Science.gov

Sample records for intracellular domain aicd

  1. Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD).

    PubMed

    Edbauer, Dieter; Willem, Michael; Lammich, Sven; Steiner, Harald; Haass, Christian

    2002-04-19

    The intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein (APP) is dependent on biologically active presenilins (PS). Notch also undergoes a similar PS-dependent gamma-secretase-like cleavage, resulting in the liberation of the Notch intracellular domain (NICD), which is critically required for developmental signal transduction. gamma-Secretase processing of APP results in the production of a similar fragment called AICD (APP intracellular domain), which may function in nuclear signaling as well. AICD, like NICD, is rapidly removed. By using a battery of protease inhibitors we demonstrate that AICD, in contrast to NICD, is degraded by a cytoplasmic metalloprotease. In vitro degradation of AICD can be reconstituted with cytoplasmic fractions obtained from neuronal and non-neuronal cells. Taking into account the inhibition profile and the cytoplasmic localization, we identified three candidate enzymes (neurolysin, thimet oligopeptidase, and insulin-degrading enzyme (IDE), also known as insulysin), which all are involved in the degradation of bioactive peptides in the brain. When insulin, a well characterized substrate of IDE, was added to the in vitro degradation assay, removal of AICD was efficiently blocked. Moreover, overexpression of IDE resulted in enhanced degradation of AICD, whereas overexpression of the inactive IDE E111Q mutant did not affect AICD degradation. Finally, immunodepletion of IDE significantly reduced the AICD degrading activity. Therefore our data demonstrate that IDE, which is one of the proteases implicated in the removal of extracellular Abeta, also removes the cytoplasmic product of gamma-secretase cleaved APP.

  2. The APP intracellular domain (AICD) potentiates ER stress-induced apoptosis.

    PubMed

    Kögel, Donat; Concannon, Caoimhín G; Müller, Thorsten; König, Hildegard; Bonner, Caroline; Poeschel, Simone; Chang, Steffi; Egensperger, Rupert; Prehn, Jochen H M

    2012-09-01

    Here we employed human SHEP neuroblastoma cells either stably or inducibly expressing the amyloid precursor protein (APP) intracellular domain (AICD) to investigate its ability to modulate stress-induced cell death. Analysis of effector caspase activation revealed that AICD overexpression was specifically associated with an increased sensitivity to apoptosis induced by the 2 endoplasmic reticulum (ER) stressors thapsigargin and tunicamycin, but not by staurosporine (STS). Basal and ER stress-induced expression of Bip/Grp78 and C/EBP-homologous protein/GADD153 were not altered by AICD implying that AICD potentiated cell death downstream or independent of the conserved unfolded protein response (UPR). Interestingly, quantitative polymerase chain reaction analysis and reporter gene assays revealed that AICD significantly downregulated messenger RNA levels of the Alzheimer's disease susceptibility gene ApoJ/clusterin, indicating transcriptional repression. Knockdown of ApoJ/clusterin mimicked the effect of AICD on ER stress-induced apoptosis, but had no discernible effect on staurosporine-induced cell death. Our data suggest that altered levels of AICD may abolish the prosurvival function of ApoJ/clusterin and increase the susceptibility of neurons to ER stress-mediated cell death, a pathway that may contribute to the pathogenesis of Alzheimer's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer's disease.

    PubMed

    Bukhari, Hassan; Glotzbach, Annika; Kolbe, Katharina; Leonhardt, Gregor; Loosse, Christina; Müller, Thorsten

    2017-09-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease with tens of millions of people affected worldwide. The pathogenesis is still poorly understood and various therapeutical approaches targeting the amyloid β (Aβ) peptide, a product of the amyloidogenic cleavage of the amyloid precursor protein (APP), failed. Moreover, a couple of studies critically questioned the relevance of Aβ in the pathogenesis of AD. Thus, new ideas need to be studied and one highly interesting hypothesis is the APP mediated signal transduction to the nucleus. As a consequence nuclear -potentially toxic- structures emerge, which were recently found to a high extent in human AD tissue and thus, may contribute to neurodegeneration. Relevant for the signaling machinery are modifications at the very C-terminal end of the precursor protein, the APP intracellular domain (AICD). In this review we update the knowledge on mechanisms on AICD referring to our 2008 article: The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-Relevance for Alzheimer's disease (T. Muller, et al., 2008). We summarize how AICD is generated and degraded, we describe its intramolecular motifs, translational modifications, and how those as well as APP dimerization influence AICD generation and function. Moreover, we resume the AICD interactome and elucidate AICDs involvement in nuclear signaling, transcriptional regulation, cell death, DNA repair and cell cycle re-entry and we give insights in its physiological function. Results are summarized in the comprehensive poster "The world of AICD". Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role--relevance for Alzheimer pathology.

    PubMed

    Schettini, Gennaro; Govoni, Stefano; Racchi, Marco; Rodriguez, Guido

    2010-12-01

    In recent decades, the study of the amyloid precursor protein (APP) and of its proteolytic products carboxy terminal fragment (CTF), APP intracellular C-terminal domain (AICD) and amyloid beta has been mostly focussed on the role of APP as a producer of the toxic amyloid beta peptide. Here, we reconsider the role of APP suggesting, in a provocative way, the protein as a central player in a putative signalling pathway. We highlight the presence in the cytosolic tail of APP of the YENPTY motif which is typical of tyrosine kinase receptors, the phosphorylation of the tyrosine, serine and threonine residues, the kinases involved and the interaction with intracellular adaptor proteins. In particular, we examine the interaction with Shc and Grb2 regulators, which through the activation of Ras proteins elicit downstream signalling events such as the MAPK pathway. The review also addresses the interaction of APP, CTFs and AICD with other adaptor proteins and in particular with Fe65 for nuclear transcriptional activity and the importance of phosphorylation for sorting the secretases involved in the amyloidogenic or non-amyloidogenic pathways. We provide a novel perspective on Alzheimer's disease pathogenesis, focussing on the perturbation of the physiological activities of APP-CTFs and AICD as an alternative perspective from that which normally focuses on the accumulation of neurotoxic proteolytic fragments.

  5. Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.

    PubMed

    Kim, Mi-Yeon; Mo, Jung-Soon; Ann, Eun-Jung; Yoon, Ji-Hye; Jung, Jane; Choi, Yun-Hee; Kim, Su-Man; Kim, Hwa-Young; Ahn, Ji-Seon; Kim, Hangun; Kim, Kwonseop; Hoe, Hyang-Sook; Park, Hee-Sae

    2011-06-01

    The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD suppresses Notch1 transcriptional activity by the dissociation of the Notch1-IC-RBP-Jk complex after processing by γ-secretase. Notch1-IC is capable of forming a trimeric complex with Fbw7 and AICD, and AICD enhances the protein degradation of Notch1-IC through an Fbw7-dependent proteasomal pathway. AICD downregulates the levels of RBP-Jk protein through the lysosomal pathway. AICD-mediated degradation is involved in the preferential degradation of non-phosphorylated RBP-Jk. Collectively, our results demonstrate that AICD functions as a negative regulator in Notch1 signaling through the promotion of Notch1-IC and RBP-Jk protein degradation.

  6. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    SciTech Connect

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel . E-mail: octave@nchm.ucl.ac.be

    2007-09-21

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment.

  7. Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription

    SciTech Connect

    Waldron, Elaine; Isbert, Simone; Kern, Andreas; Jaeger, Sebastian; Martin, Anne M.; Hebert, Sebastien S.; Behl, Christian; Weggen, Sascha; De Strooper, Bart; Pietrzik, Claus U.

    2008-08-01

    A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid {beta} peptide (A{beta}) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable to further activate transcription of a luciferase reporter via a Gal4-DNA-binding domain, it failed entirely via the endogenous promoter regions of proposed target genes, APP and KAI1. The lack of a specific transactivation potential was also demonstrated by the unchanged levels of target gene mRNA. However, rather than translocating to the nucleus, the AICD surplus remains membrane tethered or free in the cytosol where it interacts with Fe65. Therefore we provide strong evidence that an increase in AICD generation does not directly promote gene activation of previously proposed target 0011gen.

  8. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    NASA Astrophysics Data System (ADS)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng

    2016-07-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  9. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics.

    PubMed

    Dai, Jin; Niemi, Antti J; He, Jianfeng

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  10. An AICD-based functional screen to identify APP metabolism regulators

    PubMed Central

    Zhang, Can; Khandelwal, Preeti J; Chakraborty, Ranjita; Cuellar, Trinna L; Sarangi, Srikant; Patel, Shyam A; Cosentino, Christopher P; O'Connor, Michael; Lee, Jeremy C; Tanzi, Rudolph E; Saunders, Aleister J

    2007-01-01

    Background A central event in Alzheimer's disease (AD) is the regulated intramembraneous proteolysis of the β-amyloid precursor protein (APP), to generate the β-amyloid (Aβ) peptide and the APP intracellular domain (AICD). Aβ is the major component of amyloid plaques and AICD displays transcriptional activation properties. We have taken advantage of AICD transactivation properties to develop a genetic screen to identify regulators of APP metabolism. This screen relies on an APP-Gal4 fusion protein, which upon normal proteolysis, produces AICD-Gal4. Production of AICD-Gal4 induces Gal4-UAS driven luciferase expression. Therefore, when regulators of APP metabolism are modulated, luciferase expression is altered. Results To validate this experimental approach we modulated α-, β-, and γ-secretase levels and activities. Changes in AICD-Gal4 levels as measured by Western blot analysis were strongly and significantly correlated to the observed changes in AICD-Gal4 mediated luciferase activity. To determine if a known regulator of APP trafficking/maturation and Presenilin1 endoproteolysis could be detected using the AICD-Gal4 mediated luciferase assay, we knocked-down Ubiquilin 1 and observed decreased luciferase activity. We confirmed that Ubiquilin 1 modulated AICD-Gal4 levels by Western blot analysis and also observed that Ubiquilin 1 modulated total APP levels, the ratio of mature to immature APP, as well as PS1 endoproteolysis. Conclusion Taken together, we have shown that this screen can identify known APP metabolism regulators that control proteolysis, intracellular trafficking, maturation and levels of APP and its proteolytic products. We demonstrate for the first time that Ubiquilin 1 regulates APP metabolism in the human neuroblastoma cell line, SH-SY5Y. PMID:17718916

  11. Visualization and quantification of APP intracellular domain-mediated nuclear signaling by bimolecular fluorescence complementation.

    PubMed

    Riese, Florian; Grinschgl, Sonja; Gersbacher, Manuel T; Russi, Natalie; Hock, Christoph; Nitsch, Roger M; Konietzko, Uwe

    2013-01-01

    The amyloid precursor protein (APP) intracellular domain (AICD) is released from full-length APP upon sequential cleavage by either α- or β-secretase followed by γ-secretase. Together with the adaptor protein Fe65 and the histone acetyltransferase Tip60, AICD forms nuclear multiprotein complexes (AFT complexes) that function in transcriptional regulation. To develop a medium-throughput machine-based assay for visualization and quantification of AFT complex formation in cultured cells. We used cotransfection of bimolecular fluorescence complementation (BiFC) fusion constructs of APP and Tip60 for analysis of subcellular localization by confocal microscopy and quantification by flow cytometry (FC). Our novel BiFC-constructs show a nuclear localization of AFT complexes that is identical to conventional fluorescence-tagged constructs. Production of the BiFC signal is dependent on the adaptor protein Fe65 resulting in fluorescence complementation only after Fe65-mediated nuclear translocation of AICD and interaction with Tip60. We applied the AFT-BiFC system to show that the Swedish APP familial Alzheimer's disease mutation increases AFT complex formation, consistent with the notion that AICD mediated nuclear signaling mainly occurs following APP processing through the amyloidogenic β-secretase pathway. Next, we studied the impact of posttranslational modifications of AICD on AFT complex formation. Mutation of tyrosine 682 in the YENPTY motif of AICD to phenylalanine prevents phosphorylation resulting in increased nuclear AFT-BiFC signals. This is consistent with the negative impact of tyrosine phosphorylation on Fe65 binding to AICD. Finally, we studied the effect of oxidative stress. Our data shows that oxidative stress, at a level that also causes cell death, leads to a reduction in AFT-BiFC signals. We established a new method for visualization and FC quantification of the interaction between AICD, Fe65 and Tip60 in the nucleus based on BiFC. It enables flow

  12. A cell-permeable tool for analysing APP intracellular domain function and manipulation of PIKfyve activity

    PubMed Central

    Guscott, Benjamin; Balklava, Zita; Safrany, Stephen T.; Wassmer, Thomas

    2016-01-01

    The mechanisms for regulating PIKfyve complex activity are currently emerging. The PIKfyve complex, consisting of the phosphoinositide kinase PIKfyve (also known as FAB1), VAC14 and FIG4, is required for the production of phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. PIKfyve function is required for homoeostasis of the endo/lysosomal system and is crucially implicated in neuronal function and integrity, as loss of function mutations in the PIKfyve complex lead to neurodegeneration in mouse models and human patients. Our recent work has shown that the intracellular domain of the amyloid precursor protein (APP), a molecule central to the aetiology of Alzheimer's disease binds to VAC14 and enhances PIKfyve function. In the present study, we utilize this recent advance to create an easy-to-use tool for increasing PIKfyve activity in cells. We fused APP intracellular domain (AICD) to the HIV TAT domain, a cell-permeable peptide allowing proteins to penetrate cells. The resultant TAT–AICD fusion protein is cell permeable and triggers an increase in PI(3,5)P2. Using the PI(3,5)P2 specific GFP-ML1Nx2 probe, we show that cell-permeable AICD alters PI(3,5)P2 dynamics. TAT–AICD also provides partial protection from pharmacological inhibition of PIKfyve. All three lines of evidence show that the AICD activates the PIKfyve complex in cells, a finding that is important for our understanding of the mechanism of neurodegeneration in Alzheimer's disease. PMID:26934981

  13. The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway.

    PubMed

    Belyaev, Nikolai D; Kellett, Katherine A B; Beckett, Caroline; Makova, Natalia Z; Revett, Timothy J; Nalivaeva, Natalia N; Hooper, Nigel M; Turner, Anthony J

    2010-12-31

    Amyloidogenic processing of the amyloid precursor protein (APP) by β- and γ-secretases generates several biologically active products, including amyloid-β (Aβ) and the APP intracellular domain (AICD). AICD regulates transcription of several neuronal genes, especially the Aβ-degrading enzyme, neprilysin (NEP). APP exists in several alternatively spliced isoforms, APP(695), APP(751), and APP(770). We have examined whether each isoform can contribute to AICD generation and hence up-regulation of NEP expression. Using SH-SY5Y neuronal cells stably expressing each of the APP isoforms, we observed that only APP(695) up-regulated nuclear AICD levels (9-fold) and NEP expression (6-fold). Increased NEP expression was abolished by a β- or γ-secretase inhibitor but not an α-secretase inhibitor. This correlated with a marked increase in both Aβ(1-40) and Aβ(1-42) in APP(695) cells as compared with APP(751) or APP(770) cells. Similar phenomena were observed in Neuro2a but not HEK293 cells. SH-SY5Y cells expressing the Swedish mutant of APP(695) also showed an increase in Aβ levels and NEP expression as compared with wild-type APP(695) cells. Chromatin immunoprecipitation revealed that AICD was associated with the NEP promoter in APP(695), Neuro2a, and APP(Swe) cells but not APP(751) nor APP(770) cells where AICD was replaced by histone deacetylase 1 (HDAC1). AICD occupancy of the NEP promoter was replaced by HDAC1 after treatment of the APP(695) cells with a β- but not an α-secretase inhibitor. The increased AICD and NEP levels were significantly reduced in cholesterol-depleted APP(695) cells. In conclusion, Aβ and functional AICD appear to be preferentially synthesized through β-secretase action on APP(695).

  14. The Transcriptionally Active Amyloid Precursor Protein (APP) Intracellular Domain Is Preferentially Produced from the 695 Isoform of APP in a β-Secretase-dependent Pathway*♦

    PubMed Central

    Belyaev, Nikolai D.; Kellett, Katherine A. B.; Beckett, Caroline; Makova, Natalia Z.; Revett, Timothy J.; Nalivaeva, Natalia N.; Hooper, Nigel M.; Turner, Anthony J.

    2010-01-01

    Amyloidogenic processing of the amyloid precursor protein (APP) by β- and γ-secretases generates several biologically active products, including amyloid-β (Aβ) and the APP intracellular domain (AICD). AICD regulates transcription of several neuronal genes, especially the Aβ-degrading enzyme, neprilysin (NEP). APP exists in several alternatively spliced isoforms, APP695, APP751, and APP770. We have examined whether each isoform can contribute to AICD generation and hence up-regulation of NEP expression. Using SH-SY5Y neuronal cells stably expressing each of the APP isoforms, we observed that only APP695 up-regulated nuclear AICD levels (9-fold) and NEP expression (6-fold). Increased NEP expression was abolished by a β- or γ-secretase inhibitor but not an α-secretase inhibitor. This correlated with a marked increase in both Aβ1–40 and Aβ1–42 in APP695 cells as compared with APP751 or APP770 cells. Similar phenomena were observed in Neuro2a but not HEK293 cells. SH-SY5Y cells expressing the Swedish mutant of APP695 also showed an increase in Aβ levels and NEP expression as compared with wild-type APP695 cells. Chromatin immunoprecipitation revealed that AICD was associated with the NEP promoter in APP695, Neuro2a, and APPSwe cells but not APP751 nor APP770 cells where AICD was replaced by histone deacetylase 1 (HDAC1). AICD occupancy of the NEP promoter was replaced by HDAC1 after treatment of the APP695 cells with a β- but not an α-secretase inhibitor. The increased AICD and NEP levels were significantly reduced in cholesterol-depleted APP695 cells. In conclusion, Aβ and functional AICD appear to be preferentially synthesized through β-secretase action on APP695. PMID:20961856

  15. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression.

    PubMed

    Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Grösgen, Sven; Haupenthal, Viola J; Blümel, Tamara; Hundsdörfer, Benjamin; Zimmer, Valerie C; Mylonas, Nadine T; Tanila, Heikki; Müller, Ulrike; Grimm, Heike S; Hartmann, Tobias

    2015-01-01

    Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the

  16. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Grösgen, Sven; Haupenthal, Viola J.; Blümel, Tamara; Hundsdörfer, Benjamin; Zimmer, Valerie C.; Mylonas, Nadine T.; Tanila, Heikki; Müller, Ulrike; Grimm, Heike S.; Hartmann, Tobias

    2015-01-01

    Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the

  17. FoxO mediates APP-induced AICD-dependent cell death.

    PubMed

    Wang, X; Wang, Z; Chen, Y; Huang, X; Hu, Y; Zhang, R; Ho, M S; Xue, L

    2014-05-15

    The amyloid precursor protein (APP) is a broadly expressed transmembrane protein that has a significant role in the pathogenesis of Alzheimer's disease (AD). APP can be cleaved at multiple sites to generate a series of fragments including the amyloid β (Aβ) peptides and APP intracellular domain (AICD). Although Aβ peptides have been proposed to be the main cause of AD pathogenesis, the role of AICD has been underappreciated. Here we report that APP induces AICD-dependent cell death in Drosophila neuronal and non-neuronal tissues. Our genetic screen identified the transcription factor forkhead box O (FoxO) as a crucial downstream mediator of APP-induced cell death and locomotion defect. In mammalian cells, AICD physically interacts with FoxO in the cytoplasm, translocates with FoxO into the nucleus upon oxidative stress, and promotes FoxO-induced transcription of pro-apoptotic gene Bim. These data demonstrate that APP modulates FoxO-mediated cell death through AICD, which acts as a transcriptional co-activator of FoxO.

  18. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain

    SciTech Connect

    Radzimanowski, Jens; Beyreuther, Konrad; Sinning, Irmgard; Wild, Klemens

    2008-05-01

    Alzheimer’s disease is characterized by proteolytic processing of the amyloid precursor protein (APP), which releases the aggregation-prone amyloid-β (Aβ) peptide and liberates the intracellular domain (AICD) that interacts with various adaptor proteins. The crystallized AICD–Fe65-PTB2 complex is of central importance for APP translocation, nuclear signalling, processing and Aβ generation. Alzheimer’s disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid β peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 Å resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.

  19. APP substitutions V715F and L720P alter PS1 conformation and differentially affect Abeta and AICD generation.

    PubMed

    Tesco, Giuseppina; Ginestroni, Andrea; Hiltunen, Mikko; Kim, Minji; Dolios, Georgia; Hyman, Bradley T; Wang, Rong; Berezovska, Oksana; Tanzi, Rudolph E

    2005-10-01

    The 37-43 amino acid Abeta peptide is the principal component of beta-amyloid deposits in Alzheimer's disease (AD) brain, and is derived by serial proteolysis of the amyloid precursor protein (APP) by beta- and gamma-secretase. gamma-Secretase also cleaves APP at Val50 in the Abeta numbering (epsilon cleavage), resulting in the release of a fragment called APP intracellular domain (AICD). The aim of this study was to determine whether amino acid substitutions in the APP transmembrane domain differentially affect Abeta and AICD generation. We found that the APPV715F substitution, which has been previously shown to dramatically decrease Abeta40 and Abeta42 while increasing Abeta38 levels, does not affect in vitro generation of AICD. Furthermore, we found that the APPL720P substitution, which has been previously shown to prevent in vitro generation of AICD, completely prevents Abeta generation. Using a fluorescence resonance energy transfer (FRET) method, we next found that both the APPV715F and APPL720P substitutions significantly increase the distance between the N- and C-terminus of presenilin 1 (PS1), which has been proposed to contain the catalytic site of gamma-secretase. In conclusion, both APPV715F and APPL720P change PS1 conformation with differential effects on Abeta and AICD production.

  20. Upregulation of PGC-1α expression by Alzheimer’s disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP

    PubMed Central

    Robinson, Ari; Grösgen, Sven; Mett, Janine; Zimmer, Valerie C; Haupenthal, Viola J; Hundsdörfer, Benjamin; P Stahlmann, Christoph; Slobodskoy, Yulia; Müller, Ulrike C; Hartmann, Tobias; Stein, Reuven; Grimm, Marcus O W

    2014-01-01

    Cleavage of amyloid precursor protein (APP) by β- and γ-secretase generates amyloid-β (Aβ) and APP intracellular domain (AICD) peptides. Presenilin (PS) 1 or 2 is the catalytic component of the γ-secretase complex. Mitochondrial dysfunction is an established phenomenon in Alzheimer’s disease (AD), but the causes and role of PS1, APP, and APP’s cleavage products in this process are largely unknown. We studied the effect of these AD-associated molecules on mitochondrial features. Using cells deficient in PSs expression, expressing human wild-type PS1, or PS1 familial AD (FAD) mutants, we found that PS1 affects mitochondrial energy metabolism (ATP levels and oxygen consumption) and expression of mitochondrial proteins. These effects were associated with enhanced expression of the mitochondrial master transcriptional coactivator PGC-1α and its target genes. Importantly, PS1-FAD mutations decreased PS1’s ability to enhance PGC-1α mRNA levels. Analyzing the effect of APP and its γ-secretase-derived cleavage products Aβ and AICD on PGC-1α expression showed that APP and AICD increase PGC-1α expression. Accordingly, PGC-1α mRNA levels in cells deficient in APP/APLP2 or expressing APP lacking its last 15 amino acids were lower than in control cells, and treatment with AICD, but not with Aβ, enhanced PGC-1α mRNA levels in these and PSs-deficient cells. In addition, knockdown of the AICD-binding partner Fe65 reduced PGC-1α mRNA levels. Importantly, APP/AICD increases PGC-1α expression also in the mice brain. Our results therefore suggest that APP processing regulates mitochondrial function and that impairments in the newly discovered PS1/APP/AICD/PGC-1α pathway may lead to mitochondrial dysfunction and neurodegeneration. PMID:24304563

  1. Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism.

    PubMed

    Kerridge, Caroline; Kozlova, Daria I; Nalivaeva, Natalia N; Turner, Anthony J

    2015-01-01

    While gene mutations in the amyloid precursor protein (APP) and the presenilins lead to an accumulation of the amyloid β-peptide (Aβ) in the brain causing neurodegeneration and familial Alzheimer's disease (AD), over 95% of all AD cases are sporadic. Despite the pathologies being indistinguishable, relatively little is known about the mechanisms affecting generation of Aβ in the sporadic cases. Vascular disorders such as ischaemia and stroke are well established risk factors for the development of neurodegenerative diseases and systemic hypoxic episodes have been shown to increase Aβ production and accumulation. We have previously shown that hypoxia causes a significant decrease in the expression of the major Aβ-degrading enzyme neprilysin (NEP) which might deregulate Aβ clearance. Aβ itself is derived from the transmembrane APP along with several other biologically active metabolites including the C-terminal fragment (CTF) termed the APP intracellular domain (AICD), which regulates the expression of NEP and some other genes in neuronal cells. Here we show that in hypoxia there is a significantly increased expression of caspase-3, 8, and 9 in human neuroblastoma NB7 cells, which can degrade AICD. Using chromatin immunoprecipitation we have revealed that there was also a reduction of AICD bound to the NEP promoter region which underlies the decreased expression and activity of the enzyme under hypoxic conditions. Incubation of the cells with a caspase-3 inhibitor Z-DEVD-FMK could rescue the effect of hypoxia on NEP activity protecting the levels of AICD capable of binding the NEP promoter. These data suggest that activation of caspases might play an important role in regulation of NEP levels in the brain under pathological conditions such as hypoxia and ischaemia leading to a deficit of Aβ clearance and increasing the risk of development of AD.

  2. Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism

    PubMed Central

    Kerridge, Caroline; Kozlova, Daria I.; Nalivaeva, Natalia N.; Turner, Anthony J.

    2015-01-01

    While gene mutations in the amyloid precursor protein (APP) and the presenilins lead to an accumulation of the amyloid β-peptide (Aβ) in the brain causing neurodegeneration and familial Alzheimer's disease (AD), over 95% of all AD cases are sporadic. Despite the pathologies being indistinguishable, relatively little is known about the mechanisms affecting generation of Aβ in the sporadic cases. Vascular disorders such as ischaemia and stroke are well established risk factors for the development of neurodegenerative diseases and systemic hypoxic episodes have been shown to increase Aβ production and accumulation. We have previously shown that hypoxia causes a significant decrease in the expression of the major Aβ-degrading enzyme neprilysin (NEP) which might deregulate Aβ clearance. Aβ itself is derived from the transmembrane APP along with several other biologically active metabolites including the C-terminal fragment (CTF) termed the APP intracellular domain (AICD), which regulates the expression of NEP and some other genes in neuronal cells. Here we show that in hypoxia there is a significantly increased expression of caspase-3, 8, and 9 in human neuroblastoma NB7 cells, which can degrade AICD. Using chromatin immunoprecipitation we have revealed that there was also a reduction of AICD bound to the NEP promoter region which underlies the decreased expression and activity of the enzyme under hypoxic conditions. Incubation of the cells with a caspase-3 inhibitor Z-DEVD-FMK could rescue the effect of hypoxia on NEP activity protecting the levels of AICD capable of binding the NEP promoter. These data suggest that activation of caspases might play an important role in regulation of NEP levels in the brain under pathological conditions such as hypoxia and ischaemia leading to a deficit of Aβ clearance and increasing the risk of development of AD. PMID:26617481

  3. RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1

    PubMed Central

    Guo, Yang; Zhang, Peidong; Zhang, Hongtian; Zhang, Peng; Xu, Ruxiang

    2017-01-01

    Glioblastoma is the most common form of malignant brain tumors and has a poor prognosis. Glioma stem cells (GSCs) are thought to be responsible for the aberrant proliferation and invasion. Targeting the signaling pathways that promote proliferation in GSCs is one of the strategies for glioma treatment. In this study, we found increased expression of contactin 2 (CNTN2) and amyloid β precursor protein (APP) in U87-derived GSCs (U87-GSCs). RNA interference (RNAi) for CNTN2 downregulated the expression of APP intracellular domain (AICD), which is the proteolytic product of APP. Treatment with CNTN2 RNAi inhibited the proliferation of U87-GSCs. CNTN2 RNAi decreased the expression of epidermal growth factor receptor and HES1, which are potential targets of AICD. In summary, inhibition of the CNTN2/APP signaling pathway may repress the proliferation in U87-GSCs via downregulating the expression of HES1 and epidermal growth factor receptor. CNTN2/APP/AICD signaling pathway plays an important role in U87 glial tumorigenesis. Further studies are warranted to elucidate the role of these signaling pathways in other sources of GSCs. Depending on their role in proliferation in other sources of GSCs, members of the CNTN2/APP/AICD signaling pathway may provide novel targets for the development of therapy for glioblastomas. PMID:28243115

  4. Amyloidogenic Processing but not AICD Production Requires a Precisely Oriented APP Dimer Assembled by Transmembrane GXXXG Motifs

    PubMed Central

    Kienlen-Campard, Pascal; Tasiaux, Bernadette; Van Hees, Joanne; Li, Mingli; Huysseune, Sandra; Sato, Takeshi; Fei, Jeffrey Z.; Aimoto, Saburo; Courtoy, Pierre J.; Smith, Steven O.; Constantinescu, Stefan N.; Octave, Jean-Noël

    2009-01-01

    The β-amyloid peptide (Aβ) is the major constituent of the amyloid core of senile plaques found in the brain of patients with Alzheimer's disease (AD). Aβ is produced by the sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Cleavage of APP by γ-secretase also generates the APP Intracellular C-terminal Domain (AICD) peptide, which might be involved in regulation of gene transcription. APP contains three glycine-xxx-glycine (GxxxG) motifs in its juxtamembrane and transmembrane (TM) regions. Such motifs are known to promote dimerization via close apposition of TM sequences. We demonstrate that pairwise replacement of glycines by leucines or isoleucines, but not alanines, in a GxxxG motif led to a drastic reduction of Aβ40 and Aβ42 secretion. β-Cleavage of mutant APP was not inhibited, and reduction of Aβ secretion resulted from inhibition of γ-cleavage. It was anticipated that decreased γ-cleavage of mutant APP would result from inhibition of its dimerization. Surprisingly, mutations of the GxxxG motif actually enhanced dimerization of the APP C-terminal fragments, possibly via a different TM α-helical interface. Increased dimerization of the TM APP C-terminal domain did not affect AICD production. These results clearly demonstrate that both orientation and dimerization of the APP TM domain differently affect Aβ and AICD production. PMID:18201969

  5. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Haupenthal, Viola J.; Zimmer, Valerie C.; Hartmann, Tobias

    2013-01-01

    One of the characteristic hallmarks of Alzheimer’s disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes. PMID:24391587

  6. Physiological and pathophysiological control of synaptic GluN2B-NMDA receptors by the C-terminal domain of amyloid precursor protein.

    PubMed

    Pousinha, Paula A; Mouska, Xavier; Raymond, Elisabeth F; Gwizdek, Carole; Dhib, Gihen; Poupon, Gwenola; Zaragosi, Laure-Emmanuelle; Giudici, Camilla; Bethus, Ingrid; Pacary, Emilie; Willem, Michael; Marie, Hélène

    2017-07-06

    The amyloid precursor protein (APP) harbors physiological roles at synapses and is central to Alzheimer's disease (AD) pathogenesis. Evidence suggests that APP intracellular domain (AICD) could regulate synapse function, but the underlying molecular mechanisms remain unknown. We addressed AICD actions at synapses, per se, combining in vivo AICD expression, ex vivo AICD delivery or APP knock-down by in utero electroporation of shRNAs with whole-cell electrophysiology. We report a critical physiological role of AICD in controlling GluN2B-containing NMDA receptors (NMDARs) at immature excitatory synapses, via a transcription-dependent mechanism. We further show that AICD increase in mature neurons, as reported in AD, alters synaptic NMDAR composition to an immature-like GluN2B-rich profile. This disrupts synaptic signal integration, via over-activation of SK channels, and synapse plasticity, phenotypes rescued by GluN2B antagonism. We provide a new physiological role for AICD, which becomes pathological upon AICD increase in mature neurons. Thus, AICD could contribute to AD synaptic failure.

  7. A physiologic signaling role for the γ-secretase-derived intracellular fragment of APP

    PubMed Central

    Leissring, Malcolm A.; Murphy, M. Paul; Mead, Tonya R.; Akbari, Yama; Sugarman, Michael C.; Jannatipour, Mehrdad; Anliker, Brigitte; Müller, Ulrike; Saftig, Paul; De Strooper, Bart; Wolfe, Michael S.; Golde, Todd E.; LaFerla, Frank M.

    2002-01-01

    Presenilins mediate an unusual intramembranous proteolytic activity known as γ-secretase, two substrates of which are the Notch receptor (Notch) and the β-amyloid precursor protein (APP). γ-Secretase-mediated cleavage of APP, like that of Notch, yields an intracellular fragment [APP intracellular domain (AICD)] that forms a transcriptively active complex. We now demonstrate a functional role for AICD in regulating phosphoinositide-mediated calcium signaling. Genetic ablation of the presenilins or pharmacological inhibition of γ-secretase activity (and thereby AICD production) attenuated calcium signaling in a dose-dependent and reversible manner through a mechanism involving the modulation of endoplasmic reticulum calcium stores. Cells lacking APP (and hence AICD) exhibited similar calcium signaling deficits, and—notably—these disturbances could be reversed by transfection with APP constructs containing an intact AICD, but not by constructs lacking this domain. Our findings indicate that the AICD regulates phosphoinositide-mediated calcium signaling through a γ-secretase-dependent signaling pathway, suggesting that the intramembranous proteolysis of APP may play a signaling role analogous to that of Notch. PMID:11917117

  8. Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs.

    PubMed

    Kienlen-Campard, Pascal; Tasiaux, Bernadette; Van Hees, Joanne; Li, Mingli; Huysseune, Sandra; Sato, Takeshi; Fei, Jeffrey Z; Aimoto, Saburo; Courtoy, Pierre J; Smith, Steven O; Constantinescu, Stefan N; Octave, Jean-Noël

    2008-03-21

    The beta-amyloid peptide (Abeta) is the major constituent of the amyloid core of senile plaques found in the brain of patients with Alzheimer disease. Abeta is produced by the sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. Cleavage of APP by gamma-secretase also generates the APP intracellular C-terminal domain (AICD) peptide, which might be involved in regulation of gene transcription. APP contains three Gly-XXX-Gly (GXXXG) motifs in its juxtamembrane and transmembrane (TM) regions. Such motifs are known to promote dimerization via close apposition of TM sequences. We demonstrate that pairwise replacement of glycines by leucines or isoleucines, but not alanines, in a GXXXG motif led to a drastic reduction of Abeta40 and Abeta42 secretion. beta-Cleavage of mutant APP was not inhibited, and reduction of Abeta secretion resulted from inhibition of gamma-cleavage. It was anticipated that decreased gamma-cleavage of mutant APP would result from inhibition of its dimerization. Surprisingly, mutations of the GXXXG motif actually enhanced dimerization of the APP C-terminal fragments, possibly via a different TM alpha-helical interface. Increased dimerization of the TM APP C-terminal domain did not affect AICD production.

  9. Structural rearrangement of the intracellular domains during AMPA receptor activation

    PubMed Central

    Zachariassen, Linda G.; Katchan, Ljudmila; Jensen, Anna G.; Pickering, Darryl S.; Plested, Andrew J. R.

    2016-01-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated ion channels that mediate the majority of fast excitatory neurotransmission in the central nervous system. Despite recent advances in structural studies of AMPARs, information about the specific conformational changes that underlie receptor function is lacking. Here, we used single and dual insertion of GFP variants at various positions in AMPAR subunits to enable measurements of conformational changes using fluorescence resonance energy transfer (FRET) in live cells. We produced dual CFP/YFP-tagged GluA2 subunit constructs that had normal activity and displayed intrareceptor FRET. We used fluorescence lifetime imaging microscopy (FLIM) in live HEK293 cells to determine distinct steady-state FRET efficiencies in the presence of different ligands, suggesting a dynamic picture of the resting state. Patch-clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence changes within these intracellular domains, providing clues as to how posttranslational modifications and receptor function interact. PMID:27313205

  10. Targeting of passenger protein domains to multiple intracellular membranes.

    PubMed Central

    Janiak, F; Glover, J R; Leber, B; Rachubinski, R A; Andrews, D W

    1994-01-01

    The role of passenger domains in protein targeting was examined by fusing previously characterized targeting motifs to different protein sequences. To compare the targeting requirements for a variety of subcellular compartments, targeting of the fusion proteins was examined for endoplasmic reticulum, mitochondria and peroxisomes in vitro and in yeast. Although most passenger domains were only partially passive to translocation, motif-dependent targeting via motifs positioned at either end of one passenger domain (gPA) was demonstrated for all of the subcellular compartments tested. The data presented extend earlier suggestions that translocation competence is an intrinsic property of the passenger protein. However, the properties that determine protein targeting are not mutually exclusive for the compartments tested. Therefore, although the primary determinant of specificity is the targeting motif, our results suggest that translocation competence of the targeted protein augments the fidelity of transport. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8198533

  11. Membrane-Tethered Intracellular Domain of Amphiregulin Promotes Keratinocyte Proliferation

    PubMed Central

    Stoll, Stefan W.; Stuart, Philip E.; Lambert, Sylviane; Gandarillas, Alberto; Rittié, Laure; Johnston, Andrew; Elder, James T.

    2016-01-01

    The EGF receptor (EGFR) and its ligands are essential regulators of epithelial biology, which are often amplified in cancer cells. We have previously shown that shRNA-mediated silencing of one of these ligands, amphiregulin (AREG), results in keratinocyte growth arrest that cannot be rescued by soluble extracellular EGFR ligands. To further explore the functional importance of specific AREG domains, we stably transduced keratinocytes expressing tetracycline-inducible AREG-targeted shRNA with lentiviruses expressing silencing-proof, membrane-tethered AREG cytoplasmic and extracellular domains (AREG-CTD and AREG-ECD), as well as full-length AREG precursor (proAREG). Here we show that growth arrest of AREG-silenced keratinocytes occurs in G2/M and is significantly restored by proAREG and AREG-CTD, but not by AREG-ECD. Moreover, the AREG-CTD was sufficient to normalize cell cycle distribution profiles and expression of mitosis-related genes. Our findings uncover an important role of the AREG-CTD in regulating cell division, which may be relevant to tumor resistance to EGFR-directed therapies. PMID:26802239

  12. Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening

    PubMed Central

    Ma, Linlin; Yang, Fan; Vu, Simon; Zheng, Jie

    2016-01-01

    TRPV1 is a polymodal nociceptor for diverse physical and chemical stimuli that interact with different parts of the channel protein. Recent cryo-EM studies revealed detailed channel structures, opening the door for mapping structural elements mediating activation by each stimulus. Towards this goal, here we have combined unstructured peptide-insertion screening (UPS) with electrophysiological and fluorescence recordings to explore structural and functional roles of the intracellular regions of TRPV1 in mediating various activation stimuli. We found that most of the tightly packed protein regions did not tolerate structural perturbation by UPS when tested, indicating that structural integrity of the intracellular region is critical. In agreement with previous reports, Ca2+-dependent desensitization is strongly dependent on both intracellular N- and C-terminal domains; insertions of an unstructured peptide between these domains and the transmembrane core domain nearly eliminated Ca2+-dependent desensitization. In contrast, channel activations by capsaicin, low pH, divalent cations, and even heat are mostly intact in mutant channels containing the same insertions. These observations suggest that the transmembrane core domain of TRPV1, but not the intracellular domains, is responsible for sensing these stimuli. PMID:27666400

  13. The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner.

    PubMed

    Bulchand, Sarada; Menon, Sree Devi; George, Simi Elizabeth; Chia, William

    2010-02-23

    Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its paralogue Roughest (Rst), a scaffold protein Rolling pebbles (Rols) and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.

  14. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis.

    PubMed

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-07-15

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals.

  15. Functional genomics of intracellular peptide recognition domains with combinatorial biology methods.

    PubMed

    Sidhu, Sachdev S; Bader, Gary D; Boone, Charles

    2003-02-01

    Phage-displayed peptide libraries have been used to identify specific ligands for peptide-binding domains that mediate intracellular protein-protein interactions. These studies have provided significant insights into the specificities of particular domains. For PDZ domains that recognize C-terminal sequences, the information has proven useful in identifying natural binding partners from genomic databases. For SH3 domains that recognize internal proline-rich motifs, the results of database searches with phage-derived ligands have been compared with the results of yeast-two-hybrid experiments to produce overlap networks that reliably predict natural protein-protein interactions. In addition, libraries of phage-displayed PDZ and SH3 domains have been used to identify the residues responsible for ligand recognition, and also to engineer domains with altered specificities.

  16. NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs

    PubMed Central

    Mineev, Konstantin S.; Goncharuk, Sergey A.; Kuzmichev, Pavel K.; Vilar, Marçal; Arseniev, Alexander S.

    2015-01-01

    P75NTR is a type I integral membrane protein that plays a key role in neurotrophin signaling. However, structural data for the receptor in various functional states are sparse and controversial. In this work, we studied the spatial structure and mobility of the transmembrane and intracellular parts of p75NTR, incorporated into lipid-protein nanodiscs of various sizes and compositions, by solution NMR spectroscopy. Our data reveal a high level of flexibility and disorder in the juxtamembrane chopper domain of p75NTR, which results in the motions of the receptor death domain being uncoupled from the motions of the transmembrane helix. Moreover, none of the intracellular domains of p75NTR demonstrated a propensity to interact with the membrane or to self-associate under the experimental conditions. The obtained data are discussed in the context of the receptor activation mechanism. PMID:26287629

  17. Functional dependence of neuroligin on a new non-PDZ intracellular domain

    PubMed Central

    Shipman, Seth L; Schnell, Eric; Hirai, Takaaki; Chen, Bo-Shiun; Roche, Katherine W; Nicoll, Roger A

    2011-01-01

    Neuroligins, a family of postsynaptic adhesion molecules, are important in synaptogenesis through a well-characterized trans-synaptic interaction with neurexin. In addition, neuroligins are thought to drive postsynaptic assembly through binding of their intracellular domain to PSD-95. However, there is little direct evidence to support the functional necessity of the neuroligin intracellular domain in postsynaptic development. We found that presence of endogenous neuroligin obscured the study of exogenous mutated neuroligin. We therefore used chained microRNAs in rat organotypic hippocampal slices to generate a reduced background of endogenous neuroligin. On this reduced background, we found that neuroligin function was critically dependent on the cytoplasmic tail. However, this function required neither the PDZ ligand nor any other previously described cytoplasmic binding domain, but rather required a previously unknown conserved region. Mutation of a single critical residue in this region inhibited neuroligin-mediated excitatory synaptic potentiation. Finally, we found a functional distinction between neuroligins 1 and 3. PMID:21532576

  18. Intracellular Domain Fragment of CD44 Alters CD44 Function in Chondrocytes*

    PubMed Central

    Mellor, Liliana; Knudson, Cheryl B.; Hida, Daisuke; Askew, Emily B.; Knudson, Warren

    2013-01-01

    The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44. PMID:23884413

  19. The Intracellular Domain of Dumbfounded Affects Myoblast Fusion Efficiency and Interacts with Rolling Pebbles and Loner

    PubMed Central

    Bulchand, Sarada; Menon, Sree Devi; George, Simi Elizabeth; Chia, William

    2010-01-01

    Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its paralogue Roughest (Rst), a scaffold protein Rolling pebbles (Rols) and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf. PMID:20186342

  20. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways.

    PubMed

    Borggrefe, Tilman; Lauth, Matthias; Zwijsen, An; Huylebroeck, Danny; Oswald, Franz; Giaimo, Benedetto Daniele

    2016-02-01

    Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.

  1. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels.

    PubMed

    Clarke, Oliver B; Caputo, Alessandro T; Hill, Adam P; Vandenberg, Jamie I; Smith, Brian J; Gulbis, Jacqueline M

    2010-06-11

    Potassium channels embedded in cell membranes employ gates to regulate K+ current. While a specific constriction in the permeation pathway has historically been implicated in gating, recent reports suggest that the signature ion selectivity filter located in the outer membrane leaflet may be equally important. Inwardly rectifying K+ channels also control the directionality of flow, using intracellular polyamines to stem ion efflux by a valve-like action. This study presents crystallographic evidence of interdependent gates in the conduction pathway and reveals the mechanism of polyamine block. Reorientation of the intracellular domains, concomitant with activation, instigates polyamine release from intracellular binding sites to block the permeation pathway. Conformational adjustments of the slide helices, achieved by rotation of the cytoplasmic assembly relative to the pore, are directly correlated to the ion configuration in the selectivity filter. Ion redistribution occurs irrespective of the constriction, suggesting a more expansive role of the selectivity filter in gating than previously appreciated.

  2. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  3. TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains.

    PubMed

    Milstein, Aaron D; Nicoll, Roger A

    2009-07-07

    Previous work has established stargazin and its related family of transmembrane AMPA receptor regulatory proteins (TARPs) as auxiliary subunits of AMPA receptors (AMPARs) that control synaptic strength both by targeting AMPARs to synapses through an intracellular PDZ-binding motif and by modulating their gating through an extracellular domain. However, TARPs gamma-2 and gamma-8 differentially regulate the synaptic targeting of AMPARs, despite having identical PDZ-binding motifs. Here, we investigate the structural elements that contribute to this functional difference between TARP subtypes by using domain transplantation and truncation. We identify a component of synaptic AMPAR trafficking that is independent of the TARP C-terminal PDZ-binding motif, and we establish previously uncharacterized roles for the TARP intracellular N terminus, loop, and C terminus in modulating both the trafficking and gating of synaptic AMPARs.

  4. Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues.

    PubMed

    Hille, Carsten; Berg, Maik; Bressel, Lena; Munzke, Dorit; Primus, Philipp; Löhmannsröben, Hans-Gerd; Dosche, Carsten

    2008-07-01

    pH sensing in living cells represents one of the most prominent topics in biochemistry and physiology. In this study we performed one-photon and two-photon time-domain fluorescence lifetime imaging with a laser-scanning microscope using the time-correlated single-photon counting technique for imaging intracellular pH levels. The suitability of different commercial fluorescence dyes for lifetime-based pH sensing is discussed on the basis of in vitro as well of in situ measurements. Although the tested dyes are suitable for intensity-based ratiometric measurements, for lifetime-based techniques in the time-domain so far only BCECF seems to meet the requirements of reliable intracellular pH recordings in living cells.

  5. Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers*

    PubMed Central

    Navarro, Gemma; Ferré, Sergi; Cordomi, Arnau; Moreno, Estefania; Mallol, Josefa; Casadó, Vicent; Cortés, Antoni; Hoffmann, Hanne; Ortiz, Jordi; Canela, Enric I.; Lluís, Carme; Pardo, Leonardo; Franco, Rafael; Woods, Amina S.

    2010-01-01

    G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A2A, cannabinoid CB1, and dopamine D2 receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A2A, CB1, and D2) was found to include two evolutionarily conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB1 receptor with A2A and D2 receptors are fundamental for the correct formation of the quaternary structure needed for the function (MAPK signaling) of the A2A-CB1-D2 receptor heteromers. Analysis of MAPK signaling in striatal slices of CB1 receptor KO mice and wild-type littermates supported the existence of A1-CB1-D2 receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultimer. PMID:20562103

  6. Dectin-1 intracellular domain determines species-specific ligand spectrum by modulating receptor sensitivity.

    PubMed

    Takano, Tomotsugu; Motozono, Chihiro; Imai, Takashi; Sonoda, Koh-Hei; Nakanishi, Yoichi; Yamasaki, Sho

    2017-08-28

    C-type lectin receptors (CLRs) comprise a large family of immunoreceptors that recognizes polysaccharide ligands exposed on pathogen surfaces and are conserved among mammals. However, interspecies differences in their ligand spectrums are not fully understood. Dectin-1 is a well-characterized CLR that recognizes β-glucan. We report here that seaweed-derived fucan activates cells expressing human Dectin-1 but not mouse Dectin-1. Low-valency β-glucan components within fucan appeared to be responsible for this activation, as the ligand activity was eliminated by β-glucanase treatment. The low-valency β-glucan laminarin also acted as an agonist for human Dectin-1 but not for mouse Dectin-1, whereas the high-valency β-glucan curdlan activated both human and mouse Dectin-1. Reciprocal mutagenesis analysis revealed that the ligand-binding domain of human Dectin-1 does not determine its unique sensitivity to low-valency β-glucan. Rather, we found that its intracellular domain renders human Dectin-1 reactive to low-valency β-glucan ligand. Substitution with two amino acids, Glu2 and Pro5, located in the human Dectin-1 intracellular domain was sufficient to confer sensitivity to low-valency β-glucan in mouse Dectin-1. Conversely, the introduction of mouse-specific amino acids, Lys2 and Ser5, to human Dectin-1 reduced the reactivity to low-valency β-glucan. Indeed, low-valency ligands induced a set of proinflammatory genes in human but not mouse primary dendritic cells. These results suggest that Dectin-1's intracellular domain, but not its ligand-binding domain, determines the species-specific activation profile of Dectin-1 ligands. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  7. The Intracellular Domain of the Coxsackievirus and Adenovirus Receptor Differentially Influences Adenovirus Entry.

    PubMed

    Loustalot, Fabien; Kremer, Eric J; Salinas, Sara

    2015-09-01

    The coxsackievirus and adenovirus receptor (CAR) is a cell adhesion molecule used as a docking molecule by some adenoviruses (AdVs) and group B coxsackieviruses. We previously proposed that the preferential transduction of neurons by canine adenovirus type 2 (CAV-2) is due to CAR-mediated internalization. Our proposed pathway of CAV-2 entry is in contrast to that of human AdV type 5 (HAdV-C5) in nonneuronal cells, where internalization is mediated by auxiliary receptors such as integrins. We therefore asked if in fibroblast-like cells the intracellular domain (ICD) of CAR plays a role in the internalization of the CAV-2 fiber knob (FK(CAV)), CAV-2, or HAdV-C5 when the capsid cannot engage integrins. Here, we show that in fibroblast-like cells, the CAR ICD is needed for FK(CAV) entry and efficient CAV-2 transduction but dispensable for HAdV-C5 and an HAdV-C5 capsid lacking the RGD sequence (an integrin-interacting motif) in the penton. Moreover, the deletion of the CAR ICD further impacts CAV-2 intracellular trafficking, highlighting the crucial role of CAR in CAV-2 intracellular dynamics. These data demonstrate that the CAR ICD contains sequences important for the recruitment of the endocytic machinery that differentially influences AdV cell entry. Understanding how viruses interact with the host cell surface and reach the intracellular space is of crucial importance for applied and fundamental virology. Here, we compare the role of a cell adhesion molecule (CAR) in the internalization of adenoviruses that naturally infect humans and Canidae. We show that the intracellular domain of CAR differentially regulates AdV entry and trafficking. Our study highlights the mechanistic differences that a receptor can have for two viruses from the same family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Contributions of Unique Intracellular Domains to Switchlike Biosensing by Toll-like Receptor 4*

    PubMed Central

    Daringer, Nichole M.; Schwarz, Kelly A.; Leonard, Joshua N.

    2015-01-01

    Toll-like receptors (TLRs) mediate immune recognition of both microbial infections and tissue damage. Aberrant TLR signaling promotes disease; thus, understanding the regulation of TLR signaling is of medical relevance. Although downstream mediators of TLR signaling have been identified, the detailed mechanism by which ligand binding-mediated dimerization induces downstream signaling remains poorly understood. Here, we investigate this question for TLR4, which mediates responsiveness to bacterial LPS and drives inflammatory disease. TLR4 exhibits structural and functional features that are unique among TLRs, including responsiveness to a wide variety of ligands. However, the connection between these structural features and the regulation of signaling is not clear. Here, we investigated how the unique intracellular structures of TLR4 contribute to receptor signaling. Key conclusions include the following. 1) The unique intracellular linker of TLR4 is important for achieving LPS-inducible signaling via Toll/IL-1 receptor (TIR) domain-containing adapter-inducing interferon-β (TRIF) but less so for signaling via myeloid differentiation primary response 88 (MyD88). 2) Membrane-bound TLR4 TIR domains were sufficient to induce signaling. However, introducing long, flexible intracellular linkers neither induced constitutive signaling nor ablated LPS-inducible signaling. Thus, the initiation of TLR4 signaling is regulated by a mechanism that does not require tight geometric constraints. Together, these observations necessitate refining the model of TLR4 signal initiation. We hypothesize that TLR4 may interact with an inhibitory partner in the absence of ligand, via both TIR and extracellular domains of TLR4. In this speculative model, ligand binding induces dissociation of the inhibitory partner, triggering spontaneous, switchlike TIR domain homodimerization to initiate downstream signaling. PMID:25694428

  9. Zn2+ activates large conductance Ca2+-activated K+ channel via an intracellular domain.

    PubMed

    Hou, Shangwei; Vigeland, Leif E; Zhang, Guangping; Xu, Rong; Li, Min; Heinemann, Stefan H; Hoshi, Toshinori

    2010-02-26

    Zinc is an essential trace element and plays crucial roles in normal development, often as an integral structural component of transcription factors and enzymes. Recent evidence suggests that intracellular Zn(2+) functions as a signaling molecule, mediating a variety of important physiological phenomena. However, the immediate effectors of intracellular Zn(2+) signaling are not well known. We show here that intracellular Zn(2+) potently and reversibly activates large-conductance voltage- and Ca(2+)-activated Slo1 K(+) (BK) channels. The full effect of Zn(2+) requires His(365) in the RCK1 (regulator of conductance for K(+)) domain of the channel. Furthermore, mutation of two nearby acidic residues, Asp(367) and Glu(399), also reduced activation of the channel by Zn(2+), suggesting a possible structural arrangement for Zn(2+) binding by the aforementioned residues. Extracellular Zn(2+) activated Slo1 BK channels when coexpressed with Zn(2+)-permeable TRPM7 (transient receptor potential melastatin 7) channels. The results thus demonstrate that Slo1 BK channels represent a positive and direct effector of Zn(2+) signaling and may participate in sculpting cellular response to an increase in intracellular Zn(2+) concentration.

