Science.gov

Sample records for intracellular serpin regulates

  1. Intracellular serpins, firewalls and tissue necrosis.

    PubMed

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis.

  2. Biochemical properties of an intracellular serpin from Echinococcus multilocularis.

    PubMed

    Merckelbach, Armin; Ruppel, Andreas

    2007-11-01

    A serpin of the intracellular type from the tapeworm Echinococcus multilocularis was expressed in Escherichia coli, purified by ion exchange chromatography and tested for inhibitory activity against several proteinases. The recombinant protein, which after transcriptional induction, represents about 20 % of total cellular protein, is biochemically active and inhibits trypsin and the trypsin-like plasmin as well as pig pancreatic and human neutrophil elastase. Implications regarding its biochemistry and biological function are discussed.

  3. Human SERPINB12 Is an Abundant Intracellular Serpin Expressed in Most Surface and Glandular Epithelia.

    PubMed

    Niehaus, Jason Z; Good, Misty; Jackson, Laura E; Ozolek, John A; Silverman, Gary A; Luke, Cliff J

    2015-11-01

    The intracellular serine protease inhibitors (serpins) are an important family of proteins that protect cells form proteinase-mediated injury. Understanding the tissue and cellular expression pattern of this protein family can provide important insights into their physiologic roles. For example, high expression in epithelial tissues, such as lung, may suggest a biologic function in cellular defense, secretion, or selective absorption. Although the expression pattern of many of the intracellular serpins has been well described, one member of this class, SERPINB12, has not been carefully examined. We generated a mouse monoclonal antibody directed against human SERPINB12 and delineated its specificity and tissue and cell type distribution pattern through immunoblotting and immunohistochemistry, respectively. This monoclonal antibody was human specific and did not cross-react with other human intracellular serpins or mouse Serpinb12. SERPINB12 was found in nearly all the tissues investigated. In addition, this serpin was found in multiple cell types within individual tissues but primarily the epithelium. These data suggest that SERPINB12, like some other intracellular serpins, may play a vital role in barrier function by providing protection of epithelial cells.

  4. The Aggregation-Prone Intracellular Serpin SRP-2 Fails to Transit the ER in Caenorhabditis elegans

    PubMed Central

    Silverman, Richard M.; Cummings, Erin E.; O’Reilly, Linda P.; Miedel, Mark T.; Silverman, Gary A.; Luke, Cliff J.; Perlmutter, David H.; Pak, Stephen C.

    2015-01-01

    Familial encephalopathy with neuroserpin inclusions bodies (FENIB) is a serpinopathy that induces a rare form of presenile dementia. Neuroserpin contains a classical signal peptide and like all extracellular serine proteinase inhibitors (serpins) is secreted via the endoplasmic reticulum (ER)–Golgi pathway. The disease phenotype is due to gain-of-function missense mutations that cause neuroserpin to misfold and aggregate within the ER. In a previous study, nematodes expressing a homologous mutation in the endogenous Caenorhabditis elegans serpin, srp-2, were reported to model the ER proteotoxicity induced by an allele of mutant neuroserpin. Our results suggest that SRP-2 lacks a classical N-terminal signal peptide and is a member of the intracellular serpin family. Using confocal imaging and an ER colocalization marker, we confirmed that GFP-tagged wild-type SRP-2 localized to the cytosol and not the ER. Similarly, the aggregation-prone SRP-2 mutant formed intracellular inclusions that localized to the cytosol. Interestingly, wild-type SRP-2, targeted to the ER by fusion to a cleavable N-terminal signal peptide, failed to be secreted and accumulated within the ER lumen. This ER retention phenotype is typical of other obligate intracellular serpins forced to translocate across the ER membrane. Neuroserpin is a secreted protein that inhibits trypsin-like proteinase. SRP-2 is a cytosolic serpin that inhibits lysosomal cysteine peptidases. We concluded that SRP-2 is neither an ortholog nor a functional homolog of neuroserpin. Furthermore, animals expressing an aggregation-prone mutation in SRP-2 do not model the ER proteotoxicity associated with FENIB. PMID:25786854

  5. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells

    PubMed Central

    Reina, Jeffrey; Morais Freitas, Vanessa

    2016-01-01

    Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse biological activities including regulation of cell adhesion, migration, death, control of gene expression and oxidative stress response. Initially described as a tumor and metastasis suppressor, clinical data brought controversies to the field, as some studies reported no correlation between SerpinB5 expression and prognosis value. These data underscore the importance of understanding SerpinB5 function in a normal physiological context and the molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in different cell lines, but the signaling pathways involved and the biological significance of this post-translational modification in vivo remains to be explored. In this study we investigated SerpinB5 expression, subcellular localization and phosphorylation in different stages of the mouse mammary gland development and the signaling pathway involved. Here we show that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and remains at constant levels during post-lactational regression (involution). Using high resolution isoelectric focusing followed but immunoblot, we found at least 8 different phosphoforms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we took advantage of the non-transformed MCF-10A model system, as we have previously observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5 phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5 nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phosphorylation are developmentally

  6. TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma.

    PubMed

    Sang, Yi; Chen, Ming-Yuan; Luo, Donghua; Zhang, Ru-Hua; Wang, Li; Li, Mei; Luo, Rongzhen; Qian, Chao-Nan; Shao, Jian-Yong; Zeng, Yi-Xin; Kang, Tiebang

    2015-10-06

    Metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). However, the molecular mechanisms of NPC metastasis are poorly understood. Here, using our customized gene microarray containing all of the known human transcription factors and the current markers for epithelial-mesenchymal transition, we report that TEL2 was down-regulated in highly metastatic NPC cells and the metastatic tissues in lymph node. Mechanistically, TEL2 inhibits the cell migration and invasion in vitro and metastasis in vivo by directly suppressing the SERPINE1 promoter in NPC. Consistently, an inverse correlation was observed between the protein levels of TEL2 and SERPINE1 using clinical NPC samples. Collectively, we have provided the first evidence that TEL2 plays a key role in NPC metastasis by directly down-regulating SERPINE1, and that this novel axis of TEL2 / SERPINE1 may be valuable to develop new strategies for treating NPC patients with metastasis.

  7. SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer.

    PubMed

    Harris, N L E; Vennin, C; Conway, J R W; Vine, K L; Pinese, M; Cowley, M J; Shearer, R F; Lucas, M C; Herrmann, D; Allam, A H; Pajic, M; Morton, J P; Biankin, A V; Ranson, M; Timpson, P; Saunders, D N

    2017-03-27

    Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer.Oncogene advance online publication, 27 March 2017; doi:10.1038/onc.2017.63.

  8. PtSerpin from the swimming crab Portunus trituberculatus, a putative regulator of prophenoloxidase activation with antibacterial activity.

    PubMed

    Liu, Yuan; Shi, Guohui; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Xihong; Hui, Min; Li, Yingdong

    2014-08-01

    Serpin or serine protease inhibitor is the largest family of protease inhibitors involved in many innate immune pathways, particularly the prophenoloxidase (proPO) activating system in arthropod. Here, we report the molecular and functional characterization of PtSerpin identified from the swimming crab Portunus trituberculatus. The genomic sequence encoding mature peptide of PtSerpin gene contained two exons of 84 and 1098 bp separated by one intron of 111 bp. The recombinant PtSerpin (rPtSerpin) with a predicted size of 44 kDa was expressed in Escherichia coli system, purified and assayed for its activities. The rPtSerpin exhibited inhibitory activity against trypsin in a dose-dependent manner, but did not affect chymotrypsin, which could define a role for PtSerpin as a trypsin inhibitor. The rPtSerpin could inhibit the growth of Gram-negative bacterium Vibrio alginolyticus, but not the tested Gram-positive bacterium and fungus. Further phenoloxidase (PO) assay showed PO activity was dramatically increased in hemocyte lysate supernatant of P. trituberculatus upon bacterial challenge. The rPtSerpin could depress the crab proPO system activation in vitro, and it could lead to 100% inhibition of PO activity under the concentration of 8.62 μM. Moreover, the rPtSerpin was able to inhibit the PO activity induced by rPtcSP and rPtSPH1. These results together indicate that PtSerpin is a potential trypsin inhibitor and may participate in crab innate immunity by the inhibition of bacterial growth and the regulation of proPO system.

  9. Origin of Serpin-Mediated Regulation of Coagulation and Blood Pressure

    PubMed Central

    Wang, Yunjie; Köster, Katharina; Lummer, Martina; Ragg, Hermann

    2014-01-01

    Vertebrates evolved an endothelium-lined hemostatic system and a pump-driven pressurized circulation with a finely-balanced coagulation cascade and elaborate blood pressure control over the past 500 million years. Genome analyses have identified principal components of the ancestral coagulation system, however, how this complex trait was originally regulated is largely unknown. Likewise, little is known about the roots of blood pressure control in vertebrates. Here we studied three members of the serpin superfamily that interfere with procoagulant activity and blood pressure of lampreys, a group of basal vertebrates. Angiotensinogen from these jawless fish was found to fulfill a dual role by operating as a highly selective thrombin inhibitor that is activated by heparin-related glycosaminoglycans, and concurrently by serving as source of effector peptides that activate type 1 angiotensin receptors. Lampreys, uniquely among vertebrates, thus use angiotensinogen for interference with both coagulation and osmo- and pressure regulation. Heparin cofactor II from lampreys, in contrast to its paralogue angiotensinogen, is preferentially activated by dermatan sulfate, suggesting that these two serpins affect different facets of thrombin’s multiple roles. Lampreys also express a lineage-specific serpin with anti-factor Xa activity, which demonstrates that another important procoagulant enzyme is under inhibitory control. Comparative genomics suggests that orthologues of these three serpins were key components of the ancestral hemostatic system. It appears that, early in vertebrate evolution, coagulation and osmo- and pressure regulation crosstalked through antiproteolytically active angiotensinogen, a feature that was lost during vertebrate radiation, though in gnathostomes interplay between these traits is effective. PMID:24840053

  10. The functions of serpin-3, a negative-regulator involved in prophenoloxidase activation and antimicrobial peptides expression of Chinese oak silkworm, Antheraea pernyi.

    PubMed

    Wang, Xialu; Wang, Kailin; He, Yuanyuan; Lu, Xinrui; Wen, Daihua; Wu, Chunfu; Zhang, Jinghai; Zhang, Rong

    2017-04-01

    Serpins are a superfamily of proteins engaged in various physiological processes in all kingdoms of life. To date, many striking results have demonstrated serpins are involved in the invertebrate immune system by regulating the proteolytic cascades. However, in most insect species, the immune functions of serpins in response against pathogen invasion remain obscure. In this study, we identified a full-length cDNA sequence of serpin, named serpin-3, from the Chinese oak silkworm Antheraea pernyi. Sequence alignments have indicated that Apserpin-3 might regulate the melanization reaction via inhibiting prophenoloxidases-activating protease(s) in plasma. Furthermore, it was detected to be primarily transcribed within the fat body, epidermis and hemocytes with significant induction following immune-challenge. Further studies have shown that the knockdown of serpin-3 up-regulated the prophenoloxidases cascade stimulated by pathogen in hemolymph, while the addition of recombinant serpin-3 along with the same elicitor led to the suppressed activation of prophenoloxidase. Besides, the injection of dsRNA of serpin-3 caused the elevated expression of antimicrobial peptides. Altogether, we arrived at a conclusion that serpin-3 might act as a negative-regulator in prophenoloxidases activation and inhibit the production of antimicrobial peptides in Antheraea pernyi larvae.

  11. Expression of a Toll Signaling Regulator Serpin in a Mycoinsecticide for Increased Virulence

    PubMed Central

    Yang, Linzhi; Keyhani, Nemat O.; Tang, Guirong; Tian, Chuang; Lu, Ruipeng; Wang, Xin; Pei, Yan

    2014-01-01

    Serpins are ubiquitously distributed serine protease inhibitors that covalently bind to target proteases to exert their activities. Serpins regulate a wide range of activities, particularly those in which protease-mediated cascades are active. The Drosophila melanogaster serpin Spn43Ac negatively controls the Toll pathway that is activated in response to fungal infection. The entomopathogenic fungus Beauveria bassiana offers an environmentally friendly alternative to chemical pesticides for insect control. However, the use of mycoinsecticides remains limited in part due to issues of efficacy (low virulence) and the recalcitrance of the targets (due to strong immune responses). Since Spn43Ac acts to inhibit Toll-mediated activation of defense responses, we explored the feasibility of a new strategy to engineer entomopathogenic fungi with increased virulence by expression of Spn43Ac in the fungus. Compared to the 50% lethal dose (LD50) for the wild-type parent, the LD50 of B. bassiana expressing Spn43Ac (strain Bb::S43Ac-1) was reduced ∼3-fold, and the median lethal time against the greater wax moth (Galleria mellonella) was decreased by ∼24%, with the more rapid proliferation of hyphal bodies being seen in the host hemolymph. In vitro and in vivo assays showed inhibition of phenoloxidase (PO) activation in the presence of Spn43Ac, with Spn43Ac-mediated suppression of activation by chymotrypsin, trypsin, laminarin, and lipopolysaccharide occurring in the following order: chymotrypsin and trypsin > laminarin > lipopolysaccharide. Expression of Spn43Ac had no effect on the activity of the endogenous B. bassiana-derived cuticle-degrading protease (CDEP-1). These results expand our understanding of Spn43Ac function and confirm that suppression of insect immune system defenses represents a feasible approach to engineering entomopathogenic fungi for greater efficacy. PMID:24837378

  12. Serine protease SP105 activates prophenoloxidase in Asian corn borer melanization, and is regulated by serpin-3

    PubMed Central

    Chu, Yuan; Hong, Fang; Liu, Qizhi; An, Chunju

    2017-01-01

    Melanization reaction, resulting from the activation of prophenoloxidase, is a vital immune response in insects for encapsulating and killing the invasive organisms. Prophenoloxidase needs to be proteolytically activated by its upstream prophenoloxidase-activating protease (PAP) in melanization. Identification and characterization of PAPs facilitates the understanding of the molecular mechanisms involved in insect immunity. We here cloned a full-length cDNA for a serine protease, named as SP105, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of SP105 encodes 424-amino acid residue protein with a 19-residue signal peptide. Sequence comparison indicates that SP105 is most similar to Manduca sexta PAP3, a defined prophenoloxidase-activating protease. qRT-PCR analysis showed that SP105 mRNA levels increased significantly after a bacterial injection. Recombinant SP105 directly cleaved and activated Asian corn borer prophenoloxidase and therefore acted as the prophenoloxidase-activating protease. Additionally, SP105 formed SDS-stable complexes with a serine protease inhibitor, serpin-3, and its activity in activating prophenoloxidase was efficiently inhibited by serpin-3. Our work thus illustrated a prophenoloxidase-activating protease and revealed its regulation by serpin-3. The results would allow further advances in the understanding of the melanization in Asian corn borer and other insects. PMID:28358031

  13. Overexpression of SerpinE2/protease nexin-1 Contribute to Pathological Cardiac Fibrosis via increasing Collagen Deposition

    PubMed Central

    Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Li, Tianshi; Qili, Muge; Xu, Bozhi; Qian, Ming; Liang, Haihai; E, Xiaoqiang; Chege Gitau, Samuel; Wang, Lu; Huangfu, Longtao; Wu, Qiuxia; Xu, Chaoqian; Shan, Hongli

    2016-01-01

    Although increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis, the molecular mechanisms of pressure overload or AngII -induced cardiac interstitial fibrosis remain elusive. In this study, serpinE2/protease nexin-1 was over-expressed in a cardiac fibrosis model induced by pressure-overloaded via transverse aortic constriction (TAC) in mouse. Knockdown of serpinE2 attenuates cardiac fibrosis in a mouse model of TAC. At meantime, the results showed that serpinE2 significantly were increased with collagen accumulations induced by AngII or TGF-β stimulation in vitro. Intriguingly, extracellular collagen in myocardial fibroblast was reduced by knockdown of serpinE2 compared with the control in vitro. In stark contrast, the addition of exogenous PN-1 up-regulated the content of collagen in myocardial fibroblast. The MEK1/2- ERK1/2 signaling probably promoted the expression of serpinE2 via transcription factors Elk1 in myocardial fibroblast. In conclusion, stress-induced the ERK1/2 signaling pathway activation up-regulated serpinE2 expression, consequently led accumulation of collagen protein, and contributed to cardiac fibrosis. PMID:27876880

  14. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response.

