a specificity of 40%. MCP-1 was not associated with PAD in HD patients. In addition, the fistula of HD patients with PAD had a lower A-V access flow. sVCAM-1 and sICAM-1 was associated with higher risk of PAD in HD patients. Moreover, HD patients with PAD had a lower blood flow and lower A-V access flow. Our results showed that sVCAM-1 and sICAM-1 may be used as screening markers for PAD in HD patients. © 2012 The Authors. Nephrology © 2012 Asian Pacific Society of Nephrology.

  4. The regulation of cytotoxicity and cyclooxygenase-2 expression by 2-hydroxy-ethyl methacrylate in human osteoblasts are related to intracellular glutathione levels.

    PubMed

    Ho, Y-C; Huang, F-M; Lee, S-S; Chang, Y-C

    2014-08-01

    To investigate the effects of 2-hydroxy-ethyl methacrylate (HEMA) on cytotoxicity and cyclooxygenase-2 (COX-2) protein expression in human osteoblasts. Cytotoxicity was judged using an Alamar Blue reduction assay on human osteoblast cell line U2OS. Western blot was used to evaluate the expression of COX-2 protein by HEMA. To determine whether glutathione (GSH) levels were important in cytotoxicity and COX-2 expression of HEMA, cells were pre-treated with the GSH precursor, 2-oxothiazolidine-4-carboxylic acid (OTZ), to boost thiol levels, or buthionine sulfoximine (BSO) to deplete GSH. Paired Student's t-tests were applied for the statistical analysis of the results. HEMA demonstrated a cytotoxic effect to U2OS cells in a dose-dependent manner (P < 0.05). The 50% inhibition concentration of HEMA was approximately 3 mmol L(-1) . HEMA was found to induce COX-2 protein expression in U2OS cells (P < 0.05). The addition of OTZ acted as a protective effect on HEMA-induced cytotoxicity and COX-2 expression (P < 0.05). In contrast, the addition of BSO enhanced HEMA-induced cytotoxicity and COX-2 expression (P < 0.05). Taken together, the levels of HEMA that were tested inhibited cell growth on U2OS cells. HEMA has a significant potential for periapical toxicity. The activation of COX-2 protein expression may be one of the mechanisms of HEMA-induced periapical inflammation. These inhibitory effects were associated with intracellular GSH levels. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Infection with the intracellular protozoan parasite Theileria parva induces constitutively high levels of NF-kappa B in bovine T lymphocytes.

    PubMed Central

    Ivanov, V; Stein, B; Baumann, I; Dobbelaere, D A; Herrlich, P; Williams, R O

    1989-01-01

    The intracellular protozoan parasite Theileria parva causes a lymphoproliferative disease of T cells in cattle and uncontrolled lymphocyte proliferation in culture. We have identified and characterized in infected cells the transcriptional activator, NF-kappa B, whose recognition motifs have been identified in several gene enhancers important for lymphocyte-specific gene expression. NF-kappa B is normally constitutively activated in nuclear extracts derived from B cells and can be induced in T cells and nonlymphoid cells by phorbol esters. Theileria-infected lymphocytes contained constitutively high levels of activated NF-kappa B in nuclear fractions and inactive NF-kappa B in cytoplasmic fractions. The inactive cytoplasmic precursor could be activated by treatment of extracts with deoxycholate, which was shown previously to dissociate NF-kappa B from an inhibitor, I kappa B. Treatment of lymphocyte extracts with 3 mM GTP stimulated NF-kappa B binding to its recognition motif in vitro, thereby distinguishing it from a related nuclear factor, H2-TF1. Selective killing of the parasite, which left the host cells intact, resulted in a rapid loss of NF-kappa B from the nuclear fractions and a slower loss from the cytoplasmic fractions. In parasitized cells, NF-kappa B could not be further stimulated by treatment with 12-O-tetradecanoylphorbol-13-acetate whereas in cells treated to remove the parasite, this compound stimulated elevated levels of NF-kappa B. We propose that high levels of activated NF-kappa B are maintained by the presence of the parasite in infected T cells. Similarly, we propose that the high levels of inactive cytoplasmic precursor are a result of increased synthesis due to the presence of the parasite. Images PMID:2513476

  6. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level.

    PubMed

    Kasbe, Prajapati; Jangra, Ashok; Lahkar, Mangala

    2015-01-01

    Mangiferin is a phytochemical primarily present in the stem, leaves and bark of Mangifera indica. It offers neuroprotection mainly through inhibition of oxidative stress, and decreasing proinflammatory cytokines level in the brain. Aluminium has been reported to cause oxidative stress-associated damage in the brain. In the present investigation, protective effect of mangiferin against aluminium chloride (AlCl3)-induced neurotoxicity and cognitive impairment was studied in male Swiss albino mice. AlCl3 (100 mg/kg) was administered once daily through oral gavage for 42 days. Mangiferin (20 and 40 mg/kg, p.o.) was given to mice for last 21 days of the study. We found cognitive dysfunction in AlCl3-treated group, which was assessed by Morris water maze test, and novel object recognition test. AlCl3-treated group showed elevated level of oxidative stress markers, proinflammatory cytokines level and lowered hippocampal brain-derived neurotrophic factor (BDNF) content. Mangiferin (40 mg/kg) prevented the cognitive deficits, hippocampal BDNF depletion, and biochemical anomalies induced by AlCl3-treatment. In conclusion, our data demonstrated that mangiferin offers neuroprotection in AlCl3-induced neurotoxicity and it may be a potential therapeutic approach in the treatment of oxido-nitrosative stress and inflammation-associated neurotoxicity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Effect of Chloride Depletion on the Magnetic Properties and the Redox Leveling of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Amin, Muhamed; Pokhrel, Ravi; Brudvig, Gary W; Badawi, Ashraf; Obayya, S S A

    2016-05-12

    Chloride is an essential cofactor in the oxygen-evolution reaction that takes place in photosystem II (PSII). The oxygen-evolving complex (OEC) is oxidized in a linear four-step photocatalytic cycle in which chloride is required for the OEC to advance beyond the S2 state. Here, using density functional theory, we compare the energetics and spin configuration of two different states of the Mn4CaO5 cluster in the S2 state: state A with Mn1(3+) and B with Mn4(3+) with and without chloride. The calculations suggest that model B with an S = 5/2 ground state occurs in the chloride-depleted PSII, which may explain the presence of the EPR signal at g = 4.1. Moreover, we use multiconformer continuum electrostatics to study the effect of chloride depletion on the redox potential associated with the S1/S2 and S2/S3 transitions.

  8. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2014-01-01

    Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  9. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior

    PubMed Central

    Rebbapragada, Anuradha; Johnson, Mark S.; Harding, Gordon P.; Zuccarelli, Anthony J.; Fletcher, Hansel M.; Zhulin, Igor B.; Taylor, Barry L.

    1997-01-01

    We identified a protein, Aer, as a signal transducer that senses intracellular energy levels rather than the external environment and that transduces signals for aerotaxis (taxis to oxygen) and other energy-dependent behavioral responses in Escherichia coli. Domains in Aer are similar to the signaling domain in chemotaxis receptors and the putative oxygen-sensing domain of some transcriptional activators. A putative FAD-binding site in the N-terminal domain of Aer shares a consensus sequence with the NifL, Bat, and Wc-1 signal-transducing proteins that regulate gene expression in response to redox changes, oxygen, and blue light, respectively. A double mutant deficient in aer and tsr, which codes for the serine chemoreceptor, was negative for aerotaxis, redox taxis, and glycerol taxis, each of which requires the proton motive force and/or electron transport system for signaling. We propose that Aer and Tsr sense the proton motive force or cellular redox state and thereby integrate diverse signals that guide E. coli to environments where maximal energy is available for growth. PMID:9380671

  10. In vivo monitoring of intracellular ATP levels in Leishmania donovani promastigotes as a rapid method to screen drugs targeting bioenergetic metabolism.

    PubMed

    Luque-Ortega, J R; Rivero-Lezcano, O M; Croft, S L; Rivas, L

    2001-04-01

    A method for the rapid screening of drugs targeting the bioenergetic metabolism of Leishmania spp. was developed. The system is based on the monitoring of changes in the intracellular ATP levels of Leishmania donovani promastigotes that occur in vivo, as assessed by the luminescence produced by parasites transfected with a cytoplasmic form of Phothinus pyralis luciferase and incubated with free-membrane permeable D-luciferin analogue D-luciferin-[1-(4,5-dimethoxy-2-nitrophenyl) ethyl ester]. A significant correlation was obtained between the rapid inhibition of luminescence with parasite proliferation and the dissipation of changes in mitochondrial membrane potential (DeltaPsi(m)) produced by buparvaquone or plumbagin, two leishmanicidal inhibitors of oxidative phosphorylation. To further validate this test, a screen of 14 standard leishmanicidal drugs, using a 50 microM cutoff, was carried out. Despite its semiquantitative properties and restriction to the promastigote stage, this test compares favorably with other bioenergetic parameters with respect to time and cell number requirements for the screening of drugs that affect mitochondrial activity.

  11. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell

    PubMed Central

    Ofori, Jones K.; Salunkhe, Vishal A.; Bagge, Annika; Vishnu, Neelanjan; Nagao, Mototsugu; Mulder, Hindrik; Wollheim, Claes B.; Eliasson, Lena; Esguerra, Jonathan L. S.

    2017-01-01

    MicroRNAs have emerged as important players of gene regulation with significant impact in diverse disease processes. In type-2 diabetes, in which impaired insulin secretion is a major factor in disease progression, dysregulated microRNA expression in the insulin-secreting pancreatic beta cell has been widely-implicated. Here, we show that miR-130a-3p, miR-130b-3p, and miR-152-3p levels are elevated in the pancreatic islets of hyperglycaemic donors, corroborating previous findings about their upregulation in the islets of type-2 diabetes model Goto-Kakizaki rats. We demonstrated negative regulatory effects of the three microRNAs on pyruvate dehydrogenase E1 alpha (PDHA1) and on glucokinase (GCK) proteins, which are both involved in ATP production. Consequently, we found both proteins to be downregulated in the Goto-Kakizaki rat islets, while GCK mRNA expression showed reduced trend in the islets of type-2 diabetes donors. Overexpression of any of the three microRNAs in the insulin-secreting INS-1 832/13 cell line resulted in altered dynamics of intracellular ATP/ADP ratio ultimately perturbing fundamental ATP-requiring beta cell processes such as glucose-stimulated insulin secretion, insulin biosynthesis and processing. The data further strengthen the wide-ranging influence of microRNAs in pancreatic beta cell function, and hence their potential as therapeutic targets in type-2 diabetes. PMID:28332581

  12. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-07

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate

  13. Rapid actions of calcitriol and its side chain analogues CB1093 and GS1500 on intracellular calcium levels in skeletal muscle cells: a comparative study

    PubMed Central

    Vazquez, Guillermo; Sellés, Juana; de Boland, Ana Russo; Boland, Ricardo

    1999-01-01

    The ability of synthetic analogues of the secosteroid hormone 1α,25-dihydroxy-vitamin-D3 [calcitriol, CT; 1,25(OH)2D3] to exert non-genomic (rapid) effects on target cells has been scarcely studied. To evaluate the pharmacological potential of the CT side-chain analogues CB1093 and GS1500, we compared their fast effects on intracellular calcium concentration ([Ca2+]i) in chick skeletal muscle cells with those elicited by the natural hormone.Both analogues, similarly to CT, specifically induced rapid (30–60 s) and sustained rises in [Ca2+]i levels. CB1093 and GS1500 were more potent than the natural hormone at concentrations as low as 10−13 M (4.5 fold stimulation) and 10−12 M (2.5 fold), respectively, whereas higher concentrations (10−9–10−8 M) of CT were more effective than the analogues in elevating [Ca2+]i. Cyclic AMP was markedly increased by both analogues pointing for a role of this messenger in the fast actions of the synthetic compounds.In Ca2+ free medium CT and analogues elicited a transient elevation in [Ca2+]i. The PLC inhibitors U73122 (2 μM) and neomycin (0.5 mM), as well as depletion of intracellular stores with thapsigargin (1 μM), completely prevented CB1093/GS1500-dependent changes in [Ca2+]i suggesting that, similarly to CT, these analogues mobilized Ca2+ from an IP3/thapsigargin-sensitive store.The voltage-dependent calcium channel (VDCC) blocker nifedipine (2 μM) reduced by 50–60% the influx phase of the [Ca2+]i response to CB1093 and GS1500, indicating that VDCC contributed partially to Ca2+ entry. The Ca2+ readdition protocol suggested that analogue-dependent activation of a SOC entry pathway accounted, to the same extent as for CT, for the remaining non-VDCC mediated Ca2+ influx. PMID:10372825

  14. Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2

    PubMed Central

    Földy, Csaba; Lee, Sang-Hun; Morgan, Robert J.; Soltesz, Ivan

    2010-01-01

    Parvalbumin-expressing, fast-spiking basket cells play key roles in the generation of synchronous, rhythmic population activities in the hippocampus. Here we show that GABAA receptor-mediated synaptic inputs from murine parvalbumin-expressing basket cells are selectively modulated by the membrane voltage- and intracellular chloride-dependent chloride channel ClC–2. These data demonstrate a novel cell type-specific regulation of intracellular chloride homeostasis in the perisomatic region of hippocampal pyramidal neurons. PMID:20676104

  15. Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia.

    PubMed

    Willis, B Cicero; Pandit, Sandeep V; Ponce-Balbuena, Daniela; Zarzoso, Manuel; Guerrero-Serna, Guadalupe; Limbu, Bijay; Deo, Makarand; Camors, Emmanuel; Ramirez, Rafael J; Mironov, Sergey; Herron, Todd J; Valdivia, Héctor H; Jalife, José

    2016-06-14

    In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca(2+) dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2(R4496C+/Cx40eGFP)), we tested whether PC intracellular Ca(2+) ([Ca(2+)]i) dysregulation results from a constitutive [Na(+)]i surplus relative to VMs. Simultaneous optical mapping of voltage and [Ca(2+)]i in CPVT hearts showed that spontaneous Ca(2+) release preceded pacing-induced triggered activity at subendocardial PCs. On simultaneous current-clamp and Ca(2+) imaging, early and delayed afterdepolarizations trailed spontaneous Ca(2+) release and were more frequent in CPVT PCs than CPVT VMs. As a result of increased activity of mutant ryanodine receptor type 2 channels, sarcoplasmic reticulum Ca(2+) load, measured by caffeine-induced Ca(2+) transients, was lower in CPVT VMs and PCs than respective controls, and sarcoplasmic reticulum fractional release was greater in both CPVT PCs and VMs than respective controls. [Na(+)]i was higher in both control and CPVT PCs than VMs, whereas the density of the Na(+)/Ca(2+) exchanger current was not different between PCs and VMs. Computer simulations using a PC model predicted that the elevated [Na(+)]i of PCs promoted delayed afterdepolarizations, which were always preceded by spontaneous Ca(2+) release events from hyperactive ryanodine receptor type 2 channels. Increasing [Na(+)]i monotonically increased delayed afterdepolarization frequency. Confocal imaging experiments showed that postpacing Ca(2+) spark frequency was highest in intact CPVT PCs, but such differences were reversed on saponin-induced membrane permeabilization, indicating that differences in [Na(+)]i played a central role. In CPVT mice, the constitutive [Na(+)]i excess of PCs promotes triggered activity and arrhythmogenesis at lower levels of stress than VMs. © 2016 The Authors.

  16. Constitutive Intracellular Na+ Excess in Purkinje Cells Promotes Arrhythmogenesis at Lower Levels of Stress Than Ventricular Myocytes From Mice With Catecholaminergic Polymorphic Ventricular Tachycardia

    PubMed Central

    Willis, B. Cicero; Pandit, Sandeep V.; Ponce-Balbuena, Daniela; Zarzoso, Manuel; Guerrero-Serna, Guadalupe; Limbu, Bijay; Deo, Makarand; Camors, Emmanuel; Ramirez, Rafael J.; Mironov, Sergey; Herron, Todd J.; Valdivia, Héctor H.

    2016-01-01

    Background— In catecholaminergic polymorphic ventricular tachycardia (CPVT), cardiac Purkinje cells (PCs) appear more susceptible to Ca2+ dysfunction than ventricular myocytes (VMs). The underlying mechanisms remain unknown. Using a CPVT mouse (RyR2R4496C+/Cx40eGFP), we tested whether PC intracellular Ca2+ ([Ca2+]i) dysregulation results from a constitutive [Na+]i surplus relative to VMs. Methods and Results— Simultaneous optical mapping of voltage and [Ca2+]i in CPVT hearts showed that spontaneous Ca2+ release preceded pacing-induced triggered activity at subendocardial PCs. On simultaneous current-clamp and Ca2+ imaging, early and delayed afterdepolarizations trailed spontaneous Ca2+ release and were more frequent in CPVT PCs than CPVT VMs. As a result of increased activity of mutant ryanodine receptor type 2 channels, sarcoplasmic reticulum Ca2+ load, measured by caffeine-induced Ca2+ transients, was lower in CPVT VMs and PCs than respective controls, and sarcoplasmic reticulum fractional release was greater in both CPVT PCs and VMs than respective controls. [Na+]i was higher in both control and CPVT PCs than VMs, whereas the density of the Na+/Ca2+ exchanger current was not different between PCs and VMs. Computer simulations using a PC model predicted that the elevated [Na+]i of PCs promoted delayed afterdepolarizations, which were always preceded by spontaneous Ca2+ release events from hyperactive ryanodine receptor type 2 channels. Increasing [Na+]i monotonically increased delayed afterdepolarization frequency. Confocal imaging experiments showed that postpacing Ca2+ spark frequency was highest in intact CPVT PCs, but such differences were reversed on saponin-induced membrane permeabilization, indicating that differences in [Na+]i played a central role. Conclusions— In CPVT mice, the constitutive [Na+]i excess of PCs promotes triggered activity and arrhythmogenesis at lower levels of stress than VMs. PMID:27169737

  17. Regulation of Leukemic Cell Differentiation through the Vitamin D Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein Trafficking and Stability

    PubMed Central

    Gocek, Elżbieta; Baurska, Hanna; Marchwicka, Aleksandra; Marcinkowska, Ewa

    2012-01-01

    1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these acting together. PMID:23213549

  18. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper.

    PubMed Central

    Verhaegh, G W; Richard, M J; Hainaut, P

    1997-01-01

    Mutations in the p53 tumor suppressor gene frequently fall within the specific DNA-binding domain and prevent the molecule from transactivating normal targets. DNA-binding activity is regulated in vitro by metal ions and by redox conditions, but whether these factors also regulate p53 in vivo is unclear. To address this question, we have analyzed the effect of pyrrolidine dithiocarbamate (PDTC) on p53 DNA-binding activity in cell lines expressing wild-type p53. PDTC is commonly regarded as an antioxidant, but it can also bind and transport external copper ions into cells and thus exert either pro- or antioxidant effects in different situations. We report that PDTC, but not N-acetyl-L-cysteine, down-regulated the specific DNA-binding activity of p53. Loss of DNA binding correlated with disruption of the immunologically "wild-type" p53 conformation. Using different chelators to interfere with copper transport by PDTC, we found that bathocuproinedisulfonic acid (BCS), a non-cell-permeable chelator of Cu1+, prevented both copper import and p53 down-regulation. In contrast, 1,10-orthophenanthroline, a cell-permeable chelator of Cu2+, promoted the redox activity of copper and up-regulated p53 DNA-binding activity through a DNA damage-dependent pathway. We have previously reported that p53 protein binds copper in vitro in the form of Cu1+ (P. Hainaut, N. Rolley, M. Davies, and J. Milner, Oncogene 10:27-32, 1995). The data reported here indicate that intracellular levels and redox activity of copper are critical for p53 protein conformation and DNA-binding activity and suggest that copper ions may participate in the physiological control of p53 function. PMID:9315628

  19. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.

  20. Elevated intracellular Na(+) concentrations in developing spinal neurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2017-03-01

    Over 25 years ago it was first reported that intracellular chloride levels (Cl(-)in ) were higher in developing neurons than in maturity. This finding has had significant implications for understanding the excitability of developing networks and recognizing the underlying causes of hyperexcitability associated with disease and neural injury. While there is some evidence that intracellular sodium levels (Na(+)in ) change during the development of non-neural cells, it has largely been assumed that Na(+)in is the same in developing and mature neurons. Here, using the sodium indicator SBFI, we test this idea and find that Na(+)in is significantly higher in embryonic spinal motoneurons and interneurons than in maturity. We find that Na(+)in reaches ~ 60 mM in mid-embryonic development and is then reduced to ~ 30 mM in late embryonic development. By retrogradely labeling motoneurons with SBFI we can reliably follow Na(+)in levels in vitro for hours. Bursts of spiking activity, and blocking voltage-gated sodium channels did not influence observed motoneuron sodium levels. On the other hand, Na(+)in was reduced by blocking the Na(+) -K(+) -2Cl(-) cotransporter NKCC1, and was highly sensitive to changes in external Na(+) and a blocker of the Na(+) /K(+) ATPase. Our findings suggest that the Na(+) gradient is weaker in embryonic neuronal development and strengthens in maturity in a manner similar to that of Cl(-) .

  1. Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1995-01-01

    1. The effects of adenosine A1 receptor stimulation on basal and histamine-stimulated levels of intracellular free calcium ion concentration ([Ca2+]i) have been investigated in primary astrocyte cultures derived from neonatal rat forebrains. 2. Histamine (0.1 microM-1 mM) caused rapid, concentration-dependent increases in [Ca2+]i over basal levels in single type-2 astrocytes in the presence of extracellular calcium. A maximum mean increase of 1,468 +/- 94 nM over basal levels was recorded in 90% of type-2 cells treated with 1 mM histamine (n = 49). The percentage of type-2 cells exhibiting calcium increases in response to histamine appeared to vary in a concentration-dependent manner. However, the application of 1 mM histamine to type-1 astrocytes had less effect, eliciting a mean increase in [Ca2+]i of 805 +/- 197 nM over basal levels in only 30% of the cells observed (n = 24). 3. In the presence of extracellular calcium, the A1 receptor-selective agonist, N6-cyclopentyladenosine (CPA, 10 microM), caused a maximum mean increase in [Ca2+]i of 1,110 +/- 181 nM over basal levels in 30% of type-2 astrocytes observed (n = 53). The size of this response was concentration-dependent; however, the percentage of type-2 cells exhibiting calcium increases in response to CPA did not appear to vary in a concentration-dependent manner. A mean calcium increase of 605 +/- 89 nM over basal levels was also recorded in 23% of type-1 astrocytes treated with 10 microM CPA (n = 30). 4. In the absence of extracellular calcium, in medium containing 0.1 mM EGTA, a mean increase in [Ca2+]i of 504 +/- 67 nM over basal levels was recorded in 41% of type-2 astrocytes observed (n = 41) after stimulation with 1 microM CPA. However, in the presence of extracellular calcium, pretreatment with the A1 receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, for 5-10 min before stimulation with 1 microM CPA, completely antagonized the response in 100% of the cells observed. 5. In type-2

  2. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    PubMed

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins.