  10. First missense mutation outside of SERAC1 lipase domain affecting intracellular cholesterol trafficking.

    PubMed

    Rodríguez-García, María Elena; Martín-Hernández, Elena; de Aragón, Ana Martínez; García-Silva, María Teresa; Quijada-Fraile, Pilar; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2016-01-01

    We report the clinical and genetic findings in a Spanish boy who presented MEGDEL syndrome, a very rare inborn error of metabolism. Whole-exome sequencing uncovered a new homozygous mutation in the serine active site containing 1 (SERAC1) gene, which is essential for both mitochondrial function and intracellular cholesterol trafficking. Functional studies in patient fibroblasts showed that p.D224G mutation affects the intracellular cholesterol trafficking. Only three missense mutations in this gene have been described before, being p.D224G the first missense mutation outside of the SERAC1 serine-lipase domain. Therefore, we conclude that the defect in cholesterol trafficking is not limited to alterations in this specific part of the protein.

  11. The dynamic range and domain-specific signals of intracellular calcium in photoreceptors.

    PubMed

    Szikra, T; Krizaj, D

    2006-08-11

    Vertebrate photoreceptors consist of strictly delimited subcellular domains: the outer segment, ellipsoid, cell body and synaptic terminal, each hosting crucial cellular functions, including phototransduction, oxidative metabolism, gene expression and transmitter release. We used optical imaging to explore the spatiotemporal dynamics of Ca(2+) signaling in non-outer segment regions of rods and cones. Sustained depolarization, designed to emulate photoreceptor activation in the darkness, evoked a standing Ca(2+) gradient in tiger salamander photoreceptors with spatially-averaged intracellular Ca(2+) concentration within synaptic terminals of approximately 2 microM and lower (approximately 750 nM) intracellular calcium concentration in the ellipsoid. Measurements from axotomized cell bodies and isolated ellipsoids showed that Ca(2+) enters the two compartments via both local L-type Ca(2+) channels and diffusion. The results from optical imaging studies were supported by immunostaining analysis. L-type voltage-operated Ca(2+) channels and plasma membrane Ca(2+) ATPases were highly expressed in synaptic terminals with progressively lower expression levels in the cell body and ellipsoid. These results show photoreceptor Ca(2+) homeostasis is controlled in a region-specific manner by direct Ca(2+) entry and diffusion as well as Ca(2+) extrusion. Moreover, quantitative measurement of intracellular calcium concentration levels in different photoreceptor compartments indicates that the dynamic range of Ca(2+) signaling in photoreceptors is approximately 40-fold, from approximately 50 nM in the light to approximately 2 microM in darkness.

  12. THE DYNAMIC RANGE AND DOMAIN-SPECIFIC SIGNALS OF INTRACELLULAR CALCIUM IN PHOTORECEPTORS

    PubMed Central

    SZIKRA, T.; KRIŽAJ, D.

    2007-01-01

    Vertebrate photoreceptors consist of strictly delimited subcellular domains: the outer segment, ellipsoid, cell body and synaptic terminal, each hosting crucial cellular functions, including phototransduction, oxidative metabolism, gene expression and transmitter release. We used optical imaging to explore the spatiotemporal dynamics of Ca2+ signaling in non-outer segment regions of rods and cones. Sustained depolarization, designed to emulate photoreceptor activation in the darkness, evoked a standing Ca2+ gradient in tiger salamander photoreceptors with spatially-averaged intracellular Ca2+ concentration within synaptic terminals of ∼2 μM and lower (∼750 nM) intracellular calcium concentration in the ellipsoid. Measurements from axotomized cell bodies and isolated ellipsoids showed that Ca2+ enters the two compartments via both local L-type Ca2+ channels and diffusion. The results from optical imaging studies were supported by immunostaining analysis. L-type voltage-operated Ca2+ channels and plasma membrane Ca2+ ATPases were highly expressed in synaptic terminals with progressively lower expression levels in the cell body and ellipsoid. These results show photoreceptor Ca2+ homeostasis is controlled in a region-specific manner by direct Ca2+ entry and diffusion as well as Ca2+ extrusion. Moreover, quantitative measurement of intracellular calcium concentration levels in different photoreceptor compartments indicates that the dynamic range of Ca2+ signaling in photoreceptors is approximately 40-fold, from ∼50 nM in the light to ∼2 μM in darkness. PMID:16682126

  13. Membrane domain formation—a key factor for targeted intracellular drug delivery

    PubMed Central

    Popov-Čeleketić, Dušan; van Bergen en Henegouwen, Paul M. P.

    2014-01-01

    Protein molecules, toxins and viruses internalize into the cell via receptor-mediated endocytosis (RME) using specific proteins and lipids in the plasma membrane. The plasma membrane is a barrier for many pharmaceutical agents to enter into the cytoplasm of target cells. In the case of cancer cells, tissue-specific biomarkers in the plasma membrane, like cancer-specific growth factor receptors, could be excellent candidates for RME-dependent drug delivery. Recent data suggest that agent binding to these receptors at the cell surface, resulting in membrane domain formation by receptor clustering, can be used for the initiation of RME. As a result, these pharmaceutical agents are internalized into the cells and follow different routes until they reach their final intracellular targets like lysosomes or Golgi. We propose that clustering induced formation of plasma membrane microdomains enriched in receptors, sphingolipids, and inositol lipids, leads to membrane bending which functions as the onset of RME. In this review we will focus on the role of domain formation in RME and discuss potential applications for targeted intracellular drug delivery. PMID:25520666

  14. Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus

    PubMed Central

    Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei

    1999-01-01

    We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199

  15. Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p.

    PubMed

    Inoue, Hiroki; Baba, Takashi; Sato, Seiichi; Ohtsuki, Ryuya; Takemori, Aya; Watanabe, Takuya; Tagaya, Mitsuo; Tani, Katsuko

    2012-04-01

    Members of the intracellular phospholipase A1 family of proteins have been implicated in organelle biogenesis and membrane trafficking. The mammalian family comprises three members: phosphatidic acid-preferring phospholipase A1 (PA-PIA1)/DDHD1, p125/Sec23ip and KIAA0725p/DDHD2, all of which have a DDHD domain. PA-PLAI is mostly cytosolic, while KIAA0725p and p125 are more stably associated with the Golgi/endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and ER exit sites, respectively. Here we show that KIAAO725p and p125 are novel phosphoinositide-binding proteins. Deletion and mutational analyses of KIAAO725p suggested that a sterile alpha-motif (SAM), which is also present inp125, but not in cytosolic PA-PLAI, and the following DDHD domain comprise a minimal region for phosphatidylinositol 4-phosphate (Pl(4)P)-binding. A construct with mutations in the positively charged cluster of the SAM domain is defective in both phosphoinositide-binding and Golgi/ERGIC targeting. Consistent with the view that the Pl(4)P-binding is important for the membrane association of KIAA0725p, expression of phosphoinositide phosphatase Sacd reduces the association of expressed KIAAO725p with membranes. In addition, we show that deletion of the DDHD domain or introduction of point mutations at the conserved aspartate or histidine residues in the domain abolishes the phospholipase activity of KIAAO725p and PA-PLA1. Together, our results suggest that KIAAO725p is targeted to specific organelle membranes in a phosphoinositide-dependent manner, and that its SAM and DDHD domains are essential for its phosphoinositide-binding and phospholipase activity.

  16. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation

    SciTech Connect

    Shi, Fumin; Telesco, Shannon E.; Liu, Yingting; Radhakrishnan, Ravi; Lemmon, Mark A.

    2010-06-21

    ErbB3/HER3 is one of four members of the human epidermal growth factor receptor (EGFR/HER) or ErbB receptor tyrosine kinase family. ErbB3 binds neuregulins via its extracellular region and signals primarily by heterodimerizing with ErbB2/HER2/Neu. A recently appreciated role for ErbB3 in resistance of tumor cells to EGFR/ErbB2-targeted therapeutics has made it a focus of attention. However, efforts to inactivate ErbB3 therapeutically in parallel with other ErbB receptors are challenging because its intracellular kinase domain is thought to be an inactive pseudokinase that lacks several key conserved (and catalytically important) residues - including the catalytic base aspartate. We report here that, despite these sequence alterations, ErbB3 retains sufficient kinase activity to robustly trans-autophosphorylate its intracellular region - although it is substantially less active than EGFR and does not phosphorylate exogenous peptides. The ErbB3 kinase domain binds ATP with a K{sub d} of approximately 1.1 {micro}M. We describe a crystal structure of ErbB3 kinase bound to an ATP analogue, which resembles the inactive EGFR and ErbB4 kinase domains (but with a shortened {alpha}C-helix). Whereas mutations that destabilize this configuration activate EGFR and ErbB4 (and promote EGFR-dependent lung cancers), a similar mutation conversely inactivates ErbB3. Using quantum mechanics/molecular mechanics simulations, we delineate a reaction pathway for ErbB3-catalyzed phosphoryl transfer that does not require the conserved catalytic base and can be catalyzed by the 'inactive-like'configuration observed crystallographically. These findings suggest that ErbB3 kinase activity within receptor dimers may be crucial for signaling and could represent an important therapeutic target.

  17. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation.

    PubMed

    Shi, Fumin; Telesco, Shannon E; Liu, Yingting; Radhakrishnan, Ravi; Lemmon, Mark A

    2010-04-27

    ErbB3/HER3 is one of four members of the human epidermal growth factor receptor (EGFR/HER) or ErbB receptor tyrosine kinase family. ErbB3 binds neuregulins via its extracellular region and signals primarily by heterodimerizing with ErbB2/HER2/Neu. A recently appreciated role for ErbB3 in resistance of tumor cells to EGFR/ErbB2-targeted therapeutics has made it a focus of attention. However, efforts to inactivate ErbB3 therapeutically in parallel with other ErbB receptors are challenging because its intracellular kinase domain is thought to be an inactive pseudokinase that lacks several key conserved (and catalytically important) residues-including the catalytic base aspartate. We report here that, despite these sequence alterations, ErbB3 retains sufficient kinase activity to robustly trans-autophosphorylate its intracellular region--although it is substantially less active than EGFR and does not phosphorylate exogenous peptides. The ErbB3 kinase domain binds ATP with a K(d) of approximately 1.1 microM. We describe a crystal structure of ErbB3 kinase bound to an ATP analogue, which resembles the inactive EGFR and ErbB4 kinase domains (but with a shortened alphaC-helix). Whereas mutations that destabilize this configuration activate EGFR and ErbB4 (and promote EGFR-dependent lung cancers), a similar mutation conversely inactivates ErbB3. Using quantum mechanics/molecular mechanics simulations, we delineate a reaction pathway for ErbB3-catalyzed phosphoryl transfer that does not require the conserved catalytic base and can be catalyzed by the "inactive-like" configuration observed crystallographically. These findings suggest that ErbB3 kinase activity within receptor dimers may be crucial for signaling and could represent an important therapeutic target.

  18. Intracellular domains interactions and gated motions of IKS potassium channel subunits

    PubMed Central

    Haitin, Yoni; Wiener, Reuven; Shaham, Dana; Peretz, Asher; Cohen, Enbal Ben-Tal; Shamgar, Liora; Pongs, Olaf; Hirsch, Joel A; Attali, Bernard

    2009-01-01

    Voltage-gated K+ channels co-assemble with auxiliary β subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 β subunits generates the repolarizing K+ current IKS. However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studied the interactions and voltage-dependent motions of IKS channel intracellular domains, using fluorescence resonance energy transfer combined with voltage-clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C-terminus interacts with the coiled-coil helix C of the Kv7.1 tetramerization domain. This association is important for IKS channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant-negative C-terminal domain. On channel opening, the C-termini of Kv7.1 and KCNE1 come close together. Co-expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K+ currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C-termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation. PMID:19521339

  19. Intracellular domains interactions and gated motions of I(KS) potassium channel subunits.

    PubMed

    Haitin, Yoni; Wiener, Reuven; Shaham, Dana; Peretz, Asher; Cohen, Enbal Ben-Tal; Shamgar, Liora; Pongs, Olaf; Hirsch, Joel A; Attali, Bernard

    2009-07-22

    Voltage-gated K(+) channels co-assemble with auxiliary beta subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 beta subunits generates the repolarizing K(+) current I(KS). However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studied the interactions and voltage-dependent motions of I(KS) channel intracellular domains, using fluorescence resonance energy transfer combined with voltage-clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C-terminus interacts with the coiled-coil helix C of the Kv7.1 tetramerization domain. This association is important for I(KS) channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant-negative C-terminal domain. On channel opening, the C-termini of Kv7.1 and KCNE1 come close together. Co-expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K(+) currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C-termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation.

  20. Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis.

    PubMed

    Radhakrishnan, Girish K; Harms, Jerome S; Splitter, Gary A

    2011-10-01

    TIR (Toll/interleukin-1 receptor) domain-containing proteins play a crucial role in innate immunity in eukaryotes. Brucella is a highly infectious intracellular bacterium that encodes a TIR domain protein (TcpB) to subvert host innate immune responses to establish a beneficial niche for pathogenesis. TcpB inhibits NF-κB (nuclear factor κB) activation and pro-inflammatory cytokine secretions mediated by TLR (Toll-like receptor) 2 and TLR4. In the present study, we have demonstrated that TcpB modulates microtubule dynamics by acting as a stabilization factor. TcpB increased the rate of nucleation as well as the polymerization phases of microtubule formation in a similar manner to paclitaxel. TcpB could efficiently inhibit nocodazole- or cold-induced microtubule disassembly. Microtubule stabilization by TcpB is attributed to the BB-loop region of the TIR domain, and a point mutation affected the microtubule stabilization as well as the TLR-suppression properties of TcpB.

  1. Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses

    PubMed Central

    Nguyen, Quynh-Anh; Horn, Meryl E; Nicoll, Roger A

    2016-01-01

    Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively. DOI: http://dx.doi.org/10.7554/eLife.19236.001 PMID:27805570

  2. Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses.

    PubMed

    Nguyen, Quynh-Anh; Horn, Meryl E; Nicoll, Roger A

    2016-11-02

    Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively.

  3. Intracellular catalytic domain of symbiosis receptor kinase hyperactivates spontaneous nodulation in absence of rhizobia.

    PubMed

    Saha, Sudip; Dutta, Ayan; Bhattacharya, Avisek; DasGupta, Maitrayee

    2014-12-01

    Symbiosis Receptor Kinase (SYMRK), a member of the Nod factor signaling pathway, is indispensible for both nodule organogenesis and intracellular colonization of symbionts in rhizobia-legume symbiosis. Here, we show that the intracellular kinase domain of a SYMRK (SYMRK-kd) but not its inactive or full-length version leads to hyperactivation of the nodule organogenic program in Medicago truncatula TR25 (symrk knockout mutant) in the absence of rhizobia. Spontaneous nodulation in TR25/SYMRK-kd was 6-fold higher than rhizobia-induced nodulation in TR25/SYMRK roots. The merged clusters of spontaneous nodules indicated that TR25 roots in the presence of SYMRK-kd have overcome the control over both nodule numbers and their spatial position. In the presence of rhizobia, SYMRK-kd could rescue the epidermal infection processes in TR25, but colonization of symbionts in the nodule interior was significantly compromised. In summary, ligand-independent deregulated activation of SYMRK hyperactivates nodule organogenesis in the absence of rhizobia, but its ectodomain is required for proper symbiont colonization.

  4. Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain

    PubMed Central

    Ahn, Ji-Seon; Ann, Eun-Jung; Kim, Mi-Yeon; Yoon, Ji-Hye; Lee, Hye-Jin; Jo, Eun-Hye; Lee, Keesook; Lee, Ji Shin; Park, Hee-Sae

    2016-01-01

    Autophagy is a highly conserved mechanism that degrades long-lived proteins and dysfunctional organelles, and contributes to cell fate. In this study, autophagy attenuates Notch1 signaling by degrading the Notch1 intracellular domain (Notch1-IC). Nutrient-deprivation promotes Notch1-IC phosphorylation by MEKK1 and phosphorylated Notch1-IC is recognized by Fbw7 E3 ligase. The ubiquitination of Notch1-IC by Fbw7 is essential for the interaction between Notch1-IC and p62 and for the formation of aggregates. Inhibition of Notch1 signaling prevents the transformation of breast cancer cells, tumor progression, and metastasis. The expression of Notch1 and p62 is inversely correlated with Beclin1 expression in human breast cancer patients. These results show that autophagy inhibits Notch1 signaling by promoting Notch1-IC degradation and therefore plays a role in tumor suppression. PMID:27806347

  5. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein.

    PubMed

    Zhang, Yanfeng; Gao, Xiaoli; Michael Garavito, R

    2011-04-22

    The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain (∼310 amino acids), a single transmembrane domain (∼20 amino acids) and an intracellular domain (∼19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain (∼30 amino acids), the IC domain is also involved in assembly of V(0) portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0Å (maltose-free) and 2.15Å (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.

  6. Emerin suppresses Notch signaling by restricting the Notch intracellular domain to the nuclear membrane.

    PubMed

    Lee, Byongsun; Lee, Tae-Hee; Shim, Jaekyung

    2017-02-01

    Emerin is an inner nuclear membrane protein that is involved in maintaining the mechanical integrity of the nuclear membrane. Increasing evidence supports the involvement of emerin in the regulation of gene expression; however, its precise function remains to be elucidated. Here, we show that emerin downregulated genes downstream of Notch signaling, which are activated exclusively by the Notch intracellular domain (NICD). Deletion mutant experiments revealed that the transmembrane domain of emerin is important for the inhibition of Notch signaling. Emerin interacted directly and colocalized with the NICD at the nuclear membrane. Emerin knockdown induced the phosphorylation of ERK and AKT, increased endogenous Notch signaling, and inhibited hydrogen peroxide-induced apoptosis in HeLa cells. Notably, the downregulation of barrier-to-autointegration factor (BAF) or lamin A/C increased Notch signaling by inducing the release of emerin into the cytosol, implying that nuclear membrane-bound emerin acts as an endogenous inhibitor of Notch signaling. Taken together, our results indicate that emerin negatively regulates Notch signaling by promoting the retention of the NICD at the nuclear membrane. This mechanism could constitute a new therapeutic target for the treatment of emerin-related diseases.

  7. Intracellular Expression of a Single Domain Antibody Reduces Cytotoxicity of 15-Acetyldeoxynivalenol in Yeast*

    PubMed Central

    Doyle, Patrick J.; Saeed, Hanaa; Hermans, Anne; Gleddie, Steve C.; Hussack, Greg; Arbabi-Ghahroudi, Mehdi; Seguin, Charles; Savard, Marc E.; MacKenzie, C. Roger; Hall, J. Christopher

    2009-01-01

    15-Acetyldeoxynivalenol (15-AcDON) is a low molecular weight sesquiterpenoid trichothecene mycotoxin associated with Fusarium ear rot of maize and Fusarium head blight of small grain cereals. The accumulation of mycotoxins such as deoxynivalenol (DON) and 15-AcDON within harvested grain is subject to stringent regulation as both toxins pose dietary health risks to humans and animals. These toxins inhibit peptidyltransferase activity, which in turn limits eukaryotic protein synthesis. To assess the ability of intracellular antibodies (intrabodies) to modulate mycotoxin-specific cytotoxocity, a gene encoding a camelid single domain antibody fragment (VHH) with specificity and affinity for 15-AcDON was expressed in the methylotropic yeast Pichia pastoris. Cytotoxicity and VHH immunomodulation were assessed by continuous measurement of cellular growth. At equivalent doses, 15-AcDON was significantly more toxic to wild-type P. pastoris than was DON. In turn, DON was orders of magnitude more toxic than 3-acetyldeoxynivalenol. Intracellular expression of a mycotoxin-specific VHH within P. pastoris conveyed significant (p = 0.01) resistance to 15-AcDON cytotoxicity at doses ranging from 20 to 100 μg·ml−1. We also documented a biochemical transformation of DON to 15-AcDON to account for the attenuation of DON cytotoxicity at 100 and 200 μg·ml−1. The proof of concept established within this eukaryotic system suggests that in planta VHH expression may lead to enhanced tolerance to mycotoxins and thereby limit Fusarium infection of commercial agricultural crops. PMID:19783651

  8. Tyr(682) in the intracellular domain of APP regulates amyloidogenic APP processing in vivo.

    PubMed

    Barbagallo, Alessia P M; Weldon, Richard; Tamayev, Robert; Zhou, Dawang; Giliberto, Luca; Foreman, Oded; D'Adamio, Luciano

    2010-11-16

    The pathogenesis of Alzheimer's disease is attributed to misfolding of Amyloid-β (Aβ) peptides. Aβ is generated during amyloidogenic processing of Aβ-precursor protein (APP). Another characteristic of the AD brain is increased phosphorylation of APP amino acid Tyr(682). Tyr(682) is part of the Y(682)ENPTY(687) motif, a docking site for interaction with cytosolic proteins that regulate APP metabolism and signaling. For example, normal Aβ generation and secretion are dependent upon Tyr(682) in vitro. However, physiological functions of Tyr(682) are unknown. To this end, we have generated an APP Y682G knock-in (KI) mouse to help dissect the role of APP Tyr(682) in vivo. We have analyzed proteolytic products from both the amyloidogenic and non-amyloidogenic processing of APP and measure a profound shift towards non-amyloidogenic processing in APP KI mice. In addition, we demonstrate the essential nature of amino acid Tyr(682) for the APP/Fe65 interaction in vivo. Together, these observations point to an essential role of APP intracellular domain for normal APP processing and function in vivo, and provide rationale for further studies into physiological functions associated with this important phosphorylation site.

  9. Notch Intracellular Domain (NICD) Suppresses Long-Term Memory Formation in Adult Drosophila Flies.

    PubMed

    Zhang, Jiabin; Yin, Jerry C P; Wesley, Cedric S

    2015-08-01

    Notch receptor signaling is evolutionarily conserved and well known for its roles in animal development. Many studies in Drosophila have shown that Notch also performs important functions in memory formation in adult flies. An intriguing observation is that increased expression of the full-length Notch receptor (Nfull) triggers long-term memory (LTM) formation even after very weak training (single training). Canonical Notch signaling is mediated by Notch intracellular domain (NICD), but it is not known whether increased expression of NICD recapitulates the LTM enhancement induced by increased Nfull expression. Here, we report that increased NICD expression either has no impact on LTM formation or suppresses it. Furthermore, it either has no impact or decreases both the levels and activity of cAMP response element binding protein, a key factor supporting LTM. These results indicate that NICD signaling is not sufficient to explain Nfull-induced LTM enhancement. Our findings may also shed light on the molecular mechanisms of memory loss in neurological diseases associated with increased NICD expression and canonical Notch signaling.

  10. Distinct intracellular sAC-cAMP domains regulate ER calcium signaling and OXPHOS function.

    PubMed

    Valsecchi, Federica; Konrad, Csaba; D'Aurelio, Marilena; Ramos-Espiritu, Lavoisier S; Stepanova, Anna; Burstein, Suzanne R; Galkin, Alexander; Magranè, Jordi; Starkov, Anatoly; Buck, Jochen; Levin, Lonny R; Manfredi, Giovanni

    2017-09-01

    cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC KO fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC KO cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca(2+) release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces its biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, ER Ca(2+) release is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca(2+) signaling. © 2017. Published by The Company of Biologists Ltd.

  11. The augmentation of intracellular delivery of peptide therapeutics by artificial protein transduction domains.

    PubMed

    Yoshikawa, Tomoaki; Sugita, Toshiki; Mukai, Yohei; Abe, Yasuhiro; Nakagawa, Shinsaku; Kamada, Haruhiko; Tsunoda, Shin-ichi; Tsutsumi, Yasuo

    2009-07-01

    Protein transduction domains (PTDs), such as HIV-derived Tat, have been successfully used as functional biomaterials for intracellular delivery of anti-cancer macromolecular drugs (protein, peptides, and oligonucleotides). Although there were therefore great expectations regarding the therapeutic potential of PTDs for the development of anti-cancer therapeutics, their clinical application so far has been extremely limited because of the relatively high concentrations required to mediate any effects on cancer cells in vitro or in vivo. In this context, improving the transduction efficiency of PTDs using phage display-based molecular evolution techniques may be useful for creating artificial PTDs with high efficiency and safety. Here, we report an evaluation of transduction efficiency and toxicity of such artificial PTDs (designated mT02 and mT03) compared with Tat. The internalization of mT02 was the most rapid and efficient by a mechanism different from the usual macropinocytosis. Furthermore, we found that artificial PTDs fused with survivin antagonistic peptide potentiate tumor cell-cytostatic activity. Thus, the results of this work provide new insights for designing new-generation peptide therapeutics for a wide variety of cancers as well as those expressing survivin.

  12. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein

    SciTech Connect

    Zhang, Yanfeng; Gao, Xiaoli; Michael Garavito, R.

    2011-04-22

    Highlights: {yields} Crystal structure of the intracellular domain of (pro)renin receptor (PRR-IC) as MBP fusion protein at 2.0 A (maltose-free) and 2.15 A (maltose-bound). {yields} MBP fusion protein is a dimer in crystals in the presence and absence of maltose. {yields} PRR-IC domain is responsible for the dimerization of the fusion protein. {yields} Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermolecular interactions, suggesting a role for the PRR-IC domain in PRR dimerization. -- Abstract: The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain ({approx}310 amino acids), a single transmembrane domain ({approx}20 amino acids) and an intracellular domain ({approx}19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain ({approx}30 amino acids), the IC domain is also involved in assembly of V{sub 0} portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0 A (maltose-free) and 2.15 A (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR

  13. AICD: Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program

    NASA Astrophysics Data System (ADS)

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, and a listing of program output including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  14. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  15. EndoU is a novel regulator of AICD during peripheral B cell selection

    PubMed Central

    Poe, Jonathan C.; Kountikov, Evgueni I.; Lykken, Jacquelyn M.; Natarajan, Abirami; Marchuk, Douglas A.

    2014-01-01

    Balanced transmembrane signals maintain a competent peripheral B cell pool limited in self-reactive B cells that may produce pathogenic autoantibodies. To identify molecules regulating peripheral B cell survival and tolerance to self-antigens (Ags), a gene modifier screen was performed with B cells from CD22-deficient C57BL/6 (CD22−/−[B6]) mice that undergo activation-induced cell death (AICD) and fail to up-regulate c-Myc expression after B cell Ag receptor ligation. Likewise, lysozyme auto-Ag–specific B cells in IgTg hen egg lysozyme (HEL) transgenic mice inhabit the spleen but undergo AICD after auto-Ag encounter. This gene modifier screen identified EndoU, a single-stranded RNA-binding protein of ancient origin, as a major regulator of B cell survival in both models. EndoU gene disruption prevents AICD and normalizes c-Myc expression. These findings reveal that EndoU is a critical regulator of an unexpected and novel RNA-dependent pathway controlling peripheral B cell survival and Ag responsiveness that may contribute to peripheral B cell tolerance. PMID:24344237

  16. Intracellular Delivery of Peptidyl Ligands by Reversible Cyclization: Discovery of a PDZ Domain Inhibitor that Rescues CFTR Activity**

    PubMed Central

    Qian, Ziqing; Xu, Xiaohua; Amacher, Jeanine F.; Madden, Dean R.; Cormet-Boyaka, Estelle

    2015-01-01

    We report a general strategy for intracellular delivery of linear peptidyl ligands by fusing them with a cell-penetrating peptide and cyclizing the fusion peptides through a disulfide bond. The resulting cyclic peptides are cell permeable and have improved proteolytic stability. Once inside the cell, the disulfide bond is reduced to produce linear, biologically active peptides. This strategy was applied to generate a cell-permeable peptide substrate for real-time detection of intracellular caspase activities during apoptosis and a CAL-PDZ domain inhibitor for potential treatment of cystic fibrosis. PMID:25785567

  17. Structural fold, conservation and Fe(II) binding of the intracellular domain of prokaryote FeoB

    SciTech Connect

    Hung, Kuo-Wei; Chang, Yi-Wei; Eng, Edward T.; Chen, Jai-Hui; Chen, Yi-Chung; Sun, Yuh-Ju; Hsiao, Chwan-Deng; Dong, Gang; Spasov, Krasimir A.; Unger, Vinzenz M.; Huang, Tai-huang

    2010-09-17

    FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain's two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.

  18. The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation

    PubMed Central

    Park, Hyun Ho; Lo, Yu-Chih; Lin, Su-Chang; Wang, Liwei; Yang, Jin Kuk; Wu, Hao

    2010-01-01

    The death domain (DD) superfamily comprising the death domain (DD) subfamily, the death effector domain (DED) subfamily, the caspase recruitment domain (CARD) subfamily and the pyrin domains (PYD) subfamily is one of the largest domain superfamilies. By mediating homotypic interactions within each domain subfamily, these proteins play important roles in the assembly and activation of apoptotic and inflammatory complexes. In this article, we review the molecular complexes that are assembled by these proteins, the structural and biochemical features of these domains and the molecular interactions mediated by them. By analyzing the potential molecular basis for the function of these domains, we hope to provide a comprehensive understanding on the function, structure, interaction and evolution of this important family of domains. PMID:17201679

  19. Clinical significance of NOTCH1 intracellular cytoplasmic domain translocation into the nucleus in gastric cancer

    PubMed Central

    Saito, Shinichiro; Ishiguro, Hideyuki; Kimura, Masahiro; Ogawa, Ryo; Miyai, Hirotaka; Tanaka, Tatsuya; Mizoguchi, Koji; Takeyama, Hiromitsu

    2016-01-01

    Recent studies have shown constitutive activation of the Notch signaling pathway in various types of malignancies. However, it remains unclear whether this signaling pathway is activated in gastric cancer. In the present study, the aim was to investigate the role of Notch signaling in gastric cancer by investigating the subcellular localization of Notch-associated proteins in tissue samples from gastric cancer patients. Samples were obtained from 115 gastric cancer patients who had undergone surgery at the Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science without pre-operative chemotherapy or radiation. Subsequently the correlation between translocation of NOTCH1 intracellular cytoplasmic domain (NICD) into the nucleus (as measured by immunostaining) and survival in gastric cancer patients after surgery was investigated. The results were analyzed in reference to the patients' clinicopathological characteristics and the effects of these results on patient prognosis were determined. Significant correlations were observed between NICD nuclear localization and clinicopathological characteristics, such as tumor status (T factor), lymph node status (N factor), pathological stage and differentiation status. No significant correlations were observed between NICD nuclear localization and age, gender, tumor location, vein invasion or lymphatic invasion. Patients with >30% of cancer cell nuclei positively stained for NICD (as revealed by immunostaining) were associated with a significantly shorter survival following surgery than patients with <30% NICD-positive cancer cell nuclei (log-rank test, P=0.0194). Univariate analysis revealed that among the clinicopathological factors examined, T factor [risk rate (RR)=10.870; P=0.0016], N factor (RR=41.667; P=0.0003), lymphatic invasion (RR=13.158; P=0.0125), vein invasion (RR=25.000; P= 0.0019) and translocation of NICD to the nucleus (RR=3.937; P=0.0312) were all identified to be

  20. The intracellular domain of teneurin-1 interacts with MBD1 and CAP/ponsin resulting in subcellular codistribution and translocation to the nuclear matrix

    SciTech Connect

    Nunes, Samantha M.; Ferralli, Jacqueline; Choi, Karen; Brown-Luedi, Marianne; Minet, Ariane D.; Chiquet-Ehrismann, Ruth . E-mail: chiquet@fmi.ch

    2005-04-15

    Teneurin-1 is a type II transmembrane protein expressed in neurons of the developing and adult central nervous system. To investigate the intracellular signaling of teneurin-1, we searched for proteins interacting with its intracellular domain. One of the proteins identified is the c-Cbl-associated protein CAP/ponsin, an adaptor protein containing SH3 domains. This interaction results on one hand in the recruitment of the soluble intracellular domain of teneurin-1 to the cell membrane enriched in CAP/ponsin. On the other hand, it leads to the translocation of CAP/ponsin to the nucleus, the major site of accumulation of the intracellular domain of teneurin-1. The second interacting protein identified is the methyl-CpG binding protein MBD1. In the nucleus, the intracellular domain of teneurin-1 colocalizes with this transcriptional repressor in foci associated with the nuclear matrix. We propose that these interactions are part of a specific signaling pathway. Evidence for cleavage and nuclear translocation of the intracellular domain has been obtained by the detection of endogenous teneurin-1 immunoreactivity in nuclear speckles in chick embryo fibroblasts. Furthermore, in the nuclear matrix fraction of these cells as well as in cells expressing a hormone-inducible full-length teneurin-1 protein, a teneurin-1 fragment of identical size could be detected as in cells transfected with the intracellular domain alone.

  1. Glycogen synthase kinase 3-{beta} phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization

    SciTech Connect

    Han, Xiangzi; Ju, Ji-hyun; Shin, Incheol

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Novel S/T-P-S/T domains were identified in NICD. Black-Right-Pointing-Pointer Phosphorylation of NICD on the S/T-P-S/T domains induced nuclear localization. Black-Right-Pointing-Pointer GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. -- Abstract: We identified two S/T-P-S/T domains (2122-2124, 2126-2128) inducing Notch intracellular domain (NICD) nuclear localization. The GFP-NICD (1963-2145) fusion protein deletion mutant without classical NLS was localized in the nucleus like the full length GFP-NICD. However, quadruple substitution mutant (T2122A T2124A S2126A T2128A) showed increased cytoplasmic localization. GSK-3{beta} enhanced nuclear localization and transcriptional activity of WT NICD but not of quadruple substitution mutant. In vitro kinase assays revealed that GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. These results suggest that the novel S/T-P-S/T domain, phosphorylated by GSK-3{beta} is also involved in the nuclear localization of NICD as well as classical NLS.

  2. Long distance effect on ligand-gated ion channels extracellular domain may affect interactions with the intracellular machinery.

    PubMed

    Garret, Maurice; Boué-Grabot, Eric; Taly, Antoine

    2014-01-01

    Modulation of receptor trafficking is critical for controlling neurotransmission. A γ2(R43Q) point mutation on GABAA receptor subunit is linked to epilepsy in human. We recently analyzed the effect of this amino-acid substitution on GABAA receptor trafficking and showed that this mutation as well as agonist application, both affecting GABAA receptor extracellular domain, have an effect on receptor endocytosis. By comparing homology models based on ligand gated ion channels in their active and resting states, we reveal that the γ2R43 domain is located in a loop that is affected by motion resulting from receptor activation. Taken together, these results suggest that endocytosis of GABAA receptors is linked to agonist induced conformational changes. We propose that ligand or modulator binding is followed by a whole chain of interconnections, including the intracellular domain, that may influence ligand-gated channel trafficking.

  3. Long distance effect on ligand-gated ion channels extracellular domain may affect interactions with the intracellular machinery

    PubMed Central

    Garret, Maurice; Boué-Grabot, Eric; Taly, Antoine

    2014-01-01

    Modulation of receptor trafficking is critical for controlling neurotransmission. A γ2(R43Q) point mutation on GABAA receptor subunit is linked to epilepsy in human. We recently analyzed the effect of this amino-acid substitution on GABAA receptor trafficking and showed that this mutation as well as agonist application, both affecting GABAA receptor extracellular domain, have an effect on receptor endocytosis. By comparing homology models based on ligand gated ion channels in their active and resting states, we reveal that the γ2R43 domain is located in a loop that is affected by motion resulting from receptor activation. Taken together, these results suggest that endocytosis of GABAA receptors is linked to agonist induced conformational changes. We propose that ligand or modulator binding is followed by a whole chain of interconnections, including the intracellular domain, that may influence ligand-gated channel trafficking. PMID:25254078

  4. EpCAM Intracellular Domain Promotes Porcine Cell Reprogramming by Upregulation of Pluripotent Gene Expression via Beta-catenin Signaling

    PubMed Central

    Yu, Tong; Ma, Yangyang; Wang, Huayan

    2017-01-01

    Previous study showed that expression of epithelial cell adhesion molecule (EpCAM) was significantly upregulated in porcine induced pluripotent stem cells (piPSCs). However, the regulatory mechanism and the downstream target genes of EpCAM were not well investigated. In this study, we found that EpCAM was undetectable in fibroblasts, but highly expressed in piPSCs. Promoter of EpCAM was upregulated by zygotic activated factors LIN28, and ESRRB, but repressed by maternal factors OCT4 and SOX2. Knocking down EpCAM by shRNA significantly reduced the pluripotent gene expression. Conversely, overexpression of EpCAM significantly increased the number of alkaline phosphatase positive colonies and elevated the expression of endogenous pluripotent genes. As a key surface-to-nucleus factor, EpCAM releases its intercellular domain (EpICD) by a two-step proteolytic processing sequentially. Blocking the proteolytic processing by inhibitors TAPI-1 and DAPT could reduce the intracellular level of EpICD and lower expressions of OCT4, SOX2, LIN28, and ESRRB. We noticed that increasing intracellular EpICD only was unable to improve activity of EpCAM targeted genes, but by blocking GSK-3 signaling and stabilizing beta-catenin signaling, EpICD could then significantly stimulate the promoter activity. These results showed that EpCAM intracellular domain required beta-catenin signaling to enhance porcine cell reprogramming. PMID:28393933

  5. PRR repeats in the intracellular domain of KISS1R are important for its export to cell membrane.

    PubMed

    Chevrier, Lucie; de Brevern, Alexandre; Hernandez, Eva; Leprince, Jérome; Vaudry, Hubert; Guedj, Anne Marie; de Roux, Nicolas

    2013-06-01

    Inactivating mutations of KISS-1 receptor (KISS1R) have been recently described as a rare cause of isolated hypogonadotropic hypogonadism transmitted as a recessive trait. Few mutations have been described, and the structure-function relationship of KISS1R remains poorly understood. Here, we have taken advantage of the discovery of a novel mutation of KISS1R to characterize the structure and function of an uncommon protein motif composed of 3 proline-arginine-arginine (PRR) repeats located within the intracellular domain. A heterozygous insertion of 1 PRR repeat in-frame with 3 PRR repeats leading to synthesis of a receptor bearing 4 PRR repeats (PRR-KISS1R) was found in the index case. Functional analysis of PRR-KISS1R showed a decrease of the maximal response to kisspeptin stimulation, associated to a lower cell surface expression without modification of total expression. PRR-KISS1R exerts a dominant negative effect on the synthesis of the wild-type (WT)-KISS1R. This effect was due to the nature of inserted residues but also to the difference of the length of the intracellular domain between PRR-KISS1R and WT-KISS1R. A molecular dynamic analysis showed that the additional PRR constrained this arginine-rich region into a polyproline type II helix. Altogether, this study shows that a heterozygous insertion in KISS1R may lead to hypogonadotropic hypogonadism by a dominant negative effect on the WT receptor. An additional PRR repeat into a proline-arginine-rich motif can dramatically changed the conformation of the intracellular domain of KISS1R and its probable interaction with partner proteins.

  6. Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2

    PubMed Central

    Mei, Zhu-Zhong; Xia, Rong; Beech, David J; Jiang, Lin-Hua

    2006-01-01

    TRPM2 channels, activated by adenosine diphosphoribose (ADPR) and related molecules, are assembled as oligomers and most likely tetramers. However, the molecular determinants driving the subunit interaction and assembly of the TRPM2 channels are not well defined. Here we examined, using site-directed mutagenesis in conjunction with co-immunoprecipitation and patch clamp recording, the role of a coiled-coil domain in the intracellular C-terminus of TRPM2 subunit in the subunit interaction and the channel assembly. Deletion of the coiled-coil domain resulted in severe disruption of the subunit interaction and substantial loss of the ADPR-evoked channel currents. Individual or combined mutations to glutamine of the hydrophobic residues at positions a and d of the abcdef heptad repeat, key residues for protein-protein interaction, significantly reduced the subunit interaction and the channel currents; the mutational effects on the subunit interaction and the channel currents were clearly correlated. Furthermore, deletion of the coiled-coil domain in a pore mutant subunit abolished its dominant negative phenotypic functional suppression. These results provide strong evidence that the coiled-coil domain is critically engaged in the TRPM2 subunit interaction and such interaction is required for assembly of functional TRPM2 channel. The coiled-coil domain, which is highly conserved within the TRPM subfamily, may serve as a general structural element governing the assembly of TRPM channels. PMID:17060318

  7. The Amyloid Precursor Protein (APP) Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different Domains in the Ts65Dn Mouse Model for Down Syndrome*

    PubMed Central

    Trazzi, Stefania; Fuchs, Claudia; Valli, Emanuele; Perini, Giovanni; Bartesaghi, Renata; Ciani, Elisabetta

    2013-01-01

    Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS. PMID:23740250

  8. The γ-secretase-generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling

    PubMed Central

    Roncarati, Roberta; Šestan, Nenad; Scheinfeld, Meir H.; Berechid, Bridget E.; Lopez, Peter A.; Meucci, Olimpia; McGlade, Jane C.; Rakic, Pasko; D'Adamio, Luciano

    2002-01-01

    The β-amyloid precursor protein (APP) and the Notch receptor undergo intramembranous proteolysis by the Presenilin-dependent γ-secretase. The cleavage of APP by γ-secretase releases amyloid-β peptides, which have been implicated in the pathogenesis of Alzheimer's disease, and the APP intracellular domain (AID), for which the function is not yet well understood. A similar γ-secretase-mediated cleavage of the Notch receptor liberates the Notch intracellular domain (NICD). NICD translocates to the nucleus and activates the transcription of genes that regulate the generation, differentiation, and survival of neuronal cells. Hence, some of the effects of APP signaling and Alzheimer's disease pathology may be mediated by the interaction of APP and Notch. Here, we show that membrane-tethered APP binds to the cytosolic Notch inhibitors Numb and Numb-like in mouse brain lysates. AID also binds Numb and Numb-like, and represses Notch activity when released by APP. Thus, γ-secretase may have opposing effects on Notch signaling; positive by cleaving Notch and generating NICD, and negative by processing APP and generating AID, which inhibits the function of NICD. PMID:12011466

  9. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells.

    PubMed

    Lu, Yinzhong; Wan, Jun; Yang, Zhifeng; Lei, Xiling; Niu, Qi; Jiang, Lanxin; Passtoors, Willemijn M; Zang, Aiping; Fraering, Patrick C; Wu, Fang

    2017-04-01

    Deregulation of the TAM (TYRO3, AXL, and MERTK) family of receptor tyrosine kinases (RTKs) has recently been demonstrated to predominately promote survival and chemoresistance of cancer cells. Intramembrane proteolysis mediated by presenilin/γ-secretase is known to regulate the homeostasis of some RTKs. In the present study, we demonstrate that AXL, but not TYRO3 or MERTK, is efficiently and sequentially cleaved by α- and γ-secretases in various types of cancer cell lines. Proteolytic processing of AXL redirected signaling toward a secretase-mediated pathway, away from the classic, well-known, ligand-dependent canonical RTK signaling pathway. The AXL intracellular domain cleavage product, but not full-length AXL, was further shown to translocate into the nucleus via a nuclear localization sequence that harbored a basic HRRKK motif. Of interest, we found that the γ-secretase-uncleavable AXL mutant caused an elevated chemoresistance in non-small-cell lung cancer cells. Altogether, our findings suggest that AXL can undergo sequential processing mediated by various proteases kept in a homeostatic balance. This newly discovered post-translational processing of AXL may provide an explanation for the diverse functions of AXL, especially in the context of drug resistance in cancer cells.-Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., Passtoors, W. M., Zang, A., Fraering, P. C., Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. © The Author(s).

  10. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells

    PubMed Central

    Lu, Yinzhong; Wan, Jun; Yang, Zhifeng; Lei, Xiling; Niu, Qi; Jiang, Lanxin; Passtoors, Willemijn M.; Zang, Aiping; Fraering, Patrick C.; Wu, Fang

    2017-01-01

    Deregulation of the TAM (TYRO3, AXL, and MERTK) family of receptor tyrosine kinases (RTKs) has recently been demonstrated to predominately promote survival and chemoresistance of cancer cells. Intramembrane proteolysis mediated by presenilin/γ-secretase is known to regulate the homeostasis of some RTKs. In the present study, we demonstrate that AXL, but not TYRO3 or MERTK, is efficiently and sequentially cleaved by α- and γ-secretases in various types of cancer cell lines. Proteolytic processing of AXL redirected signaling toward a secretase-mediated pathway, away from the classic, well-known, ligand-dependent canonical RTK signaling pathway. The AXL intracellular domain cleavage product, but not full-length AXL, was further shown to translocate into the nucleus via a nuclear localization sequence that harbored a basic HRRKK motif. Of interest, we found that the γ-secretase–uncleavable AXL mutant caused an elevated chemoresistance in non–small-cell lung cancer cells. Altogether, our findings suggest that AXL can undergo sequential processing mediated by various proteases kept in a homeostatic balance. This newly discovered post-translational processing of AXL may provide an explanation for the diverse functions of AXL, especially in the context of drug resistance in cancer cells.—Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., Passtoors, W. M., Zang, A., Fraering, P. C., Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. PMID:28034848

  11. The Interaction between the Fiber Knob Domain and the Cellular Attachment Receptor Determines the Intracellular Trafficking Route of Adenoviruses

    PubMed Central

    Shayakhmetov, Dmitry M.; Li, Zong-Yi; Ternovoi, Vladimir; Gaggar, Anuj; Gharwan, Helen; Lieber, André

    2003-01-01

    Most of the presently used adenovirus (Ad) vectors are based on serotype 5. However, the application of these vectors is limited by the native tropism of Ad5. To address this problem, a series of fiber chimeric vectors were produced to take advantage of the different cellular receptors used by Ad of different subgroups. In this study we utilize an Ad5-based chimeric vector containing sequences encoding the Ad35 fiber knob domain instead of the Ad5 knob (Ad5/35L) to analyze factors responsible for selection of intracellular trafficking routes by Ads. By competition analysis with recombinant Ad5 and Ad35 knobs we showed that the Ad5/35L vector infected cells through a receptor different from the Ad5 receptor. Intracellular trafficking of Ad5 and Ad5/35L viruses was analyzed in HeLa cells by tracking fluorophore-conjugated Ad particles, by immunostaining for capsid hexon protein, by electron microscopy, and by Southern blotting for viral DNA. These studies showed that the interaction with the Ad35 receptor(s) predestines Ad5/35L vector to intracellular trafficking pathways different from those of Ad5. Ad5 efficiently escaped from the endosomes early after infection. In contrast, Ad5/35L remained longer in late endosomal/lysosomal compartments and used them to achieve localization to the nucleus. However, a significant portion of Ad5/35L particles appeared to be recycled back to the cell surface. This phenomenon resulted in significantly less efficient Ad5/35L-mediated gene transfer compared to that of Ad5. We also demonstrated that the selection of intracellular trafficking routes was determined by the fiber knob domain and did not depend on the length of the fiber shaft. This study contributes to a better understanding of the mechanisms that govern the infection of retargeted, capsid-modified vectors which have potential application for hematopoietic stem cell and tumor gene therapy. PMID:12610146

  12. Characterization of unique truncated prolactin receptor transcripts, corresponding to the intracellular domain, in the testis of the sexually mature chicken.

    PubMed

    Mao, J N; Burnside, J; Li, L; Tang, J; Davolos, C; Cogburn, L A

    1999-03-01

    We have examined expression of the chicken PRL receptor (cPRLR) gene in different tissues of the chicken by Northern blot analysis. Most tissues examined (ovary, testis, oviduct, kidney, and fat) possess a prominent full-length (4.6-kb) cPRLR transcript. A larger (11.7-kb) transcript is also detected in ovary, oviduct, testis, and kidney after longer exposure. A unique pattern of cPRLR expression was found in the testis of sexually mature chickens, which have an unusually high abundance of three small transcripts (1.2, 1.7, and 2 kb) in addition to the 4.6-kb transcript found in other tissues. Three domain-specific complementary DNA (cDNA) probes were constructed that correspond to the first and second ligand-binding regions in the extracellular domain and the transmembrane-intracellular domain. With these probes, Northern blot analysis of polyadenylated RNA prepared from the testes of a mature (22-week-old) chicken indicates that the highly abundant (1.2- and 1.7-kb) and less abundant (2.0-kb) cPRLR transcripts in testis hybridize only to the intracellular domain probe. Two types of truncated testis-specific cPRLR transcripts were identified using 5'-RACE (rapid amplification of cDNA ends) analysis of polyadenylated RNA from the testis of a 22-week-old chicken. The predominant truncated cDNA sequence contains the highly conserved box 1 motif [(+)box 1 cDNA] and diverges (at nucleotide 1396) from that of the cPRLR cDNA, just downstream of the transmembrane domain. The other truncated cDNA lacks the box 1 motif [(-)box 1 cDNA], which is replaced by 39 bases that could encode a hydrophobic N-terminus with a putative 5'-untranslated region of 131 bases. Young chickens predominately express the full-length cPRLR messenger RNA (4.6 kb) in the testis. At the onset of sexual maturity, there is a dramatic increase in abundance of the testis-specific (+)box 1 transcript, whereas expression of the full-length cPRLR is depressed. The presence of truncated [(+) or (-)box 1] c

  13. Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography

    NASA Astrophysics Data System (ADS)

    Jeong, Kwan; Turek, John J.; Nolte, David D.

    2010-05-01

    Dynamic speckle from 3-D coherence-gated optical sections provides a sensitive label-free measure of cellular activity up to 1 mm deep in living tissue. However, specificity to cellular functionality has not previously been demonstrated. In this work, we perform fluctuation spectroscopy on dynamic light scattering captured using coherence-domain digital holography to obtain the spectral response of tissue that is perturbed by temperature, osmolarity, and antimitotic cytoskeletal drugs. Different perturbations induce specific spectrogram response signatures that can show simultaneous enhancement and suppression in different spectral ranges.

  14. Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography.

    PubMed

    Jeong, Kwan; Turek, John J; Nolte, David D

    2010-01-01

    Dynamic speckle from 3-D coherence-gated optical sections provides a sensitive label-free measure of cellular activity up to 1 mm deep in living tissue. However, specificity to cellular functionality has not previously been demonstrated. In this work, we perform fluctuation spectroscopy on dynamic light scattering captured using coherence-domain digital holography to obtain the spectral response of tissue that is perturbed by temperature, osmolarity, and antimitotic cytoskeletal drugs. Different perturbations induce specific spectrogram response signatures that can show simultaneous enhancement and suppression in different spectral ranges.

  15. C-Cell Neoplasia in Asymptomatic Carriers of RET Mutation in Extracellular Cysteine-Rich and Intracellular Tyrosine Kinase Domain.

    PubMed

    Abi-Raad, Rita; Virk, Renu K; Dinauer, Catherine A; Prasad, A; Morotti, Raffaella A; Breuer, Christopher K; Sosa, Julie A; Udelsman, Robert; Rivkees, Scott A; Prasad, Manju L

    2015-08-01

    Germline mutations in RET proto-oncogene associated with multiple endocrine neoplasia type 2 (MEN2) may affect codons for the extracellular cysteine-rich (ECR) or the intracellular tyrosine kinase (ITK) domain of the transmembrane receptor tyrosine kinase protein. We compared C-cell pathology in asymptomatic carriers of RET mutation affecting the 2 domains. Twenty-two asymptomatic carriers (median age, 9.5 years), 10 with mutations in the ECR (codons 634, 611, 618, and 620) and 12 with mutations in the ITK domain (codons 804, 790, 891, and 918), underwent total thyroidectomy. C-cell hyperplasia was identified in 16 (73%), was multifocal and/or bilateral in 11, and was associated with medullary thyroid carcinoma (MTC) in 10 thyroids. When comparing the ECR and ITK groups in 21 carriers from MEN2A/familial MTC families, C-cell hyperplasia was more frequent in the former (90% versus 55%), as was multifocality (70% versus 27%) and MTC (60% versus 27%), despite the significantly younger median age in the former group (5 versus 23 years, P = .04). One asymptomatic carrier had de novo codon 918 mutation (MEN2B) and showed bilateral microcarcinoma with lymph node metastasis at presentation and progressive disease on follow-up. In conclusion, asymptomatic carriers of high-risk RET mutations affecting the ECR were significantly younger and frequently showed C-cell neoplasia, multifocality, and MTC when compared with mutations affecting the ITK domain in the MEN2A/familial MTC families. The presence of C-cell disease, its severity, and aggressiveness correlated with the mutated codon and with increasing age. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Secretin receptor oligomers form intracellularly during maturation through receptor core domains.