    PubMed

    Wei, Xiumei; Xu, Jie; Yang, Jianmin; Liu, Xiangquan; Zhang, Ranran; Wang, Weijun; Yang, Jialong

    2015-01-01

    Serpin is an important member of serine protease inhibitors (SPIs), which is capable of regulating proteolytic events and involving in a variety of physiological processes. In present study, a Serpin homolog was identified from Octopus ocellatus (designated as OoSerpin). Full-length cDNA of OoSerpin was of 1735 bp, containing a 5' untranslated region of 214 bp, a 3' UTR of 282 bp, and an open reading frame of 1239 bp. The open reading frame encoded a polypeptide of 412 amino acids which has a predicted molecular weight of 46.5 kDa and an isoelectric point of 8.52. The OoSerpin protein shares 37% sequence identity with other Serpins from Mus musculus (NP_941373) and Ixodes scapularis (XP_002407493). The existence of a conserved SERPIN domain strongly suggested that OoSerpin was a member of the Serpin subfamily. Expression patterns of OoSerpin, both in tissues and towards bacterial stimulation, were then characterized. The mRNA of OoSerpin was constitutively expressed at different levels in all tested tissues of untreated O. ocellatus, including mantle (lowest), muscle, renal sac, gill, hemocyte, gonad, systemic heart, and hepatopancreas (highest). The transcriptional level of OoSerpin was significantly up-regulated (P<0.01) in O. ocellatus upon bacterial challenges with Vibrio anguillarum and Micrococcus luteus, indicating its involvement in the antibacterial immune response. Furthermore, rOoSerpin, the recombinant protein of OoSerpin, exhibited strong abilities to inhibit proteinase activities of trypsin and chymotrypsin as well as the growth of Escherichia coli. Our results demonstrate that OoSerpin is a potential antibacterial factor involved in the immune response of O. ocellatus against bacterial infection.

  15. The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation.

    PubMed

    Acosta, Helena; Iliev, Dobromir; Grahn, Tan Hooi Min; Gouignard, Nadège; Maccarana, Marco; Griesbach, Julia; Herzmann, Svende; Sagha, Mohsen; Climent, Maria; Pera, Edgar M

    2015-03-15

    Germ layer formation and primary axis development rely on Fibroblast growth factors (FGFs). In Xenopus, the secreted serine protease HtrA1 induces mesoderm and posterior trunk/tail structures by facilitating the spread of FGF signals. Here, we show that the serpin Protease nexin-1 (PN1) is transcriptionally activated by FGF signals, suppresses mesoderm and promotes head development in mRNA-injected embryos. An antisense morpholino oligonucleotide against PN1 has the opposite effect and inhibits ectodermal fate. However, ectoderm and anterior head structures can be restored in PN1-depleted embryos when HtrA1 and FGF receptor activities are diminished, indicating that FGF signals negatively regulate their formation. We show that PN1 binds to and inhibits HtrA1, prevents degradation of the proteoglycan Syndecan 4 and restricts paracrine FGF/Erk signaling. Our data suggest that PN1 is a negative-feedback regulator of FGF signaling and has important roles in ectoderm and head development.

  16. SerpinB1 deficiency is not associated with increased susceptibility to pulmonary emphysema in mice.

    PubMed

    Cremona, Tiziana P; Tschanz, Stefan A; von Garnier, Christophe; Benarafa, Charaf

    2013-12-01

    Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.

  17. Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana.

    PubMed

    Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen

    2017-02-28

    Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.

  18. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  19. Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages

    PubMed Central

    Smirnova, Tatiana; Bonapace, Laura; MacDonald, Gwen; Kondo, Shunya; Wyckoff, Jeffrey; Ebersbach, Hilmar; Fayard, Bérengère; Doelemeyer, Arno; Coissieux, Marie-May; Heideman, Marinus R.; Bentires-Alj, Mohamed; Hynes, Nancy E.

    2016-01-01

    The extracellular serine protease inhibitor serpinE2 is overexpressed in breast cancer and has been shown to foster metastatic spread. Here, we investigated the hypothesis that serpinE2 creates tumor-promoting conditions in the tumor microenvironment (TME) by affecting extracellular matrix remodeling. Using two different breast cancer models, we show that blocking serpinE2, either by knock-down (KD) in tumor cells or in response to a serpinE2 binding antibody, decreases metastatic dissemination from primary tumors to the lungs. We demonstrate that in response to serpinE2 KD or antibody treatment there are dramatic changes in the TME. Multiphoton intravital imaging revealed deposition of a dense extracellular collagen I matrix encapsulating serpinE2 KD or antibody-treated tumors. This is accompanied by a reduction in the population of tumor-promoting macrophages, as well as a decrease in chemokine ligand 2, which is known to affect macrophage abundance and polarization. In addition, TIMP-1 secretion is increased, which may directly inhibit matrix metalloproteases critical for collagen degradation in the tumor. In summary, our findings suggest that serpinE2 is required in the extracellular milieu of tumors where it acts in multiple ways to regulate tumor matrix deposition, thereby controlling tumor cell dissemination. PMID:27793045

  20. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli

    SciTech Connect

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S.

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells. - Highlights: ► LPS stimulates generation of secretory vesicles containing SerpinB2. ► SerpinB2 concentrates in TGN46 positive vesicles close to the plasma membrane. ► Brefeldin A inhibits secretion of SerpinB2. ► The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa.

  1. Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer

    PubMed Central

    Choi, Jin Hwa; Lee, Ja Rang; Kim, Hye Kyung; Jo, Hong-jae; Kim, Hyun Sung; Oh, Nahmgun; Song, Geun Am; Park, Do Youn

    2015-01-01

    The role of Snail and serpin peptidase inhibitor clade A member 1 (serpinA1) in tumorigenesis has been previously identified. However, the exact role and mechanism of these proteins in progression of colorectal cancer (CRC) are controversial. In this study, we investigated the role of Snail and serpinA1 in colorectal cancer (CRC) and examined the mechanisms through which these proteins mediate CRC progression. Immunohistochemical analysis of 528 samples from patients with CRC showed that elevated expression of Snail or serpinA1 was correlated with advanced stage, lymph node metastasis, and poor prognosis. Moreover, we detected a correlation between Snail and serpinA1 expression. Functional studies performed using the CRC cell lines DLD-1 and SW-480 showed that overexpression of Snail or serpinA1 significantly increased CRC cell invasion and migration. Conversely, knockdown of Snail or serpinA1 expression suppressed CRC cell invasion and migration. ChIP analysis revealed that Snail regulated serpinA1 by binding to its promoter. In addition, fibronectin mediated Snail and serpinA1 signaling was involved in CRC cell invasion and migration. Taken together, our data showed that Snail and serpinA1 promoted CRC progression through fibronectin. These findings suggested that Snail and serpinA1 were novel prognostic biomarkers and candidate therapeutic targets in CRC. PMID:26015410

  2. Understanding the specificity of serpin-protease complexes through interface analysis.

    PubMed

    Rashid, Qudsia; Kapil, Charu; Singh, Poonam; Kumari, Vineeta; Jairajpuri, Mohamad Aman

    2015-01-01

    Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.

  3. SerpinB2 (PAI-2) Modulates Proteostasis via Binding Misfolded Proteins and Promotion of Cytoprotective Inclusion Formation

    PubMed Central

    Farrawell, Natalie; Shearer, Robert F.; Constantinescu, Patrick; Hatters, Danny M.; Schroder, Wayne A.; Suhrbier, Andreas; Wilson, Mark R.; Saunders, Darren N.; Ranson, Marie

    2015-01-01

    SerpinB2 (PAI-2), a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS). In the current study we explored the potential role of SerpinB2 as a modulator of proteotoxic stress. Initially, we transiently transfected wild-type SerpinB2 and SerpinB2-/- murine embryonic fibroblasts (MEFs) with Huntingtin exon1-polyglutamine (fused C-terminally to mCherry). Inclusion body formation as result of Huntingtin aggregation was evident in the SerpinB2 expressing cells but significantly impaired in the SerpinB2-/- cells, the latter concomitant with loss in cell viability. Importantly, recovery of the wild-type phenotype and cell viability was rescued by retroviral transduction of SerpinB2 expression. SerpinB2 modestly attenuated Huntingtin and amyloid beta fibril formation in vitro and was able to bind preferentially to misfolded proteins. Given the modest chaperone-like activity of SerpinB2 we tested the ability of SerpinB2 to modulate UPS and autophagy activity using a GFP reporter system and autophagy reporter, respectively. Activity of the UPS was reduced and autophagy was dysregulated in SerpinB2-/- compared to wild-type MEFs. Moreover, we observed a non-covalent interaction between ubiquitin and SerpinB2 in cells using GFP-pulldown assays and bimolecular fluorescence complementation. We conclude that SerpinB2 plays an important role in proteostasis as its loss leads to a proteotoxic phenotype associated with an inability to compartmentalize aggregating proteins and a reduced capacity of the UPS. PMID:26083412

  4. Arabidopsis thaliana serpins AtSRP4 and AtSRP5 negatively regulate stress-induced cell death and effector-triggered immunity induced by bacterial effector AvrRpt2.

    PubMed

    Bhattacharjee, Lipika; Singh, Deepjyoti; Gautam, Janesh Kumar; Nandi, Ashis Kumar

    2017-03-01

    Protease inhibitors and their cognate proteases regulate growth, development and defense. Serine protease inhibitors (serpins) constitute a large family of genes in most metazoans and plants. Drosophila NECROTIC (NEC) gene and its homologues in the mammalian system are well-characterized serpins, which play a role in regulating proteases that participate in cell death pathways. Although the Arabidopsis genome contains several serpin homologs, biological function is not known for most of them. Here we show that two Arabidopsis serpins, AtSRP4 and AtSRP5, are closest sequence homologue of Drosophila NEC protein, and are involved in stress-induced cell death and defense. Expression of both AtSRP4 and AtSRP5 genes induced upon ultra-violet (UV)-treatment and inoculation with avirulent pathogens. The knockout mutants and amiRNA lines of AtSRP4 and AtSRP5 exaggerated UV- and hypersensitive response (HR)-induced cell death. Over-expression of AtSRP4 reduced UV- and HR-induced cell death. Mutants of AtSRP4 and AtSRP5 suppressed whereas over-expression of AtSRP4 supported the growth of bacterial pathogen Pseudomonas syringae pv. tomato DC3000 carrying the AvrRpt2 effector, but not other avirulent or virulent pathogens. Results altogether identified AtSRP4 and AtSRP5 as negative regulators of stress-induced cell death and AvrRpt2-triggered immunity; however, the influence of AtSRP4 was more prominent than AtSRP5.

  5. Characterization and functional analysis of serpin-1 like gene from oak silkworm Antheraea pernyi.

    PubMed

    Yu, H M; Zhu, B J; Sun, Y; Wei, G Q; Wang, L; Qian, C; Nadeem Abbas, M; Liu, C L

    2017-02-23

    Serpins are a broadly distributed family of proteases found in various organisms that play an important role in regulating the immune response. Here, we identified a serpin-1 gene from Antheraea pernyi that encodes a 279 amino acid protein with a molecular weight of 30.8 kDa. We expressed the recombinant Ap-serpin-1 protein in Escherichia coli and used the purified protein to prepare rabbit anti-Ap-serpin-1 polyclonal antibodies. We calculated the enzyme-linked immunosorbent assay titer of the antibody as 1:128000. Quantitative real-time polymerase chain reaction analysis revealed that Ap-serpin-1 was expressed in all examined tissues, including hemolymph, malpighian tubules, midgut, silk gland, integument and the fat body; the highest Ap-serpin-1 expression levels was detected in the fat body. We next investigated the expression patterns of Ap-serpin-1 in both fat body and hemolymph samples, following treatment with E. coli, Beauveria bassiana, Micrococcus luteus and nuclear polyhedrosis virus (NPV). We reported that NPV and M. luteus significantly enhanced Ap-serpin-1 expression in the fat body. While, in the hemolymph samples, treatment with B. bassiana and M. luteus was shown to upregulate Ap-serpin-1 expression at 24 h induction. Altogether, our results suggest that Ap-serpin-1 is involved in the innate immunity of A. pernyi.

  6. Involvement of the serine protease inhibitor, SERPINE2, and the urokinase plasminogen activator in cumulus expansion and oocyte maturation.

    PubMed

    Lu, Chung-Hao; Lee, Robert Kuo-Kuang; Hwu, Yuh-Ming; Lin, Ming-Huei; Yeh, Ling-Yu; Chen, Ying-Jie; Lin, Shau-Ping; Li, Sheng-Hsiang

    2013-01-01

    The serpin peptidase inhibitor, clade E, member 2 (SERPINE2) inhibits urokinase-type plasminogen activator (PLAU) and tissue-type plasminogen activator. Higher SERPINE2 expression levels were detected in cumulus cells of human immature oocytes than in those of mature oocytes. The objective of this study was to evaluate whether high SERPINE2 levels in cumulus cells are associated with oocyte immaturity. Using the mouse cumulus-oocyte complex as an experimental model, the effects of elimination and overexpression of SERPINE2 in cumulus cells on cumulus expansion and oocyte maturation were assayed by in vitro maturation. Serpine2 and PLAU transcripts were the most highly expressed serpins and plasminogen activators, respectively. Their expression was coordinately regulated in cumulus cells during gonadotropin-induced oocyte maturation. Silencing of Serpine2 expression using small interfering RNAs or blockage of SERPINE2 protein using a specific antibody had no effect on oocyte maturation. However, overexpression of Serpine2 or exogenous supplementation with high levels of SERPINE2 impaired cumulus expansion and oocyte maturation, probably by decreasing hyaluronan synthase 2 (Has2) and versican (Vcan) mRNA expression. Amiloride, a specific PLAU inhibitor, also suppressed these processes. PLAU supplementation of the oocyte in vitro maturation medium caused earlier and more extensive expansion of cumulus cells and oocyte maturation that may be mediated by increased Has2 mRNA expression. However, these effects were neutralized by coincubation with SERPINE2 or amiloride and PLAU. In conclusion, SERPINE2 and PLAU are involved in cumulus expansion and oocyte maturation. High SERPINE2 levels impair these processes, probably by decreasing cumulus matrix gene expression as well as reducing cumulus hyaluronan contents and inhibiting PLAU activity. These findings may explain why cumulus cells surrounding immature human oocytes express high SERPINE2 levels.

  7. Regulation of Intracellular Free Calcium in Neuronal Cells by Opioids

    DTIC Science & Technology

    1995-06-19

    APPROVAL SHEET Title of Dissertation: "Regulation ofIntracellular Free Calcium in Neuronal Cells by Opioids" Name of Candidate: Tianlai Tang Doctor...Calcium in Neuronal Cells by Opioids" beyond brief excerpts is with the pennission of the copyright owner, and will save and hold harmless the...Intracellular Free Calcium in Neuronal Cells by Opioids Doctor of Philosophy, 1995 Brian M. Cox, Professor, Department of Pharmacology The

  8. Human papilloma virus transformed CaSki cells constitutively express high levels of functional SerpinB2.

    PubMed

    Major, Lee; Schroder, Wayne A; Gardner, Joy; Fish, Richard J; Suhrbier, Andreas

    2011-02-01

    Many malignant tissues, including human papilloma virus (HPV)-associated cancers, express SerpinB2, also known as plasminogen activator inhibitor type-2 (PAI-2). Whether SerpinB2 is expressed by the HPV-transformed cancer cells, and if so, whether SerpinB2 is mutated or behaves aberrantly remains unclear. Here we show that HPV-transformed CaSki cells express high levels of constitutive wild-type SerpinB2, with cellular distribution, glycosylation, secretion, cleavage, induction and urokinase binding similar to that reported for primary cells. Neutralization of secreted SerpinB2 failed to affect CaSki cell migration or growth. Lentivirus-based over-expression of SerpinB2 also had no effect on growth, and we were unable to confirm a role for SerpinB2 in binding or regulating expression of the retinoblastoma protein. CaSki cells thus emerge as a useful tool for studying SerpinB2, with the physiological function of SerpinB2 expression by tumor cells remaining controversial. Using CaSki cells as a source of endogenous SerpinB2, we confirmed that SerpinB2 efficiently binds the proteasomal subunit member β1.