  3. Diagnosis of drowning by summation of sodium, potassium and chloride ion levels in pleural effusion: differentiating between freshwater and seawater drowning and application to bathtub deaths.

    PubMed

    Yajima, Daisuke; Saito, Hisako; Sato, Kaoru; Hayakawa, Mutsumi; Iwase, Hirotaro

    2013-12-10

    Although electrolyte analysis of pleural effusion at autopsy is useful for the diagnosis of water aspiration (i.e., drowning), the method of comparing each level of sodium (Na(+)), potassium (K(+)), and chloride (Cl(-)) ions does not clearly differentiate between freshwater drowning, seawater drowning, and non-drowning. Therefore, here we introduce the summation of Na(+), K(+), and Cl(-) levels, that is SUM(Na+K+Cl), as a modified diagnostic indicator. In 21 autopsy cases of freshwater drowning, 32 cases of seawater drowning, and 43 non-drowning controls (with pleural effusion), mean SUM(Na+K+Cl) differed significantly between the groups (188.8±33.2, 403.5±107.9, and 239.3±21.7 mEq/L, respectively). We defined a SUM(Na+K+Cl) cut-off value of <195.9 mEq/L as strongly suggestive of freshwater aspiration and that of >282.7 mEq/L as strongly suggestive of seawater aspiration. When these values were applied to the two drowning groups, 15 cases (71%) of freshwater drowning and 29 cases (91%) of seawater drowning were diagnosed correctly. This new approach may be more valid than previous methods in cases found >2 days after death or those with substantial pleural effusion (>100 mL). For an additional 15 bathtub deaths, mean SUM(Na+K+Cl) was 198.8±40.0 mEq/L, and in 14 of these cases (93%) the relationship between cause of death and SUM(Na+K+Cl) could be explained using this method. Forensic pathologists should not depend exclusively on chemical findings and should consider also typical pathological indicators of drowning. This new method may be useful as a supplementary diagnostic tool when used alongside consideration of the pathological findings.

  4. Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney.

    PubMed

    Amara, S; Slama, I Ben; Mrad, I; Rihane, N; Khemissi, W; El Mir, L; Rhouma, K Ben; Abdelmelek, H; Sakly, M

    2014-11-01

    The aim of this study was to assess the potential subacute toxicity of zinc oxide (ZnO) nanoparticles (NPs) in Wistar rats in comparison with reference toxicant, zinc chloride (ZnCl2), of a non-nanoparticulate form. We therefore studied the relationships between zinc (Zn) accumulation, liver and kidney trace element levels, and plasmatic biochemical parameters. Rats in all groups were treated by intraperitoneal injection of ZnO NPs and/or ZnCl2 solution (25 mg/kg) every other day for 10 days. The contents of trace element in the liver and kidney were slightly modulated after ZnO NPs and/or ZnCl2 solution exposure. The same treatment increased the aspartate aminotransferase activity and uric acid concentration. However, ZnO NPs or ZnCl2 solution decreased the creatinine levels, whereas the combined intake of ZnO NPs and ZnCl2 decreased the glucose concentration. Interestingly, the analysis of the lyophilized powder of liver using the x-ray diffractometer showed the degradation of ZnO NPs in ZnO-treated group, instead there is a lack of NPs ZnO biosynthesis from the ZnCl2 solution injected in rats. These investigations suggest that combined injection of ZnO NPs and ZnCl2 solution has a possible toxic effect in rats. This effect could be related to Zn(2+) ion release and accumulation of this element in organs. Our findings provide crucial information that ZnO appeared to be absorbed in the organs in an ionic form rather than in a particulate form. © The Author(s) 2014.

  5. Chloride channel in vanadocytes of a vanadium-rich ascidian Ascidia sydneiensis samea.

    PubMed

    Ueki, Tatsuya; Yamaguchi, Nobuo; Michibata, Hitoshi

    2003-09-01

    Ascidians, so-called sea squirts, can accumulate high levels of vanadium in the vacuoles of signet ring cells, which are one type of ascidian blood cell and are also called vanadocytes. In addition to containing high concentrations of vanadium in the +3 oxidation state, the proton concentrations in vanadocyte vacuoles are extremely high. In order to elucidate the entire mechanism of the accumulation and reduction of vanadium by ascidian vanadocytes, it is necessary to clarify the participation of anions, which might be involved as counter ions in the active accumulation of both vanadium and protons. We examined the chloride channel, since chloride ions are necessary for the acidification of intracellular vesicles and coexist with H(+)-ATPase. We cloned a cDNA encoding a chloride channel from blood cells of a vanadium-rich ascidian, Ascidia sydneiensis samea. It encoded a 787-amino-acid protein, which showed striking similarity to mammalian ClC3/4/5-type chloride channels. Using a whole-mount in situ hybridization method that we developed for ascidian blood cells, the chloride channel was revealed to be transcribed in vanadocytes, suggesting its participation in the process of vanadium accumulation.

  6. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  7. Evolution of intracellular pathogens.

    PubMed

    Casadevall, Arturo

    2008-01-01

    The evolution of intracellular pathogens is considered in the context of ambiguities in basic definitions and the diversity of host-microbe interactions. Intracellular pathogenesis is a subset of a larger world of host-microbe interactions that includes amoeboid predation and endosymbiotic existence. Intracellular pathogens often reveal genome reduction. Despite the uniqueness of each host-microbe interaction, there are only a few general solutions to the problem of intracellular survival, especially in phagocytic cells. Similarities in intracellular pathogenic strategies between phylogenetically distant microbes suggest convergent evolution. For discerning such patterns, it is useful to consider whether the microbe is acquired from another host or directly from the environment. For environmentally acquired microbes, biotic pressures, such as amoeboid predators, may select for the capacity for virulence. Although often viewed as a specialized adaptation, the capacity for intracellular survival may be widespread among microbes, thus questioning whether the intracellular lifestyle warrants a category of special distinctiveness.

  8. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  9. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage

    PubMed Central

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-01-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: ‘indium release ITO’ or ‘tin release ITO’. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects. PMID:26378248

  10. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-02-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: 'indium release ITO' or 'tin release ITO'. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. The relative importance of water hardness and chloride levels in modifying the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss)

    SciTech Connect

    Galvez, F.; Wood, C.M.

    1997-11-01

    Static-renewal 7-d toxicity tests for silver nitrate (AgNO{sub 3}) were performed with juvenile rainbow trout (Oncorhynchus mykiss Walbaum). The relative influences of calcium and chloride concentrations on median lethal time (LT50) were assessed. For both calcium salts, a 100-fold elevation in concentration increased the LT50 approximately 10-fold. However, a 100-fold elevation in KCl ameliorated silver (Ag) toxicity at least 100-fold, while NaCl protected against Ag toxicity even more substantially, demonstrating the much greater protective effect of chloride relative to calcium. In a separate series of bioassays, fish were exposed to 0.92 {micro}M Ag with varying amounts of NaCl titrated into each tank to alter the free [Ag{sup +}]. The 7-d LC50 occurred at a [NaCl] of 2,500 {micro}M. Using MINEQL{sup +}, the predicted free [Ag{sup +}] at this LC50 value is 0.0285 {micro}M. Further bioassays were performed in which [chloride] was maintained at either 50 or 225 {micro}M, while total [Ag] was independently varied from 0.0092 to 0.0694 {micro}M (1.0--7.5 {micro}g/L). The 7-d LC50 value was calculated at 0.0294 {micro}M Ag (3.18 {micro}g/L) at a chloride concentration of 50 {micro}M, very similar to the free [Ag{sup +}] value of 0.031 {micro}M calculated from an earlier LC50 test at a fixed [chloride] of 730 {micro}M. Elevating chloride concentrations from 50 to 225 {micro}M did not alter the accumulation of Ag in the liver. In addition, there were no significant differences in hepatic Ag accumulation between any of the Ag-exposed fish, irrespective of the total Ag concentration used during the exposure.

  12. Effect of chloride on nitrite-induced methaemoglobinemia in Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus (Mitchill).

    PubMed

    Matsche, M A; Markin, E; Donaldson, E; Hengst, A; Lazur, A

    2012-12-01

    We evaluated the effects of chloride concentration on the clinical pathology in juvenile Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus (Mitchill), following semi-static exposures to 1 mg L(-1) nitrite for 96 h. In spring water naturally low in chloride (5 mg L(-1)), plasma nitrite concentrated to more than 40× environmental levels resulting in a severe methaemoglobinemia characterized by torpid behaviour, 30-fold increase in methaemoglobin fraction, anaemia, leucopenia and hyperkalaemia. Loss of intracellular water and potassium to extracellular space may have resulted in hyperkalaemia and haemodilution. Fish survived nitrite exposure, but 60% of torpid fish died following capture and tissue sampling. Fish acclimated to 10-fold higher chloride content (55 mg L(-1)) did not concentrate nitrite in the plasma above environmental levels or develop methaemoglobinemia, but did exhibit similar haematology and plasma chemistry changes. Plasma nitrite returned to preexposure levels by 14 days following nitrite exposures, but severity of clinical pathology changes persisted or increased, suggesting that Atlantic sturgeon have reduced capacity to recover from methaemoglobinemia. Fish that survive methaemoglobinemia may be susceptible to mortality from the cumulative effects of intoxication, handling and other stresses for two or more weeks following nitrite remediation. Chloride buffering in aquaculture systems reduces the toxic effects of nitrite accumulation.

  13. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-03

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  14. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    SciTech Connect

    Arai, Roberto J.; Debbas, Victor; Stern, Arnold; Monteiro, Hugo P.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.

  15. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  16. Effect of trace levels of nigericin on intracellular pH and acid-base transport in rat renal mesangial cells.

    PubMed

    Bevensee, M O; Bashi, E; Boron, W F

    1999-05-15

    Nigericin is an ionophore commonly used at the end of experiments to calibrate intracellularly trapped pH-sensitive dyes. In the present study, we explore the possibility that residual nigericin from dye calibration in one experiment might interfere with intracellular pH (pHi) changes in the next. Using the pH-sensitive fluorescent dye 2', 7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF), we measured pHi in cultured rat renal mesangial cells. Nigericin contamination caused: (i) an increase in acid loading during the pHi decrease elicited by removing extracellular Na+, (ii) an increase in acid extrusion during the pHi increase caused by elevating extracellular [K+], and (iii) an acid shift in the pHi dependence of the background intracellular acid loading unmasked by inhibiting Na-H exchange with ethylisopropylamiloride (EIPA). However, contamination had no effect on the pHi dependence of Na-H exchange, computed by adding the pHi dependencies of total acid extrusion and background acid loading. Nigericin contamination can be conveniently minimized by using a separate line to deliver nigericin to the cells, and by briefly washing the tubing with ethanol and water after each experiment.

  17. Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.

    PubMed

    Tian, Meiyu; Duan, Yinzhong; Duan, Xiaohong

    2010-12-01

    Voltage gated chloride channels (ClCs) play an important role in the regulation of intracellular pH and cell volume homeostasis. Mutations of these genes result in genetic diseases with abnormal bone deformation and body size, indicating that ClCs may have a role in chondrogenesis. In the present study, we isolated chicken mandibular mesenchymal cells (CMMC) from Hamburg-Hamilton (HH) stage 26 chick embryos and induced chondrocyte maturation by using ascorbic acid and β-glycerophosphate (AA-BGP). We also determined the effect of the chloride channel inhibitor NPPB [5-nitro-2-(3-phenylpropylamino) benzoic acid] on regulation of growth, differentiation, and gene expression in these cells using MTT and real-time PCR assays. We found that CLCN1 and CLCN3-7 mRNA were expressed in CMMC and NPPB reduced expression of CLCN3, CLCN5, and CLCN7 mRNA in these cells. At the same time, NPPB inhibited the growth of the CMMC, but had no effect on the mRNA level of cyclin D1 and cyclin E (P>0.05) with/without AA-BGP treatment. AA-BGP increased markers for early chondrocyte differentiation including type II collagen, aggrecan (P<0.01) and Sox9 (P<0.05), whilst had no effect on the late chondrocyte differentiation marker type X collagen. NPPB antagonized AA-BGP-induced expression of type II collagen and aggrecan (P<0.05). Furthermore, NPPB downregulated type X collagen (P<0.05) with/without AA-BGP treatment. We conclude that abundant chloride channel genes in CMMC play important roles in regulating chondrocyte proliferation and differentiation. Type X collagen might function as a target of chloride channel inhibitors during the differentiation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Anomalous expression of chloride transporters in the sclerosed hippocampus of mesial temporal lobe epilepsy patients☆

    PubMed Central

    Cai, Xiaodong; Yang, Libai; Zhou, Jueqian; Zhu, Dan; Guo, Qiang; Chen, Ziyi; Chen, Shuda; Zhou, Liemin

    2013-01-01

    The Na+-K+-Cl- cotransporter 1 and K+-Cl- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of Cl- homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-Cl- cotransporter 1 and K+-Cl- cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl- cotransporter 1 expression and decreased K+-Cl- cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-Cl- cotransporter 1 than for the K+-Cl- cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-Cl- cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis. PMID:25206700

  19. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    SciTech Connect

    Ecay, T.W.; Valentich, J.D. )

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases in inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.

  20. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level

    PubMed Central

    Yu, Qianru; Heikal, Ahmed A.

    2009-01-01

    Reduced nicotinamide adenine dinucleotide, NADH, is a major electron donor in the oxidative phosphorylation and glycolytic pathways in cells. As a result, there has been recent resurgence in employing intrinsic NADH fluorescence as a natural probe for a range of cellular processes that include apoptosis, cancer pathology, and enzyme kinetics. Here, we report on two-photon fluorescence lifetime and polarization imaging of intrinsic NADH in breast cancer (Hs578T) and normal (Hs578Bst) cells for quantitative analysis of the concentration and conformation (i.e., free-to-enzyme-bound ratios) of this coenzyme. Two-photon fluorescence lifetime imaging of intracellular NADH indicates sensitivity to both cell pathology and inhibition of the respiratory chain activities using potassium cyanide (KCN). Using a newly developed noninvasive assay, we estimate the average NADH concentration in cancer cells (168 ± 49 μM) to be ~ 1.8 fold higher than in breast normal cells (99 ± 37 μM). Such analyses indicate changes in energy metabolism and redox reactions in normal breast cells upon inhibition of the respiratory chain activity using KCN. In addition, time-resolved associated anisotropy of cellular autofluorescence indicates population fractions of free (0.18 ± 0.08) and enzyme-bound (0.82 ± 0.08) conformations of intracellular NADH in normal breast cells. These fractions are statistically different from those in breast cancer cells (free: 0.25 ± 0.08; bound: 0.75 ± 0.08). Comparative studies on the binding kinetics of NADH with mitochondrial malate dehydrogenase and lactate dehydrogenase in solution mimic our findings in living cells. These quantitative studies demonstrate the potential of intracellular NADH dynamics (rather than intensity) imaging for probing mitochondrial anomalies associated with neurodegenerative diseases, cancer, diabetes, and aging. Our approach is also applicable to other metabolic and signaling pathways in living cells, without the need for cell

  1. Chloride channels in stroke

    PubMed Central

    Zhang, Ya-ping; Zhang, Hao; Duan, Dayue Darrel

    2013-01-01

    Vascular remodeling of cerebral arterioles, including proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs), is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain, ie, stroke. Accumulating evidence strongly supports an important role for chloride (Cl−) channels in vascular remodeling and stroke. At least three Cl− channel genes are expressed in VSMCs: 1) the TMEM16A (or Ano1), which may encode the calcium-activated Cl− channels (CACCs); 2) the CLC-3 Cl− channel and Cl−/H+ antiporter, which is closely related to the volume-regulated Cl− channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR), which encodes the PKA- and PKC-activated Cl− channels. Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization, vasoconstriction, and inhibition of VSMC proliferation. Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species, induces proliferation and inhibits apoptosis of VSMCs. Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension. In addition, Cl− current mediated by gamma-aminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death. This review focuses on the functional roles of Cl− channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Cl− channels as new targets for the prevention and treatment of stroke. PMID:23103617

  2. Carbonic acid buffer species measured in real time with an intracellular microelectrode array

    PubMed Central

    Wietasch, Kristina; Kraig, Richard P.

    2009-01-01

    Carbonic acid buffer anions, HCO3−andCO32−, play an instrumental role in a host of vital processes in animal cells and tissues. Yet study of carbonic acid buffer species is hampered because no means are available to simultaneously monitor them at a cellular level in a rapid and dynamic fashion. An ion-selective cocktail, previously reported to measure changes in bicarbonate activity (αHCO3−), was instead shown to be principally selective for αCO32−. Ion-selective micropipettes (ISMs) based on this exchanger and consisting of a 3:1:6 (volume) mixture of tri-n-octylpropylammonium chloride, 1-octanol, and trifluoroacetyl-p-butylbenzene showed no significant interference from bicarbonate, chloride, phosphate, ascorbate, lactate, glutamate, acetate, or hydroxyl ions at concentrations expected in vivo. Intracellular and triple-barrel ISMs, consisting of a CO32−-sensitive, pH-sensitive, and reference barrel, were fabricated. Skeletal muscle cells (n = 17) were penetrated in vivo and showed values of 74 ± 7 mV for membrane potential, 6.94 ± 0.09 pHi, and 11 ± 5 µM intracellular αCO32−, from which intracellular αHCO3− of 25 ± 10 mM and CO2 tension of 120 ± 55 Torr were calculated. All ion measurements reached a new steady state in 9 ± 2 s after cell penetration. Thus measurements of intracellular αCO32− and pH and associated levels of αHCO3 and CO2 tension can be determined in biological tissues and cells with a spatial and temporal resolution previously unattainable. PMID:1653544

  3. Worker exposure to vinyl chloride and poly(vinyl chloride).

    PubMed Central

    Jones, J H

    1981-01-01

    The National Institute for Occupational Safety and Health (NIOSH) in early 1974 began industrial hygiene studies of vinyl chloride exposed workers. Three VC monomer plants, three VC polymerization plants, and seven PVC fabrication plants were surveyed. V polymerization plant workers and workers in one job category in VC monomer plants were exposed to average levels above 1 ppm. The highest average exposure was 22 ppm. NIOSH health hazard evaluation studies since these initial surveys have primarily shown nondetectable levels of vinyl chloride. A NIOSH control technology study in 1977 showed that exposure levels in VC polymerization plants had been drastically reduced but exposure levels above 1 ppm were still found in several cases. PMID:7333231

  4. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  5. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    PubMed

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa.

  6. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride.

    PubMed

    Tan, Chu-Bing; Gao, Mei; Xu, Wei-Ren; Yang, Xiu-Ying; Zhu, Xiao-Ming; Du, Guan-Hua

    2009-08-01

    Salidroside is a major constituent of Rhodiola rosea L. that elicits beneficial effects for ischemic cardiovascular diseases. The aim of this study was to investigate the protective effects of salidroside on endothelial cells apoptosis induced by the hypoxia mimicking agent, cobalt chloride. After challenge with cobalt chloride for 24 h, loss of cell viability and excessive apoptotic cell death were observed in EA.hy926 endothelial cells, and the level of intracellular reactive oxygen species (ROS) increased concentration-dependently. However, the endothelial cell apoptosis and excessive ROS generation were attenuated markedly by salidroside pretreatment. In addition, salidroside inhibited activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by cobalt chloride, decreased expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. These findings suggest that salidroside protects endothelial cells from cobalt chloride-induced apoptosis as an antioxidant and by regulating Bcl-2 family. Salidroside may represent a novel therapeutic agent for the treatment and prevention of hypoxia and oxidative stress-related diseases.

  7. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  8. Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite.

    PubMed Central

    Brzeźnicka, E A; Chmielnicka, J

    1985-01-01

    The biotransformation efficiency of alkylmercurial compounds was studied in rat liver, kidneys, blood, and brain after 2-week administration of methylmercuric chloride (MeHg) and ethylmercuric chloride (EtHg) at doses of 0.25 or 2.5 mg Hg/kg, alone or in combination with sodium selenite (Se) at a level of 0.5 mg Se/kg. Simultaneously, the level of metallothioneinlike proteins (MTP) and endogenous copper (Cu) was monitored in tissues of control rats and intoxicated rats. Regardless of the dose, the highest concentrations of inorganic mercury from both the alkylmercurials was found in the rat kidneys. Sodium selenite had a variable effect on the amount of inorganic mercury liberated, depending on the organ and the molar ratio of Hg:Se administered. A statistically significant increase in the levels of MTP and endogenous Cu, compared with control group, was found only in the kidneys of intoxicated rats. This increase was dependent on the concentration of inorganic mercury liberated by biotransformation of alkylmercurials. The observed changes appeared when the level of inorganic mercury exceeded 10 micrograms Hg/g tissue and reached a plateau at about 40 micrograms Hg/g tissue. In the presence of selenium the plateau of MTP and Cu levels were no observed in the kidneys, regardless of the amount of inorganic mercury liberated. PMID:3928366

  9. Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite

    SciTech Connect

    Brzeznicka, E.A.; Chmielnicka, J.

    1985-05-01

    The biotransformation efficiency of alkylmercurial compounds was studied in rat liver, kidneys, blood, and brain after 2-week administration of methylmercuric chloride (MeHg) and ethylmercuric chloride (EtHg) at doses of 0.25 or 2.5 mg Hg/kg, alone or in combination with sodium selenite (Se) at a level of 0.5 mg Se/kg. Simultaneously, the level of metallothioneinlike proteins (MTP) and endogenous copper (Cu) was monitored in tissues of control rats and intoxicated rats. Regardless of the dose, the highest concentrations of inorganic mercury from both the alkylmercurials was found in the rat kidneys. Sodium selenite had a variable effect on the amount of inorganic mercury liberated, depending on the organ and the molar ratio of Hg:Se administered. A statistically significant increase in the levels of MTP and endogenous Cu, compared with control group, was found only in the kidneys of intoxicated rats. This increase was dependent on the concentration of inorganic mercury liberated by biotransformation of alkylmercurials. The observed changes appeared when the level of inorganic mercury exceeded 10 g Hg/g tissue and reached a plateau at about 40 g Hg/g tissue. In the presence of selenium the plateau of MTP and Cu levels were not observed in the kidneys, regardless of the amount of inorganic mercury liberated.