    PubMed

    Lisenbee, Cayle S; Miller, Laurence J

    2006-07-11

    Oligomerization of numerous G protein-coupled receptors has been documented, including the prototypic family B secretin receptor. The clinical significance of oligomerization of this receptor became clear with the recent observation that a misspliced form present in pancreatic cancer could associate with the wild-type receptor and act as a dominant negative inhibitor of its normal growth inhibitory function. Our goal was to explore the molecular mechanism of this interaction using bioluminescence (BRET) and fluorescence (FRET) resonance energy transfer and fluorescence microscopy with a variety of receptor constructs tagged with luciferase or cyan or yellow fluorescent proteins. BRET signals comparable to those obtained from cells coexpressing differentially tagged wild-type receptors were observed for similarly tagged secretin receptors in which all or part of the amino-terminal domain was deleted. As expected, neither of these constructs bound secretin, and only the partially truncated construct sorted to the plasma membrane. Receptors lacking the majority of the carboxyl-terminal domain, including that important for phosphorylation-mediated desensitization, also produced BRET signals above background. These findings suggested that the receptor's membrane-spanning core is responsible for secretin receptor oligomerization. Interestingly, alanine substitutions for a -GxxxG- helix interaction motif in transmembrane segment 7 created nonfunctional receptors that were capable of forming oligomers. Furthermore, treatment of receptor-expressing cells with brefeldin A did not eliminate the BRET signals, and morphologic FRET experiments confirmed the expected subcellular localizations of receptor oligomers. We conclude that secretin receptor oligomerization occurs through -GxxxG- motif-independent interactions of transmembrane segments during the maturation of nascent molecules.

  17. Allosteric Coupling between the Intracellular Coupling Helix 4 and Regulatory Sites of the First Nucleotide-binding Domain of CFTR

    PubMed Central

    Dawson, Jennifer E.; Farber, Patrick J.; Forman-Kay, Julie D.

    2013-01-01

    Cystic fibrosis is caused by mutations in CFTR (cystic fibrosis transmembrane conductance regulator), leading to folding and processing defects and to chloride channel gating misfunction. CFTR is regulated by ATP binding to its cytoplasmic nucleotide-binding domains, NBD1 and NBD2, and by phosphorylation of the NBD1 regulatory insert (RI) and the regulatory extension (RE)/R region. These regulatory effects are transmitted to the rest of the channel via NBD interactions with intracellular domain coupling helices (CL), particularly CL4. Using a sensitive method for detecting inter-residue correlations between chemical shift changes in NMR spectra, an allosteric network was revealed within NBD1, with a construct lacking RI. The CL4-binding site couples to the RI-deletion site and the C-terminal residues of NBD1 that precede the R region in full-length CFTR. Titration of CL4 peptide into NBD1 perturbs the conformational ensemble in these sites with similar titration patterns observed in F508del, the major CF-causing mutant, and in suppressor mutants F494N, V510D and Q637R NBD1, as well as in a CL4-NBD1 fusion construct. Reciprocally, the C-terminal mutation, Q637R, perturbs dynamics in these three sites. This allosteric network suggests a mechanism synthesizing diverse regulatory NBD1 interactions and provides biophysical evidence for the allosteric coupling required for CFTR function. PMID:24058550

  18. Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?

    PubMed Central

    De Bock, Marijke; Wang, Nan; Decrock, Elke; Bultynck, Geert; Leybaert, Luc

    2015-01-01

    The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx) proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs) in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs) are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury. PMID:26424967

  19. Differential functions of the Apoer2 intracellular domain in selenium uptake and cell signaling.

    PubMed

    Masiulis, Irene; Quill, Timothy A; Burk, Raymond F; Herz, Joachim

    2009-01-01

    Apolipoprotein E receptor 2 (Apoer2) is a multifunctional transport and signaling receptor that regulates the uptake of selenium into the mouse brain and testis through endocytosis of selenoprotein P (Sepp1). Mice deficient in Apoer2 or Sepp1 are infertile, with kinked and hypomotile spermatozoa. They also develop severe neurological defects on a low selenium diet, due to a profound impairment of selenium uptake. Little is known about the function of Apoer2 in the testis beyond its role as a Sepp1 receptor. By contrast, in the brain, Apoer2 is an essential component of the Reelin signaling pathway, which is required for proper neuronal organization and synapse function. Using knock-in mice, we have functionally dissociated the signaling motifs in the Apoer2 cytoplasmic domain from Sepp1 uptake. Selenium concentration of brain and testis was normal in the knock-in mutants, in contrast to Apoer2 knock-outs. Thus, the neurological defects in the signaling impaired knock-in mice are not caused by a selenium uptake defect, but instead are a direct consequence of a disruption of the Reelin signal. Reduced sperm motility was observed in some of the knock-in mice, indicating a novel signaling role for Apoer2 in sperm development and function that is independent of selenium uptake.

  20. Phase II Study of a HER-2/neu (HER2) Intracellular Domain (ICD) Peptide-Based Vaccine Administered to Stage IIIB and IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab Monotherapy

    DTIC Science & Technology

    2008-05-01

    Intracellular Domain (ICD) Peptide - Based Vaccine Administered to Stage IIIB and IV HER2 Positive Breast Cancer Patients Receiving Trastuzumab...To) 27 APR 2007 - 26 APR 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Phase II Study of a HER-2/neu (HER2) Intracellular Domain (ICD) Peptide ...intracellular domain (ICD) peptide -based vaccine while receiving maintenance trastuzumab. Patients enrolled will be HER2 overexpressing stage IIIB and IV

  1. Amino acids in the COOH-terminal region of the oxytocin receptor third intracellular domain are important for receptor function.

    PubMed

    Zhong, Miao; Parish, Bridgette; Murtazina, Dilyara A; Ku, Chun-Ying; Sanborn, Barbara M

    2007-04-01

    Previously, residue K6.30 in the COOH-terminal region of the third intracellular domain (3iC) of the oxytocin (OT) receptor (OTR) was identified as important for receptor function leading to phospholipase C activation in both OTR and the vasopressin V(2) receptor (V(2)R) chimera V(2)ROTR3iC. Substitution of either A6.28K or V6.30K in wild-type V(2)R did not recapitulate the increase in phosphatidylinositide (PI) turnover observed in V(2)ROTR3iC. Hence, the role of K6.30 may be context-specific. Deletion of two NH(2)-terminal OTR3iC segments in the V(2)ROTR3iC chimera did not diminish vasopressin-stimulated PI turnover, whereas deletion of RVSSVKL (residues 6.19-6.25) reduced receptor expression. Deletion of this sequence in wild-type OTR reduced expression by 50% without affecting affinity for [(3)H]OT. This OTR mutant was unable to activate PI turnover or extracellular signal-regulated kinase 1/2 phosphorylation. The effects of alanine substitution for individual residues in RVSSVKL indicated differential importance for OTR function. The R6.19A substitution lost high-affinity sites for [(3)H]OT and the ability to stimulate PI turnover. Affinity for [(3)H]OT and membrane expression was not affected by any other substitutions. OTR-V6.20A and OTR-K6.24A mutants functioned as well as wild-type OTR, whereas OTR S6.21A, S6.22A, and V6.23A mutants exhibited impaired abilities to activate PI turnover (20-40% of OTR), and the OTR-L6.25A mutant exhibited constitutive activity. In conclusion, specific amino acids in the RVSSVKL segment in the COOH-terminal region of the third intracellular domain of OTR influence the ability of OTR to activate G protein-mediated actions.

  2. Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.

    PubMed

    Greenwood, Alexander I; Rogals, Monique J; De, Soumya; Lu, Kun Ping; Kovrigin, Evgenii L; Nicholson, Linda K

    2011-09-01

    The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation, rigorous enzymatic assays of isomerization are required. However, most measures of isomerase activity require significant constraints on substrate sequence and only yield rate constants for the cis isomer, [Formula: see text] and apparent Michaelis constants, [Formula: see text]. By contrast, NMR lineshape analysis is a powerful tool for determining microscopic rates and populations of each state in a complex binding scheme. The isolated catalytic domain of Pin1 was employed as a first step towards elucidating the reaction scheme of the full-length enzyme. A 24-residue phosphopeptide derived from the amyloid precurser protein intracellular domain (AICD) phosphorylated at Thr668 served as a biologically-relevant Pin1 substrate. Specific (13)C labeling at the Pin1-targeted proline residue provided multiple reporters sensitive to individual isomer binding and on-enzyme catalysis. We have performed titration experiments and employed lineshape analysis of phosphopeptide (13)C-(1)H constant time HSQC spectra to determine [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for the catalytic domain of Pin1 acting on this AICD substrate. The on-enzyme equilibrium value of [E·trans]/[E·cis] = 3.9 suggests that the catalytic domain of Pin1 is optimized to operate on this substrate near equilibrium in the cellular context. This highlights the power of lineshape analysis for determining the microscopic parameters of enzyme catalysis, and demonstrates the feasibility of future studies of Pin1-PPIase mutants to gain insights on the catalytic mechanism of this important enzyme.

  3. Direct protein–protein interaction between the intracellular domain of TRA-2 and the transcription factor TRA-1A modulates feminizing activity in C. elegans

    PubMed Central

    Lum, David H.; Kuwabara, Patricia E.; Zarkower, David; Spence, Andrew M.

    2000-01-01

    In the nematode Caenorhabditis elegans, the zinc finger transcriptional regulator TRA-1A directs XX somatic cells to adopt female fates. The membrane protein TRA-2A indirectly activates TRA-1A by binding and inhibiting a masculinizing protein, FEM-3. Here we report that a part of the intracellular domain of TRA-2A, distinct from the FEM-3 binding region, directly binds TRA-1A. Overproduction of this TRA-1A-binding region has tra-1-dependent feminizing activity in somatic tissues, indicating that the interaction enhances TRA-1A activity. Consistent with this hypothesis, we show that tra-2(mx) mutations, which weakly masculinize somatic tissues, disrupt the TRA-2/TRA-1A interaction. Paradoxically, tra-2(mx) mutations feminize the XX germ line, as do tra-1 mutations mapping to the TRA-2 binding domain. We propose that these mutations render tra-2 insensitive to a negative regulator in the XX germ line, and we speculate that this regulator targets the TRA-2/TRA-1 complex. The intracellular domain of TRA-2A is likely to be produced as a soluble protein in vivo through proteolytic cleavage of TRA-2A or through translation of an XX germ line-specific mRNA. We further show that tagged derivatives of the intracellular domain of TRA-2 localize to the nucleus, supporting the hypothesis that this domain is capable of modulating TRA-1A activity in a manner reminiscent of Notch and Su(H). PMID:11124807

  4. Functional characterization of a StyS sensor kinase reveals distinct domains associated with intracellular and extracellular sensing of styrene in P. putida CA-3.

    PubMed

    O'Leary, Niall D; Mooney, Aisling; O'Mahony, Mark; Dobson, Alan Dw

    2014-01-01

    Bacterial two-component systems (TCSs) are of vital importance in the translation of rapidly changing environmental conditions into appropriate cellular regulatory responses enabling adaptation, growth, and survival. The diverse range of environmental signals that TCSs can process, coupled with discrete modular domains within TCS proteins, offers considerable potential for the rational design of bio-sensor and/or bio-reporter strains. In this study we functionally characterize the multi-domain StyS sensor kinase associated with sensing of the aromatic pollutant styrene by Pseudomonas putida CA-3. Deletion analysis of discrete domains was performed and the ability of the truncated StyS sensor proteins to activate a cognate reporter system in an E. coli host assessed. The essential histidine kinase and PAS input domains were identified for StyS dependent activation of the reporter system. However, co-expression of an ABC-transporter protein StyE, previously linked to styrene transport in P. putida CA-3, enabled activation of the reporter system with a StyS construct containing a non-essential PAS input domain, suggesting a novel role for intracellular detection and/or activation. Site directed mutagenesis and amino acid deletions were employed to further characterize the PAS sensing domains of both input regions. The potential implications of these findings in the use of multi-domain sensor kinases in rational design strategies and the potential link between transport and intracellular sensing are discussed.

  5. Functional characterization of a StyS sensor kinase reveals distinct domains associated with intracellular and extracellular sensing of styrene in P. putida CA-3

    PubMed Central

    O'Leary, Niall D; Mooney, Aisling; O'Mahony, Mark; Dobson, Alan DW

    2014-01-01

    Bacterial two-component systems (TCSs) are of vital importance in the translation of rapidly changing environmental conditions into appropriate cellular regulatory responses enabling adaptation, growth, and survival. The diverse range of environmental signals that TCSs can process, coupled with discrete modular domains within TCS proteins, offers considerable potential for the rational design of bio-sensor and/or bio-reporter strains. In this study we functionally characterize the multi-domain StyS sensor kinase associated with sensing of the aromatic pollutant styrene by Pseudomonas putida CA-3. Deletion analysis of discrete domains was performed and the ability of the truncated StyS sensor proteins to activate a cognate reporter system in an E. coli host assessed. The essential histidine kinase and PAS input domains were identified for StyS dependent activation of the reporter system. However, co-expression of an ABC-transporter protein StyE, previously linked to styrene transport in P. putida CA-3, enabled activation of the reporter system with a StyS construct containing a non-essential PAS input domain, suggesting a novel role for intracellular detection and/or activation. Site directed mutagenesis and amino acid deletions were employed to further characterize the PAS sensing domains of both input regions. The potential implications of these findings in the use of multi-domain sensor kinases in rational design strategies and the potential link between transport and intracellular sensing are discussed. PMID:24637704

  6. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    SciTech Connect

    Endsley, Mark A.; Somasunderam, Anoma D.; Li, Guangyu; Oezguen, Numan; Thiviyanathan, Varatharasa; Murray, James L.; Rubin, Donald H.; Hodge, Thomas W.; and others

    2014-04-15

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.

  7. Sumoylation regulates nuclear accumulation and signaling activity of the soluble intracellular domain of the erbb4 receptor tyrosine kinase.

    PubMed

    Knittle, Anna Maria; Helkkula, Maria; Johnson, Mark S; Sundvall, Maria; Elenius, Klaus

    2017-10-03

    Erb-B2 receptor tyrosine kinase 4 (ErbB4) is a kinase that can signal via a proteolytically released intracellular domain (ICD) in addition to classical receptor tyrosine kinase-activated signaling cascades. Previously, we have demonstrated that ErbB4 ICD is posttranslationally modified by the small ubiquitin-like modifier (SUMO) and functionally interacts with the PIAS3 SUMO E3 ligase. However, direct evidence of SUMO modification in ErbB4 signaling has remained elusive. Here, we report that the conserved lysine residue 714 in the ErbB4 ICD undergoes SUMO modification, which was reversed by sentrin-specific proteases (SENPs) 1, 2 and 5. Although ErbB4 kinase activity was not necessary for the SUMOylation, the SUMOylated ErbB4 ICD was tyrosine phosphorylated to a higher extent than unmodified ErbB4 ICD. Mutation of the SUMOylation site neither compromised ErbB4-induced phosphorylation of the canonical signaling pathway effectors Erk1/2, Akt, or STAT5 nor ErbB4 stability. In contrast, SUMOylation was required for nuclear accumulation of the ErbB4 ICD. We also found that Lys-714 was located within a leucine-rich stretch, which resembles a nuclear export signal, and could be inactivated by site-directed mutagenesis. Furthermore, SUMOylation modulated the interaction of ErbB4 with chromosomal region maintenance 1 (CRM1), the major nuclear export receptor for proteins. Finally, the SUMO acceptor lysine was functionally required for ErbB4 ICD-mediated inhibition of mammary epithelial cell differentiation in a three-dimensional cell culture model. Our findings indicate that a SUMOylation-mediated mechanism regulates nuclear localization and function of the ICD of ErbB4 receptor tyrosine kinase. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  8. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure.

    PubMed

    Robichaux, Michael A; Chenaux, George; Ho, Hsin-Yi Henry; Soskis, Michael J; Greenberg, Michael E; Henkemeyer, Mark; Cowan, Christopher W

    2016-04-01

    The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.

  9. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription

    PubMed Central

    Tuand, Krizia; Stijnen, Pieter; Volders, Karolien; Declercq, Jeroen; Nuytens, Kim; Meulemans, Sandra; Creemers, John

    2016-01-01

    Background Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. Methods Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. Results Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. Conclusion Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for

  10. The intracellular domain of cell adhesion molecule 1 is present in emphysematous lungs and induces lung epithelial cell apoptosis.

    PubMed

    Hagiyama, Man; Yoneshige, Azusa; Inoue, Takao; Sato, Yasufumi; Mimae, Takahiro; Okada, Morihito; Ito, Akihiko

    2015-08-11

    Pulmonary emphysema is characterized histologically by destruction of alveolar walls and enlargement of air spaces due to lung epithelial cell apoptosis. Cell adhesion molecule 1 (CADM1) is an immunoglobulin superfamily member expressed in lung epithelial cells. CADM1 generates a membrane-associated C-terminal fragment, αCTF, through A disintegrin- and metalloprotease-10-mediated ectodomain shedding, subsequently releasing the intracellular domain (ICD) through γ-secretase-mediated intramembrane shedding of αCTF. αCTF localizes to mitochondria and induces apoptosis in lung epithelial cells. αCTF contributes to the development and progression of emphysema as a consequence of increased CADM1 ectodomain shedding. The purpose of this study was to examine whether the ICD makes a similar contribution. The ICD was synthesized as a 51-amino acid peptide, and its mutant was synthesized by substituting seven amino acids and deleting two amino acids. These peptides were labeled with fluorescein isothiocyanate and were introduced into various cell lines. ICD peptide-derived fluorescence was well visualized in lung epithelial cells at the site of Mitotracker mitochondrial labeling, but was detected in locations other than mitochondria in other cell types. Mutant peptide-derived fluorescence was detected in locations other than mitochondria, even in lung epithelial cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays revealed that transduction of the ICD peptide increased the proportion of apoptotic cells 2- to 5-fold in the lung epithelial cell lines, whereas the mutant peptide did not. Abundance of the ICD was below the Western blot detection limit in emphysematous (n = 4) and control (n = 4) human lungs. However, the ICD was detected only in emphysematous lungs when it was immunoprecipitated with anti-CADM1 antibody (4/4 vs. 0/4, P = 0.029). As the abundance of ICD molecules was sparse but present, increased CADM1 shedding

  11. Number and brightness analysis of sFRP4 domains in live cells demonstrates vesicle association signal of the NLD domain and dynamic intracellular responses to Wnt3a

    PubMed Central

    Perumal, Vanathi; Krishnan, Kannan; Gratton, Enrico; Dharmarajan, Arun M; Fox, Simon A

    2015-01-01

    The Wnts are secreted, lipidated glycoproteins that play a role in cellular processes of differentiation, proliferation, migration, survival, polarity and stem cell self-renewal. The majority of Wnts biological effects are through binding to specific frizzled (Fzd) receptor complexes leading to activation of downstream pathways. Secreted Frizzled-related proteins (sFRPs) were first identified as antagonists of Wnt signalling by binding directly to Wnts. They comprise two domains, a Fzd-like cysteine rich domain (CRD) and a netrin-like domain (NLD). Subsequently sFRPs have been shown to also interact with Fzd receptors and more diverse functions have been identified, including potentiation of Wnt signalling. Many aspects of the biology of this family remain to be elucidated. We used the number and brightness (N&B) method, a technique based on fluorescence fluctuation analysis, to characterise the intracellular aggregation and trafficking of sFRP4 domains. We expressed sFRP4 and its’ domains as EGFP fusions and then characterised the effect of endogenous Wnt3a by fluorescence confocal imaging. We observed vesicular trafficking of sFRP4 and that the NLD domain has a vesicular association signal. We found that sFRP4 and the CRD formed oligomeric aggregates in the perinuclear region while the NLD was distributed evenly throughout the cell with a larger proportion of aggregates. Most significantly we observed intracellular redistribution of sFRP4 in response to Wnt3a suggesting that Wnt3a can modulate intracellular localisation and secretion of sFRP4. Our results reveal a number of novel findings regarding sFRP4 which are likely to have relevance to this wider family. PMID:25805505

  12. Inhibition of insulin-stimulated phosphorylation of the intracellular domain of phospholemman decreases insulin-dependent GLUT4 translocation in streptolysin-O-permeabilized adipocytes.

    PubMed Central

    Walaas, O; Horn, R S; Walaas, S I

    1999-01-01

    A variety of studies indicate that protein kinase C might be involved in the insulin signalling cascade leading to translocation of the insulin-regulated glucose transporter GLUT4 from intracellular pools to the plasma membrane. Phospholemman is a plasma-membrane protein kinase C substrate whose phosphorylation is increased by insulin in intact muscle [Walaas, Czernik, Olstad, Sletten and Walaas (1994) Biochem. J. 304, 635-640]. The present study examined whether the inhibition of phospholemman phosphorylation modulates the effects of insulin on GLUT4 translocation. For this purpose, a synthetic peptide derived from the intracellular domain of phospholemman with the phosphorylatable serine residues replaced with alanine residues was prepared. This peptide was found to decrease the protein kinase C-catalysed phosphorylation of a synthetic phospholemman peptide in vitro. When introduced into streptolysin-O-permeabilized adipocytes, the peptide decreased the effects of insulin on both the phosphorylation of phospholemman and the recruitment of GLUT4 to the plasma membrane. Similarly, the internalization of phospholemman antibodies, which also decreased the protein kinase C-mediated phosphorylation of the synthetic phospholemman peptide in vitro, decreased the effect of insulin on GLUT4 translocation in the adipocytes. The results suggest that phosphorylation of the intracellular domain of phospholemman might be involved in modulating the insulin-induced translocation of GLUT4 to the plasma membrane. PMID:10493924

  13. Role of the Distal Half of the c-Mpl Intracellular Domain in Control of Platelet Production by Thrombopoietin In Vivo

    PubMed Central

    Luoh, Shiuh-Ming; Stefanich, Eric; Solar, Gregg; Steinmetz, Hope; Lipari, Terry; Pestina, Tamara I.; Jackson, Carl W.; de Sauvage, Frederic J.

    2000-01-01

    The cytokine thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells. TPO exerts its effect through activation of the c-Mpl receptor and of multiple downstream signal transduction pathways. While the membrane-proximal half of the cytoplasmic domain appears to be required for the activation of signaling molecules that drive proliferation, the distal half and activation of the mitogen-activated protein kinase pathway have been implicated in mediating megakaryocyte maturation in vitro. To investigate the contribution of these two regions of c-Mpl and the signaling pathways they direct in mediating the function of TPO in vivo, we used a knock-in (KI) approach to delete the carboxy-terminal 60 amino acids of the c-Mpl receptor intracellular domain. Mice lacking the C-terminal 60 amino acids of c-Mpl (Δ60 mice) have normal platelet and megakaryocyte counts compared to wild-type mice. Furthermore, platelets in the KI mice are functionally normal, indicating that activation of signaling pathways connected to the C-terminal half of the receptor is not required for megakaryocyte differentiation or platelet production. However, Δ60 mice have an impaired response to exogenous TPO stimulation and display slower recovery from myelosuppressive treatment, suggesting that combinatorial signaling by both ends of the receptor intracellular domain is necessary for an appropriate acute response to TPO. PMID:10611229

  14. Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain.

    PubMed

    Weber-Nordt, R M; Riley, J K; Greenlund, A C; Moore, K W; Darnell, J E; Schreiber, R D

    1996-11-01

    Recent work has shown that IL-10 induces activation of the JAK-STAT signaling pathway. To define the mechanism underlying signal transducer and activator of transcription (STAT) protein recruitment to the interleukin 10 (IL-10) receptor, the STAT proteins activated by IL-10 in different cell populations were first defined using electrophoretic mobility shift assays. In all cells tested, IL-10 activated Stat1 and Stat3 and induced the formation of three distinct DNA binding complexes that contained different combinations of these two transcription factors. IL-10 also activated Stat5 in Ba/F3 cells that stably expressed the murine IL-10 receptor. Using a structure-function mutagenesis approach, two tyrosine residues (Tyr427 and Tyr477) in the intracellular domain of the murine IL-10 receptor were found to be redundantly required for receptor function and for activation of Stat3 but not for Stat1 or Stat5. Twelve amino acid peptides encompassing either of these two tyrosine residues in phosphorylated form coprecipitated Stat3 but not Stat1 and blocked IL-10-induced Stat3 phosphorylation in a cell-free system. In contrast, tyrosine-phosphorylated peptides containing Tyr374 or Tyr396 did not interact with Stat3 or block Stat3 activation. These data demonstrate that Stat3 but not Stat1 or Stat5 is directly recruited to the ligand-activated IL-10 receptor by binding to specific but redundant receptor intracellular domain sequences containing phosphotyrosine. This study thus supports the concept that utilization of distinct STAT proteins by different cytokine receptors is dependent on the expression of particular ligand-activatable, tyrosine-containing STAT docking sites in receptor intracellular domains.

  15. TRP1 interacting PDZ-domain protein GIPC forms oligomers and is localized to intracellular vesicles in human melanocytes.

    PubMed

    Kedlaya, Rajendra H; Bhat, Kumar M R; Mitchell, Julie; Darnell, Steven J; Setaluri, Vijayasaradhi

    2006-10-15

    PDZ proteins coordinate assembly of protein complexes that participate in diverse biological processes. GIPC is a multifunctional PDZ protein that interacts with several soluble and membrane proteins. Unlike most PDZ proteins, GIPC contains single PDZ domain and the mechanisms by which GIPC mediates its actions remain unclear. We investigated the possibility that in lieu of multiple PDZ domains, GIPC forms multimers. Here, we demonstrate that GIPC can bind to itself and that the PDZ domain is involved in GIPC-GIPC interaction. Gel filtration, sucrose gradient centrifugation and chemical cross-linking showed that whereas bulk of cytosolic GIPC was present as monomer, oligomers with an estimated molecular mass corresponding to GIPC homotrimer were readily detectable in the membrane fraction. Modeling of GIPC PDZ domain showed feasibility of trimerization. Immunogold electron microscopy showed that GIPC is present in clusters near vesicles. Our data suggest that oligomers of GIPC mediate its functions in melanocytes.

  16. TRP1 interacting PDZ-domain protein GIPC forms oligomers and is localized to intracellular vesicles in human melanocytes

    PubMed Central

    Kedlaya, Rajendra H.; Bhat, Kumar M.R.; Mitchell, Julie; Darnell, Steven J.; Setaluri, Vijayasaradhi

    2010-01-01

    PDZ proteins coordinate assembly of protein complexes that participate in diverse biological processes. GIPC is a multifunctional PDZ protein that interacts with several soluble and membrane proteins. Unlike most PDZ proteins, GIPC contains single PDZ domain and the mechanisms by which GIPC mediates its actions remain unclear. We investigated the possibility that in lieu of multiple PDZ domains, GIPC forms multimers. Here, we demonstrate that GIPC can bind to itself and that the PDZ domain is involved in GIPC–GIPC interaction. Gel filtration, sucrose gradient centrifugation and chemical cross-linking showed that whereas bulk of cytosolic GIPC was present as monomer, oligomers with an estimated molecular mass corresponding to GIPC homotrimer were readily detectable in the membrane fraction. Modeling of GIPC PDZ domain showed feasibility of trimerization. Immunogold electron microscopy showed that GIPC is present in clusters near vesicles. Our data suggest that oligomers of GIPC mediate its functions in melanocytes. PMID:16962991

  17. The intracellular juxtamembrane domain of discoidin domain receptor 2 (DDR2) is essential for receptor activation and DDR2-mediated cancer progression.

    PubMed

    Kim, Daehwan; Ko, Panseon; You, Eunae; Rhee, Sangmyung

    2014-12-01

    Discoidin domain receptors (DDRs) are unusual receptor tyrosine kinases (RTKs) that are activated by fibrillar collagens instead of soluble growth factors. DDRs play an important role in various cellular functions and disease processes, including malignant progression. Compared to other RTKs, DDRs have relatively long juxtamembrane domains, which are believed to contribute to receptor function. Despite this possibility, the function and mechanism of the juxtamembrane domain of DDRs have not yet been fully elucidated. In this study, we found that the cytoplasmic juxtamembrane 2 (JM2) region of DDR2 contributed to receptor dimerization, which is critical for receptor activation in response to collagen stimulation. A collagen-binding assay showed that JM2 was required for efficient binding of collagen to the discoidin (DS) domain. Immunohistochemical analysis of DDR2 expression using a tissue microarray demonstrated that DDR2 was overexpressed in several carcinoma tissues, including bladder, testis, lung, kidney, prostate and stomach. In H1299 cells, inhibition of DDR2 activity by overexpressing the juxtamembrane domain containing JM2 suppressed collagen-induced colony formation, cell proliferation and invasion via the inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9. Taken together, our results suggest that JM2-mediated dimerization is likely to be essential for DDR2 activation and cancer progression. Thus, inhibition of DDR2 function using a JM2-containing peptide might be a useful strategy for the treatment of DDR2-positive cancers.

  18. Missense mutations near the N-glycosylation site of the A2 domain lead to various intracellular trafficking defects in coagulation factor VIII

    PubMed Central

    Wei, Wei; Zheng, Chunlei; Zhu, Min; Zhu, Xiaofan; Yang, Renchi; Misra, Saurav; Zhang, Bin

    2017-01-01

    Missense mutation is the most common mutation type in hemophilia. However, the majority of missense mutations remain uncharacterized. Here we characterize how hemophilia mutations near the unused N-glycosylation site of the A2 domain (N582) of FVIII affect protein conformation and intracellular trafficking. N582 is located in the middle of a short 310-helical turn (D580-S584), in which most amino acids have multiple hemophilia mutations. All 14 missense mutations found in this 310-helix reduced secretion levels of the A2 domain and full-length FVIII. Secreted mutants have decreased activities relative to WT FVIII. Selected mutations also lead to partial glycosylation of N582, suggesting that rapid folding of local conformation prevents glycosylation of this site in wild-type FVIII. Protease sensitivity, stability and degradation of the A2 domain vary among mutants, and between non-glycosylated and glycosylated species of the same mutant. Most of the mutants interact with the ER chaperone BiP, while only mutants with aberrant glycosylation interact with calreticulin. Our results show that the short 310-helix from D580 to S584 is critical for proper biogenesis of the A2 domain and FVIII, and reveal a range of molecular mechanisms by which FVIII missense mutations lead to moderate to severe hemophilia A. PMID:28327546

  19. Chimeras of sperm PLCζ reveal disparate protein domain functions in the generation of intracellular Ca2+ oscillations in mammalian eggs at fertilization

    PubMed Central

    Theodoridou, Maria; Nomikos, Michail; Parthimos, Dimitris; Gonzalez-Garcia, J. Raul; Elgmati, Khalil; Calver, Brian L.; Sideratou, Zili; Nounesis, George; Swann, Karl; Lai, F. Anthony

    2013-01-01

    Phospholipase C-zeta (PLCζ) is a sperm-specific protein believed to cause Ca2+ oscillations and egg activation during mammalian fertilization. PLCζ is very similar to the somatic PLCδ1 isoform but is far more potent in mobilizing Ca2+ in eggs. To investigate how discrete protein domains contribute to Ca2+ release, we assessed the function of a series of PLCζ/PLCδ1 chimeras. We examined their ability to cause Ca2+ oscillations in mouse eggs, enzymatic properties using in vitro phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and their binding to PIP2 and PI(3)P with a liposome interaction assay. Most chimeras hydrolyzed PIP2 with no major differences in Ca2+ sensitivity and enzyme kinetics. Insertion of a PH domain or replacement of the PLCζ EF hands domain had no deleterious effect on Ca2+ oscillations. In contrast, replacement of either XY-linker or C2 domain of PLCζ completely abolished Ca2+ releasing activity. Notably, chimeras containing the PLCζ XY-linker bound to PIP2-containing liposomes, while chimeras containing the PLCζ C2 domain exhibited PI(3)P binding. Our data suggest that the EF hands are not solely responsible for the nanomolar Ca2+ sensitivity of PLCζ and that membrane PIP2 binding involves the C2 domain and XY-linker of PLCζ. To investigate the relationship between PLC enzymatic properties and Ca2+ oscillations in eggs, we have developed a mathematical model that incorporates Ca2+-dependent InsP3 generation by the PLC chimeras and their levels of intracellular expression. These numerical simulations can for the first time predict the empirical variability in onset and frequency of Ca2+ oscillatory activity associated with specific PLC variants. PMID:24152875

  20. Structural basis of a Kv7.1 potassium channel gating module: studies of the intracellular c-terminal domain in complex with calmodulin.

    PubMed

    Sachyani, Dana; Dvir, Meidan; Strulovich, Roi; Tria, Giancarlo; Tobelaim, William; Peretz, Asher; Pongs, Olaf; Svergun, Dmitri; Attali, Bernard; Hirsch, Joel A

    2014-11-04

    Kv7 channels tune neuronal and cardiomyocyte excitability. In addition to the channel membrane domain, they also have a unique intracellular C-terminal (CT) domain, bound constitutively to calmodulin (CaM). This CT domain regulates gating and tetramerization. We investigated the structure of the membrane proximal CT module in complex with CaM by X-ray crystallography. The results show how the CaM intimately hugs a two-helical bundle, explaining many channelopathic mutations. Structure-based mutagenesis of this module in the context of concatemeric tetramer channels and functional analysis along with in vitro data lead us to propose that one CaM binds to one individual protomer, without crosslinking subunits and that this configuration is required for proper channel expression and function. Molecular modeling of the CT/CaM complex in conjunction with small-angle X-ray scattering suggests that the membrane proximal region, having a rigid lever arm, is a critical gating regulator.

  1. Structural analysis of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) intracellular domain reveals a conserved interaction epitope.

    PubMed

    Mayer, Christina; Slater, Leanne; Erat, Michele C; Konrat, Robert; Vakonakis, Ioannis

    2012-03-02

    Plasmodium falciparum-infected red blood cells adhere to endothelial cells, thereby obstructing the microvasculature. Erythrocyte adherence is directly associated with severe malaria and increased disease lethality, and it is mediated by the PfEMP1 family. PfEMP1 clustering in knob-like protrusions on the erythrocyte membrane is critical for cytoadherence, however the molecular mechanisms behind this system remain elusive. Here, we show that the intracellular domains of the PfEMP1 family (ATS) share a unique molecular architecture, which comprises a minimal folded core and extensive flexible elements. A conserved flexible segment at the ATS center is minimally restrained by the folded core. Yeast-two-hybrid data and a novel sequence analysis method suggest that this central segment contains a conserved protein interaction epitope. Interestingly, ATS in solution fails to bind the parasite knob-associated histidine-rich protein (KAHRP), an essential cytoadherence component. Instead, we demonstrate that ATS associates with PFI1780w, a member of the Plasmodium helical interspersed sub-telomeric (PHIST) family. PHIST domains are widespread in exported parasite proteins, however this is the first specific molecular function assigned to any variant of this family. We propose that PHIST domains facilitate protein interactions, and that the conserved ATS epitope may be targeted to disrupt the parasite cytoadherence system.

  2. The APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior.

    PubMed

    Klevanski, Maja; Herrmann, Ulrike; Weyer, Sascha W; Fol, Romain; Cartier, Nathalie; Wolfer, David P; Caldwell, John H; Korte, Martin; Müller, Ulrike C

    2015-12-09

    The amyloid precursor protein family (APP/APLPs) has essential roles for neuromuscular synapse development and for the formation and plasticity of synapses within the CNS. Despite this, it has remained unclear whether APP mediates its functions primarily as a cell surface adhesion and signaling molecule or via its numerous proteolytic cleavage products. To address these questions, we followed a genetic approach and used APPΔCT15 knockin mice lacking the last 15 amino acids of APP, including the highly conserved YENPTY protein interaction motif. To circumvent functional compensation by the closely related APLP2, these mice were bred to an APLP2-KO background to generate APPΔCT15-DM double mutants. These APPΔCT15-DM mice were partially viable and displayed defects in neuromuscular synapse morphology and function with impairments in the ability to sustain transmitter release that resulted in muscular weakness. In the CNS, we demonstrate pronounced synaptic deficits including impairments in LTP that were associated with deficits in spatial learning and memory. Thus, the APP-CT15 domain provides essential physiological functions, likely via recruitment of specific interactors. Together with the well-established role of APPsα for synaptic plasticity, this shows that multiple domains of APP, including the conserved C-terminus, mediate signals required for normal PNS and CNS physiology. In addition, we demonstrate that lack of the APP-CT15 domain strongly impairs Aβ generation in vivo, establishing the APP C-terminus as a target for Aβ-lowering strategies. Synaptic dysfunction and cognitive decline are early hallmark features of Alzheimer's disease. Thus, it is essential to elucidate the in vivo function(s) of APP at the synapse. At present, it is unknown whether APP family proteins function as cell surface receptors, or mainly via shedding of their secreted ectodomains, such as neurotrophic APPsα. Here, to dissect APP functional domains, we used APP mutant mice

  3. Synthesis of a pH-Sensitive Nitrilotriacetic Linker to Peptide Transduction Domains To Enable Intracellular Delivery of Histidine Imidazole Ring-Containing Macromolecules

    PubMed Central

    2010-01-01

    Intracellular delivery of functional macromolecules using peptide transduction domains (PTDs) is an exciting technology with both experimental and therapeutic applications. Recent data indicate that PTD-mediated transduction occurs via fluid-phase macropinocytosis involving an intracellular pH drop to ∼5. Nitrilotriacetic acid (NTA)-coordinated metals avidly bind hexahistidine-tagged macromolecules, including peptides and proteins. Histidine’s imidazole ring has a pKa of 6, making this an attractive target for the biological pH drop of PTD-mediated macropinocytotic delivery. The objective of this study was to develop a pH-sensitive PTD delivery peptide (NTA3-PTD). We demonstrate the in vitro function of this novel peptide by delivering fluorescently labeled peptides (1.6 kDa) and functional enzymes, β-galactosidase (119 kDa) and Cre recombinase (37 kDa). Furthermore, the NTA3-PTD peptide was able to deliver functional Cre recombinase in an in vivo mouse model. PMID:20681698

  4. A Single Amino Acid Substitution in the v-Eyk Intracellular Domain Results in Activation of Stat3 and Enhances Cellular Transformation

    PubMed Central

    Besser, Daniel; Bromberg, Jacqueline F.; Darnell, James E.; Hanafusa, Hidesaburo

    1999-01-01

    The receptor tyrosine kinase Eyk, a member of the Axl/Tyro3 subfamily, activates the STAT pathway and transforms cells when constitutively activated. Here, we compared the potentials of the intracellular domains of Eyk molecules derived from c-Eyk and v-Eyk to transform rat 3Y1 fibroblasts. The v-Eyk molecule induced higher numbers of transformants in soft agar and stronger activation of Stat3; levels of Stat1 activation by the two Eyk molecules were similar. A mutation in the sequence Y933VPL, present in c-Eyk, to the v-Eyk sequence Y933VPQ led to increased activation of Stat3 and increased transformation efficiency. However, altering another sequence, Y862VNT, present in both Eyk molecules to F862VNT markedly decreased transformation without impairing Stat3 activation. These results indicate that activation of Stat3 enhances transformation efficiency and cooperates with another pathway to induce transformation. PMID:9891073

  5. Peptides and peptide-derived molecules targeting the intracellular domains of Cx43: gap junctions versus hemichannels.

    PubMed

    Iyyathurai, Jegan; D'hondt, Catheleyne; Wang, Nan; De Bock, Marijke; Himpens, Bernard; Retamal, Mauricio A; Stehberg, Jimmy; Leybaert, Luc; Bultynck, Geert

    2013-12-01

    About a decade ago, the molecular determinants controlling the opening and closing of Cx43 gap junction channels have been identified. Advanced biophysical approaches revealed a critical role for structural rearrangements in the cytoplasmic loop and dimerization of the C-terminal tail, resulting in binding of the C-terminal tail to the cytoplasmic loop and Cx43 gap junction channel closure during cellular acidosis. This has spurred the development of Cx43-mimetic peptides and peptidomimetics that interfere with these loop/tail interactions, thereby preventing the closure of Cx43 gap junctions, e.g. in the heart upon ischemia. Recently, we found that loop/tail interactions control Cx43-hemichannel activity but with an opposite effect. Binding of the C-terminal tail to the cytoplasmic loop is a requisite for the opening of Cx43 hemichannels in response to different stimuli, like decreased extracellular [Ca2+], increased intracellular [Ca2+], positive membrane potentials or ischemia. Strikingly, peptides that favor the open state of Cx43 gap junctions like the L2 peptide inhibit Cx43-hemichannel opening. These tools now provide unprecedented opportunities to selectively inhibit Cx43 hemichannels while maintaining Cx43 gap junction communication, impossible to achieve with siRNA or knockdown approaches both affecting gap junctions and hemichannels. These tools not only are very helpful to unravel the role of Cx43 hemichannels in complex biological systems, but also hold therapeutic potential to counteract excessive Cx43-hemichannel activity like in ischemia/reperfusion in the brain and the heart or to prevent Cx43 hemichannel-mediated gliotransmitter release in the basal amygdala during memory consolidation in response to emotional events. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'. Copyright © 2013. Published by Elsevier Ltd.

  6. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy.

    PubMed Central

    Watt, Stephen A; Kimber, Wendy A; Fleming, Ian N; Leslie, Nick R; Downes, C Peter; Lucocq, John M

    2004-01-01

    PtdIns(3,4) P (2), a breakdown product of the lipid second messenger PtdIns(3,4,5) P (3), is a key signalling molecule in pathways controlling various cellular events. Cellular levels of PtdIns(3,4) P (2) are elevated upon agonist stimulation, mediating downstream signalling pathways by recruiting proteins containing specialized lipid-binding modules, such as the pleckstrin homology (PH) domain. A recently identified protein, TAPP1 (tandem-PH-domain-containing protein 1), has been shown to interact in vitro with high affinity and specificity with PtdIns(3,4) P (2) through its C-terminal PH domain. In the present study, we have utilized this PH domain tagged with glutathione S-transferase (GST-TAPP1-PH) as a probe in an on-section immunoelectron microscopy labelling procedure, mapping the subcellular distribution of PtdIns(3,4) P (2). As expected, we found accumulation of PtdIns(3,4) P (2) at the plasma membrane in response to the agonists platelet-derived growth factor and hydrogen peroxide. Importantly, however, we also found agonist stimulated PtdIns(3,4) P (2) labelling of intracellular organelles, including the endoplasmic reticulum and multivesicular endosomes. Expression of the 3-phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in PTEN-null U87MG cells revealed differential sensitivity of these lipid pools to the enzyme. These data suggest a role for PtdIns(3,4) P (2) in endomembrane function. PMID:14604433

  7. The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1

    PubMed Central

    Yao, Kezhen; Wu, Yongyan; Chen, Qi; Zhang, Zihan; Chen, Xin; Zhang, Yong

    2016-01-01

    The mouse intracellular pathogen resistance 1 (Ipr1) gene plays important roles in mediating host immunity and previous work showed that it enhances macrophage apoptosis upon mycobacterium infection. However, to date, little is known about the regulation pattern of Ipr1 action. Recent studies have investigated the protein-coding genes and microRNAs regulated by Ipr1 in mouse macrophages, but the structure and the functional motif of the Ipr1 protein have yet to be explored. In this study, we analyzed the domains and functional motif of the Ipr1 protein. The resulting data reveal that Ipr1 protein forms a homodimer and that the Sp100-like domain mediates the targeting of Ipr1 protein to nuclear dots (NDs). Moreover, we found that an Ipr1 mutant lacking the classic nuclear localization signal (cNLS) also translocated into the nuclei, suggesting that the cNLS is not the only factor that directs Ipr1 nuclear localization. Additionally, mechanistic studies revealed that an arginine/lysine-rich element within the DNA-binding domain (SAND domain) is critical for Ipr1 binding to the importin protein receptor NPI-1, demonstrating that this element plays an essential role in mediating the nuclear localization of Ipr1 protein. Furthermore, our results show that this arginine/lysine-rich element contributes to the transcriptional regulation and apoptotic activity of Ipr1. These findings highlight the structural foundations of Ipr1 action and provide new insights into the mechanism of Ipr1-mediated resistance to mycobacterium. PMID:27622275

  8. Intracellular cytoplasm-specific delivery of SH3 and SH2 domains of SLAP inhibits TcR-mediated signaling.

    PubMed

    Kim, Jung-Ho; Moon, Jae-Seung; Yu, JiSang; Lee, Sang-Kyou

    2015-05-08

    Signaling events triggered by T cell receptor (TcR) stimulation are important targets for the development of common therapeutics for various autoimmune diseases. SLAP is a negative regulator of TcR-mediated signaling cascade via targeting TcR zeta chain for degradation through recruiting the ubiquitin ligase c-Cbl. In this study, we generated a transducible form of SH3 and SH2 domains of SLAP (ctSLAPΔC) which can be specifically targeted to the cytoplasm of a cell. ctSLAPΔC inhibited tyrosine phosphorylation of signaling mediators such as ZAP-70 and LAT involved in T cell activation, and effectively suppressed transcriptional activity of NFAT and NFκB upon TcR stimulation. The transduced ctSLAPΔC in T cells blocked the secretion of T cell-specific cytokines such as IL-2, IFNγ, IL-17A, and IL-4 and induced the expression of CD69 and CD25 on effector T cells without influencing the cell viability. Inhibition of TcR-mediated signaling via SLAP blocked the differentiation of naïve T cells into Th1, Th2 or Treg cells with different sensitivity, suggesting that qualitative and quantitative intensity of TcR-mediated signaling in the context of polarizing cytokines environment may be a critical factor to determine the differentiation fate of naïve T cells. These results suggest that cytoplasm-specific transduction of the SH3 and SH2 domains of SLAP has a therapeutic potential of being an immunosuppressive reagent for the treatment of various autoimmune diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Functional analysis of a breast cancer-associated mutation in the intracellular domain of the metalloprotease ADAM12.

    PubMed

    Stautz, Dorte; Wewer, Ulla M; Kveiborg, Marie

    2012-01-01

    A recently identified breast cancer-associated mutation in the metalloprotease ADAM12 alters a potential dileucine trafficking signal, which could affect protein processing and cellular localization. ADAM12 belongs to the group of A Disintegrin And Metalloproteases (ADAMs), which are typically membrane-associated proteins involved in ectodomain shedding, cell-adhesion, and signaling. ADAM12 as well as several members of the ADAM family are over-expressed in various cancers, correlating with disease stage. Three breast cancer-associated somatic mutations were previously identified in ADAM12, and two of these, one in the metalloprotease domain and another in the disintegrin domain, were investigated and found to result in protein misfolding, retention in the secretory pathway, and failure of zymogen maturation. The third mutation, p.L792F in the ADAM12 cytoplasmic tail, was not investigated, but is potentially significant given its location within a di-leucine motif, which is recognized as a potential cellular trafficking signal. The present study was motivated both by the potential relevance of this documented mutation to cancer, as well as for determining the role of the di-leucine motif in ADAM12 trafficking. Expression of ADAM12 p.L792F in mammalian cells demonstrated quantitatively similar expression levels and zymogen maturation as wild-type (WT) ADAM12, as well as comparable cellular localizations. A cell surface biotinylation assay demonstrated that cell surface levels of ADAM12 WT and ADAM12 p.L792F were similar and that internalization of the mutant occurred at the same rate and extent as for ADAM12 WT. Moreover, functional analysis revealed no differences in cell proliferation or ectodomain shedding of epidermal growth factor (EGF), a known ADAM12 substrate between WT and mutant ADAM12. These data suggest that the ADAM12 p.L792F mutation is unlikely to be a driver (cancer causing)-mutation in breast cancer.

  10. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels

    PubMed Central

    Wei, Shipeng; Roessler, Bryan C.; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L.; Kirk, Kevin L.

    2015-01-01

    The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.—Wei, S., Roessler, B. C., Icyuz, M., Chauvet, S., Tao, B., Hartman IV, J. L., Kirk, K. L. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. PMID:26606940

  11. Neural cell adhesion molecule (N-CAM) domains and intracellular signaling pathways involved in the inhibition of astrocyte proliferation.

    PubMed

    Krushel, L A; Tai, M H; Cunningham, B A; Edelman, G M; Crossin, K L

    1998-03-03

    The neural cell adhesion molecule (N-CAM) inhibits astrocyte proliferation in vitro and in vivo, and this effect is partially reversed by the glucocorticoid antagonist RU-486. The present studies have tested the hypothesis that N-CAM-mediated inhibition of astrocyte proliferation is caused by homophilic binding and involves the activation of glucocorticoid receptors. It was observed that all N-CAM Ig domains inhibited astrocyte proliferation in parallel with their ability to influence N-CAM binding. The proliferation of other N-CAM-expressing cells also was inhibited by the addition of N-CAM. In contrast, the proliferation of astrocytes from knockout mice lacking N-CAM was not inhibited by added N-CAM. These findings support the hypothesis that it is binding of soluble N-CAM to N-CAM on the astrocyte surface that leads to decreased proliferation. Signaling pathways stimulated by growth factors include activation of mitogen-activated protein (MAP) kinase. Addition of N-CAM inhibited MAP kinase activity induced by basic fibroblast growth factor in astrocytes. In accord with previous findings that RU-486 could partially prevent the proliferative effects of N-CAM, inhibition of MAP kinase activity by N-CAM was reversed by RU-486. The ability of N-CAM to inhibit astrocyte proliferation was unaffected, however, by agents that block the ability of N-CAM to promote neurite outgrowth. Together, these findings indicate that homophilic N-CAM binding leads to inhibition of astrocyte proliferation via a pathway involving the glucocorticoid receptor and that the ability of N-CAM to influence astrocyte proliferation and neurite outgrowth involves different signal pathways.

  12. Developmental analysis of Lingo-1/Lern1 protein expression in the mouse brain: interaction of its intracellular domain with Myt1l.

    PubMed

    Llorens, Franc; Gil, Vanesa; Iraola, Susana; Carim-Todd, Laura; Martí, Eulàlia; Estivill, Xavier; Soriano, Eduardo; del Rio, José Antonio; Sumoy, Lauro

    2008-03-01

    Lingo-1 (also known as Lern1) is a component of the Nogo receptor complex that mediates intracellular signaling in response to myelin associated inhibitors (MAIs): NogoA, MAG, and Omgp. Signaling through Nogo receptor extends to more than its well known role in preventing axon regeneration after lesion in the CNS, being implicated in neuronal functional maturation. Using Lingo-1-deficient mice, it has been demonstrated that Lingo-1 plays relevant roles in oligodendrocyte differentiation during brain development, and that treatment with Lingo-1 antagonists can improve axon regeneration after lesion in adult mice by decreasing MAI mediated signaling. However, a detailed description of the pattern of expression of Lingo-1 protein in correlation with the other partners of Nogo receptor is missing. Here, we show that components of the Nogo receptor complex, Lingo-1, NgR1, p75, and TROY coexist in mouse brain in a defined time window only at later postnatal stages. We have also determined the Lingo-1 distribution showing expression in particular subsets of neurons, but not in myelinating mature oligodendrocytes. Surprisingly, Lingo-1 is expressed at early developmental stages without NgR1, which supports the notion that Lingo-1 may participate in other activities in developing neurons different from oligodendrocyte maturation or axon extension inhibition in the adult. Finally, we propose that the intracellular domain of Lingo-1 contributes to signaling and show that it interacts with the postmitotic neuronal specific zinc finger protein Myt1l, suggesting that Lingo-1 may regulate Myt1l transcription factor activity by affecting its subcellular localization.

  13. Relative impact of residues at the intracellular and extracellular ends of the human GABAC rho1 receptor M2 domain on picrotoxinin activity.

    PubMed

    Carland, Jane E; Johnston, Graham A R; Chebib, Mary

    2008-02-02

    The relative impact on picrotoxinin activity of residues at the intracellular (2' and 6' residues) and extracellular (15' and 17' residues) ends of the second transmembrane (M2) domain of the human gamma-aminobutyric acid-C (GABA(C)) rho1 receptor was investigated. A series of GABA(C) rho1 subunits were produced containing either single or multiple mutations at the positions of interest. Wild-type and mutant subunits (containing one or more of the following mutations: P2'S, T6'M, I15'N, G17'H) were expressed in Xenopus oocytes and characterized using agonists, partial agonists and antagonists. Changes in agonist activity were observed for mutant receptors. Most notably, mutation at the 2' position resulted in decreased agonist potency, while mutation at the 15' and 17' residues increased agonist potency. The affinity of the competitive antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA) was unchanged compared to wild-type at all mutant receptors. Of the four residues studied, mutation of residues at the 2' and 6' positions had the greatest impact on picrotoxinin activity. Inclusion of the P2'S mutation typically produced receptors with increased picrotoxinin potency, while the T6'M mutation reduced picrotoxinin potency. Picrotoxinin is a mixed antagonist at wild-type and all mutant receptors, with the exception of the double mutant rho1P2'S/T6'M receptors at which the non-competitive component was isolated. It is proposed that the contribution of M2 domain residues to picrotoxinin activity is potentially two-fold: (1) their role as a potential picrotoxinin binding site within the pore; and (2) they are critical for receptor activation properties of the receptor, thus may alter the allosteric mechanism of picrotoxinin.