  9. Cloning and characterization of serpin-like genes from the striped rice stem borer, Chilo suppressalis.

    PubMed

    Ge, Zhao-Yu; Wan, Pin-Jun; Cheng, Xiong-Feng; Zhang, Yang; Li, Guo-Qing; Han, Zhao-Jun

    2013-06-01

    Serpins, also called serine proteinase inhibitors, are widely distributed in eukaryotes. In insects, serpins play important roles in regulating immune responses, gut physiology, and other processes. Here, we report the cloning and characterization of 12 serpin-like cDNAs from the striped rice stem borer (Chilo suppressalis), a major rice pest. The putative proteins share significant sequence similarity with known insect serpins, especially those from lepidopterons. Analysis of functional domains revealed that nine of the cloned serpins are putative trypsin- or chymotrypsin-like inhibitors; two are mixed-type serpins that may act as inhibitors for trypsins, elastases, or thrombin; and the remaining one is truncate. The potential functions of these serpins in interacting with host plants were also investigated by analyzing tissue-specific expression and the impact of different host plant genotypes on gene expression. Our results provide a foundation for future studies on the role of serpins in gut physiology in the striped rice stem borer, and also useful information for comparative analyses of serpins from different insect species.

  10. SerpinB2 is critical to Th2 immunity against enteric nematode infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SerpinB2, a member of the serine protease inhibitor family, is expressed by macrophages and up-regulated significantly by inflammation. Recent studies implicated a role for SerpinB2 in the control of Th1 and Th2 immune responses, but the mechanisms of these effects are unknown. In the current study...

  11. SERPINE1 — EDRN Public Portal

    Cancer.gov

    The SERPINE1 protein is a serine proteinase inhibitor (serpin) superfamily. SERPINE1 is the main inhibitor of tissue plasminogen activator (tPA) and urokinase (uPA), the activators of plasminogen and hence fibrinolysis. It is found in plasma and platelets and in endothelial, hepatoma and fibrosarcoma cells. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.

  12. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    PubMed Central

    Yin, Yue; Li, Yin; Zhang, Weizhen

    2014-01-01

    The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed. PMID:24651458

  13. Regulation of BMP2-induced intracellular calcium increases in osteoblasts.

    PubMed

    Xu, Wenfeng; Liu, Bo; Liu, Xue; Chiang, Martin Y M; Li, Bo; Xu, Zichen; Liao, Xiaoling

    2016-10-01

    Although bone morphogenetic protein-2 (BMP2) is a well-characterized regulator that stimulates osteoblast differentiation, little is known about how it regulates intracellular Ca(2+) signaling. In this study, intracellular Ca(2+) concentration ([Ca(2+) ]i ) upon BMP2 application, focal adhesion kinase (FAK) and Src activities were measured in the MC3T3-E1 osteoblast cell line using fluorescence resonance energy transfer-based biosensors. Increase in [Ca(2+) ]i , FAK, and Src activities were observed during BMP2 stimulation. The removal of extracellular calcium, the application of membrane channel inhibitors streptomycin or nifedipine, the FAK inhibitor PF-573228 (PF228), and the alkaline phosphatase (ALP) siRNA all blocked the BMP2-stimulated [Ca(2+) ]i increase, while the Src inhibitor PP1 did not. In contrast, a gentle decrease of endoplasmic reticulum calcium concentration was found after BMP2 stimulation, which could be blocked by both streptomycin and PP1. Further experiments revealed that BMP2-induced FAK activation could not be inhibited by PP1, ALP siRNA or the calcium channel inhibitor nifedipine. PF228, but not PP1 or calcium channel inhibitors, suppressed ALP elevation resulting from BMP2 stimulation. Therefore, our results suggest that BMP2 can increase [Ca(2+) ]i through extracellular calcium influx regulated by FAK and ALP and can deplete ER calcium through Src signaling simultaneously. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1725-1733, 2016.

  14. KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    PubMed Central

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-01-01

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the

  15. KRIT1 regulates the homeostasis of intracellular reactive oxygen species.

    PubMed

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-07-26

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1(-/-) cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1(-/-) cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45alpha, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell

  16. Role of intracellular calcium in cellular volume regulation

    SciTech Connect

    Wong, S.M.; Chase, H.S. Jr.

    1986-06-01

    We investigated the role of intracellular calcium in epithelial cell volume regulation using cells isolated from the toad urinary bladder. A suspension of cells was prepared by treatment of the bladder with collagenase followed by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid. The cells retained their ion-transporting capabilities: ouabain (1 mM) and amiloride (10 microM) inhibited cellular uptake of /sup 86/Rb and /sup 22/Na, respectively. Using a Coulter counter to measure cellular volume, we found that we could swell cells either by reducing the extracellular osmolality or by adding the permeant solute urea (45 mM) isosmotically. Under both conditions, cells first swelled and then returned to their base-line volume, in spite of the continued presence of the stimulus to swell. Volume regulation was inhibited when cells were swelled at low extracellular (Ca) (100 nM) and was retarded in cells preloaded with the calcium buffer quin 2. Swelling increased the intracellular free calcium concentration ((Ca)i), as measured by quin 2 fluorescence: (Ca)i increased 35 +/- 9 nM (n = 6) after hypotonic swelling and 42 +/- 3 nM (n = 3) after urea swelling. Reducing extracellular (Ca) to less than 100 nM prevented the swelling-induced increase in (Ca)i, suggesting that the source of the increase in (Ca)i was extracellular. This result was confirmed in measurements of cellular uptake of 45Ca: the rate of uptake was significantly higher in swollen cells compared with control (1.1 +/- 0.2 vs. 0.4 +/- 0.1 fmol . cell-1 X 5 min-1). Our experiments provide the first demonstration that cellular swelling increases (Ca)i. This increase is likely to play a critical role in cellular volume regulation.

  17. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin.

    PubMed

    Huang, Carlos P; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J; Howell, Stephen B

    2014-03-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu(+) was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu(+) was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression of the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ∼50% reduced steady-state exchangeable Cu by 22-23% and increased the sensitivity of 2008 cells by a factor of 2.6-2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu(+) by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu(+), and that CTR2 regulates both the level of exchangeable Cu(+) and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics.

  18. Intracellular Energetic Units regulate metabolism in cardiac cells.

    PubMed

    Saks, Valdur; Kuznetsov, Andrey V; Gonzalez-Granillo, Marcela; Tepp, Kersti; Timohhina, Natalja; Karu-Varikmaa, Minna; Kaambre, Tuuli; Dos Santos, Pierre; Boucher, François; Guzun, Rita

    2012-02-01

    This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs). Beta II tubulin association with the mitochondrial outer membrane, when co-expressed with mitochondrial creatine kinase (MtCK) specifically limits the permeability of voltage-dependent anion channel for adenine nucleotides. In the MtCK reaction this interaction changes the regulatory kinetics of respiration through a decrease in the affinity for adenine nucleotides and an increase in the affinity for creatine. Metabolic Control Analysis of the coupled MtCK-ATP Synthasome in permeabilized cardiomyocytes showed a significant increase in flux control by steps involved in ADP recycling. Mathematical modeling of compartmentalized energy transfer represented by ICEUs shows that cyclic changes in local ADP, Pi, phosphocreatine and creatine concentrations during contraction cycle represent effective metabolic feedback signals when amplified in the coupled non-equilibrium MtCK-ATP Synthasome reactions in mitochondria. This mechanism explains the regulation of respiration on beat to beat basis during workload changes under conditions of metabolic stability. This article is part of a Special Issue entitled "Local Signaling in Myocytes."

  19. Crystal structure of viral serpin crmA provides insights into its mechanism of cysteine proteinase inhibition.

    PubMed Central

    Simonovic, M.; Gettins PGW; Volz, K.

    2000-01-01

    CrmA is an unusual viral serpin that inhibits both cysteine and serine proteinases involved in the regulation of host inflammatory and apoptosis processes. It differs from other members of the serpin superfamily by having a reactive center loop that is one residue shorter, and by its apparent inability to form SDS-stable covalent complexes with cysteine proteinases. To obtain insight into the inhibitory mechanism of crmA, we determined the crystal structure of reactive center loop-cleaved crmA to 2.9 A resolution. The structure, which is the first of a viral serpin, suggests that crmA can inhibit cysteine proteinases by a mechanism analogous to that used by other serpins against serine proteinases. However, one striking difference from other serpins, which may be significant for in vivo function, is an additional highly charged antiparallel strand for b sheet A, whose sequence and length are unique to crmA. PMID:10975564

  20. Viral Serpin Therapeutics: From Concept to Clinic

    PubMed Central

    Chen, Hao; Zheng, Donghang; Davids, Jennifer; Bartee, Mee Yong; Dai, Erbin; Liu, Liying; Petrov, Lyubomir; Macaulay, Colin; Thoburn, Robert; Sobel, Eric; Moyer, Richard; McFadden, Grant; Lucas, Alexandra

    2012-01-01

    Over the past 19 years, we have developed a novel myxoma virus-derived anti-inflammatory serine protease inhibitor, termed a serpin, as a new class of immunomodulatory therapeutic. This review will describe the initial identification of viral serpins with anti-inflammatory potential, beginning with preclinical analysis of viral pathogenesis and proceeding to cell and molecular target analyses, and successful clinical trial. The central aim of this review is to describe the development of two serpins, Serp-1 and Serp-2, as a new class of immune modulating drug, from inception to implementation. We begin with an overview of the approaches used for successful mining of the virus for potential serpin immunomodulators in viruses. We then provide a methodological overview of one inflammatory animal model used to test for serpin anti-inflammatory activity followed by methods used to identify cells in the inflammatory response system targeted by these serpins and molecular responses to serpin treatment. Finally, we provide an overview of our findings from a recent, successful clinical trial of the secreted myxomaviral serpin, Serp-1, in patients with unstable inflammatory coronary arterial disease. PMID:21683260

  1. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  2. IQGAP1: a regulator of intracellular spacetime relativity.

    PubMed

    Malarkannan, Subramaniam; Awasthi, Aradhana; Rajasekaran, Kamalakannan; Kumar, Pawan; Schuldt, Kristina M; Bartoszek, Allison; Manoharan, Niranjan; Goldner, Nicholas K; Umhoefer, Colleen M; Thakar, Monica S

    2012-03-01

    Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.

  3. IQGAP1: A Regulator of Intracellular Spacetime Relativity

    PubMed Central

    Malarkannan, Subramaniam; Awasthi, Aradhana; Kamalakannan, Rajasekaran; Kumar, Pawan; Schuldt, Kristina M; Bartoszek, Allison; Manoharan, Niranjan; Goldner, Nicholas K; Umhoefer, Colleen M; Thakar, Monica S

    2012-01-01

    Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Amongst multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Amongst many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, MTOC formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin and CD44-mediated signaling and GSK3/APC-mediated β-catenin activation. In this review we summarize the recent developments and exciting new findings of cellular functions of IQGAP1. PMID:22345702

  4. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    SciTech Connect

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  5. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  6. SUMOylation regulates the intracellular fate of ZO-2.

    PubMed

    Wetzel, Franziska; Mittag, Sonnhild; Cano-Cortina, Misael; Wagner, Tobias; Krämer, Oliver H; Niedenthal, Rainer; Gonzalez-Mariscal, Lorenza; Huber, Otmar

    2017-01-01

    The zonula occludens (ZO)-2 protein links tight junctional transmembrane proteins to the actin cytoskeleton and associates with splicing and transcription factors in the nucleus. Multiple posttranslational modifications control the intracellular distribution of ZO-2. Here, we report that ZO-2 is a target of the SUMOylation machinery and provide evidence on how this modification may affect its cellular distribution and function. We show that ZO-2 associates with the E2 SUMO-conjugating enzyme Ubc9 and with SUMO-deconjugating proteases SENP1 and SENP3. In line with this, modification of ZO-2 by endogenous SUMO1 was detectable. Ubc9 fusion-directed SUMOylation confirmed SUMOylation of ZO-2 and was inhibited in the presence of SENP1 but not by an enzymatic-dead SENP1 protein. Moreover, lysine 730 in human ZO-2 was identified as a potential modification site. Mutation of this site to arginine resulted in prolonged nuclear localization of ZO-2 in nuclear recruitment assays. In contrast, a construct mimicking constitutive SUMOylation of ZO-2 (SUMO1ΔGG-ZO-2) was preferentially localized in the cytoplasm. Based on previous findings the differential localization of these ZO-2 constructs may affect glycogen-synthase-kinase-3β (GSK3β) activity and β-catenin/TCF-4-mediated transcription. In this context we observed that ZO-2 directly binds to GSK3β and SUMO1ΔGG-ZO-2 modulates its kinase activity. Moreover, we show that ZO-2 forms a complex with β-catenin. Wild-type ZO-2 and ZO-2-K730R inhibited transcriptional activity in reporter gene assays, whereas the cytosolic SUMO1ΔGG-ZO-2 did not. From these data we conclude that SUMOylation affects the intracellular localization of ZO-2 and its regulatory role on GSK3β and β-catenin signaling activity.

  7. Rab proteins: The key regulators of intracellular vesicle transport

    SciTech Connect

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  8. Regulation of intracellular heme trafficking revealed by subcellular reporters

    PubMed Central

    Yuan, Xiaojing; Rietzschel, Nicole; Walter Nuno, Ana Beatriz; Hanna, David A.; Phillips, John D.; Raven, Emma L.; Reddi, Amit R.; Hamza, Iqbal

    2016-01-01

    Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models. PMID:27528661

  9. Rab proteins: the key regulators of intracellular vesicle transport.

    PubMed

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.

  10. Antithrombin III/SerpinC1 insufficiency exacerbates renal ischemia/reperfusion injury

    PubMed Central

    Wang, Feng; Zhang, Guangyuan; Lu, Zeyuan; Geurts, Aron M; Usa, Kristie; Jacob, Howard J; Cowley, Allen W; Wang, Niansong; Liang, Mingyu

    2015-01-01

    Antithrombin III, encoded by SerpinC1, is a major anti-coagulation molecule in vivo and has anti-inflammatory effects. We found that patients with low antithrombin III activities presented a higher risk of developing acute kidney injury after cardiac surgery. To study this further, we generated SerpinC1 heterozygous knockout rats and followed the development of acute kidney injury in a model of modest renal ischemia/reperfusion injury. Renal injury, assessed by serum creatinine and renal tubular injury scores after 24 h of reperfusion, was significantly exacerbated in SerpinC1+/− rats compared to wild-type littermates. Concomitantly, renal oxidative stress, tubular apoptosis, and macrophage infiltration following this injury were significantly aggravated in SerpinC1+/− rats. However, significant thrombosis was not found in the kidneys of any group of rats. Antithrombin III is reported to stimulate the production of prostaglandin I2, a known regulator of renal cortical blood flow, in addition to having anti-inflammatory effects and to protect against renal failure. Prostaglandin F1α, an assayable metabolite of prostaglandin I2, was increased in the kidneys of the wild-type rats at 3 h after reperfusion. The increase of prostaglandin F1α was significantly blunted in SerpinC1+/− rats, which preceded increased tubular injury and oxidative stress. Thus, our study found a novel role of SerpinC1 insufficiency in increasing the severity of renal ischemia/reperfusion injury. PMID:26108065

  11. Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling.

    PubMed

    Meabon, James S; de Laat, Rian; Ieguchi, Katsuaki; Serbzhinsky, Dmitry; Hudson, Mark P; Huber, B Russel; Wiley, Jesse C; Bothwell, Mark

    2016-01-01

    Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.

  12. Ectdomain shedding and regulated intracellular proteolysis in the central nervous system.

    PubMed

    Montes de Oca-B, Pavel

    2010-12-01

    The term Ectodomain Shedding (ES) refers to extracellular domain proteolytic release from cell membrane molecules. This proteolysis is mediated mainly by matrix metalloproteases (MMP) or disintegrin and metalloproteases (ADAM), although some other proteases may mediate it. Virtually, all functional categories of cell membrane molecules are subject of this kind of proteolysis, for this reason ES is involved in different cellular processes such as proliferation, apoptosis, migration, differentiation or pathologies such as inflammation, cancer and degeneration among others. ES releases membrane molecule's extracellular domain (or ectodomain) to the extracellular milieu where it can play different biological functions. ES of transmembrane molecules also generates membrane attached terminal fragments comprising transmembrane and intracellular domains that enable their additional processing by intracellular proteases known as Regulated Intracellular Proteolysis (RIP). This second proteolytic cleavage delivers molecule's intracellular domain (ICD) that carry out intracellular functions. RIP is mediated by the group of intracellular cleaving proteases (i-CLiPs) that include presenilin from the γ-secretase complex. In the CNS the best well known ES is that of the Amyloid Precursor Protein, although many other membrane molecules expressed by cells of the CNS are also subject to ES and RIP. In this review, these molecules are summarized, and some meaningful examples are highlighted and described. In addition, ES and RIP implications in the context of cell biology are discussed. Finally, some considerations that rise from the study of ES and RIP are formulated in view of the unexpected roles of intracellular fragments.

  13. Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death.