  10. Intracellular microbes and haemophagocytosis.

    PubMed

    Silva-Herzog, Eugenia; Detweiler, Corrella S

    2008-11-01

    Haemophagocytosis (hemophagocytosis) is the phenomenon of activated macrophage consumption of red and white blood cells, including professional phagocytes and lymphocytes. It can occur in patients with severe cases of intracellular microbial infection, including avian influenza, leishmaniasis, tuberculosis and typhoid fever. While well-known to physicians since at least the mid-1800s, haemophagocytosis has been little studied due to a paucity of tractable animal and cell culture models. Recently, haemophagocytosis has been described in a mouse model of typhoid fever, and it was noted that the infectious agent, Salmonella enterica, resides within haemophagocytic macrophages in mice. In addition, a cell culture model for haemophagocytosis revealed that S. enterica preferentially replicate in haemophagocytic macrophages. This review describes how, at the molecular and cellular levels, S. enterica may promote and take advantage of haemophagocytosis to establish long-term systemic infections in mammals. The role, relevance and possible molecular mechanisms of haemophagocytosis are discussed within the context of other microbial infections and of genetic deficiencies in which haemophagocytosis occurs and is associated with morbidity.

  11. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  12. Increased intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken intestinal epithelium during Campylobacter jejuni colonization.

    PubMed

    Awad, Wageha A; Smorodchenko, Alina; Hess, Claudia; Aschenbach, Jörg R; Molnár, Andor; Dublecz, Károly; Khayal, Basel; Pohl, Elena E; Hess, Michael

    2015-08-01

    Although a high number of chickens carry Campylobacter jejuni, the mechanistic action of colonization in the intestine is still poorly understood. The current study was therefore designed to investigate the effects of C. jejuni on glucose uptake, amino acids availability in digesta, and intracellular calcium [Ca(2+)]i signaling in the intestines of broiler chickens. For this, we compared: control birds (n = 60) and C. jejuni-infected birds (n = 60; infected orally with 1 × 10(8) CFU of C. jejuni NCTC 12744 at 14 days of age). Our results showed that glucose uptake was reduced due to C. jejuni infection in isolated jejunal, but not in cecal mucosa at 14 days postinfection (dpi). The decrease in intestinal glucose absorption coincided with a decrease in body weight gain during the 2-week post-infectious period. A reduction in the amount of the amino acids (serine, proline, valine, leucine, phenylalanine, arginine, histidine, and lysine) in ileal digesta of the infected birds at 2 and/or 7 dpi was found, indicating that Campylobacter utilizes amino acids as a carbon source for their multiplication. Applying the cell-permeable Ca(2+) indicator Fluo-4 and two-photon microscopy, we revealed that [Ca(2+)]i was increased in the jejunal and cecal mucosa of infected birds. The muscarinic agonist carbachol induced an increase in [Ca(2+)]i in jejunum and cecum mucosa of control chickens, a response absent in the mucosa of infected chickens, demonstrating that the modulation of [Ca(2+)]i by Campylobacter might be involved in facilitating the necessary cytoskeletal rearrangements that occur during the bacterial invasion of epithelial cells. In conclusion, this study demonstrates the multifaceted interactions of C. jejuni with the gastrointestinal mucosa of broiler chickens. For the first time, it could be shown that a Campylobacter infection could interfere with intracellular Ca(2+) signaling and nutrient absorption in the small intestine with consequences on

  13. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  14. Aged red garlic extract reduces cigarette smoke extract-induced cell death in human bronchial smooth muscle cells by increasing intracellular glutathione levels.

    PubMed

    Jeong, Yi-Yeong; Park, Hye-Jin; Cho, Young-Woo; Kim, Eun-Jin; Kim, Gyu-Tae; Mun, Yun-Ja; Lee, Jong Deog; Shin, Jung-Hye; Sung, Nak-Ju; Kang, Dawon; Han, Jaehee

    2012-01-01

    Increasing antioxidant capacity has been proposed as a promising strategy to prevent cigarette smoke-induced lung diseases. This study tested whether garlic extracts prevented cigarette smoke extract (CSE)-induced cell death in human bronchial smooth muscle cells (HBSMCs). Garlic extracts were prepared from fresh raw garlic (FRG), aged black garlic (ABG) and aged red garlic (ARG). Treatment of HBSMCs with 10% CSE induced cell death accompanied by activation of caspase. Of the garlic extracts, treatment with ARG extract reduced CSE-induced cell death. The combination of ARG extract with CSE attenuated the CSE-induced reduction in glutathione (GSH) content, generation of reactive oxygen species (ROS) and induction of heme oxygenase-1 expression compared with CSE treatment without ARG extract. Furthermore, the combination of L-BSO, a GSH synthesis inhibitor, with ARG and CSE extracts failed to increase the intracellular GSH content and cell viability. Taken together, these results demonstrate that ARG extract reduces CSE-induced cell death by increasing GSH content and reducing ROS generation in HBSMCs. Copyright © 2011 John Wiley & Sons, Ltd.

  15. p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein.

    PubMed

    Fernández-Salas, E; Sagar, M; Cheng, C; Yuspa, S H; Weinberg, W C

    1999-12-17

    A novel chloride intracellular channel (CLIC) gene, clone mc3s5/mtCLIC, has been identified from differential display analysis of differentiating mouse keratinocytes from p53+/+ and p53-/- mice. The 4.2-kilobase pair cDNA contains an open reading frame of 762 base pairs encoding a 253-amino acid protein with two putative transmembrane domains. mc3s5/mtCLIC protein shares extensive homology with a family of intracellular organelle chloride channels but is the first shown to be differentially regulated. mc3s5/mtCLIC mRNA is expressed to the greatest extent in vivo in heart, lung, liver, kidney, and skin, with reduced levels in some organs from p53-/- mice. mc3s5/mtCLIC mRNA and protein are higher in p53+/+ compared with p53-/- basal keratinocytes in culture, and both increase in differentiating keratinocytes independent of genotype. Overexpression of p53 in keratinocytes induces mc3s5/mtCLIC mRNA and protein. Exogenous human recombinant tumor necrosis factor alpha also up-regulates mc3s5/mtCLIC mRNA and protein in keratinocytes. Subcellular fractionation of keratinocytes indicates that both the green fluorescent protein-mc3s5 fusion protein and the endogenous mc3s5/mtCLIC are localized to the cytoplasm and mitochondria. Similarly, mc3s5/mtCLIC was localized to mitochondria and cytoplasmic fractions of rat liver homogenates. Furthermore, mc3s5/mtCLIC colocalized with cytochrome oxidase in keratinocyte mitochondria by immunofluorescence and was also detected in the cytoplasmic compartment. Sucrose gradient-purified mitochondria from rat liver confirmed this mitochondrial localization. This represents the first report of localization of a CLIC type chloride channel in mitochondria and the first indication that expression of an organellular chloride channel can be regulated by p53 and tumor necrosis factor alpha.

  16. Watershed scale chloride storage across a gradient of urbanization

    NASA Astrophysics Data System (ADS)

    Wellen, C. C.; Oswald, C. J.; Oni, S. K.

    2014-12-01

    Sodium chloride is the main de-icing agent used during the winter in Canada and the northern United States. However, little is known about the long term fate, residence time, and ecological effects of chloride. This talk integrates work taking place across three sites in Southern Ontario, Canada: Hamilton Harbour, the Toronto lakeshore, and Lake Simcoe. We quantify chloride inputs, outputs, and changes in storage for a number of watersheds across a gradient of urbanization. For the three winter months (January, February, March), we show that stream water chloride concentrations approach those of brackish waters for urban watersheds. Chloride is also highly persistent, with stream water chloride concentrations decreasing from the winter months and approaching baseline levels only in July. These baseline levels are greater than 100 mg Cl/l in the urban watersheds, suggesting high levels of chloride storage in soil and groundwater. Using road salt application rates and groundwater levels and chloride concentrations, we estimate the magnitude and residence time of the chloride pools in a number of watersheds across a gradient of urbanization. Our results suggest that the magnitude and residence time of chloride storage varies with urbanization and other factors. We show that summer baseflow concentrations do approach the EPA's chronic exposure guideline of 230 mg Cl/l, implying more work is needed to understand the in stream and downstream ecological effects of chloride.

  17. Chloride transport in human erythrocytes and ghosts: a quantitative comparison.

    PubMed

    Funder, J; Wieth, J O

    1976-11-01

    1. Homogeneous preparations of resealed ghosts with intracellular KCl concentrations between 15 and 900 mM could be prepared. Virtually all ghosts sealed to chloride. The chloride transport system was found not to be damaged: a quantitative comparison of the self-exchange of 36Cl- across intact and resealed membranes showed that both the transport capacity and a number of characteristic properties were identical (saturation kinetics, temperature dependence and the effect of inhibitors). 2. Due to the absence of intracellular titratable buffers intracellular chloride concentration in ghosts vary only slightly between pH5 and 11. The unidirectional exchange flux was constant between pH 7 and 11, showing that the transport system does not have a functionally important titratable group in the alkaline range, as previously assumed. The decrease of transport below pH 7 is similar in intact erythrocytes and ghosts. 3. Mean cellular volume of the resealed ghosts was a function of the amount of KCl added at 'reversal', before the ghosts are sealed. The ghosts shrank by osmosis when KCl was added to the suspension of 'unsealed' ghosts. The reflexion coefficient of sucrose (and therefore the osmotic effect) is larger than that of KCl. It was, therefore, possible to demonstrate that volume changes do not affect the chloride transport across the human red cell membrane. Unidirectional chloride fluxes at a KCl concentration of 165 mM were independent of ghost volume (100-40 mum3).

  18. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications.

    PubMed

    Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María

    2017-07-01

    What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P < 0.05) and a reduction of the tissue content of cAMP (P < 0.05). These effects were mediated by CB2 receptors since exposure to AM630 (a specific CB2 receptor

  19. Phosphonium chloride for thermal storage

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained.

  20. Preeclampsia serum-induced collagen I expression and intracellular calcium levels in arterial smooth muscle cells are mediated by the PLC-γ1 pathway.

    PubMed

    Jiang, Rongzhen; Teng, Yincheng; Huang, Yajuan; Gu, Jinghong; Ma, Li; Li, Ming; Zhou, Yuedi

    2014-09-26

    In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca(2+) concentrations ([Ca(2+)]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca(2+)]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia-ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca(2+)]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway.

  1. Structure-specific effects of lipidated oxytocin analogs on intracellular calcium levels, parental behavior, and oxytocin concentrations in the plasma and cerebrospinal fluid in mice.

    PubMed

    Cherepanov, Stanislav M; Yokoyama, Shigeru; Mizuno, Akira; Ichinose, Wataru; Lopatina, Olga; Shabalova, Anna A; Salmina, Alla B; Yamamoto, Yasuhiko; Okamoto, Hiroshi; Shuto, Satoshi; Higashida, Haruhiro

    2017-02-01

    Oxytocin (OT) is a neuroendocrine nonapeptide that plays an important role in social memory and behavior. Nasal administration of OT has been shown to improve trust in healthy humans and social interaction in autistic subjects in some clinical trials. As a central nervous system (CNS) drug, however, OT has two unfavorable characteristics: OT is short-acting and shows poor permeability across the blood-brain barrier, because it exists in charged form in the plasma and has short half-life. To overcome these drawbacks, an analog with long-lasting effects is required. We previously synthesized the analog, lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated to the cysteine and tyrosine residues. In this study, we synthesized and evaluated the analogs lipo-oxytocin-2 (LOT-2) and lipo-oxytocin-3 (LOT-3), which feature the conjugation of one palmitoyl group at the cysteine and tyrosine residues, respectively. In human embryonic kidney-293 cells overexpressing human OT receptors, these three LOTs demonstrated comparably weak effects on the elevation of intracellular free calcium concentrations after OT receptor activation, compared to the effects of OT. The three LOTs and OT exhibited different time-dependent effects on recovery from impaired pup retrieval behavior in sires of CD38-knockout mice. Sires treated with LOT-1 showed the strongest effect, whereas others had no or little effects at 24 h after injection. These results indicated that LOTs have structure-specific agonistic effects, and suggest that lipidation of OT might have therapeutic benefits for social impairment.

  2. Yttrium decreases the intracellular Zn2+ concentration in rat thymocytes by attenuating a temperature-sensitive Zn2+ influx.

    PubMed

    Takahashi, Yusuke; Kanemaru, Kaori; Imai, Shoji; Miyoshi, Norikazu; Kawanai, Takuya; Oyama, Yasuo

    2012-09-01

    Yttrium is used in the production of various electronic devices because the alloy it contains enhances or modifies the properties of other elements. In order to study the cytotoxic action of yttrium, the effect of yttrium chloride (YCl(3)) on the intracellular Zn(2+) level was examined in rat thymocytes using a flow cytometer with FluoZin-3-AM and propidium iodide. The application of YCl(3) significantly decreased the intensity of the FluoZin-3 fluorescence, suggesting a decrease in the intracellular Zn(2+) level or quenching of the FluoZin-3 fluorescence by Y(3+). However, since Y(3+) did not attenuate the FluoZin-3 fluorescence under cell-free conditions, the latter suggestion was ruled out. Rat thymocytes possess a temperature-sensitive membrane pathway that carries Zn(2+) into the cells. The application of YCl(3) attenuated the FluoZin-3 fluorescence augmented by externally applied ZnCl(2) in a concentration-dependent manner. This suggested that Y(3+) inhibited the Zn(2+) influx, resulting in the decrease in the intracellular Zn(2+) level. Yttrium may induce dyshomeostasis of intracellular Zn(2+), leading to some cytotoxic actions.

  3. Interpretation of postmortem vitreous concentrations of sodium and chloride.

    PubMed

    Zilg, B; Alkass, K; Berg, S; Druid, H

    2016-06-01

    Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time.

  4. Calcium Modulated Chloride Pathways Contribute to Chloride Flux in Murine CF-Affected Macrophages

    PubMed Central

    Shenoy, Ambika; Kopic, Sascha; Murek, Michael; Caputo, Christina; Geibel, John P.; Egan, Marie E.

    2011-01-01

    Cystic Fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl−) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl− transport is important for macrophage function therefore impaired Cl− secretion may underlie CF macrophage dysfunction. To determine if alterations in Cl− transport exist in CF macrophages, Cl− efflux was measured using N-[ethoxycarbonylmethyl]-6-methoxyquinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl− flux in the presence and absence of cftrinh-172. The contribution of calcium (Ca2+) modulated Cl− pathways was assessed by examining Cl− flux with varied extracellular Ca2+ concentrations, or following treatment with carbachol or thapsigargin, agents that increase intracellular Ca2+ levels. Our data demonstrate that CFTR contributed to Cl− efflux only in WT macrophages, while Ca2+-mediated pathways contributed to Cl− transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl− efflux with increases in extracellular Ca2+. Taken together, this suggests that Ca2+-mediated Cl− pathways are enhanced in CF macrophages compared to WT macrophages. PMID:21796019

  5. Association of Higher Plasma Vitamin D Binding Protein and Lower Free Calcitriol Levels with Tenofovir Disoproxil Fumarate Use and Plasma and Intracellular Tenofovir Pharmacokinetics: Cause of a Functional Vitamin D Deficiency?

    PubMed Central

    Kiser, Jennifer J.; Stephensen, Charles B.; Hazra, Rohan; Flynn, Patricia M.; Wilson, Craig M.; Rutledge, Brandy; Bethel, James; Pan, Cynthia G.; Woodhouse, Leslie R.; Van Loan, Marta D.; Liu, Nancy; Lujan-Zilbermann, Jorge; Baker, Alyne; Kapogiannis, Bill G.; Gordon, Catherine M.

    2013-01-01

    Tenofovir disoproxil fumarate (TDF) causes bone, endocrine, and renal changes by an unknown mechanism(s). Data are limited on tenofovir pharmacokinetics and these effects. Using baseline data from a multicenter study of HIV-infected youth on stable treatment with regimens containing TDF (n = 118) or lacking TDF (n = 85), we measured cross-sectional associations of TDF use with markers of renal function, vitamin D-calcium-parathyroid hormone balance, phosphate metabolism (tubular reabsorption of phosphate and fibroblast growth factor 23 [FGF23]), and bone turnover. Pharmacokinetic-pharmacodynamic associations with plasma tenofovir and intracellular tenofovir diphosphate concentrations were explored among those receiving TDF. The mean age was 20.9 (standard deviation [SD], 2.0) years; 63% were male; and 52% were African American. Compared to the no-TDF group, the TDF group showed lower mean estimated glomerular filtration rates and tubular reabsorption of phosphate, as well as higher parathyroid hormone and 1,25-dihydroxy vitamin D [1,25-OH(2)D] levels. The highest quintile of plasma tenofovir concentrations was associated with higher vitamin D binding protein, lower free 1,25-OH(2)D, higher 25-OH vitamin D, and higher serum calcium. The highest quintile of intracellular tenofovir diphosphate concentration was associated with lower FGF23. Higher plasma tenofovir concentrations were associated with higher vitamin D binding protein and lower free 1,25-OH(2)D, suggesting a functional vitamin D deficiency explaining TDF-associated increased parathyroid hormone. The finding of lower FGF23 accompanying higher intracellular tenofovir diphosphate suggests that different mechanisms mediate TDF-associated changes in phosphate handling. Separate pharmacokinetic properties may be associated with distinct TDF toxicities: tenofovir with parathyroid hormone and altered calcium balance and tenofovir diphosphate with hypophosphatemia and FGF23 regulation. (The clinical trial

  6. Chlamydial Intracellular Survival Strategies

    PubMed Central

    Bastidas, Robert J.; Elwell, Cherilyn A.; Engel, Joanne N.

    2013-01-01

    Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host–cellular functions to invade host cells and maintain a replicative niche. PMID:23637308

  7. Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2‧,7‧-dichlorofluorescein diacetate assay

    NASA Astrophysics Data System (ADS)

    Loetchutinat, Chatchanok; Kothan, Suchart; Dechsupa, Samarn; Meesungnoen, Jintana; Jay-Gerin, Jean-Paul; Mankhetkorn, Samlee

    2005-02-01

    This article examines a non-invasive spectrofluorometric method using the 2',7'-dichlorofluorescein diacetate (DCHF-DA) assay for quantifying the intracellular reactive oxygen species (ROS i) produced in four cultured cancer cell lines: drug-sensitive (K562) and drug-resistant (K562/ adr) human erythromyelogenous leukemia cell lines, and drug-sensitive (GLC4) and drug-resistant (GLC4/ adr) human small cell lung carcinoma cell lines. The oxidation of the probe to the fluorescent dichlorofluorescein (DCF) was continuously monitored by following the DCF fluorescence intensity as a function of time using a standard spectrofluorometer in the presence of an extracellular DCF fluorescence quencher (Co 2+). By fitting the spectrofluorometric data to a kinetic model based on the following two reactions: (i) deacetylation of DCHF-DA to the oxidant-sensitive compound 2',7'-dichlorofluorescein (DCHF) by cellular esterase enzymes (pseudo-first-order rate constant: ke) and (ii) oxidation of DCHF by ROS i (second-order rate constant: k2), the parameters intervening in DCF formation, ke and the product of k2 by the ROS i concentration, were quantitatively determined for the different cell lines studied. The results revealed that the intracellular esterase content or activity is similar in K562, K562/ adr, and GLC4 cells, but 5-fold higher in GLC4/ adr cells. The product k2[ROS i] was found to be similar in the four cell lines considered, with a mean value of (5.3±0.9)×10 -7 cell -1 s -1. Assuming that H 2O 2 (in combination with peroxidases) is the primary responsible species for DCHF oxidation in intact cells, and using the rate constant value k2=790±62 M s established in our laboratory for the reaction of DCHF with H 2O 2 in the presence of horseradish peroxidase, the mean value of the intracellular levels of ROS i in those cells was estimated to be 0.67±0.16 nM per cell. Such a value compares favorably to H 2O 2 intracellular steady-state concentrations that have been

  8. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells

    NASA Astrophysics Data System (ADS)

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  9. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells.

    PubMed

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  10. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  11. Lithium Sulfuryl Chloride Battery.

    DTIC Science & Technology

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  12. Strontium-89 Chloride

    MedlinePlus

    ... ever had bone marrow disease, blood disorders, or kidney disease.you should know that strontium-89 chloride may interfere with the normal menstrual cycle (period) in women and may stop sperm production ...

  13. Hydrogen chloride test set

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1976-01-01

    Detector uses tertiary amine, which makes reaction fairly specific for relatively small highly polarized hydrogen chloride molecule. Reaction is monitored by any microbalance capable of measuring extremely small mass differences in real time.

  14. Chloride in diet

    MedlinePlus

    Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press, Washington, DC: 2005. PMID: 101209392 www.ncbi.nlm.nih.gov/nlmcatalog/101209392 Mason JB. Vitamins, trace ...

  15. [Congenital chloride diarrhea].

    PubMed

    Contreras, Mónica; Rocca, Ana; Benedetti, Laura; Kakisu, Hisae; Delgado, Sabrina; Ruiz, José Antonio

    2005-01-01

    Congenital chloride diarrhea (CCD) is a rare hereditary disease, with a prenatal onset, secondary to a deficit in the intestinal chloride transport. In the present study, we describe the clinical characteristics of three patients with congenital watery diarrhea, two of them females, aged between 9 and 14 months at the first visit. All patients presented perinatal antecedents of polyhydramnios and prematurity, watery stools since birth and growth failure. Metabolic alkalosis, hypokalemia and hypochloremia were found. Stool ionogram with elevated doses of chloride, exceeding both sodium and potassium, confirmed the diagnosis of CCD. Substitute treatment with sodium and potassium chloride was started with good results. CCD should be considered as a differential diagnosis to congenital watery diarrhea, since early diagnosis and appropriate treatment are mandatory for the normal development of the child, avoiding severe complications such as neurological sequelae and even death.

  16. High level expression of a glutamate-gated chloride channel gene in reproductive tissues of Brugia malayi may explain the sterilizing effect of ivermectin on filarial worms☆

    PubMed Central

    Li, Ben Wen; Rush, Amy C.; Weil, Gary J.