  14. Sequential and γ-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth

    PubMed Central

    Stoeck, Alexander; Shang, Li; Dempsey, Peter J.

    2010-01-01

    Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic β-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent γ-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and γ-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro. PMID:20530572

  15. Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence.

    PubMed

    Tamura, Tomokazu; Ruggli, Nicolas; Nagashima, Naofumi; Okamatsu, Masatoshi; Igarashi, Manabu; Mine, Junki; Hofmann, Martin A; Liniger, Matthias; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2015-09-01

    Classical swine fever virus (CSFV) causes a highly contagious disease in pigs that can range from a severe haemorrhagic fever to a nearly unapparent disease, depending on the virulence of the virus strain. Little is known about the viral molecular determinants of CSFV virulence. The nonstructural protein NS4B is essential for viral replication. However, the roles of CSFV NS4B in viral genome replication and pathogenesis have not yet been elucidated. NS4B of the GPE-  vaccine strain and of the highly virulent Eystrup strain differ by a total of seven amino acid residues, two of which are located in the predicted trans-membrane domains of NS4B and were described previously to relate to virulence, and five residues clustering in the N-terminal part. In the present study, we examined the potential role of these five amino acids in modulating genome replication and determining pathogenicity in pigs. A chimeric low virulent GPE- -derived virus carrying the complete Eystrup NS4B showed enhanced pathogenicity in pigs. The in vitro replication efficiency of the NS4B chimeric GPE-  replicon was significantly higher than that of the replicon carrying only the two Eystrup-specific amino acids in NS4B. In silico and in vitro data suggest that the N-terminal part of NS4B forms an amphipathic α-helix structure. The N-terminal NS4B with these five amino acid residues is associated with the intracellular membranes. Taken together, this is the first gain-of-function study showing that the N-terminal domain of NS4B can determine CSFV genome replication in cell culture and viral pathogenicity in pigs.

  16. Protein inhibitor of activated STAT3 (PIAS3) protein promotes SUMOylation and nuclear sequestration of the intracellular domain of ErbB4 protein.

    PubMed

    Sundvall, Maria; Korhonen, Anna; Vaparanta, Katri; Anckar, Julius; Halkilahti, Kalle; Salah, Zaidoun; Aqeilan, Rami I; Palvimo, Jorma J; Sistonen, Lea; Elenius, Klaus

    2012-06-29

    ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function.

  17. Protein Inhibitor of Activated STAT3 (PIAS3) Protein Promotes SUMOylation and Nuclear Sequestration of the Intracellular Domain of ErbB4 Protein*

    PubMed Central

    Sundvall, Maria; Korhonen, Anna; Vaparanta, Katri; Anckar, Julius; Halkilahti, Kalle; Salah, Zaidoun; Aqeilan, Rami I.; Palvimo, Jorma J.; Sistonen, Lea; Elenius, Klaus

    2012-01-01

    ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function. PMID:22584572

  18. Model Hirano bodies protect against tau-independent and tau-dependent cell death initiated by the amyloid precursor protein intracellular domain.

    PubMed

    Furgerson, Matthew; Fechheimer, Marcus; Furukawa, Ruth

    2012-01-01

    The main pathological hallmarks of Alzheimer's disease are amyloid-beta plaques and neurofibrillary tangles, which are primarily composed of amyloid precursor protein (APP) and tau, respectively. These proteins and their role in the mechanism of neurodegeneration have been extensively studied. Hirano bodies are a frequently occurring pathology in Alzheimer's disease as well as other neurodegenerative diseases. However, the physiological role of Hirano bodies in neurodegenerative diseases has yet to be determined. We have established cell culture models to study the role of Hirano bodies in amyloid precursor protein and tau-induced cell death mechanisms. Exogenous expression of APP and either of its c-terminal fragments c31 or Amyloid Precursor Protein Intracellular Domain c58 (AICDc58) enhance cell death. The presence of tau is not required for this enhanced cell death. However, the addition of a hyperphosphorylated tau mimic 352PHPtau significantly increases cell death in the presence of both APP and c31 or AICDc58 alone. The mechanism of cell death induced by APP and its c-terminal fragments and tau was investigated. Fe65, Tip60, p53, and caspases play a role in tau-independent and tau-dependent cell death. In addition, apoptosis was determined to contribute to cell death. The presence of model Hirano bodies protected against cell death, indicating Hirano bodies may play a protective role in neurodegeneration.

  19. Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3beta expression.

    PubMed

    Xu, Y; Kim, H-S; Joo, Y; Choi, Y; Chang, K-A; Park, C H; Shin, K-Y; Kim, S; Cheon, Y-H; Baik, T-K; Kim, J-H; Suh, Y-H

    2007-01-01

    Amyloid precursor protein (APP) is a member of a gene family that includes two APP-like proteins, APLP1 and 2. Recently, it has been reported that APLP1 and 2 undergo presenilin-dependent gamma-secretase cleavage, as does APP, resulting in the release of an approximately 6 kDa intracellular C-terminal domain (ICD), which can translocate into the nucleus. In this study, we demonstrate that the APLP2-ICDs interact with CP2/LSF/LBP1 (CP2) transcription factor in the nucleus and induce the expression of glycogen synthase kinase 3beta (GSK-3beta), which has broad-ranged substrates such as tau- and beta-catenin. The significance of this finding is substantiated by the in vivo evidence of the increase in the immunoreactivities for the nuclear C-terminal fragments of APLP2, and for GSK-3beta in the AD patients' brain. Taken together, these results suggest that APLP2-ICDs contribute to the AD pathogenesis, by inducing GSK-3beta expression through the interaction with CP2 transcription factor in the nucleus.

  20. Structural analysis of the human interferon gamma receptor: a small segment of the intracellular domain is specifically required for class I major histocompatibility complex antigen induction and antiviral activity.

    PubMed

    Cook, J R; Jung, V; Schwartz, B; Wang, P; Pestka, S

    1992-12-01

    Mutations of the human interferon gamma (IFN-gamma) receptor intracellular domain have permitted us to define a restricted region of that domain as necessary for both induction of class I major histocompatibility complex antigen by IFN-gamma and protection against encephalomyocarditis virus. This region consists of five amino acids (YDKPH), all of which are conserved in the human and murine receptors. Tyr-457 and His-461 are essential for activity. Approximately 80% of the amino acids of the intracellular domain of the receptor is not required for major histocompatibility complex class I antigen induction or for antiviral protection against encephalomyocarditis virus. The observation that there was no protection by IFN-gamma against vesiculostomatitis virus indicates that other factors, in addition to chromosome 21 accessory factor(s), are required to generate the full complement of transduction signals from the human IFN-gamma receptor.

  1. The positive is inside the negative: HER2-negative tumors can express the HER2 intracellular domain and present a HER2-positive phenotype.

    PubMed

    Panis, Carolina; Pizzatti, Luciana; Corrêa, Stephany; Binato, Renata; Lemos, Gabriela Ferreira; Herrera, Ana Cristina da Silva do Amaral; Seixas, Teresa Fernandes; Cecchini, Rubens; Abdelhay, Eliana

    2015-02-01

    Overexpression of human epithelial growth factor receptor 2 (HER2) is a poor prognostic factor in breast cancer. HER2 is a transmembrane receptor comprising an extracellular domain (ECD), a single transmembrane domain, and an intracellular domain (ICD) with tyrosine-kinase activity. Receptor dimerization triggers pivotal effector pathways in cancer, such as phosphatidylinositol 3-kinase (PI3K) signaling. Currently, screening of HER2 in breast tumors for prognostic and therapeutic purposes involves immunohistochemical (IHC) phenotyping for the ECD, in which tumors with IHC scores below 2+ are reported as HER2-negative. We used a label-free liquid chromatography-mass spectrometry (LC-MS) proteomic approach to compare plasma samples from patients with HER2-positive breast tumors and patients with HER2-negative tumors. Patients with HER2-negative tumors expressed higher circulating levels of calpain-10 than patients with HER2-positive tumors. Calpains cleave HER2, releasing its ECD and transforming phenotypically positive tumors into phenotypically negative tumors. Therefore, we investigated the expression of the ICD in HER2-negative samples that overexpressed calpain-10. We found that 16% of HER2-negative tumors were positive for HER2-ICD, which was associated with circulating HER2-ECD. HER2 gene amplification was also observed in some HER2-negative tumors. Positive staining for the PI3K pathway was observed in the HER2-negative, ICD-positive tumors, similar to the HER2-positive cohort. Microarray analysis revealed that HER2-negative, ICD-positive samples clustered between HER2-positive tumors and triple-negative tumors. Survival analysis revealed that outcome in women with HER2-negative, ICD-positive tumors was better than in women bearing HER2-negative, ICD-negative (triple negative) tumors but was quite similar to HER2-positive tumors and worse than women with luminal A tumors. Moreover, in vitro analyses revealed that MDA-MB 231, a triple negative cell line

  2. The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling.

    PubMed

    Calver, A R; Robbins, M J; Cosio, C; Rice, S Q; Babbs, A J; Hirst, W D; Boyfield, I; Wood, M D; Russell, R B; Price, G W; Couve, A; Moss, S J; Pangalos, M N

    2001-02-15

    GABA(B) receptors are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. These receptors are heterodimers assembled from GABA(B1) and GABA(B2) subunits, neither of which is capable of producing functional GABA(B) receptors on homomeric expression. GABA(B1,) although able to bind GABA, is retained within the endoplasmic reticulum (ER) when expressed alone. In contrast, GABA(B2) is able to access the cell surface when expressed alone but does not couple efficiently to the appropriate effector systems or produce any detectable GABA-binding sites. In the present study, we have constructed chimeric and truncated GABA(B1) and GABA(B2) subunits to explore further GABA(B) receptor signaling and assembly. Removal of the entire C-terminal intracellular domain of GABA(B1) results in plasma membrane expression without the production of a functional GABA(B) receptor. However, coexpression of this truncated GABA(B1) subunit with either GABA(B2) or a truncated GABA(B2) subunit in which the C terminal has also been removed is capable of functional signaling via G-proteins. In contrast, transferring the entire C-terminal tail of GABA(B1) to GABA(B2) leads to the ER retention of the GABA(B2) subunit when expressed alone. These results indicate that the C terminal of GABA(B1) mediates the ER retention of this protein and that neither of the C-terminal tails of GABA(B1) or GABA(B2) is an absolute requirement for functional coupling of heteromeric receptors. Furthermore although GABA(B1) is capable of producing GABA-binding sites, GABA(B2) is of central importance in the functional coupling of heteromeric GABA(B) receptors to G-proteins and the subsequent activation of effector systems.

  3. Reduction in membranous immunohistochemical staining for the intracellular domain of epithelial cell adhesion molecule correlates with poor patient outcome in primary colorectal adenocarcinoma

    PubMed Central

    Wang, A.; Ramjeesingh, R.; Chen, C.H.; Hurlbut, D.; Hammad, N.; Mulligan, L.M.; Nicol, C.; Feilotter, H.E.; Davey, S.

    2016-01-01

    Background Epithelial cell adhesion molecule (epcam) is a multifunctional transmembrane glycoprotein expressed on both normal epithelium and epithelial neoplasms such as gastric, breast, and renal carcinomas. Recent studies have proposed that the proteolytic cleavage of the intracellular domain of epcam (epcam-icd) can trigger signalling cascades leading to aggressive tumour behavior. The expression profile of epcam-icd has not been elucidated for primary colorectal carcinoma. In the present study, we examined epcam-icd immunohistochemical staining in a large cohort of patients with primary colorectal adenocarcinoma and assessed its performance as a potential prognostic marker. Methods Immunohistochemical staining for epcam-icd was assessed on tissue microarrays consisting of 137 primary colorectal adenocarcinoma samples. Intensity of staining for each core was scored by 3 independent pathologists. The membranous epcam-icd staining score was calculated as a weighted average from 3 core samples per tumour. Univariate analysis of the average scores and clinical outcome measures was performed. Results The level of membranous epcam-icd staining was positively associated with well-differentiated tumours (p = 0.01); low preoperative carcinoembryonic antigen (p = 0.001); and several measures of survival, including 2-year (p = 0.02) and 5-year survival (p = 0.05), and length of time post-diagnosis (p = 0.03). A number of other variables—including stage, grade, and lymph node status—showed correlations with epcam staining and markers of poor outcome, but did not reach statistical significance. Conclusions Low membranous epcam-icd staining might be a useful marker to identify tumours with aggressive clinical behavior and potential poor prognosis and might help to select candidates who could potentially benefit from treatment targeting epcam. PMID:27330354

  4. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  5. Intracellular ROS

    PubMed Central

    Leshem, Yehoram

    2007-01-01

    Intracellular localization of stress induced reactive oxygen species (ROS) has emerged as an important aspect towards understanding of cellular responses to environmental stimuli. Our recent study published in the PNAS (103:18008–13)1 shows that NaCl-induced ROS appear within endosomes on the way to tonoplast as part of the vacuolar vesicle trafficking. In addition to showing ROS damage to the tonoplast, this finding may shed light upon recently reported aspects of root water relations during salt stress, suggesting a new signaling role for intracellular ROS in Arabidopsis root cells, during salt stress: ROS that are compartmentalized in endosomes are delivered by the vacuolar vesicle trafficking pathway to the tonoplast, resulting in oxidative gating of TIPs water channels. The closure of the tonoplast aquaporins contributes to the observed reduction in root hydraulic conductivity during salt stress. PMID:19704741

  6. Pro-NGF from Alzheimer’s Disease and Normal Human Brain Displays Distinctive Abilities to Induce Processing and Nuclear Translocation of Intracellular Domain of p75NTR and Apoptosis

    PubMed Central

    Podlesniy, Petar; Kichev, Anton; Pedraza, Carlos; Saurat, Jordi; Encinas, Mario; Perez, Begoña; Ferrer, Isidre; Espinet, Carme

    2006-01-01

    The pro form of neurotrophic growth factor (pro-NGF), purified by chromatography from human Alzheimer’s disease (AD)-affected brains (ADhbi-pro-NGF), has been shown to induce apoptotic cell death in neuronal cell cultures through its interaction with the p75 neurotrophin receptor (p75NTR). In the present work, we report that ADhbi-pro-NGF stimulates processing of p75NTR with α- and γ-secretases, yielding a 20-kd intracellular domain (p75ICD) that translocates to the nucleus. This process was accompanied by delayed apoptosis. In AD, p75ICD was significantly increased in human entorhinal cortex. Although human frontal cortex has been described as showing a higher pro-NGF increase in AD, the increase in the entorhinal cortex paralleled p75NTR processing in its intracellular domain. In addition, pro-NGF isolated from AD-affected brains differed functionally from pro-NGF isolated from comparably aged control brains, with pro-NGF isolated from control brains being unstable and undergoing degradation to NGF when added to cell culture. As p75ICD and pro-NGF are both mediators of apoptosis and are both found in increased levels in the cerebral cortex in AD, the present data have implications for understanding neuronal degeneration in AD. PMID:16816366

  7. Intracellular localization of human ZBP1: Differential regulation by the Z-DNA binding domain, Z{alpha}, in splice variants

    SciTech Connect

    Hong Thanh Pham; Park, Mi-Young; Kim, Kyeong Kyu; Kim, Yang-Gyun; Ahn, Jin-Hyun . E-mail: jahn@med.skku.ac.kr

    2006-09-15

    We investigated the subcellular distribution of human ZBP1, which harbors the N-terminal Z-DNA binding domains, Z{alpha} and Z{beta}. ZBP1 was distributed primarily in the cytoplasm and occasionally as nuclear foci in interferon (IFN)-treated primary hepatocellular carcinoma cells, and in several other transfected cell types. In leptomycin B (LMB)-treated cells, endogenous ZBP1 efficiently accumulated in nuclear foci, which overlapped PML oncogenic domains (PODs) or nuclear bodies (NBs). In transfection assays, the unique C-terminal region of ZBP1 was necessary for its typical cytoplasmic localization. Interestingly, the Z{alpha}-deleted form displayed an increased association with PODs compared to wild-type and, unlike wild-type, perfectly accumulated in PODs in LMB-treated cells, implying that the presence of Z{alpha} domain also facilitates the cytoplasmic localization. Our results demonstrate that ZBP1 is localized primarily in the cytoplasm but also associated with nuclear PODs in IFN or LMB-treated cells. Given that about half of ZBP1 mRNA lacks exon 2 encoding the Z{alpha} domain, our data also suggest that the localization of ZBP1 may be differentially regulated by the Z-DNA binding domain, Z{alpha}, in splice variants.

  8. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  9. Interactions of the Cytoplasmic Domains of Human and Simian Retroviral Transmembrane Proteins with Components of the Clathrin Adaptor Complexes Modulate Intracellular and Cell Surface Expression of Envelope Glycoproteins

    PubMed Central

    Berlioz-Torrent, Clarisse; Shacklett, Barbara L.; Erdtmann, Lars; Delamarre, Lelia; Bouchaert, Isabelle; Sonigo, Pierre; Dokhelar, Marie Christine; Benarous, Richard

    1999-01-01

    The cytoplasmic domains of the transmembrane (TM) envelope proteins (TM-CDs) of most retroviruses have a Tyr-based motif, YXXØ, in their membrane-proximal regions. This signal is involved in the trafficking and endocytosis of membrane receptors via clathrin-associated AP-1 and AP-2 adaptor complexes. We have used CD8-TM-CD chimeras to investigate the role of the Tyr-based motif of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and human T-leukemia virus type 1 (HTLV-1) TM-CDs in the cell surface expression of the envelope glycoprotein. Flow cytometry and confocal microscopy studies showed that this motif is a major determinant of the cell surface expression of the CD8-HTLV chimera. The YXXØ motif also plays a key role in subcellular distribution of the envelope of lentiviruses HIV-1 and SIV. However, these viruses, which encode TM proteins with a long cytoplasmic domain, have additional determinants distal to the YXXØ motif that participate in regulating cell surface expression. We have also used the yeast two-hybrid system and in vitro binding assays to demonstrate that all three retroviral YXXØ motifs interact with the μ1 and μ2 subunits of AP complexes and that the C-terminal regions of HIV-1 and SIV TM proteins interact with the β2 adaptin subunit. The TM-CDs of HTLV-1, HIV-1, and SIV also interact with the whole AP complexes. These results clearly demonstrate that the cell surface expression of retroviral envelope glycoproteins is governed by interactions with adaptor complexes. The YXXØ-based signal is the major determinant of this interaction for the HTLV-1 TM, which contains a short cytoplasmic domain, whereas the lentiviruses HIV-1 and SIV have additional determinants distal to this signal that are also involved. PMID:9882340

  10. A quantum mechanical study on phosphotyrosyl peptide binding to the SH2 domain of p56lck tyrosine kinase with insights into the biochemistry of intracellular signal transduction events.

    PubMed

    Pichierri, Fabio

    2004-05-01

    A study on the interaction between a phosphotyrosyl peptide with the SH2 domain of Lck kinase has been undertaken with the aid of semiempirical linear-scaling quantum mechanical methods. The structure of this complex has been solved at atomic resolution and, hence, it represents the ideal candidate for studying the charge deformation effects induced by the phosphopeptide on the binding site. Substantial changes in the charge of amino acid residues located in the binding pocket of the protein are observed upon ligand binding. More specifically, our quantum chemical calculations indicate that H-bonds involving charged side-chains are subject to consistent charge deformation effects whereas those forming salt bridges are unaffected by ligand binding. Furthermore, ligand binding has the effect of changing both the magnitude and direction of the protein's macrodipole, which rotates approximately 150 degrees with respect that of the unliganded protein. This suggests that a change in the polarization state of the protein might acts as a switch during the transmission of intracellular signals. The binding energy calculated with the aid of the COSMO solvation model corresponds to about -200 kcal/mol, most of which is attributed to the interaction of the phosphotyrosine head with the amino acid chains located in the binding site of the SH2 domain.

  11. Silencing of the Tandem Pore Domain Halothane-inhibited K+ Channel 2 (THIK2) Relies on Combined Intracellular Retention and Low Intrinsic Activity at the Plasma Membrane*

    PubMed Central

    Chatelain, Franck C.; Bichet, Delphine; Feliciangeli, Sylvain; Larroque, Marie-Madeleine; Braud, Véronique M.; Douguet, Dominique; Lesage, Florian

    2013-01-01

    The tandem pore domain halothane-inhibited K+ channel 1 (THIK1) produces background K+ currents. Despite 62% amino acid identity with THIK1, THIK2 is not active upon heterologous expression. Here, we show that this apparent lack of activity is due to a unique combination of retention in the endoplasmic reticulum and low intrinsic channel activity at the plasma membrane. A THIK2 mutant containing a proline residue (THIK2-A155P) in its second inner helix (M2) produces K+-selective currents with properties similar to THIK1, including inhibition by halothane and insensitivity to extracellular pH variations. Another mutation in the M2 helix (I158D) further increases channel activity and affects current kinetics. We also show that the cytoplasmic amino-terminal region of THIK2 (Nt-THIK2) contains an arginine-rich motif (RRSRRR) that acts as a retention/retrieval signal. Mutation of this motif in THIK2 induces a relocation of the channel to the plasma membrane, resulting in measurable currents, even in the absence of mutations in the M2 helix. Cell surface delivery of a Nt-THIK2-CD161 chimera is increased by mutating the arginines of the retention motif but also by converting the serine embedded in this motif to aspartate, suggesting a phosphorylation-dependent regulation of THIK2 trafficking. PMID:24163367

  12. A Temperature-Sensitive Lesion in the N-Terminal Domain of the Rotavirus Polymerase Affects Its Intracellular Localization and Enzymatic Activity.

    PubMed

    McKell, Allison O; LaConte, Leslie E W; McDonald, Sarah M

    2017-04-01

    Temperature-sensitive (ts) mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-tsC, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-tsC, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2). To investigate whether the L138P mutation induces a ts phenotype in VP1 outside the SA11-tsC genetic context, we employed ectopic expression systems. Specifically, we tested whether the L138P mutation affects the ability of VP1 to localize to viroplasms, which are the sites of RV RNA synthesis, by expressing the mutant form as a green fluorescent protein (GFP) fusion protein (VP1L138P-GFP) (i) in wild-type SA11-infected cells or (ii) in uninfected cells along with viroplasm-forming proteins NSP2 and NSP5. We found that VP1L138P-GFP localized to viroplasms and interacted with NSP2 and/or NSP5 at 31°C but not at 39°C. Next, we tested the enzymatic activity of a recombinant mutant polymerase (rVP1L138P) in vitro and found that it synthesized less RNA at 39°C than at 31°C, as well as less RNA than the control at all temperatures. Together, these results provide a mechanistic basis for the ts phenotype of SA11-tsC and raise important questions about the role of leucine 138 in supporting key protein interactions and the catalytic function of the VP1 polymerase.IMPORTANCE RVs cause diarrhea in the young of many animal species, including humans. Despite their medical and economic importance, gaps in knowledge exist about how these viruses replicate inside host cells. Previously, a mutant simian RV (SA11-tsC) that replicates worse at higher temperatures was identified. This virus has an amino acid mutation in VP

  13. A Temperature-Sensitive Lesion in the N-Terminal Domain of the Rotavirus Polymerase Affects Its Intracellular Localization and Enzymatic Activity

    PubMed Central

    McKell, Allison O.; LaConte, Leslie E. W.

    2017-01-01

    ABSTRACT Temperature-sensitive (ts) mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-tsC, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-tsC, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2). To investigate whether the L138P mutation induces a ts phenotype in VP1 outside the SA11-tsC genetic context, we employed ectopic expression systems. Specifically, we tested whether the L138P mutation affects the ability of VP1 to localize to viroplasms, which are the sites of RV RNA synthesis, by expressing the mutant form as a green fluorescent protein (GFP) fusion protein (VP1L138P-GFP) (i) in wild-type SA11-infected cells or (ii) in uninfected cells along with viroplasm-forming proteins NSP2 and NSP5. We found that VP1L138P-GFP localized to viroplasms and interacted with NSP2 and/or NSP5 at 31°C but not at 39°C. Next, we tested the enzymatic activity of a recombinant mutant polymerase (rVP1L138P) in vitro and found that it synthesized less RNA at 39°C than at 31°C, as well as less RNA than the control at all temperatures. Together, these results provide a mechanistic basis for the ts phenotype of SA11-tsC and raise important questions about the role of leucine 138 in supporting key protein interactions and the catalytic function of the VP1 polymerase. IMPORTANCE RVs cause diarrhea in the young of many animal species, including humans. Despite their medical and economic importance, gaps in knowledge exist about how these viruses replicate inside host cells. Previously, a mutant simian RV (SA11-tsC) that replicates worse at higher temperatures was identified. This virus has an amino acid

  14. pH-sensitive Self-associations of the N-terminal Domain of NBCe1-A Suggest a Compact Conformation under Acidic Intracellular Conditions

    PubMed Central

    Gill, Harindarpal S

    2012-01-01

    NBCe1-A is an integral membrane protein that cotransports Na+ and HCO3- ions across the basolateral membrane of the proximal tubule. It is essential for maintaining a homeostatic balance of cellular and blood pH. In X-ray diffraction studies, we reported that the cytoplasmic, N-terminal domain of NBCe1-A (NtNBCe1-A) is a dimer. Here, biophysical measurements show that the dimer is in a concentration-dependent dynamic equilibrium among three additional states in solution that are characterized by its hydrodynamic properties, molar masses, emission spectra, binding properties, and stabilities as a function of pH. Under physiological conditions, dimers are in equilibrium with monomers that are pronounced at low concentration and clusters of molecular masses up to 3-5 times that of a dimer that are pronounced at high concentration. The equilibrium can be influenced so that individual dimers predominate in a taut conformation by lowering the pH. Conversely, dimers begin to relax and disassociate into an increasing population of monomers by elevating the pH. A mechanistic diagram for the inter-conversion of these states is given. The self-associations are further supported by surface plasmon resonance (SPR-Biacore) techniques that illustrate NtNBCe1-A molecules transiently bind with one another. Bicarbonate and bicarbonate-analog bisulfite appear to enhance dimerization and induce a small amount of tetramers. A model is proposed, where the Nt responds to pH or bicarbonate fluctuations inside the cell and plays a role in self-association of entire NBCe1-A molecules in the membrane. PMID:22316307

  15. The ataxia3 mutation in the N-terminal cytoplasmic domain of sodium channel Nav1.6 disrupts intracellular trafficking

    PubMed Central

    Sharkey, Lisa M.; Cheng, X-Y; Drews, Valerie; Buchner, David A.; Jones, Julie M.; Justice, Monica J.; Waxman, Stephen G.; Dib-Hajj, Sulayman D.; Meisler, Miriam H.

    2009-01-01

    The ENU-induced neurological mutant ataxia3 was mapped to distal mouse chromosome 15. Sequencing of the positional candidate gene Scn8a encoding the sodium channel Nav1.6 identified a T>C transition in exon 1 resulting in the amino acid substitution p.S21P near the N-terminus of the channel. The cytoplasmic N-terminal region is evolutionarily conserved but its function has not been well characterized. ataxia3 homozygotes exhibit a severe disorder that includes ataxia, tremor, and juvenile lethality. Unlike Scn8a null mice, they retain partial hind limb function. The mutant transcript is stable but protein abundance is reduced and the mutant channel is not detected in its usual site of concentration at nodes of Ranvier. In whole cell patch-clamp studies of transfected ND7/23 cells which were maintained at 37°C, the mutant channel did not produce sodium current, and function was not restored by co-expression of β1 and β2 subunits. However, when tranfected cells were maintained at 30°C, the mutant channel generated voltage-dependent inward sodium currents with an average peak current density comparable to wildtype, demonstrating recovery of channel activity. Immunohistochemistry of primary cerebellar granule cells from ataxia3 mice demonstrated that the mutant protein is retained in the cis-Golgi. This trafficking defect can account for the low level of Nav1.6-S21P at nodes of Ranvier in vivo and at the surface of transfected cells. The data demonstrate that the cytoplasmic N-terminal domain of the sodium channel is required for anterograde transport from the Golgi complex to the plasma membrane. PMID:19261867

  16. Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain.

    PubMed

    Mishra, Archana; Traut, Matthias H; Becker, Lore; Klopstock, Thomas; Stein, Valentin; Klein, Rüdiger

    2014-03-19

    Normal brain function requires balanced development of excitatory and inhibitory synapses. An imbalance in synaptic transmission underlies many brain disorders such as epilepsy, schizophrenia, and autism. Compared with excitatory synapses, relatively little is known about the molecular control of inhibitory synapse development. We used a genetic approach in mice to identify the Ig superfamily member IgSF9/Dasm1 as a candidate homophilic synaptic adhesion protein that regulates inhibitory synapse development. IgSF9 is expressed in pyramidal cells and subsets of interneurons in the CA1 region of hippocampus. Electrophysiological recordings of acute hippocampal slices revealed that genetic inactivation of the IgSF9 gene resulted in fewer functional inhibitory synapses; however, the strength of the remaining synapses was unaltered. These physiological abnormalities were correlated with decreased expression of inhibitory synapse markers in IgSF9(-/-) mice, providing anatomical evidence for a reduction in inhibitory synapse numbers, whereas excitatory synapse development was normal. Surprisingly, knock-in mice expressing a mutant isoform of IgSF9 lacking the entire cytoplasmic domain (IgSF9(ΔC/ΔC) mice) had no defects in inhibitory synapse development, providing genetic evidence that IgSF9 regulates synapse development via ectodomain interactions rather than acting itself as a signaling receptor. Further, we found that IgSF9 mediated homotypic binding and cell aggregation, but failed to induce synapse formation, suggesting that IgSF9 acts as a cell adhesion molecule (CAM) to maintain synapses. Juvenile IgSF9(-/-) mice exhibited increased seizure susceptibility indicative of an imbalance in synaptic excitation and inhibition. These results provide genetic evidence for a specific role of IgSF9 in inhibitory synapse development/maintenance, presumably by its CAM-like activity.

  17. Identification of canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the intracellular domain of the interleukin 23 receptor.

    PubMed

    Floss, Doreen M; Mrotzek, Simone; Klöcker, Tobias; Schröder, Jutta; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2013-07-05

    Signaling of interleukin 23 (IL-23) via the IL-23 receptor (IL-23R) and the shared IL-12 receptor β1 (IL-12Rβ1) controls innate and adaptive immune responses and is involved in the differentiation and expansion of IL-17-producing CD4(+) T helper (TH17) cells. Activation of signal transducer and activator of transcription 3 (STAT3) appears to be the major signaling pathway of IL-23, and STAT binding sites were predicted in the IL-23R but not in the IL-12Rβ1 chain. Using site-directed mutagenesis and deletion variants of the murine and human IL-23R, we showed that the predicted STAT binding sites (pYXXQ; including Tyr-504 and Tyr-626 in murine IL-23R and Tyr-484 and Tyr-611 in human IL-23R) mediated STAT3 activation. Furthermore, we identified two uncommon STAT3 binding/activation sites within the murine IL-23R. First, the murine IL-23R carried the Y(542)PNFQ sequence, which acts as an unusual Src homology 2 (SH2) domain-binding protein activation site of STAT3. Second, we identified a non-canonical, phosphotyrosine-independent STAT3 activation motif within the IL-23R. A third predicted site, Tyr-416 in murine and Tyr-397 in human IL-23R, is involved in the activation of PI3K/Akt and the MAPK pathway leading to STAT3-independent proliferation of Ba/F3 cells upon stimulation with IL-23. In contrast to IL-6-induced short term STAT3 phosphorylation, cellular activation by IL-23 resulted in a slower but long term STAT3 phosphorylation, indicating that the IL-23R might not be a major target of negative feedback inhibition by suppressor of cytokine signaling (SOCS) proteins. In summary, we characterized IL-23-dependent signal transduction with a focus on STAT3 phosphorylation and identified canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the IL-23R.

  18. Identification of Canonical Tyrosine-dependent and Non-canonical Tyrosine-independent STAT3 Activation Sites in the Intracellular Domain of the Interleukin 23 Receptor*

    PubMed Central

    Floss, Doreen M.; Mrotzek, Simone; Klöcker, Tobias; Schröder, Jutta; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2013-01-01

    Signaling of interleukin 23 (IL-23) via the IL-23 receptor (IL-23R) and the shared IL-12 receptor β1 (IL-12Rβ1) controls innate and adaptive immune responses and is involved in the differentiation and expansion of IL-17-producing CD4+ T helper (TH17) cells. Activation of signal transducer and activator of transcription 3 (STAT3) appears to be the major signaling pathway of IL-23, and STAT binding sites were predicted in the IL-23R but not in the IL-12Rβ1 chain. Using site-directed mutagenesis and deletion variants of the murine and human IL-23R, we showed that the predicted STAT binding sites (pYXXQ; including Tyr-504 and Tyr-626 in murine IL-23R and Tyr-484 and Tyr-611 in human IL-23R) mediated STAT3 activation. Furthermore, we identified two uncommon STAT3 binding/activation sites within the murine IL-23R. First, the murine IL-23R carried the Y542PNFQ sequence, which acts as an unusual Src homology 2 (SH2) domain-binding protein activation site of STAT3. Second, we identified a non-canonical, phosphotyrosine-independent STAT3 activation motif within the IL-23R. A third predicted site, Tyr-416 in murine and Tyr-397 in human IL-23R, is involved in the activation of PI3K/Akt and the MAPK pathway leading to STAT3-independent proliferation of Ba/F3 cells upon stimulation with IL-23. In contrast to IL-6-induced short term STAT3 phosphorylation, cellular activation by IL-23 resulted in a slower but long term STAT3 phosphorylation, indicating that the IL-23R might not be a major target of negative feedback inhibition by suppressor of cytokine signaling (SOCS) proteins. In summary, we characterized IL-23-dependent signal transduction with a focus on STAT3 phosphorylation and identified canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the IL-23R. PMID:23673666

  19. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  20. Evolution of intracellular compartmentalization.

    PubMed

    Diekmann, Yoan; Pereira-Leal, José B

    2013-01-15

    Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.

  1. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells.

    PubMed

    Wilson, T; Wu, X Y; Juengel, J L; Ross, I K; Lumsden, J M; Lord, E A; Dodds, K G; Walling, G A; McEwan, J C; O'Connell, A R; McNatty, K P; Montgomery, G W

    2001-04-01

    The Booroola fecundity gene (FecB) increases ovulation rate and litter size in sheep and is inherited as a single autosomal locus. The effect of FecB is additive for ovulation rate (increasing by about 1.6 corpora lutea per cycle for each copy) and has been mapped to sheep chromosome 6q23-31, which is syntenic to human chromosome 4q21-25. Bone morphogenetic protein IB (BMP-IB) receptor (also known as ALK-6), which binds members of the transforming growth factor-beta (TGF-beta) superfamily, is located in the region containing the FecB locus. Booroola sheep have a mutation (Q249R) in the highly conserved intracellular kinase signaling domain of the BMP-IB receptor. The mutation segregated with the FecB phenotype in the Booroola backcross and half-sib flocks of sheep with no recombinants. The mutation was not found in individuals from a number of sheep breeds not derived from the Booroola strain. BMPR-IB was expressed in the ovary and in situ hybridization revealed its specific location to the oocyte and the granulosa cell. Expression of mRNA encoding the BMP type II receptor was widespread throughout the ovary. The mutation in BMPR-IB found in Booroola sheep is the second reported defect in a gene from the TGF-beta pathway affecting fertility in sheep following the recent discovery of mutations in the growth factor, GDF9b/BMP15.

  2. Colocalization of β-catenin with Notch intracellular domain in colon cancer: a possible role of Notch1 signaling in activation of CyclinD1-mediated cell proliferation.

    PubMed

    Gopalakrishnan, Natarajan; Saravanakumar, Marimuthu; Madankumar, Perumal; Thiyagu, Mani; Devaraj, Halagowder

    2014-11-01

    The Wnt and Notch1 signaling pathways play major roles in intestinal development and tumorigenesis. Sub-cellular localization of β-catenin has been implicated in colorectal carcinogenesis. However, the β-catenin and Notch intracellular domain (NICD) interaction has to be addressed. Immunohistochemistries of β-catenin, NICD, and dual immunofluorescence of β-catenin and NICD were analyzed in colorectal tissues and HT29 cell line. Moreover, real-time PCR analysis of CyclinD1, Hes1 and MUC2 was done in HT29 cells upon N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment. Dual staining emphasized the strong interaction of β-catenin and NICD in adenoma and adenocarcinoma than in normal tissues. Hes1 transcript levels were decreased 1.5- and 7.1-fold in 12.5 and 25 µM DAPT-treated HT29 cells. CyclinD1 transcript levels decreased 1.2- and 1.6-fold, and MUC2 transcript level increased 4.3- and 7.5-fold in 12.5 and 25 µM DAPT-treated HT29 cells. The results of this study showed that the sub-cellular localization of β-catenin converges with NICD inducing proliferation through the activation of CyclinD1 and Hes1. Moreover, the inhibition of Notch1 signaling by DAPT leads to the arrest of cell proliferation and induces apoptosis leading to the upregulation of MUC2, a secretory cell lineage marker.

  3. Intracellular protein topogenesis

    PubMed Central

    Blobel, Günter

    1980-01-01

    Concurrently with or shortly after their synthesis on ribosomes, numerous specific proteins are unidirectionally translocated across or asymmetrically integrated into distinct cellular membranes. Thereafter, subpopulations of these proteins need to be sorted from each other and routed for export or targeted to other intracellular membranes or compartments. It is hypothesized here that the information for these processes, termed “protein topogenesis,” is encoded in discrete “topogenic” sequences that constitute a permanent or transient part of the polypeptide chain. The repertoire of distinct topogenic sequences is predicted to be relatively small because many different proteins would be topologically equivalent—i.e., targeted to the same intracellular address. The information content of topogenic sequences would be decoded and processed by distinct effectors. Four types of topogenic sequences could be distinguished: signal sequences, stop-transfer sequences, sorting sequences, and insertion sequences. Signal sequences initiate translocation of proteins across specific membranes. They would be decoded and processed by protein translocators that, by virtue of their signal sequence-specific domain and their unique location in distinct cellular membranes, effect unidirectional translocation of proteins across specific cellular membranes. Stop-transfer sequences interrupt the translocation process that was previously initiated by a signal sequence and, by excluding a distinct segment of the polypeptide chain from translocation, yield asymmetric integration of proteins into translocation-competent membranes. Sorting sequences would act as determinants for posttranslocational traffic of subpopulations of proteins, originating in translocation-competent donor membranes (and compartments) and going to translocation-incompetent receiver membranes (and compartments). Finally, insertion sequences initiate unilateral integration of proteins into the lipid bilayer

  4. Evolution of intracellular pathogens.

    PubMed

    Casadevall, Arturo

    2008-01-01

    The evolution of intracellular pathogens is considered in the context of ambiguities in basic definitions and the diversity of host-microbe interactions. Intracellular pathogenesis is a subset of a larger world of host-microbe interactions that includes amoeboid predation and endosymbiotic existence. Intracellular pathogens often reveal genome reduction. Despite the uniqueness of each host-microbe interaction, there are only a few general solutions to the problem of intracellular survival, especially in phagocytic cells. Similarities in intracellular pathogenic strategies between phylogenetically distant microbes suggest convergent evolution. For discerning such patterns, it is useful to consider whether the microbe is acquired from another host or directly from the environment. For environmentally acquired microbes, biotic pressures, such as amoeboid predators, may select for the capacity for virulence. Although often viewed as a specialized adaptation, the capacity for intracellular survival may be widespread among microbes, thus questioning whether the intracellular lifestyle warrants a category of special distinctiveness.

  5. Revisiting intracellular calcium signaling semantics.

    PubMed

    Haiech, Jacques; Audran, Emilie; Fève, Marie; Ranjeva, Raoul; Kilhoffer, Marie-Claude

    2011-12-01

    Cells use intracellular free calcium concentration changes for signaling. Signal encoding occurs through both spatial and temporal modulation of the free calcium concentration. The encoded message is detected by an ensemble of intracellular sensors forming the family of calcium-binding proteins (CaBPs) which must faithfully translate the message using a new syntax that is recognized by the cell. The cell is home to a significant although limited number of genes coding for proteins involved in the signal encoding and decoding processes. In a cell, only a subset of this ensemble of genes is expressed, leading to a genetic regulation of the calcium signal pathways. Calmodulin (CaM), the most ubiquitous expressed intracellular calcium-binding protein, plays a major role in calcium signal translation. Similar to a hub, it is central to a large and finely tuned network, receiving information, integrating it and dispatching the cognate response. In this review, we examine the different steps starting with an external stimulus up to a cellular response, with special emphasis on CaM and the mechanism by which it decodes calcium signals and translates it into exquisitely coordinated cellular events. By this means, we will revisit the calcium signaling semantics, hoping that we will ease communication between scientists dealing with calcium signals in different biological systems and different domains.

  6. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  7. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  8. Chlamydial Intracellular Survival Strategies

    PubMed Central

    Bastidas, Robert J.; Elwell, Cherilyn A.; Engel, Joanne N.

    2013-01-01

    Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host–cellular functions to invade host cells and maintain a replicative niche. PMID:23637308

  9. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  10. Species-specific engagement of human nucleotide oligomerization domain 2 (NOD)2 and Toll-like receptor (TLR) signalling upon intracellular bacterial infection: role of Crohn's associated NOD2 gene variants.

    PubMed

    Salem, M; Seidelin, J B; Eickhardt, S; Alhede, M; Rogler, G; Nielsen, O H

    2015-03-01

    Recognition of bacterial peptidoglycan-derived muramyl-dipeptide (MDP) by nucleotide oligomerization domain 2 (NOD2) induces crucial innate immune responses. Most bacteria carry the N-acetylated form of MDP (A-MDP) in their cell membranes, whereas N-glycolyl MDP (G-MDP) is typical for mycobacteria. Experimental murine studies have reported G-MDP to have a greater NOD2-stimulating capacity than A-MDP. As NOD2 polymorphisms are associated with Crohn's disease (CD), a link has been suggested between mycobacterial infections and CD. Thus, the aim was to investigate if NOD2 responses are dependent upon type of MDP and further to determine the role of NOD2 gene variants for the bacterial recognition in CD. The response pattern to A-MDP, G-MDP, Mycobacterium segmatis (expressing mainly G-MDP) and M. segmatisΔnamH (expressing A-MDP), Listeria monocytogenes (LM) (an A-MDP-containing bacteria) and M. avium paratuberculosis (MAP) (a G-MDP-containing bacteria associated with CD) was investigated in human peripheral blood mononuclear cells (PBMCs). A-MDP and M. segmatisΔnamH induced significantly higher tumour necrosis factor (TNF)-α protein levels in healthy wild-type NOD2 PBMCs compared with G-MDP and M. segmatis. NOD2 mutations resulted in a low tumour necrosis factor (TNF)-α protein secretion following stimulation with LM. Contrary to this, TNF-α levels were unchanged upon MAP stimulation regardless of NOD2 genotype and MAP solely activated NOD2- and Toll-like receptor (TLRs)-pathway with an enhanced production of interleukin (IL)-1β and IL-10. In conclusion, the results indicate that CD-associated NOD2 deficiencies might affect the response towards a broader array of commensal and pathogenic bacteria expressing A-MDP, whereas they attenuate the role of mycobacteria in the pathogenesis of CD. © 2014 British Society for Immunology.

  11. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  12. Intracellular Oscillations and Waves

    NASA Astrophysics Data System (ADS)

    Beta, Carsten; Kruse, Karsten

    2017-03-01

    Dynamic processes in living cells are highly organized in space and time. Unraveling the underlying molecular mechanisms of spatiotemporal pattern formation remains one of the outstanding challenges at the interface between physics and biology. A fundamental recurrent pattern found in many different cell types is that of self-sustained oscillations. They are involved in a wide range of cellular functions, including second messenger signaling, gene expression, and cytoskeletal dynamics. Here, we review recent developments in the field of cellular oscillations and focus on cases where concepts from physics have been instrumental for understanding the underlying mechanisms. We consider biochemical and genetic oscillators as well as oscillations that arise from chemo-mechanical coupling. Finally, we highlight recent studies of intracellular waves that have increasingly moved into the focus of this research field.

  13. Intracellular trafficking of hnRNP A2 in oligodendrocytes.

    PubMed

    Brumwell, C; Antolik, C; Carson, J H; Barbarese, E

    2002-10-01

    Heterogeneous ribonucleoprotein (hnRNP) A2 is a trans-acting factor that mediates intracellular trafficking of specific RNAs containing the A2 response element. HnRNP A2 is localized in the nucleus and also in granules in the perikaryon and processes in oligodendrocytes. The distribution of the cytoplasmic pool of hnRNP A2 is microtubule-dependent. HnRNP A2 is composed of two sequential RNA binding domains (RBDI and RBDII), a glycine-rich domain, and a nuclear import domain (M9). In order to analyze the roles of individual domains in determining the intracellular distribution of hnRNP A2, chimeric mRNAs encoding various domains fused with green fluorescent protein (GFP) were injected into oligodendrocytes, and the subcellular distribution of the GFP hybrid proteins was analyzed by fluorescence microscopy. Chimeric GFP proteins containing the M9 domain were localized to the nucleus. In the absence of the M9 domain, proteins containing the RBDII domain were preferentially concentrated in the distal processes of the cells. Localization of RBDII-containing proteins in the periphery was dependent on the presence of intact microtubules. These data suggest that the RBDII domain of hnRNP A2 targets hnRNP A2 to the periphery of the cell in a microtubule-dependent manner.

  14. Intracellular microbes and haemophagocytosis.

    PubMed

    Silva-Herzog, Eugenia; Detweiler, Corrella S

    2008-11-01

    Haemophagocytosis (hemophagocytosis) is the phenomenon of activated macrophage consumption of red and white blood cells, including professional phagocytes and lymphocytes. It can occur in patients with severe cases of intracellular microbial infection, including avian influenza, leishmaniasis, tuberculosis and typhoid fever. While well-known to physicians since at least the mid-1800s, haemophagocytosis has been little studied due to a paucity of tractable animal and cell culture models. Recently, haemophagocytosis has been described in a mouse model of typhoid fever, and it was noted that the infectious agent, Salmonella enterica, resides within haemophagocytic macrophages in mice. In addition, a cell culture model for haemophagocytosis revealed that S. enterica preferentially replicate in haemophagocytic macrophages. This review describes how, at the molecular and cellular levels, S. enterica may promote and take advantage of haemophagocytosis to establish long-term systemic infections in mammals. The role, relevance and possible molecular mechanisms of haemophagocytosis are discussed within the context of other microbial infections and of genetic deficiencies in which haemophagocytosis occurs and is associated with morbidity.

  15. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  16. Mechanisms of intracellular ice formation.

    PubMed Central

    Muldrew, K; McGann, L E

    1990-01-01

    The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling. PMID:2306499

  17. Peptidoglycan hydrolase fusion to protein transduction domains kill intracellular staphylococci.

    USDA-ARS?s Scientific Manuscript database

    Staphylococci and streptococci are both human and agricultural pathogens that are demonstrating an increasing frequency of antibiotic resistant strains resulting in chronic infections. The rise in bacterial resistance to antibiotics world-wide has precipitated the search for alternatives to broad r...

  18. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  19. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  20. Linear Peptides in Intracellular Applications.

    PubMed

    Zuconelli, Cristiane R; Brock, Roland; Adjobo-Hermans, Merel J W

    2017-01-01

    To this point, efforts to develop therapeutic peptides for intracellular applications were guided by the perception that unmodified linear peptides are highly unstable and therefore structural modifications are required to reduce proteolytic breakdown. Largely, this concept is a consequence of the fact that most research on intracellular peptides hitherto has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Interestingly, inside cells, endogenous peptides lacking any chemical modifications to enhance stability escape degradation to the point that they may even modulate intracellular signaling pathways. In addition, many unmodified synthetic peptides designed to interfere with intracellular signaling, following introduction into cells, have the expected activity demonstrating that biologically relevant concentrations can be reached. This review provides an overview of results and techniques relating to the exploration and application of linear, unmodified peptides. After an introduction to intracellular peptide turnover, the review mentions examples for synthetic peptides as modulators of intracellular signaling, introduces endogenous peptides with bioactivity, techniques to measure peptide stability, and peptide delivery. Future experiments should elucidate the rules needed to predict promising peptide candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy.

    PubMed Central

    Dubochet, J; Adrian, M; Richter, K; Garces, J; Wittek, R

    1994-01-01

    Intracellular mature vaccinia virus, also called intracellular naked virus, and its core envelope have been observed in their native, unfixed, unstained, hydrated states by cryoelectron microscopy of vitrified samples. The virion appears as a smooth rounded rectangle of ca. 350 by 270 nm. The core seems homogeneous and is surrounded by a 30-nm-thick surface domain delimited by membranes. We show that surface tubules and most likely also the characteristic dumbbell-shaped core with the lateral bodies which are generally observed in negatively stained or conventionally embedded samples are preparation artifacts. Images PMID:8107253

  2. Intracellular transport based on actin polymerization.

    PubMed

    Khaitlina, S Yu

    2014-09-01

    In addition to the intracellular transport of particles (cargo) along microtubules, there are in the cell two actin-based transport systems. In the actomyosin system the transport is driven by myosin, which moves the cargo along actin microfilaments. This transport requires the hydrolysis of ATP in the myosin molecule motor domain that induces conformational changes in the molecule resulting in the myosin movement along the actin filament. The other actin-based transport system of the cell does not involve myosin or other motor proteins. This system is based on a unidirectional actin polymerization, which depends on ATP hydrolysis in actin polymers and is initiated by proteins bound to the surface of transported particles. Obligatory components of the actin-based transport are proteins of the WASP/Scar family and a complex of Arp2/3 proteins. Moreover, the actin-based systems often contain dynamin and cortactin. It is known that a system of actin filaments formed on the surface of particles, the so-called "comet-like tail", is responsible for intracellular movements of pathogenic bacteria, micropinocytotic vesicles, clathrin-coated vesicles, and phagosomes. This movement is reproduced in a cell-free system containing extract of Xenopus oocytes. The formation of a comet-like structure capable of transporting vesicles from the plasma membrane into the cell depth has been studied in detail by high performance electron microscopy combined with electron tomography. A similar mechanism provides the movement of vesicles containing membrane rafts enriched with sphingolipids and cholesterol, changes in position of the nuclear spindle at meiosis, and other processes. This review will consider current ideas about actin polymerization and its regulation by actin-binding proteins and show how these mechanisms are realized in the intracellular actin-based vesicular transport system.

  3. Ectdomain shedding and regulated intracellular proteolysis in the central nervous system.

    PubMed

    Montes de Oca-B, Pavel

    2010-12-01

    The term Ectodomain Shedding (ES) refers to extracellular domain proteolytic release from cell membrane molecules. This proteolysis is mediated mainly by matrix metalloproteases (MMP) or disintegrin and metalloproteases (ADAM), although some other proteases may mediate it. Virtually, all functional categories of cell membrane molecules are subject of this kind of proteolysis, for this reason ES is involved in different cellular processes such as proliferation, apoptosis, migration, differentiation or pathologies such as inflammation, cancer and degeneration among others. ES releases membrane molecule's extracellular domain (or ectodomain) to the extracellular milieu where it can play different biological functions. ES of transmembrane molecules also generates membrane attached terminal fragments comprising transmembrane and intracellular domains that enable their additional processing by intracellular proteases known as Regulated Intracellular Proteolysis (RIP). This second proteolytic cleavage delivers molecule's intracellular domain (ICD) that carry out intracellular functions. RIP is mediated by the group of intracellular cleaving proteases (i-CLiPs) that include presenilin from the γ-secretase complex. In the CNS the best well known ES is that of the Amyloid Precursor Protein, although many other membrane molecules expressed by cells of the CNS are also subject to ES and RIP. In this review, these molecules are summarized, and some meaningful examples are highlighted and described. In addition, ES and RIP implications in the context of cell biology are discussed. Finally, some considerations that rise from the study of ES and RIP are formulated in view of the unexpected roles of intracellular fragments.

  4. Small Peptide Recognition Sequence for Intracellular Sorting

    PubMed Central

    Pandey, Kailash N.