    PubMed

    Esterberg, Robert; Hailey, Dale W; Coffin, Allison B; Raible, David W; Rubel, Edwin W

    2013-04-24

    Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.

  14. Ontogeny of intracellular isosmotic regulation in the european lobster Homarus gammarus (L.).

    PubMed

    Haond, C; Bonnal, L; Sandeaux, R; Charmantier, G; Trilles, J P

    1999-01-01

    Intracellular free amino acids were measured in the abdominal muscle of the three larval instars, postlarvae, and juveniles of the lobster Homarus gammarus, acclimated to seawater (35 per thousand) and to a dilute medium (22 per thousand), to study intracellular isosmotic regulation throughout the development of this species. Transfer to low salinity was followed by a highly significant drop of free amino acids level in all developmental stages. The main regulated amino acids were glycine, proline, and alanine. The level of regulation of total free amino acids changed at metamorphosis: the decrease in total free amino acids at low salinity was 46% in the three larval instars, but it was only 29% in postlarvae and 20% in juveniles. These results suggest that free amino acids, mainly glycine, proline, and alanine, are involved in intracellular isosmotic regulation in the lobster, with different levels of involvement in pre- and postmetamorphic stages. The ontogenetic changes in intracellular isosmotic regulation are discussed in relation to the changes in extracellular regulation (osmoregulation) in the lobster.

  15. Regulation of Intracellular pH in Lungs and Other Tissues During Hypercapnia

    DTIC Science & Technology

    1978-03-10

    was observed in terms of "percent pH regula- sumed to equal venous Pco 2. tion." As shown in Fig. 1, the pH of kidney, lung, and Intracellular pH was...buffering. The value, "percent pH 80 Z70regulation" (19), calculated as (Alog HCO3/log Pco 2) - x 100 is also used to quantitate pH regulation. This...42: 2080-2093, 1964. 6. FENN, W. 0. Carbon dioxide and intracellular homeostasis . 19. SCHAEFER, K. E., M. HASSON, AND H. NIEMOELLER. Effect of Ann. NY

  16. Regulation of ClC-2 gating by intracellular ATP.

    PubMed

    Stölting, Gabriel; Teodorescu, Georgeta; Begemann, Birgit; Schubert, Julian; Nabbout, Rima; Toliat, Mohammad Reza; Sander, Thomas; Nürnberg, Peter; Lerche, Holger; Fahlke, Christoph

    2013-10-01

    ClC-2 is a voltage-dependent chloride channel that activates slowly at voltages negative to the chloride reversal potential. Adenosine triphosphate (ATP) and other nucleotides have been shown to bind to carboxy-terminal cystathionine-ß-synthase (CBS) domains of ClC-2, but the functional consequences of binding are not sufficiently understood. We here studied the effect of nucleotides on channel gating using single-channel and whole-cell patch clamp recordings on transfected mammalian cells. ATP slowed down macroscopic activation and deactivation time courses in a dose-dependent manner. Removal of the complete carboxy-terminus abolishes the effect of ATP, suggesting that CBS domains are necessary for ATP regulation of ClC-2 gating. Single-channel recordings identified long-lasting closed states of ATP-bound channels as basis of this gating deceleration. ClC-2 channel dimers exhibit two largely independent protopores that are opened and closed individually as well as by a common gating process. A seven-state model of common gating with altered voltage dependencies of opening and closing transitions for ATP-bound states correctly describes the effects of ATP on macroscopic and microscopic ClC-2 currents. To test for a potential pathophysiological impact of ClC-2 regulation by ATP, we studied ClC-2 channels carrying naturally occurring sequence variants found in patients with idiopathic generalized epilepsy, G715E, R577Q, and R653T. All naturally occurring sequence variants accelerate common gating in the presence but not in the absence of ATP. We propose that ClC-2 uses ATP as a co-factor to slow down common gating for sufficient electrical stability of neurons under physiological conditions.

  17. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum.

    PubMed Central

    Glaasker, E; Konings, W N; Poolman, B

    1996-01-01

    Bacteria respond to changes in medium osmolarity by varying the concentrations of specific solutes in order to maintain constant turgor pressure. The cytoplasmic pools of K+, proline, glutamate, alanine, and glycine of Lactobacillus plantarum ATCC 14917 increased when the osmolarity of the growth media was raised from 0.20 to 1.51 osmol/kg by KCL. When glycine-betaine was present in a high-osmolarity chemically defined medium, it was accumulated to a high cytoplasmic concentration, while the concentrations of most other osmotically important solutes decreased. These observations, together with the effects of glycine-betaine on the specific growth rate under high-osmolarity conditions, suggest that glycine-betaine is preferentially accumulated in L. plantarum. Uptake of glycine-betaine, proline, glutamate, and alanine was studied in cells that were alternately exposed to hyper- and hypo-osmotic stresses. The rate of uptake of proline and glycine-betaine increased instantaneously upon increasing the osmolarity, whereas that of other amino acids did not. This activation occurred also under conditions in which protein synthesis was inhibited was most pronounced when cells were pregrown at high osmolarity. The duration of net transport was a function of the osmotic strength of the assay medium. Glutamate uptake was not activated by an osmotic upshock, and the uptake of alanine was low under all conditions tested. When cells were subjected to osmotic downshock, a rapid efflux of accumulated glycine-betaine, proline, and alanine occurred whereas the pools of other amin acids remained unaffected. The results indicate that osmolyte efflux is, at least to some extent, mediated via specific osmotically regulated efflux systems and not via nonspecific mechanisms as has been suggested previously. PMID:8550485

  18. Intracellular pathways regulating ciliary beating of rat brain ependymal cells

    PubMed Central

    Nguyen, Thien; Chin, Wei-Chun; O’Brien, Jennifer A; Verdugo, Pedro; Berger, Albert J

    2001-01-01

    The mammalian brain ventricles are lined with ciliated ependymal cells. As yet little is known about the mechanisms by which neurotransmitters regulate cilia beat frequency (CBF). Application of 5-HT to ependymal cells in cultured rat brainstem slices caused CBF to increase. 5-HT had an EC50 of 30 μM and at 100 μM attained a near-maximal CBF increase of 52.7 ± 4.1 % (mean ± s.d.) (n= 8). Bathing slices in Ca2+-free solution markedly reduced the 5-HT-mediated increase in CBF. Fluorescence measurements revealed that 5-HT caused a marked transient elevation in cytosolic Ca2+ ([Ca2+]c) that then slowly decreased to a plateau level. Analysis showed that the [Ca2+]c transient was due to release of Ca2+ from inositol 1,4,5-trisphosphate (IP3)-sensitive stores; the plateau was probably due to extracellular Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels. Application of ATP caused a sustained decrease in CBF. ATP had an EC50 of about 50 μM and 100 μM ATP resulted in a maximal 57.5 ± 6.5 % (n= 12) decrease in CBF. The ATP-induced decrease in CBF was unaffected by lowering extracellular [Ca2+], and no changes in [Ca2+]c were observed. Exposure of ependymal cells to forskolin caused a decrease in CBF. Ciliated ependymal cells loaded with caged cAMP exhibited a 54.3 ± 7.5 % (n= 9) decrease in CBF following uncaging. These results suggest that ATP reduces CBF by a Ca2+-independent cAMP-mediated pathway. Application of 5-HT and adenosine-5′-O-3-thiotriphosphate (ATP-γ-S) to acutely isolated ciliated ependymal cells resulted in CBF responses similar to those of ependymal cells in cultured slices suggesting that these neurotransmitters act directly on these cells. The opposite response of ciliated ependymal cells to 5-HT and ATP provides a novel mechanism for their active involvement in central nervous system signalling. PMID:11179397

  19. Redox Regulation of Intracellular Zinc: Molecular Signaling in the Life and Death of Neurons

    PubMed Central

    Aizenman, Elias

    2011-01-01

    Abstract Zn2+ has emerged as a major regulator of neuronal physiology, as well as an important signaling agent in neural injury. The intracellular concentration of this metal is tightly regulated through the actions of Zn2+ transporters and the thiol-rich metal binding protein metallothionein, closely linking the redox status of the cell to cellular availability of Zn2+. Accordingly, oxidative and nitrosative stress during ischemic injury leads to an accumulation of neuronal free Zn2+ and the activation of several downstream cell death processes. While this Zn2+ rise is an established signaling event in neuronal cell death, recent evidence suggests that a transient, sublethal accumulation of free Zn2+ can also play a critical role in neuroprotective pathways activated during ischemic preconditioning. Thus, redox-sensitive proteins, like metallothioneins, may play a critical role in determining neuronal cell fate by regulating the localization and concentration of intracellular free Zn2+. Antioxid. Redox Signal. 15, 2249–2263. PMID:20849376

  20. Intracellular Na+ modulates the cAMP-dependent regulation of ion channels in the heart.

    PubMed Central

    Harvey, R D; Jurevicius, J A; Hume, J R

    1991-01-01

    The cAMP-dependent regulation of ion channels was studied by using the whole-cell configuration of the patch clamp technique. In isolated cardiac ventricular myocytes, the beta-adrenergically regulated Cl- current (ICl) exhibited an unusual dependence on Na+, such that replacement of extracellular Na+ with compounds such as tetramethylammonium, choline, Tris, or N-methyl-D-glucamine resulted in a reduction in current amplitude without changing the reversal potential. Replacement of extracellular Na+ with tetramethylammonium also reduced the magnitude of the beta-adrenergically enhanced Ca2+ current and delayed rectifier K+ current, suggesting that removal of Na+ was affecting the cAMP pathway that regulates all three currents. Replacement of extracellular Na+ also reduced ICl that was stimulated by (i) direct activation of adenylate cyclase with forskolin, (ii) inhibition of phosphodiesterase with 3-isobutyl-1-methylxanthine, (iii) exposure to the membrane-permeable cAMP derivative 8-bromoadenosine 3',5'-cyclic monophosphate, or (iv) direct phosphorylation of the channel with protein kinase A catalytic subunit. This suggests that the Na+ dependence is at a point beyond the activation of protein kinase A. The Na+ dependence of ICl regulation could not be explained by changes in intracellular Ca2+. However, the sensitivity of the ICl to changes in extracellular Na+ depended significantly on the intracellular Na+ concentration, suggesting that intracellular Na+ plays an important role in the cAMP-dependent regulation of ion channels. Images PMID:1714581

  1. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels.

    PubMed

    Clarke, Oliver B; Caputo, Alessandro T; Hill, Adam P; Vandenberg, Jamie I; Smith, Brian J; Gulbis, Jacqueline M

    2010-06-11

    Potassium channels embedded in cell membranes employ gates to regulate K+ current. While a specific constriction in the permeation pathway has historically been implicated in gating, recent reports suggest that the signature ion selectivity filter located in the outer membrane leaflet may be equally important. Inwardly rectifying K+ channels also control the directionality of flow, using intracellular polyamines to stem ion efflux by a valve-like action. This study presents crystallographic evidence of interdependent gates in the conduction pathway and reveals the mechanism of polyamine block. Reorientation of the intracellular domains, concomitant with activation, instigates polyamine release from intracellular binding sites to block the permeation pathway. Conformational adjustments of the slide helices, achieved by rotation of the cytoplasmic assembly relative to the pore, are directly correlated to the ion configuration in the selectivity filter. Ion redistribution occurs irrespective of the constriction, suggesting a more expansive role of the selectivity filter in gating than previously appreciated.

  2. Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans.

    PubMed

    Yamamoto, Yuji; Fukui, Kôichi; Koujin, Naoko; Ohya, Hiroaki; Kimura, Kazuhiko; Kamio, Yoshiyuki

    2004-09-01

    Dpr is an iron-binding protein required for oxygen tolerance in Streptococcus mutans. We previously proposed that Dpr could confer oxygen tolerance to the bacterium by sequestering intracellular free iron ions that catalyze generation of highly toxic radicals (Y. Yamamoto, M. Higuchi, L. B. Poole, and Y. Kamio, J. Bacteriol. 182:3740-3747, 2000; Y. Yamamoto, L. B. Poole, R. R. Hantgan, and Y. Kamio, J. Bacteriol. 184:2931-2939, 2002). Here, we examined the intracellular free iron status of wild-type (WT) and dpr mutant strains of S. mutans, before and after exposure to air, by using electron spin resonance spectrometry. Under anaerobic conditions, free iron ion concentrations of WT and dpr strains were 225.9 +/- 2.6 and 333.0 +/- 61.3 microM, respectively. Exposure of WT cells to air for 1 h induced Dpr expression and reduced intracellular free iron ion concentrations to 22.5 +/- 5.3 microM; under these conditions, dpr mutant cells maintained intracellular iron concentration at 230.3 +/- 28.8 microM. A decrease in cell viability and genomic DNA degradation was observed in the dpr mutant exposed to air. These data indicate that regulation of the intracellular free iron pool by Dpr is required for oxygen tolerance in S. mutans.

  3. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    PubMed

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.

  4. SerpinB1 Promotes Pancreatic β Cell Proliferation

    SciTech Connect

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  5. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  6. Spermidine, a sensor for antizyme 1 expression regulates intracellular polyamine homeostasis

    PubMed Central

    Ray, Ramesh M.; Bhattacharya, Sujoy; Bavaria, Mitul N.; Viar, Mary Jane; Johnson, Leonard R.

    2014-01-01

    Although, intracellular polyamine levels are highly regulated, it is unclear whether intracellular putrescine (PUT), spermidine (SPD), or spermine (SPM) levels act as a sensor to regulate their synthesis or uptake. Polyamines have been shown to induce AZ1 expression through a unique +1 frameshifting mechanism. However, under physiological conditions which particular polyamine induces AZ1, and thereby ODC activity, is unknown due to their inter-conversion. In this study we demonstrate that SPD regulates AZ1 expression under physiological conditions in IEC-6 cells. PUT and SPD showed potent induction of AZ1 within 4h in serum starved confluent cells grown in DMEM (control) medium. Unlike control cells, PUT failed to induce AZ1 in cells grown in DFMO containing medium, however, SPD caused a robust AZ1 induction in these cells. SPM showed very little effect on AZ1 expression in both the control and polyamine depleted cells. Only SPD induced AZ1 when S-adenosylmethionine decarboxylase (SAMDC) and/or ODC were inhibited. Surprisingly, addition of DENSpm along with DFMO restored AZ1 induction by putrescine in polyamine-depleted cells suggesting that the increased SSAT activity in response to DENSpm converted SPM to SPD leading to the expression of AZ1. This study shows that intracellular SPD levels controls AZ1 synthesis. PMID:24824458

  7. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.

    PubMed

    Vallabhapurapu, Subrahmanya D; Blanco, Víctor M; Sulaiman, Mahaboob K; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S; Qi, Xiaoyang

    2015-10-27

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.

  8. [Role of intracellular degradation system in regulation of innate immune response].

    PubMed

    Saitoh, Tatsuya

    2014-01-01

    Innate immunity is induced after sensing microbial components by pattern-recognition receptors and functions as a first line of host defense against microbes. However, innate immunity is also induced after sensing host-derived stimulatory substances such as monosodium urate crystals and causes the development of inflammatory diseases, such as gout. Therefore, a better understanding of innate immunity is required for the development of effective therapeutic treatments for infectious and inflammatory diseases. This paper summarizes recent findings on regulation of the innate immune response. Accumulating evidence has shown that the intracellular degradation system is critically involved in various cellular processes. We focused on the intracellular degradation system and have revealed the molecular mechanisms underlying regulation of the innate immune response. Ubiquitin-proteasome, autophagy and phagocyte-specific proteases most certainly regulate the innate immune response induced by infection of microbes and exposure to host-derived stimulatory substances. Therefore, intracellular degradation systems would be attractive therapeutic targets for the treatment of immune-related diseases.

  9. A protein family under 'stress' - serpin stability, folding and misfolding.

    PubMed

    Devlin, Glyn L; Bottomley, Stephen P

    2005-01-01

    The native fold of inhibitory serpins (serpin proteinase inhibitors) is metastable and therefore does not represent the most stable conformation that the primary sequence encodes for. The most stable form is adopted when the reactive centre loop (RCL) inserts, as the fourth strand, into the A b -sheet. Currently a serpin can adopt at least four more stable conformations, termed the cleaved, delta, latent and polymeric states. The accessibility of these alternative low energy folds renders the serpin molecule susceptible to mutations that can result in dysfunction and pathology. Here, we discuss the means by which the serpin can attain and preserve this metastable conformation. We also consider the triggers for misfolding to these more stable states and the mechanisms by which it occurs.

  10. Selenoprotein K modulate intracellular free Ca(2+) by regulating expression of calcium homoeostasis endoplasmic reticulum protein.