    2014-01-01

    Glutamate-gated chloride channels (GluCl) are targets for avermectin/milbemycin (A/M) anthelmintics such as ivermectin that cause paralysis of somatic and pharyngeal muscles in gastrointestinal nematodes. Ivermectin is useful for onchocerciasis control programs because of its activity against microfilariae that often cause ocular disease and severe dermatitis. However, mechanisms responsible for reduced microfilaria production by adult worms following ivermectin treatment are poorly understood. We synthesized subunit-specific RNA probes for the Brugia malayi GluCl gene avr-14 (BmAVR-14) to localize expression of this gene in adult filarial worms. Both subunits of BmAVR-14 exhibited very similar expression patterns. In female worms, strong expression signals were detected in the ovary, developing embryos and lateral hypodermal chords, with moderate expression in the uterus wall adjacent to stretched microfilariae. These genes were also highly expressed in adult male worms (in spermatogonia, in the wall of the vas deferens, and in the lateral chords, but not in mature spermatozoa). In addition, avr-14 was highly expressed in somatic muscles adjacent to the terminal end of the vas deferens which contains mature sperm. These results show that avr-14 is highly expressed in B. malayi developing embryos and reproductive tissues, and they provide evidence for the involvement of GluCl in gamete production and embryogenesis in filarial worms. This may explain the observed suppression of microfilaria (Mf) production by female worms following treatment with avermectin/milbemycin anthelmintics. PMID:25057456

  17. Optical absorption and thermally stimulated depolarization current studies of nickel chloride-doped poly(vinyl alcohol) irradiated with low-level fast neutron doses

    SciTech Connect

    Abd El-Kader, F.H.; Ibrahim, S.S. . Physics Dept.); Attia, G. . Faculty of Education)

    1993-11-15

    The influence of neutron irradiation on ultraviolet/visible absorption and thermally stimulated depolarization current in nickel chloride-poly(vinyl alcohol) (PVA) cast films has been investigated. The spectral measurements indicate the responsibility of the Ni[sup 2][sup +] ion in its octahedral symmetry. Dopant concentrations higher than 10 wt % NiCl[sub 2] are found to make the samples more resistant to a degradation effect caused by neutron irradiation. The thermally stimulated depolarization currents (TSDC) of pure PVA revealed the existence of the glass transition T[sub g] and space charge relaxation peaks, whereas doped-PVA samples show a new sub-T[sub g] relaxation peak. A proposed mechanism is introduced to account for the neutron effects on both glass transition and space charge relaxation peaks. The peak positions, peak currents, and stored charges of the sub-T[sub g] relaxation peak are strongly affected by both the concentration of the dopant and neutron exposure doses.

  18. Inhibitory effects of calmodulin antagonists on urinary enzyme excretion in rats after nephrotoxic doses of mercuric chloride

    SciTech Connect

    Harrison, S.D. Jr.; Cox, J.L.; Giles, R.C. Jr.

    1985-03-01

    Prochlorperazine, a phenothiazine antiemetic, has been reported to protect rats against mercuric chloride (HgCl/sub 2/)-induced nephrotoxicity. Mercuric ion and 12 other divalent metal ions of toxicologic importance inhibit the activity of calmodulin, a ubiquitous intracellular calcium receptor and regulatory protein, at physiologically relevant concentrations. Phenothiazines, including prochlorperazine, are reversible calmodulin antagonists, and as such they interact with divalent calcium at the level of calmodulin. It was of interest therefore to evaluate the comparative effects of several phenothiazines on HgCl/sub 2/-induced nephrotoxicity in rats.

  19. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    PubMed

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.

  20. Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia

    PubMed Central

    Arion, Dominique; Lewis, David A.

    2010-01-01

    Context Disturbances in markers of cortical GABA neurotransmission are a common finding in schizophrenia. The nature of GABA neurotransmission (hyperpolarizing or depolarizing) depends on the local intracellular Cl− concentration. In the central nervous system, the intracellular Cl− level is determined by the activity of two cation-chloride transporters, NKCC1 and KCC2. The activities of these transporters are in turn regulated by a network of serine-threonine kinases that includes OXSR1, STK39 and the WNK kinases WNK1, 3 and 4. Objective To compare the levels of NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3 and WNK4 transcripts in prefrontal cortex area 9 between schizophrenia and normal comparison subjects. Design Real-time qPCR technique was used to measure transcript levels in prefrontal cortex. Setting Human brain specimens were obtained from autopsies conducted at the Allegheny County Medical Examiner’s Office, Pittsburgh, PA. Participants Postmortem brain specimens from 42 subjects with schizophrenia and 42 matched normal comparison subjects. Brain specimens from 18 macaque monkeys chronically exposed to haloperidol, olanzapine, or sham. Main outcome measures Relative expression levels for NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3 and WNK4 transcripts compared to the mean expression level of three housekeeping transcripts. Results OXSR1 and WNK3 transcripts were substantially over-expressed in schizophrenia relative to comparison subjects. In contrast, NKCC1, KCC2, STK39, WNK1 and WNK4 transcript levels did not differ between subject groups. OXSR1 and WNK3 transcript expression levels were not changed in antipsychotic-exposed monkeys and were not affected by potential confounding factors in the subjects with schizophrenia. Conclusions In schizophrenia, increased expression levels, and possibly increased kinase activities, of OXSR1 and WNK3 may shift the balance of chloride transport by NKCC1 and KCC2 and alter the nature of GABA neurotransmission in the prefrontal

  1. Intracellular gene delivery is dependent on the type of non-viral carrier and defined by the cell surface glycosaminoglycans.

    PubMed

    Nomani, Alireza; Hyvönen, Zanna; Pulkkinen, Eveliina; Hiekkala, Marjo; Ruponen, Marika

    2014-08-10

    Intracellular limiting steps and molecules involved in internalization and intracellular routing of non-viral gene delivery systems are still poorly understood. In this study, the intracellular kinetics of three different gene delivery systems calcium phosphate precipitates (CaP), polyethyleneimine (PEI) and N-[1-(2,3-dioleyl)propyl]-N,N,N-trimethylammonium chloride (DOTAP)) were quantified at cellular, nuclear, transcriptional and translational levels by using qRT-PCR. Additionally, a role of cell surface glycosaminoglycans (GAGs) was evaluated by performing the aforementioned studies in cells devoid of GAGs (pgsB-618) and cells lacking heparan sulphate (HS). The obtained data showed that the intracellular kinetics was dependent on the type of gene carrier and the weakest intracellular step varied between the carriers; rapid elimination of cell-associated pDNA in CaP, nuclear uptake in DOTAP and transcriptional and translational events in PEI mediated transfections. Overall, neither the amount of cell- nor nuclear associated pDNA correlated with transgene expression but the mRNA expression of the transgene correlated well with the expression at protein level. The nuclear uptake of pDNA in all cases was rapid and efficient thus indicating that the post-nuclear processes including transcription and translation steps have a critical role in defining the efficiency of non-viral gene delivery systems. Our study demonstrated that cell-surface GAGs are not essential for cell surface binding and internalization of gene delivery complexes, but they are able to define the intracellular routing of the complexes by leading them to pathways with high pDNA elimination.

  2. CHLORIDE RETENTION IN EXPERIMENTAL HYDRONEPHROSIS

    PubMed Central

    Keith, Norman M.; Pulford, D. Schuyler

    1923-01-01

    1. In acute experimental hydronephrosis chloride retention occurs as well as retention of water, urea, and phenolsulfonephthalein. 2. If both water and chlorides are retained there may be no appreciable rise in the plasma chloride content. 3. When chlorides are retained, but not water, the chloride content of the plasma rises strikingly. 4. After the removal of the ureteral obstruction in acute hydronephrosis all renal functions, water, urea, and chloride excretion, may be rapidly restored in equal degree, or the chlorides may be retained temporarily while there is free excretion of water and urea. 5. In chronic hydronephrosis adequate daily excretion of urea and chlorides may be maintained by a compensatory polyuria. 6. Chloride retention or an abnormal chloride excretion may occur in certain renal lesions when there is no change in the urea, phenolsulfonephthalein, or water excretion. PMID:19868720

  3. The effect of chlorocholine chloride (CCC) inclusion in the diets of growing hens on growth rate, oestrogen levels and the onset of lay.

    PubMed

    Gultom, D; Songsang, A; Ter Meulen, U

    2001-02-01

    A study was conducted to test the effect of chlorocholine chloride (CCC) on growth performance and the onset of laying in hens. One hundred and fifteen 3-week-old chickens were divided into four treatment groups of 39, 33, 31 and 12 chickens. They were placed on four dietary treatments consisting of 0 p.p.m. CCC (control), 5 p.p.m. CCC from 14 weeks of age (5 p.p.m. A), 5 p.p.m. CCC from the beginning (5 p.p.m. B), and 50 p.p.m. CCC from the beginning (50 p.p.m. B). The basal diets were formulated according to the growing period and were iso-nitrogenous and iso-energetic. The crude protein content was 17.99% dry matter and 14.63% dry matter during the first 3-8 weeks and 9-20 weeks, respectively. The energy content was 12.7 and 12.75 MJ metabolisable energy (ME)/kg dry matter for the respective two growth phases. Feed intake, bodyweight changes and egg production were measured. Blood samples for oestrogen determination were collected weekly from the 15th week until the first egg was laid. Depressive effects of 50 p.p.m. CCC on bodyweight gain during weeks 3-8 and feed efficiency over the whole period were observed. There were no treatment differences (p > 0.05) on feed intake, bodyweight gain during weeks 9-20 and age at the point of lay. CCC inclusion at 50 p.p.m. significantly (p < 0.05) stimulated the oestrogen concentration at 17 and 18 weeks of age, and was 65% higher than the control at 18 weeks.

  4. Cyclic Voltammetry of Silver Chloride in Lithium Chloride-Potassium Chloride Eutectic.

    DTIC Science & Technology

    TRY), Fused salts, Silver, Reduction(Chemistry), Dissolving, ChloridesSilver chloride, Cyclic voltammetry , *VoltammetryThe technique of cyclic ... voltammetry was employed to study the deposition and dissolution of silver metal at platinum wire electrodes in molten lithium chloride-potassium chloride

  5. Association-Dissociation of Glycolate Oxidase with Catalase in Rice: A Potential Switch to Modulate Intracellular H2O2 Levels.

    PubMed

    Zhang, Zhisheng; Xu, Yuanyuan; Xie, Zongwang; Li, Xiangyang; He, Zheng-Hui; Peng, Xin-Xiang

    2016-05-02

    Rapid and dynamic change in hydrogen peroxide (H2O2) levels can serve as an important signal to regulate various biological processes in plants. The change is realized by tilting the balance between its production and scavenging rates, in which membrane-associated NADPH oxidases are known to play a crucial role. Functioning independently from NADPH oxidases, glycolate oxidase (GLO) was recently demonstrated as an alternative source for H2O2 production during both gene-for-gene and non-host resistance in plants. In this study, we show that GLO physically interacts with catalase (CAT) in rice leaves, and that the interaction can be deregulated by salicylic acid (SA). Furthermore, the GLO-mediated H2O2 accumulation is synergistically enhanced by SA. Based on the well-known mechanism of substrate channeling in enzyme complexes, SA-induced H2O2 accumulation likely results from SA-induced GLO-CAT dissociation. In the GLO-CAT complex, GLO-mediated H2O2 production during photorespiration is very high, whereas the affinity of CAT for H2O2 (measured Km ≈ 43 mM) is extraordinarily low. This unique combination can further potentiate the increase in H2O2 when GLO is dissociated from CAT. Taken together, we propose that the physical association-dissociation of GLO and CAT, in response to environmental stress or stimuli, seems to serve as a specific mechanism to modulate H2O2 levels in rice. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  6. Imaging Synaptic Inhibition in Transgenic Mice Expressing the Chloride Indicator, Clomeleon

    PubMed Central

    Berglund, K.; Schleich, W.; Krieger, P.; Loo, L.S.; Wang, D.; Cant, N.B.; Feng, G.; Augustine, G.J.; Kuner, T.

    2009-01-01

    We describe here a molecular genetic approach for imaging synaptic inhibition. The thy-1 promoter was used to express high levels of Clomeleon, a ratiometric fluorescent indicator for chloride ions, in discrete populations of neurons in the brains of transgenic mice. Clomeleon was functional after chronic expression and provided non-invasive readouts of intracellular chloride concentration ([Cl−]i) in brain slices, allowing us to quantify age-dependent declines in resting [Cl−]i during neuronal development. Activation of hippocampal interneurons caused [Cl−]i to rise transiently in individual postsynaptic pyramidal neurons. [Cl−]i increased in direct proportion to the amount of inhibitory transmission, with peak changes as large as 4 mM. Integrating responses over populations of pyramidal neurons allowed sensitive detection of synaptic inhibition. Thus, Clomeleon imaging permits non-invasive, spatiotemporally resolved recordings of [Cl−]i in a large variety of neurons, opening up new opportunities for imaging synaptic inhibition and other forms of chloride signaling. PMID:18398684

  7. Solute Carrier Family 39 Member 6 Gene Promotes Aggressiveness of Esophageal Carcinoma Cells by Increasing Intracellular Levels of Zinc, Activating Phosphatidylinositol 3-Kinase Signaling, and Up-regulating Genes That Regulate Metastasis.

    PubMed

    Cheng, Xinxin; Wei, Lixuan; Huang, Xudong; Zheng, Jian; Shao, Mingming; Feng, Ting; Li, Jun; Han, Yaling; Tan, Wenle; Tan, Wen; Lin, Dongxin; Wu, Chen

    2017-06-01

    A common variant in the solute carrier family 39 member 6 gene (SLC39A6) has been associated with survival times of patients with esophageal squamous cell carcinoma (ESCC). We investigated the function of SLC39A6 and ways in which this variant affects tumor progression by studying ESCC samples and cell lines. SLC39A6 was expressed or knocked down by expression of short hairpin RNAs in ESCC cells (KYSE30 and KYSE450) and HeLa cells using lentiviral vectors; we analyzed effects on proliferation, colony formation, migration, and invasion in vitro. Cells were grown as xenograft tumors in nude mice and tumor volume and metastases were quantified; tumors were collected and analyzed histologically. Cells were also analyzed for levels of intracellular zinc and messenger RNA (mRNA) expression patterns. We obtained ESCC and adjacent normal esophageal tissues from 94 patients who underwent esophagectomy in China from 2010 through 2014. Survival times of patients were measured from the date of diagnosis to the date of last follow-up or death. We sequenced mRNAs and compared levels between tumor and non-tumor tissues using the Wilcox rank-sum test. Total proteins in cell lines or tissue samples were measured by immunoblotting. We searched publicly available databases for variants of SLC39A6 in human tumor and non-tumor tissues. Knockdown of SLC39A6 reduced proliferation of ESCC cells in culture and metastasis of xenograft tumors in mice. Cells that overexpressed SLC39A6 had significant increases in intracellular levels of zinc and were more invasive in assays, activating phosphatidylinositol 3-kinase signaling to AKT serine/threonine kinase 1 and mitogen-activated protein kinase 1. Cells that overexpressed SLC39A6 had increased expression of mRNAs and proteins associated with metastasis, such as matrix metalloproteinase (MMP) 1, MMP3, MYC, and snail family transcriptional repressor 2 (SNAI2 or SLUG). Levels of MMP1, MMP3, MYC, and SLUG mRNAs correlated with levels of SLC39A6 m

  8. Proteomic Study of Microsomal Proteins Reveals a Key Role for Arabidopsis Annexin 1 in Mediating Heat Stress-Induced Increase in Intracellular Calcium Levels*

    PubMed Central

    Wang, Xu; Ma, Xiaolong; Wang, Hui; Li, Bingjie; Clark, Greg; Guo, Yi; Roux, Stan; Sun, Daye; Tang, Wenqiang

    2015-01-01

    To understand the early signaling steps in the response of plant cells to increased environmental temperature, 2-D difference gel electrophoresis was used to study the proteins in microsomes of Arabidopsis seedlings that are regulated early during heat stress. Using mass spectrometry, 19 microsomal proteins that showed an altered expression level within 5 min after heat treatment were identified. Among these proteins, annexin 1 (AtANN1) was one of those up-regulated rapidly after heat-shock treatment. Functional studies show loss-of-function mutants for AtANN1 and its close homolog AtANN2 were more sensitive to heat-shock treatment, whereas plants overexpressing AtANN1 showed more resistance to this treatment. Correspondingly, the heat-induced expression of heat-shock proteins and heat-shock factors is inhibited in ann1/ann2 double mutant, and the heat-activated increase in cytoplasmic calcium concentration ([Ca2+]cyt) is greatly impaired in the ann1 mutant and almost undetectable in ann1/ann2 double mutant. Taken together these results suggest that AtANN1 is important in regulating the heat-induced increase in [Ca2+]cyt and in the response of Arabidopsis seedlings to heat stress. PMID:25587034

  9. Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels.

    PubMed

    Wang, Xu; Ma, Xiaolong; Wang, Hui; Li, Bingjie; Clark, Greg; Guo, Yi; Roux, Stan; Sun, Daye; Tang, Wenqiang

    2015-03-01

    To understand the early signaling steps in the response of plant cells to increased environmental temperature, 2-D difference gel electrophoresis was used to study the proteins in microsomes of Arabidopsis seedlings that are regulated early during heat stress. Using mass spectrometry, 19 microsomal proteins that showed an altered expression level within 5 min after heat treatment were identified. Among these proteins, annexin 1 (AtANN1) was one of those up-regulated rapidly after heat-shock treatment. Functional studies show loss-of-function mutants for AtANN1 and its close homolog AtANN2 were more sensitive to heat-shock treatment, whereas plants overexpressing AtANN1 showed more resistance to this treatment. Correspondingly, the heat-induced expression of heat-shock proteins and heat-shock factors is inhibited in ann1/ann2 double mutant, and the heat-activated increase in cytoplasmic calcium concentration ([Ca(2+)]cyt) is greatly impaired in the ann1 mutant and almost undetectable in ann1/ann2 double mutant. Taken together these results suggest that AtANN1 is important in regulating the heat-induced increase in [Ca(2+)]cyt and in the response of Arabidopsis seedlings to heat stress.

  10. Ammonium chloride salting out extraction/cleanup for trace-level quantitative analysis in food and biological matrices by flow injection tandem mass spectrometry.

    PubMed

    Nanita, Sergio C; Padivitage, Nilusha L T

    2013-03-20

    A sample extraction and purification procedure that uses ammonium-salt-induced acetonitrile/water phase separation was developed and demonstrated to be compatible with the recently reported method for pesticide residue analysis based on fast extraction and dilution flow injection mass spectrometry (FED-FI-MS). The ammonium salts evaluated were chloride, acetate, formate, carbonate, and sulfate. A mixture of NaCl and MgSO4, salts used in the well-known QuEChERS method, was also tested for comparison. With thermal decomposition/evaporation temperature of <350°C, ammonium salts resulted in negligible ion source residual under typical electrospray conditions, leading to consistent method performance and less instrument cleaning. Although all ammonium salts tested induced acetonitrile/water phase separation, NH4Cl yielded the best performance, thus it was the preferred salting out agent. The NH4Cl salting out method was successfully coupled with FI/MS/MS and tested for fourteen pesticide active ingredients: chlorantraniliprole, cyantraniliprole, chlorimuron ethyl, oxamyl, methomyl, sulfometuron methyl, chlorsulfuron, triflusulfuron methyl, azimsulfuron, flupyrsulfuron methyl, aminocyclopyrachlor, aminocyclopyrachlor methyl, diuron and hexazinone. A validation study was conducted with nine complex matrices: sorghum, rice, grapefruit, canola, milk, eggs, beef, urine and blood plasma. The method is applicable to all analytes, except aminocyclopyrachlor. The method was deemed appropriate for quantitative analysis in 114 out of 126 analyte/matrix cases tested (applicability rate=0.90). The NH4Cl salting out extraction/cleanup allowed expansion of FI/MS/MS for analysis in food of plant and animal origin, and body fluids with increased ruggedness and sensitivity, while maintaining high-throughput (run time=30s/sample). Limits of quantitation (LOQs) of 0.01mgkg(-1) (ppm), the 'well-accepted standard' in pesticide residue analysis, were achieved in >80% of cases tested; while

  11. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    PubMed

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  12. The Effect of Vitamin D Administration on Intracellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Levels in Hemodialysis Patients: A Placebo-controlled, Double-blinded Clinical Trial

    PubMed Central

    Naeini, Afsoon Emami; Moeinzadeh, Firouzeh; Vahdat, Sahar; Ahmadi, Akbar; Hedayati, Zahra Parin; Shahzeidi, Safoora

    2017-01-01

    Objective: Vitamin D deficiency is quite common among end-stage renal disease (ESRD) patients, and Vitamin D administration could reduce morbidity and mortality in these patients through different mechanisms. Cardiovascular diseases are the most common cause of mortality in these patients that are caused by vascular injuries. Intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) are vascular inflammation indicators. The goal of this study is to find the effect of Vitamin D administration on ICAM-1 and VCAM-1 serum levels in ESRD patients on hemodialysis. Methods: The current study is a double-blind, randomized, placebo-controlled clinical trial on 64 patients in two groups of control and treatment. Serum levels of Vitamin D, ICAM-1, and VCAM-1 were measured before and after the study. Treatment group was treated with Vitamin D pearls while control group underwent treatment with placebo pearls. Average serum levels of Vitamin D, ICAM, and VCAM were measured in both groups before and after the study and were analyzed by ANOVA, paired t-test, and Chi-square test using SPSS software. Findings: Sixty-four ESRD patients were recruited for this study consisting of 32 male and 32 female subjects within the ages of 18 and 76 years. The change in serum level of Vitamin D was significant in treatment group (P = 0.001) but not in control group (P > 0.05). Serum levels of ICAM and VCAM also changed significantly in treatment group (P = 0.001) but not in control group (P > 0.05) Conclusion: Based on the findings of this study, it could be said that Vitamin D administration in ESRD patients may increase serum level of Vitamin D up to four times. It also reduces serum levels of ICAM and VCAM which might improve the vascular condition of these patients.

  13. Importance of Abnormal Chloride Homeostasis in Stable Chronic Heart Failure.

    PubMed

    Grodin, Justin L; Verbrugge, Frederik H; Ellis, Stephen G; Mullens, Wilfried; Testani, Jeffrey M; Tang, W H Wilson

    2016-01-01

    The aim of this analysis was to determine the long-term prognostic value of lower serum chloride in patients with stable chronic heart failure. Electrolyte abnormalities are prevalent in patients with chronic heart failure. Little is known regarding the prognostic implications of lower serum chloride. Serum chloride was measured in 1673 consecutively consented stable patients with a history of heart failure undergoing elective diagnostic coronary angiography. All patients were followed for 5-year all-cause mortality, and survival models were adjusted for variables that confounded the chloride-risk relationship. The average chloride level was 102 ± 4 mEq/L. Over 6772 person-years of follow-up, there were 547 deaths. Lower chloride (per standard deviation decrease) was associated with a higher adjusted risk of mortality (hazard ratio 1.29, 95% confidence interval 1.12-1.49; P < 0.001). Chloride levels net-reclassified risk in 10.4% (P = 0.03) when added to a multivariable model (with a resultant C-statistic of 0.70), in which sodium levels were not prognostic (P = 0.30). In comparison to those with above first quartile chloride (≥ 101 mEq/L) and sodium (≥ 138 meq/L), subjects with first quartile chloride had a higher adjusted mortality risk, whether they had first quartile sodium (hazard ratio 1.35, 95% confidence interval 1.08-1.69; P = 0.008) or higher (hazard ratio 1.43, 95% confidence interval 1.12-1.85; P = 0.005). However, subjects with first quartile sodium but above first quartile chloride had no association with mortality (P = 0.67). Lower serum chloride levels are independently and incrementally associated with increased mortality risk in patients with chronic heart failure. A better understanding of the biological role of serum chloride is warranted. © 2015 American Heart Association, Inc.