    2010-01-01

    Increasing evidence indicate that complex arrays of short signals and recognition peptide sequence ensure accurate trafficking and distribution of transmembrane receptors and/or proteins and their ligands into intracellular compartments. Internalization and subsequent trafficking of cell-surface receptors into the cell interior is mediated by specific short-sequence peptide signals within the cytoplasmic domains of these receptor proteins. The short signals usually consist of small linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. In recent years, much has been learned about the function and mechanisms of endocytic pathways responsible for the trafficking and molecular sorting of membrane receptors and their ligands into intracellular compartments, however, the significance and scope of the short sequence motifs in these cellular events is not well understood. Here a particular emphasis has been given to the functions of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into subcellular compartments. PMID:20817434

  5. The translational potential for target validation and therapy using intracellular antibodies in oncology.

    PubMed

    Weidle, Ulrich H; Maisel, Daniela; Brinkmann, Ulrich; Tiefenthaler, Georg

    2013-01-01

    Antibody-based molecules can be delivered into cells either by intracellular expression or through cellular uptake. We describe technologies for identification and expression of intracellular antibodies for target validation, intracellular immunization and tumor therapy, such as intracellular antibody capture technology, suicide or silencing technology, antigen-antibody interaction dependent apoptosis and their application for inhibition of oncogenic intracellular proteins and induction of apoptosis. These strategies have to be viewed in the context that inhibition of protein-protein interactions by small molecules is often limited due to their large interaction surface. We summarize antibodies with the ability to penetrate cells and strategies to induce uptake of antibodies after modification with protein transduction domains. Interference in oncogenic pathways is described for moieties based on antibody 3E10, which translocates into the nucleus after extracellular administration. Finally, we discuss examples of tumor immunotherapy and vaccination against intracellular antigens, and possible interactions mediating their mode of action.

  6. Intracellular Signalling in Retinal Ischemia

    DTIC Science & Technology

    1990-07-01

    36) However, vascularization of the RPE is not known to occur in human diseases of photoreceptor degeneration, such as retinitis pigmentosa ...A.C. (1986) Retinitis pigmentosa and retinal neovascularization. Ophthalmology 91, 1599- 1603. Figure la: Control rat retina, 8 weeks of age, central...TITLE (Include Security Classification) Intracellular Signalling in Retinal Ischemia 12. PERSONAL AUTHOR(S) Burns, Margaret Sue; Bellhorn, Roy William

  7. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  8. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  9. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    PubMed

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  10. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  11. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  12. Intracellular polyamines enhance astrocytic coupling.

    PubMed

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V; Rivera, Yomarie; Kucheryavykh, Lilia Y; Nichols, Colin G; Eaton, Misty J; Skatchkov, Serguei N

    2012-12-05

    Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.

  13. Dual Readout BRET/FRET Sensors for Measuring Intracellular Zinc

    PubMed Central

    2016-01-01

    Genetically encoded FRET-based sensor proteins have significantly contributed to our current understanding of the intracellular functions of Zn2+. However, the external excitation required for these fluorescent sensors can give rise to photobleaching and phototoxicity during long-term imaging, limits applications that suffer from autofluorescence and light scattering, and is not compatible with light-sensitive cells. For these applications, sensor proteins based on Bioluminescence Resonance Energy Transfer (BRET) would provide an attractive alternative. In this work, we used the bright and stable luciferase NanoLuc to create the first genetically encoded BRET sensors for measuring intracellular Zn2+. Using a new sensor approach, the NanoLuc domain was fused to the Cerulean donor domain of two previously developed FRET sensors, eCALWY and eZinCh-2. In addition to preserving the excellent Zn2+ affinity and specificity of their predecessors, these newly developed sensors enable both BRET- and FRET-based detection. While the dynamic range of the BRET signal for the eCALWY-based BLCALWY-1 sensor was limited by the presence of two competing BRET pathways, BRET/FRET sensors based on the eZinCh-2 scaffold (BLZinCh-1 and -2) yielded robust 25–30% changes in BRET ratio. In addition, introduction of a chromophore-silencing mutation resulted in a BRET-only sensor (BLZinCh-3) with increased BRET response (50%) and an unexpected 10-fold increase in Zn2+ affinity. The combination of robust ratiometric response, physiologically relevant Zn2+ affinities, and stable and bright luminescence signal offered by the BLZinCh sensors allowed monitoring of intracellular Zn2+ in plate-based assays as well as intracellular BRET-based imaging in single living cells in real time. PMID:27547982

  14. Dendritic oligoguanidines as intracellular translocators.

    PubMed

    Chung, Hyun-Ho; Harms, Guido; Seong, Churl Min; Choi, Byung Hyune; Min, Changhee; Taulane, Joseph P; Goodman, Murray

    2004-01-01

    A series of polyguanidylated dendritic structures that can be used as molecular translocators have been designed and synthesized based on nonpeptide units. The dendritic oligoguanidines conjugated with fluorescein or with a green fluorescent protein (GFP) mutant as cargos were isolated and characterized. Quantification and time-course analyses of the cellular uptake of the conjugates using HeLa S3 and human cervical carcinoma cells reveal that the polyguanidylated dendrimers have comparable translocation efficiency to the Tat(49-57) peptide. Furthermore, the deconvolution microscopy image analysis shows that they are located inside the cells. These results clearly show that nonlinear, branched dendritic oligoguanidines are capable of translocation through the cell membrane. This work also demonstrates the potential of these nonpeptidic dendritic oligoguanidines as carriers for intracellular delivery of small molecule drugs, bioactive peptides, and proteins. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  15. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    1. The ability of homologous series of alcohols, ketones, and aldehydes to cause alteration of intracellular catalase increases approximately threefold for each methylene group added, thus following Traube's rule. Equiactive concentrations of alcohols (methanol to octanol) varied over a 4,000-fold range, yet the average corresponding surface tension was 42 ± 2 dynes/cm., that for ketones 43 ± 2, and for aldehydes (above C1) 41 ± 3. 2. Above C8 the altering activity of alcohols ceased to follow Traube's rule, and at C18 was nil. Yet the surface activities of alcohols from nonanol to dodecanol did follow Traube's rule. These two facts show that the interface which is being affected by these agents is not the cell surface, for if it were, altering activity should not fall off between C9 and C12 where surface activity is undiminished; they show also that micelle formation by short range association of hydrocarbon "tails," usually invoked to explain decrease in biological activity of compounds above C8, is not responsible for this effect in these experiments, in which permeability of the cell membrane probably is involved. 3. The most soluble alcohols and aldehydes (alcohols C1 to C8; aldehydes C1, C2), but not ketones, cause, above optimal concentration, an irreversible inhibition of yeast catalase. 4. The critical concentration of altering agent (i.e., that concentration just sufficient to cause doubling of the catalase activity of the yeast suspension) was independent of the concentration of the yeast cells. 5. Viability studies show that the number of yeast cells killed by the altering agents was not related to the degree of activation of the catalase produced. While all the cells were invariably killed by concentrations of altering agent which produced complete activation, all the cells had been killed by concentrations which were insufficient to cause more than 50 per cent maximal activation. Further, the evidence suggested that the catalase may be partially

  16. Anomalous dynamics in intracellular transport

    NASA Astrophysics Data System (ADS)

    Dinner, Aaron

    2013-03-01

    This talk will describe quantitative analyses of particle tracking data for systems with cytoskeletally associated molecular motors to better understand the motions contributing to intracellular transport and, more generally, means for characterizing systems far from equilibrium. In particular, we have studied the motions of insulin-containing vesicles (granules) in a pancreatic beta cell line. We find subdiffusive behavior with correlations in both space and time. These data can be modeled by subordinating an ergodic random walk process to a non-ergodic one. We relate the dynamics to the underlying microtubule structure by imaging in the presence of the drug vinblastine. Our results provide a simple physical mechanism for how diverse pools of insulin granules and, in turn, biphasic secretion could arise. Time permitting, these dynamics will be compared with those of actomyosin assemblies.

  17. Protein Interactions between Fe65, the LDL receptor-related protein and the amyloid precursor protein

    PubMed Central

    Mulvihill, Melinda; Guttman, Miklos; Komives, Elizabeth A.

    2011-01-01

    The adapter protein, Fe65 has been proposed to be the link between the intracellular domains of the amyloid precursor protein, APP (AICD) and the LDL receptor-related protein (LRP-CT). Functional linkage between these two proteins has been established and mutations within LRP-CT affect the amount of Aβ produced from APP. Previous work showed that the AICD binds to the protein interaction domain 2 (PID2) of Fe65. Although the structure of PID1 was solved recently all attempts to demonstrate LRP-CT binding to this domain failed. We used biophysical experiments and binding studies to investigate the binding between these three proteins. Full-length Fe65 bound more weakly to AICD than did N-terminally truncated forms, however the intramolecular domain-domain interactions that had been proposed to inhibit binding could not be observed using amide H/D exchange. Surprisingly, when the LRP-CT is phosphorylated at Tyr4507, it bound to Fe65-PID1 despite the fact that this domain belongs to the Dab-like subclass of PIDs that is not supposed to be phosphorylation dependent. Mutation of a critical arginine abolished binding providing further proof of the phosphorylation-dependence. The Fe65-PID1 domain thus provides a link between the Dab-like class and the IRS-like class of PID domains and is the first Dab-like family member to show phosphorylation-dependent binding. PMID:21650223

  18. Aspergillus fumigatus SidJ mediates intracellular siderophore hydrolysis.

    PubMed

    Gründlinger, Mario; Gsaller, Fabio; Schrettl, Markus; Lindner, Herbert; Haas, Hubertus

    2013-12-01

    Siderophore-mediated iron handling is crucial for the virulence of Aspergillus fumigatus. Here we identified a new component of its siderophore metabolism, termed SidJ, which is encoded by AFUA_3G03390. The encoding gene is localized in a siderophore biosynthetic gene cluster that is conserved in a variety of fungi. During iron starvation, SidJ deficiency resulted in decreased growth and increased intracellular accumulation of hydrolysis products of the siderophore fusarinine C. The implied role in siderophore hydrolysis is consistent with a putative esterase domain in SidJ, which now represents the first functionally characterized member of the DUF1749 (domain of unknown function) protein family, with members found exclusively in fungi and plants.

  19. Adaptation of fast marching methods to intracellular signaling

    NASA Astrophysics Data System (ADS)

    Chikando, Aristide C.; Kinser, Jason M.

    2006-02-01

    Imaging of signaling phenomena within the intracellular domain is a well studied field. Signaling is the process by which all living cells communicate with their environment and with each other. In the case of signaling calcium waves, numerous computational models based on solving homogeneous reaction diffusion equations have been developed. Typically, the reaction diffusion approach consists of solving systems of partial differential equations at each update step. The traditional methods used to solve these reaction diffusion equations are very computationally expensive since they must employ small time steps in order to reduce the computational error. The presented research suggests the application of fast marching methods to imaging signaling calcium waves, more specifically fertilization calcium waves, in Xenopus laevis eggs. The fast marching approach provides fast and efficient means of tracking the evolution of monotonically advancing fronts. A model that employs biophysical properties of intracellular calcium signaling, and adapts fast marching methods to tracking the propagation of signaling calcium waves is presented. The developed model is used to reproduce simulation results obtained with reaction diffusion based model. Results obtained with our model agree with both the results obtained with reaction diffusion based models, and confocal microscopy observations during in vivo experiments. The adaptation of fast marching methods to intracellular protein or macromolecule trafficking is also briefly explored.

  20. Bovine subcommissural organ displays spontaneous and synchronous intracellular calcium oscillations.

    PubMed

    Bermúdez-Silva, F Javier; León-Quinto, Trinidad; Martín, Franz; Soria, Bernat; Nadal, Angel; Pérez, Juan; Fernández-Llebrez, Pedro

    2003-07-04

    The subcommissural organ (SCO) is an ependymal brain gland that secretes into the cerebrospinal fluid glycoproteins that polymerize, forming Reissner's fiber (RF). The SCO-RF complex seems to be involved in vertebrate nervous system development, although its role in adults is unknown. Furthermore, its physiology is still greatly undetermined, and little is known about the release control of SCO secretion and the underlying intracellular mechanisms. In this report, we show that up to 90% of 3-5-day-old in vitro SCO cells from both intact and partially-dispersed SCO explants displayed spontaneous cytosolic Ca2+ oscillations. The putative role of these spontaneous calcium oscillations in SCO secretory activity is discussed taking into consideration several previous findings. Two distinct subpopulations of SCO cells were detected, each one containing cells with synchronized calcium oscillations. A possible existence of different functional domains in SCO is therefore discussed. Oscillations persisted in the absence of extracellular Ca2+, indicating the major involvement of Ca2+ released from internal stores. Depolarization failed to induce intracellular calcium increases, although it disturbed the oscillation frequency, suggesting a putative modulator role of depolarizing agonists on the calcium oscillating pattern through voltage-gated calcium channels. Carbachol, a cholinergic agonist, evoked a switch in Ca2+ signaling from a calcium oscillating mode to a sustained and increased intracellular Ca2+ mode in 30% of measured cells, suggesting the involvement of acetylcholine in SCO activity, via a calcium-mediated response.

  1. Detection of Intracellular Factor VIII Protein in Peripheral Blood Mononuclear Cells by Flow Cytometry

    PubMed Central

    Pandey, Gouri Shankar; Tseng, Sandra C.; Howard, Tom E.; Sauna, Zuben E.

    2013-01-01

    Flow cytometry is widely used in cancer research for diagnosis, detection of minimal residual disease, as well as immune monitoring and profiling following immunotherapy. Detection of specific host proteins for diagnosis predominantly uses quantitative PCR and western blotting assays. In this study, we optimized a flow cytometry-based detection assay for Factor VIII protein in peripheral blood mononuclear cells (PBMCs). An indirect intracellular staining (ICS) method was standardized using monoclonal antibodies to different domains of human Factor VIII protein. The FVIII protein expression level was estimated by calculating the mean and median fluorescence intensities (MFI) values for each monoclonal antibody. ICS staining of transiently transfected cell lines supported the method's specificity. Intracellular FVIII protein expression was also detected by the monoclonal antibodies used in the study in PBMCs of five blood donors. In summary, our data suggest that intracellular FVIII detection in PBMCs of hemophilia A patients can be a rapid and reliable method to detect intracellular FVIII levels. PMID:23555096

  2. Intracellular Polyamines Enhance Astrocytic Coupling

    PubMed Central

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V.; Rivera, Yomarie; Kucheryavykh, Lilia Y.; Nichols, Colin G.; Eaton, Misty J.; Skatchkov, Serguei N.

    2013-01-01

    Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21–25 day old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions (ICS) without SPM. However, there was a robust increase in the spreading of Lucifer yellow via gap junctions to neighboring astrocytes when the cells were patched with ICS containing 1 mM SPM; a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM via gap junctions and further suggest a new role of polyamines in the regulation of the astroglial network in both normal and pathological conditions. PMID:23076119

  3. Intracellular Organisms as Placental Invaders

    PubMed Central

    Vigliani, Marguerite B.; Bakardjiev, Anna I.

    2015-01-01

    In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications. PMID:27695204

  4. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  5. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    PubMed

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-04

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  6. Protein interactions among Fe65, the low-density lipoprotein receptor-related protein, and the amyloid precursor protein.

    PubMed

    Mulvihill, Melinda M; Guttman, Miklos; Komives, Elizabeth A

    2011-07-19

    The adapter protein Fe65 has been proposed to be the link between the intracellular domains of the amyloid precursor protein, APP (AICD), and the low-density lipoprotein receptor-related protein (LRP-CT). Functional linkage between these two proteins has been established, and mutations within LRP-CT affect the amount of Aβ produced from APP. Previous work showed that AICD binds to protein interaction domain 2 (PID2) of Fe65. Although the structure of PID1 was determined recently, all attempts to demonstrate LRP-CT binding to this domain failed. We used biophysical experiments and binding studies to investigate the binding among these three proteins. Full-length Fe65 bound more weakly to AICD than did N-terminally truncated forms; however, the intramolecular domain-domain interactions that had been proposed to inhibit binding could not be observed using amide H-D exchange. Surprisingly, when LRP-CT is phosphorylated at Tyr4507, it bound to Fe65 PID1 despite the fact that this domain belongs to the Dab-like subclass of PIDs that are not supposed to be phosphorylation-dependent. Mutation of a critical arginine abolished binding, providing further proof of the phosphorylation dependence. Fe65 PID1 thus provides a link between the Dab-like class and the IRS-like class of PIDs and is the first Dab-like family member to show phosphorylation-dependent binding.

  7. A method to study intracellular ice nucleation.

    PubMed

    Tatsutani, K; Rubinsky, B

    1998-02-01

    The thermodynamics of intracellular ice nucleation are important in low-temperature biology for understanding and controlling the process of cell destruction by freezing. We have developed a new apparatus and technique for studying the physics of intracellular ice nucleation. Employing the principle of directional solidification in conjunction with light microscopy, we can generate information on the temperature at which ice nucleates intracellularly as a function of the thermal history the cells experience. The methodology is introduced, and results with primary prostatic cancer cells are described.

  8. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes

    PubMed Central

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; Finn, Robert D.; Zhulin, Igor B.

    2016-01-01

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes. PMID:27049771

  9. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    SciTech Connect

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; Finn, Robert D.; Zhulin, Igor B.; Schlessinger, Avner

    2016-04-06

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.

  10. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE PAGES

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; ...

    2016-04-06

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  11. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes.

    PubMed

    Upadhyay, Amit A; Fleetwood, Aaron D; Adebali, Ogun; Finn, Robert D; Zhulin, Igor B

    2016-04-01

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.

  12. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  13. Intracellular minerals and metal deposits in prokaryotes.

    PubMed

    Edwards, K J; Bazylinski, D A

    2008-06-01

    Thanks to the work of Terrance J. Beveridge and other pioneers in the field of metal-microbe interactions, prokaryotes are well known to sequester metals and other ions intracellularly in various forms. These forms range from poorly ordered deposits of metals to well-ordered mineral crystals. Studies on well-ordered crystalline structures have generally focused on intracellular organelles produced by magnetotactic bacteria that are ubiquitous in terrestrial and marine environments that precipitate Fe(3)O(4) or Fe(3)S(4), Fe-bearing minerals that have magnetic properties and are enclosed in intracellular membranes. In contrast, studies on less-well ordered minerals have focused on Fe-, As-, Mn-, Au-, Se- and Cd-precipitates that occur intracellularly. The biological and environmental function of these particles remains a matter of debate.

  14. Intracellular Biopotentials During Static Extracellular Stimulation

    PubMed Central

    Klee, Maurice

    1973-01-01

    Two properties of the intracellular potentials and electric fields resulting from static extracellular stimulation are obtained for arbitrarily shaped cells. First, the values of intracellular potential are shown to be bounded by the maximum and minimum values of extracellular potential on the surface of the cell. Second, the volume average of the magnitude of intracellular electric field is shown to have an upper bound given by the ratio of the magnitude of the largest extracellular potential difference on the surface of the cell to a generalized length constant λ = [σintraVcell/(σmemb Acell)]1/2, where Vcell and Acell are the volume and surface area of the cell, σintra is the intracellular conductivity (reciprocal ohms per centimeter), and σmemb is the membrane conductivity (reciprocal ohms per square centimeter). The use of the upper bound on the volume average of the magnitude of intracellular electric field as an estimate for intracellular isopotentiality is discussed and the use of the generalized length constant for electrically describing arbitrary cells is illustrated for cylindrical- and spheroidal-shaped cells. PMID:4726882

  15. Mapping intracellular mechanics on micropatterned substrates

    PubMed Central

    Mandal, Kalpana; Asnacios, Atef; Goud, Bruno; Manneville, Jean-Baptiste

    2016-01-01

    The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells. PMID:27799529

  16. Cancer-Selective Apoptotic Effects of Extracellular and Intracellular Par-4

    PubMed Central

    Bhattarai, Tripti Shrestha; Rangnekar, Vivek M.

    2010-01-01

    Selectivity toward cancer cells is the most desirable element in cancer therapeutics. Par-4 is a cancer cell-selective pro-apoptotic protein that functions intracellularly in the cytoplasmic and nuclear compartments, as a tumor suppressor. Moreover, recent findings indicate that the Par-4 protein is secreted by cells, and extracellular Par-4 induces cancer cell-specific apoptosis by interaction with the cell-surface receptor GRP78. This review describes the mechanisms underlying the apoptotic effects of both extracellular and intracellular Par-4 acting via its effector domain SAC. PMID:20440265

  17. Umami changes intracellular Ca2+ levels using intracellular and extracellular sources in mouse taste receptor cells.

    PubMed

    Narukawa, Masataka; Mori, Tomohiko; Hayashi, Yukako

    2006-11-01

    Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.

  18. Non-Recessive Bt Toxin Resistance Conferred by an Intracellular Cadherin Mutation in Field-Selected Populations of Cotton Bollworm

    PubMed Central

    Zhang, Haonan; Wu, Shuwen; Yang, Yihua; Tabashnik, Bruce E.; Wu, Yidong

    2012-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins. PMID:23285292

  19. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    PubMed

    Zhang, Haonan; Wu, Shuwen; Yang, Yihua; Tabashnik, Bruce E; Wu, Yidong

    2012-01-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  20. Neuroligin1 drives synaptic and behavioral maturation through intracellular interactions

    PubMed Central

    Hoy, Jennifer L.; Haeger, Paola A.; Constable, John R. L.; Arias, Renee J.; McCallum, Raluca; Kyweriga, Michael; Davis, Lawrence; Schnell, Eric; Wehr, Michael; Castillo, Pablo E.; Washbourne, Philip

    2013-01-01

    In vitro studies suggest that the intracellular C-terminus of Neuroligin1 (NL1) could play a central role in the maturation of excitatory synapses. However, it is unknown how this activity affects synapses in vivo, and whether it may impact the development of complex behaviors. To determine how NL1 influences the state of glutamatergic synapses in vivo, we compared the synaptic and behavioral phenotypes of mice overexpressing a full length version of NL1 (NL1FL) with mice overexpressing a version missing part of the intracellular domain (NL1ΔC). We show that overexpression of full length NL1 yielded an increase in the proportion of synapses with mature characteristics and impaired learning and flexibility. In contrast, the overexpression of NL1ΔC increased the number of excitatory postsynaptic structures and led to enhanced flexibility in mnemonic and social behaviors. Transient overexpression of NL1FL revealed that elevated levels are not necessary to maintain synaptic and behavioral states altered earlier in development. In contrast, overexpression of NL1FL in the fully mature adult was able to impair normal learning behavior after one month of expression. These results provide the first evidence that NL1 significantly impacts key developmental processes that permanently shape circuit function and behavior, as well as the function of fully developed neural circuits. Overall, these manipulations of NL1 function illuminate the significance of NL1 intracellular signaling in vivo, and enhance our understanding of the factors that gate the maturation of glutamatergic synapses and complex behavior. This has significant implications for our ability to address disorders such as ASD. PMID:23719805

  1. Crystallographic study of FABP5 as an intracellular endocannabinoid transporter

    SciTech Connect

    Sanson, Benoît; Wang, Tao; Sun, Jing; Wang, Liqun; Kaczocha, Martin; Ojima, Iwao; Deutsch, Dale; Li, Huilin

    2014-02-01

    FABP5 was recently found to intracellularly transport endocannabinoid signaling lipids. The structures of FABP5 complexed with two endocannabinoids and an inhibitor were solved. Human FABP5 was found to dimerize via a domain-swapping mechanism. This work will help in the development of inhibitors to raise endocannabinoid levels. In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5 in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5–endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels.

  2. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels

    NASA Astrophysics Data System (ADS)

    Oelstrom, Kevin; Goldschen-Ohm, Marcel P.; Holmgren, Miguel; Chanda, Baron

    2014-03-01

    Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily.

  3. Extraction of intracellular protein from Glaciozyma antarctica for proteomics analysis

    NASA Astrophysics Data System (ADS)

    Faizura, S. Nor; Farahayu, K.; Faizal, A. B. Mohd; Asmahani, A. A. S.; Amir, R.; Nazalan, N.; Diba, A. B. Farah; Muhammad, M. Nor; Munir, A. M. Abdul

    2013-11-01

    Two preparation methods of crude extracts of psychrophilic yeast Glaciozyma antarctica were compared in order to obtain a good recovery of intracellular proteins. Extraction with mechanical procedures using sonication was found to be more effective for obtaining good yield compare to alkaline treatment method. The procedure is simple, rapid, and produce better yield. A total of 52 proteins were identified by combining both extraction methods. Most of the proteins identified in this study involves in the metabolic process including glycolysis pathway, pentose phosphate pathway, pyruyate decarboxylation and also urea cyle. Several chaperons were identified including probable cpr1-cyclophilin (peptidylprolyl isomerase), macrolide-binding protein fkbp12 and heat shock proteins which were postulate to accelerate proper protein folding. Characteristic of the fundamental cellular processes inferred from the expressed-proteome highlight the evolutionary and functional complexity existing in this domain of life.

  4. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels

    PubMed Central

    Oelstrom, Kevin; Goldschen-Ohm, Marcel P.; Holmgren, Miguel; Chanda, Baron

    2014-01-01

    Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily. PMID:24619022

  5. Targeted intracellular delivery of therapeutics: an overview.

    PubMed

    Rawat, A; Vaidya, B; Khatri, K; Goyal, A K; Gupta, P N; Mahor, S; Paliwal, R; Rai, S; Vyas, S P

    2007-09-01

    During the last decade, intracellular drug delivery has become an emerging area of research in the medical and pharmaceutical field. Many therapeutic agents such as drugs and DNA/oligonucleotides can be delivered not just to the cell but also to a particular compartment of that cell to achieve better activity e.g. proapoptotic drugs to the mitochondria, antibiotics and enzymes to the lysosomes and various anticancer drugs and gene to the nucleus. The lipidic nature of biological membrans is the major obstacle to the intracellular delivery of macromolecular and ionic drugs. Additionally, after endocytosis, the lysosome, the major degradation compartment, needs to be avoided for better activity. To avoid these problems, various carriers have been investigated for efficient intracellular delivery, either by direct entry to cytoplasm or by escaping the endosomal compartment. These include cell penetrating peptides, and carrier systems such as liposomes, cationic lipids and polymers, polymeric nanoparticles, etc. Various properties of these carriers, including size, surface charge, composition and the presence of cell specific ligands, alter their efficacy and specificity towards particular cells. This review summarizes various aspects of targeted intracellular delivery of therapeutics including pathways, mechanisms and approaches. Various carrier constructs having potential for targeted intracellular delivery are also been discussed.

  6. Internal affairs: investigating the Brucella intracellular lifestyle.

    PubMed

    von Bargen, Kristine; Gorvel, Jean-Pierre; Salcedo, Suzana P

    2012-05-01

    Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.

  7. A γ-Secretase-independent Mechanism of Signal Transduction by the Amyloid Precursor Protein*

    PubMed Central

    Hass, Matthew R.; Yankner, Bruce A.

    2006-01-01

    It has been proposed that γ-secretase-mediated release of the amyloid precursor protein (APP) intracellular domain (AICD) results in nuclear translocation and signaling through a complex with the adaptor protein Fe65 and the histone acetyltransferase Tip60. Here, we show that APP and Fe65 activate transcription through a Gal4-Tip60 reporter in presenilin-1/2-deficient cells lacking generation of AICD. APP and Fe65 also activated transcription in the presence of γ-secretase inhibitors that prevent amyloid β-peptide production in human embryonic kidney 293 and SH-SY5Y cells. In contrast to the transcriptionally active Notch intracellular domain, expression of AICD did not activate transcription. An alternative mechanism for APP signal transduction is suggested by the identification of essential cyclin-dependent kinase (CDK) phosphorylation sites in Tip60. Mutation of these Tip60 phosphorylation sites or treatment with the CDK inhibitor roscovitine blocked the ability of APP to signal through Tip60. Moreover, APP stabilized Tip60 through CDK-dependent phosphorylation. Subcellular fractionation and confocal immunofluorescence showed that APP recruited Tip60 to membrane compartments. Thus, APP may signal to the nucleus by a γ-secretase-independent mechanism that involves membrane sequestration and phosphorylation of Tip60. PMID:16103124

  8. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    PubMed

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  9. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Giacomini, Andrea; Stagni, Fiorenza; Trazzi, Stefania; Guidi, Sandra; Emili, Marco; Brigham, Elizabeth; Ciani, Elisabetta; Bartesaghi, Renata

    2015-10-01

    Neurogenesis impairment starting from early developmental stages is a key determinant of intellectual disability in Down syndrome (DS). Previous evidence provided a causal relationship between neurogenesis impairment and malfunctioning of the mitogenic Sonic Hedgehog (Shh) pathway. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain), a cleavage product of the trisomic gene APP (amyloid precursor protein) up-regulate transcription of Ptch1 (Patched1), the Shh receptor that keeps the pathway repressed. Since AICD results from APP cleavage by γ-secretase, the goal of the current study was to establish whether treatment with a γ-secretase inhibitor normalizes AICD levels and restores neurogenesis in trisomic neural precursor cells. We found that treatment with a selective γ-secretase inhibitor (ELND006; ELN) restores proliferation in neurospheres derived from the subventricular zone (SVZ) of the Ts65Dn mouse model of DS. This effect was accompanied by reduction of AICD and Ptch1 levels and was prevented by inhibition of the Shh pathway with cyclopamine. Treatment of Ts65Dn mice with ELN in the postnatal period P3-P15 restored neurogenesis in the SVZ and hippocampus, hippocampal granule cell number and synapse development, indicating a positive impact of treatment on brain development. In addition, in the hippocampus of treated Ts65Dn mice there was a reduction in the expression levels of various genes that are transcriptionally regulated by AICD, including APP, its origin substrate. Inhibitors of γ-secretase are currently envisaged as tools for the cure of Alzheimer's disease because they lower βamyloid levels. Current results provide novel evidence that γ-secretase inhibitors may represent a strategy for the rescue of neurogenesis defects in DS.

  10. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Giacomini, Andrea; Stagni, Fiorenza; Trazzi, Stefania; Guidi, Sandra; Emili, Marco; Brigham, Elizabeth; Ciani, Elisabetta; Bartesaghi, Renata

    2015-01-01

    Neurogenesis impairment starting from early developmental stages is a key determinant of intellectual disability in Down syndrome (DS). Previous evidence provided a causal relationship between neurogenesis impairment and malfunctioning of the mitogenic Sonic Hedgehog (Shh) pathway. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain), a cleavage product of the trisomic gene APP (amyloid precursor protein) up-regulate transcription of Ptch1 (Patched1), the Shh receptor that keeps the pathway repressed. Since AICD results from APP cleavage by γ-secretase, the goal of the current study was to establish whether treatment with a γ-secretase inhibitor normalizes AICD levels and restores neurogenesis in trisomic neural precursor cells. We found that treatment with a selective γ-secretase inhibitor (ELND006; ELN) restores proliferation in neurospheres derived from the subventricular zone (SVZ) of the Ts65Dn mouse model of DS. This effect was accompanied by reduction of AICD and Ptch1 levels and was prevented by inhibition of the Shh pathway with cyclopamine. Treatment of Ts65Dn mice with ELN in the postnatal period P3–P15 restored neurogenesis in the SVZ and hippocampus, hippocampal granule cell number and synapse development, indicating a positive impact of treatment on brain development. In addition, in the hippocampus of treated Ts65Dn mice there was a reduction in the expression levels of various genes that are transcriptionally regulated by AICD, including APP, its origin substrate. Inhibitors of γ-secretase are currently envisaged as tools for the cure of Alzheimer's disease because they lower βamyloid levels. Current results provide novel evidence that γ-secretase inhibitors may represent a strategy for the rescue of neurogenesis defects in DS. PMID:26254735

  11. Fluorescent nanothermometers for intracellular thermal sensing.

    PubMed

    Jaque, Daniel; Rosal, Blanca Del; Rodríguez, Emma Martín; Maestro, Laura Martínez; Haro-González, Patricia; Solé, José García

    2014-05-01

    The importance of high-resolution intracellular thermal sensing and imaging in the field of modern biomedicine has boosted the development of novel nanosized fluorescent systems (fluorescent nanothermometers) as the next generation of probes for intracellular thermal sensing and imaging. This thermal mapping requires fluorescent nanothermometers with good biocompatibility and high thermal sensitivity in order to obtain submicrometric and subdegree spatial and thermal resolutions, respectively. This review describes the different nanosized systems used up to now for intracellular thermal sensing and imaging. We also include the later advances in molecular systems based on fluorescent proteins for thermal mapping. A critical overview of the state of the art and the future perspective is also included.

  12. Micro- and nanotechnologies for intracellular delivery.

    PubMed

    Yan, Li; Zhang, Jinfeng; Lee, Chun-Sing; Chen, Xianfeng

    2014-11-01

    The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. BDI-modelling of complex intracellular dynamics.

    PubMed

    Jonker, C M; Snoep, J L; Treur, J; Westerhoff, H V; Wijngaards, W C A

    2008-03-07

    A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalized BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves understanding in nearly intuitive terms, without losing veracity: classical intentional state properties such as beliefs, desires and intentions are founded in reality through precise biochemical relations. In an extensive example, the complex regulation of Escherichia coli vis-à-vis lactose, glucose and oxygen is simulated as a discrete-state, continuous-time temporal decision manager. Thus a bridge is introduced between two different scientific areas: the area of BDI-modelling and the area of intracellular dynamics.

  14. A theoretical model of intracellular devitrification.

    PubMed

    Karlsson, J O

    2001-05-01

    Devitrification of the intracellular solution can cause significant damage during warming of cells cryopreserved by freezing or vitrification. Whereas previous theoretical investigations of devitrification have not considered the effect of cell dehydration on intracellular ice formation, a new model which couples membrane-limited water transport equations, classical nucleation theory, and diffusion-limited crystal growth theory is presented. The model was used to explore the role of cell dehydration in devitrification of human keratinocytes frozen in the presence of glycerol. Numerical simulations demonstrated that water transport during cooling affects subsequent intracellular ice formation during warming, correctly predicting observations that critical warming rate increases with increasing cooling rate. However, for cells with a membrane transport activation energy less than approximately 50 kJ/mol, devitrification was also affected by cell dehydration during warming, leading to a reversal of the relationship between cooling rate and critical warming rate. Thus, for low warming rates (less than 10 degrees C/min for keratinocytes), the size and total volume fraction of intracellular ice crystals forming during warming decreased with decreasing warming rate, and the critical warming rate decreased with increasing cooling rate. The effects of water transport on the kinetics of intracellular nucleation and crystal growth were elucidated by comparison of simulations of cell warming with simulations of devitrification in H(2)O-NaCl-glycerol droplets of constant size and composition. These studies showed that the rate of intracellular nucleation was less sensitive to cell dehydration than was the crystal growth rate. The theoretical methods presented may be of use for the design and optimization of freeze-thaw protocols. Copyright 2001 Academic Press.

  15. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.

  16. The ocular albinism type 1 gene product, OA1, spans intracellular membranes 7 times.

    PubMed

    Sone, Michio; Orlow, Seth J

    2007-12-01

    OA1 (GPR143) is a pigment cell-specific intracellular glycoprotein consisting of 404 amino acid residues that is mutated in patients with ocular albinism type 1, the most common form of ocular albinism. While its cellular localization is suggested to be endolysosomal and melanosomal, the physiological function of OA1 is currently unclear. Recent reports predicted that OA1 functions as a G protein coupled receptor (GPCR) based on its weak amino acid sequence similarity to known GPCRs, and on demonstration of GPCR activity in OA1 mislocalized to the plasma membrane. Because mislocalization of proteins is often caused by or induces defects in their proper folding/assembly, the significance of these studies remains unclear. A characteristic feature of GPCRs is a seven transmembrane domain structure. We analyzed the membrane topology of OA1 properly localized to intracellular lysosomal organelles in COS-1 cells. To accomplish this analysis, we established experimental conditions that allowed selective permeabilization of the plasma membrane while leaving endolysosomal membranes intact. Domains were mapped by the insertion of a hemagglutinin (HA) tag into the predicted cytosolic/luminal regions of OA1 molecule and the accessibility of tag to HA antibody was determined by immunofluorescence. HA-tagged lysosome associated membrane protein 1 (LAMP1), a type I membrane protein, was employed as a reporter for selective permeabilization of the plasma membrane. Our results show experimentally that the C-terminus of OA1 is directed to the cytoplasm and that the protein spans the intracellular membrane 7 times. Thus, OA1, properly localized intracellularly, is a 7 transmembrane domain integral membrane protein consistent with its putative role as an intracellular GPCR.

  17. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  18. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  19. Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau.

    PubMed

    Takahashi, Muneaki; Miyata, Haruka; Kametani, Fuyuki; Nonaka, Takashi; Akiyama, Haruhiko; Hisanaga, Shin-ichi; Hasegawa, Masato

    2015-06-01

    Alzheimer's disease (AD) is characterized by extracellular amyloid β (Aβ) deposition and intracellular tau aggregation. Many studies have indicated some association between these processes, but it remains unknown how the two pathologies are linked. In this study, we investigated whether expression of amyloid precursor protein (APP) influences extracellular seed-dependent intracellular tau accumulation in cultured cells. Treatment of tau-expressing SH-SY5Y cells with Aβ fibrils did not induce intracellular tau aggregation. On the other hand, in cells expressing both tau and APP, treatment with tau fibrils or Sarkosyl-insoluble tau from AD brains induced intracellular tau aggregation. The seed-dependent intracellular tau aggregation was not induced by expression of APP lacking the extracellular domain. The amount of phosphorylated tau aggregates in cultured cells was dose dependently elevated in response to increased levels of APP on the cell membrane. Our results indicate that the extracellular region of APP is involved in uptake of tau fibrils into cells, raising the possibility that APP, but not Aβ, influences cell-to-cell spreading of tau pathologies in AD by serving as a receptor of abnormal tau aggregates.

  20. Interrogation of Cellular Innate Immunity by Diamond-Nanoneedle-Assisted Intracellular Molecular Fishing.

    PubMed

    Wang, Zixun; Yang, Yang; Xu, Zhen; Wang, Ying; Zhang, Wenjun; Shi, Peng

    2015-10-14

    Understanding intracellular signaling cascades and network is one of the core topics in modern biology. Novel tools based on nanotechnologies have enabled probing and analyzing intracellular signaling with unprecedented sensitivity and specificity. In this study, we developed a minimally invasive method for in situ probing specific signaling components of cellular innate immunity in living cells. The technique was based on diamond-nanoneedle arrays functionalized with aptamer-based molecular sensors, which were inserted into cytoplasmic domain using a centrifugation controlled process to capture molecular targets. Simultaneously, these diamond-nanoneedles also facilitated the delivery of double-strand DNAs (dsDNA90) into cells to activate the pathway involving the stimulator of interferon genes (STING). We showed that the nanoneedle-based biosensors can be successfully utilized to isolate transcriptional factor, NF-κB, from intracellular regions without damaging the cells, upon STING activation. By using a reversible protocol and repeated probing in living cells, we were able to examine the singling dynamics of NF-κB, which was quickly translocated from cytoplasm to nucleus region within ∼40 min of intracellular introduction of dsDNA90 for both A549 and neuron cells. These results demonstrated a novel and versatile tool for targeted in situ dissection of intracellular signaling, providing the potential to resolve new sights into various cellular processes.

  1. Swine TRIM21 restricts FMDV infection via an intracellular neutralization mechanism.

    PubMed

    Fan, Wenchun; Zhang, Dong; Qian, Ping; Qian, Suhong; Wu, Mengge; Chen, Huanchun; Li, Xiangmin

    2016-03-01

    The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells.

  2. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    PubMed Central

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  3. A salt bridge in intracellular loop 2 is essential for folding of human p-glycoprotein.

    PubMed

    Loo, Tip W; Clarke, David M

    2013-05-14

    There is no high-resolution structure of the human P-glycoprotein (P-gp, ABCB1) drug pump. Homology models based on the crystal structures of mouse and Caenorhabditis elegans P-gps show extensive contacts between intracellular loop 2 (ICL2, in the first transmembrane domain) and the second nucleotide-binding domain. Human P-gp modeled on these P-gp structures yields different ICL2 structures. Only the model based on the C. elegans P-gp structure predicts the presence of a salt bridge. We show that the Glu256-Arg276 salt bridge was critical for P-gp folding.

  4. Activities of Antimicrobial Agents against Intracellular Pneumococci

    PubMed Central

    Mandell, Gerald L.; Coleman, Elizabeth J.

    2000-01-01

    Pneumococci can enter and survive inside human lung alveolar carcinoma cells. We examined the activity of azithromycin, gentamicin, levofloxacin, moxifloxacin, penicillin G, rifampin, telithromycin, and trovafloxacin against pneumococci inside and outside cells. We found that moxifloxacin, trovafloxacin, and telithromycin were the most active, but only telithromycin killed all intracellular organisms. PMID:10952618

  5. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis

    PubMed Central

    Garfoot, Andrew L.; Rappleye, Chad A.

    2016-01-01

    The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages. PMID:26235362

  6. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    PubMed

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  7. Protective effect of intracellular ice during freezing?

    PubMed

    Acker, Jason P; McGann, Locksley E

    2003-04-01

    Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.

  8. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics

    PubMed Central

    Lönn, Peter; Kacsinta, Apollo D.; Cui, Xian-Shu; Hamil, Alexander S.; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F.

    2016-01-01

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells. PMID:27604151

  9. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    PubMed

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-09-08

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.

  10. Intracellular innate immune surveillance devices in plants and animals.

    PubMed

    Jones, Jonathan D G; Vance, Russell E; Dangl, Jeffery L

    2016-12-02

    Multicellular eukaryotes coevolve with microbial pathogens, which exert strong selective pressure on the immune systems of their hosts. Plants and animals use intracellular proteins of the nucleotide-binding domain, leucine-rich repeat (NLR) superfamily to detect many types of microbial pathogens. The NLR domain architecture likely evolved independently and convergently in each kingdom, and the molecular mechanisms of pathogen detection by plant and animal NLRs have long been considered to be distinct. However, microbial recognition mechanisms overlap, and it is now possible to discern important key trans-kingdom principles of NLR-dependent immune function. Here, we attempt to articulate these principles. We propose that the NLR architecture has evolved for pathogen-sensing in diverse organisms because of its utility as a tightly folded "hair trigger" device into which a virtually limitless number of microbial detection platforms can be integrated. Recent findings suggest means to rationally design novel recognition capabilities to counter disease. Copyright © 2016, American Association for the Advancement of Science.

  11. Intracellular angiotensin II activates rat myometrium

    PubMed Central

    Deliu, Elena; Tica, Andrei A.; Motoc, Dana; Brailoiu, G. Cristina

    2011-01-01

    Angiotensin II is a modulator of myometrial activity; both AT1 and AT2 receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca2+ concentration ([Ca2+]i) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT1 receptor antagonist losartan but not by the AT2 receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca2+]i. Blockade of AT1 receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca2+]i produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca2+-free saline, indicating a major involvement of Ca2+ release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP3) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP3 pathway. Angiotensin II-induced increase in [Ca2+]i was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT1-like receptors on lysosomes and activates PLC-IP3-dependent Ca2+ release from endoplasmic reticulum; the response is further augmented by a Ca2+-induced Ca2+ release mechanism via ryanodine receptors activation. PMID:21613610

  12. Functional domains in tetraspanin proteins.

    PubMed

    Stipp, Christopher S; Kolesnikova, Tatiana V; Hemler, Martin E

    2003-02-01

    Exciting new findings have emerged about the structure, function and biochemistry of tetraspanin proteins. Five distinct tetraspanin regions have now been delineated linking structural features to specific functions. Within the large extracellular loop of tetraspanins, there is a variable region that mediates specific interactions with other proteins, as well as a more highly conserved region that has been suggested to mediate homodimerization. Within the transmembrane region, the four tetraspanin transmembrane domains are probable sites of both intra- and inter-molecular interactions that are crucial during biosynthesis and assembly of the network of tetraspanin-linked membrane proteins known as the 'tetraspanin web'. In the intracellular juxtamembrane region, palmitoylation of cysteine residues also contributes to tetraspanin web assembly, and the C-terminal cytoplasmic tail region could provide specific functional links to cytoskeletal or signaling proteins.

  13. Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein.

    PubMed

    Pavlov, Pavel F; Wiehager, Birgitta; Sakai, Jun; Frykman, Susanne; Behbahani, Homira; Winblad, Bengt; Ankarcrona, Maria

    2011-01-01

    Intracellular amyloid-β peptide (Aβ) has been implicated in the pathogenesis of Alzheimer's disease (AD). Mitochondria were found to be the target both for amyloid precursor protein (APP) that accumulates in the mitochondrial import channels and for Aβ that interacts with several proteins inside mitochondria and leads to mitochondrial dysfunction. Here, we have studied the role of mitochondrial γ-secretase in processing different substrates. We found that a significant proportion of APP is associated with mitochondria in cultured cells and that γ-secretase cleaves the shedded C-terminal part of APP identified as C83 associated with the outer membrane of mitochondria (OMM). Moreover, we have established the topology of the C83 in the OMM and found the APP intracellular domain (AICD) to be located inside mitochondria. Our data show for the first time that APP is a substrate for the mitochondrial γ-secretase and that AICD is produced inside mitochondria. Thus, we provide a mechanistic view of the mitochondria-associated APP metabolism where AICD, P3 peptide and potentially Aβ are produced locally and may contribute to mitochondrial dysfunction in AD.

  14. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  15. Modeling of spatially-restricted intracellular signaling.

    PubMed

    Neves, Susana R

    2012-01-01

    Understanding the signaling capabilities of a cell presents a major challenge, not only due to the number of molecules involved, but also because of the complex network connectivity of intracellular signaling. Recently, the proliferation of quantitative imaging techniques has led to the discovery of the vast spatial organization of intracellular signaling. Computational modeling has emerged as a powerful tool for understanding how inhomogeneous signaling originates and is maintained. This article covers the current imaging techniques used to obtain quantitative spatial data and the mathematical approaches used to model spatial cell biology. Modeling-derived hypotheses have been experimentally tested and the integration of modeling and imaging approaches has led to non-intuitive mechanistic insights.

  16. Intracellular mechanisms of solar water disinfection

    PubMed Central

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-01-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection. PMID:27909341

  17. Leishmania hijacking of the macrophage intracellular compartments.

    PubMed

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  18. Sprouty, an intracellular inhibitor of Ras signaling.

    PubMed

    Casci, T; Vinós, J; Freeman, M

    1999-03-05

    Sprouty was identified in a genetic screen as an inhibitor of Drosophila EGF receptor signaling. The Egfr triggers cell recruitment in the eye, and sprouty- eyes have excess photoreceptors, cone cells, and pigment cells. Sprouty's function is, however, more widespread. We show that it also interacts genetically with the receptor tyrosine kinases Torso and Sevenless, and it was first discovered through its effect on FGF receptor signaling. In contrast to an earlier proposal that Sprouty is extracellular, we show by biochemical analysis that Sprouty is an intracellular protein, associated with the inner surface of the plasma membrane. Sprouty binds to two intracellular components of the Ras pathway, Drk and Gap1. Our results indicate that Sprouty is a widespread inhibitor of Ras pathway signal transduction.

  19. Intracellular mechanisms of solar water disinfection.

    PubMed

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-02

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  20. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  1. Intracellular mechanisms of solar water disinfection

    NASA Astrophysics Data System (ADS)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  2. Functions of Intracellular Retinoid Binding-Proteins

    PubMed Central

    2017-01-01

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function. PMID:27830500

  3. Targeting caspases in intracellular protozoan infections.

    PubMed

    Guillermo, Landi V C; Pereira, Wânia F; De Meis, Juliana; Ribeiro-Gomes, Flavia L; Silva, Elisabeth M; Kroll-Palhares, Karina; Takiya, Christina M; Lopes, Marcela F

    2009-06-01

    Caspases are cysteine aspartases acting either as initiators (caspases 8, 9, and 10) or executioners (caspases 3, 6, and 7) to induce programmed cell death by apoptosis. Parasite infections by certain intracellular protozoans increase host cell life span by targeting caspase activation. Conversely, caspase activation, followed by apoptosis of lymphocytes and other cells, prevents effective immune responses to chronic parasite infection. Here we discuss how pharmacological inhibition of caspases might affect the immunity to protozoan infections, by either blocking or delaying apoptosis.

  4. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  5. Intracellular serpins, firewalls and tissue necrosis.

    PubMed

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis.

  6. Single color fluorescent indicators of protein phosphorylation for multicolor imaging of intracellular signal flow dynamics.

    PubMed

    Kawai, Yasutoshi; Sato, Moritoshi; Umezawa, Yoshio

    2004-10-15

    Existing monitoring methods for protein phosphorylation involved in intracellular signal transduction in vivo are exclusively based on fluorescence resonance energy transfer, which needs the measurement of the change in fluorescence intensities at two wavelengths. Therefore, it is difficult to monitor protein phosphorylation together with other related signaling processes, such as second messengers and protein translocation. To overcome this problem, we developed novel fluorescent indicators, each containing a differently colored (cyan and green) single fluorophore. The present indicator is a tandem fusion protein containing a kinase substrate domain, a circularly permuted fluorescent protein (cpFP), and a phosphorylation recognition domain. The cpFP is obtained by dividing a green fluorescent protein mutant (GFP) at residue 144-145 and linking the carboxy and amino portions thereof with a peptide linker. The substrate domain used in this study is a peptide sequence that is phosphorylated by insulin receptor. Phosphorylation of the substrate domain induces its interaction with the phosphorylation recognition domain, which causes a conformational change in the cpFP and a change in its fluorescence. The cyan and green indicators exhibited 10% decrease and 15% increase, respectively, in their fluorescence intensities upon phosphorylation. Using this cyan indicator and GFP-tagged mitogen-activated protein kinase (MAPK), we found that insulin-induced protein phosphorylation occurred immediately upon the addition of insulin, whereas nuclear translocation of MAPK occurred 7 min later. By tailoring the substrate domains and the phosphorylation recognition domains in these cyan and green indicators, the present approach should be applicable to the in vivo analysis of a broad range of protein phosphorylation processes, together with other intracellular signaling processes.

  7. Bioreducible Lipid-like Nanoparticles for Intracellular Protein Delivery

    NASA Astrophysics Data System (ADS)

    Arellano, Carlos Luis

    Protein-based therapy is one of the most direct ways to manipulate cell function and treat human disease. Although protein therapeutics has made its way to clinical practice, with five of the top fifteen global pharmaceuticals being peptide or protein-based drugs, one common limitation is that the effects of protein therapy are only achieved through the targeting of cell surface receptors and intracellular domains. Due to the impermeability of the cell membrane to most foreign materials, entire classes of potentially therapeutic proteins cannot thoroughly be studied without a safe and efficient method of transporting proteins into the cytosol. We report the use of a combinatorially-designed bioreducible lipid-like material (termed "lipidoid") - based protein delivery platform for the transfection of human cancer cell lines. Lipidoid nanoparticles are synthesized through a thin film dispersion method. The degradation of the bioreducible nanoparticles was observed when exposed to glutathione, a highly reductive compound present in the cytosol. We demonstrate that the nanoparticles are capable of transfecting a dose-dependent concentration of our model protein, beta-galactosidase into HeLa cells. Furthermore, formulations of the lipidoid containing the cytotoxic proteins saporin and RNase-A are both capable of inhibiting tumor cell proliferation as observed in in vitro treatment of different human cancer cell lines. There was no observed loss in protein activity after lyophilization and long--term storage, indicating the potential of pre-clinical applications. Overall, we demonstrate an effective approach to protein formulation and intracellular delivery. We believe that our formulations will lead to the study of a whole class of previously untapped therapeutics that may generate new solutions for previously untreatable diseases.

  8. A bacteriophage endolysin that eliminates intracellular streptococci

    PubMed Central

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  9. Detection of intracellular phosphatidylserine in living cells.

    PubMed

    Calderon, Frances; Kim, Hee-Yong

    2008-03-01

    To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.

  10. Optical nanoparticle sensors for quantitative intracellular imaging.

    PubMed

    Lee, Yong-Eun Koo; Kopelman, Raoul

    2009-01-01

    Real-time measurements of biological/chemical/physical processes, with no interferences, are an ultimate goal for in vivo intracellular studies. To construct intracellular biosensors that meet such a goal, nanoparticle (NP) platforms seem to be most promising, because of their small size and excellent engineerability. This review describes the development of NP-based opical sensors and their intracellular applications. The sensor designs are classified into two types, based on the sensor structures regarding analyte receptor and signal transducer. Type 1 sensors, with a single component for both receptor and transducer, work by mechanisms similar to those of 'molecular probes'. Type 2 sensors, with a separate component for receptor and transducer, work by different mechanisms that require the presence of specific NPs. A synergistic increase in optical signal or selectivity has been reported for these second type of NP sensors. With ongoing rapid advances in nanotechnology and instrumentation, these NP systems will soon be capable of sensing at the single-molecule level, at the point of interest within the living cell, and capable of simultaneously detecting multiple analytes and physical parameters.

  11. Intracellular Pressure Dynamics in Blebbing Cells.

    PubMed

    Strychalski, Wanda; Guy, Robert D

    2016-03-08

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.