    PubMed

    Wang, Chao; Li, Ruimin; Huang, Yalan; Wang, Miao; Yang, Fan; Huang, Dana; Wu, Chunli; Li, Yue; Tang, Yijun; Zhang, Renli; Cheng, Jinquan

    2017-03-18

    Selenoprotein K (SelK) is an 11-kDa selenoprotein, which may be involved in the regulation of oxidative stress, endoplasmic reticulum (ER) stress and immune response. To explore the function of SelK in the process of immune response, several short-hairpin RNAs (shRNA) were designed for the construction of recombinant plasmids to down-regulate the expression of SelK gene in vitro. These shRNAs specifically and efficiently interfered with the expression of SelK at both mRNA and protein levels. The expression of calcium homoeostasis endoplasmic reticulum protein (CHERP) and the intracellular free Ca(2+) concentration were significantly down-regulated in anti-CD3 stimulated SelK-knockdown cells. The expression of Interleukin 2 receptor alpha chain (IL-2Rα) and the secretion of Interleukin 4 (IL-4), which play a significant role in the process of T cell activation and proliferation, were also reduced in SelK-knockdown cells. Selenomethionine (Se-Met) at an optimum concentration of 5 μM could up-regulate SelK expression and reverse the change of the expression of CHERP and the intracellular free calcium caused by SelK-knockdown. These results hereby imply SelK may regulate the release of Ca(2+) by CHERP and play an important role in the proliferation and differentiation of T cell by TCR stimulation.

  11. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling

    PubMed Central

    Miller, Evan W.; Dickinson, Bryan C.; Chang, Christopher J.

    2010-01-01

    Hydrogen peroxide (H2O2) produced by cell-surface NADPH Oxidase (Nox) enzymes is emerging as an important signaling molecule for growth, differentiation, and migration processes. However, how cells spatially regulate H2O2 to achieve physiological redox signaling over nonspecific oxidative stress pathways is insufficiently understood. Here we report that the water channel Aquaporin-3 (AQP3) can facilitate the uptake of H2O2 into mammalian cells and mediate downstream intracellular signaling. Molecular imaging with Peroxy Yellow 1 Methyl-Ester (PY1-ME), a new chemoselective fluorescent indicator for H2O2, directly demonstrates that aquaporin isoforms AQP3 and AQP8, but not AQP1, can promote uptake of H2O2 specifically through membranes in mammalian cells. Moreover, we show that intracellular H2O2 accumulation can be modulated up or down based on endogenous AQP3 expression, which in turn can influence downstream cell signaling cascades. Finally, we establish that AQP3 is required for Nox-derived H2O2 signaling upon growth factor stimulation. Taken together, our findings demonstrate that the downstream intracellular effects of H2O2 can be regulated across biological barriers, a discovery that has broad implications for the controlled use of this potentially toxic small molecule for beneficial physiological functions. PMID:20724658

  12. PERK regulates Gq protein-coupled intracellular Ca(2+) dynamics in primary cortical neurons.

    PubMed

    Zhu, Siying; McGrath, Barbara C; Bai, Yuting; Tang, Xin; Cavener, Douglas R

    2016-10-01

    PERK (EIF2AK3) is an ER-resident eIF2α kinase required for behavioral flexibility and metabotropic glutamate receptor-dependent long-term depression via its translational control. Motivated by the recent discoveries that PERK regulates Ca(2+) dynamics in insulin-secreting β-cells underlying glucose-stimulated insulin secretion, and modulates Ca(2+) signals-dependent working memory, we explored the role of PERK in regulating Gq protein-coupled Ca(2+) dynamics in pyramidal neurons. We found that acute PERK inhibition by the use of a highly specific PERK inhibitor reduced the intracellular Ca(2+) rise stimulated by the activation of acetylcholine, metabotropic glutamate and bradykinin-2 receptors in primary cortical neurons. More specifically, acute PERK inhibition increased IP3 receptor mediated ER Ca(2+) release, but decreased receptor-operated extracellular Ca(2+) influx. Impaired Gq protein-coupled intracellular Ca(2+) rise was also observed in genetic Perk knockout neurons. Taken together, our findings reveal a novel role of PERK in neurons, which is eIF2α-independent, and suggest that the impaired working memory in forebrain-specific Perk knockout mice may stem from altered Gq protein-coupled intracellular Ca(2+) dynamics in cortical pyramidal neurons.

  13. AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and autocatalytic processing in planta.

    PubMed

    Lema Asqui, Saul; Vercammen, Dominique; Serrano, Irene; Valls, Marc; Rivas, Susana; van Breusegem, Frank; Conlon, Frank L; Dangl, Jeffery L; Coll, Núria S

    2017-02-03

    The hypersensitive response (HR) is a localized programmed cell death phenomenon that occurs in response to pathogen recognition at the site of attempted invasion. Despite more than a century of research on HR, little is known about how it is so tightly regulated and how it can be contained spatially to a few cells. AtMC1 is an Arabidopsis thaliana plant metacaspase that positively regulates the HR. Here, we used an unbiased approach to identify new AtMC1 regulators. Immunoaffinity purification of AtMC1-containing complexes led us to the identification of the protease inhibitor AtSerpin1. Our data clearly showed that coimmunoprecipitation between AtMC1 and AtSerpin1 and formation of a complex between them was lost upon mutation of the AtMC1 catalytic site, and that the AtMC1 prodomain was not required for the interaction. AtSerpin1 blocked AtMC1 self-processing and inhibited AtMC1-mediated cell death. Our results constitute an in vivo example of a Serpin acting as a suicide inhibitor in plants, reminiscent of the activity of animal or viral serpins on immune/cell death regulators, including caspase-1. These results indicate a conserved function of a protease inhibitor on cell death regulators from different kingdoms with unrelated modes of action (i.e. caspases vs metacaspases).

  14. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores

    PubMed Central

    1994-01-01

    Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+]i) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca(2+)- sensitive indicator, Fura-2, we demonstrate that [Ca2+]i rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+]i to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+]i is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP]i) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP]i and low [Ca2+]i are necessary to produce pigment dispersion in erythrophores. PMID:8106546

  15. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  16. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    PubMed

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.

  17. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    PubMed

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.

  18. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    PubMed Central

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440

  19. Intracellular glutathione regulates Andrographolide-induced cytotoxicity on hepatoma Hep3B cells.

    PubMed

    Ji, Lili; Shen, Kaikai; Liu, Jun; Chen, Ying; Liu, Tianyu; Wang, Zhengtao

    2009-01-01

    Andrographolide (ANDRO), a diterpenoid lactone isolated from the traditional herbal plant Andrographis paniculata, was reported to induce apoptosis in hepatoma Hep3B cells in our previous study (Ji LL, Liu TY, Liu J, Chen Y, Wang ZT. Andrographolide inhibits human hepatoma-derived Hep3B cells growth through the activation of c-Jun N-terminal kinase. Planta Med 2007; 73: 1397-1401). The present investigation was carried out to observe whether cellular reduced glutathione (GSH) plays important roles in ANDRO-induced apoptosis. ANDRO initially increased intracellular GSH levels which then decreased later, while inhibition of cellular GSH synthesis by L-Buthionine-(S,R)-sulfoximine (BSO) augmented ANDRO-induced cytotoxicity and apoptosis in Hep3B cells. On the other hand, the thiol antioxidant dithiothreitol (DTT) rescued ANDRO-depleted cellular GSH, and abrogated ANDRO-induced cytotoxicity and apoptosis. Furthermore, BSO pretreatment augmented ANDRO-decreased expression of antioxidant protein thioredoxin 1 (Trx1), while DTT reversed this decrease. Further results showed that ANDRO increased the activity of the GSH-related antioxidant enzyme glutathione peroxidase (GPx) and the production of intracellular reactive oxygen species (ROS). Taken together, this study demonstrates that the intracellular redox system plays important roles in regulating the cytotoxicity of ANDRO on hepatoma Hep3B cells.

  20. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens

    PubMed Central

    Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.

    2015-01-01

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260

  1. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells

    PubMed Central

    Kim, Nami; Nam, Miso; Kang, Mi Sun; Lee, Jung Ok; Lee, Yong Woo; Hwang, Geum-Sook; Kim, Hyeon Soo

    2017-01-01

    This study characterizes the human metabolic response to piperine, a curcumin extract, and the details of its underlying molecular mechanism. Using 1H-NMR-based metabolome analysis, we showed the metabolic effect of piperine on skeletal muscle and found that piperine increased the level of intracellular lactate, an important metabolic intermediate that controls expression of several genes involved in mitochondrial activity. Piperine also induced the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target, acetyl-CoA carboxylase (ACC), while additionally stimulating glucose uptake in an AMPK dependent manner. Piperine also stimulates the p38 mitogen-activated protein kinase (p38 MAPK), an effect that was reversed by pretreatment with compound C, an AMPK inhibitor. Inhibition of p38 MAPK resulted in no piperine-induced glucose uptake. Increased level of lactate resulted in increased expression of mitochondrial uncoupling protein 1 (UCP1), which regulates energy expenditure, thermogenesis, and fat browning. Knock-down of AMPK blocked piperine-induced UCP1 up-regulation, demonstrating the required role of AMPK in this effect. Taken together, these results suggest that piperine leads to benign metabolic effects by activating the AMPK-p38 MAPK signaling pathway and UCP1 expression by activating intracellular lactate production in skeletal muscle. PMID:28117414

  2. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression.

    PubMed

    Soliman, Elwy M; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H; Dranoff, Jonathan A

    2009-03-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca(2+) signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca(2+) signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca(2+) chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca(2+) signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca(2+) signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca(2+) signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca(2+) signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca(2+) are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis.

  3. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration.

    PubMed

    Dingyu, Wang; Fanjie, Meng; Zhengzheng, Ding; Baosheng, Huang; Chao, Yang; Yi, Pan; Huiwen, Wu; Jun, Guo; Gang, Hu

    2016-09-01

    Intracellular tension is the most important characteristic of neuron polarization as well as the growth and regeneration of axons, which can be generated by motor proteins and conducted along the cytoskeleton. To better understand this process, we created Förster resonance energy transfer (FRET)-based tension probes that can be incorporated into microfilaments to provide a real-time measurement of forces in neuron cytoskeletons. We found that our probe could be used to assess the structural tension of neuron polarity. Nerve growth factor (NGF) upregulated structural forces, whereas the glial-scar inhibitors chondroitin sulfate proteoglycan (CSPG) and aggrecan weakened such forces. Notably, the tension across axons was distributed uniformly and remarkably stronger than that in the cell body in NGF-stimulated neurons. The mechanosensors talin/vinculin could antagonize the effect of glial-scar inhibitors via structural forces. However, E-cadherin was closely associated with glial-scar inhibitor-induced downregulation of structural forces. Talin/vinculin was involved in the negative regulation of E-cadherin transcription through the nuclear factor-kappa B pathway. Collectively, this study clarified the mechanism underlying intracellular tension in the growth and regeneration of axons which, conversely, can be regulated by talin and E-cadherin.

  4. Cloning, expression and characterization of four serpin-1 cDNA variants from the spruce budworm, Choristoneura fumiferana.

    PubMed

    Zheng, Y-P; He, W-Y; Béliveau, C; Nisole, A; Stewart, D; Zheng, S-C; Doucet, D; Cusson, M; Feng, Q-L

    2009-10-01

    Four cDNAs (Cfserpin-1a, Cfserpin-1b, Cfserpin-1c and Cfserpin-1d) of the Choristoneura fumiferana serpin-1 gene were cloned from an epidermis cDNA library. Analysis of the deduced amino acid sequences indicated that the cloned cDNAs encode four different proteins displaying identical N- but distinct C-termini, the latter region containing the inhibitory loop. The entire CfSerpin-1 gene is transcribed while the variants are generated. Antibodies generated against the purified recombinant serpins cross-reacted with the other three. Each of the four Cfserpin-1 cDNA variants was transcribed throughout larval development, from the 4th to the 6th instar, but transcript levels during the intermolt phases were generally higher than during the molting phase. The epidermis and fat body had higher levels of Cfserpin-1 transcripts than the midgut. Cfserpin-1 proteins, detected with the Cfserpin-1a antibody, were found in the epidermis, midgut, fat body, plasma and molting fluid of 6th instar larvae and pre-pupae. Prepupal and pupal insects had higher levels of the proteins than the 6th instar feeding larvae, despite a drop in transcript levels. Cfserpin-1a could bind with the serine proteinase elastase and form a complex in vitro. We hypothesize that the cloned serpins could be involved in the regulation of cuticle degradation during the insect molting cycle.

  5. Regulation of intracellular calcium by bupivacaine isomers in cardiac myocytes from Wistar rats.

    PubMed

    Chedid, Núbia G B; Sudo, Roberto T; Aguiar, Marli I S; Trachez, Margarete M; Masuda, Masako O; Zapata-Sudo, Gisele

    2006-03-01

    In this study we investigated the effects of a racemic mixture of bupivacaine (RS(+/-)bupivacaine) and its isomers (S(-)bupivacaine and R(+)bupivacaine) on the Ca2+ handling by ventricular myocytes from Wistar rats. Single ventricular myocytes were enzymatically isolated and loaded with the fluorescent Ca2+ indicator fura 2-am to estimate intracellular Ca2+ concentration during contraction and relaxation cycles. S(-)bupivacaine (10 muM) significantly increased peak amplitude and the rate of increase of Ca2+ transients in 155% +/- 54% (P < 0.05) and 194% +/- 94% (P < 0.01) of control. However, exposure to R(+)bupivacaine had no effect on either peak amplitude or rate of increase at any concentration tested. Saponin-skinned ventricular fibers were used to investigate the effect of bupivacaine on the intracellular Ca2+ regulation by sarcoplasmic reticulum (SR) and on the Ca2+ sensitivity of contractile system. S(-), R(+), and RS(+/-)bupivacaine induced Ca2+ release from SR (P < 0.01). In SR-disrupted skinned ventricular cells, bupivacaine and its isomers (5 mM) increased the sensitivity of contractile system to Ca(2+). S(-), RS(+/-), and R(+)bupivacaine significantly increased pCa50 from 5.8 +/- 0.1, 5.8 +/- 0.1, and 5.8 +/- 0.1, to 6.1 +/- 0.1 (P < 0.05), 6.0 +/- 0.1 (P < 0.05), and 6.1 +/- 0.1 (P < 0.05). Ca2+ release from SR through RyR2 activation could explain the increase of Ca2+ transients in cardiac cells. Increased intracellular Ca2+ in cardiac myocytes display a stereoselectivity to S(-)bupivacaine.

  6. Viral Polymerase-Helicase Complexes Regulate Replication Fidelity To Overcome Intracellular Nucleotide Depletion

    PubMed Central

    Stapleford, Kenneth A.; Rozen-Gagnon, Kathryn; Das, Pratyush Kumar; Saul, Sirle; Poirier, Enzo Z.; Blanc, Hervé; Vidalain, Pierre-Olivier; Merits, Andres

    2015-01-01

    ABSTRACT To date, the majority of work on RNA virus replication fidelity has focused on the viral RNA polymerase, while the potential role of other viral replicase proteins in this process is poorly understood. Previous studies used resistance to broad-spectrum RNA mutagens, such as ribavirin, to identify polymerases with increased fidelity that avoid misincorporation of such base analogues. We identified a novel variant in the alphavirus viral helicase/protease, nonstructural protein 2 (nsP2) that operates in concert with the viral polymerase nsP4 to further alter replication complex fidelity, a functional linkage that was conserved among the alphavirus genus. Purified chikungunya virus nsP2 presented delayed helicase activity of the high-fidelity enzyme, and yet purified replication complexes manifested stronger RNA polymerization kinetics. Because mutagenic nucleoside analogs such as ribavirin also affect intracellular nucleotide pools, we addressed the link between nucleotide depletion and replication fidelity by using purine and pyrimidine biosynthesis inhibitors. High-fidelity viruses were more resistant to these conditions, and viral growth could be rescued by the addition of exogenous nucleosides, suggesting that mutagenesis by base analogues requires nucleotide pool depletion. This study describes a novel function for nsP2, highlighting the role of other components of the replication complex in regulating viral replication fidelity, and suggests that viruses can alter their replication complex fidelity to overcome intracellular nucleotide-depleting conditions. IMPORTANCE Previous studies using the RNA mutagen ribavirin to select for drug-resistant variants have highlighted the essential role of the viral RNA-dependent RNA polymerase in regulating replication fidelity. However, the role of other viral replicase components in replication fidelity has not been studied in detail. We identified here an RNA mutagen-resistant variant of the nsP2 helicase

  7. Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance.