  14. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating.

    PubMed

    Xu, Li-Na; Na, Wan-Li; Liu, Xin; Hou, Shu-Guang; Lin, Sen; Yang, Hong; Ma, Tong-Hui

    2008-08-01

    1. Deletion of phenylalanine at position 508 (DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most common mutation causing cystic fibrosis (CF). Effective pharmacological therapy of CF caused by the DeltaF508-CFTR mutation requires the rescue of both intracellular processing and channel gating defects. 2. We identified a class of natural coumarin compounds that can correct the defective DeltaF508-CFTR chloride channel gating by screening a collection of 386 single natural compounds from Chinese medicinal herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells coexpressing DeltaF508-CFTR and an iodide-sensitive fluorescent indicator (YFP-H148Q/I152L). 3. Dose-dependent potentiation of defective DeltaF508-CFTR chloride channel gating by five coumarin compounds was demonstrated by the fluorescent iodide influx assay and confirmed by an Ussing chamber short-circuit current assay. Activation was fully abolished by the specific CFTR inhibitor CFTR(inh)-172. Two potent compounds, namely imperatorin and osthole, have activation K(d) values of approximately 10 micromol/L, as determined by the short-circuit current assay. The active coumarin compounds do not elevate intracellular cAMP levels. Activation of DeltaF508-CFTR by the coumarin compounds requires cAMP agonist, suggesting direct interaction with the mutant CFTR molecule. Kinetics analysis indicated rapid activation of DeltaF508-CFTR by the coumarin compounds, with half-maximal activation of < 5 min. The activating effect was fully reversed for all five active compounds 45 min after washout. 4. In conclusion, the natural coumarin DeltaF508-CFTR activators may represent a new class of natural lead compounds for the development of pharmacological therapies for CF caused by the DeltaF508 mutation.

  15. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179

    PubMed Central

    Thebault, Stéphanie; González, Carmen; García, Celina; Zamarripa, David Arredondo; Nava, Gabriel; Vaca, Luis; López-Casillas, Fernando; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2011-01-01

    Vasoinhibins, a family of antiangiogenic peptides derived from prolactin proteolysis, inhibit the vascular effects of several proangiogenic factors, including bradykinin (BK). Here, we report that vasoinhibins block the BK-induced proliferation of bovine umbilical vein endothelial cells. This effect is mediated by the inactivation of endothelial nitric oxide synthase (eNOS), as the NO donor DETA-NONOate reverted vasoinhibin action. It is an experimentally proven fact that the elevation of intracellular Ca2+ levels ([Ca2+]i) upon BK stimulation activates eNOS, and vasoinhibins blocked the BK-mediated activation of phospholipase C and the formation of inositol 1,4,5-triphosphate leading to a reduced release of Ca2+ from intracellular stores. The [Ca2+]i rise evoked by BK also involves the influx of extracellular Ca2+ via canonical transient receptor potential (TRPC) channels. Vasoinhibins likely interfere with TRPC-mediated Ca2+ entry since La3+, which is an enhancer of TRPC4 and TRPC5 channel activity, prevented vasoinhibins from blocking the stimulation by BK of endothelial cell NO production and proliferation, and vasoinhibins reduced the BK-induced increase of TRPC5 mRNA expression. Finally, vasoinhibins prevented the BK-induced phosphorylation of eNOS at Ser1179, a post-translational modification that facilitates Ca2+-calmodulin activation of eNOS. Together, our data show that vasoinhibins, by lowering NO production through the inhibition of both [Ca2+]i mobilization and eNOS phosphorylation, prevent the BK-induced stimulation of endothelial cell proliferation. Thus, vasoinhibins help to regulate BK effects on angiogenesis and vascular homeostasis.

  16. A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels.

    PubMed

    Rolyan, Harshvardhan; Liu, Shujun; Hoeijmakers, Janneke Gj; Faber, Catharina G; Merkies, Ingemar Sj; Lauria, Giuseppe; Black, Joel A; Waxman, Stephen G

    2016-01-01

    Small fiber neuropathy is a painful sensory nervous system disorder characterized by damage to unmyelinated C- and thinly myelinated Aδ- nerve fibers, clinically manifested by burning pain in the distal extremities and dysautonomia. The clinical onset in adulthood suggests a time-dependent process. The mechanisms that underlie nerve fiber injury in small fiber neuropathy are incompletely understood, although roles for energetic stress have been suggested. In the present study, we report time-dependent degeneration of neurites from dorsal root ganglia neurons in culture expressing small fiber neuropathy-associated G856D mutant Nav1.7 channels and demonstrate a time-dependent increase in intracellular calcium levels [Ca(2+)]i and reactive oxygen species, together with a decrease in ATP levels. Together with a previous clinical report of burning pain in the feet and hands associated with reduced levels of Na(+)/K(+)-ATPase in humans with high altitude sickness, the present results link energetic stress and reactive oxygen species production with the development of a painful neuropathy that preferentially affects small-diameter axons.

  17. A painful neuropathy-associated Nav1.7 mutant leads to time-dependent degeneration of small-diameter axons associated with intracellular Ca2+ dysregulation and decrease in ATP levels

    PubMed Central

    Rolyan, Harshvardhan; Liu, Shujun; Hoeijmakers, Janneke GJ; Faber, Catharina G; Merkies, Ingemar SJ; Lauria, Giuseppe; Black, Joel A

    2016-01-01

    Small fiber neuropathy is a painful sensory nervous system disorder characterized by damage to unmyelinated C- and thinly myelinated Aδ- nerve fibers, clinically manifested by burning pain in the distal extremities and dysautonomia. The clinical onset in adulthood suggests a time-dependent process. The mechanisms that underlie nerve fiber injury in small fiber neuropathy are incompletely understood, although roles for energetic stress have been suggested. In the present study, we report time-dependent degeneration of neurites from dorsal root ganglia neurons in culture expressing small fiber neuropathy-associated G856D mutant Nav1.7 channels and demonstrate a time-dependent increase in intracellular calcium levels [Ca2+]i and reactive oxygen species, together with a decrease in ATP levels. Together with a previous clinical report of burning pain in the feet and hands associated with reduced levels of Na+/K+-ATPase in humans with high altitude sickness, the present results link energetic stress and reactive oxygen species production with the development of a painful neuropathy that preferentially affects small-diameter axons. PMID:27821467

  18. Androgen Influence on Prefrontal Dopamine Systems in Adult Male Rats: Localization of Cognate Intracellular Receptors in Medial Prefrontal Projections to the Ventral Tegmental Area and Effects of Gonadectomy and Hormone Replacement on Glutamate-Stimulated Extracellular Dopamine Level

    PubMed Central

    Kritzer, M. F.

    2012-01-01

    Although androgens are known to modulate dopamine (DA) systems and DA-dependent behaviors of the male prefrontal cortex (PFC), how this occurs remains unclear. Because relatively few ventral tegmental area (VTA) mesoprefrontal DA neurons contain intracellular androgen receptors (ARs), studies presented here combined retrograde tracing and immunolabeling for AR in male rats to determine whether projections afferent to the VTA might be more AR enriched. Results revealed PFC-to-VTA projections to be substantially AR enriched. Because these projections modulate VTA DA cell firing and PFC DA levels, influence over this pathway could be means whereby androgens modulate PFC DA. To assess the hormone sensitivity of glutamate stimulation of PFC DA tone, additional studies utilized microdialysis/reverse dialysis application of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptor subtype-selective antagonists which act locally within the PFC and tegmentally via inhibition or disinhibition of PFC-to-VTA afferents to modulate intracortical DA levels. Here, we compared the effects of these drug challenges in control, gonadectomized, and gonadectomized rats given testosterone or estradiol. This revealed complex effects of gonadectomy on antagonist-stimulated PFC DA levels that together with the anatomical data above suggest that androgen stimulation of PFC DA systems does engage glutamatergic circuitry and perhaps that of the AR-enriched glutamatergic projections from PFC-to-VTA specifically. PMID:21940701

  19. Pyramidal cells accumulate chloride at seizure onset

    PubMed Central

    Lillis, Kyle P; Kramer, Mark A; Mertz, Jerome; Staley, Kevin J

    2012-01-01

    Seizures are thought to originate from a failure of inhibition to quell hyperactive neural circuits, but the nature of this failure remains unknown. Here we combine high-speed two-photon imaging with electrophysiological recordings to directly evaluate the interaction between populations of interneurons and principal cells during the onset of seizure-like activity in mouse hippocampal slices. Both calcium imaging and dual patch clamp recordings reveal that in vitro seizure-like events (SLEs) are preceded by pre-ictal bursts of activity in which interneurons predominate. Corresponding changes in intracellular chloride concentration were observed in pyramidal cells using the chloride indicator Clomeleon. These changes were measurable at SLE onset and became very large during the SLE. Pharmacological manipulation of GABAergic transmission, either by blocking GABAA receptors or by hyperpolarizing the GABAA reversal potential, converted SLEs to short interictal-like bursts. Together, our results support a model in which pre-ictal GABAA receptor-mediated chloride influx shifts EGABA to produce a positive feedback loop that contributes to the initiation of seizure activity. PMID:22677032

  20. The Role of Chloride Transport in Postsynaptic Inhibition of Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Misgeld, U.; Deisz, R. A.; Dodt, H. U.; Lux, H. D.

    1986-06-01

    Hippocampal inhibitory postsynaptic potentials are depolarizing in granule cells but hyperpolarizing in CA3 neurons because the reversal potentials and membrane potentials of these cells differ. Here the hippocampal slice preparation was used to investigate the role of chloride transport in these inhibitory responses. In both cell types, increasing the intracellular chloride concentration by injection shifted the reversal potential of these responses in a positive direction, and blocking the outward transport of chloride with furosemide slowed their recovery from the injection. In addition, hyperpolarizing and depolarizing inhibitory responses and the hyperpolarizing and depolarizing responses to the inhibitory neurotransmitter γ - aminobutyric acid decreased in the presence of furosemide. These effects of furosemide suggest that the internal chloride activity of an individual hippocampal neuron is regulated by two transport processes, one that accumulates chloride and one that extrudes chloride.

  1. Activated PKCδ and PKCϵ Inhibit Epithelial Chloride Secretion Response to cAMP via Inducing Internalization of the Na+-K+-2Cl− Cotransporter NKCC1*

    PubMed Central

    Tang, Jun; Bouyer, Patrice; Mykoniatis, Andreas; Buschmann, Mary; Matlin, Karl S.; Matthews, Jeffrey B.

    2010-01-01

    The basolateral Na+-K+-2Cl− cotransporter (NKCC1) is a key determinant of transepithelial chloride secretion and dysregulation of chloride secretion is a common feature of many diseases including secretory diarrhea. We have previously shown that activation of protein kinase C (PKC) markedly reduces transepithelial chloride secretion in human colonic T84 cells, which correlates with both functional inhibition and loss of the NKCC1 surface expression. In the present study, we defined the specific roles of PKC isoforms in regulating epithelial NKCC1 and chloride secretion utilizing adenoviral vectors that express shRNAs targeting human PKC isoforms (α, δ, ϵ) (shPKCs) or LacZ (shLacZ, non-targeting control). After 72 h of adenoviral transduction, protein levels of the PKC isoforms in shPKCs-T84 cells were decreased by ∼90% compared with the shLacZ-control. Activation of PKCs by phorbol 12-myristate 13-acetate (PMA) caused a redistribution of NKCC1 immunostaining from the basolateral membrane to intracellular vesicles in both shLacZ- and shPKCα-T84 cells, whereas the effect of PMA was not observed in shPKCδ- and shPKCϵ- cells. These results were further confirmed by basolateral surface biotinylation. Furthermore, activation of PKCs by PMA inhibited cAMP-stimulated chloride secretion in the uninfected, shLacZ- and shPKCα-T84 monolayers, but the inhibitory effect was significantly attenuated in shPKCδ- and shPKCϵ-T84 monolayers. In conclusion, the activated novel isoforms PKCδ or PKCϵ, but not the conventional isoform PKCα, inhibits transepithelial chloride secretion through inducing internalization of the basolateral surface NKCC1. Our study reveals that the novel PKC isoform-regulated NKCC1 surface expression plays an important role in the regulation of chloride secretion. PMID:20732874

  2. Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons

    PubMed Central

    Funk, Katharina; Woitecki, Anne; Franjic-Würtz, Christina; Gensch, Thomas; Möhrlen, Frank; Frings, Stephan

    2008-01-01

    Background Chloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl- accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl- currents. The intracellular Cl- concentration can, however, vary considerably between individual DRG neurons. This raises the question, whether the contribution of Cl- currents to signal generation differs between individual afferent neurons, and whether the specific Cl- levels in these neurons are subject to modulation. Based on the hypothesis that modulation of the peripheral Cl- homeostasis is involved in the generation of inflammatory hyperalgesia, we examined the effects of inflammatory mediators on intracellular Cl- concentrations and on the expression levels of Cl- transporters in rat DRG neurons. Results We developed an in vitro assay for testing how inflammatory mediators influence Cl- concentration and the expression of Cl- transporters. Intact DRGs were treated with 100 ng/ml NGF, 1.8 μM ATP, 0.9 μM bradykinin, and 1.4 μM PGE2 for 1–3 hours. Two-photon fluorescence lifetime imaging with the Cl--sensitive dye MQAE revealed an increase of the intracellular Cl- concentration within 2 hours of treatment. This effect coincided with enhanced phosphorylation of the Na+-K+-2Cl- cotransporter NKCC1, suggesting that an increased activity of that transporter caused the early rise of intracellular Cl- levels. Immunohistochemistry of NKCC1 and KCC2, the main neuronal Cl- importer and exporter, respectively, exposed an inverse regulation by the inflammatory mediators. While the NKCC1 immunosignal increased, that of KCC2 declined after 3 hours of treatment. In contrast, the mRNA levels of the two transporters did not change markedly during this time. These data demonstrate a fundamental transition in Cl- homeostasis toward a state of augmented Cl- accumulation, which is induced by a 1–3 hour treatment with inflammatory

  3. Moxifloxacinium chloride monohydrate

    PubMed Central

    Qian, Jing-Jing; Gu, Jian-Ming; Shen, Jin; Hu, Xiu-Rong; Wu, Su-Xiang

    2011-01-01

    The title compound {systematic name: 7-[(1S,6S)-8-aza-2-azonia­bicyclo­[4.3.0]non-8-yl]-1-cyclo­propyl-6-fluoro-8-meth­oxy-4-oxo-1,4-dihydro­quinoline-3-carb­oxy­lic acid chloride monohydrate}, C21H25FN3O4 +·Cl−·H2O, crystallizes with two moxi­floxa­cinium cations, two chloride ions and two uncoordinated water mol­ecules in the unit cell. The crystal structure has a pseudo-inversion center except for the chloride ions. In both moxi­floxa­cinium cations, the quinoline rings are approximately planar, the maximum atomic deviations being 0.107 (3) and 0.118 (3) Å. The piperidine rings adopt a chair conformation while the pyrrolidine rings display a half-chair conformation. In the crystal, the carboxyl groups, the protonated piperidyl groups, the uncoordinated water mol­ecule and chloride anions participate in O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonding; weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonding is also present in the crystal structure. PMID:22058817

  4. CHLORIDE WASHER PERFORMACE TESTING

    SciTech Connect

    Coughlin, J; David Best, D; Robert Pierce, R

    2007-11-30

    Testing was performed to determine the chloride (Cl-) removal capabilities of the Savannah River National Laboratory (SRNL) designed and built Cl- washing equipment intended for HB-Line installation. The equipment to be deployed was tested using a cerium oxide (CeO2) based simulant in place of the 3013 plutonium oxide (PuO2) material. Two different simulant mixtures were included in this testing -- one having higher Cl- content than the other. The higher Cl- simulant was based on K-Area Interim Surveillance Inspection Program (KIS) material with Cl- content approximately equal to 70,000 ppm. The lower Cl- level simulant was comparable to KIS material containing approximately 8,000-ppm Cl- content. The performance testing results indicate that the washer is capable of reducing the Cl- content of both surrogates to below 200 ppm with three 1/2-liter washes of 0.1M sodium hydroxide (NaOH) solution. Larger wash volumes were used with similar results - all of the prescribed test parameters consistently reduced the Cl- content of the surrogate to a value below 200 ppm Cl- in the final washed surrogate material. The washer uses a 20-micron filter to retain the surrogate solids. Tests showed that 0.16-0.41% of the insoluble fraction of the starting mass passed through the 20-micron filter. The solids retention performance indicates that the fissile masses passing through the 20-micron filter should not exceed the waste acceptance criteria for discard in grout to TRU waste. It is recommended that additional testing be pursued for further verification and optimization purposes. It is likely that wash volumes smaller than those tested could still reduce the Cl- values to acceptable levels. Along with reduced wash volumes, reuse of the third wash volume (in the next run processed) should be tested as a wash solution minimization plan. A 67% reduction in the number of grouted paint pails could be realized if wash solution minimization testing returned acceptable results.

  5. High albumin levels restrict the kinetics of 13-cis retinoic acid uptake and intracellular isomerization to all-trans retinoic acid and inhibit its anti-proliferative effect on SZ95 sebocytes.

    PubMed

    Tsukada, Miki; Schröder, Mandy; Seltmann, Holger; Orfanos, Constantin E; Zouboulis, Christos C

    2002-07-01

    13-cis Retinoic acid is rapidly absorbed into cells and exerts its anti-proliferative effect on human sebocytes by specific isomerization to high levels of all-trans retinoic acid and binding the retinoic acid receptors. In this study, we have shown that bovine serum albumin, an extracellular binding protein for 13-cis retinoic acid, plays an important part in the uptake of 13-cis retinoic acid in human sebocytes, its intracellular isomerization to all-trans retinoic acid, and the induction of its anti-proliferative effect. The addition of highly concentrated bovine serum albumin (20 mg per ml) to the serum-free maintenance medium resulted in a rather controlled uptake of constant levels of 13-cis and all-trans retinoic acid into the cells over the 72 h of treatment. As a consequence, significantly reduced and delayed isomerization of 13-cis retinoic acid to all-trans retinoic acid was detected. In parallel experiments, the anti-proliferative activity of 13-cis retinoic acid on SZ95 sebocytes was abrogated by adding 20 mg bovine serum albumin per ml into the serum-free medium. These results indicate a critical function of serum albumin as retinoid-binding protein in reducing the concentration of active retinoids and restricting their biologic effects on human sebocytes.

  6. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    PubMed Central

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  7. Evolution of intracellular compartmentalization.

    PubMed

    Diekmann, Yoan; Pereira-Leal, José B

    2013-01-15

    Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.

  8. [Levels of phthalates and adipates in processed foods and migration of di-isononyl adipate from polyvinyl chloride film into foods].

    PubMed

    Saito, Isao; Ueno, Eiji; Oshima, Harumi; Matsumoto, Hiroshi

    2002-06-01

    The levels of dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEPHP), di-isononyl phthalate (DINP), di-(2-ethylhexyl) adipate (DEHA) and di-isononyl adipate (DINA) were determined in 50 processed foods (ham and sausage, fried dumpling and shao-mai, fish paste products, croquette and fried fish, bread, noodle, pickles, etc.). DBP, BBP, DEHP, DINP, DEHA, and DINA were contained at nd approximately 47.7, nd approximately 16.6, nd approximately 749, nd approximately 358, nd approximately 57.2 and nd approximately 20,200 ppb, respectively. High-level contamination of DINA was found in fish paste products, croquette and shao-mai, presumably because of migration from plasticized wrapping film using for food packaging. We studied the relationship between DINA migration from wrapped PVC film into fried croquette and its standing time after frying. When the croquette was wrapped immediately after frying, the migration from wrapping film into the croquette was highest (36,400 ng/g). On wrapping after standing for 5 min and 30 min, the migration level was reduced to 1/3.5 and 1/14 of the highest level, respectively.

  9. NHE1 is the sodium-hydrogen exchanger active in acute intracellular pH regulation in preimplantation mouse embryos.

    PubMed

    Siyanov, Violetta; Baltz, Jay M

    2013-06-01

    Sodium-hydrogen exchangers (NHE) of the Slc9 gene family are the major regulators of intracellular pH against acidosis in mammalian cells. Of five plasma membrane NHE isoforms, mouse oocytes and preimplantation embryos express mRNAs encoding NHE1 (SLC9A1), NHE3 (SLC9A3), and NHE4 (SLC9A4), with higher mRNA levels for each in oocytes through one-cell stage embryos and lower levels after the two-cell stage. NHE2 (SLC9A2) and NHE5 (SLC9A5) are not expressed. Measurements of intracellular pH during recovery from induced acidosis indicated that recovery occurred via NHE activity at all preimplantation stages assessed (one-cell, two-cell, eight-cell and morula). Recovery from acidosis at each stage was entirely inhibited by cariporide, which is very highly selective for NHE1. In contrast, the moderately NHE3-selective inhibitor S3226 did not preferentially block recovery, nor did adding S3226 increase inhibition over cariporide alone, indicating that NHE3 did not play a role. There was no indication of NHE4 activity. Another regulator of intracellular pH against acidosis, the sodium-dependent bicarbonate/chloride exchanger (NDBCE; SLC4A8), had low or absent activity in two-cell embryos. Thus, NHE1 appears to be the only significant regulator of intracellular pH in preimplantation mouse embryos. Culturing embryos from the one-cell or two-cell stages in acidotic medium inhibited their development. Unexpectedly, inhibition of NHE1 with cariporide, NDBCE with DIDS, or both together did not affect embryo development to the blastocyst stage more substantially under conditions of chronic acidosis than at normal pH. Preimplantation mouse embryos thus appear to have limited capacity to resist chronic acidosis using intracellular pH regulatory mechanisms.

  10. Apical membrane sodium and chloride entry during osmotic swelling of renal (A6) epithelial cells.

    PubMed

    Crowe, W E; Ehrenfeld, J; Brochiero, E; Wills, N K

    1995-03-01

    To assess the role of chloride in cell volume and sodium transport regulation, we measured cell height changes (CH), transepithelial chloride and sodium fluxes, and intracellular chloride content during challenge with hyposmotic solutions under open circuit (OC) conditions. CH maximally increased following hyposmotic challenge within approximately 5 minutes. The change in CH was smaller under short circuit (SC) conditions or following replacement of chloride in the mucosal solution by gluconate or cyclamate (Cl(-)-freem). When corrected for the osmotically inactive cell volume (30 +/- 2%), delta CH for controls (OC) were greater than predicted for an ideal osmometer. In contrast, delta CH for Cl(-)-freem or SC conditions were similar to that predicted for an ideal osmometer. Na+ and Cl- mucosa-to-serosa fluxes increased following hyposmotic challenge. Chloride fluxes increased maximally within 5 min, then decreased. In contrast, the Na+ flux increased slowly and reached a steady state after approximately 25 min. Under isosmotic conditions, exposure to Cl(-)-freem solutions led to decreases in the transepithelial conductance, Na+ flux, and CH. Chloride permeabilities in the apical and basolateral membranes were detected using the fluorescent intracellular chloride indicator MQAE. The results indicate that during osmotic swelling, the entry of both sodium and chloride is increased. The time courses of these increases differ, suggesting distinct mechanisms for the osmotic regulation of these apical membrane transport processes.