  12. Intracellular guest exchange between dynamic supramolecular hosts.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; McCaughan, Bridgeen; Cusido, Janet; Callan, John F; Raymo, Françisco M

    2014-06-04

    Decyl and oligo(ethylene glycol) chains were appended to the same poly(methacrylate) backbone to generate an amphiphilic polymer with a ratio between hydrophobic and hydrophilic segments of 2.5. At concentrations greater than 10 μg mL(-1) in neutral buffer, multiple copies of this particular macromolecule assemble into nanoparticles with a hydrodynamic diameter of 15 nm. In the process of assembling, these nanoparticles can capture anthracene donors and borondipyrromethene acceptors within their hydrophobic interior and permit the transfer of excitation energy with an efficiency of 95%. Energy transfer is observed also if nanocarriers containing exclusively the donors are mixed with nanoparticles preloaded separately with the acceptors in aqueous media. The two sets of supramolecular assemblies exchange their guests with fast kinetics upon mixing to co-localize complementary chromophores within the same nanostructured container and enable energy transfer. After guest exchange, the nanoparticles can cross the membrane of cervical cancer cells and bring the co-entrapped donors and acceptors within the intracellular environment. Alternatively, intracellular energy transfer is also established after sequential cell incubation with nanoparticles containing the donors first and then with nanocarriers preloaded with the acceptors or vice versa. Under these conditions, the nanoparticles exchange their cargo only after internalization and allow energy transfer exclusively within the cell interior. Thus, the dynamic character of such supramolecular containers offers the opportunity to transport independently complementary species inside cells and permit their interaction only within the intracellular space.

  13. Intracellular Pressure Dynamics in Blebbing Cells

    PubMed Central

    Strychalski, Wanda; Guy, Robert D.

    2016-01-01

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893

  14. Invasion and Intracellular Survival by Protozoan Parasites

    PubMed Central

    Sibley, L. David

    2013-01-01

    Summary Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a nonfusigenic vacuole (e.g. Toxoplasma, Encephalitizoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunological responses and thereby prevent disease. PMID:21349087

  15. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE PAGES

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum; ...

    2017-06-07

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  16. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  17. Functional domains of the poliovirus receptor

    SciTech Connect

    Koike, Satoshi; Ise, Iku; Nomoto, Akio )

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor. Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.

  18. Understanding the Public Domain.

    ERIC Educational Resources Information Center

    Russell, Carrie

    2003-01-01

    This overview of the public domain covers: defining the public domain; figuring out if a work is protected by copyright; being sure a work is in the public domain; asserting the copyright protection and term; the Creative Commons initiative; building the Information Commons; when permission is needed for using a public domain work; and special…

  19. The effect of intracellular alkalinisation on intracellular Ca(2+) homeostasis in a human chondrocyte cell line.

    PubMed

    Browning, Joseph A; Wilkins, Robert J

    2002-09-01

    Intracellular pH (pH(i)) is a well-established determinant of cartilage matrix metabolism. Changes to chondrocyte pH(i), and therefore matrix turnover rates, arise following joint loading. It is not yet clear whether pH changes exert their effects on matrix metabolism directly, or by changing the concentration of another, as yet unidentified, intracellular factor. In this study the effect of intracellular alkalinisation on intracellular [Ca(2+)] has been examined using the human chondrocyte C-20/A4 cell line. pH(i) was manipulated by the addition of weak bases to suspensions of chondrocytes and fluorimetric techniques were employed to measure pH(i) and [Ca(2+)](i). The effect of pH(i) changes on intracellular inositol 1,4,5-trisphosphate (IP(3)) levels was also determined. The pH-sensitive properties of the Ca(2+)-sensitive fluoroprobe employed in this study, Fura-2, were investigated such that artefactual effects of pH changes upon the dye could be discounted. It was demonstrated that, for dye loaded into cells, alkalinisation resulted in a small increase in the affinity of the dye for Ca(2+) ions. Intracellular alkalinisation elicited by treatment with either of the weak bases trimethylamine or ammonium chloride initiated a rise in [Ca(2+)](i). This effect was too large to be explicable by the effects of pH changes on Fura-2 and was not dependent on the presence of extracellular Ca(2+) ions. Prior depletion of intracellular Ca(2+) stores by treatment with thapsigargin inhibited alkalinisation-induced increases in [Ca(2+)](i) and intracellular alkalinisation was also associated with increased levels of intracellular IP(3). These results confirm that alkaline pH(i) changes associated with dynamic loading of cartilage also result in knock-on alterations to [Ca(2+)](i). Given the sensitivity of cartilage matrix metabolism to [Ca(2+)](i) it is likely that this signalling cascade forms an important part of the mechanotransduction pathway that determines the response of

  20. The roles of amyloid precursor protein (APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimer disease.

    PubMed

    Zhou, Zhi-dong; Chan, Christine Hui-shan; Ma, Quan-hong; Xu, Xiao-hong; Xiao, Zhi-cheng; Tan, Eng-king

    2011-01-01

    The amyloid-beta (Aβ) peptide is the derivative of amyloid precursor protein (APP) generated through sequential proteolytic processing by β- and γ-secretases. Excessive accumulation of Aβ, the main constituent of amyloid plaques, has been implicated in the etiology of Alzheimer's disease (AD). It was found recently that the impairments of neurogenesis in brain were associated with the pathogenesis of AD. Furthermore recent findings implicated that APP could function to influence proliferation of neural progenitor cells (NPC) and might regulate transcriptional activity of various genes. Studies demonstrated that influence of neurogenesis by APP is conferred differently via its two separate domains, soluble secreted APPs (sAPPs, mainly sAPPα) and APP intracellular domain (AICD). The sAPPα was shown to be neuroprotective and important to neurogenesis, whereas AICD was found to negatively modulate neurogenesis. Furthermore, it was demonstrated recently that microRNA could function to regulate APP expression, APP processing, Aβ accumulation and subsequently influence neurotoxicity and neurogenesis related to APP, which was implicated to AD pathogenesis, especially for sporadic AD. Based on data accumulated, secretase balances were proposed. These secretase balances could influence the downstream balance related to regulation of neurogenesis by AICD and sAPPα as well as balance related to influence of neuron viability by Aβ and sAPPα. Disruption of these secretase balances could be culprits to AD onset.

  1. The roles of amyloid precursor protein (APP) in neurogenesis, implications to pathogenesis and therapy of Alzheimer disease (AD)

    PubMed Central

    Ma, Quan-hong; Xu, Xiao-hong

    2011-01-01

    The amyloid-beta (Aβ) peptide is the derivative of amyloid precursor protein (APP) generated through sequential proteolytic processing by β- and γ-secretases. Excessive accumulation of Aβ, the main constituent of amyloid plaques, has been implicated in the etiology of Alzheimer disease (AD). It was found recently that the impairments of neurogenesis in brain were associated with the pathogenesis of AD. Furthermore recent findings implicated that APP could function to influence proliferation of neural progenitor cells (NPC) and might regulate transcriptional activity of various genes. Studies demonstrated that influence of neurogenesis by APP is conferred differently via its two separate domains, soluble secreted APPs (sAPPs, mainly sAPPα) and APP intracellular domain (AICD). The sAPPα was shown to be neuroprotective and important to neurogenesis, whereas AICD was found to negatively modulate neurogenesis. Furthermore, it was demonstrated recently that microRNA could function to regulate APP expression, APP processing, Aβ accumulation and subsequently influence neurotoxicity and neurogenesis related to APP, which was implicated to AD pathogenesis, especially for sporadic AD. Based on data accumulated, secretase balances were proposed. These secretase balances could influence the downstream balance related to regulation of neurogenesis by AICD and sAPPα as well as balance related to influence of neuron viability by Aβ and sAPPα. Disruption of these secretase balances could be culprits to AD onset. PMID:21785276

  2. Intracellular Penetration and Activity of Gemifloxacin in Human Polymorphonuclear Leukocytes

    PubMed Central

    García, Isabel; Pascual, Alvaro; Ballesta, Sofía; Joyanes, Providencia; Perea, Evelio J.

    2000-01-01

    The intracellular penetration and activity of gemifloxacin in human polymorphonuclear leukocytes (PMN) were evaluated. Gemifloxacin reached intracellular concentrations eight times higher than extracellular concentrations. The uptake was rapid, reversible, and nonsaturable and was affected by environmental temperature, cell viability, and membrane stimuli. At therapeutic extracellular concentrations, gemifloxacin showed intracellular activity against Staphylococcus aureus. PMID:11036051

  3. Anchors aweigh: protein localization and transport mediated by transmembrane domains.

    PubMed

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S

    2013-10-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in cytosolic domains, TMD sorting determinants are not conserved amino acid sequences but physical properties such as the length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized, but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport.

  4. Anchors Aweigh: Protein Traffic Mediated by Transmembrane Domains

    PubMed Central

    Cosson, Pierre; Perrin, Jackie; Bonifacino, Juan S.

    2013-01-01

    The transmembrane domains (TMDs) of integral membrane proteins have emerged as major determinants of intracellular localization and transport in the secretory and endocytic pathways. Unlike sorting signals in the cytosolic domains, TMD sorting determinants are not conserved amino-acid sequences but physical properties such as length and hydrophilicity of the transmembrane span. The underlying sorting machinery is still poorly characterized but several mechanisms have been proposed, including TMD recognition by transmembrane sorting receptors and partitioning into membrane lipid domains. Here we review the nature of TMD sorting determinants and how they may dictate transmembrane protein localization and transport. PMID:23806646

  5. InsP3-mediated intracellular calcium signalling is altered by expression of synaptojanin-1

    PubMed Central

    2004-01-01

    Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] plays an important physiological role as a precursor for the InsP3-mediated intracellular calcium (Ca2+) signalling cascade. It also regulates membrane trafficking, actin function and transmembrane proteins. SJ-1 (synaptojanin-1), a phosphoinositide phosphatase, regulates the turnover of a PtdIns(4,5)P2 pool involved in clathrin and actin dynamics at the cell surface. We tested the interrelationship of this pool with PtdIns(4,5)P2 pools involved in Ca2+ signalling by expressing in Chinese-hamster ovary cells full-length SJ-1 or its 5-Pase (inositol 5-phosphatase) domain. SJ-1 significantly attenuated the generation of Ca2+ oscillations induced by ATP and the 5-Pase domain mimicked this effect. These changes correlated with increased PtdIns(4,5)P2 phosphatase activity of cellular extracts. Overexpression of the endoplasmic reticulum-anchored PtdIns(4)P phosphatase Sac1 did not affect Ca2+ oscillations, although it increased the Ca2+ efflux rate from intracellular stores. The ability of SJ-1 to alter intracellular Ca2+ signalling indicates a close functional interrelationship between plasma membrane PtdIns(4,5)P2 pools that control actin and endocytosis and those involved in the regulation of specific spatio-temporal Ca2+ signals. PMID:15080793

  6. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell.

    PubMed

    Armenti, Stephen T; Chan, Emily; Nance, Jeremy

    2014-10-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the Caenorhabditis elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens.

  7. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell

    PubMed Central

    Armenti, Stephen T.; Chan, Emily; Nance, Jeremy

    2015-01-01

    Lumenogenesis of small seamless tubes occurs through intracellular membrane growth and directed vesicle fusion events. Within the C. elegans excretory cell, which forms seamless intracellular tubes (canals) that mediate osmoregulation, lumens grow in length and diameter when vesicles fuse with the expanding lumenal surface. Here, we show that lumenal vesicle fusion depends on the small GTPase RAL-1, which localizes to vesicles and acts through the exocyst vesicle-tethering complex. Loss of either the exocyst or RAL-1 prevents excretory canal lumen extension. Within the excretory canal and other polarized cells, the exocyst co-localizes with the PAR polarity proteins PAR-3, PAR-6 and PKC-3. Using early embryonic cells to determine the functional relationships between the exocyst and PAR proteins, we show that RAL-1 recruits the exocyst to the membrane, while PAR proteins concentrate membrane-localized exocyst proteins to a polarized domain. These findings reveal that RAL-1 and the exocyst direct the polarized vesicle fusion events required for intracellular lumenogenesis of the excretory cell, suggesting mechanistic similarities in the formation of topologically distinct multicellular and intracellular lumens. PMID:25102190

  8. The first intracellular loop of GLUT4 contains a retention motif.

    PubMed

    Talantikite, Maya; Berenguer, Marion; Gonzalez, Teresa; Alessi, Marie Christine; Poggi, Marjorie; Peiretti, Franck; Govers, Roland

    2016-06-01

    Glucose transporter GLUT4 (also known as SLC2A4) plays a major role in glucose homeostasis and is efficiently retained intracellularly in adipocytes and myocytes. To simplify the analysis of its retention, here, various intracellular GLUT4 domains were fused individually to reporter molecules. Of the four short cytoplasmic loops of GLUT4, only the first nine-residue-long loop conferred intracellular retention of truncated forms of the transferrin receptor and CD4 in adipocytes. In contrast, the same loop of GLUT1 was without effect. The reporter molecules to which the first loop of GLUT4 was fused localized, unlike GLUT4, to the trans-Golgi network (TGN), possibly explaining why these molecules did not respond to insulin. The retention induced by the GLUT4 loop was specific to adipocytes as it did not induce retention in preadipocytes. Of the SQWLGRKRA sequence that constitutes this loop, mutation of either the tryptophan or lysine residue abrogated reporter retention. Mutation of these residues individually into alanine residues in the full-length GLUT4 molecule resulted in a decreased retention for GLUT4-W105A. We conclude that the first intracellular loop of GLUT4 contains the retention motif WLGRK, in which W105 plays a prominent role.

  9. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.

  10. Caspases rule the intracellular trafficking cartel.

    PubMed

    Duclos, Catherine; Lavoie, Christine; Denault, Jean-Bernard

    2017-05-01

    During apoptosis, caspases feast on several hundreds of cellular proteins to orchestrate rapid cellular demise. Indeed, caspases are known to get a taste of every cellular process in one way or another, activating some, but most often shutting them down. Thus, it is not surprising that caspases proteolyze proteins involved in intracellular trafficking with particularly devastating consequences for this important process. This review article focuses on how caspases target the machinery responsible for smuggling goods within and outside the cell. © 2017 Federation of European Biochemical Societies.

  11. Landmark discoveries in intracellular transport and secretion

    PubMed Central

    Paknikar, Kishore M

    2007-01-01

    Abstract Cellular protein transport and secretion is fundamental to the very existence of an organism, regulating important physiological functions such as reproduction, digestion, energy production, growth, neurotransmission, hormone release, water and ion transport, etc., all required for the survival and maintenance of homeostasis within an organism. Molecular understanding of transport and secretion of intracellular product has therefore been of paramount importance and aggressively investigated for over six decades. Only in the last 20 years, the general molecular mechanism of the process has come to light, following discovery of key proteins involved in ER-Golgi transport, and discovery of the ‘porosome’– the universal secretion machinery in cells. PMID:17635635

  12. Domains in multiband superconductors

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yanagisawa, T.; Crisan, A.; Shirage, P. M.; Iyo, A.; Tokiwa, K.; Nishio, T.; Sundaresan, A.; Terada, N.

    2011-11-01

    Multiband superconductors can have several types of domains that are inhibited in conventional single-band superconductors. These domains are phase domains and chiral domains and their domain wall are an interband phase difference soliton. In a superconductor with an odd number of electronic bands (five or more) and with positive interband Josephson interactions, we find other types of domains with different interband phase differences. We call these domains configuration domains because pseudo-order parameters for each band are dispersed in the complex plain and several configurations, which have several local minima. Fractional vortices serve as hubs for phase difference solitons (configuration domain walls). The divergence of the number of configurations with local minima would pose a serious problem for the stability of superconductivity.

  13. Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels.

    PubMed

    Yang, Huanghe; Hu, Lei; Shi, Jingyi; Delaloye, Kelli; Horrigan, Frank T; Cui, Jianmin

    2007-11-13

    The voltage-sensor domain (VSD) of voltage-dependent ion channels and enzymes is critical for cellular responses to membrane potential. The VSD can also be regulated by interaction with intracellular proteins and ligands, but how this occurs is poorly understood. Here, we show that the VSD of the BK-type K(+) channel is regulated by a state-dependent interaction with its own tethered cytosolic domain that depends on both intracellular Mg(2+) and the open state of the channel pore. Mg(2+) bound to the cytosolic RCK1 domain enhances VSD activation by electrostatic interaction with Arg-213 in transmembrane segment S4. Our results demonstrate that a cytosolic domain can come close enough to the VSD to regulate its activity electrostatically, thereby elucidating a mechanism of Mg(2+)-dependent activation in BK channels and suggesting a general pathway by which intracellular factors can modulate the function of voltage-dependent proteins.

  14. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents.

  15. IQGAP1: A Regulator of Intracellular Spacetime Relativity

    PubMed Central

    Malarkannan, Subramaniam; Awasthi, Aradhana; Kamalakannan, Rajasekaran; Kumar, Pawan; Schuldt, Kristina M; Bartoszek, Allison; Manoharan, Niranjan; Goldner, Nicholas K; Umhoefer, Colleen M; Thakar, Monica S

    2012-01-01

    Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Amongst multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Amongst many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, MTOC formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin and CD44-mediated signaling and GSK3/APC-mediated β-catenin activation. In this review we summarize the recent developments and exciting new findings of cellular functions of IQGAP1. PMID:22345702

  16. IQGAP1: a regulator of intracellular spacetime relativity.

    PubMed

    Malarkannan, Subramaniam; Awasthi, Aradhana; Rajasekaran, Kamalakannan; Kumar, Pawan; Schuldt, Kristina M; Bartoszek, Allison; Manoharan, Niranjan; Goldner, Nicholas K; Umhoefer, Colleen M; Thakar, Monica S

    2012-03-01

    Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.

  17. Backscattered light confocal imaging of intracellular MTT-formazan crystals.

    PubMed

    Bernas, Tytus; Dobrucki, Jurek W

    2004-06-01

    Metabolically active animal and plant cells reduce MTT tetrazolium salt to a corresponding nonfluorescent formazan. Reduction of MTT by viable cells is exploited in a number of tests widely used in biological research. The aim of this study was to optimize a microscopy method of detecting small crystals of MTT-formazan formed in intact cells maintained in in vitro cultures. We examined scattering properties of small intracellular crystals of MTT formazan and found that the efficiency of light scattering was dependent on wavelength. Small (<3 microm) crystals of MTT-formazan, formed in viable cells, scattered red, but not blue, light. Large crystals, which are formed later at a stage when cells begin to lose viability, scattered both red and blue light. We conclude that optimal detection of early stages of crystallization of MTT-formazan in living cells is possible using confocal microscopy of red, but not blue, scattered light. High contrast and resolution of images can be achieved by filtering out interference effects in the frequency domain.

  18. Multiscale computational models in physical systems biology of intracellular trafficking

    PubMed Central

    Tourdot, Richard W.; Bradley, Ryan P.; Ramakrishnan, Natesan

    2015-01-01

    In intracellular trafficking, a definitive understanding of the interplay between protein binding and membrane morphology remains incomplete. The authors describe a computational approach by integrating coarse-grained molecular dynamics (CGMD) simulations with continuum Monte Carlo (CM) simulations of the membrane to study protein–membrane interactions and the ensuing membrane curvature. They relate the curvature field strength discerned from the molecular level to its effect at the cellular length-scale. They perform thermodynamic integration on the CM model to describe the free energy landscape of vesiculation in clathrin-mediated endocytosis. The method presented here delineates membrane morphologies and maps out the free energy changes associated with membrane remodeling due to varying coat sizes, coat curvature strengths, membrane bending rigidities, and tensions; furthermore several constraints on mechanisms underlying clathrin-mediated endocytosis have also been identified, Their CGMD simulations have revealed the importance of PIP2 for stable binding of proteins essential for curvature induction in the bilayer and have provided a molecular basis for the positive curvature induction by the epsin N-terminal homology (EIMTH) domain. Calculation of the free energy landscape for vesicle budding has identified the critical size and curvature strength of a clathrin coat required for nucleation and stabilisation of a mature vesicle. PMID:25257021

  19. Novel targets for treating heart and muscle disease: stabilizing ryanodine receptors and preventing intracellular calcium leak.

    PubMed

    Lehnart, Stephan E

    2007-04-01

    Ryanodine receptors (RyRs) function as intracellular Ca(2+) release channels on the endoplasmic and sarcoplasmic reticulum membranes. In striated muscles, Ca(2+) release through RyRs controls muscle excitation-contraction coupling. RyR channel function is regulated by a cytoplasmic scaffold domain that forms a macromolecular signaling complex including calstabin (formerly known as FK506-binding protein), calmodulin, phosphodiesterase, kinase and phosphatase proteins. An increasing number of genetic and acquired diseases has been associated with intracellular Ca(2+) leak. In heart failure, for instance, the RyR complex becomes altered, resulting in chronic channel dysfunction and chronic sarcoplasmic reticulum Ca(2+) leak. Recently, the efficacy of novel Ca(2+) release channel-stabilizing drugs has been demonstrated in cardiac and skeletal muscle disease models.

  20. Intracellular calcium modulates gallbladder ion transport.

    PubMed

    Cates, J A; Saunders, K D; Abedin, M Z; Roslyn, J J

    1991-06-01

    Although experimentally induced cholesterol gallstone formation has been associated with altered gallbladder (GB) absorption and increased biliary Ca2+, the relationship between these events remains unclear. Recent studies suggest that extracellular Ca2+ ([Ca2+]ec) influences GB ion transport. Whether the effects of [Ca2+]ec are mediated by changes in intracellular Ca2+ ([Ca2+]ic) has not been determined. This study was designed to define the effects of altered [Ca2+]ic on GB ion transport. Prairie dog GBs were mounted in a Ussing chamber and short-circuit current (Isc), potential difference (Vms), and resistance (Rt) were recorded. Mucosal surfaces were exposed to either Dantrolene (Dt) or nickel (Ni2+). Dt "traps" [Ca2+]ic within intracellular organelles, thereby lowering cytosolic Ca2+; and Ni2+ prevents influx of [Ca2+]ec, presumably by binding Ca2+ channels. Although Dt reduced both Isc and Vms (P less than 0.01), these effects were transient. Transport recovery was probably due to increased [Ca2+]ec influx with restoration of [Ca2+]ic. Ni2+ resulted in sustained decreases in Isc and Vms (P less than 0.05) despite subsequent addition of 10 mM Ca2+. These findings are consistent with the prevention of [Ca2+]ec influx by Ni2+. We conclude that: (1) [Ca2+]ic may be a modulator of GB ion transport and (2) previously reported [Ca2+]ec effects on ion transport may be mediated through [Ca2+]ic concentration changes.

  1. NPC1, intracellular cholesterol trafficking and atherosclerosis.

    PubMed

    Yu, Xiao-Hua; Jiang, Na; Yao, Ping-Bo; Zheng, Xi-Long; Cayabyab, Francisco S; Tang, Chao-Ke

    2014-02-15

    Post-lysosomal cholesterol trafficking is an important, but poorly understood process that is essential to maintain lipid homeostasis. Niemann-Pick type C1 (NPC1), an integral membrane protein on the limiting membrane of late endosome/lysosome (LE/LY), is known to accept cholesterol from NPC2 and then mediate cholesterol transport from LE/LY to endoplasmic reticulum (ER) and plasma membrane in a vesicle- or oxysterol-binding protein (OSBP)-related protein 5 (ORP5)-dependent manner. Mutations in the NPC1 gene can be found in the majority of NPC patients, who accumulate massive amounts of cholesterol and other lipids in the LE/LY due to a defect in intracellular lipid trafficking. Liver X receptor (LXR) is the major positive regulator of NPC1 expression. Atherosclerosis is the pathological basis of coronary heart disease, one of the major causes of death worldwide. NPC1 has been shown to play a critical role in the atherosclerotic progression. In this review, we have summarized the role of NPC1 in regulating intracellular cholesterol trafficking and atherosclerosis.

  2. Quantitative proteomics of intracellular Porphyromonas gingivalis

    PubMed Central

    Xia, Qiangwei; Wang, Tiansong; Taub, Fred; Park, Yoonsuk; Capestany, Cindy A.; Lamont, Richard J.; Hackett, Murray

    2009-01-01

    Whole-cell quantitative proteomic analyses were conducted to investigate the change from an extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain ATCC 33277 internalized for 18 hours within human gingival epithelial cells and controls exposed to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that these changes are profound. A total of 385 proteins were over-expressed in internalized P. gingivalis relative to controls; 240 proteins were shown to be under-expressed. This represented in total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half of the proteins that were observed experimentally. Production of several proteases, including the classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null (no change) abundance ratios from technical replicates were used to assess the rate of quantitative false positives over the entire proteome. A global comparison between the direction of abundance change observed and previously published bioinformatic gene pair predictions for P. gingivalis will assist with future studies of P. gingivalis gene regulation and operon prediction. PMID:17979175

  3. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  4. Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy

    PubMed Central

    Shi, Bo; Huang, Kexin; Ding, Jianxun; Xu, Weiguo; Yang, Yu; Liu, Haiyan; Yan, Lesan; Chen, Xuesi

    2017-01-01

    Nowadays, chemotherapy is one of the principal modes of treatment for tumor patients. However, the traditional formulations of small molecule drugs show short circulation time, low tumor selectivity, and high toxicity to normal tissues. To address these problems, a facilely prepared, and pH and reduction dual-responsive polypeptide nanogel was prepared for selectively intracellular delivery of chemotherapy drug. As a model drug, doxorubicin (DOX) was loaded into the nanogel through a sequential dispersion and dialysis technique, resulting in a high drug loading efficiency (DLE) of 96.7 wt.%. The loading nanogel, defined as NG/DOX, exhibited a uniform spherical morphology with a mean hydrodynamic radius of 58.8 nm, pH and reduction dual-triggered DOX release, efficient cell uptake, and cell proliferation inhibition in vitro. Moreover, NG/DOX exhibited improved antitumor efficacy toward H22 hepatoma-bearing BALB/c mouse model compared with free DOX·HCl. Histopathological and immunohistochemical analyses were implemented to further confirm the tumor suppression activity of NG/DOX. Furthermore, the variations of body weight, histopathological morphology, bone marrow cell micronucleus rate, and white blood cell count verified that NG/DOX showed excellent safety in vivo. With these excellent properties in vitro and in vivo, the pH and reduction dual-responsive polypeptide nanogel exhibits great potential for on-demand intracellular delivery of antitumor drug, and holds good prospect for future clinical application. PMID:28255361

  5. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  6. Intracellular accumulation of norfloxacin in Mycobacterium smegmatis.

    PubMed

    Corti, S; Chevalier, J; Cremieux, A

    1995-11-01

    To evaluate the intracellular accumulation of norfloxacin in mycobacteria, two methods were used with Mycobacterium smegmatis. A radiometric method (K. V. Cundy, C. E. Fasching, K. E. Willard, and L. R. Peterson, J. Antimicrob. Chemother. 28:491-497, 1991) was used without great modification, but the fluorometric method (P. G. S. Mortimer and L. J. V. Piddock, J. Antimicrob. Chemother. 28:639-653, 1991) was changed considerably. Indeed, adsorption of the quinolone to the bacterial surface was characterized by measuring the level of accumulation of 0 degree C. Taking into account the adsorption, the pH of the washing buffer was increased from 7.0 to 9.0 to improve the desorption of norfloxacin from the cell surface. Both the fluorometric method, with the technical improvement, and the radiometric method could be used to estimate the intracellular accumulation of norfloxacin, which resulted from the difference between the whole uptake measured at 37 degrees C and the adsorption measured at 0 degrees C. A total of 35 ng of norfloxacin per mg of cells (dry weight) penetrated into the M. smegmatis cell, and the steady state was achieved in 5 min. Use of inhibitors of the proton motive force revealed that transport of norfloxacin was energy independent. Thus, the same mechanisms of quinolone accumulation that occur in eubacteria seem to occur in mycobacteria, at least in M. smegmatis.

  7. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  8. Intracellular distribution of microinjected antisense oligonucleotides.

    PubMed

    Leonetti, J P; Mechti, N; Degols, G; Gagnor, C; Lebleu, B

    1991-04-01

    Antisense oligomers constitute an attractive class of specific tools for genetic analysis and for potential therapeutic applications. Targets with different cellular locations have been described, such as mRNA translation initiation sites, pre-mRNA splicing sites, or the genes themselves. However the mechanism(s) of action and the intracellular distribution of antisense oligomers remain poorly understood. Antisense oligomers conjugated with various fluorochromes or with BrdUrd were microinjected into the cytoplasm of somatic cells, and their cellular distribution was monitored by fluorescence microscopy in fixed and nonfixed cells. A fast translocation in the nuclei and a concentration on nuclear structures were observed whatever probe was used. Nuclear transport occurs by diffusion since it is not affected by depletion of the intracellular ATP pool, temperature, or excess unlabeled oligomer. Accumulation of the oligomers in the nuclei essentially takes place on a set of proteins preferentially extracted between 0.2 M and 0.4 M NaCl as revealed by crosslinking of photosensitive oligomers. The relationship between nuclear location of antisense oligomers and their mechanism of action remains to be ascertained and could be of major interest in the design of more efficient antisense molecules.

  9. Intracellular distribution of microinjected antisense oligonucleotides.

    PubMed Central

    Leonetti, J P; Mechti, N; Degols, G; Gagnor, C; Lebleu, B

    1991-01-01

    Antisense oligomers constitute an attractive class of specific tools for genetic analysis and for potential therapeutic applications. Targets with different cellular locations have been described, such as mRNA translation initiation sites, pre-mRNA splicing sites, or the genes themselves. However the mechanism(s) of action and the intracellular distribution of antisense oligomers remain poorly understood. Antisense oligomers conjugated with various fluorochromes or with BrdUrd were microinjected into the cytoplasm of somatic cells, and their cellular distribution was monitored by fluorescence microscopy in fixed and nonfixed cells. A fast translocation in the nuclei and a concentration on nuclear structures were observed whatever probe was used. Nuclear transport occurs by diffusion since it is not affected by depletion of the intracellular ATP pool, temperature, or excess unlabeled oligomer. Accumulation of the oligomers in the nuclei essentially takes place on a set of proteins preferentially extracted between 0.2 M and 0.4 M NaCl as revealed by crosslinking of photosensitive oligomers. The relationship between nuclear location of antisense oligomers and their mechanism of action remains to be ascertained and could be of major interest in the design of more efficient antisense molecules. Images PMID:1849273

  10. Intracellular accumulation of norfloxacin in Mycobacterium smegmatis.

    PubMed Central

    Corti, S; Chevalier, J; Cremieux, A

    1995-01-01

    To evaluate the intracellular accumulation of norfloxacin in mycobacteria, two methods were used with Mycobacterium smegmatis. A radiometric method (K. V. Cundy, C. E. Fasching, K. E. Willard, and L. R. Peterson, J. Antimicrob. Chemother. 28:491-497, 1991) was used without great modification, but the fluorometric method (P. G. S. Mortimer and L. J. V. Piddock, J. Antimicrob. Chemother. 28:639-653, 1991) was changed considerably. Indeed, adsorption of the quinolone to the bacterial surface was characterized by measuring the level of accumulation of 0 degree C. Taking into account the adsorption, the pH of the washing buffer was increased from 7.0 to 9.0 to improve the desorption of norfloxacin from the cell surface. Both the fluorometric method, with the technical improvement, and the radiometric method could be used to estimate the intracellular accumulation of norfloxacin, which resulted from the difference between the whole uptake measured at 37 degrees C and the adsorption measured at 0 degrees C. A total of 35 ng of norfloxacin per mg of cells (dry weight) penetrated into the M. smegmatis cell, and the steady state was achieved in 5 min. Use of inhibitors of the proton motive force revealed that transport of norfloxacin was energy independent. Thus, the same mechanisms of quinolone accumulation that occur in eubacteria seem to occur in mycobacteria, at least in M. smegmatis. PMID:8585727

  11. [Intracellular signaling mechanisms in thyroid cancer].

    PubMed

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  12. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  13. Intracellular trafficking of hybrid gene delivery vectors.

    PubMed

    Keswani, Rahul K; Lazebnik, Mihael; Pack, Daniel W

    2015-06-10

    Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles.

  14. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  15. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    PubMed Central

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  16. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development.

    PubMed

    Wang, Pengwei; Richardson, Christine; Hawkins, Timothy J; Sparkes, Imogen; Hawes, Chris; Hussey, Patrick J

    2016-06-01

    The endoplasmic reticulum (ER) is connected to the plasma membrane (PM) through the plant-specific NETWORKED protein, NET3C, and phylogenetically conserved vesicle-associated membrane protein-associated proteins (VAPs). Ten VAP homologues (VAP27-1 to 27-10) can be identified in the Arabidopsis genome and can be divided into three clades. Representative members from each clade were tagged with fluorescent protein and expressed in Nicotiana benthamiana. Proteins from clades I and III localized to the ER as well as to ER/PM contact sites (EPCSs), whereas proteins from clade II were found only at the PM. Some of the VAP27-labelled EPCSs localized to plasmodesmata, and we show that the mobility of VAP27 at EPCSs is influenced by the cell wall. EPCSs closely associate with the cytoskeleton, but their structure is unaffected when the cytoskeleton is removed. VAP27-labelled EPCSs are found in most cell types in Arabidopsis, with the exception of cells in early trichome development. Arabidopsis plants expressing VAP27-GFP fusions exhibit pleiotropic phenotypes, including defects in root hair morphogenesis. A similar effect is also observed in plants expressing VAP27 RNAi. Taken together, these data indicate that VAP27 proteins used at EPCSs are essential for normal ER-cytoskeleton interaction and for plant development.

  17. Neto-Mediated Intracellular Interactions Shape Postsynaptic Composition at the Drosophila Neuromuscular Junction

    PubMed Central

    Ramos, Cathy I.; Igiesuorobo, Oghomwen; Wang, Qi; Serpe, Mihaela

    2015-01-01

    The molecular mechanisms controlling the subunit composition of glutamate receptors are crucial for the formation of neural circuits and for the long-term plasticity underlying learning and memory. Here we use the Drosophila neuromuscular junction (NMJ) to examine how specific receptor subtypes are recruited and stabilized at synaptic locations. In flies, clustering of ionotropic glutamate receptors (iGluRs) requires Neto (Neuropillin and Tolloid-like), a highly conserved auxiliary subunit that is essential for NMJ assembly and development. Drosophila neto encodes two isoforms, Neto-α and Neto-β, with common extracellular parts and distinct cytoplasmic domains. Mutations that specifically eliminate Neto-β or its intracellular domain were generated. When Neto-β is missing or is truncated, the larval NMJs show profound changes in the subtype composition of iGluRs due to reduced synaptic accumulation of the GluRIIA subunit. Furthermore, neto-β mutant NMJs fail to accumulate p21-activated kinase (PAK), a critical postsynaptic component implicated in the synaptic stabilization of GluRIIA. Muscle expression of either Neto-α or Neto-β rescued the synaptic transmission at neto null NMJs, indicating that Neto conserved domains mediate iGluRs clustering. However, only Neto-β restored PAK synaptic accumulation at neto null NMJs. Thus, Neto engages in intracellular interactions that regulate the iGluR subtype composition by preferentially recruiting and/or stabilizing selective receptor subtypes. PMID:25905467

  18. The intracellular Ig fold: a robust protein scaffold for the engineering of molecular recognition.

    PubMed

    Bruning, Marc; Barsukov, Igor; Franke, Barbara; Barbieri, Sonia; Volk, Martin; Leopoldseder, Sonja; Ucurum, Zöhre; Mayans, Olga

    2012-05-01

    Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalization.

  19. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus

    PubMed Central

    Becker, Stephen C.; Roach, Dwayne R.; Chauhan, Vinita S.; Shen, Yang; Foster-Frey, Juli; Powell, Anne M.; Bauchan, Gary; Lease, Richard A.; Mohammadi, Homan; Harty, William J.; Simmons, Chad; Schmelcher, Mathias; Camp, Mary; Dong, Shengli; Baker, John R.; Sheen, Tamsin R.; Doran, Kelly S.; Pritchard, David G.; Almeida, Raul A.; Nelson, Daniel C.; Marriott, Ian; Lee, Jean C.; Donovan, David M.

    2016-01-01

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics. PMID:27121552

  20. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus.

    PubMed

    Becker, Stephen C; Roach, Dwayne R; Chauhan, Vinita S; Shen, Yang; Foster-Frey, Juli; Powell, Anne M; Bauchan, Gary; Lease, Richard A; Mohammadi, Homan; Harty, William J; Simmons, Chad; Schmelcher, Mathias; Camp, Mary; Dong, Shengli; Baker, John R; Sheen, Tamsin R; Doran, Kelly S; Pritchard, David G; Almeida, Raul A; Nelson, Daniel C; Marriott, Ian; Lee, Jean C; Donovan, David M

    2016-04-28

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics.

  1. CBS domains: structure, function, and pathology in human proteins.

    PubMed

    Ignoul, Sofie; Eggermont, Jan

    2005-12-01

    The cystathionine-beta-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-beta-synthase, inosine 5'-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.

  2. Association of ActA to Peptidoglycan Revealed by Cell Wall Proteomics of Intracellular Listeria monocytogenes*

    PubMed Central

    García-del Portillo, Francisco; Calvo, Enrique; D'Orazio, Valentina; Pucciarelli, M. Graciela

    2011-01-01

    Listeria monocytogenes is a Gram-positive intracellular bacterial pathogen that colonizes the cytosol of eukaryotic cells. Recent transcriptomic studies have revealed that intracellular L. monocytogenes alter expression of genes encoding envelope components. However, no comparative global analysis of this cell wall remodeling process is yet known at the protein level. Here, we used high resolution mass spectrometry to define the cell wall proteome of L. monocytogenes growing inside epithelial cells. When compared with extracellular bacteria growing in a nutrient-rich medium, a major difference found in the proteome was the presence of the actin assembly-inducing protein ActA in peptidoglycan purified from intracellular bacteria. ActA was also identified in the peptidoglycan of extracellular bacteria growing in a chemically defined minimal medium. In this condition, ActA maintains its membrane anchoring domain and promotes efficient bacterial entry into nonphagocytic host cells. Unexpectedly, Internalin-A, which mediates entry of extracellular L. monocytogenes into eukaryotic cells, was identified at late infection times (6 h) as an abundant protein in the cell wall of intracellular bacteria. Other surface proteins covalently bound to the peptidoglycan, as Lmo0514 and Lmo2085, were detected exclusively in intracellular and extracellular bacteria, respectively. Altogether, these data provide the first insights into the changes occurring at the protein level in the L. monocytogenes cell wall as the pathogen transits from the extracellular environment to an intracytosolic lifestyle inside eukaryotic cells. Some of these changes include alterations in the relative amount and the mode of association of certain surface proteins. PMID:21846725

  3. Internationalized Domain Names.

    ERIC Educational Resources Information Center

    Wielansky, Marc D.

    2002-01-01

    Reports on an investigation of what may appear at first to be an arcane topic--the internationalization of domain names on the Internet. Concludes that expanding domain names internationally poses challenges to the inherent open structure of the Internet; to its ease of use for those accustomed to Latin-alphabet-only domain names; and to corporate…

  4. Intracellular delivery of nanocarriers and targeting to subcellular organelles.

    PubMed

    Jhaveri, Aditi; Torchilin, Vladimir

    2016-01-01

    Recent trends in drug delivery indicate a steady increase in the use of targeted therapeutics to enhance the specific delivery of biologically active payloads to diseased tissues while avoiding their off-target effects. However, in most cases, the distribution of therapeutics inside cells and their targeting to intracellular targets still presents a formidable challenge. The main barrier to intracellular delivery is the translocation of therapeutic molecules across the cell membrane, and ultimately through the membrane of their intracellular target organelles. Another prerequisite for an efficient intracellular localization of active molecules is their escape from the endocytic pathway. Pharmaceutical nanocarriers have demonstrated substantial advantages for the delivery of therapeutics and offer elegant platforms for intracellular delivery. They can be engineered with both intracellular and organelle-specific targeting moieties to deliver encapsulated or conjugated cargoes to specific sub-cellular targets. In this review, we discuss important aspects of intracellular drug targeting and delivery with a focus on nanocarriers modified with various ligands to specifically target intracellular organelles. Intracellular delivery affords selective localization of molecules to their target site, thus maximizing their efficacy and safety. The advent of novel nanocarriers and targeting ligands as well as exploration of alternate routes for the intracellular delivery and targeting has prompted extensive research, and promises an exciting future for this field.

  5. GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration.

    PubMed

    Piper, R C; Tai, C; Kulesza, P; Pang, S; Warnock, D; Baenziger, J; Slot, J W; Geuze, H J; Puri, C; James, D E

    1993-06-01

    Expression of chimeras, composed of portions of two different glucose transporter isoforms (GLUT-1 and GLUT-4), in CHO cells had indicated that the cytoplasmic NH2 terminus of GLUT-4 contains important targeting information that mediates intracellular sequestration of this isoform (Piper, R. C., C. Tai, J. W. Slot, C. S. Hahn, C. M. Rice, H. Huang, D. E. James. 1992. J. Cell Biol. 117:729-743). In the present studies, the amino acid constituents of the GLUT-4 NH2-terminal targeting domain have been identified. GLUT-4 constructs containing NH2-terminal deletions or alanine substitutions within the NH2 terminus were expressed in CHO cells using a Sindbis virus expression system. Deletion of eight amino acids from the GLUT-4 NH2 terminus or substituting alanine for phenylalanine at position 5 in GLUT-4 resulted in a marked accumulation of the transporter at the plasma membrane. Mutations at other amino acids surrounding Phe5 also caused increased cell surface expression of GLUT-4 but not to the same extent as the Phe5 mutation. GLUT-4 was also localized to clathrin lattices and this colocalization was abolished when either the first 13 amino acids were deleted or when Phe5 was changed to alanine. To ascertain whether the targeting information within the GLUT-4 NH2-terminal targeting domain could function independently of the glucose transporter structure this domain was inserted into the cytoplasmic tail of the H1 subunit of the asialoglycoprotein receptor. H1 with the GLUT-4 NH2 terminus was predominantly localized to an intracellular compartment similar to GLUT-4 and was sequestered more from the cell surface than was the wild-type H1 protein. It is concluded that the NH2 terminus of GLUT-4 contains a phenylalanine-based targeting motif that mediates intracellular sequestration at least in part by facilitating interaction of the transporter with endocytic machinery located at the cell surface.

  6. Intracellular pH in Sperm Physiology

    PubMed Central

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L.; Darszon, Alberto

    2014-01-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca2+ channel; Slo3, a K+ channel; the sperm-specific Na+/H+ exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. PMID:24887564

  7. Impaired intracellular trafficking defines early Parkinson's disease.

    PubMed

    Hunn, Benjamin H M; Cragg, Stephanie J; Bolam, J Paul; Spillantini, Maria-Grazia; Wade-Martins, Richard

    2015-03-01

    Parkinson's disease (PD) is an insidious and incurable neurodegenerative disease, and represents a significant cost to individuals, carers, and ageing societies. It is defined at post-mortem by the loss of dopamine neurons in the substantia nigra together with the presence of Lewy bodies and Lewy neurites. We examine here the role of α-synuclein and other cellular transport proteins implicated in PD and how their aberrant activity may be compounded by the unique anatomy of the dopaminergic neuron. This review uses multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells, and refined animal models to argue that prodromal PD can be defined as a disease of impaired intracellular trafficking. Dysfunction of the dopaminergic synapse heralds trafficking impairment.

  8. Intracellular calcium in canine muscle biopsies.

    PubMed

    Valentine, B A; Cooper, B J; Gallagher, E A

    1989-04-01

    Intracellular staining for calcium was studied in muscle biopsies from 15 dogs by the alizarin red S (ARS) stain. Rare positive fibres were present in normal muscle and in denervation atrophy. The percentage of positive fibres was slightly increased in polymyositis, dermatomyositis and canine temporal/masseter myositis and markedly increased in progressive muscular dystrophy. Calcium-positive fibres were usually so-called large-dark (hypercontracted) fibres or necrotic fibres, although there was occasional staining of normal and atrophied fibres. These results indicate the probable involvement of calcium in muscle injury in canine inflammatory myopathies and in canine muscular dystrophy. In addition, use of the ARS stain appears to be useful for detecting the earliest lesions of acute muscle fibre injury.

  9. Intracellular dynamics with the phase microscope Airyscan

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.; Kufal, Georgy E.

    1997-12-01

    Investigation of intracellular dynamics of Allium cepa inner epidermal cells are described. The applicability of the method for quantitative estimation of spatio-temporal phase fluctuations and the effect due to external factors is discussed. The analysis of time-sampled series allows one to detect the regions of various motility in cytoplasm. The intense Fourier-spectra harmonics in 0.2 - 8 Hz interval were observed inside a cell wall and cytoplasm. Regularly spaced 2- to 4-s long batches of 100-ms pulses at cell-wall sites are recorded. The phase-fluctuation intensity decreased and the frequencies of certain harmonics were shifted with lowering temperature. The advantages and specific features of the method are discussed.

  10. [Measurement of intracellular pH].

    PubMed

    Hanaoka, K; Imai, M; Yoshitomi, K

    1992-09-01

    Since various cellular processes depend on changes in pH, the regulation of intracellular pH (pHi) is important both for the individual cell and for the organism. The mechanisms of the regulation of pHi can be investigated by monitoring pHi. In this report, we discuss the four major techniques available for measuring pHi, which are 1) Distribution of weak acids and bases, 2) pH-sensitive microelectrodes, 3) pH-sensitive dyes, and 4) Nuclear magnetic resonance. Among four techniques, the advantage of the microelectrode approach is that it can monitor membrane potential at the same time and be applied to a single cell. The dye technique is a relative new developing technique, which has lots of advantages. It is easy to use, and is capable of monitoring rapid pHi changes, and being applied to a smaller cell, or a single cell.

  11. Myometrial oxytocin receptor expression and intracellular pathways.

    PubMed

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  12. Glycosaminoglycans: Sorting determinants in intracellular protein traffic.

    PubMed

    Mihov, Deyan; Spiess, Martin

    2015-11-01

    Intracellular transport of proteins to their appropriate destinations is crucial for the maintenance of cellular integrity and function. Sorting information is contained either directly in the amino acid sequence or in a protein's post-translational modifications. Glycosaminoglycans (GAGs) are characteristic modifications of proteoglycans. GAGs are long unbranched polysaccharide chains with unique structural and functional properties also contributing to protein sorting in various ways. By deletion or insertion of GAG attachment sites it has been shown that GAGs affect polarized sorting in epithelial cells, targeting to and storage in secretory granules, and endocytosis. Most recently, the role of GAGs as signals for rapid trans-Golgi-to-cell surface transport, dominant over the cytosolic sorting motifs in the core protein, was demonstrated. Here, we provide an overview on existing data on the roles of GAGs on protein and proteoglycan trafficking.

  13. INTRACELLULAR LOCALIZATION OF ENZYMES IN SPLEEN

    PubMed Central

    Eichel, Herbert J.; Roth, Jay S.

    1962-01-01

    Some properties of rat spleen ribonuclease have been studied, and the intracellular distribution of the enzyme and ribonucleic acid have been presented. Spleen ribonuclease exhibits maximal activity at pH 5.8, and although there is some evidence for the presence of an enzyme with an optimum at pH 7.0, it is not conclusive. The enzyme is concentrated primarily in the mitochondrial fraction, but significant quantities occur in the supernatant fluid. The latter contains ribonuclease inhibitor similar to that found in liver. The effects of whole body x-irradiation, magnesium ion, substrate concentration, type of buffer, presence of p-chloromercuriphenylsulfonic acid, deoxycholate, and Triton X-100 on ribonuclease activity are examined. PMID:13889545

  14. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  15. Conserved residues in the HAMP domain define a new family of proposed bipartite energy taxis receptors.

    PubMed

    Elliott, Kathryn T; Zhulin, Igor B; Stuckey, Jeanne A; DiRita, Victor J

    2009-01-01

    HAMP domains, found in many bacterial signal transduction proteins, generally transmit an intramolecular signal between an extracellular sensory domain and an intracellular signaling domain. Studies of HAMP domains in proteins where both the input and output signals occur intracellularly are limited to those of the Aer energy taxis receptor of Escherichia coli, which has both a HAMP domain and a sensory PAS domain. Campylobacter jejuni has an energy taxis system consisting of the domains of Aer divided between two proteins, CetA (HAMP domain containing) and CetB (PAS domain containing). In this study, we found that the CetA HAMP domain differs significantly from that of Aer in the predicted secondary structure. Using similarity searches, we identified 55 pairs of HAMP/PAS proteins encoded by adjacent genes in a diverse group of microorganisms. We propose that these HAMP/PAS pairs form a new family of bipartite energy taxis receptors. Within these proteins, we identified nine residues in the HAMP domain and proximal signaling domain that are highly conserved, at least three of which are required for CetA function. Additionally, we demonstrated that CetA contributes to the invasion of human epithelial cells by C. jejuni, while CetB does not. This finding supports the hypothesis that members of HAMP/PAS pairs possess the capacity to act independently of each other in cellular traits other than energy taxis.

  16. Intracellular mechanisms of lymphoid cell activation.

    PubMed

    Fresa, K; Hameed, M; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is associated with the appearance of an intracellular factor (ADR) that can induce DNA synthesis in isolated quiescent nuclei. ADR plays a role in the sequence of intracellular events leading to activation for IL-2-mediated proliferation. Because of the nature of the defining assay, the locus of ADR action appears to be near the terminal end of the transduction pathway. Interestingly, although lymphocytes from aged individuals respond poorly to proliferative stimuli, they appear to produce normal to above-normal levels of ADR. In contrast, their nuclei are only poorly responsive to stimulation by ADR. Preparations rich in ADR activity have proteolytic activity as well. In addition, aprotinin, as well as a variety of other protease inhibitors, suppresses ADR-induced DNA synthesis in a dose-dependent manner. ADR activity can be removed from active extracts by absorption with aprotinin-conjugated agarose beads, and can be removed from the beads by elution at pH 5.0. This latter suggests that ADR itself is a protease. However, its endogenous substrate is not yet known. We have also detected an inhibitor of ADR activity in the cytoplasm of resting lymphocytes. This is a heat-stable protein of approximately 60,000 Da. In addition to suppressing the interaction of ADR with quiescent nuclei, the inhibitor can suppress DNA synthetic activity of replicative nuclei isolated from mitogen-activated lymphocytes. Interestingly, these preparations had little or no activity on replicative nuclei derived from several neoplastic cell lines. The resistance of tumor cell nuclei to spontaneously occurring cytoplasmic inhibitory factors such as the one described here may provide one explanation for the loss of growth control in neoplastic cells.

  17. Cell-cell and intracellular lactate shuttles.

    PubMed

    Brooks, George A

    2009-12-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.

  18. Intracellular trafficking of GABA(A) receptors.

    PubMed

    Barnes, E M

    2000-02-11

    Some of the mechanisms that control the intracellular trafficking of GABA(A) receptors have recently been described. Following the synthesis of alpha, beta, and gamma subunits in the endoplasmic reticulum, ternary receptor complexes assemble slowly and are inefficiently inserted into surface membranes of heterologous cells. While beta3, beta4, and gamma2S subunits appear to contain polypeptide sequences that alone are sufficient for surface targeting, these sequences are neither conserved nor essential for surface expression of heteromeric GABA(A) receptors formed from alpha1beta or alpha1betagamma subunits. At the neuronal surface, native GABA(A) receptor clustering and synaptic targeting require a gamma2 subunit and the participation of gephyrin, a clustering protein for glycine receptors. A linker protein, such as the GABA(A) receptor associated protein (GABARAP), may be necessary for the formation of GABA(A) receptor aggregates containing gephyrin. A substantial fraction of surface receptors are sequestered by endocytosis, another process which apparently requires a GABA(A) receptor gamma2 subunit. In heterologous cells, constitutive endocytosis seems to predominate while, in cortical neurons, internalization is evoked when receptors are occupied by GABA(A) agonists. After constitutive endocytosis, receptors are relatively stable and can be rapidly recycled to the cell surface, a process that may be regulated by protein kinase C. On the other hand, a portion of the intracellular GABA(A) receptors derived from ligand-dependent endocytosis is apparently degraded. The clustering of GABA(A) receptors at synapses and at coated pits are two mechanisms that may compete for a pool of diffusable receptors, providing a model for plasticity at inhibitory synapses.