    PubMed

    Monnet, François P

    2005-12-01

    Preserving brain function and cognitive faculties during aging and psychiatric diseases (e.g. psychotic, anxiety and affective disorders, dementia) is essential for the self-reliance and quality of life of patients. Cognitive loss involves not only memory, but also motor function. The decrease of catecholaminergic and excitatory neurotransmissions, as well as of protein phosphorylation, have currently been identified as prominent biological markers of the above-mentioned diseases. Such deleterious biological events are well known to occur downstream of a progressive decline of intracellular Ca2+ signalling. This latter constitutes a key target for the neuronal plasticity that has also been reported during aging and psychiatric disorders. Most of the medicines used in psychiatry are active on the sigma-1 receptor. This membrane bound receptor is widely distributed in memory-associated cortical and motor-related brainstem areas, prompting the hypothesis that it might contribute to the pathophysiology of these behavioural brain diseases. The sigma-1 receptor is characterized by a unique mode of action by regulating both Ca2+ entry at the plasma membrane level (i.e. via potassium channels, voltage-sensitive Ca2+ channels) and Ca2+ mobilization from endoplasmic stores [i.e. via Ins(1,4,5)P3 receptors]. This review presents recent data supporting the notion that drugs acting via the endoplasmic reticulum-coupled sigma-1 receptor might reverse these deleterious events by restoring both extra- and intra-cellular Ca(2+)-dependent neuronal responses.

  8. The early embryo response to intracellular reactive oxygen species is developmentally regulated.

    PubMed

    Bain, Nathan T; Madan, Pavneesh; Betts, Dean H

    2011-01-01

    In vitro embryo production (IVP) suffers from excessive developmental failure. Its inefficiency is linked, in part, to reactive oxygen species (ROS) brought on by high ex vivo oxygen (O(2)) tensions. To further delineate the effects of ROS on IVP, the intracellular ROS levels of early bovine embryos were modulated by: (1) varying O(2) tension; (2) exogenous H(2)O(2) treatment; and (3) antioxidant supplementation. Although O(2) tension did not significantly affect blastocyst frequencies (P>0.05), 20% O(2) accelerated the rate of first cleavage division and significantly decreased and increased the proportion of permanently arrested 2- to 4-cell embryos and apoptotic 9- to 16-cell embryos, respectively, compared with embryos cultured in 5% O(2) tension. Treatment with H(2)O(2), when applied separately to oocytes, zygotes, 2- to 4-cell embryos or 9- to 16-cell embryos, resulted in a significant (P<0.05) dose-dependent decrease in blastocyst development in conjunction with a corresponding increase in the induction of either permanent embryo arrest or apoptosis in a stage-dependent manner. Polyethylene glycol-catalase supplementation reduced ROS-induced embryo arrest and/or death, resulting in a significant (P<0.05) increase in blastocyst frequencies under high O(2) culture conditions. Together, these results indicate that intracellular ROS may be signalling molecules that, outside an optimal range, result in various developmentally regulated modes of embryo demise.

  9. Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis

    PubMed Central

    Tinaztepe, Emir; Wei, Jun-Rong; Raynowska, Jenelle; Portal-Celhay, Cynthia; Thompson, Victor

    2016-01-01

    More people die every year from Mycobacterium tuberculosis infection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogen Mycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. In M. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. With M. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of the esx-3 locus to these metals. While iron regulated the esx-3 expression in both M. tuberculosis and M. smegmatis, there is a significant difference in the dynamics of this regulation. In M. smegmatis, the esx-3 locus behaved like other iron-regulated genes such as mbtB. In M. tuberculosis, both iron and zinc modestly repressed esx-3 expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction of M. tuberculosis with macrophages, leading to impaired intracellular M. tuberculosis survival. Our findings detail the regulatory differences of esx-3 in M. tuberculosis and M. smegmatis and demonstrate the importance of metal-dependent regulation of ESX-3 for virulence in M. tuberculosis. PMID:27245412

  10. Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis.

    PubMed

    Tinaztepe, Emir; Wei, Jun-Rong; Raynowska, Jenelle; Portal-Celhay, Cynthia; Thompson, Victor; Philips, Jennifer A

    2016-08-01

    More people die every year from Mycobacterium tuberculosis infection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogen Mycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. In M. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. With M. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of the esx-3 locus to these metals. While iron regulated the esx-3 expression in both M. tuberculosis and M. smegmatis, there is a significant difference in the dynamics of this regulation. In M. smegmatis, the esx-3 locus behaved like other iron-regulated genes such as mbtB In M. tuberculosis, both iron and zinc modestly repressed esx-3 expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction of M. tuberculosis with macrophages, leading to impaired intracellular M. tuberculosis survival. Our findings detail the regulatory differences of esx-3 in M. tuberculosis and M. smegmatis and demonstrate the importance of metal-dependent regulation of ESX-3 for virulence in M. tuberculosis.

  11. Ion channel regulation of intracellular calcium and airway smooth muscle function.

    PubMed

    Perez-Zoghbi, Jose F; Karner, Charlotta; Ito, Satoru; Shepherd, Malcolm; Alrashdan, Yazan; Sanderson, Michael J

    2009-10-01

    Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca(2+) concentration ([Ca(2+)](i)). Because the [Ca(2+)](i) itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca(2+)](i) and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.

  12. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed.

  13. Intracellular trafficking of guanylate-binding proteins is regulated by heterodimerization in a hierarchical manner.

    PubMed

    Britzen-Laurent, Nathalie; Bauer, Michael; Berton, Valeria; Fischer, Nicole; Syguda, Adrian; Reipschläger, Simone; Naschberger, Elisabeth; Herrmann, Christian; Stürzl, Michael

    2010-12-07

    Guanylate-binding proteins (GBPs) belong to the dynamin family of large GTPases and represent the major IFN-γ-induced proteins. Here we systematically investigated the mechanisms regulating the subcellular localization of GBPs. Three GBPs (GBP-1, GBP-2 and GBP-5) carry a C-terminal CaaX-prenylation signal, which is typical for small GTPases of the Ras family, and increases the membrane affinity of proteins. In this study, we demonstrated that GBP-1, GBP-2 and GBP-5 are prenylated in vivo and that prenylation is required for the membrane association of GBP-1, GBP-2 and GBP-5. Using co-immunoprecipitation, yeast-two-hybrid analysis and fluorescence complementation assays, we showed for the first time that GBPs are able to homodimerize in vivo and that the membrane association of GBPs is regulated by dimerization similarly to dynamin. Interestingly, GBPs could also heterodimerize. This resulted in hierarchical positioning effects on the intracellular localization of the proteins. Specifically, GBP-1 recruited GBP-5 and GBP-2 into its own cellular compartment and GBP-5 repositioned GBP-2. In addition, GBP-1, GBP-2 and GBP-5 were able to redirect non-prenylated GBPs to their compartment in a prenylation-dependent manner. Overall, these findings prove in vivo the ability of GBPs to dimerize, indicate that heterodimerization regulates sub-cellular localization of GBPs and underscore putative membrane-associated functions of this family of proteins.

  14. Positive and negative regulation of a SNARE protein by control of intracellular localization.

    PubMed

    Nakanishi, Hideki; de los Santos, Pablo; Neiman, Aaron M

    2004-04-01

    In Saccharomyces cerevisiae, the developmentally regulated Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein Spo20p mediates the fusion of vesicles with the prospore membrane, which is required for the formation of spores. Spo20p is subject to both positive and negative regulation by separate sequences in its aminoterminal domain. We report that the positive activity is conferred by a short, amphipathic helix that is sufficient to confer plasma membrane or prospore membrane localization to green fluorescent protein. In vitro, this helix binds to acidic phospholipids, and mutations that reduce or eliminate phospholipid binding in vitro inactivate Spo20p in vivo. Genetic manipulation of phospholipid pools indicates that the likely in vivo ligand of this domain is phosphatidic acid. The inhibitory activity is a nuclear targeting signal, which confers nuclear localization in vegetative cells and in cells entering meiosis. However, as cells initiate spore formation, fusions containing the inhibitory domain exit the nucleus and localize to the nascent prospore membrane. Thus, the SNARE Spo20p is both positively and negatively regulated by control of its intracellular localization.

  15. β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration

    PubMed Central

    Yu, Helen Wenshin; Chen, Yin-Quan; Huang, Chi-Ming; Liu, Ching-Yi; Chiou, Arthur; Wang, Yang-Kao; Tang, Ming-Jer; Kuo, Jean-Cheng

    2015-01-01

    Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β-PIX (PAK-interacting exchange factor-β). In H1299 cells, β-PIX's activity was found not to be down-regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β-PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β-PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β-PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity. PMID:25683605

  16. Myxomavirus-Derived Serpin Prolongs Survival and Reduces Inflammation and Hemorrhage in an Unrelated Lethal Mouse Viral Infection

    PubMed Central

    Chen, Hao; Zheng, Donghang; Abbott, Jeff; Liu, Liying; Bartee, Mee Y.; Long, Maureen; Davids, Jennifer; Williams, Jennifer; Feldmann, Heinz; Strong, James; Grau, Katrina R.; Tibbetts, Scott; Macaulay, Colin; McFadden, Grant; Thoburn, Robert; Lomas, David A.; Spinale, Francis G.; Virgin, Herbert W.

    2013-01-01

    Lethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normal serine protease inhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c+ splenocytes (macrophage and dendritic cells) and reduced CD11b+ tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis. PMID:23774438

  17. Serpin peptidase inhibitor clade A member 1 is a biomarker of poor prognosis in gastric cancer

    PubMed Central

    Kwon, C H; Park, H J; Lee, J R; Kim, H K; Jeon, T Y; Jo, H-J; Kim, D H; Kim, G H; Park, D Y

    2014-01-01

    Background: In a previous study, we reported that serpin peptidase inhibitor clade A member 1 (serpinA1) is upregulated in Snail-overexpressing gastric cancer. Although serpinA1 has been studied in several types of cancer, little is known about its roles and mechanisms of action. In this study, we examined the role of serpinA1 in the migration and invasion of gastric cancers and determined its underlying mechanism. Methods: Expression levels were assessed by western blot analyses and real-time PCR. Snail binding to serpinA1 promoter was analysed by chromatin immunoprecipitation (ChIP) assays. The roles of serpinA1 were studied using cell invasion and migration assays. In addition, the clinicopathologic and prognostic significance of serpinA1 expression were validated in 400 gastric cancer patients using immunohistochemical analysis. Results: Overexpression of Snail resulted in upregulation of serpinA1 in gastric cancer cell lines, AGS and MKN45, whereas knockdown of Snail inhibited serpinA1 expression. Chromatin immunoprecipitation analysis showed that overexpression of Snail increased Snail recruitment to the serpinA1 promoter. Overexpression of serpinA1 increased the migration and invasion of gastric cancer cells, whereas knockdown of serpinA1 decreased invasion and migration. Moreover, serpinA1 increased mRNA levels and release of metalloproteinase-8 in gastric cancer cells. Serpin peptidase inhibitor clade A member 1 was observed in the cytoplasm of tumour cells and the stroma by immunohistochemistry. Enhanced serpinA1 expression was significantly associated with increased tumour size, advanced T stage, perineural invasion, lymphovascular invasion, lymph node metastases, and shorter overall survival. Conclusions: Serpin peptidase inhibitor clade A member 1 induces the invasion and migration of gastric cancer cells and its expression is associated with the progression of gastric cancer. These results may provide a potential target to prevent invasion and

  18. A Serpin Shapes the Extracellular Environment to Prevent Influenza A Virus Maturation

    PubMed Central

    Dittmann, Meike; Hoffmann, Hans-Heinrich; Scull, Margaret A.; Gilmore, Rachel H.; Bell, Kierstin L.; Ciancanelli, Michael; Wilson, Sam J.; Crotta, Stefania; Yu, Yingpu; Flatley, Brenna; Xiao, Jing W.; Casanova, Jean-Laurent; Wack, Andreas; Bieniasz, Paul D.; Rice, Charles M.

    2015-01-01

    Summary Interferon-stimulated genes (ISGs) act in concert to provide a tight barrier against viruses. Recent studies have shed light on the contribution of individual ISG effectors to the antiviral state, but most have examined those acting on early, intracellular stages of the viral life cycle. Here, we applied an image-based screen to identify ISGs inhibiting late stages of influenza A virus (IAV) infection. We unraveled a directly antiviral function for the gene SERPINE1, encoding plasminogen activator inhibitor 1 (PAI-1). By targeting extracellular airway proteases, PAI-1 inhibits IAV glycoprotein cleavage, thereby reducing infectivity of progeny viruses. This was biologically relevant for IAV restriction in vivo. Further, partial PAI-1 deficiency, attributable to a polymorphism in human SERPINE1, conferred increased susceptibility to IAV in vitro. Together, our findings reveal that manipulating the extracellular environment to inhibit the last step in a virus life cycle is an important mechanism of the antiviral response. PMID:25679759

  19. Regulation of intracellular pH in rat lactotrophs: involvement of anionic exchangers.

    PubMed

    Garcia, L; Boué-Grabot, E; Garret, M; Sartor, P

    1997-10-01

    Regulation of the intracellular pH (pHi) of normal rat lactotrophs was studied. As this cell type, cultured with 10% FCS, can achieve a relatively alkaline pHi (7.3-7.5), we investigated the presence of a mechanism based on Cl-/HCO3- exchange. Using the pHi-sensitive probe SNARF-1 (seminaphtorodafluor) in its permeant form, SNARF-1/AM, we studied pHi recovery after acidic loading in individual cells with a microspectrofluorometric approach. We showed the involvement of anionic exchange in lactotroph cell pHi regulation. Acute CO2-bicarbonate cell acidic loading combined with external Cl- depletion induces the activation of a Cl-/HCO3- exchange. This exchange is 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid sensitive and corresponds to the type 3 anionic exchanger (AE3). However, after nigericin acidification, Na+/H+ exchange can also participate in recovery. In addition, incubation experiments strongly suggest that a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-insensitive anionic exchanger (type 2 anionic exchanger or AE2) is present in rat lactotrophs. The presence and involvement of carbonic anhydrase in pHi regulation have been demonstrated. Finally, using Northern blot and reverse transcription-PCR techniques, messenger RNAs for both AE2 and AE3 were identified in anterior pituitary cell extracts. We concluded that in normal rat lactotrophs, pHi regulation is achieved by a complex system in which Cl-/HCO3- exchange has a pivotal role.

  20. Marine sulfated glycans with serpin-unrelated anticoagulant properties.

    PubMed

    Glauser, Bianca F; Mourão, Paulo A S; Pomin, Vitor H

    2013-01-01

    Marine organisms are a rich source of sulfated polysaccharides with unique structures. Fucosylated chondroitin sulfate (FucCS) from the sea cucumber Ludwigothurea grisea and sulfated galactan from the red alga Botryocladia occidentalis are one of these unusual molecules. Besides their uncommon structures, they also exhibit high anticoagulant and antithrombotic effects. Earlier, it was considered that the anticoagulant activities of these two marine glycans were driven mainly by a catalytic serpin-dependent mechanism likewise the mammalian heparins. Its serpin-dependent anticoagulant action relies on promoting thrombin and/or factor Xa inhibition by their specific natural inhibitors (the serpins antithrombin and heparin cofactor II). However, as opposed to heparins, these two previously mentioned marine glycans were proved still capable in promoting coagulation inhibition using serpin-free plasmas. This puzzle observation was further investigated and clearly demonstrated that the cucumber FucCS and the red algal sulfated galactan have an unusual serpin-independent anticoagulant effect by inhibiting the formation of factor Xa and/or thrombin through the procoagulants tenase and prothrombinase complexes, respectively. These marine polysaccharides with unusual anticoagulant effects open clearly new perspectives for the development of new antithrombotic drugs as well as push the glycomics project.

  1. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling1[OPEN

    PubMed Central

    2016-01-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. PMID:27208308

  2. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    PubMed

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae.

  3. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis

    PubMed Central

    Abshire, Camille F.; Roy, Craig R.

    2016-01-01

    Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L

  4. Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.