  11. Molybdenum In Cathodes Of Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of molybdenum wire in NaAlCl4 melt indicate molybdenum chloride useful as cathode material in rechargeable sodium/metal chloride electrochemical cells. Batteries used in electric vehicles, for electric-power load leveling, and other applications involving high energy and power densities.

  12. Intracellular protein topogenesis

    PubMed Central

    Blobel, Günter

    1980-01-01

    Concurrently with or shortly after their synthesis on ribosomes, numerous specific proteins are unidirectionally translocated across or asymmetrically integrated into distinct cellular membranes. Thereafter, subpopulations of these proteins need to be sorted from each other and routed for export or targeted to other intracellular membranes or compartments. It is hypothesized here that the information for these processes, termed “protein topogenesis,” is encoded in discrete “topogenic” sequences that constitute a permanent or transient part of the polypeptide chain. The repertoire of distinct topogenic sequences is predicted to be relatively small because many different proteins would be topologically equivalent—i.e., targeted to the same intracellular address. The information content of topogenic sequences would be decoded and processed by distinct effectors. Four types of topogenic sequences could be distinguished: signal sequences, stop-transfer sequences, sorting sequences, and insertion sequences. Signal sequences initiate translocation of proteins across specific membranes. They would be decoded and processed by protein translocators that, by virtue of their signal sequence-specific domain and their unique location in distinct cellular membranes, effect unidirectional translocation of proteins across specific cellular membranes. Stop-transfer sequences interrupt the translocation process that was previously initiated by a signal sequence and, by excluding a distinct segment of the polypeptide chain from translocation, yield asymmetric integration of proteins into translocation-competent membranes. Sorting sequences would act as determinants for posttranslocational traffic of subpopulations of proteins, originating in translocation-competent donor membranes (and compartments) and going to translocation-incompetent receiver membranes (and compartments). Finally, insertion sequences initiate unilateral integration of proteins into the lipid bilayer

  13. Intracellular Oscillations and Waves

    NASA Astrophysics Data System (ADS)

    Beta, Carsten; Kruse, Karsten

    2017-03-01

    Dynamic processes in living cells are highly organized in space and time. Unraveling the underlying molecular mechanisms of spatiotemporal pattern formation remains one of the outstanding challenges at the interface between physics and biology. A fundamental recurrent pattern found in many different cell types is that of self-sustained oscillations. They are involved in a wide range of cellular functions, including second messenger signaling, gene expression, and cytoskeletal dynamics. Here, we review recent developments in the field of cellular oscillations and focus on cases where concepts from physics have been instrumental for understanding the underlying mechanisms. We consider biochemical and genetic oscillators as well as oscillations that arise from chemo-mechanical coupling. Finally, we highlight recent studies of intracellular waves that have increasingly moved into the focus of this research field.

  14. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  15. Cesium chloride-induced torsades de pointes.

    PubMed

    Wiens, Matthew; Gordon, Wendy; Baulcomb, Daisy; Mattman, Andre; Mock, Tom; Brown, Robert

    2009-09-01

    The chloride salt of cesium, a group 1A element, is gaining popularity as an alternative treatment of advanced cancers. Cesium chloride has primarily been used in cardiovascular research for arrhythmogenesis in animals because of its potassium-blocking effects. The present report describes a 45-year-old woman with metastatic breast cancer who experienced repeated episodes of torsades de pointes polymorphic ventricular tachycardia after several months of oral cesium therapy. There was a clear temporal relationship between cesium ingestion and the arrhythmia, which later resolved following discontinuation of cesium therapy. Serial cesium plasma and whole blood levels were measured over the ensuing six months and pharmacokinetic analysis was performed.

  16. (Z)3,4,5,4‧-trans-tetramethoxystilbene, a new analogue of resveratrol, inhibits gefitinb-resistant non-small cell lung cancer via selectively elevating intracellular calcium level

    NASA Astrophysics Data System (ADS)

    Fan, Xing-Xing; Yao, Xiao-Jun; Xu, Su Wei; Wong, Vincent Kam-Wai; He, Jian-Xing; Ding, Jian; Xue, Wei-Wei; Mujtaba, Tahira; Michelangeli, Francesco; Huang, Min; Huang, Jun; Xiao, Da-Kai; Jiang, Ze-Bo; Zhou, Yan-Ling; Kin-Ting Kam, Richard; Liu, Liang; Lai-Han Leung, Elaine

    2015-11-01

    Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4‧-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients.

  17. A Quick Reference on Chloride.

    PubMed

    Bohn, Andrea A; de Morais, Helio Autran

    2017-03-01

    Chloride is an essential element, playing important roles in digestion, muscular activity, regulation of body fluids, and acid-base balance. As the most abundant anion in extracellular fluid, chloride plays a major role in maintaining electroneutrality. Chloride is intrinsically linked to sodium in maintaining osmolality and fluid balance and has an inverse relationship with bicarbonate in maintaining acid-base balance. It is likely because of these close ties that chloride does not get the individual attention it deserves; we can use these facts to simplify and interpret changes in serum chloride concentrations.

  18. Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro.

    PubMed

    Gackière, Florian; Vinay, Laurent

    2015-04-01

    In healthy mature motoneurons (MNs), KCC2 cotransporters maintain the intracellular chloride concentration at low levels, a prerequisite for postsynaptic inhibition mediated by GABA and glycine. KCC2 expression in lumbar MNs is reduced after spinal cord injury (SCI) resulting in a depolarizing shift of the chloride equilibrium potential. Despite modeling studies indicating that such a downregulation of KCC2 function would reduce the strength of postsynaptic inhibition, physiological evidence is still lacking. The present study aimed at investigating the functional impact of a modification of KCC2 function. We focused on a well characterized disynaptic inhibitory pathway responsible for reciprocal inhibition between antagonistic muscles. We performed in vitro extracellular recordings on spinal cords isolated from rodents at the end of the first postnatal week. Genetic reduction of KCC2 expression, pharmacological blockade of KCC2, as well as SCI-induced downregulation of KCC2 all resulted in a reduction of the strength of reciprocal inhibition. We then tried to restore endogenous inhibition after SCI by means of zinc ions that have been shown to boost KCC2 function in other models. Zinc chloride indeed hyperpolarized the chloride equilibrium potential in MNs and increased reciprocal inhibition after neonatal SCI. This study demonstrates that the level of KCC2 function sets the strength of postsynaptic inhibition and suggests that the downregulation of KCC2 after SCI likely contributes to the high occurrence of flexor-extensor cocontractions in SCI patients. Copyright © 2015 the authors 0270-6474/15/355307-10$15.00/0.

  19. Effects of N-acetyl-L-cysteine on fish hepatoma cells treated with mercury chloride and ionizing radiation.

    PubMed

    Kim, Jin Kyu; Han, Min; Nili, Mohammad

    2011-11-01

    Organisms are exposed to natural radiations from cosmic or terrestrial origins. Furthermore the combined action of radiation with various chemicals is an inevitable feature of modern life. Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. N-acetyl-L-cysteine (NAC) is a well-known sulfhydryl-containing antioxidant whose role in radioprotection has been reported. Synergistic effects of radiation and mercury chloride on human cells was previously reported by the authors. Based on the previous report, this study was designed to assess the synergistic effects of radiation and mercury chloride on fish hepatoma cells, as well as to investigate the protective effects of NAC on the cells. The cytotoxicity of radiation was enhanced in the presence of mercury chloride. NAC in lower concentrations prevented cells from death after irradiation with lower doses (<300 Gy) while it did not prevent cells from radiation-induced death after irradiation with higher doses (300, 500 Gy). The intracellular glutathione (GSH) levels significantly decreased after irradiation while the combined treatment of NAC and radiation alleviated the decrease in the GSH levels. The investigations give a clue for the action mechanism of synergistic or protective effects of NAC on the cells. Due to their high resistance to ionizing radiation, the PLHC-1 cells can be effectively used as a screening tool for assessing the combined effects of radiation with toxic chemicals.

  20. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric chloride hexahydrate (iron (III) chloride...

  1. Effect of phytase supplementation to diets varying in chloride level on performance, litter moisture, foot pad score, and gait score of growing turkeys.

    PubMed

    Farahat, M H; Abdel-Razik, W M; Hassanein, E I; Noll, S L

    2013-07-01

    Phytase was examined as a means to improve turkey performance in diets with high Cl by modifying dietary electrolyte balance. Nicholas turkey toms (10 poults/pen; 10 replicates per pen) were fed corn-soy-distillers dried grains with solubles-canola meal-based diets (DDGS/CM) with varying Cl (0.2, 0.3, 0.4, or 0.5%) and phytase (0 or 500 phytase units/kg of diet), making 8 treatments (4 × 2 factorial). A ninth treatment was a corn-soy based diet (CS) with 0.3% Cl and without phytase (positive control). The diets were formulated to contain similar AMEn and digestible amino acid levels for each of 5 feeding periods (2 to 5, 5 to 8, 8 to 11, 11 to 14, and 14 to 17 wk of age) and fed in mash form. Turkey BW, ADG, ADFI, and feed conversion ratio (FCR) were determined for each pen along with litter moisture, foot pad, and gait scores. An ANOVA was conducted to determine the effects of Cl, phytase, and their interaction. Turkey BW, ADG, and ADFI decreased in a linear or curvilinear manner with increasing diet Cl (P < 05). At 17 wk of age, litter moisture and foot pad score showed a cubic trend with diet Cl (P < 0.05). Phytase improved FCR during 8 to 11 wk and increased litter moisture at 11 wk of age (P < 0.003). Phytase modified the FCR response to Cl during 2 to 5 and 14 to 17 wk of age at the 2 lowest levels of dietary Cl (P < 0.05). Turkeys fed CS had better BW and FCR through 17 wk of age compared with those receiving DDGS/CM at 0.3% Cl. Based on BW, minimum dietary electrolyte balance based on Na, K, and Cl was found to be 247, 217, 200, and 171 mEq/kg during 5 to 8, 8 to 11, 11 to 14, and 14 to 17 wk of age, respectively. The present findings emphasized the importance of considering Cl, phytase, and associated dietary electrolyte balance in turkey diets containing high levels of alternative byproducts.

  2. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E. . E-mail: aaust@cc.usu.edu

    2006-01-15

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changes in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.

  3. Dynamic [Cl(-)](i) measurement with chloride sensing quantum dots nanosensor in epithelial cells.

    PubMed

    Wang, Yuchi; Mao, Hua; Wong, Lid B

    2010-02-05

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl(-)](i)) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl(-)](i) in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl(-)](i). Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl(-)](i). These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  4. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Yuchi; Mao, Hua; Wong, Lid B.

    2010-02-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  5. Reduction of saltiness and acrylamide levels in palm sugar-like flavouring through buffer modification and the addition of calcium chloride.

    PubMed

    Tan, Phui Yee; Tan, Chin Ping; Abas, Faridah; Ho, Chun Wai; Mustapha, Wan Aida Wan

    2013-06-10

    Palm sugar-like flavouring (PSLF) is a type of flavour product that is formed by heating amino acids and sugar under specific heating conditions. Unfortunately, PSLF has a salty taste and contains high amounts of acrylamide. Hence, the objective of this research was to reduce saltiness and acrylamide without negatively affecting the aroma properties of PSLF. A decrease in the sodium phosphate (NaHPO₄) buffer concentration from 0.20 to 0.02 M was found to reduce sodium to approximately 15% of the level found in original PSLF. A further decrease (~25%) in the sodium content was achieved by removing monobasic sodium phosphate (NaH₂PO₄) from the buffer system. Meanwhile, the addition of CaCl₂ at 20-40 mg/L reduced the acrylamide content in PSLF by as much as 58%. A CaCl₂ concentration of 20 mg/mL was most favourable as it most efficiently suppressed acrylamide formation while providing an acceptably high flavour yield in PSLF. In view of the high acrylamide content in PSLF, additional work is necessary to further reduce the amount of acrylamide by controlling the asparagine concentration in the precursor mixture.

  6. Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins.

    PubMed

    Pan, X S; Yague, G; Fisher, L M

    2001-11-01

    Mutations in DNA gyrase and/or topoisomerase IV genes are frequently encountered in quinolone-resistant mutants of Streptococcus pneumoniae. To investigate the mechanism of their effects at the molecular and cellular levels, we have used an Escherichia coli system to overexpress S. pneumoniae gyrase gyrA and topoisomerase IV parC genes encoding respective Ser81Phe and Ser79Phe mutations, two changes widely associated with quinolone resistance. Nickel chelate chromatography yielded highly purified mutant His-tagged proteins that, in the presence of the corresponding GyrB and ParE subunits, reconstituted gyrase and topoisomerase IV complexes with wild-type specific activities. In enzyme inhibition or DNA cleavage assays, these mutant enzyme complexes were at least 8- to 16-fold less responsive to both sparfloxacin and ciprofloxacin. The ciprofloxacin-resistant (Cip(r)) phenotype was silent in a sparfloxacin-resistant (Spx(r)) S. pneumoniae gyrA (Ser81Phe) strain expressing a demonstrably wild-type topoisomerase IV, whereas Spx(r) was silent in a Cip(r) parC (Ser79Phe) strain. These epistatic effects provide strong support for a model in which quinolones kill S. pneumoniae by acting not as enzyme inhibitors but as cellular poisons, with sparfloxacin killing preferentially through gyrase and ciprofloxacin through topoisomerase IV. By immunoblotting using subunit-specific antisera, intracellular GyrA/GyrB levels were a modest threefold higher than those of ParC/ParE, most likely insufficient to allow selective drug action by counterbalancing the 20- to 40-fold preference for cleavable-complex formation through topoisomerase IV observed in vitro. To reconcile these results, we suggest that drug-dependent differences in the efficiency by which ternary complexes are formed, processed, or repaired in S. pneumoniae may be key factors determining the killing pathway.

  7. Morin, a Bioflavonoid Suppresses Monosodium Urate Crystal-Induced Inflammatory Immune Response in RAW 264.7 Macrophages through the Inhibition of Inflammatory Mediators, Intracellular ROS Levels and NF-κB Activation

    PubMed Central

    Dhanasekar, Chitra; Kalaiselvan, Sowmiya; Rasool, Mahaboobkhan

    2015-01-01

    Our previous studies had reported that morin, a bioflavanoid exhibited potent anti-inflammatory effect against adjuvant-induced arthritic rats. In this current study, we investigated the anti-inflammatory mechanism of morin against monosodium urate crystal (MSU)-induced inflammation in RAW 264.7 macrophage cells, an in vitro model for acute gouty arthritis. For comparison purpose, colchicine was used as a reference drug. We have observed that morin (100–300 μM) treatment significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1 and VEGF), inflammatory mediators (NO and PEG2), and lysosomal enzymes (acid phosphatase, β-galactosidase, N-acetyl glucosamindase and cathepsin D) in MSU-crystals stimulated macrophage cells. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1), inflammatory enzymes (iNOS and COX-2), and NF-κBp65 was found downregulated in MSU crystal stimulated macrophage cells by morin treatment, however, the mRNA expression of hypoxanthine phospho ribosyl transferse (HPRT) was found to be increased. The flow cytometry analysis revealed that morin treatment decreased intracellular reactive oxygen species levels in MSU crystal stimulated macrophage cells. The western blot analysis clearly showed that morin mainly exerts its anti-inflammatory effects by inhibiting the MSU crystal-induced COX-2 and TNF-α protein expression through the inactivation of NF-κB signaling pathway in RAW 264.7 macrophage cells similar to that of BAY 11–7082 (IκB kinase inhibitor). Our results collectively suggest that morin can be a potential therapeutic agent for inflammatory disorders like acute gouty arthritis. PMID:26709520

  8. Morin, a Bioflavonoid Suppresses Monosodium Urate Crystal-Induced Inflammatory Immune Response in RAW 264.7 Macrophages through the Inhibition of Inflammatory Mediators, Intracellular ROS Levels and NF-κB Activation.

    PubMed

    Dhanasekar, Chitra; Kalaiselvan, Sowmiya; Rasool, Mahaboobkhan

    2015-01-01

    Our previous studies had reported that morin, a bioflavanoid exhibited potent anti-inflammatory effect against adjuvant-induced arthritic rats. In this current study, we investigated the anti-inflammatory mechanism of morin against monosodium urate crystal (MSU)-induced inflammation in RAW 264.7 macrophage cells, an in vitro model for acute gouty arthritis. For comparison purpose, colchicine was used as a reference drug. We have observed that morin (100-300 μM) treatment significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1 and VEGF), inflammatory mediators (NO and PEG2), and lysosomal enzymes (acid phosphatase, β-galactosidase, N-acetyl glucosamindase and cathepsin D) in MSU-crystals stimulated macrophage cells. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1), inflammatory enzymes (iNOS and COX-2), and NF-κBp65 was found downregulated in MSU crystal stimulated macrophage cells by morin treatment, however, the mRNA expression of hypoxanthine phospho ribosyl transferse (HPRT) was found to be increased. The flow cytometry analysis revealed that morin treatment decreased intracellular reactive oxygen species levels in MSU crystal stimulated macrophage cells. The western blot analysis clearly showed that morin mainly exerts its anti-inflammatory effects by inhibiting the MSU crystal-induced COX-2 and TNF-α protein expression through the inactivation of NF-κB signaling pathway in RAW 264.7 macrophage cells similar to that of BAY 11-7082 (IκB kinase inhibitor). Our results collectively suggest that morin can be a potential therapeutic agent for inflammatory disorders like acute gouty arthritis.

  9. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride.

    PubMed Central

    Miller, A C; Blakely, W F; Livengood, D; Whittaker, T; Xu, J; Ejnik, J W; Hamilton, M M; Parlette, E; John, T S; Gerstenberg, H M; Hsu, H

    1998-01-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to study DU exposure. Microdosimetric assessment, determined using a Monte Carlo computer simulation based on measured intracellular and extracellular uranium levels, showed that few (0.0014%) cell nuclei were hit by alpha particles. We report the ability of DU-uranyl chloride to transform immortalized human osteoblastic cells (HOS) to the tumorigenic phenotype. DU-uranyl chloride-transformants are characterized by anchorage-independent growth, tumor formation in nude mice, expression of high levels of the k-ras oncogene, reduced production of the Rb tumor-suppressor protein, and elevated levels of sister chromatid exchanges per cell. DU-uranyl chloride treatment resulted in a 9.6 (+/- 2.8)-fold increase in transformation frequency compared to untreated cells. In comparison, nickel sulfate resulted in a 7.1 (+/- 2.1)-fold increase in transformation frequency. This is the first report showing that a DU compound caused human cell transformation to the neoplastic phenotype. Although additional studies are needed to determine if protracted DU exposure produces tumors in vivo, the implication from these in vitro results is that the risk of cancer induction from internalized DU exposure may be comparable to other biologically reactive and carcinogenic heavy-metal compounds (e.g., nickel). Images Figure 1 Figure 2 Figure 3 PMID:9681973

  10. Mechanisms of intracellular ice formation.

    PubMed Central

    Muldrew, K; McGann, L E

    1990-01-01

    The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling. PMID:2306499

  11. Differential intracellular staining of identified neurones in Locusta with texas red and lucifer yellow.

    PubMed

    Schneider, H

    1989-11-01

    The bright red fluorescent dye, Texas red, is introduced for ionophoretic microinjection in conjunction with the well-known dye Lucifer yellow. Different identified neurones can thus be visualised in two strongly contrasting colours in the same preparation (differential intracellular staining) following their physiological characterisation. Satisfactory results were obtained with electrodes filled with 4% Texas red (sulforhodamine 101 acid chloride; w/v) in 1 M potassium acetate (pH 3.0) and 5% Lucifer yellow (w/v) in aqua dest., respectively. Texas red was injected ionophoretically with pulsed depolarising current (3-10 nA, 500 ms pulses at 1 Hz, 15-30 min) and Lucifer yellow with hyperpolarizing constant current (5-6 nA, 5-15 min). Histological tissue processing was identical for both dyes, the quality of intracellular recordings with Texas red electrodes was similar to that with Lucifer yellow electrodes. Stained neurones could be visualised in both whole-mounts and sectioned preparations. Differential staining of two identified synaptically coupled neurones, a motoneurone and an interneurone, in the mesothorax of Locusta is presented as an illustration for the possible localisation of contact sites at the light-microscopic level.

  12. Intracellular alkalization causes pain sensation through activation of TRPA1 in mice

    PubMed Central

    Fujita, Fumitaka; Uchida, Kunitoshi; Moriyama, Tomoko; Shima, Asako; Shibasaki, Koji; Inada, Hitoshi; Sokabe, Takaaki; Tominaga, Makoto

    2008-01-01

    Vertebrate cells require a very narrow pH range for survival. Cells accordingly possess sensory and defense mechanisms for situations where the pH deviates from the viable range. Although the monitoring of acidic pH by sensory neurons has been attributed to several ion channels, including transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs), the mechanisms by which these cells detect alkaline pH are not well understood. Here, using Ca2+ imaging and patch-clamp recording, we showed that alkaline pH activated transient receptor potential cation channel, subfamily A, member 1 (TRPA1) and that activation of this ion channel was involved in nociception. In addition, intracellular alkalization activated TRPA1 at the whole-cell level, and single-channel openings were observed in the inside-out configuration, indicating that alkaline pH activated TRPA1 from the inside. Analyses of mutants suggested that the two N-terminal cysteine residues in TRPA1 were involved in activation by intracellular alkalization. Furthermore, intraplantar injection of ammonium chloride into the mouse hind paw caused pain-related behaviors that were not observed in TRPA1-deficient mice. These results suggest that alkaline pH causes pain sensation through activation of TRPA1 and may provide a molecular explanation for some of the human alkaline pH–related sensory disorders whose mechanisms are largely unknown. PMID:19033673

  13. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons.