  19. Spatiotemporal intracellular calcium dynamics during cardiac alternans

    PubMed Central

    Restrepo, Juan G.; Karma, Alain

    2009-01-01

    Cellular calcium transient alternans are beat-to-beat alternations in the peak cytosolic calcium concentration exhibited by cardiac cells during rapid electrical stimulation or under pathological conditions. Calcium transient alternans promote action potential duration alternans, which have been linked to the onset of life-threatening ventricular arrhythmias. Here we use a recently developed physiologically detailed mathematical model of ventricular myocytes to investigate both stochastic and deterministic aspects of intracellular calcium dynamics during alternans. The model combines a spatially distributed description of intracellular calcium cycling, where a large number of calcium release units are spatially distributed throughout the cell, with a full set of ionic membrane currents. The results demonstrate that ion channel stochasticity at the level of single calcium release units can influence the whole-cell alternans dynamics by causing phase reversals over many beats during fixed frequency pacing close to the alternans bifurcation. They also demonstrate the existence of a wide range of dynamical states. Depending on the sign and magnitude of calcium-voltage coupling, calcium alternans can be spatially synchronized or desynchronized, in or out of phase with action potential duration alternans, and the node separating out-of-phase regions of calcium alternans can be expelled from or trapped inside the cell. This range of states is found to be larger than previously anticipated by including a robust global attractor where calcium alternans can be spatially synchronized but out of phase with action potential duration alternans. The results are explained by a combined theoretical analysis of alternans stability and node motion using general iterative maps of the beat-to-beat dynamics and amplitude equations. PMID:19792040

  20. Cell–cell and intracellular lactate shuttles

    PubMed Central

    Brooks, George A

    2009-01-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. ‘Cell–cell’ and ‘intracellular lactate shuttle’ concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell–cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other. PMID:19805739

  1. Spatial chaos and complexity in the intracellular space of cancer and normal cells.

    PubMed

    Pham, Tuan D; Ichikawa, Kazuhisa

    2013-10-24

    One of the most challenging problems in biological image analysis is the quantification of the dynamical mechanism and complexity of the intracellular space. This paper investigates potential spatial chaos and complex behavior of the intracellular space of typical cancer and normal cell images whose structural details are revealed by the combination of scanning electron microscopy and focused ion beam systems. Such numerical quantifications have important implications for computer modeling and simulation of diseases. Cancer cell lines derived from a human head and neck squamous cell carcinoma (SCC-61) and normal mouse embryonic fibroblast (MEF) cells produced by focused ion beam scanning electron microscopes were used in this study. Spatial distributions of the organelles of cancer and normal cells can be analyzed at both short range and long range of the bounded dynamical system of the image space, depending on the orientations of the spatial cell. A procedure was designed for calculating the largest Lyapunov exponent, which is an indicator of the potential chaotic behavior in intracellular images. Furthermore, the sample entropy and regularity dimension were applied to measure the complexity of the intracellular images. Positive values of the largest Lyapunov exponents (LLEs) of the intracellular space of the SCC-61 were obtained in different spatial orientations for both long-range and short-range models, suggesting the chaotic behavior of the cell. The MEF has smaller positive values of LLEs in the long range than those of the SCC-61, and zero vales of the LLEs in the short range analysis, suggesting a non-chaotic behavior. The intracellular space of the SCC-61 is found to be more complex than that of the MEF. The degree of complexity measured in the spatial distribution of the intracellular space in the diagonal direction was found to be approximately twice larger than the complexity measured in the horizontal and vertical directions. Initial findings are

  2. Amyloid Precursor Protein (APP) Mediated Regulation of Ganglioside Homeostasis Linking Alzheimer's Disease Pathology with Ganglioside Metabolism

    PubMed Central

    Grimm, Marcus O. W.; Zinser, Eva G.; Grösgen, Sven; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Burg, Verena K.; Kaestner, Lars; Bayer, Thomas A.; Lipp, Peter; Müller, Ulrike; Grimm, Heike S.; Hartmann, Tobias

    2012-01-01

    Gangliosides are important players for controlling neuronal function and are directly involved in AD pathology. They are among the most potent stimulators of Aβ production, are enriched in amyloid plaques and bind amyloid beta (Aβ). However, the molecular mechanisms linking gangliosides with AD are unknown. Here we identified the previously unknown function of the amyloid precursor protein (APP), specifically its cleavage products Aβ and the APP intracellular domain (AICD), of regulating GD3-synthase (GD3S). Since GD3S is the key enzyme converting a- to b-series gangliosides, it therefore plays a major role in controlling the levels of major brain gangliosides. This regulation occurs by two separate and additive mechanisms. The first mechanism directly targets the enzymatic activity of GD3S: Upon binding of Aβ to the ganglioside GM3, the immediate substrate of the GD3S, enzymatic turnover of GM3 by GD3S was strongly reduced. The second mechanism targets GD3S expression. APP cleavage results, in addition to Aβ release, in the release of AICD, a known candidate for gene transcriptional regulation. AICD strongly down regulated GD3S transcription and knock-in of an AICD deletion mutant of APP in vivo, or knock-down of Fe65 in neuroblastoma cells, was sufficient to abrogate normal GD3S functionality. Equally, knock-out of the presenilin genes, presenilin 1 and presenilin 2, essential for Aβ and AICD production, or of APP itself, increased GD3S activity and expression and consequently resulted in a major shift of a- to b-series gangliosides. In addition to GD3S regulation by APP processing, gangliosides in turn altered APP cleavage. GM3 decreased, whereas the ganglioside GD3, the GD3S product, increased Aβ production, resulting in a regulatory feedback cycle, directly linking ganglioside metabolism with APP processing and Aβ generation. A central aspect of this homeostatic control is the reduction of GD3S activity via an Aβ-GM3 complex and AICD

  3. Amyloid precursor protein (APP) mediated regulation of ganglioside homeostasis linking Alzheimer's disease pathology with ganglioside metabolism.

    PubMed

    Grimm, Marcus O W; Zinser, Eva G; Grösgen, Sven; Hundsdörfer, Benjamin; Rothhaar, Tatjana L; Burg, Verena K; Kaestner, Lars; Bayer, Thomas A; Lipp, Peter; Müller, Ulrike; Grimm, Heike S; Hartmann, Tobias

    2012-01-01

    Gangliosides are important players for controlling neuronal function and are directly involved in AD pathology. They are among the most potent stimulators of Aβ production, are enriched in amyloid plaques and bind amyloid beta (Aβ). However, the molecular mechanisms linking gangliosides with AD are unknown. Here we identified the previously unknown function of the amyloid precursor protein (APP), specifically its cleavage products Aβ and the APP intracellular domain (AICD), of regulating GD3-synthase (GD3S). Since GD3S is the key enzyme converting a- to b-series gangliosides, it therefore plays a major role in controlling the levels of major brain gangliosides. This regulation occurs by two separate and additive mechanisms. The first mechanism directly targets the enzymatic activity of GD3S: Upon binding of Aβ to the ganglioside GM3, the immediate substrate of the GD3S, enzymatic turnover of GM3 by GD3S was strongly reduced. The second mechanism targets GD3S expression. APP cleavage results, in addition to Aβ release, in the release of AICD, a known candidate for gene transcriptional regulation. AICD strongly down regulated GD3S transcription and knock-in of an AICD deletion mutant of APP in vivo, or knock-down of Fe65 in neuroblastoma cells, was sufficient to abrogate normal GD3S functionality. Equally, knock-out of the presenilin genes, presenilin 1 and presenilin 2, essential for Aβ and AICD production, or of APP itself, increased GD3S activity and expression and consequently resulted in a major shift of a- to b-series gangliosides. In addition to GD3S regulation by APP processing, gangliosides in turn altered APP cleavage. GM3 decreased, whereas the ganglioside GD3, the GD3S product, increased Aβ production, resulting in a regulatory feedback cycle, directly linking ganglioside metabolism with APP processing and Aβ generation. A central aspect of this homeostatic control is the reduction of GD3S activity via an Aβ-GM3 complex and AICD

  4. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment

    PubMed Central

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M.; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed. PMID:26120582

  5. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment.

    PubMed

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.

  6. The intracellular localization of poliomyelitis virus.

    PubMed

    KAPLAN, A S; MELNICK, J L

    1953-01-01

    A study was made of the intracellular localization of Type 2 poliomyelitis virus, using the technique of Mirsky and Pollister (23) for cellular fractionation. After isotonic saline homogenization of central nervous system tissue from infected mice, and subsequent centrifugation of the suspension, the virus present in the supernatant fluid was held to be of cytoplasmic origin. Upon serial washings of the sediment with physiological saline, the resulting supernates contained progressively less virus until by the seventh washing, virtually none was present. At this point extraction of the washed sediment with molar NaCl, which lyses the nuclei, yielded substantial amounts of virus, and this was assumed to be from nuclear sources. The possibility has not been excluded however that the "nuclear" sediment was contaminated by cytoplasmic particles too large to remain in the supernate. Experiments on the increase of virus during the incubation and acute stages of infection have revealed that it was first detectable in the "cytoplasmic" fraction and subsequently in the "nuclear" fraction. Virus in the "nuclear" fraction from paralyzed mice sometimes reached titers almost as high as those found in the "cytoplasm." Adsorption experiments indicated that the "nuclear" fraction of CNS tissue from normal, uninoculated mice did not adsorb added Type 2 poliomyelitis virus, nor did such fractions adsorb virus procured from the "cytoplasm" or "nuclei" of infected cells. Although individual mice varied in their response after virus injection, the "cytoplasmic" fraction of paralytic mice was found to contain virus regularly, whereas little more than half of the non-paralytic mice yielded it. When virus was present in the "cytoplasm," it could be found in the "nuclear" fraction of paralytic mice with much greater regularity than in that of non-paralytic mice. A comparison between the lines of the MEF1 strain of poliomyelitis virus, "adapted" and "non-adapted" to newborn mice, and the

  7. Domains and Naive Theories.

    PubMed

    Gelman, Susan A; Noles, Nicholaus S

    2011-09-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children's classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning.

  8. Domains and Naive Theories

    PubMed Central

    Gelman, Susan A.; Noles, Nicholaus S.

    2013-01-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children’s classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning. PMID:24187603

  9. Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-β signaling pathway.

    PubMed

    Zhu, Lu; Wang, Lingdi; Luo, Xiaolin; Zhang, Yongxian; Ding, Qiurong; Jiang, Xiaomeng; Wang, Xiao; Pan, Yi; Chen, Yan

    2012-11-16

    Upon activation, TGF-β type I receptor (TβRI) undergoes active ubiquitination via recruitment of E3 ligases to the receptor complex by Smad7. However, how ubiquitination of TβRI is coupled to intracellular trafficking, and protein degradation remains unclear. We report here that Tollip, an adaptor protein that contains both ubiquitin-associated domains and endosome-targeting domain, plays an important role in modulating trafficking and degradation of TβRI. Tollip was previously demonstrated to possess a functional role in modulating the signaling of interleukin-1 and Toll-like receptors. We identify here that Tollip interacts with Smad7, a major modulatory protein involved in the negative regulation of TGF-β signaling. Overexpression of Tollip antagonizes TGF-β-stimulated transcriptional response, Smad2 phosphorylation, and epithelial-mesenchymal transition. Tollip also interacts with ubiquitinated TβRI, and such interaction requires ubiquitin-associated domains of Tollip. The interaction and intracellular colocalization of Tollip with TβRI is enhanced by Smad7. Overexpression of Tollip accelerates protein degradation of activated TβRI. In addition, Tollip alters subcellular compartmentalization and endosomal trafficking of activated TβRI. Collectively, our studies reveal that Tollip cooperates with Smad7 to modulate intracellular trafficking and degradation of ubiquitinated TβRI, whereby negatively regulates TGF-β signaling pathway.

  10. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum.

    PubMed

    Li, Hui; Dou, Shuo-Xing; Liu, Yu-Ru; Li, Wei; Xie, Ping; Wang, Wei-Chi; Wang, Peng-Ye

    2015-01-14

    The crowded intracellular environment influences the diffusion-mediated cellular processes, such as metabolism, signaling, and transport. The hindered diffusion of macromolecules in heterogeneous cytoplasm has been studied over years, but the detailed diffusion distribution and its origin still remain unclear. Here, we introduce a novel method to map rapidly the diffusion distribution in single cells based on single-particle tracking (SPT) of quantum dots (QDs). The diffusion map reveals the heterogeneous intracellular environment and, more importantly, an unreported compartmentalization of QD diffusions in cytoplasm. Simultaneous observations of QD motion and green fluorescent protein-tagged endoplasmic reticulum (ER) dynamics provide direct evidence that the compartmentalization results from micron-scale domains defined by ER tubules, and ER cisternae form perinuclear areas that restrict QDs to enter. The same phenomenon was observed using fluorescein isothiocyanate-dextrans, further confirming the compartmentalized diffusion. These results shed new light on the diffusive movements of macromolecules in the cell, and the mapping of intracellular diffusion distribution may be used to develop strategies for nanoparticle-based drug deliveries and therapeutics.

  11. Ectodomain Shedding of Interleukin-2 Receptor β and Generation of an Intracellular Functional Fragment*

    PubMed Central

    de Oca B., Pavel Montes; Malardé, Valerie; Proust, Richard; Dautry-Varsat, Alice; Gesbert, Franck

    2010-01-01

    Interleukin-2 (IL-2) regulates different functions of various lymphoid cell subsets. These are mediated by its binding to the IL-2 receptor (IL-2R) composed of three subunits (IL2-Rα, -β, and -γc). IL-2Rβ is responsible for the activation of several signaling pathways. Ectodomain shedding of membrane receptors is thought to be an important mechanism for down-regulation of cell surface receptor abundance but is also emerging as a mechanism that cell membrane-associated molecules require for proper action in vivo. Here, we demonstrate that IL-2Rβ is cleaved in cell lines of different origin, including T cells, generating an intracellular 37-kDa fragment (37βic) that comprises the full intracellular C-terminal and transmembrane domains. Ectodomain shedding of IL-2Rβ decreases in a mutant deleted of the juxtamembrane region, where cleavage is predicted to occur, and is inhibited by tissue inhibitor of metalloproteases-3. 37βic is tyrosine-phosphorylated and associates with STAT-5, a canonic signal transducer of IL-2R. Finally, lymphoid cell transfection with a truncated form of IL-2Rβ mimicking 37βic increases their proliferation. These data indicate that IL-2Rβ is subject to ectodomain shedding generating an intracellular fragment biologically functional, because (i) it is phosphorylated, (ii) it associates with STAT5A, and (iii) it increases cell proliferation. PMID:20495002

  12. Extracellular stimulation of VSIG4/complement receptor Ig suppresses intracellular bacterial infection by inducing autophagy.

    PubMed

    Kim, Kwang H; Choi, Beom K; Kim, Young H; Han, Chungyong; Oh, Ho S; Lee, Don G; Kwon, Byoung S

    2016-09-01

    VSIG4/CRIg (V-set and immunoglobulin domain containing 4) is a transmembrane receptor of the immunoglobulin superfamily that is expressed specifically on macrophages and mature dendritic cells. VSIG4 signaling accelerates phagocytosis of C3-opsonized bacteria, thereby efficiently clearing pathogens within macrophages. We found that VSIG4 signaling triggered by C3-opsonized Listeria (opLM) or by agonistic anti-VSIG4 monoclonal antibody (mAb) induced macrophages to form autophagosomes. VSIG4-induced autophagosomes were selectively colocalized with the intracellular LM while starvation-induced autophagosomes were not. Consistent with these results, the frequency of autophagosomes induced by infection with opLM was lower in VSIG4-deficient bone marrow-derived macrophages (BMDMs) than in WT BMDMs. Furthermore, when VSIG4 molecules were overexpressed in HeLa cells, which are non-macrophage cells, VSIG4 triggering led to efficient uptake of LM, autophagosome formation, and killing of the infected LM. These findings suggest that VSIG4 signaling not only promotes rapid phagocytosis and killing of C3-opsonized intracellular bacteria, as previously reported, but also induces autophagosome formation, eliminating the LM that have escaped from phagosomes. We conclude that VSIG4 signaling provides an anti-immune evasion mechanism that prevents the outgrowth of intracellular bacteria in macrophages.

  13. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    PubMed

    Orelio, Claudia; van der Sluis, Renée M; Verkuijlen, Paul; Nethe, Micha; Hordijk, Peter L; van den Berg, Timo K; Kuijpers, Taco W

    2011-01-01

    Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  14. Altered Intracellular Localization and Mobility of SBDS Protein upon Mutation in Shwachman-Diamond Syndrome

    PubMed Central

    Orelio, Claudia; van der Sluis, Renée M.; Verkuijlen, Paul; Nethe, Micha; Hordijk, Peter L.; van den Berg, Timo K.; Kuijpers, Taco W.

    2011-01-01

    Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients. PMID:21695142

  15. Tight junction targeting and intracellular trafficking of occludin in polarized epithelial cells.

    PubMed

    Subramanian, Veedamali S; Marchant, Jonathan S; Ye, Dongmei; Ma, Thomas Y; Said, Hamid M

    2007-11-01

    Occludin, a transmembrane (TM)-spanning protein, is an integral component of the tight junctional (TJ) complexes that regulate epithelial integrity and paracellular barrier function. However, the molecular determinants that dictate occludin targeting and delivery to the TJs remain unclear. Here, using live cell imaging of yellow fluorescent protein-labeled occludin fragments, we resolved the intracellular trafficking of occludin-fusion proteins in polarized Madin-Darby canine kidney and Caco-2 cells to delineate the regions within the occludin polypeptide that are important for occludin targeting to the TJs. Live cell confocal imaging showed that complete or partial truncation of the COOH-terminal tail of the occludin polypeptide did not prevent occludin targeting to the TJs in epithelial cell lines. Progressive truncations into the COOH-terminal tail decreased the efficiency of occludin expression; after the removal of the regions proximal to the fourth transmembrane domain (TM4), the efficiency of expression increased. However, further deletions into the TM4 abolished TJ targeting, which resulted in constructs that were retained intracellularly within the endoplasmic reticulum. The full-length occludin polypeptide trafficked to the cell surface within a heterogenous population of intracellular vesicles that delivered occludin to the plasma membrane in a microtubule- and temperature-dependent manner. In contrast, the steady-state localization of occludin at the cell surface was dependent on intact microfilaments but not microtubules.

  16. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles

    PubMed Central

    Abraham, Ambily; Natraj, Usha; Karande, Anjali A.; Gulati, Ashutosh; Murthy, Mathur R. N.; Murugesan, Sathyabalan; Mukunda, Pavithra; Savithri, Handanahal S.

    2016-01-01

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies. PMID:26905902

  17. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles.

    PubMed

    Abraham, Ambily; Natraj, Usha; Karande, Anjali A; Gulati, Ashutosh; Murthy, Mathur R N; Murugesan, Sathyabalan; Mukunda, Pavithra; Savithri, Handanahal S

    2016-02-24

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.

  18. On the Computing Potential of Intracellular Vesicles

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  19. Intracellular recording from a spider vibration receptor.

    PubMed

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  20. Stapled peptides for intracellular drug targets.

    PubMed

    Verdine, Gregory L; Hilinski, Gerard J

    2012-01-01

    Proteins that engage in intracellular interactions with other proteins are widely considered among the most biologically appealing yet chemically intractable targets for drug discovery. The critical interaction surfaces of these proteins typically lack the deep hydrophobic involutions that enable potent, selective targeting by small organic molecules, and their localization within the cell puts them beyond the reach of protein therapeutics. Considerable interest has therefore arisen in next-generation targeting molecules that combine the broad target recognition capabilities of protein therapeutics with the robust cell-penetrating ability of small molecules. One type that has shown promise in early-stage studies is hydrocarbon-stapled α-helical peptides, a novel class of synthetic miniproteins locked into their bioactive α-helical fold through the site-specific introduction of a chemical brace, an all-hydrocarbon staple. Stapling can greatly improve the pharmacologic performance of peptides, increasing their target affinity, proteolytic resistance, and serum half-life while conferring on them high levels of cell penetration through endocytic vesicle trafficking. Here, we discuss considerations crucial to the successful design and evaluation of potent stapled peptide interactions, our intention being to facilitate the broad application of this technology to intractable targets of both basic biologic interest and potential therapeutic value.

  1. Tumour suppressors hamartin and tuberin: intracellular signalling.

    PubMed

    Krymskaya, Vera P

    2003-08-01

    Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.

  2. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  3. Cardiac alternans and intracellular calcium cycling

    PubMed Central

    Edwards, Joshua N.; Blatter, Lothar A.

    2014-01-01

    Cardiac alternans refers to a condition in which there is a periodic beat-to-beat oscillation in electrical activity and the strength of cardiac muscle contraction at a constant heart rate. Clinically, cardiac alternans occurs in settings that are typical for cardiac arrhythmias and has been causally linked to these conditions. At the cellular level, alternans is defined as beat-to-beat alternations in contraction amplitude (mechanical alternans), action potential duration (APD; electrical or APD alternans), and Ca2+ transient amplitude (Ca2+ alternans). The cause of alternans is multifactorial, however alternans always originate from disturbances of the bi-directional coupling between membrane voltage (Vm) and intracellular calcium ([Ca2+]i). Bi-directional coupling refers to the fact that in cardiac cells, Vm depolarization and the generation of action potentials cause the elevation of [Ca2+]i that is required for contraction (a process referred to as excitation-contraction coupling), the changes of [Ca2+]i on the other hand control Vm because important membrane currents are Ca2+-dependent. Evidence is mounting that alternans is ultimately caused by disturbances of cellular Ca2+ signaling. Here we review how two key factors of cardiac cellular Ca2+ cycling - the release of Ca2+ from internal stores and the capability of clearing the cytosol from Ca2+ after each beat - determine the conditions under which alternans occurs. The contributions from key Ca2+ handling proteins - surface membrane channels, ion pumps and transporters, and internal Ca2+ release channels - are discussed. PMID:25040398

  4. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  5. Emerging intracellular receptors for hemorrhagic fever viruses.

    PubMed

    Jae, Lucas T; Brummelkamp, Thijn R

    2015-07-01

    Ebola virus and Lassa virus belong to different virus families that can cause viral hemorrhagic fever, a life-threatening disease in humans with limited treatment options. To infect a target cell, Ebola and Lassa viruses engage receptors at the cell surface and are subsequently shuttled into the endosomal compartment. Upon arrival in late endosomes/lysosomes, the viruses trigger membrane fusion to release their genome into the cytoplasm. Although contact sites at the cell surface were recognized for Ebola virus and Lassa virus, it was postulated that Ebola virus requires a critical receptor inside the cell. Recent screens for host factors identified such internal receptors for both viruses: Niemann-Pick disease type C1 protein (NPC1) for Ebola virus and lysosome-associated membrane protein 1 (LAMP1) for Lassa virus. A cellular trigger is needed to permit binding of the viral envelope protein to these intracellular receptors. This 'receptor switch' represents a previously unnoticed step in virus entry with implications for host-pathogen interactions and viral tropism.

  6. Modeling the intracellular organization of calcium signaling.

    PubMed

    Dupont, Geneviève

    2014-01-01

    Calcium (Ca²⁺) is a key signaling ion that plays a fundamental role in many cellular processes in most types of tissues and organisms. The versatility of this signaling pathway is remarkable. Depending on the cell type and the stimulus, intracellular Ca²⁺ increases can last over different periods, as short spikes or more sustained signals. From a spatial point of view, they can be localized or invade the whole cell. Such a richness of behaviors is possible thanks to numerous exchange processes with the external medium or internal Ca²⁺ pools, mainly the endoplasmic or sarcoplasmic reticulum and mitochondria. These fluxes are also highly regulated. In order to get an accurate description of the spatiotemporal organization of Ca²⁺ signaling, it is useful to resort to modeling. Thus, each flux can be described by an appropriate kinetic expression. Ca²⁺ dynamics in a given cell type can then be simulated by a modular approach, consisting of the assembly of computational descriptions of the appropriate fluxes and regulations. Modeling can also be used to get insight into the mechanisms of decoding of the Ca²⁺ signals responsible for cellular responses. Cells can use frequency or amplitude coding, as well as take profit of Ca²⁺ oscillations to increase their sensitivity to small average Ca²⁺ increases. © 2014 Wiley Periodicals, Inc.

  7. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  8. On the Computing Potential of Intracellular Vesicles.

    PubMed

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  9. Uncoupling Caveolae from Intracellular Signaling In Vivo

    PubMed Central

    Kraehling, Jan R.; Hao, Zhengrong; Lee, Monica Y.; Vinyard, David J.; Velazquez, Heino; Liu, X.; Stan, Radu V.; Brudvig, Gary W.; Sessa, William C.

    2015-01-01

    Rationale Caveolin-1 negatively regulates eNOS derived NO production and this has been mapped to several residues on Cav-1 including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. Objective This study was designed to separate caveolae formation from its downstream signaling effects. Methods and Results An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of VASP were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of Cav-2, sucrose gradient and electron microscopy. Histological analysis of heart and lung, echocardiography and signaling were performed. Conclusions This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms. PMID:26602865

  10. Phantom domain walls

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Ferreira, V. M. C.; Menezes, J.; Sousa, L.

    2017-08-01

    We consider a model with two real scalar fields which admits phantom domain wall solutions. We investigate the structure and evolution of these phantom domain walls in an expanding homogeneous and isotropic universe. In particular, we show that the increase of the tension of the domain walls with cosmic time, associated to the evolution of the phantom scalar field, is responsible for an additional damping term in their equations of motion. We describe the macroscopic dynamics of phantom domain walls, showing that extended phantom defects whose tension varies on a cosmological time scale cannot be the dark energy.

  11. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  12. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  13. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains

    PubMed Central

    Hong, Liang; Pathak, Medha M.; Kim, Iris H.; Ta, Dennis; Tombola, Francesco

    2012-01-01

    SUMMARY Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically-coupled gates. PMID:23352164

  14. Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation.

    PubMed

    Nomura, Johji; So, Alexander; Tamura, Mizuho; Busso, Nathalie

    2015-12-15

    Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1β processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1β secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1β secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. Nonlinear intracellular elasticity controlled by myosin-generated fluctuating stress

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Ou-Yang, H. Daniel; Lehigh University Team

    2014-03-01

    The mechanics of biological cells are governed by a network of cytoskeletal filaments and molecular motors forming a dynamic mechanical entity. It has been found that local elasticity of in vitro active polymer networks, a synthesized cytoskeletal network, increase as a result of myosin-generated stresses. It is unknown this also holds in the local intracellular stress. We study the intracellular stress by the combination of the approaches of active and passive microrheology to measure the myosin-generated fluctuating stress and intracellular elasticity. Our experimental data show an increase in the fluctuations of the cellular elasticity with increasing motor-generated fluctuating local stress inside living cells. In addition, we found a direct correlation between the mean intracellular elasticity and steady-state intracellular stress. Our study provides a link between in vitro active polymer networks and in vivo cell experiments.

  16. Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity

    PubMed Central

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K. A.; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact. PMID:24386423

  17. Impact of photosensitizers activation on intracellular trafficking and viscosity.

    PubMed

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K A; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact.

  18. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  19. Intracellular protein transport to the thyrocyte plasma membrane: potential implications for thyroid physiology.

    PubMed

    Arvan, P; Kim, P S; Kuliawat, R; Prabakaran, D; Muresan, Z; Yoo, S E; Abu Hossain, S

    1997-02-01

    We present a snapshot of developments in epithelial biology that may prove helpful in understanding cellular aspects of the machinery designed for the synthesis of thyroid hormones on the thyroglobulin precursor. The functional unit of the thyroid gland is the follicle, delimited by a monolayer of thyrocytes. Like the cells of most simple epithelia, thyrocytes exhibit specialization of the cell surface that confronts two different extracellular environments-apical and basolateral, which are separated by tight junctions. Specifically, the basolateral domain faces the interstitium/bloodstream, while the apical domain is in contact with the lumen that is the primary target for newly synthesized thyroglobulin secretion and also serves as a storage depot for previously secreted protein. Thyrocytes use their polarity in several important ways, such as for maintaining basolaterally located iodide uptake and T4 deiodination, as well apically located iodide efflux and iodination machinery. The mechanisms by which this organization is established, fall in large part under the more general cell biological problem of intracellular sorting and trafficking of different proteins en route to the cell surface. Nearly all exportable proteins begin their biological life after synthesis in an intracellular compartment known as the endoplasmic reticulum (ER), upon which different degrees of difficulty may be encountered during nascent polypeptide folding and initial export to the Golgi complex. In these initial stages, ER molecular chaperones can assist in monitoring protein folding and export while themselves remaining as resident proteins of the thyroid ER. After export from the ER, most subsequent sorting for protein delivery to apical or basolateral surfaces of thyrocytes occurs within another specialized intracellular compartment known as the trans-Golgi network. Targeting information encoded in secretory proteins and plasma membrane proteins can be exposed or buried at different

  20. Cloning and characterization of an ovine intracellular seven transmembrane receptor for progesterone that mediates calcium mobilization.

    PubMed

    Ashley, R L; Clay, C M; Farmerie, T A; Niswender, G D; Nett, T M

    2006-09-01

    Classically, progesterone has been thought to act only through the well-known genomic pathway involving hormone binding to nuclear receptors (nPR) and subsequent modulation of gene expression. However, there is increasing evidence for rapid, nongenomic effects of progesterone in a variety of tissues in mammals, and it seems likely that a membrane PR (mPR) is causing these events. The objective of this study was to isolate and characterize an ovine mPR distinct from the nPR. A cDNA clone was isolated from ovine genomic DNA by PCR. The ovine mPR is a 350-amino acid protein that, based on computer hydrophobicity analysis, possesses seven transmembrane domains and is distinct from the nPR. Message for the ovine mPR was detected in hypothalamus, pituitary, uterus, ovary, and corpus luteum by RT-PCR. In CHO cells that overexpressed a mPR-green fluorescent protein fusion protein, the ovine mPR was localized to the endoplasmic reticulum and not the plasma membrane. Specific binding of 3H-progesterone to membrane fractions was demonstrated in CHO cells that expressed the ovine mPR but not in nontransfected cells. Furthermore, progesterone and 17 alpha-hydroxy-progesterone stimulated intracellular Ca2+ mobilization in CHO cells that expressed ovine mPR in Ca2+-free medium (P < 0.05) but not in CHO cells transfected with empty vector. This rise in intracellular Ca2+ is believed to be from the endoplasmic reticulum as intracellular Ca2+ mobilization is absent when mPR transfected cells are first treated with thapsigargin to deplete Ca2+ stores from the endoplasmic reticulum. Isolation, identification, tissue distribution, cellular localization, steroid binding, and a functional response for a unique intracellular mPR in the sheep are presented.

  1. The Rab1 GTPase of Sciaenops ocellatus modulates intracellular bacterial infection.

    PubMed

    Hu, Yong-hua; Deng, Tian; Sun, Li

    2011-12-01

    The Rab family proteins belong to the Ras-like GTPase superfamily and play important roles in intracellular membrane trafficking. To date no studies on fish Rab have been documented, though rab-like sequences have been found in a number of teleosts. In this study, we identified and analyzed a Rab homologue, SoRab1, from red drum, Sciaenops ocellatus. The cDNA of SoRab1 contains a 5'- untranslated region (UTR) of 358 bp, an open reading frame (ORF) of 612 bp, and a 3'-UTR of 265 bp. The ORF encodes a putative protein of 203 residues, which shares 92-99% overall sequence identities with the Rab1 from fish, human, and mouse. SoRab1 possesses a typical Rab1 GTPase domain with the conserved G box motifs and the switch I and switch II regions. Recombinant SoRab1 purified from Escherichia coli exhibits apparent GTPase activity. Quantitative real time RT-PCR analysis showed that SoRab1 expression was detected in a number of tissues, with the lowest expression found in blood and highest expression found in muscle. Bacterial and lipopolysaccharide challenges significantly upregulated SoRab1 expression in liver, kidney, and spleen in time-dependent manners. Transient overexpression of SoRab1 in primary hepatocytes reduced intracellular bacterial infection, whereas interference with SoRab1 expression by RNAi enhanced intracellular bacterial invasion. These results provide the first indication that a fish Rab1 GTPase, SoRab1, regulates intracellular bacterial infection and thus is likely to play a role in bacteria-induced host immune defense.

  2. Involvement of intracellular transport in TREK-1c current run-up in 293T cells.

    PubMed

    Andharia, Naaz; Joseph, Ancy; Hayashi, Mikio; Okada, Masayoshi; Matsuda, Hiroko

    2017-05-04

    The TREK-1 channel, the TWIK-1-related potassium (K(+)) channel, is a member of a family of 2-pore-domain K(+) (K2P) channels, through which background or leak K(+) currents occur. An interesting feature of the TREK-1 channel is the run-up of current: i.e. the current through TREK-1 channels spontaneously increases within several minutes of the formation of the whole-cell configuration. To investigate whether intracellular transport is involved in the run-up, we established 293T cell lines stably expressing the TREK-1c channel (K2P2.1) and examined the effects of inhibitors of membrane protein transport, N-methylmaleimide (NEM), brefeldin-A, and an endocytosis inhibitor, pitstop2, on the run-up. The results showing that NEM and brefeldin-A inhibited and pitstop2 facilitated the run-up suggest the involvement of intracellular protein transport. Correspondingly, in cells stably expressing the mCherry-TREK-1 fusion protein, NEM decreased and pitstop2 increased the cell surface localization of the fusion protein. Furthermore, the run-up was inhibited by the intracellular application of a peptide of the C-terminal fragment TREK335-360, corresponding to the interaction site with microtubule-associated protein 2 (Mtap2). This peptide also inhibited the co-immunoprecipitation of Mtap2 with anti-mCherry antibody. The extracellular application of an ezrin inhibitor (NSC668394) also suppressed the run-up and surface localization of the fusion protein. The co-application of these inhibitors abolished the TREK-1c current, suggesting that the additive effects of ezrin and Mtap2 enhance the surface expression of TREK-1c channels and the run-up. These findings clearly showed the involvement of intracellular transport in TREK-1c current run-up and its mechanism.

  3. Causal Learning Across Domains

    ERIC Educational Resources Information Center

    Schulz, Laura E.; Gopnik, Alison

    2004-01-01

    Five studies investigated (a) children's ability to use the dependent and independent probabilities of events to make causal inferences and (b) the interaction between such inferences and domain-specific knowledge. In Experiment 1, preschoolers used patterns of dependence and independence to make accurate causal inferences in the domains of…

  4. A Domain Analysis Bibliography

    DTIC Science & Technology

    1990-06-01

    Bauhaus , a prototype CASE workstation for D-SAPS development. [ARAN88A] Guillermo F. Arango. Domain Engineering for Software Reuse. PhD thesis...34 VITA90B: Domain Analysis within the ISEC Rapid Center 48 CMU/SEI-90-SR-3 Appendix III Alphabetical by Organization/Project BAUHAUS * ALLE87A

  5. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  6. Domains of Learning.

    ERIC Educational Resources Information Center

    Gagne, Robert M.

    In planning educational research, recognition needs to be made of five domains of learning: (1) motor skills, (2) verbal information, (3) intellectual skills, (4) cognitive strategies, and (5) attitudes. In being cognizant of these domains, the researcher is able to distinguish the parts of a content area which are subject to different…

  7. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  8. Domain wall filters

    SciTech Connect

    Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-03-15

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  9. Effects of Methylprednisolone on Intracellular Bacterial Growth

    PubMed Central

    Meduri, G. Umberto; Kanangat, Siva; Bronze, Michael; Patterson, David R.; Meduri, Christopher U.; Pak, Chol; Tolley, Elizabeth A.; Schaberg, Dennis R.

    2001-01-01

    Clinical studies have shown positive associations among sustained and intense inflammatory responses and the incidence of bacterial infections. Patients presenting with acute respiratory distress syndrome (ARDS) and high levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and IL-6, have increased risk for developing nosocomial infections attributable to organisms such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter spp., compared to those patients with lower levels. Our previous in vitro studies have demonstrated that these bacterial strains exhibit enhanced growth extracellularly when supplemented with high concentrations of pure recombinant TNF-α, IL-1β, or IL-6. In addition, we have shown that the intracellular milieu of phagocytic cells that are exposed to supraoptimal concentrations of TNF-α, IL-1β, and IL-6 or lipopolysaccharide (LPS) favors survival and replication of ingested bacteria. Therefore, we hypothesized that under conditions of intense inflammation the host's micromilieu favors bacterial infections by exposing phagocytic cells to protracted high levels of inflammatory cytokines. Our clinical studies have shown that methylprednisolone is capable of reducing the levels of TNF-α, IL-1β, and IL-6 in ARDS patients. Hence, we designed a series of in vitro experiments to test whether human monocytic cells (U937 cells) that are activated with high concentrations of LPS, which upregulate the release of proinflammatory cytokines from these phagocytic cells, would effectively kill or restrict bacterial survival and replication after exposure to methylprednisolone. Fresh isolates of S. aureus, P. aeruginosa, and Acinetobacter were used in our studies. Our results indicate that, compared with the control, stimulation of U937 cells with 100-ng/ml, 1.0-μg/ml, 5.0-μg/ml, or 10.0-μg/ml concentrations of LPS enhanced the intracellular survival and replication of all three species

  10. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.

    PubMed

    Yamada, Toshiki; Krzeminski, Mickael; Bozoky, Zoltan; Forman-Kay, Julie D; Strange, Kevin

    2016-11-01

    Eukaryotic CLC anion channels and transporters are homodimeric proteins composed of multiple α-helical membrane domains and large cytoplasmic C-termini containing two cystathionine-β-synthase domains (CBS1 and CBS2) that dimerize to form a Bateman domain. The Bateman domains of adjacent CLC subunits interact to form a Bateman domain dimer. The functions of CLC CBS and Bateman domains are poorly understood. We utilized the Caenorhabditis elegans CLC-1/2/Ka/Kb anion channel homolog CLH-3b to characterize the regulatory roles of CLC cytoplasmic domains. CLH-3b activity is reduced by phosphorylation or deletion of a 14-amino-acid activation domain (AD) located on the linker connecting CBS1 and CBS2. We demonstrate here that phosphorylation-dependent reductions in channel activity require an intact Bateman domain dimer and concomitant phosphorylation or deletion of both ADs. Regulation of a CLH-3b AD deletion mutant is reconstituted by intracellular perfusion with recombinant 14-amino-acid AD peptides. The sulfhydryl reactive reagent 2-(trimethylammonium)ethyl methanethiosulfonate bromide (MTSET) alters in a phosphorylation-dependent manner the activity of channels containing single cysteine residues that are engineered into the short intracellular loop connecting membrane α-helices H and I (H-I loop), the AD, CBS1, and CBS2. In contrast, MTSET has no effect on channels in which cysteine residues are engineered into intracellular regions that are dispensable for regulation. These studies together with our previous work suggest that binding and unbinding of the AD to the Bateman domain dimer induces conformational changes that are transduced to channel membrane domains via the H-I loop. Our findings provide new, to our knowledge, insights into the roles of CLC Bateman domains and the structure-function relationships that govern the regulation of CLC protein activity by diverse ligands and signaling pathways.

  11. Arrhythmogenic consequences of intracellular calcium waves.

    PubMed

    Xie, Lai-Hua; Weiss, James N

    2009-09-01

    Intracellular Ca(2+) (Ca(i)(2+)) waves are known to cause delayed afterdepolarizations (DADs), which have been associated with arrhythmias in cardiac disease states such as heart failure, catecholaminergic polymorphic ventricular tachycardia, and digitalis toxicity. Here we show that, in addition to DADs, Ca(i)(2+) waves also have other consequences relevant to arrhythmogenesis, including subcellular spatially discordant alternans (SDA, in which the amplitude of the local Ca(i)(2+) transient alternates out of phase in different regions of the same cell), sudden repolarization changes promoting the dispersion of refractoriness, and early afterdepolarizations (EADs). Ca(i)(2+) was imaged using a charge-coupled device-based system in fluo-4 AM-loaded isolated rabbit ventricular myocytes paced at constant or incrementally increasing rates, using either field stimulation, current clamp, or action potential (AP) clamp. Ca(i)(2+) waves were induced by Bay K 8644 (50 nM) + isoproterenol (100 nM), or low temperature. When pacing was initiated during a spontaneous Ca(i)(2+) wave, SDA occurred abruptly and persisted during pacing. Similarly, during rapid pacing, SDA typically arose suddenly from spatially concordant alternans, due to an abrupt phase reversal of the subcellular Ca(i)(2+) transient in a region of the myocyte. Ca(i)(2+) waves could be visualized interspersed with AP-triggered Ca(i)(2+) transients, producing a rich variety of subcellular Ca(i)(2+) transient patterns. With free-running APs, complex Ca(i)(2+) release patterns were associated with DADs, EADs, and sudden changes in AP duration. These findings link Ca(i)(2+) waves directly to a variety of arrhythmogenic phenomena relevant to the intact heart.

  12. Analytical calculation of intracellular calcium wave characteristics.

    PubMed

    Kupferman, R; Mitra, P P; Hohenberg, P C; Wang, S S

    1997-06-01

    We present a theoretical analysis of intracellular calcium waves propagated by calcium feedback at the inositol 1,4,5-trisphosphate (IP3) receptor. The model includes essential features of calcium excitability, but is still analytically tractable. Formulas are derived for the wave speed, amplitude, and width. The calculations take into account cytoplasmic Ca buffering, the punctate nature of the Ca release channels, channel inactivation, and Ca pumping. For relatively fast buffers, the wave speed is well approximated by V(infinity) = (J(eff)D(eff)/C0)1/2, where J(eff) is an effective, buffered source strength; D(eff) is the effective, buffered diffusion constant of Ca; and C(0) is the Ca threshold for channel activation. It is found that the saturability and finite on-rate of buffers must be taken into account to accurately derive the wave speed and front width. The time scale governing Ca wave propagation is T(r), the time for Ca release to reach threshold to activate further release. Because IP3 receptor inactivation is slow on this time scale, channel inactivation does not affect the wave speed. However, inactivation competes with Ca removal to limit wave height and front length, and for biological parameter ranges, it is inactivation that determines these parameters. Channel discreteness introduces only small corrections to wave speed relative to a model in which Ca is released uniformly from the surface of the stores. These calculations successfully predict experimental results from basic channel and cell parameters and explain the slowing of waves by exogenous buffers.

  13. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  14. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  15. Intracellular trafficking of the amyloid β-protein precursor (APP) regulated by novel function of X11-like.

    PubMed

    Saito, Yuhki; Akiyama, Mayu; Araki, Yoichi; Sumioka, Akio; Shiono, Maki; Taru, Hidenori; Nakaya, Tadashi; Yamamoto, Tohru; Suzuki, Toshiharu

    2011-01-01

    Amyloid β (Aβ), a causative peptide of Alzheimer's disease, is generated by intracellular metabolism of amyloid β-protein precursor (APP). In general, mature APP (mAPP, N- and O-glycosylated form) is subject to successive cleavages by α- or β-, and γ-secretases in the late protein secretory pathway and/or at plasma membrane, while immature APP (imAPP, N-glycosylated form) locates in the early secretory pathway such as endoplasmic reticulum or cis-Golgi, in which imAPP is not subject to metabolic cleavages. X11-like (X11L) is a neural adaptor protein composed of a phosphotyrosine-binding (PTB) and two C-terminal PDZ domains. X11L suppresses amyloidogenic cleavage of mAPP by direct binding of X11L through its PTB domain, thereby generation of Aβ lowers. X11L expresses another function in the regulation of intracellular APP trafficking. In order to analyze novel function of X11L in intracellular trafficking of APP, we performed a functional dissection of X11L. Using cells expressing various domain-deleted X11L mutants, intracellular APP trafficking was examined along with analysis of APP metabolism including maturation (O-glycosylation), processing and localization of APP. X11L accumulates imAPP into the early secretory pathway by mediation of its C-terminal PDZ domains, without being bound to imAPP directly. With this novel function, X11L suppresses overall APP metabolism and results in further suppression of Aβ generation. Interestingly some of the accumulated imAPP in the early secretory pathway are likely to appear on plasma membrane by unidentified mechanism. Trafficking of imAPP to plasma membrane is observed in other X11 family proteins, X11 and X11L2, but not in other APP-binding partners such as FE65 and JIP1. It is herein clear that respective functional domains of X11L regulate APP metabolism at multiple steps in intracellular protein secretory pathways.

  16. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.

    PubMed

    Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas

    2017-09-20

    The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pKa∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pKa values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cross Domain Analogies for Learning Domain Theories

    DTIC Science & Technology

    2007-01-01

    Example Problem and Worked Solution All problems and worked solutions used in this work were taken from the same physics textbook ( Giancoli 1991...domain theory. We close with a discussion of related work and our plans for the future. Representations and Problem Solving Representing physics ...small compared to the 30,000+ concepts and 8,000+ predicates already defined in the KB. Thus, objects, relations, and events that appear in physics

  18. Functionally active t1-t1 interfaces revealed by the accessibility of intracellular thiolate groups in kv4 channels.

    PubMed

    Wang, Guangyu; Shahidullah, Mohammad; Rocha, Carmen A; Strang, Candace; Pfaffinger, Paul J; Covarrubias, Manuel

    2005-07-01

    Gating of voltage-dependent K(+) channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn(2+) coordination. Also, added Zn(2+) or a potent Zn(2+) chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is approximately 200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact alpha-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1--T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn(2+) binding.

  19. Functionally Active T1-T1 Interfaces Revealed by the Accessibility of Intracellular Thiolate Groups in Kv4 Channels

    PubMed Central

    Wang, Guangyu; Shahidullah, Mohammad; Rocha, Carmen A.; Strang, Candace; Pfaffinger, Paul J.; Covarrubias, Manuel

    2005-01-01

    Gating of voltage-dependent K+ channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is essential for channel gating. C110, C131, and C132 in the intersubunit interface of the tetramerization domain (T1) are targets responsible for the irreversible inhibition by a methanethiosulfonate derivative (MTSET). This result is surprising because structural studies of Kv4-T1 crystals predicted protection of the targeted thiolate groups by constitutive high-affinity Zn2+ coordination. Also, added Zn2+ or a potent Zn2+ chelator (TPEN) does not significantly modulate the accessibility of MTSET to C110, C131, or C132; and furthermore, when the three critical cysteines remained as possible targets, the MTSET modification rate of the activated state is ∼200-fold faster than that of the resting state. Biochemical experiments confirmed the chemical modification of the intact α-subunit and the purified tetrameric T1 domain by MTS reagents. These results conclusively demonstrate that the T1–T1 interface of Kv4 channels is functionally active and dynamic, and that critical reactive thiolate groups in this interface may not be protected by Zn2+ binding. PMID:15955876

  20. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer.

    PubMed

    Baker, Erin L; Bonnecaze, Roger T; Zaman, Muhammad H

    2009-08-19

    Little is known about the complex interplay between the extracellular mechanical environment and the mechanical properties that characterize the dynamic intracellular environment. To elucidate this relationship in cancer, we probe the intracellular environment using particle-tracking microrheology. In three-dimensional (3D) matrices, intracellular effective creep compliance of prostate cancer cells is shown to increase with increasing extracellular matrix (ECM) stiffness, whereas modulating ECM stiffness does not significantly affect the intracellular mechanical state when cells are attached to two-dimensional (2D) matrices. Switching from 2D to 3D matrices induces an order-of-magnitude shift in intracellular effective creep compliance and apparent elastic modulus. However, for a given matrix stiffness, partial blocking of beta1 integrins mitigates the shift in intracellular mechanical state that is invoked by switching from a 2D to 3D matrix architecture. This finding suggests that the increased cell-matrix engagement inherent to a 3D matrix architecture may contribute to differences observed in viscoelastic properties between cells attached to 2D matrices and cells embedded within 3D matrices. In total, our observations show that ECM stiffness and architecture can strongly influence the intracellular mechanical state of cancer cells.

  1. Ultraviolet-irradiated monocytes efficiently inhibit the intracellular replication of Mycobacterium avium intracellulare.

    PubMed Central

    Mirando, W S; Shiratsuchi, H; Tubesing, K; Toba, H; Ellner, J J; Elmets, C A

    1992-01-01

    The purpose of this study was to evaluate the effect of ultraviolet (UV) radiation on the antimicrobial activities of monocytes for the intracellular pathogen Mycobacterium avium intracellulare (MAI). UV radiation augmented monocyte antimicrobial activity for MAI in a dose-dependent fashion. UVB doses of greater than or equal to 25 J/m2 resulted in a 50-100-fold reduction in MAI growth 7 d after initiation of culture. The increased monocyte antibacterial effect could be blocked by a plate glass filter, indicating that wavelengths within the UVB were responsible for the effect. UV radiation did not stimulate monocyte phagocytosis, and enhanced inhibition of MAI growth was observed in populations of adherent mononuclear cells that were devoid of T cells. This suggested that UV radiation acted directly to augment intrinsic monocyte antimicrobial activities. The administration of 8-methoxypsoralen plus UVA radiation to monocytes also augmented their antimicrobial activities against MAI. UV radiation thus may serve as a unique agent by which to evaluate the mechanisms by which mononuclear phagocytes control the growth of MAI. Images PMID:1556188

  2. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation.

    PubMed

    Chamaillard, Mathias; Girardin, Stephen E; Viala, Jérôme; Philpott, Dana J

    2003-09-01

    The innate immune system is the most ancestral and ubiquitous system of defence against microbial infection. The microbial sensing proteins involved in innate immunity recognize conserved and often structural components of microorganisms. One class of these pattern-recognition molecules, the Toll-like receptors (TLRs), are involved in detection of microbes in the extracellular compartment whereas a newly discovered family of proteins, the NBS-LRR proteins (for nucleotide-binding site and leucine-rich repeat), are involved in intracellular recognition of microbes and their products. NBS-LRR proteins are characterized by three structural domains: a C-terminal leucine-rich repeat (LRR) domain able to sense a microbial motif, an intermediary nucleotide binding site (NBS) essential for the oligomerization of the molecule that is necessary for the signal transduction induced by different N-terminal effector motifs, such as a pyrin domain (PYD), a caspase-activating and recruitment domain (CARD) or a baculovirus inhibitor of apoptosis protein repeat (BIR) domain. Two of these family members, Nod1 and Nod2, play a role in the regulation of pro-inflammatory pathways through NF-kappaB induced by bacterial ligands. Recently, it was shown that Nod2 recognizes a specific peptidoglycan motif from bacteria, muramyl dipeptide (MDP). A surprising number of human genetic disorders have been linked to NBS-LRR proteins. For example, mutations in Nod2, which render the molecule insensitive to MDP and unable to induce NF-kappaB activation when stimulated, are associated with susceptibility to a chronic intestinal inflammatory disorder, Crohn's disease. Conversely, mutations in the NBS region of Nod2 induce a constitutive activation of NF-kappaB and are responsible for Blau syndrome, another auto-inflammatory disease. Nalp3, which is an NBS-LRR protein with an N-terminal Pyrin domain, is also implicated in rare auto-inflammatory disorders. In conclusion, NBS-LRR molecules appear as a new

  3. Structural requirements for intracellular processing and sorting of bactericidal/permeability-increasing protein (BPI): comparison with lipopolysaccharide-binding protein.

    PubMed

    Bülow, E; Gullberg, U; Olsson, I

    2000-11-01

    The bactericidal/permeability-increasing protein (BPI), which is stored in the azurophil granules of neutrophils, and the circulating lipopolysaccharide-binding protein (LBP) share the same structure. Both bind lipopolysaccharide of gram-negative bacteria through their amino-terminal domains. The carboxy-terminal domain of BPI promotes bacterial attachment to phagocytes, whereas the corresponding domain of LBP delivers lipopolysaccharide to monocytes/macrophages. Our aim was to investigate the role of the amino-and carboxy-terminal domains of BPI and LBP for sorting and storage in myeloid cells after transfection of cDNA to two rodent hematopoietic cell lines. Full-length BPI and LBP were both targeted for storage in these cells. Deletion of the carboxy-terminal half of BPI resulted in storage followed by degradation while the reciprocal deletion of the amino-terminal half led to retention in the endoplasmic reticulum for proteasomal degradation. Chimeras between halves of BPI and LBP were also targeted for storage, but those containing carboxy-terminal BPI had the highest stability, again indicating a role for the carboxy-terminal domain of BPI in protection against degradation. Therefore, we propose a critical stability function for the hydrophobic carboxy-terminal domain of BPI during intracellular sorting for storage while the amino-terminal domain may confer targeting for storage.

  4. Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication

    PubMed Central

    Chong, Audrey; Child, Robert; Wehrly, Tara D.; Rockx-Brouwer, Dedeke; Qin, Aiping; Mann, Barbara J.; Celli, Jean

    2013-01-01

    Francisella tularensis is a highly infectious bacterium whose virulence relies on its ability to rapidly reach the macrophage cytosol and extensively replicate in this compartment. We previously identified a novel Francisella virulence factor, DipA (FTT0369c), which is required for intramacrophage proliferation and survival, and virulence in mice. DipA is a 353 amino acid protein with a Sec-dependent signal peptide, four Sel1-like repeats (SLR), and a C-terminal coiled-coil (CC) domain. Here, we determined through biochemical and localization studies that DipA is a membrane-associated protein exposed on the surface of the prototypical F. tularensis subsp. tularensis strain SchuS4 during macrophage infection. Deletion and substitution mutagenesis showed that the CC domain, but not the SLR motifs, of DipA is required for surface exposure on SchuS4. Complementation of the dipA mutant with either DipA CC or SLR domain mutants did not restore intracellular growth of Francisella, indicating that proper localization and the SLR domains are required for DipA function. Co-immunoprecipitation studies revealed interactions with the Francisella outer membrane protein FopA, suggesting that DipA is part of a membrane-associated complex. Altogether, our findings indicate that DipA is positioned at the host–pathogen interface to influence the intracellular fate of this pathogen. PMID:23840797

  5. Alan N. Epstein award: Intracellular signaling and ingestive behaviors

    PubMed Central

    Daniels, Derek

    2010-01-01

    Understanding the role of intracellular signaling pathways in ingestive behavior is a challenging problem in behavioral neuroscience. This review summarizes work conducted on two systems with the aim of identifying intracellular events that relate to food and fluid intake. The first set of experiments focused on melanocortin receptors and their ability to signal through members of the mitogen-activated protein (MAP) kinase family. The second set of experiments focused on the role of intracellular signaling pathways in water and saline intakes that are stimulated by angiotensin II (AngII). The initial findings in each line of research have been extended by subsequent research that is discussed in turn. PMID:20346964

  6. Intracellular Acidosis Enhances the Excitability of Working Muscle

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas H.; Nielsen, Ole B.; Lamb, Graham D.; Stephenson, D. George

    2004-08-01

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  7. Intracellular acidosis enhances the excitability of working muscle.