    PubMed

    Kim, Mi-Yeon; Mo, Jung-Soon; Ann, Eun-Jung; Yoon, Ji-Hye; Jung, Jane; Choi, Yun-Hee; Kim, Su-Man; Kim, Hwa-Young; Ahn, Ji-Seon; Kim, Hangun; Kim, Kwonseop; Hoe, Hyang-Sook; Park, Hee-Sae

    2011-06-01

    The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD suppresses Notch1 transcriptional activity by the dissociation of the Notch1-IC-RBP-Jk complex after processing by γ-secretase. Notch1-IC is capable of forming a trimeric complex with Fbw7 and AICD, and AICD enhances the protein degradation of Notch1-IC through an Fbw7-dependent proteasomal pathway. AICD downregulates the levels of RBP-Jk protein through the lysosomal pathway. AICD-mediated degradation is involved in the preferential degradation of non-phosphorylated RBP-Jk. Collectively, our results demonstrate that AICD functions as a negative regulator in Notch1 signaling through the promotion of Notch1-IC and RBP-Jk protein degradation.

  5. Three sorghum serpin recombinant proteins inhibit midgut trypsin activity and growth of corn earworm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sorghum (Sorghum bicolor) genome contains at least 17 putative serpin (serine protease inhibitor) open reading frames, some of which are induced by pathogens. Recent transcriptome studies found that most of the putative serpins are expressed but their roles are unknown. Four sorghum serpins were...

  6. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Grösgen, Sven; Haupenthal, Viola J.; Blümel, Tamara; Hundsdörfer, Benjamin; Zimmer, Valerie C.; Mylonas, Nadine T.; Tanila, Heikki; Müller, Ulrike; Grimm, Heike S.; Hartmann, Tobias

    2015-01-01

    Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the

  7. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression.

    PubMed

    Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Grösgen, Sven; Haupenthal, Viola J; Blümel, Tamara; Hundsdörfer, Benjamin; Zimmer, Valerie C; Mylonas, Nadine T; Tanila, Heikki; Müller, Ulrike; Grimm, Heike S; Hartmann, Tobias

    2015-01-01

    Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the

  8. Regulation of Epidermal Growth Factor Receptor Signaling by Endocytosis and Intracellular Trafficking

    SciTech Connect

    Burke, Patrick; Schooler, Kevin; Wiley, H S.

    2001-06-01

    Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated following endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules using reversibly-biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. Using a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that following internalization, EGFR remained active in the early endosomes. However, receptors were inactivated prior to degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, while others, such as Eps8, were only found with intracellular receptors. During the inactivation phase, c-Cbl became EGFR-associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment-specific . In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction.

  9. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization.

    PubMed

    Miele, Claudia; Paturzo, Flora; Teperino, Raffaele; Sakane, Fumio; Fiory, Francesca; Oriente, Francesco; Ungaro, Paola; Valentino, Rossella; Beguinot, Francesco; Formisano, Pietro

    2007-11-02

    Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism.

  10. Monitoring of Intracellular Tau Aggregation Regulated by OGA/OGT Inhibitors.

    PubMed

    Lim, Sungsu; Haque, Md Mamunul; Nam, Ghilsoo; Ryoo, Nayeon; Rhim, Hyewhon; Kim, Yun Kyung

    2015-08-26

    Abnormal phosphorylation of tau has been considered as a key pathogenic mechanism inducing tau aggregation in multiple neurodegenerative disorders, collectively called tauopathies. Recent evidence showed that tau phosphorylation sites are protected with O-linked β-N-acetylglucosamine (O-GlcNAc) in normal brain. In pathological condition, tau is de-glycosylated and becomes a substrate for kinases. Despite the importance of O-GlcNAcylation in tau pathology, O-GlcNAc transferase (OGT), and an enzyme catalyzing O-GlcNAc to tau, has not been carefully investigated in the context of tau aggregation. Here, we investigated intracellular tau aggregation regulated by BZX2, an inhibitor of OGT. Upon the inhibition of OGT, tau phosphorylation increased 2.0-fold at Ser199 and 1.5-fold at Ser396, resulting in increased tau aggregation. Moreover, the BZX2 induced tau aggregation was efficiently reduced by the treatment of Thiamet G, an inhibitor of O-GlcNAcase (OGA). Our results demonstrated the protective role of OGT in tau aggregation and also suggest the counter-regulatory mechanism of OGA and OGT in tau pathology.

  11. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis.

    PubMed

    Panayiotidis, Mihalis I; Franco, Rodrigo; Bortner, Carl D; Cidlowski, John A

    2010-07-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.

  12. Regulation of monocarboxylate transporter 1 in skeletal muscle cells by intracellular signaling pathways.

    PubMed

    Narumi, Katsuya; Furugen, Ayako; Kobayashi, Masaki; Otake, Sho; Itagaki, Shirou; Iseki, Ken

    2010-01-01

    Skeletal muscle is the major producer of lactic acid in the body, but its oxidative fibers also use lactic acid as a respiratory fuel. Monocarboxylate transporter (MCT) 1 has been suggested to play a major role in influx of L-lactic acid for oxidation. The regulation mechanism of MCT1 was characterized utilizing rhabdomyosarcoma cells as an in vitro skeletal muscle model. The uptake of L-lactic acid via MCT1 was studied in the presence of various intracellular regulatory pathways, including pathways mediated by protein kinases A, C and G (PKA, PKC and PKG), protein tyrosine kinase (PTK), and Ca2+/calmodulin modulators. The results showed that PKG-, PTK-, and Ca2+/calmodulin-mediated regulatory pathways play no role in the regulation of L-lactic acid uptake, but a role for PKC- and PKA-mediated pathways was apparent. Uptake of L-lactic acid appeared to be stimulated by phorbol 12-myristate 13-acetate (PMA, a PKC activator) via an increase in Vmax of transport processes with no alteration in Km. In parallel, PMA treatment also resulted in an increase in the level of MCT1 expression. On the other hand, exposure to 8-Br-cAMP, a cAMP analog, and to forskolin, an adenylyl cyclase activator, resulted in a significant decrease in L-lactic acid uptake. Additionally, 8-Br-cAMP reduced Vmax but not Km values. Parallel to the decrease in Vmax of L-lactic acid uptake, the level of MCT1 expression was decreased in response to incubation with 8-Br-cAMP. These results indicate the possible involvement of a PKC- and PKA-mediated pathway associated with expression of MCT1 and lactate transport.

  13. The role of cAMP-mediated intracellular signaling in regulating Na+ uptake in zebrafish larvae

    PubMed Central

    Kumai, Yusuke; Kwong, Raymond W. M.

    2013-01-01

    In the current study, the role of cAMP in stimulating Na+ uptake in larval zebrafish was investigated. Treating larvae at 4 days postfertilization (dpf) with 10 μM forskolin or 1 μM 8-bromo cAMP significantly increased Na+ uptake by three-fold and twofold, respectively. The cAMP-dependent stimulation of Na+ uptake was probably unrelated to protein trafficking via microtubules because pretreatment with 200 μM colchicine or 30 μM nocodazole did not attenuate the magnitude of the response. Na+ uptake was stimulated markedly following acute (2 h) exposure to acidic water. The acid-induced increase in Na+ uptake was accompanied by a twofold elevation in whole body cAMP levels and attenuated by inhibiting PKA with 10 μM H-89. Knockdown of Na+-H+ exchanger 3b (NHE3b) attenuated, but did not abolish, the stimulation of Na+ uptake during forskolin treatment. In glial cell missing 2 morphants, in which the role of NHE3b in Na+ uptake is diminished and the Na+-Cl− cotransporter (NCC) becomes the predominant route of Na+ entry, forskolin treatment continued to increase Na+ uptake. These data suggest that at least NHE3b and NCC are targeted by cAMP in zebrafish larvae. Staining of larvae with fluorescent forskolin and propranolol revealed the presence of transmembrane adenylyl cyclase within multiple subtypes of ionocytes expressing β-adrenergic receptors. Taken together, results of the present study demonstrate that cAMP-mediated intracellular signaling may regulate multiple Na+ transporters and plays an important role in regulating Na+ uptake in zebrafish larvae during acute exposure to an acidic environment. PMID:24259461

  14. Intracellular calcium regulation among subpopulations of rat dorsal root ganglion neurons

    PubMed Central

    Lu, Shao-Gang; Zhang, Xiulin; Gold, Michael S

    2006-01-01

    Primary afferent neurons are functionally heterogeneous. To determine whether this functional heterogeneity reflects, in part, heterogeneity in the regulation of the concentration of intracellular Ca2+ ([Ca2+]i), the magnitude and decay of evoked Ca2+ transients were assessed in subpopulations of dorsal root ganglion (DRG) neurons with voltage clamp and fura-2 ratiometric imaging. To determine whether differences in evoked Ca2+ transients among subpopulations of DRG neurons reflected differences in the contribution of Ca2+ regulatory mechanisms, pharmacological techniques were employed to assess the contribution of influx, efflux, release and uptake pathways. Subpopulations of DRG neurons were defined by cell body size, binding of the plant lectin IB4 and responsiveness to the algogenic compound capsaicin (CAP). Ca2+ transients were evoked with 30 mm K+ or voltage steps to 0 mV. There were marked differences between subpopulations of neurons with respect to both the magnitude and decay of the Ca2+ transient, with the largest and most slowly decaying Ca2+ transients in small-diameter, IB4-positive, CAP-responsive neurons. The smallest and most rapidly decaying transients were in large-diameter, IB4-negative and CAP-unresponsive DRG neurons. These differences were not due to a differential distribution of voltage-gated Ca2+ currents. However, these differences did appear to reflect a differential contribution of other influx, efflux, release and uptake mechanisms between subpopulations of neurons. These results suggest that electrical activity in subpopulations of DRG neurons will have a differential influence on Ca2+-regulated phenomena such as spike adaptation, transmitter release and gene transcription. Significantly more activity should be required in large-diameter non-nociceptive afferents than in small-diameter nociceptive afferents to have a comparable influence on these processes. PMID:16945973

  15. A cell-penetrating bispecific antibody for therapeutic regulation of intracellular targets.

    PubMed

    Weisbart, Richard H; Gera, Joseph F; Chan, Grace; Hansen, James E; Li, Erica; Cloninger, Cheri; Levine, Arnold J; Nishimura, Robert N

    2012-10-01

    The therapeutic use of antibodies is restricted by the limited access of antibodies to intracellular compartments. To overcome this limitation, we developed a cell-penetrating monoclonal antibody, mAb 3E10, as an intracellular delivery vehicle for the intracellular and intranuclear delivery of antibodies constructed as bispecific single-chain Fv fragments. Because MDM2 is an important target in cancer therapy, we selected monoclonal antibody (mAb) 3G5 for intracellular transport. mAb 3G5 binds MDM2 and blocks binding of MDM2 to p53. Here, we show that the resulting 3E10-3G5 bispecific antibody retains cell-penetrating and MDM2-binding activity, increases tumor p53 levels, and inhibits growth of MDM2-addicted tumors. The use of cell-penetrating bispecific antibodies in targeted molecular therapy will significantly broaden the spectrum of accessible intracellular targets and may have a profound impact in cancer therapy.

  16. Intracellular signaling in the regulation of renal Na-K-ATPase. II. Role of eicosanoids.

    PubMed Central

    Satoh, T; Cohen, H T; Katz, A I

    1993-01-01

    We recently reported a novel intracellular mechanism of renal Na-K-ATPase regulation by agents that increase cell cAMP, which involves protein kinase A-phospholipase A2 and is mediated by one or more arachidonic acid metabolites (Satoh, T., H. T. Cohen, and A. I. Katz. 1992. J. Clin. Invest. 89:1496). The present studies were, therefore, designed to assess the role of eicosanoids in the modulation of Na-K-ATPase activity in the rat cortical collecting duct. The effect of various cAMP agonists (dopamine, fenoldopam, vasopressin, forskolin, and dibutyryl cAMP), which inhibited the pump to a similar extent (approximately 50%), was independent of altered Na entry as it was elicited in the presence of amiloride or nystatin, or when NaCl was replaced with choline Cl. This effect was completely blocked by SKF 525A or ethoxyresorufin, two inhibitors of the cytochrome P450-dependent monooxygenase pathway, or by pretreating the animals with CoCl2, which depletes cytochrome P450. Equimolar concentrations (10(-7) M) of the cyclooxygenase inhibitors indomethacin or meclofenamate caused only a partial inhibition of the cAMP agonists' effect on the pump, whereas nordihydroguaiaretic acid or A 63162, two inhibitors of the lipoxygenase pathway, were without effect. Furthermore, two products of this pathway, leukotriene B4 and leukotriene D4, had no effect on Na-K-ATPase activity, and ICI 198615, a leukotriene receptor antagonist, did not alter pump inhibition by cAMP agonists. Several P450 monoxygenase arachidonic acid metabolites (5,6-epoxyeicosatrienoic acid; 11,12-epoxyeicosatrienoic acid; 11,12-dihydroxyeicosatrienoic acid; and 12(R)-hydroxyeicosatetraenoic acid) as well as PGE2 inhibited the Na:K pump in dose-dependent manner, but the effect of PGE2 was blocked when Na availability was altered, whereas that of 12(R)-HETE remained unchanged. We conclude that the cytochrome P450-monooxygenase pathway of the arachidonic acid cascade plays a major role in the modulation of Na

  17. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation.

    PubMed

    Chamaillard, Mathias; Girardin, Stephen E; Viala, Jérôme; Philpott, Dana J

    2003-09-01

    The innate immune system is the most ancestral and ubiquitous system of defence against microbial infection. The microbial sensing proteins involved in innate immunity recognize conserved and often structural components of microorganisms. One class of these pattern-recognition molecules, the Toll-like receptors (TLRs), are involved in detection of microbes in the extracellular compartment whereas a newly discovered family of proteins, the NBS-LRR proteins (for nucleotide-binding site and leucine-rich repeat), are involved in intracellular recognition of microbes and their products. NBS-LRR proteins are characterized by three structural domains: a C-terminal leucine-rich repeat (LRR) domain able to sense a microbial motif, an intermediary nucleotide binding site (NBS) essential for the oligomerization of the molecule that is necessary for the signal transduction induced by different N-terminal effector motifs, such as a pyrin domain (PYD), a caspase-activating and recruitment domain (CARD) or a baculovirus inhibitor of apoptosis protein repeat (BIR) domain. Two of these family members, Nod1 and Nod2, play a role in the regulation of pro-inflammatory pathways through NF-kappaB induced by bacterial ligands. Recently, it was shown that Nod2 recognizes a specific peptidoglycan motif from bacteria, muramyl dipeptide (MDP). A surprising number of human genetic disorders have been linked to NBS-LRR proteins. For example, mutations in Nod2, which render the molecule insensitive to MDP and unable to induce NF-kappaB activation when stimulated, are associated with susceptibility to a chronic intestinal inflammatory disorder, Crohn's disease. Conversely, mutations in the NBS region of Nod2 induce a constitutive activation of NF-kappaB and are responsible for Blau syndrome, another auto-inflammatory disease. Nalp3, which is an NBS-LRR protein with an N-terminal Pyrin domain, is also implicated in rare auto-inflammatory disorders. In conclusion, NBS-LRR molecules appear as a new

  18. Genetic identification of intracellular trafficking regulators involved in Notch-dependent binary cell fate acquisition following asymmetric cell division.

    PubMed

    Le Bras, Stéphanie; Rondanino, Christine; Kriegel-Taki, Géraldine; Dussert, Aurore; Le Borgne, Roland

    2012-10-15

    Notch signalling is involved in numerous cellular processes during development and throughout adult life. Although ligands and receptors are largely expressed in the whole organism, activation of Notch receptors only takes place in a subset of cells and/or tissues and is accurately regulated in time and space. Previous studies have demonstrated that endocytosis and recycling of both ligands and/or receptors are essential for this regulation. However, the precise endocytic routes, compartments and regulators involved in the spatiotemporal regulation are largely unknown. In order to identify intracellular trafficking regulators of Notch signalling, we have undertaken a tissue-specific dsRNA genetic screen of candidates potentially involved in endocytosis and recycling within the endolysosomal pathway. dsRNA against 418 genes was induced in the Drosophila melanogaster sensory organ lineage in which Notch signalling regulates binary cell fate acquisition. Gain or loss of Notch signalling phenotypes were observed in adult sensory organs for 113 of them. Furthermore, 26 genes were found to regulate the steady state localisation of Notch, Sanpodo, a Notch co-factor, and/or Delta in the pupal lineage. In particular, we identified 20 genes with previously unknown function in D. melanogaster intracellular trafficking. Among them, we identified CG2747 and we show that it regulates the localisation of clathrin adaptor AP-1 complex, a negative regulator of Notch signalling. Together, our results further demonstrate the essential function of intracellular trafficking in regulating Notch-signalling-dependent binary cell fate acquisition and constitute an additional step toward the elucidation of the routes followed by Notch receptor and ligands during signalling.