    PubMed

    Brown, A M; Sutton, R B; Walker, J L

    1970-11-01

    A fall in extracellular pH increased membrane conductance of the giant cell in the abdominal ganglion of Aplysia californica. Chloride conductance was trebled whereas potassium conductance was increased by 50%. Half the giant cells were hyperpolarized (2-8 mv) and half were depolarized (3-10 mv) by lowering the pH. The hyperpolarizing response always became a depolarizing response in half-chloride solutions. When internal chloride was increased electrophoretically, the hyperpolarization was either decreased or changed to depolarization. The depolarizing response was reduced or became a hyperpolarizing response after soaking the cell in 10.0 mM chloride, artificial seawater solution for 1 hr. Depolarization was unaffected when either external sodium, calcium, or magnesium was omitted. A glass micropipette having an organic liquid chloride ion exchanger in its tip was used to measure intracellular chloride activity in 14 giant cells; 7 had values of 27.7 +/- 1.8 mM (SEM) and 7 others 40.7 +/- 1.5 mM. Three of the first group were hyperpolarized when pH was lowered and three of the second group were depolarized. In all six cells, these changes of membrane potential were in the direction of the chloride equilibrium potential. Intracellular potassium activity was measured by means of a potassium ion exchanger microelectrode.

  14. Increased Chloride Conductance As the Proximate Cause of Hydrogen Ion Concentration Effects in Aplysia Neurons

    PubMed Central

    Brown, A. M.; Walker, J. L.; Sutton, R. B.

    1970-01-01

    A fall in extracellular pH increased membrane conductance of the giant cell in the abdominal ganglion of Aplysia californica. Chloride conductance was trebled whereas potassium conductance was increased by 50%. Half the giant cells were hyperpolarized (2–8 mv) and half were depolarized (3–10 mv) by lowering the pH. The hyperpolarizing response always became a depolarizing response in half-chloride solutions. When internal chloride was increased electrophoretically, the hyperpolarization was either decreased or changed to depolarization. The depolarizing response was reduced or became a hyperpolarizing response after soaking the cell in 10.0 mM chloride, artificial seawater solution for 1 hr. Depolarization was unaffected when either external sodium, calcium, or magnesium was omitted. A glass micropipette having an organic liquid chloride ion exchanger in its tip was used to measure intracellular chloride activity in 14 giant cells; 7 had values of 27.7 ± 1.8 mM (SEM) and 7 others 40.7 ± 1.5 mM. Three of the first group were hyperpolarized when pH was lowered and three of the second group were depolarized. In all six cells, these changes of membrane potential were in the direction of the chloride equilibrium potential. Intracellular potassium activity was measured by means of a potassium ion exchanger microelectrode. PMID:5475996

  15. Oxomemazine hydro-chloride.

    PubMed

    Siddegowda, M S; Butcher, Ray J; Akkurt, Mehmet; Yathirajan, H S; Ramesh, A R

    2011-08-01

    IN THE TITLE COMPOUND [SYSTEMATIC NAME: 3-(5,5-dioxo-phen-othia-zin-10-yl)-N,N,2-trimethyl-propanaminium chloride], C(18)H(23)N(2)O(2)S(+)·Cl(-), the dihedral angle between the two outer aromatic rings of the phenothia-zine unit is 30.5 (2)°. In the crystal, the components are linked by N-H⋯Cl and C-H⋯Cl hydrogen bonds and C-H⋯π inter-actions.

  16. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis

    PubMed Central

    Terker, Andrew S.; Zhang, Chong; Erspamer, Kayla J.; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H.

    2015-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low potassium diet. Recent data suggest plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the With no lysine kinase (WNK)-Ste20p-related proline-and alanine-rich kinase (SPAK) pathway. Since previous studies used extreme dietary manipulations, we sought to determine if the relationship between potassium and NCC is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect the thiazide-sensitive sodium-chloride cotransporter, NCC, in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3 and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable kinase mediating effects of potassium on NCC in vivo. PMID:26422504

  17. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation

    PubMed Central

    Wang, Lin; Shen, Mingzhi; Guo, Xiaowang; Wang, Bo; Xia, Yuesheng; Wang, Ning; Zhang, Qian; Jia, Lintao; Wang, Xiaoming

    2017-01-01

    Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4′-diisothiocya-natostilbene-2,2′- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl− channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl− channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM. PMID:28300155

  18. Importance of mitochondria in survival of Cryptococcus neoformans under low oxygen conditions and tolerance to cobalt chloride.

    PubMed

    Ingavale, Susham S; Chang, Yun C; Lee, Hyeseung; McClelland, Carol M; Leong, Madeline L; Kwon-Chung, Kyung J

    2008-09-19

    Cryptococcus neoformans is an environmental fungal pathogen that requires atmospheric levels of oxygen for optimal growth. For the fungus to be able to establish an infection, it must adapt to the low oxygen concentrations in the host environment compared to its natural habitat. In order to investigate the oxygen sensing mechanism in C. neoformans, we screened T-DNA insertional mutants for hypoxia-mimetic cobalt chloride (CoCl(2))-sensitive mutants. All the CoCl(2)-sensitive mutants had a growth defect under low oxygen conditions at 37 degrees C. The majority of mutants are compromised in their mitochondrial function, which is reflected by their reduced rate of respiration. Some of the mutants are also defective in mitochondrial membrane permeability, suggesting the importance of an intact respiratory system for survival under both high concentrations of CoCl(2) as well as low oxygen conditions. In addition, the mutants tend to accumulate intracellular reactive oxygen species (ROS), and all mutants show sensitivity to various ROS generating chemicals. Gene expression analysis revealed the involvement of several pathways in response to cobalt chloride. Our findings indicate cobalt chloride sensitivity and/or sensitivity to low oxygen conditions are linked to mitochondrial function, sterol and iron homeostasis, ubiquitination, and the ability of cells to respond to ROS. These findings imply that multiple pathways are involved in oxygen sensing in C. neoformans.

  19. Superoxide anion radicals activate hepatic stellate cells after entry through chloride channels: a new target in liver fibrosis.

    PubMed

    den Hartog, Gertjan J M; Qi, Shufan; van Tilburg, Jonathan H O; Koek, Ger H; Bast, Aalt

    2014-02-05

    It is generally accepted that reactive oxygen species (ROS) play an important role in the pathogenesis of liver fibrosis. ROS, however, constitute a group of species with varying properties making it likely that their contribution to the pathological mechanism varies. LX-2 hepatic stellate cells (HSCs) were exposed to superoxide anion radicals (O2(·-)) generated by xanthine and xanthine oxidase. To rule out that the activation of HSCs is due to hydrogen peroxide derived from O2(·-), control incubations with copper, zinc-superoxide dismutase and tempol were studied as well. Influx of O2(·-) activated HSCs, evidenced by the expression of α-smooth muscle actin and the secretion of transforming growth factor β1 and collagen. We further found that blockade of chloride channels with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) or indanyloxyacetic acid (IAA-94) prevented the increase of intracellular O2(·-) levels as well as the activation of HSCs. These findings suggest that O2(·-) is involved in the development of liver fibrosis and that entry of O2(·-), through chloride channels, in stellate cells is critical for their activation. This study provides new insight into the mechanism by which ROS induce liver fibrosis. Furthermore, our data suggest that chloride channels constitute a potential target for new anti-fibrotic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Importance of Mitochondria in Survival of Cryptococcus neoformans Under Low Oxygen Conditions and Tolerance to Cobalt Chloride

    PubMed Central

    Ingavale, Susham S.; Chang, Yun C.; Lee, Hyeseung; McClelland, Carol M.; Leong, Madeline L.; Kwon-Chung, Kyung J.

    2008-01-01

    Cryptococcus neoformans is an environmental fungal pathogen that requires atmospheric levels of oxygen for optimal growth. For the fungus to be able to establish an infection, it must adapt to the low oxygen concentrations in the host environment compared to its natural habitat. In order to investigate the oxygen sensing mechanism in C. neoformans, we screened T-DNA insertional mutants for hypoxia-mimetic cobalt chloride (CoCl2)-sensitive mutants. All the CoCl2-sensitive mutants had a growth defect under low oxygen conditions at 37°C. The majority of mutants are compromised in their mitochondrial function, which is reflected by their reduced rate of respiration. Some of the mutants are also defective in mitochondrial membrane permeability, suggesting the importance of an intact respiratory system for survival under both high concentrations of CoCl2 as well as low oxygen conditions. In addition, the mutants tend to accumulate intracellular reactive oxygen species (ROS), and all mutants show sensitivity to various ROS generating chemicals. Gene expression analysis revealed the involvement of several pathways in response to cobalt chloride. Our findings indicate cobalt chloride sensitivity and/or sensitivity to low oxygen conditions are linked to mitochondrial function, sterol and iron homeostasis, ubiquitination, and the ability of cells to respond to ROS. These findings imply that multiple pathways are involved in oxygen sensing in C. neoformans. PMID:18802457

  1. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation.

    PubMed

    Wang, Lin; Shen, Mingzhi; Guo, Xiaowang; Wang, Bo; Xia, Yuesheng; Wang, Ning; Zhang, Qian; Jia, Lintao; Wang, Xiaoming

    2017-03-16

    Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4'-diisothiocya-natostilbene-2,2'- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl(-) channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl(-) channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM.

  2. Pathogenicity of dodecyltrimethylammonium chloride-resistant Salmonella enterica.

    PubMed

    Kautz, Megan J M; Dvorzhinskiy, Aleksey; Frye, Jonathan G; Stevenson, Natalie; Herson, Diane S

    2013-04-01

    Salmonella infection causes a self-limiting gastroenteritis in humans but can also result in a life-threatening invasive disease, especially in old, young, and/or immunocompromised patients. The prevalence of antimicrobial and multidrug-resistant Salmonella has increased worldwide since the 1980s. However, the impact of antimicrobial resistance on the pathogenicity of Salmonella strains is not well described. In our study, a microarray was used to screen for differences in gene expression between a parental strain and a strain of Salmonella enterica serovar Enteritidis with reduced susceptibility (SRS) to the widely used antimicrobial sanitizer dodecyltrimethylammonium chloride (DTAC). Three of the genes, associated with adhesion, invasion, and intracellular growth (fimA, csgG, and spvR), that showed differences in gene expression of 2-fold or greater were chosen for further study. Real-time reverse transcriptase PCR (real-time RT-PCR) was used to confirm the microarray data and to compare the expression levels of these genes in the parental strain and four independently derived SRS strains. All SRS strains showed lower levels of gene expression of fimA and csgG than those of the parental strain. Three of the four SRS strains showed lower levels of spvR gene expression while one SRS strain showed higher levels of spvR gene expression than those of the parental strain. Transmission electron microscopy determined that fimbriae were absent in the four SRS strains but copiously present in the parental strain. All four SRS strains demonstrated a significantly reduced ability to invade tissue culture cells compared to the parental strains, suggesting reduced pathogenicity of the SRS strains.

  3. Comparing polyaluminum chloride and ferric chloride for antimony removal.

    PubMed

    Kang, Meea; Kamei, Tasuku; Magara, Yasumoto

    2003-10-01

    Antimony has been one of the contaminants required to be regulated, however, only limited information has been collected to date regarding antimony removal by polyaluminium chloride (PACl) and ferric chloride (FC). Accordingly, the possible use of coagulation by PACl or FC for antimony removal was investigated. Jar tests were used to determine the effects of solution pH, coagulant dosage, and pre-chlorination on the removal of various antimony species. Although high-efficiency antimony removal by aluminum coagulation has been expected because antimony is similar to arsenic in that both antimony and arsenic are a kind of metalloid in group V of the periodic chart, this study indicated: (1) removal density (arsenic or antimony removed per mg coagulant) for antimony by PACl was about one forty-fifth as low as observed for As(V); (2) although the removal of both Sb(III) and Sb(V) by coagulation with FC was much higher than that of PACl, a high coagulant dose of 10.5mg of FeL(-1) at optimal pH of 5.0 was still not sufficient to meet the standard antimony level of 2 microg as SbL(-1) for drinking water when around 6 microg as SbL(-1) were initially present. Consequently, investigation of a more appropriate treatment process is necessary to develop economical Sb reduction; (3) although previous studies concluded that As(V) is more effectively removed than As(III), this study showed that the removal of Sb(III) by coagulation with FC was much more pronounced than that of Sb(V); (4) oxidation of Sb(III) with chlorine decreased the ability of FC to remove antimony. Accordingly, natural water containing Sb(III) under anoxic condition should be coagulated without pre-oxidation.

  4. Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons

    PubMed Central

    Alfonsa, Hannah; Lakey, Jeremy H.; Lightowlers, Robert N.; Trevelyan, Andrew J.

    2016-01-01

    Chloride regulation affects brain function in many ways, for instance, by dictating the GABAergic reversal potential, and thereby influencing neuronal excitability and spike timing. Consistent with this, there is increasing evidence implicating chloride in a range of neurological conditions. Investigations about these conditions, though, are made difficult by the limited range of tools available to manipulate chloride levels. In particular, there has been no way to actively remove chloride from neurons; we now describe an optogenetic strategy, ‘Cl-out', to do exactly this. Cl-out achieves its effect by the cooperative action of two different component opsins: the proton pump, Archaerhodopsin and a chloride channel opsin. The removal of chloride happens when both are activated together, using Archaerhodopsin as an optical voltage clamp to provide the driving force for chloride removal through the concurrently opened, chloride channels. We further show that this novel optogenetic strategy can reverse an in vitro epileptogenic phenotype. PMID:27853135

  5. Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons.

    PubMed

    Alfonsa, Hannah; Lakey, Jeremy H; Lightowlers, Robert N; Trevelyan, Andrew J

    2016-11-17

    Chloride regulation affects brain function in many ways, for instance, by dictating the GABAergic reversal potential, and thereby influencing neuronal excitability and spike timing. Consistent with this, there is increasing evidence implicating chloride in a range of neurological conditions. Investigations about these conditions, though, are made difficult by the limited range of tools available to manipulate chloride levels. In particular, there has been no way to actively remove chloride from neurons; we now describe an optogenetic strategy, 'Cl-out', to do exactly this. Cl-out achieves its effect by the cooperative action of two different component opsins: the proton pump, Archaerhodopsin and a chloride channel opsin. The removal of chloride happens when both are activated together, using Archaerhodopsin as an optical voltage clamp to provide the driving force for chloride removal through the concurrently opened, chloride channels. We further show that this novel optogenetic strategy can reverse an in vitro epileptogenic phenotype.

  6. Sequential development of hepatocellular carcinoma and liver angiosarcoma in a vinyl chloride-exposed worker.

    PubMed

    Guido, Maria; Sarcognato, Samantha; Pelletti, Guido; Fassan, Matteo; Murer, Bruno; Snenghi, Rossella

    2016-11-01

    Strong experimental and clinical evidences have definitely linked occupational vinyl chloride exposure to development of angiosarcoma of the liver. In contrast, despite the International Agency for Research on Cancer having included vinyl chloride among the causes of hepatocellular carcinoma, the association between vinyl chloride exposure and hepatocellular carcinoma remains debated. This issue is relevant, because occupational exposure to high levels of vinyl chloride may still occur. We report a unique case of sequential occurrences of hepatocellular carcinoma and angiosarcoma of the liver, in a vinyl chloride-exposed worker without cirrhosis and any known risk factor for chronic liver disease. Both the hepatocellular carcinoma and the surrounding normal liver showed micronucleus formation, which reflects genotoxic effect of vinyl chloride. Angiosarcoma showed a KRAS G12D point mutation, which is considered to be characteristic of vinyl chloride-induced angiosarcoma. This case supports the pathogenic role of vinyl chloride in both hepatocellular carcinoma and angiosarcoma development.

  7. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells.

    PubMed

    He, Ruiqin; Tang, Huifen; Jiang, Dechen; Chen, Hong-yuan

    2016-02-16

    In this Letter, the electrochemical visualization of hydrogen peroxide inside one cell was achieved first using a comprehensive Au-luminol-microelectrode and electrochemiluminescence. The capillary with a tip opening of 1-2 μm was filled with the mixture of chitosan and luminol, which was coated with the thin layers of polyvinyl chloride/nitrophenyloctyl ether (PVC/NPOE) and gold as the microelectrode. Upon contact with the aqueous hydrogen peroxide, hydrogen peroxide and luminol in contact with the gold layer were oxidized under the positive potential resulting in luminescence for the imaging. Due to the small diameter of the electrode, the microelectrode tip was inserted into one cell and the bright luminescence observed at the tip confirmed the visualization of intracellular hydrogen peroxide. The further coupling of oxidase on the electrode surface could open the field in the electrochemical imaging of intracellular biomolecules at single cells, which benefited the single cell electrochemical detection.

  8. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hexahydrate (iron (III) chloride hexahydrate, FeC13. 6H20, CAS Reg. No. 10025-77-1) is readily formed when... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food...

  9. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric chloride hexahydrate (iron...

  10. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hexahydrate (iron (III) chloride hexahydrate, FeC13. 6H20, CAS Reg. No. 10025-77-1) is readily formed when... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food...

  11. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hexahydrate (iron (III) chloride hexahydrate, FeC13. 6H20, CAS Reg. No. 10025-77-1) is readily formed when... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food...

  12. Genistein stimulates jejunum chloride secretion via an Akt-mediated pathway in intact female mice.

    PubMed

    Leung, Lana; Bhakta, Ashesh; Cotangco, Katherine; Al-Nakkash, Layla

    2015-01-01

    We have previously shown that daily subcutaneous injections with the naturally occurring phytoestrogen genistein (600 mg genistein/kg body weight/day, 600G) results in a significantly increased basal intestinal chloride, Cl(-), secretion (Isc, a measure of transepithelial secretion) in intact C57BL/6J female mice after 1-week of treatment, compared to controls (DMSO vehicle injected). Removal of endogenous estrogen via ovariectomy (OVX) had no effect on the 600G-mediated increase in basal Isc. Given the estrogen-like characteristics of genistein, we compared the effects of daily estradiol (E2) injections (10 mg E2/kg body weight/day, 10E2) on basal Isc in intact and OVX mice. In intact mice, 10E2 was without effect on basal Isc, however, in OVX mice, 10E2 significantly increased basal Isc (mimicked 600G). The goal of the current study was to characterize the intracellular signaling pathways responsible for mediating 600G- or 10E2-stimulated increases in basal Isc in intact female or OVX mice. We measured total protein expression in isolated segments of jejunum using western blot from the following six groups of mice; intact or OVX with; 600G, 10E2 or control. The proteins of interest were: Akt, p-Akt, p-PDK1, p-PTEN, p-c-Raf, p-GSK-3β, rap-1 and ERK1/2. All blots were normalized to GAPDH levels (n = 6-18/group). These data suggest that the presence of the endogenous sex steroid, estrogen, modifies the intracellular signaling pathway required to mediate Cl(-) secretion when the intestine is exposed to exogenous 600G or E2. These studies may have relevance for designing pharmacological tools for women with intestinal chloride secretory dysfunctions. © 2015 S. Karger AG, Basel.

  13. [Effects of indium chloride on proliferation of human lung epithelial cells and its mechanism].

    PubMed

    Liu, Jia; Zhao, Yinmin; Tang, Liang; Yu, Ping; Sun, Daoyuan

    2015-08-01

    To investigate the effects of different concentrations of indium chloride (InCl3) on the proliferation of human lung epithelial (Beas-2B) cells and its potential mechanism. Beas-2B cells were exposed to different concentrations of InCl3 (0.3, 1.0, 3.0, 10.0, 30.0, 90.0, 270.0, and 810.0 µmol/L) for 24, 48, and 72 h, respectively. The effects of InCl3 on cell proliferation were determined by the CCK-8 assay. The effects of InCl3 on apoptosis were evaluated using annexin V-PI staining followed by flow cytometry. The level of intracellular reactive oxygen species (ROS) in Beas-2B cells after exposure to InCl3 was determined using 2', 7'-dichlorofluorescein diacetate labeling followed by flow cytometry. Compared with the control group, InCl3 at a relatively low concentration (0.3~3.0 µmol/L) significantly promoted cell proliferation (P < 0.05), while InCl3 at a relatively high concentration (30.0~80.0 µmol/L) significantly inhibited cell proliferation after 72 h (P < 0.05). InCl3 at a concentration of 0.3 µmol/L failed to induce apoptosis within 72 h; however, InCl3 at a concentration of 30.0 or 810.0 µmol/L induced substantial early apoptosis after 72 h. Compared with the control group, cells exposed to 0.3 µmol/L InCl3 showed a slight decrease in the level of intracellular ROS within 72 h, while cells exposed to 30.0 or 810.0 µmol/L InCl3 showed a significant increase in the level of intracellular ROS after 72 h (P < 0.05). At a low concentration, InCl3 stimulates cell proliferation by reducing intracellular ROS. However, at a high concentration, InCl3 inhibits cell viability by elevating intracellular ROS and inducing apoptosis.

  14. Separate populations of neurons within the paraventricular hypothalamic nucleus of the rat project to vagal and thoracic autonomic preganglionic levels and express c-Fos protein induced by lithium chloride.

    PubMed

    Portillo, F; Carrasco, M; Vallo, J J

    1998-03-01

    The role of different hypothalamic nuclei, particularly the paraventricular nucleus (PVN), in the control of food intake and feeding behaviour is well known. It is also well established that lithium chloride (LiCl) causes various disorders in feeding behaviour. In this study, we analyzed the precise distribution of hypothalamic neurons activated by i.p. LiCl administration (LCA neurons) and compared it to that of hypothalamic neurons which project to autonomic preganglionic levels (HAP neurons). We also analysed the possibility that some neurons belong to both populations of nerve cells. To this end, a multiple-labelling technique, using two retrograde fluorescent tracers together with c-Fos-like immunohistochemistry, was performed. Fast Blue was injected in the dorsal motor nucleus of the vagus and Fluorogold (FG) in the thoracic intermedial-lateral cell column, to trace parasympathetic and sympathetic pathways, respectively. LiCl was used as stimulus for c-Fos-like immunohistochemistry. HAP neurons were located mainly in the dorsal, ventral and lateral regions of the parvocellular PVN, while LCA neurons were observed predominantly in the magnocellular region of the PVN rostrally to HAP neurons. A significant number of FG/Fos double-labelled neurons were located in the dorsal parvocellular subnucleus of the PVN (dp) in the LiCl-stimulated rats. We concluded that there is a clear segregation of LCA neurons from HAP neurons within the PVN. The presence of FG/Fos double-labelled neurons in the dp suggests that this nucleus could mediate a sympathetic response after LiCl administration.

  15. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  16. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  17. Altered chloride metabolism in cultured cystic fibrosis skin fibroblasts

    SciTech Connect

    Mattes, P.M.; Maloney, P.C.; Littlefield, J.W.

    1987-05-01

    An abnormal regulation of chloride permeability has been described for epithelial cells from patients with cystic fibrosis (CF). To learn more about the biochemical basis of this inherited disease, the authors have studied chloride metabolism in cultured CF fibroblasts by comparing the efflux of /sup 36/Cl/sup -/ from matched pairs of CF and normal fibroblasts. The rate constants describing /sup 36/Cl/sup -/ efflux did not differ between the two cell types, but in each of the four pairs tested the amount of /sup 36/Cl/sup -/ contained within CF cells was consistently reduced, by 25-30%, relative to normal cells. Comparisons of cell water content and /sup 22/Na/sup +/ efflux showed no differences between the two cell types, suggesting that overall intracellular chloride concentration is lower than normal in CF fibroblasts. Such data suggest that the CF gene defect is expressed in skin fibroblasts and that this defect may alter the regulation of intracellular Cl/sup -/ concentration, perhaps through changes in Cl/sup -/ permeability.