    PubMed

    Pedersen, Thomas H; Nielsen, Ole B; Lamb, Graham D; Stephenson, D George

    2004-08-20

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  8. Strategies for the enhanced intracellular delivery of nanomaterials.

    PubMed

    Azevedo, Cláudia; Macedo, Maria Helena; Sarmento, Bruno

    2017-09-14

    The intracellular delivery of nanomaterials and drugs has been attracting increasing research interest, mainly because of their important effects and functions in several organelles. Targeting specific organelles can help treat or decrease the symptoms of diabetes, cancer, infectious, and autoimmune diseases. Tuning biological and chemical properties enables the creation of functionalized nanomaterials with enhanced intracellular uptake, ability to escape premature lysosome degradation, and to reach a specific target. Here, we provide an update of recent advances in the intracellular delivery mechanisms that could help drugs reach their target more efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Organization and regulation of intracellular plasma membrane-connected HIV-1 assembly compartments in macrophages

    PubMed Central

    2013-01-01

    Background In HIV-1-infected human monocyte-derived macrophages (MDMs), virus particles assemble primarily on intracellularly sequestered plasma membrane domains termed intracellular plasma membrane-connected compartments (IPMCs). Despite their clear role in virus formation, little is known of the organization, composition, dynamics or function of these compartments. Results We have used amphipathic membrane dyes to reveal the complex three-dimensional structure of IPMCs in whole MDMs and to visualize connections between IPMCs and the cell surface. The observation of similar IPMC structures in both infected and uninfected cells indicates that these compartments are not induced by virus infection, but are present constitutively in MDMs. By expressing a phospholipase Cδ pleckstrin homology domain linked to green fluorescent protein, we demonstrate that IPMCs contain phosphatidylinositol 4,5-bisphosphate. Live cell imaging of cells expressing this probe shows that IPMCs are dynamic, but relatively stable, sub-domains of the plasma membrane. As recent electron microscopy studies indicated that portions of IPMCs are coated with β2 integrin-containing focal adhesion-like complexes linked to actin, we investigated whether the actin cytoskeleton is required for the organization of IPMCs. In MDMs treated with the actin polymerization inhibitor latrunculin, the normally compact IPMCs dispersed into smaller structures that remained connected to the plasma membrane. Moreover, latrunculin enhanced the release of preformed, mature HIV-1 particles from infected MDMs. Conclusions IPMCs are constitutive features of MDMs that are continuous with the plasma membrane and are used as unique sites for the assembly of new virions following infection by HIV-1. A functionally intact actin cytoskeleton is required to maintain the organization of the IPMCs and, in HIV-1-infected cells, perturbation of the actin cytoskeleton influences both the organization of the compartment and the

  10. Visualizing Knowledge Domains.

    ERIC Educational Resources Information Center

    Borner, Katy; Chen, Chaomei; Boyack, Kevin W.

    2003-01-01

    Reviews visualization techniques for scientific disciplines and information retrieval and classification. Highlights include historical background of scientometrics, bibliometrics, and citation analysis; map generation; process flow of visualizing knowledge domains; measures and similarity calculations; vector space model; factor analysis;…

  11. Stability of domain structures in multi-domain proteins

    PubMed Central

    Bhaskara, Ramachandra M.; Srinivasan, Narayanaswamy

    2011-01-01

    Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR. PMID:22355559

  12. [Intracellular signals involved in glucose control].

    PubMed

    Cruz, M; Velasco, E; Kumate, J

    2001-01-01

    Many proteins are involved in glucose control. The first step for glucose uptake is insulin receptor-binding. Stimulation of the insulin receptor results in rapid autophosphorylation and conformational changes in the beta chain and the subsequent phosphorylation of the insulin receptor substrate. This results in the docking of several SH2 domain proteins, including PI 3-kinase and other adapters. The final event is glucose transporter (GLUT) translocation to the cell surface. GLUT is in the cytosol but after insulin stimulation, several proteins are activated either in the GLUT vesicles or in the inner membrane. The role of the cytoskeleton is not well known, but it apparently participates in membrane fusion and vesicle mobilization. After glucose uptake, several hexokines metabolize the glucose to generate energy, convert the glucose in glycogen and store it. Type 2 diabetes is characterized by high glucose levels and insulin resistance. The insulin receptor is diminished on the cell surface membrane, tyrosine phosphorylation is decreased, serine and threonine phosphorylation is augmented. Apparently, the main problem with GLUT protein is in its translocation to the cell surface. At present, we know the role of many proteins involved in glucose control. However, we do not understand the significance of insulin resistance at the molecular level with type 2 diabetes.

  13. Software architecture design domain

    SciTech Connect

    White, S.A.

    1996-12-31

    Software architectures can provide a basis for the capture and subsequent reuse of design knowledge. The goal of software architecture is to allow the design of a system to take place at a higher level of abstraction; a level concerned with components, connections, constraints, rationale. This architectural view of software adds a new layer of abstraction to the traditional design phase of software development. It has resulted in a flurry of activity towards techniques, tools, and architectural design languages developed specifically to assist with this activity. An analysis of architectural descriptions, even though they differ in notation, shows a common set of key constructs that are present across widely varying domains. These common aspects form a core set of constructs that should belong to any ADL in order to for the language to offer the ability to specify software systems at the architectural level. This analysis also revealed a second set of constructs which served to expand the first set thereby improving the syntax and semantics. These constructs are classified according to whether they provide representation and analysis support for architectures belonging to many varying application domains (domain-independent construct class) or to a particular application domain (domain-dependent constructs). This paper presents the constructs of these two classes, their placement in the architecture design domain and shows how they may be used to classify, select, and analyze proclaimed architectural design languages (ADLs).

  14. Is membrane occupation and recognition nexus domain functional in plant phosphatidylinositol phosphate kinases?

    PubMed

    Mikami, Koji; Saavedra, Laura; Sommarin, Marianne

    2010-10-01

    Phosphatidylinositol phosphate kinase (PIPK) catalyzes a key step controlling cellular contents of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], a critical intracellular messenger involved in vesicle trafficking and modulation of actin cytoskeleton and also a substrate of phospholipase C to produce the two intracellular messengers, diacylglycerol and inositol-1,4,5-trisphosphate. In addition to the conserved C-terminal PIPK catalytic domain, plant PIPKs contain a unique structural feature consisting of a repeat of membrane occupation and recognition nexus (MORN) motifs, called the MORN domain, in the N-terminal half. The MORN domain has previously been proposed to regulate plasma membrane localization and phosphatidic acid (PA)-inducible activation. Recently, the importance of the catalytic domain, but not the MORN domain, in these aspects was demonstrated. These conflicting data raise the question about the function of the MORN domain in plant PIPKs. We therefore performed analyses of PpPIPK1 from the moss Physcomitrella patens to elucidate the importance of the MORN domain in the control of enzymatic activity; however, we found no effect on either enzymatic activity or activation by PA. Taken together with our previous findings of lack of function in plasma membrane localization, there is no positive evidence indicating roles of the MORN domain in enzymatic and functional regulations of PpPIPK1. Therefore, further biochemical and reverse genetic analyses are necessary to understand the biological significance of the MORN domain in plant PIPKs.

  15. Spatially resolved two-photon irradiation of an intracellular singlet oxygen photosensitizer: correlating cell response to the site of localized irradiation.

    PubMed

    Gollmer, A; Besostri, F; Breitenbach, T; Ogilby, P R

    2013-09-01

    The response of HeLa cells to subcellular spatially localized two-photon irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. Upon irradiation under these conditions, a localized population of PpIX excited states can be produced with meaningful intracellular spatial resolution; the dimensions of the domain where the incident light flux is high enough for PpIX two-photon absorption are defined by the microscope optics and by the diffraction of light (spot diameter at beam waist of ˜0.5-1.0 μm). In turn, the dimensions of the intracellular domain containing cytotoxic PpIX-sensitized singlet oxygen will likewise be confined. Most importantly, cell response (e.g., morphological signs of cell death) correlates with the light dose delivered and the intracellular domain irradiated. Thus, controlling light delivery can complement other techniques used to impart intracellular spatial localization in mechanistic studies of photoinitiated reactive oxygen species. Such controlled light delivery is also expected to be a particularly useful tool to study the so-called bystander effect in which a selectively-perturbed cell can influence a neighboring cell through intercellular signaling mechanisms.

  16. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    EPA Science Inventory

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  17. Acute disseminated encephalomyelitis associated with meningitis due to Mycobacterium intracellulare.

    PubMed

    Okada, Hiroshi; Yoshioka, Keiji

    2010-01-01

    A 73-year-old woman was admitted to our hospital because of persistent fever, headache and fatigue for several weeks. On admission, she was diagnosed as having meningitis due to Mycobacterium intracellulare (M. intracellulare) detected in her cerebrospinal fluid (CSF) by polymerase chain reaction. Even though anti-tuberculous therapy improved her CSF findings, her condition was not restored. Brain MRI showed multifocal and asymmetrical increases in T2 signals involving white matter and cortical gray-white junction of cerebral hemispheres, cerebellum and brainstem. Based on the progression of clinical symptoms and radiological features, we diagnosed her illness as acute disseminated encephalomyelitis (ADEM) associated with meningitis due to M. intracellulare. Steroid therapy dramatically improved her condition. This is the first report of ADEM following meningitis due to M. intracellulare in a non-immunocompromized host.

  18. Genome degeneration affects both extracellular and intracellular bacterial endosymbionts

    PubMed Central

    Feldhaar, Heike; Gross, Roy

    2009-01-01

    The obligate intracellular bacterial endosymbionts of insects are a paradigm for reductive genome evolution. A study published recently in BMC Biology demonstrates that similar evolutionary forces shaping genome structure may also apply to extracellular endosymbionts. PMID:19435469

  19. Inhibition of intracellular growth of Listeria monocytogenes by antibiotics.

    PubMed Central

    Michelet, C; Avril, J L; Cartier, F; Berche, P

    1994-01-01

    We studied the activities of 15 antibiotics on the intracellular growth of Listeria monocytogenes in a HeLa cell line. After 24 h of contact with the infected cells, the antibiotics most effective against the intracellular growth of the 10 strains tested were amoxicillin, temafloxacin, and sparfloxacin, which nevertheless failed to totally eliminate the intracellular bacteria. Rifampin and co-trimoxazole had variable effects, depending on the isolates studied. The most active combinations were amoxicillin-sparfloxacin, co-trimoxazole-gentamicin, and sparfloxacin-co-trimoxazole. The results suggest the value of using a cell culture technique to study the activities of antibiotics against certain bacteria with intracellular sites of multiplication. PMID:8203836

  20. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

    NASA Astrophysics Data System (ADS)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun

    2017-05-01

    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  1. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    EPA Science Inventory

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  2. Engineering of obligate intracellular bacteria: progress, challenges and paradigms.

    PubMed

    McClure, Erin E; Chávez, Adela S Oliva; Shaw, Dana K; Carlyon, Jason A; Ganta, Roman R; Noh, Susan M; Wood, David O; Bavoil, Patrik M; Brayton, Kelly A; Martinez, Juan J; McBride, Jere W; Valdivia, Raphael H; Munderloh, Ulrike G; Pedra, Joao H F

    2017-09-01

    It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp., Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host-pathogen interactions.

  3. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement

    PubMed Central

    Hirakawa, Yosuke; Yoshihara, Toshitada; Kamiya, Mako; Mimura, Imari; Fujikura, Daichi; Masuda, Tsuyoshi; Kikuchi, Ryohei; Takahashi, Ippei; Urano, Yasuteru; Tobita, Seiji; Nangaku, Masaomi

    2015-01-01

    Hypoxia appears to have an important role in pathological conditions in many organs such as kidney; however, a method to quantify intracellular oxygen tension in vivo has not been well established. In this study, we established an optical method to quantify oxygen tension in mice kidneys using a cationic lipophilic phosphorescence probe, BTPDM1, which has an intracellular oxygen concentration-sensitive phosphorescence lifetime. Since this probe is distributed inside the tubular cells of the mice kidney, we succeeded in detecting acute renal hypoxic conditions and chronic kidney disease. This technique enabled us to estimate intracellular partial pressures of oxygen in vivo by extrapolating the calibration curve generated from cultured tubular cells. Since intracellular oxygen tension is directly related to cellular hypoxic reactions, such as the activation of hypoxia-inducible factors, our method will shed new light on hypoxia research in vivo. PMID:26644023

  4. Intracellular dynamics of hippocampal place cells during virtual navigation

    PubMed Central

    Harvey, Christopher D.; Collman, Forrest; Dombeck, Daniel A.; Tank, David W.

    2009-01-01

    Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, we measured the intracellular dynamics of place cells by combining in vivo whole cell recordings with a virtual reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviors. Robust place cell activity was present during movement along a virtual linear track. From whole cell recordings, we identified three subthreshold signatures of place fields: (1) an asymmetric ramp-like depolarization of the baseline membrane potential; (2) an increase in the amplitude of intracellular theta oscillations; and, (3) a phase precession of the intracellular theta oscillation relative to the extracellularly-recorded theta rhythm. These intracellular dynamics underlie the primary features of place cell rate and temporal codes. The virtual reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation. PMID:19829374

  5. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth

    USDA-ARS?s Scientific Manuscript database

    Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungalrelated parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and...

  6. Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers.

    PubMed

    Lei, Huan; Karniadakis, George Em

    2012-04-28

    Sickle red blood cells (SS-RBCs) exhibit heterogeneous cell morphologies (sickle, holly leaf, granular, etc.) in the deoxygenated state due to the polymerization of the sickle hemoglobin. Experimental evidence points to a close relationship between SS-RBC morphology and intracellular aligned hemoglobin polymers. Here, we develop a coarse-grained (CG) stochastic model to represent the growth of the intracellular aligned hemoglobin polymer domain. The CG model is calibrated based on the mechanical properties (Young's modulus, bending rigidity) of the sickle hemoglobin fibers reported in experiments. The process of the cell membrane transition is simulated for physiologic aligned hemoglobin polymer configurations and mean corpuscular hemoglobin concentration. Typical SS-RBC morphologies observed in experiments can be obtained from the current model as a result of the intracellular aligned hemoglobin polymer development without introducing any further ad hoc assumptions. It is found that the final shape of SS-RBCs is primarily determined by the angular width of the aligned hemoglobin polymer domain, but it also depends, to a lesser degree, on the polymer growth rate and the cell membrane rigidity. Cell morphologies are quantified by structural shape factors, which agree well with experimental results from medical images.

  7. Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers†

    PubMed Central

    Lei, Huan; Karniadakis, George Em

    2013-01-01

    Sickle red blood cells (SS-RBCs) exhibit heterogeneous cell morphologies (sickle, holly leaf, granular, etc.) in the deoxygenated state due to the polymerization of the sickle hemoglobin. Experimental evidence points to a close relationship between SS-RBC morphology and intracellular aligned hemoglobin polymers. Here, we develop a coarse-grained (CG) stochastic model to represent the growth of the intracellular aligned hemoglobin polymer domain. The CG model is calibrated based on the mechanical properties (Young’s modulus, bending rigidity) of the sickle hemoglobin fibers reported in experiments. The process of the cell membrane transition is simulated for physiologic aligned hemoglobin polymer configurations and mean corpuscular hemoglobin concentration. Typical SS-RBC morphologies observed in experiments can be obtained from the current model as a result of the intracellular aligned hemoglobin polymer development without introducing any further ad hoc assumptions. It is found that the final shape of SS-RBCs is primarily determined by the angular width of the aligned hemoglobin polymer domain, but it also depends, to a lesser degree, on the polymer growth rate and the cell membrane rigidity. Cell morphologies are quantified by structural shape factors, which agree well with experimental results from medical images. PMID:24307912

  8. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.

    PubMed

    Abraham, Bobin George; Santala, Ville; Tkachenko, Nikolai V; Karp, Matti

    2014-11-01

    Monitoring of intracellular redox status in a bacterial cell provides vital information about the physiological status of the cell, which can be exploited in several applications such as metabolic engineering and computational modeling. Fluorescent protein-based genetically encoded sensors can be used to monitor intracellular oxidation/reduction status. This study reports the development of a redox sensor for intracellular measurements using fluorescent protein pairs and the phenomenon of Förster resonance energy transfer (FRET). For the development of the sensor, fluorescent proteins Citrine and Cerulean were genetically modified to carry reactive cysteine residues on the protein surface close to the chromophore and a constructed FRET pair was fused using a biotinylation domain as a linker. In oxidized state, the FRET pairs are in close proximity by labile disulfide bond formation resulting in higher FRET efficiency. In reducing environment, the FRET is diminished due to the increased distance between FRET pairs providing large dynamic measurement range to the sensor. Intracellular studies in Escherichia coli mutants revealed the capability of the sensor in detecting real-time redox variations at single cell level. The results were validated by intensity based and time resolved measurements. The functional immobilization of the fluorescent protein-based FRET sensor at solid surfaces for in vitro applications was also demonstrated.

  9. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications

    PubMed Central

    De Mello, Walmor C.

    2015-01-01

    Highlights Intracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication – an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10−9 M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10−8 M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function. PMID:25657639

  10. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  11. Study of neurotoxic intracellular calcium signalling triggered by amyloids.

    PubMed

    Villalobos, Carlos; Caballero, Erica; Sanz-Blasco, Sara; Núñez, Lucía

    2012-01-01

    Neurotoxicity in Alzheimer's disease (AD) is associated to dishomeostasis of intracellular Ca(2+) induced by amyloid β peptide (Aβ) species. Understanding of the effects of Aβ on intracellular Ca(2+) homeostasis requires preparation of the different Aβ assemblies including oligomers and fibrils and the testing of their effects on cytosolic and mitochondrial Ca(2+) in neurons. Procedures for cerebellar granule cell culture, preparation of Aβ species as well as fluorescence and bioluminescence imaging of cytosolic and mitochondrial Ca(2+) in neurons are described.

  12. Intracellular concentrations determine the cytotoxicity of adefovir, cidofovir and tenofovir.

    PubMed

    Zhang, Xun; Wang, Ruduan; Piotrowski, Mary; Zhang, Hui; Leach, Karen L

    2015-02-01

    Lack of in vitro to in vivo translation is a major challenge in safety prediction during early drug discovery.One of the most common in vitro assays to evaluate the probability of a compound to cause adverse effects is a cytotoxicity assay. Cytotoxicity of a compound is often measured by dose–response curves assuming the administered doses and intracellular exposures are equal at the time of measurement.However, this may not be true for compounds with low membrane permeability or those which are substrates for drug transporters as intracellular concentrations are determined both by passive permeability and active uptake through drug transporters. We show here that three antiviral drugs, adefovir, cidofovir and tenofovir exhibit significantly increased cytotoxicity in HEK293 cells transfected with organic anion transporter (OAT) 1 and 3 compared to a lack of cytotoxicity in HEK293 wildtype cells. A further look at the media and intracellular drug concentrations showed that 24 h after dosing, all three drugs had higher intracellular drug concentrations than that of media in the HEK-OAT1 cells whereas the intracellular drug concentrations in the wildtype cells were much lower than the administered doses. Comparing cytotoxicity IC(50) values of adefovir, cidofovir and tenofovir based on administered doses and measured intracellular concentrations in HEK-OAT1 cells revealed that intracellular drug concentrations have significant impact on calculated IC(50) values. Tenofovir showed much less intrinsic cytotoxicity than adefovir and cidofovir using intracellular concentrations rather than media concentration. Our data suggest that for low permeable drugs or drugs that are substrates for drug transporters, the choice of cellular model is critical for providing an accurate determination of cytotoxicity.

  13. Intracellular Renin Disrupts Chemical Communication between Heart Cells. Pathophysiological Implications.

    PubMed

    De Mello, Walmor C

    2014-01-01

    HighlightsIntracellular renin disrupts chemical communication in the heartAngiotensinogen enhances the effect of reninIntracellular enalaprilat reduces significantly the effect of reninIntracellular renin increases the inward calcium currentHarmful versus beneficial effect during myocardial infarction The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; (1) under normal conditions, Lucifer Yellow flows from cell to cell through gap junctions; (2) the intracellular dialysis of renin (100 nM) disrupts chemical communication - an effect enhanced by simultaneous administration of angiotensinogen (100 nM); (3) enalaprilat (10(-9) M) administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; (4) aliskiren (10(-8) M) inhibited the effect of renin on chemical communication; (5) the possible role of intracellular renin independently of angiotensin II (Ang II) was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; (6) the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed; (7) the present results indicate that intracellular renin due to internalization or in situ synthesis causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  14. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration

    SciTech Connect

    He, Huawei; Yang, Taehong; Terman, Jonathan R.; Zhang, Xuewu

    2010-01-20

    Plexin cell surface receptors bind to semaphorin ligands and transduce signals for regulating neuronal axon guidance. The intracellular region of plexins is essential for signaling and contains a R-Ras/M-Ras GTPase activating protein (GAP) domain that is divided into two segments by a Rho GTPase-binding domain (RBD). The regulation mechanisms for plexin remain elusive, although it is known that activation requires both binding of semaphorin to the extracellular region and a Rho-family GTPase (Rac1 or Rnd1) to the RBD. Here we report the crystal structure of the plexin A3 intracellular region. The structure shows that the N- and C-terminal portions of the GAP homologous regions together form a GAP domain with an overall fold similar to other Ras GAPs. However, the plexin GAP domain adopts a closed conformation and cannot accommodate R-Ras/M-Ras in its substrate-binding site, providing a structural basis for the autoinhibited state of plexins. A comparison with the plexin B1 RBD/Rnd1 complex structure suggests that Rnd1 binding alone does not induce a conformational change in plexin, explaining the requirement of both semaphorin and a Rho GTPase for activation. The structure also identifies an N-terminal segment that is important for regulation. Both the N-terminal segment and the RBD make extensive interactions with the GAP domain, suggesting the presence of an allosteric network connecting these three domains that integrates semaphorin and Rho GTPase signals to activate the GAP. The importance of these interactions in plexin signaling is shown by both cell-based and in vivo axon guidance assays.

  15. Intracellular delivery of peptides and siRNAs using microbubble enhanced focused ultrasound

    NASA Astrophysics Data System (ADS)

    Kinoshita, Manabu; Hynynen, Kullervo

    2006-05-01

    Bioactive substances such as peptides and nucleic acid based agents have attracted great attention for the next generation drug for various diseases. However, the greatest challenge for using these bioactive substances is the development of their delivery system, especially the method for delivering these substances through the cell membrane. With the advancement of ultrasound and ultrasound contrast agent technology, it has become possible to transiently change the permeability of the cell membrane. Moreover, using a focused ultrasound transducer, it is possible to narrow and focus the ultrasound energy within a small target, avoiding damage to the surrounding tissue. In this research we have searched the possibility of delivering the Bak BH3 peptide, the death domain of the Bc1-2 family of proteins, or the short interfering RNA (siRNA) targeting the enhanced green fluorescent protein (EGFP) using microbubble-enhanced focused ultrasound in an in vitro setting. Using a 1.696 MHz focused ultrasound and a microbubble ultrasound contrast agent OPTISON®, we first tested the stability of BH3 peptide under microbubble-enhanced focused ultrasound exposure and proved that the peptide is stable under these circumstances. Next, we have tested the cell-killing effect of the intracellularly delivered Bak BH3 peptide in HeLa and BJAB cell line and observed a statistically enhanced cell death in BJAB cells but not in HeLa cells, leading to the conclusion that intracellularly delivered BH3 peptide by microbubble-enhanced ultrasound can exert its cell killing effect in some cells. We also investigated if we can silence the EGFP expression in the cell by delivering siRNA targeting the EGFP in both transient and stable EGFP expression cell line. Using a 1.653 MHz focused ultrasound and OPTISON®, in both cases, intracellularly delivered siRNA by microbubble-enhanced ultrasound was able to knock down the EGFP expression, which demonstrates the feasibility of using this novel method

  16. Intra-cellular Staphylococcus aureus alone causes infection in vivo.

    PubMed

    Hamza, T; Dietz, M; Pham, D; Clovis, N; Danley, S; Li, B

    2013-07-08

    Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can "hide" in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years.

  17. INTRA-CELLULAR STAPHYLOCOCCUS AUREUS ALONE CAUSES INFECTION IN VIVO#

    PubMed Central

    Hamza, Therwa; Dietz, Matthew; Pham, Danh; Clovis, Nina; Danley, Suzanne; Li, Bingyun

    2013-01-01

    Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can “hide” in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years. PMID:23832687

  18. Uptake and intracellular activity of fluconazole in human polymorphonuclear leukocytes.

    PubMed Central

    Pascual, A; García, I; Conejo, C; Perea, E J

    1993-01-01

    The penetration of fluconazole into human polymorphonuclear leukocytes (PMNs) and tissue culture epithelial cells (McCoy) was evaluated. At different extracellular concentrations (0.5 to 10 mg/liter), fluconazole reached cell-associated concentrations greater than the extracellular ones in either human PMNs (intracellular concentration to extracellular concentration ratio, > or = 2.2) or McCoy cells (intracellular concentration to extracellular concentration ratio, > or = 1.3). The uptake of fluconazole by PMNs was rapid and reversible but was not energy dependent. The intracellular penetration of fluconazole was not affected by environmental pH or temperature. Ingestion of opsonized zymosan and opsonized Candida albicans did not significantly increase the amount of PMN-associated fluconazole. At therapeutic extracellular concentrations, the intracellular activity of fluconazole against C. albicans in PMNs was significantly lower than that of amphotericin B. It was concluded that fluconazole reaches high intracellular concentrations within PMNs but shows moderate activity against intracellular C. albicans in vitro. PMID:8452347

  19. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  20. Citric acid production by Candida strains under intracellular nitrogen limitation.

    PubMed

    Anastassiadis, S; Aivasidis, A; Wandrey, C

    2002-10-01

    A suitable strain and important factors influencing citric acid formation in yeasts were identified. Candida oleophila ATCC 20177 was chosen as the best citric acid producer from several Candida strains. Yields of 50 g/l citric acid were produced in shake flask and 80 g/l in fed-batch fermentations with 1.5 and 3 g/l NH(4)Cl under non-optimized conditions. Ammonium nitrogen was identified as the limiting substrate for citrate formation. Citric acid excretion begins a few hours after exhaustion of nitrogen in the medium. The importance of intracellular nitrogen limitation was clarified by elemental analysis of C. oleophila biomass. The nitrogen content of C. oleophila biomass decreased from 7.45% during the growth phase to 3.96% in the production phase. The biomass contained less carbon and more trace elements in the growth phase compared with the production phase. Relatively high intracellular NH(4)(+) concentration of about 1.2 mg/g biomass (~37.4 mM) was found during the production phase. The low intracellular nitrogen content and increase of intracellular NH(4)(+) concentration, possibly caused by proteolysis following extracellular nitrogen exhaustion, trigger citric acid production. Intracellular nitrogen limitation and the increase in intracellular NH(4)(+) concentration are the most important factors influencing citric acid formation in yeasts.

  1. Invasion of the Central Nervous System by Intracellular Bacteria

    PubMed Central

    Drevets, Douglas A.; Leenen, Pieter J. M.; Greenfield, Ronald A.

    2004-01-01

    Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens. PMID:15084504

  2. Intracellular signalling involved in volume regulatory decrease.

    PubMed

    Hoffmann, E K

    2000-01-01

    The following volume-sensitive channels are characterized in Ehrlich ascites tumor cells (EATC), (i) a tamoxifen- and AA acid sensitive, outwardly rectifying small anion channel (I(Cl,vol)) with low field anion selectivity (I(-)>Cl(-)) and moderate depolarisation-induced inactivation, (ii) a separate DIDS- and niflumic acid-sensitive organic osmolyte/anion channel (OOC) transporting predominantly taurine, and (iii) a clofilium- and Ba(2+)-sensitive, voltage- and Ca(2+)-insensitive 5 pS K(+) channel (I(K,vol)), resistant to a range of K(+) channel inhibitors including ChTX, clotrimazole, apamin, kaliotoxin, margatoxin, and TEA, and with a pH(o) dependence reminiscent of the two-pore domain background K(+) channels TASK. Cell swelling leads to an immediate and transient 3.3 fold increase in the rate of AA release resulting from activation of cPLA(2)alpha, which is found to be translocated to the nucleus upon cell swelling (probably to the inner nuclear membrane), where it is phosphorylated and activated by a G-protein coupled process. AA is a precursor for LTC(4), which is transported out of the cell, where it is converted to LTD(4), which activates I(K,vol), and OOC, whereas I(Cl,vol) is activated via a different pathway. In the absence of an increase in [Ca(2+)](i), the unitary conductance, kinetics, and pharmacological profile are similar for I(K,vol) and the K(+)-channels activated by LTD(4). Tyrosine phosphorylations are involved in the volume regulatory pathways and in defining the volume set-point. Tyrosin kinases appear to be involved in the signalling sequence leading to opening of the channels, and tyrosin phosphatases seem to be involved in closing of the channels. Finally a significant de-polymerization of F-actin is observed after cell swelling, the potential role of which in the volume regulatory mechanisms is under investigation.

  3. Domains in Ferroelectric Nanostructures

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    2010-03-01

    Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device

  4. Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus.

    PubMed

    Huang, Guangrui; Huang, Shengfeng; Yan, Xinyu; Yang, Ping; Li, Jun; Xu, Weiya; Zhang, Lingling; Wang, Ruihua; Yu, Yingcai; Yuan, Shaochun; Chen, Shangwu; Luo, Guangbin; Xu, Anlong

    2014-09-16

    Animals exploit different germ-line-encoded proteins with various domain structures to detect the signature molecules of pathogenic microbes. These molecules are known as pathogen-associated molecular patterns (PAMPs), and the host proteins that react with PAMPs are called pattern recognition proteins (PRPs). Here, we present a novel type of protein domain structure capable of binding to bacterial peptidoglycan (PGN) and the minimal PGN motif muramyl dipeptide (MDP). This domain is designated as apextrin C-terminal domain (ApeC), and its presence was confirmed in several invertebrate phyla and subphyla. Two apextrin-like proteins (ALP1 and ALP2) were identified in a basal chordate, the Japanese amphioxus Branchiostoma japonicum (bj). bjALP1 is a mucosal effector secreted into the gut lumen to agglutinate the Gram-positive bacterium Staphylococcus aureus via PGN binding. Neutralization of secreted bjALP1 by anti-bjALP1 monoclonal antibodies caused serious damage to the gut epithelium and rapid death of the animals after bacterial infection. bjALP2 is an intracellular PGN sensor that binds to TNF receptor-associated factor 6 (TRAF6) and prevents TRAF6 from self-ubiquitination and hence from NF-κB activation. MDP was found to compete with TRAF6 for bjALP2, which released TRAF6 to activate the NF-κB pathway. BjALP1 and bjALP2 therefore play distinct and complementary functions in amphioxus gut mucosal immunity. In conclusion, discovery of the ApeC domain and the functional analyses of amphioxus ALP1 and ALP2 allowed us to define a previously undocumented type of PRP that is represented across different animal phyla.

  5. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1.

    PubMed

    Webley, Wilmore C; Norkin, Leonard C; Stuart, Elizabeth S

    2004-07-22

    Lipid raft domains form in plasma membranes of eukaryotic cells by the tight packing of glycosphingolipids and cholesterol. Caveolae are invaginated structures that form in lipid raft domains when the protein caveolin-1 is expressed. The Chlamydiaceae are obligate intracellular bacterial pathogens that replicate entirely within inclusions that develop from the phagocytic vacuoles in which they enter. We recently found that host cell caveolin-1 is associated with the intracellular vacuoles and inclusions of some chlamydial strains and species, and that entry of those strains depends on intact lipid raft domains. Caveolin-2 is another member of the caveolin family of proteins that is present in caveolae, but of unknown function. We utilized a caveolin-1 negative/caveolin-2 positive FRT cell line and laser confocal immunofluorescence techniques to visualize the colocalization of caveolin-2 with the chlamydial inclusions. We show here that in infected HeLa cells, caveolin-2, as well as caveolin-1, colocalizes with inclusions of C. pneumoniae (Cp), C. caviae (GPIC), and C. trachomatis serovars E, F and K. In addition, caveolin-2 also associates with C. trachomatis serovars A, B and C, although caveolin-1 did not colocalize with these organisms. Moreover, caveolin-2 appears to be specifically, or indirectly, associated with the pathogens at the inclusion membranes. Using caveolin-1 deficient FRT cells, we show that although caveolin-2 normally is not transported out of the Golgi in the absence of caveolin-1, it nevertheless colocalizes with chlamydial inclusions in these cells. However, our results also show that caveolin-2 did not colocalize with UV-irradiated Chlamydia in FRT cells, suggesting that in these caveolin-1 negative cells, pathogen viability and very likely pathogen gene expression are necessary for the acquisition of caveolin-2 from the Golgi. Caveolin-2 associates with the chlamydial inclusion independently of caveolin-1. The function of caveolin-2, either

  6. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1

    PubMed Central

    Webley, Wilmore C; Norkin, Leonard C; Stuart, Elizabeth S

    2004-01-01

    Background Lipid raft domains form in plasma membranes of eukaryotic cells by the tight packing of glycosphingolipids and cholesterol. Caveolae are invaginated structures that form in lipid raft domains when the protein caveolin-1 is expressed. The Chlamydiaceae are obligate intracellular bacterial pathogens that replicate entirely within inclusions that develop from the phagocytic vacuoles in which they enter. We recently found that host cell caveolin-1 is associated with the intracellular vacuoles and inclusions of some chlamydial strains and species, and that entry of those strains depends on intact lipid raft domains. Caveolin-2 is another member of the caveolin family of proteins that is present in caveolae, but of unknown function. Methods We utilized a caveolin-1 negative/caveolin-2 positive FRT cell line and laser confocal immunofluorescence techniques to visualize the colocalization of caveolin-2 with the chlamydial inclusions. Results We show here that in infected HeLa cells, caveolin-2, as well as caveolin-1, colocalizes with inclusions of C. pneumoniae (Cp), C. caviae (GPIC), and C. trachomatis serovars E, F and K. In addition, caveolin-2 also associates with C. trachomatis serovars A, B and C, although caveolin-1 did not colocalize with these organisms. Moreover, caveolin-2 appears to be specifically, or indirectly, associated with the pathogens at the inclusion membranes. Using caveolin-1 deficient FRT cells, we show that although caveolin-2 normally is not transported out of the Golgi in the absence of caveolin-1, it nevertheless colocalizes with chlamydial inclusions in these cells. However, our results also show that caveolin-2 did not colocalize with UV-irradiated Chlamydia in FRT cells, suggesting that in these caveolin-1 negative cells, pathogen viability and very likely pathogen gene expression are necessary for the acquisition of caveolin-2 from the Golgi. Conclusion Caveolin-2 associates with the chlamydial inclusion independently of caveolin

  7. Extending Protein Domain Boundary Predictors to Detect Discontinuous Domains

    PubMed Central

    Xue, Zhidong; Jang, Richard; Govindarajoo, Brandon; Huang, Yichu; Wang, Yan

    2015-01-01

    A variety of protein domain predictors were developed to predict protein domain boundaries in recent years, but most of them cannot predict discontinuous domains. Considering nearly 40% of multidomain proteins contain one or more discontinuous domains, we have developed DomEx to enable domain boundary predictors to detect discontinuous domains by assembling the continuous domain segments. Discontinuous domains are predicted by matching the sequence profile of concatenated continuous domain segments with the profiles from a single-domain library derived from SCOP and CATH, and Pfam. Then the matches are filtered by similarity to library templates, a symmetric index score and a profile-profile alignment score. DomEx recalled 32.3% discontinuous domains with 86.5% precision when tested on 97 non-homologous protein chains containing 58 continuous and 99 discontinuous domains, in which the predicted domain segments are within ±20 residues of the boundary definitions in CATH 3.5. Compared with our recently developed predictor, ThreaDom, which is the state-of-the-art tool to detect discontinuous-domains, DomEx recalled 26.7% discontinuous domains with 72.7% precision in a benchmark with 29 discontinuous-domain chains, where ThreaDom failed to predict any discontinuous domains. Furthermore, combined with ThreaDom, the method ranked number one among 10 predictors. The source code and datasets are available at https://github.com/xuezhidong/DomEx. PMID:26502173

  8. Positive and negative regulation of a SNARE protein by control of intracellular localization.

    PubMed

    Nakanishi, Hideki; de los Santos, Pablo; Neiman, Aaron M

    2004-04-01

    In Saccharomyces cerevisiae, the developmentally regulated Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein Spo20p mediates the fusion of vesicles with the prospore membrane, which is required for the formation of spores. Spo20p is subject to both positive and negative regulation by separate sequences in its aminoterminal domain. We report that the positive activity is conferred by a short, amphipathic helix that is sufficient to confer plasma membrane or prospore membrane localization to green fluorescent protein. In vitro, this helix binds to acidic phospholipids, and mutations that reduce or eliminate phospholipid binding in vitro inactivate Spo20p in vivo. Genetic manipulation of phospholipid pools indicates that the likely in vivo ligand of this domain is phosphatidic acid. The inhibitory activity is a nuclear targeting signal, which confers nuclear localization in vegetative cells and in cells entering meiosis. However, as cells initiate spore formation, fusions containing the inhibitory domain exit the nucleus and localize to the nascent prospore membrane. Thus, the SNARE Spo20p is both positively and negatively regulated by control of its intracellular localization.

  9. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin

    PubMed Central

    Kardon, Julia R.; Reck-Peterson, Samara L.; Vale, Ronald D.

    2009-01-01

    Dynactin, a large multisubunit complex, is required for intracellular transport by dynein; however, its cellular functions and mechanism of action are not clear. Prior studies suggested that dynactin increases dynein processivity by tethering the motor to the microtubule through its own microtubule binding domains. However, this hypothesis could not be tested without a recombinant source of dynactin. Here, we have produced recombinant dynactin and dynein in Saccharomyces cerevisiae, and examined the effect of dynactin on dynein in single-molecule motility assays. We show that dynactin increases the run length of single dynein motors, but does not alter the directionality of dynein movement. Enhancement of dynein processivity by dynactin does not require the microtubule (MT) binding domains of Nip100 (the yeast p150Glued homolog). Dynactin lacking these MT binding domains also supports the proper localization and function of dynein during nuclear segregation in vivo. Instead, a segment of the coiled-coil of Nip100 is required for these activities. Our results directly demonstrate that dynactin increases the processivity of dynein through a mechanism independent of microtubule tethering. PMID:19293377

  10. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins.

    PubMed

    Kim, Minsoo; Carman, Christopher V; Springer, Timothy A

    2003-09-19

    Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.

  11. Minireview: Role of Intracellular Scaffolding Proteins in the Regulation of Endocrine G Protein-Coupled Receptor Signaling

    PubMed Central

    Walther, Cornelia

    2015-01-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies. PMID:25942107

  12. The C-Terminal Domain of the Virulence Factor MgtC Is a Divergent ACT Domain

    PubMed Central

    Yang, Yinshan; Labesse, Gilles; Carrère-Kremer, Séverine; Esteves, Kevin; Kremer, Laurent

    2012-01-01

    MgtC is a virulence factor of unknown function important for survival inside macrophages in several intracellular bacterial pathogens, including Mycobacterium tuberculosis. It is also involved in adaptation to Mg2+ deprivation, but previous work suggested that MgtC is not a Mg2+ transporter. In this study, we demonstrated that the amount of the M. tuberculosis MgtC protein is not significantly increased by Mg2+ deprivation. Members of the MgtC protein family share a conserved membrane N-terminal domain and a more divergent cytoplasmic C-terminal domain. To get insights into MgtC functional and structural organization, we have determined the nuclear magnetic resonance (NMR) structure of the C-terminal domain of M. tuberculosis MgtC. This structure is not affected by the Mg2+ concentration, indicating that it does not bind Mg2+. The structure of the C-terminal domain forms a βαββαβ fold found in small molecule binding domains called ACT domains. However, the M. tuberculosis MgtC ACT domain differs from canonical ACT domains because it appears to lack the ability to dimerize and to bind small molecules. We have shown, using a bacterial two-hybrid system, that the M. tuberculosis MgtC protein can dimerize and that the C-terminal domain somehow facilitates this dimerization. Taken together, these results indicate that M. tuberculosis MgtC does not have an intrinsic function related to Mg2+ uptake or binding but could act as a regulatory factor based on protein-protein interaction that could be facilitated by its ACT domain. PMID:22984256

  13. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  14. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu E-mail: kitajima@tuhep.phys.tohoku.ac.jp

    2015-07-01

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  15. Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa

    SciTech Connect

    Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

    1986-03-01

    There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

  16. Ethambutol plasma and intracellular pharmacokinetics: A pharmacogenetic study.

    PubMed

    Fatiguso, Giovanna; Allegra, Sarah; Calcagno, Andrea; Baietto, Lorena; Motta, Ilaria; Favata, Fabio; Cusato, Jessica; Bonora, Stefano; Perri, Giovanni Di; D'Avolio, Antonio

    2016-01-30

    We evaluated ethambutol plasma and intracellular pharmacokinetic according to single nucleotide polymorphisms in ABCB1, OATP1B1, PXR, VDR, CYP24A1 and CYP27B1 genes. Mycobacterium tubercolosis infected patients were enrolled. Standard weight-adjusted antitubercular treatment was administered intravenously for 2 weeks and then orally. Allelic discrimination was performed by real-time PCR. Ethambutol plasma and intracellular concentrations were measured by UPLC-MS/MS methods. Twenty-four patients were included. Considering weeks 2 and 4, median plasma Ctrough were 73 ng/mL and 247 ng/mL, intracellular Ctrough were 16,863 ng/mL and 13,535 ng/mL, plasma Cmax were 5627 ng/mL and 2229 ng/mL, intracellular Cmax were 133,830 ng/mL and 78,544 ng/mL. At week 2, ABCB1 3435 CT/TT (p=0.023) and CYP24A1 8620 AG/GG (p=0.030) genotypes for plasma Ctrough, BsmI AA (p=0.036) for intracellular Ctrough and BsmI AA (p<0.001) and ApaI AA (p=0.048) for intracellular Cmax, remained in linear regression analysis as predictive factors. Concerning week 4 only ABCB1 3435 CT/TT (p=0.035) and Cdx2 AG/GG (p=0.004) genotypes for plasma Ctrough and BsmI AA (p=0.028) for plasma Cmax were retained in final regression model. We reveal, for the first time, the possible role of single nucleotide polymorphisms on ethambutol plasma and intracellular concentrations; this may further the potential use of pharmacogenetic for tailoring antitubercular treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. An intracellular nanotrap redirects proteins and organelles in live bacteria.

    PubMed

    Borg, Sarah; Popp, Felix; Hofmann, Julia; Leonhardt, Heinrich; Rothbauer, Ulrich; Schüler, Dirk

    2015-01-13

    Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular "nanotraps," which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular "nanotraps" in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures

  18. Optimal domain decomposition strategies

    NASA Technical Reports Server (NTRS)

    Yoon, Yonghyun; Soni, Bharat K.

    1995-01-01

    The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.

  19. Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2

    PubMed Central

    Suwa, A; Yamamoto, T; Sawada, A; Minoura, K; Hosogai, N; Tahara, A; Kurama, T; Shimokawa, T; Aramori, I

    2009-01-01

    Background and purpose: The lipid phosphatase known as SH2 domain-containing inositol 5′-phosphatase 2 (SHIP2) plays an important role in the regulation of the intracellular insulin signalling pathway. Recent studies have suggested that inhibition of SHIP2 could produce significant benefits in treatment of type 2 diabetes. However, there were no small molecule SHIP2 inhibitors and we, therefore, aimed to identify this type of compound. Experimental approach: The phosphatase assay with malachite green was used for high-throughput screening. The pharmacological profiles of suitable compounds were further characterized in phosphatase assays, cellular assays and oral administration in normal and diabetic (db/db) mice. Key results: During high-throughput screening, AS1949490 was identified as a potent SHIP2 inhibitor (IC50= 0.62 µM for SHIP2). This compound was also selective for SHIP2 relative to other intracellular phosphatases. In L6 myotubes, AS1949490 increased the phosphorylation of Akt, glucose consumption and glucose uptake. In FAO hepatocytes, AS1949490 suppressed gluconeogenesis. Acute administration of AS1949490 inhibited the expression of gluconeogenic genes in the livers of normal mice. Chronic treatment of diabetic db/db mice with AS1949490 significantly lowered the plasma glucose level and improved glucose intolerance. These in vivo effects were based in part on the activation of intracellular insulin signalling pathways in the liver. Conclusions and implications: This is the first report of a small molecule inhibitor of SHIP2. This compound will help to elucidate the physiological functions of SHIP2 and its involvement in various diseases, such as type 2 diabetes. PMID:19694723

  20. Intracellular modifiers of integrin alpha 6p production in aggressive prostate and breast cancer cell lines.

    PubMed

    Kacsinta, Apollo D; Rubenstein, Cynthia S; Sroka, Isis C; Pawar, Sangita; Gard, Jaime M; Nagle, Raymond B; Cress, Anne E

    2014-11-14

    Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent "inside-out" signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent "inside-out" signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Modulation of the slow/common gating of CLC channels by intracellular cadmium

    PubMed Central

    Yu, Yawei; Tsai, Ming-Feng; Yu, Wei-Ping

    2015-01-01

    Members of the CLC family of Cl− channels and transporters are homodimeric integral membrane proteins. Two gating mechanisms control the opening and closing of Cl− channels in this family: fast gating, which regulates opening and closing of the individual pores in each subunit, and slow (or common) gating, which simultaneously controls gating of both subunits. Here, we found that intracellularly applied Cd2+ reduces the current of CLC-0 because of its inhibition on the slow gating. We identified CLC-0 residues C229 and H231, located at the intracellular end of the transmembrane domain near the dimer interface, as the Cd2+-coordinating residues. The inhibition of the current of CLC-0 by Cd2+ was greatly enhanced by mutation of I225W and V490W at the dimer interface. Biochemical experiments revealed that formation of a disulfide bond within this Cd2+-binding site is also affected by mutation of I225W and V490W, indicating that these two mutations alter the structure of the Cd2+-binding site. Kinetic studies showed that Cd2+ inhibition appears to be state dependent, suggesting that structural rearrangements may occur in the CLC dimer interface during Cd2+ modulation. Mutations of I290 and I556 of CLC-1, which correspond to I225 and V490 of CLC-0, respectively, have been shown previously to cause malfunction of CLC-1 Cl− channel by altering the common gating. Our experimental results suggest that mutations of the corresponding residues in CLC-0 change the subunit interaction and alter the slow gating of CLC-0. The effect of these mutations on modulations of slow gating of CLC channels by intracellular Cd2+ likely depends on their alteration of subunit interactions. PMID:26621774

  2. Modulation of the slow/common gating of CLC channels by intracellular cadmium.

    PubMed

    Yu, Yawei; Tsai, Ming-Feng; Yu, Wei-Ping; Chen, Tsung-Yu

    2015-12-01

    Members of the CLC family of Cl(-) channels and transporters are homodimeric integral membrane proteins. Two gating mechanisms control the opening and closing of Cl(-) channels in this family: fast gating, which regulates opening and closing of the individual pores in each subunit, and slow (or common) gating, which simultaneously controls gating of both subunits. Here, we found that intracellularly applied Cd(2+) reduces the current of CLC-0 because of its inhibition on the slow gating. We identified CLC-0 residues C229 and H231, located at the intracellular end of the transmembrane domain near the dimer interface, as the Cd(2+)-coordinating residues. The inhibition of the current of CLC-0 by Cd(2+) was greatly enhanced by mutation of I225W and V490W at the dimer interface. Biochemical experiments revealed that formation of a disulfide bond within this Cd(2+)-binding site is also affected by mutation of I225W and V490W, indicating that these two mutations alter the structure of the Cd(2+)-binding site. Kinetic studies showed that Cd(2+) inhibition appears to be state dependent, suggesting that structural rearrangements may occur in the CLC dimer interface during Cd(2+) modulation. Mutations of I290 and I556 of CLC-1, which correspond to I225 and V490 of CLC-0, respectively, have been shown previously to cause malfunction of CLC-1 Cl(-) channel by altering the common gating. Our experimental results suggest that mutations of the corresponding residues in CLC-0 change the subunit interaction and alter the slow gating of CLC-0. The effect of these mutations on modulations of slow gating of CLC channels by intracellular Cd(2+) likely depends on their alteration of subunit interactions.

  3. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment

    PubMed Central

    Jura, Natalia; Endres, Nicholas F.; Engel, Kate; Deindl, Sebastian; Das, Rahul; Lamers, Meindert H.; Wemmer, David E.; Zhang, Xuewu; Kuriyan, John

    2009-01-01

    Signaling by the epidermal growth factor receptor requires an allosteric interaction between the kinase domains of two receptors, whereby one activates the other. We show that the intracellular juxtamembrane segment of the receptor, known to potentiate kinase activity, is able to dimerize the kinase domains. The C-terminal half of the juxtamembrane segment latches the activated kinase domain to the activator, and the N-terminal half of this segment further potentiates dimerization, most likely by forming an antiparallel helical dimer that engages the transmembrane helices of the activated receptor. Our data are consistent with a mechanism in which the extracellular domains block the intrinsic ability of the transmembrane and cytoplasmic domains to dimerize and activate, with ligand binding releasing this block. The formation of the activating juxtamembrane latch is prevented by the C-terminal tails in a new structure of an inactive kinase domain dimer, suggesting how alternative dimers can prevent ligand-independent activation. PMID:19563760

  4. Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons.

    PubMed

    Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, C L; Kaul, M; Singh, K K

    2014-09-01

    Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons.

  5. Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria.

    PubMed

    Macedo, Bruno; Sant'Anna, Ricardo; Navarro, Susanna; Cordeiro, Yraima; Ventura, Salvador

    2015-11-04

    An increasing number of proteins are being shown to assemble into amyloid structures that lead to pathological states. Among them, mammalian prions outstand due to their ability to transmit the pathogenic conformation, becoming thus infectious. The structural conversion of the cellular prion protein (PrP(C)), into its misfolded pathogenic form (PrP(Sc)) is the central event of prion-driven pathologies. The study of the structural properties of intracellular amyloid aggregates in general and of prion-like ones in particular is a challenging task. In this context, the evidence that the inclusion bodies formed by amyloid proteins in bacteria display amyloid-like structural and functional properties make them a privileged system to model intracellular amyloid aggregation. Here we provide the first demonstration that recombinant murine PrP and its C-terminal domain (90-231) attain amyloid conformations inside bacteria. Moreover, the inclusions formed by these two PrP proteins display conformational diversity, since they differ in fibril morphology, binding affinity to amyloid dyes, stability, resistance to proteinase K digestion and neurotoxicity. Overall, our results suggest that modelling PrP amyloid formation in microbial cell factories might open an avenue for a better understanding of the structural features modulating the pathogenic impact of this intriguing protein.

  6. Intracellular localization of samarium in the lactating mammary gland cells: ultrastructural and microanalytical study.

    PubMed

    Ahlem, Ayadi; Samira, Maghraoui; Jean-Nicolas, Audinot; Mohamed-Habib, Jaafoura; Henri-Noël, Migeon; Ali, El Hili; Leila, Tekaya

    2012-04-01

    The frequent use of some rare earths in the medical and industrial domains make us worry about their intracellular behavior into the body. Reason for which we have investigated the subcellular localization of one of these elements, the samarium, in the mammary gland of lactating female wistar rats using two very sensitive methods of observation and microanalysis, the transmission electron microscopy and the secondary ion mass spectrometry. The ultrastructural study showed the presence of electron dense deposits in the lactating mammary glandular epithelial cell lysosomes of the samarium-treated rats, but no loaded lysosomes were observed in those of control rats. The microanalytical study allowed both the identification of the chemical species present in those deposits as samarium isotopes ((152) Sm(+)) and the cartography of its distribution. Our results confirm the previous ones showing that lysosomes of the glandular epithelial cells are the site of the intracellular concentration of foreign elements such as gallium. The intralysosomal deposits observed in the mammary glandular cells of the samarium-treated rats are similar in their form and density to those observed with the same element in other varieties of cells, such as liver, bone marrow, and spleen cells. Our ultrastructural and microanalytical results and those obtained in previous studies allow deducing that the intralysosomal deposits are very probably composed of an insoluble samarium phosphate salt. Copyright © 2011 Wiley-Liss, Inc.

  7. A Carboxyl Ester Lipase (CEL) Mutant Causes Chronic Pancreatitis by Forming Intracellular Aggregates That Activate Apoptosis.

    PubMed

    Xiao, Xunjun; Jones, Gabrielle; Sevilla, Wednesday A; Stolz, Donna B; Magee, Kelsey E; Haughney, Margaret; Mukherjee, Amitava; Wang, Yan; Lowe, Mark E

    2016-10-28

    Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP.

  8. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by perform