  18. Benzalkonium Chloride and Glaucoma

    PubMed Central

    Kaufman, Paul L.; Kiland, Julie A.

    2014-01-01

    Abstract Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapoptosis, cytoskeleton changes, and immunoinflammatory reactions. These same effects have been reported in cultured human TM cells exposed to concentrations of BAK found in common glaucoma drugs and in the TM of primary open-angle glaucoma donor eyes. It is possible that a relationship exists between chronic exposure to BAK and glaucoma. The hypothesis that BAK causes/worsens glaucoma is being tested experimentally in an animal model that closely reflects human physiology. PMID:24205938

  19. Benzalkonium chloride and glaucoma.

    PubMed

    Rasmussen, Carol A; Kaufman, Paul L; Kiland, Julie A

    2014-01-01

    Glaucoma patients routinely take multiple medications, with multiple daily doses, for years or even decades. Benzalkonium chloride (BAK) is the most common preservative in glaucoma medications. BAK has been detected in the trabecular meshwork (TM), corneal endothelium, lens, and retina after topical drop installation and may accumulate in those tissues. There is evidence that BAK causes corneal and conjunctival toxicity, including cell loss, disruption of tight junctions, apoptosis and preapoptosis, cytoskeleton changes, and immunoinflammatory reactions. These same effects have been reported in cultured human TM cells exposed to concentrations of BAK found in common glaucoma drugs and in the TM of primary open-angle glaucoma donor eyes. It is possible that a relationship exists between chronic exposure to BAK and glaucoma. The hypothesis that BAK causes/worsens glaucoma is being tested experimentally in an animal model that closely reflects human physiology.

  20. Activated PKC{delta} and PKC{epsilon} inhibit epithelial chloride secretion response to cAMP via inducing internalization of the Na+-K+-2Cl- cotransporter NKCC1.

    PubMed

    Tang, Jun; Bouyer, Patrice; Mykoniatis, Andreas; Buschmann, Mary; Matlin, Karl S; Matthews, Jeffrey B

    2010-10-29

    The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is a key determinant of transepithelial chloride secretion and dysregulation of chloride secretion is a common feature of many diseases including secretory diarrhea. We have previously shown that activation of protein kinase C (PKC) markedly reduces transepithelial chloride secretion in human colonic T84 cells, which correlates with both functional inhibition and loss of the NKCC1 surface expression. In the present study, we defined the specific roles of PKC isoforms in regulating epithelial NKCC1 and chloride secretion utilizing adenoviral vectors that express shRNAs targeting human PKC isoforms (α, δ, ε) (shPKCs) or LacZ (shLacZ, non-targeting control). After 72 h of adenoviral transduction, protein levels of the PKC isoforms in shPKCs-T84 cells were decreased by ∼90% compared with the shLacZ-control. Activation of PKCs by phorbol 12-myristate 13-acetate (PMA) caused a redistribution of NKCC1 immunostaining from the basolateral membrane to intracellular vesicles in both shLacZ- and shPKCα-T84 cells, whereas the effect of PMA was not observed in shPKCδ- and shPKCε- cells. These results were further confirmed by basolateral surface biotinylation. Furthermore, activation of PKCs by PMA inhibited cAMP-stimulated chloride secretion in the uninfected, shLacZ- and shPKCα-T84 monolayers, but the inhibitory effect was significantly attenuated in shPKCδ- and shPKCε-T84 monolayers. In conclusion, the activated novel isoforms PKCδ or PKCε, but not the conventional isoform PKCα, inhibits transepithelial chloride secretion through inducing internalization of the basolateral surface NKCC1. Our study reveals that the novel PKC isoform-regulated NKCC1 surface expression plays an important role in the regulation of chloride secretion.

  1. Antiviral effect of lithium chloride.

    PubMed

    Cernescu, C; Popescu, L; Constantinescu, S; Cernescu, S

    1988-01-01

    Studies in human embryo fibroblasts infected with measles or herpes simplex virus showed a reduction in virus yield when cultures were pretreated with 1-10 mM lithium chloride doses. Maximum effect was obtained by a 1 h treatment with 10 mM lithium chloride, preceding viral infection by 19-24 hours. A specific antiviral effect against measles virus was manifest immediately after culture pretreatment. Intermittent treatment with 10 mM lithium chloride of cultures persistently infected with measles or herpes virus obtained from human myeloid K-562 cell line shows a reduction in the extracellular virus yield. In the K-562/herpes virus system, the culture treatment with lithium chloride and acyclovir (10 microM) has an additive inhibitory effect on virus production. The paper is focused on the mechanism of lithium chloride antiviral action and the expediency of lithium therapy in SSPE (subacute sclerosing panencephalitis).

  2. Linear Peptides in Intracellular Applications.

    PubMed

    Zuconelli, Cristiane R; Brock, Roland; Adjobo-Hermans, Merel J W

    2017-01-01

    To this point, efforts to develop therapeutic peptides for intracellular applications were guided by the perception that unmodified linear peptides are highly unstable and therefore structural modifications are required to reduce proteolytic breakdown. Largely, this concept is a consequence of the fact that most research on intracellular peptides hitherto has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Interestingly, inside cells, endogenous peptides lacking any chemical modifications to enhance stability escape degradation to the point that they may even modulate intracellular signaling pathways. In addition, many unmodified synthetic peptides designed to interfere with intracellular signaling, following introduction into cells, have the expected activity demonstrating that biologically relevant concentrations can be reached. This review provides an overview of results and techniques relating to the exploration and application of linear, unmodified peptides. After an introduction to intracellular peptide turnover, the review mentions examples for synthetic peptides as modulators of intracellular signaling, introduces endogenous peptides with bioactivity, techniques to measure peptide stability, and peptide delivery. Future experiments should elucidate the rules needed to predict promising peptide candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  4. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells.

    PubMed

    Dalmark, M; Wieth, J O

    1972-08-01

    1. The temperature dependence of the steady-state self-exchange of chloride between human red cells and a plasma-like electrolyte medium has been studied by measuring the rate of (36)Cl(-) efflux from radioactively labelled cells. Between 0 and 10 degrees C the rate increased by a factor of eight corresponding to an Arrhenius activation energy of 33 kcal/mole.2. The rate of chloride exchange decreased significantly in experiments where 95% of the chloride ions in cells and medium were replaced by other monovalent anions of a lyotropic series. The rate of chloride self-exchange was increasingly reduced by bromide, bicarbonate, nitrate, iodide, thiocyanate, and salicylate. The latter aromatic anion was by far the most potent inhibitor, reducing the rate of chloride self-exchange to 0.2% of the value found in a chloride medium.3. The temperature sensitivity of the chloride self-exchange was not affected significantly by the anionic inhibitors. The Arrhenius activation energies of chloride exchange were between 30 and 40 kcal/mole in the presence of the six inhibitory anions mentioned above.4. The rate of self-exchange of bromide, thiocyanate, and iodide between human red cells and media was determined after washing and labelling cells in media containing 120 mM bromide, thiocyanate, or iodide respectively. The rate of self-exchange of the three anions were 12, 3, and 0.4% of the rate of chloride self-exchange found in the chloride medium.5. The Arrhenius activation energies of the self-exchange of bromide, iodide, and thiocyanate were all between 29 and 37 kcal/mole, the same magnitude as found for the self-exchange of chloride.6. Although approximately 40% of the intracellular iodide and salicylate ions appeared to be adsorbed to intracellular proteins, the rate of tracer anion efflux followed first order kinetics until at least 98% of the intracellular anions had been exchanged.7. The self-exchange of salicylate across the human red cell membrane occurred by a

  5. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells

    PubMed Central

    Dalmark, Mads; Wieth, Jens Otto

    1972-01-01

    1. The temperature dependence of the steady-state self-exchange of chloride between human red cells and a plasma-like electrolyte medium has been studied by measuring the rate of 36Cl- efflux from radioactively labelled cells. Between 0 and 10° C the rate increased by a factor of eight corresponding to an Arrhenius activation energy of 33 kcal/mole. 2. The rate of chloride exchange decreased significantly in experiments where 95% of the chloride ions in cells and medium were replaced by other monovalent anions of a lyotropic series. The rate of chloride self-exchange was increasingly reduced by bromide, bicarbonate, nitrate, iodide, thiocyanate, and salicylate. The latter aromatic anion was by far the most potent inhibitor, reducing the rate of chloride self-exchange to 0·2% of the value found in a chloride medium. 3. The temperature sensitivity of the chloride self-exchange was not affected significantly by the anionic inhibitors. The Arrhenius activation energies of chloride exchange were between 30 and 40 kcal/mole in the presence of the six inhibitory anions mentioned above. 4. The rate of self-exchange of bromide, thiocyanate, and iodide between human red cells and media was determined after washing and labelling cells in media containing 120 mM bromide, thiocyanate, or iodide respectively. The rate of self-exchange of the three anions were 12, 3, and 0·4% of the rate of chloride self-exchange found in the chloride medium. 5. The Arrhenius activation energies of the self-exchange of bromide, iodide, and thiocyanate were all between 29 and 37 kcal/mole, the same magnitude as found for the self-exchange of chloride. 6. Although approximately 40% of the intracellular iodide and salicylate ions appeared to be adsorbed to intracellular proteins, the rate of tracer anion efflux followed first order kinetics until at least 98% of the intracellular anions had been exchanged. 7. The self-exchange of salicylate across the human red cell membrane occurred by a

  6. Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms.

    PubMed

    Karagulova, Gulnura; Yue, Yuankun; Moreyra, Abel; Boutjdir, Mohamed; Korichneva, Irina

    2007-05-01

    The recent discovery of zinc signals and their essential role in the redox signaling network implies that zinc homeostasis and the function of zinc-containing proteins are probably altered as a result of oxidative stress, suggesting new targets for pharmacological intervention. We hypothesized that the level of intracellular labile zinc is changed in hearts subjected to ischemia/reperfusion (I/R) and investigated whether the maintenance of myocardial zinc status protected heart functions. Using fluorescent imaging, we demonstrated decreased levels of labile zinc in the I/R hearts. Phorbol 12-myristate 13-acetate, a known trigger of zinc release, liberated zinc ions in control hearts but failed to produce any increase in zinc levels in the I/R rat hearts. Adding the zinc ionophore pyrithione at reperfusion improved myocardial recovery up to 100% and reduced the incidence of arrhythmias more than 2-fold. This effect was dose-dependent, and high concentrations of zinc were toxic. Adding membrane-impermeable zinc chloride was ineffective. Hearts from rats receiving zinc pyrithione supplements in their diet fully recovered from I/R. The recovery was associated with the prevention of degradation of the two protein kinase C isoforms, delta and epsilon, during I/R. In conclusion, our results suggest a protective role of intracellular zinc in myocardial recovery from oxidative stress imposed by I/R. The data support the potential clinical use of zinc ionophores in the settings of acute redox stress in the heart.

  7. Effect of chloride channel activity on retinal pigment cell proliferation and migration.

    PubMed

    Zhao, Jing; Zhong, Wei; Sun, Lixia; Yin, Yuan; Zheng, Yajuan

    2017-04-01

    The present study aimed to investigate the effects of chloride channels (ClC) on the proliferation and migration of retinal pigment epithelial (RPE) cells, a primary component of proliferative vitreoretinopathy (PVR) membranes. An RPE cell model of phagocytosis was established using fibronectin‑coated latex beads. Cell proliferation was measured by live cell counting. The cell cycle and phagocytosis index was assessed by flow cytometry. Intracellular calcium concentration was quantified using Fura‑2‑acetoxymethyl ester. ClCs were blocked using 5‑nitro‑2‑(3‑phenylpropylamino) benzoic acid (NPPB) and tamoxifen (TAM). NPPB and TAM were identified to inhibit the proliferation of ARPE‑19 human adult RPE cells by arresting them in the G0/G1 phase, inhibit the phagocytosis of fibronectin, and decrease intracellular calcium levels, in a dose‑dependent manner. ClCs serve important roles in mediating human RPE cell proliferation and migration. The underlying mechanisms of action of ClCs are associated with the regulation of calcium. Targeting ClCs may provide a novel strategy to inhibit PVR formation.

  8. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.

    PubMed

    Terker, Andrew S; Zhang, Chong; Erspamer, Kayla J; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H

    2016-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Intracellular mechanisms of solar water disinfection

    PubMed Central

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-01-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection. PMID:27909341

  10. Intracellular mechanisms of solar water disinfection.

    PubMed

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-02

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  11. Intracellular mechanisms of solar water disinfection

    NASA Astrophysics Data System (ADS)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  12. Activity-dependent depression of monosynaptic fast IPSCs in hippocampus: contributions from reductions in chloride driving force and conductance.

    PubMed

    Ling, D S; Benardo, L S

    1995-01-23

    Whole-cell recordings techniques were used to record pharmacologically isolated fast inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons from rat hippocampal slices. Repetitive extracellular stimulation up to 10 Hz progressively reduced steady-state fast IPSC amplitude. At low stimulation frequencies (up to 1 Hz), this attenuation was characterized by a positive shift of IPSC reversal potential with no change in IPSC conductance. Above 1 Hz stimulation, fast IPSC depression was associated with changes in both reversal potential and IPSC conductance. Use-dependent depression at low frequencies was prevented when cells were chloride-loaded using cesium chloride based intracellular solutions. These findings suggest that activity-dependent depression of fast IPSCs at low stimulus frequencies results entirely from a reduction in chloride driving force, stemming from intracellular chloride accumulation. Activity-dependent changes in fast IPSC conductance occur only at stimulation rates above 1 Hz.

  13. Lithium-Thionyl Chloride Battery.

    DTIC Science & Technology

    1981-04-01

    EEEElhIhEEEEEE 1111 1 - MI(CRO( fy Hl ff1Sf UIIIUN Ift I IA I~t Research and Development Technical Report DELET - TR - 78 - 0563 - F Cq LITHIUM - THIONYL CHLORIDE ...2b(1110) S. TYPE OF REPORT & PERIOD COVERED Lithium - Thionyl Chloride Battery -10/1/78 - 11/30/80 6. PNING ORG. REPORT NUMBER Z %A a.~as B.,OWRACT OR...block number) Inorganic Electrolyte battery, Thionyl Chloride , lithium , high rate D cell, high rate flat cylindrical cell, laser designator battery. C//i

  14. Precipitation of metal nitrides from chloride melts

    SciTech Connect

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-12-31

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts.

  15. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

    NASA Astrophysics Data System (ADS)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun

    2017-05-01

    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  16. Use of Consumer Acceptability as a Tool to Determine the Level of Sodium Reduction: A Case Study on Beef Soup Substituted With Potassium Chloride and Soy-Sauce Odor.

    PubMed

    Lee, Cho Long; Lee, Soh Min; Kim, Kwang-Ok

    2015-11-01

    In this study, consumer acceptability was considered as a tool of reducing sodium rather than just using it as a final examination of the successfulness of the substitution. This study consisted of 4 experimental steps. First, by gradually reducing the concentrations of NaCl, consumer rejection threshold (CRT) of NaCl in beef soup was examined. Then, the amount of KCl that can increase preference was examined in 2 low sodium beef soups, with sodium concentrations slightly above or below the CRT. Relative saltiness of various KCl and NaCl/KCl mixtures were also measured. Finally, consumers evaluated acceptability and intensities of sensory characteristics for 9 beef soup samples that differed with respect to NaCl content and/or KCl content with/without addition of salty-congruent odor (soy-sauce odor). The results showed that in the "above CRT" system, consumer acceptability as well as sensory profile of low sodium beef soup substituted using KCl had similar profile to the control although saltiness was not fully recovered, whereas in the "below CRT" system, consumer acceptability was not recovered using KCl solely as a substitute. Potential of using salty-congruent odor as a final touch to induce salty taste was observed; however, the results inferred the importance of having almost no artificialness in the odor and having harmony with the final product when using it as a strategy to substitute sodium. Overall, the results of the study implied the importance of considering consumer acceptability when approaching sodium reduction to better understand the potentials of the sodium substitutes and salty-congruent odor. Strategies attempting to reduce sodium contents in food have mainly substituted sodium to the level that provides equivalent salty taste and then examined consumer liking. However, these approaches may result in failure for consumer appeal. This study attempted to consider consumer acceptability as a tool of reducing sodium in beef soup substituted using

  17. Studies Update Vinyl Chloride Hazards.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1980-01-01

    Extensive study affirms that vinyl chloride is a potent animal carcinogen. Epidemiological studies show elevated rates of human cancers in association with extended contact with the compound. (Author/RE)

  18. Studies Update Vinyl Chloride Hazards.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1980-01-01

    Extensive study affirms that vinyl chloride is a potent animal carcinogen. Epidemiological studies show elevated rates of human cancers in association with extended contact with the compound. (Author/RE)

  19. Detection of intracellular phosphatidylserine in living cells.

    PubMed

    Calderon, Frances; Kim, Hee-Yong

    2008-03-01

    To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.

  20. Optical nanoparticle sensors for quantitative intracellular imaging.

    PubMed

    Lee, Yong-Eun Koo; Kopelman, Raoul

    2009-01-01

    Real-time measurements of biological/chemical/physical processes, with no interferences, are an ultimate goal for in vivo intracellular studies. To construct intracellular biosensors that meet such a goal, nanoparticle (NP) platforms seem to be most promising, because of their small size and excellent engineerability. This review describes the development of NP-based opical sensors and their intracellular applications. The sensor designs are classified into two types, based on the sensor structures regarding analyte receptor and signal transducer. Type 1 sensors, with a single component for both receptor and transducer, work by mechanisms similar to those of 'molecular probes'. Type 2 sensors, with a separate component for receptor and transducer, work by different mechanisms that require the presence of specific NPs. A synergistic increase in optical signal or selectivity has been reported for these second type of NP sensors. With ongoing rapid advances in nanotechnology and instrumentation, these NP systems will soon be capable of sensing at the single-molecule level, at the point of interest within the living cell, and capable of simultaneously detecting multiple analytes and physical parameters.

  1. Invasion and Intracellular Survival by Protozoan Parasites

    PubMed Central

    Sibley, L. David

    2013-01-01

    Summary Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a nonfusigenic vacuole (e.g. Toxoplasma, Encephalitizoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunological responses and thereby prevent disease. PMID:21349087

  2. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  3. [Biochemical changes in rats under the influence of cesium chloride].

    PubMed

    Mel'nykova, N M; Iermishev, O V

    2013-01-01

    Cesium is lately accumulated actively in the environment, but its influence on human and animal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug "Asparkam" reduces the negative effect of cesium chloride on the body of rats.

  4. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOEpatents

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  5. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  6. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg. No. 7447-40-7) is a white... manufacturing practice. Potassium chloride may be used in infant formula in accordance with section 412(g) of...

  7. 21 CFR 173.375 - Cetylpyridinium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c)...

  8. 21 CFR 173.375 - Cetylpyridinium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c)...

  9. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The less soluble sodium salt... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium chloride. 184.1138 Section 184.1138...

  10. 21 CFR 173.375 - Cetylpyridinium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c)...

  11. 21 CFR 173.375 - Cetylpyridinium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c)...

  12. Calcium/Thionyl Chloride Battery Technology.

    DTIC Science & Technology

    1985-12-01

    report, with the exception that the cathodes utilized contained one of two additives, copper phthalocyanine or copper dust. The cathodes had either 15...slowly loaded to the 0.48 ohm level. The two cells with cathodes containing copper phthalocyanine at the 15% level achieved fewer amp-hours above 2.0...1. SUBJECT TERMS (CSnina. ong Mwe" ufe .j!wu and Ulorniff b6y ill amai 4LO GROUP SU. on. 10 02 Pover Sources]fateis Calcium, Thionyl Chloride 0 1 03

  13. Na(+)/K(+)-ATPase immunoreactivity in branchial chloride cells of Oreochromis mossambicus exposed to copper.

    PubMed

    Dang, Z; Lock, R A; Flik, G; Wendelaar Bonga, S E

    2000-01-01

    Chloride cells were identified by Na(+)/K(+)-ATPase immunocytochemistry at the light and electron microscope levels in gills of freshwater tilapia Oreochromis mossambicus. Turnover of chloride cells was enhanced by exposing the fish to waterborne copper (3.2 micromol l(-)(1)) for 14 days, as indicated by a 38 % increase in cells expressing proliferating cell nuclear antigen (PCNA) relative to controls. The expression of PCNA was most marked in the central area of the filamental epithelium, from where the chloride cells are thought to originate and migrate. In control fish, chloride cells were associated exclusively with the filamental epithelium. In both controls and copper-exposed fish, two chloride cell populations were seen after Na(+)/K(+)-ATPase immunostaining. These probably represent subpopulations of newly emerged chloride cells: (1) strongly stained cells (mature chloride cells) in the filamental and lamellar epithelium and (2) weakly stained cells, identified by electron microscopy as apoptotic and necrotic chloride cells, mainly in the filamental epithelium. Absolute numbers of mature chloride cells fell, while necrotic and apoptotic chloride cell numbers increased, in copper-exposed fish. A strong correlation could be established for gill Na(+)/K(+)-ATPase specific activity and the number of strongly stained chloride cells in controls and copper-exposed fish and for Na(+)/K(+)-ATPase specific activity and total numbers of immunoreactive cells in copper-exposed fish owing to an increased incidence of weakly staining cells.

  14. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and...

  15. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and...

  16. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and...

  17. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  18. Improved method for efficient imaging of intracellular Cl(-) with Cl-Sensor using conventional fluorescence setup.

    PubMed

    Friedel, Perrine; Bregestovski, Piotr; Medina, Igor

    2013-01-01

    Chloride (Cl(-)) homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl(-) concentration ([Cl(-)]i) and changes in the efficacy of Cl(-) extrusion are involved in numerous neurological disorders. Therefore, there is a strong need for studies of the dynamics of [Cl(-)]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl(-)]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP) and Cl(-)-sensitive mutant of the yellow fluorescent protein (YFPCl). However, all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl(-)-dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl(-)]i from the resting level of 5-10 mM. We demonstrate also a usefulness of the developed [Cl(-)]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl(-) extruder that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments.

  19. Improved method for efficient imaging of intracellular Cl− with Cl-Sensor using conventional fluorescence setup

    PubMed Central

    Friedel, Perrine; Bregestovski, Piotr; Medina, Igor

    2013-01-01

    Chloride (Cl−) homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl− concentration ([Cl−]i) and changes in the efficacy of Cl− extrusion are involved in numerous neurological disorders. Therefore, there is a strong need for studies of the dynamics of [Cl−]i in different cell types under physiological conditions and during pathology. Several previous works reported having