  19. Miropin, a novel bacterial serpin from the periodontopathogen Tannerella forsythia, inhibits a broad range of proteases by using different peptide bonds within the reactive center loop.

    PubMed

    Ksiazek, Miroslaw; Mizgalska, Danuta; Enghild, Jan J; Scavenius, Carsten; Thogersen, Ida B; Potempa, Jan

    2015-01-02

    All prokaryotic genes encoding putative serpins identified to date are found in environmental and commensal microorganisms, and only very few prokaryotic serpins have been investigated from a mechanistic standpoint. Herein, we characterized a novel serpin (miropin) from the human pathogen Tannerella forsythia, a bacterium implicated in initiation and progression of human periodontitis. In contrast to other serpins, miropin efficiently inhibited a broad range of proteases (neutrophil and pancreatic elastases, cathepsin G, subtilisin, and trypsin) with a stoichiometry of inhibition of around 3 and second-order association rate constants that ranged from 2.7 × 10(4) (cathepsin G) to 7.1 × 10(5) m(-1)s(-1) (subtilisin). Inhibition was associated with the formation of complexes that were stable during SDS-PAGE. The unusually broad specificity of miropin for target proteases is achieved through different active sites within the reactive center loop upstream of the P1-P1' site, which was predicted from an alignment of the primary structure of miropin with those of well studied human and prokaryotic serpins. Thus, miropin is unique among inhibitory serpins, and it has apparently evolved the ability to inhibit a multitude of proteases at the expense of a high stoichiometry of inhibition and a low association rate constant. These characteristics suggest that miropin arose as an adaptation to the highly proteolytic environment of subgingival plaque, which is exposed continually to an array of host proteases in the inflammatory exudate. In such an environment, miropin may function as an important virulence factor by protecting bacterium from the destructive activity of neutrophil serine proteases. Alternatively, it may act as a housekeeping protein that regulates the activity of endogenous T. forsythia serine proteases.

  20. Miropin, a Novel Bacterial Serpin from the Periodontopathogen Tannerella forsythia, Inhibits a Broad Range of Proteases by Using Different Peptide Bonds within the Reactive Center Loop*

    PubMed Central

    Ksiazek, Miroslaw; Mizgalska, Danuta; Enghild, Jan J.; Scavenius, Carsten; Thogersen, Ida B.; Potempa, Jan

    2015-01-01

    All prokaryotic genes encoding putative serpins identified to date are found in environmental and commensal microorganisms, and only very few prokaryotic serpins have been investigated from a mechanistic standpoint. Herein, we characterized a novel serpin (miropin) from the human pathogen Tannerella forsythia, a bacterium implicated in initiation and progression of human periodontitis. In contrast to other serpins, miropin efficiently inhibited a broad range of proteases (neutrophil and pancreatic elastases, cathepsin G, subtilisin, and trypsin) with a stoichiometry of inhibition of around 3 and second-order association rate constants that ranged from 2.7 × 104 (cathepsin G) to 7.1 × 105 m−1s−1 (subtilisin). Inhibition was associated with the formation of complexes that were stable during SDS-PAGE. The unusually broad specificity of miropin for target proteases is achieved through different active sites within the reactive center loop upstream of the P1-P1′ site, which was predicted from an alignment of the primary structure of miropin with those of well studied human and prokaryotic serpins. Thus, miropin is unique among inhibitory serpins, and it has apparently evolved the ability to inhibit a multitude of proteases at the expense of a high stoichiometry of inhibition and a low association rate constant. These characteristics suggest that miropin arose as an adaptation to the highly proteolytic environment of subgingival plaque, which is exposed continually to an array of host proteases in the inflammatory exudate. In such an environment, miropin may function as an important virulence factor by protecting bacterium from the destructive activity of neutrophil serine proteases. Alternatively, it may act as a housekeeping protein that regulates the activity of endogenous T. forsythia serine proteases. PMID:25389290

  1. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour

    PubMed Central

    Motamedi-Shad, Neda; Jagger, Alistair M.; Liedtke, Maximilian; Faull, Sarah V.; Nanda, Arjun Scott; Salvadori, Enrico; Wort, Joshua L.; Kay, Christopher W.M.; Heyer-Chauhan, Narinder; Miranda, Elena; Perez, Juan; Ordóñez, Adriana; Haq, Imran; Irving, James A.; Lomas, David A.

    2016-01-01

    Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A — on the opposite face of the molecule — more liable to adopt an ‘open’ state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin–enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the ‘open’ state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation. PMID:27407165

  2. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid.

    PubMed

    Kwak, Min-Kyu; Song, Sung-Hyun; Ku, MyungHee; Kang, Sa-Ouk

    2015-07-08

    Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression.

  3. The reaction of serpins with proteinases involves important enthalpy changes.

    PubMed

    Boudier, C; Bieth, J G

    2001-08-21

    When active serpins are proteolytically inactivated in a substrate-like reaction, they undergo an important structural transition with a resultant increase in their conformational stability. We have used microcalorimetry to show that this conformational alteration is accompanied by an important enthalpy change. For instance, the cleavage of alpha(1)-proteinase inhibitor by Pseudomonas aeruginosa elastase, Staphylococcus aureus V8 proteinase, or papain and that of antithrombin by leukocyte elastase are characterized by large enthalpy changes (DeltaH = -53 to -63 kcal mol(-1)). The former reaction also has a large and negative heat capacity (DeltaC(p)() = -566 cal K(-1) mol(-1)). In contrast, serpins release significantly less heat when they act as proteinase inhibitors. For example, the inhibition of pancreatic elastase, leukocyte elastase, and pancreatic chymotrypsin by alpha(1)-proteinase inhibitor and that of pancreatic trypsin and coagulation factor Xa by antithrombin are accompanied by a DeltaH of -20 to -31 kcal mol(-1). We observe no heat release upon proteolytic cleavage of inactive serpins or following inhibition of serine proteinases by canonical inhibitors or upon acylation of chymotrypsin by N-trans-cinnamoylimidazole. We suggest that part of the large enthalpy change that occurs during the structural transition of serpins is used to stabilize the proteinase in its inactive state.

  4. NHE1 is the sodium-hydrogen exchanger active in acute intracellular pH regulation in preimplantation mouse embryos.

    PubMed

    Siyanov, Violetta; Baltz, Jay M

    2013-06-01

    Sodium-hydrogen exchangers (NHE) of the Slc9 gene family are the major regulators of intracellular pH against acidosis in mammalian cells. Of five plasma membrane NHE isoforms, mouse oocytes and preimplantation embryos express mRNAs encoding NHE1 (SLC9A1), NHE3 (SLC9A3), and NHE4 (SLC9A4), with higher mRNA levels for each in oocytes through one-cell stage embryos and lower levels after the two-cell stage. NHE2 (SLC9A2) and NHE5 (SLC9A5) are not expressed. Measurements of intracellular pH during recovery from induced acidosis indicated that recovery occurred via NHE activity at all preimplantation stages assessed (one-cell, two-cell, eight-cell and morula). Recovery from acidosis at each stage was entirely inhibited by cariporide, which is very highly selective for NHE1. In contrast, the moderately NHE3-selective inhibitor S3226 did not preferentially block recovery, nor did adding S3226 increase inhibition over cariporide alone, indicating that NHE3 did not play a role. There was no indication of NHE4 activity. Another regulator of intracellular pH against acidosis, the sodium-dependent bicarbonate/chloride exchanger (NDBCE; SLC4A8), had low or absent activity in two-cell embryos. Thus, NHE1 appears to be the only significant regulator of intracellular pH in preimplantation mouse embryos. Culturing embryos from the one-cell or two-cell stages in acidotic medium inhibited their development. Unexpectedly, inhibition of NHE1 with cariporide, NDBCE with DIDS, or both together did not affect embryo development to the blastocyst stage more substantially under conditions of chronic acidosis than at normal pH. Preimplantation mouse embryos thus appear to have limited capacity to resist chronic acidosis using intracellular pH regulatory mechanisms.

  5. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.

    PubMed

    Schewe, Bettina; Blenau, Wolfgang; Walz, Bernd

    2012-04-15

    Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na(+)-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na(+)-dependent glutamate transporter; (2) the maintenance of resting pH(i) is Na(+), Cl(-), concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na(+) sensitive and requires V-ATPase activity; (4) the Na(+)/H(+) antiporter is not involved in pH(i) recovery after a NH(4)Cl prepulse; and (5) at least one Na(+)-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na(+)-dependent transporter maintain normal pH(i) values of pH 7.5. We have also detected the presence of a Na(+)-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells.

  6. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  7. CaMKII regulates intracellular Ca²⁺ dynamics in native endothelial cells.

    PubMed

    Toussaint, Fanny; Charbel, Chimène; Blanchette, Alexandre; Ledoux, Jonathan

    2015-09-01

    Localized endothelial Ca(2+) signalling, such as Ca(2+) pulsars, can modulate the contractile state of the underlying vascular smooth muscle cell through specific endothelial targets. In addition to K(Ca)3.1 as a target, Ca(2+) pulsars, an IP3R-dependent pulsatile Ca(2+) release from the endoplasmic reticulum (ER) could activate a frequency-sensitive Ca(2+)-dependent kinase such as CaMKII. In the absence of extracellular Ca(2+), acetylcholine increased endothelial CaMKII phosphorylation and activation, thereby suggesting CaMKII activation independently of Ca(2+) influx. Herein, a reciprocal relation where CaMKII controls endothelial Ca(2+) dynamics has been investigated in mesenteric arteries. Both CaMKIIα and β isoforms have been identified in endothelial cells and close proximity (<40 nm) suggests their association in heteromultimers. Intracellular Ca(2+) monitoring with high speed confocal microscopy then showed that inhibition of CaMKII with KN-93 significantly increased the population of Ca(2+) pulsars active sites (+89%), suggesting CaMKII as a major regulator of Ca(2+) pulsars in native endothelium. Mechanistic insights were then sought through the elucidation of the impact of CaMKII on ER Ca(2+) store. ER Ca(2+) emptying was accelerated by CaMKII inhibition and ER Ca(2+) content was assessed using ionomycin. Exposure to KN-93 strongly diminished ER Ca(2+) content (-61%) by relieving CaMKII-dependent inhibition of IP3 receptors (IP3R). Moreover, in situ proximity ligation assay suggested CaMKII-IP3R promiscuity, essential condition for a protein-protein interaction. Interestingly, segregation of IP3R within myoendothelial projection (MEP) appears to be isoform-specific. Hence, only IP3R type 1 and type 2 are detected within fenestrations of the internal elastic lamina, sites of MEP, whilst type 3 is absent from these structures. In summary, CaMKII seems to act as a Ca(2+)-sensitive switch of a negative feedback loop regulating endothelial Ca(2

  8. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling.

    PubMed

    Paul, Manash K; Bisht, Bharti; Darmawan, Daphne O; Chiou, Richard; Ha, Vi L; Wallace, William D; Chon, Andrew T; Hegab, Ahmed E; Grogan, Tristan; Elashoff, David A; Alva-Ornelas, Jackelyn A; Gomperts, Brigitte N

    2014-08-07

    Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation. Changing ROS levels activate Nrf2, which activates the Notch pathway to stimulate ABSC self-renewal and an antioxidant program that scavenges intracellular ROS, returning overall ROS levels to a low state to maintain homeostatic balance. This redox-mediated regulation of lung stem cell function has significant implications for stem cell biology, repair of lung injuries, and diseases such as cancer.

  9. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    PubMed

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.

  10. Silk gland-specific proteinase inhibitor serpin16 from the Bombyx mori shows cysteine proteinase inhibitory activity.

    PubMed

    Guo, Peng-Chao; Dong, Zhaoming; Xiao, Li; Li, Tao; Zhang, Yan; He, Huawei; Xia, Qingyou; Zhao, Ping

    2015-01-30

    Serpins (serine proteinase inhibitors) are widely distributed in different species and are well known for their inhibitory activities towards serine proteinases. Here, we report the functional characterization of Bombyx mori serpin16. Expression analysis showed that serpin16 was specifically expressed at high levels in the silk gland at both the transcriptional and translational levels. Moreover, homology modeling and multi-sequence alignment suggested that serpin16 had a canonical serpin fold, but it contained a unique reactive center loop, which was obviously shorter than that of typical serpins. Inhibitory activity analyses revealed that the target proteinase of serpin18 is a cysteine proteinase, rather than a serine proteinase. Furthermore, a Michaelis complex model of serpin16 with its target proteinase was constructed to explain the structural basis of how serpin16 recognizes the cysteine proteinase and its target specificity.

  11. Novel Combinatorial Therapeutic Targeting of PAI-1 (SERPINE1) Gene Expression in Alzheimer's Disease

    PubMed Central

    Kutz, Stacie M.; Higgins, Craig E.; Higgins, Paul J.

    2013-01-01

    Summary Accumulation of neurotoxic amyloid peptides (Aβ) in the brain, generated by β-site proteolytic processing of the amyloid precursor protein (APP), is the hallmark pathophysiologic feature of Alzheimer's disease. The plasmin-activating cascade, in which urokinase (uPA) and tissue-type (tPA) plasminogen activators convert plasminogen to the broad-spectrum protease plasmin, appears to serve a protective, Aβ-clearing, role in the central nervous system. Plasmin degrades Aβ and catalyzes α- site APP proteolysis generating nontoxic peptides. Plasmin activation in the brain is negatively regulated by the fast-acting clade E serine protease inhibitor (SERPIN) plasminogen activator inhibitor type-1 (PAI-1; SERPINE1) resulting in Aβ accumulation. PAI-1 and its major physiological inducer TGF-β1, moreover, are both increased in Alzheimer's disease models and implicated in the etiology and progression of human neurodegenerative disorders. Current findings support the hypothesis that targeting of PAI-1 function (by small molecule drugs) and/or gene expression (by histone deacetylase inhibitors) may constitute a clinically-relevant molecular approach to the therapy of neurodegenerative diseases associated with increased PAI-1 levels. PMID:23847772

  12. MENT, a heterochromatin protein that mediates higher order chromatin folding, is a new serpin family member.

    PubMed

    Grigoryev, S A; Bednar, J; Woodcock, C L

    1999-02-26

    Terminal cell differentiation is correlated with the extensive sequestering of previously active genes into compact transcriptionally inert heterochromatin. In vertebrate blood cells, these changes can be traced to the accumulation of a developmentally regulated heterochromatin protein, MENT. Cryoelectron microscopy of chicken granulocyte chromatin, which is highly enriched with MENT, reveals exceptionally compact polynucleosomes, which maintain a level of higher order folding above that imposed by linker histones. The amino acid sequence of MENT reveals a close structural relationship with serpins, a large family of proteins known for their ability to undergo dramatic conformational transitions. Conservation of the "hinge region" consensus in MENT indicates that this ability is retained by the protein. MENT is distinguished from the other serpins by being a basic protein, containing several positively charged surface clusters, which are likely to be involved in ionic interactions with DNA. One of the positively charged domains bears a significant similarity to the chromatin binding region of nuclear lamina proteins and with the A.T-rich DNA-binding motif, which may account for the targeting of MENT to peripheral heterochromatin. MENT ectopically expressed in a mammalian cell line is transported into nuclei and is associated with intranuclear foci of condensed chromatin.

  13. Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution.

    PubMed

    Takagi, Shingo; Takamatsu, Hideyasu; Sakurai-Ozato, Nami

    2009-01-01

    The intracellular distribution of organelles plays a pivotal role in the maintenance and adaptation of a wide spectrum of cellular activities in plants. Chloroplasts are a special type of organelle able to photosynthesize, capturing light energy to fix atmospheric CO2. Consequently, the intracellular positioning of chloroplasts is crucial for plant growth and development. Knowledge of the photoreceptors and cellular apparatus responsible for chloroplast movement has gradually accumulated over time, yet recent advances have allowed improved understanding. In this article, several aspects of research progress into the mechanisms for maintaining the specific intracellular distribution patterns of chloroplasts, namely, chloroplast anchoring, are summarized, together with a brief consideration of the future prospects of this subject. Our discussion covers developmental, physiological, ecophysiological, and recent cell biological research areas.

  14. Magnesium regulates intracellular ionized calcium concentration and cell geometry in vascular smooth muscle cells (VSMC)

    SciTech Connect

    Zhang, A.; Cheng, T.P.; Altura, B.M. )

    1991-03-11

    It has been suggested that the extracellular Mg{sup 2+} may modulate contractility of VSMC by controlling the cellular level of free Ca{sup 2+}. The present studies were designed to determine the effects of (Mg{sup 2+}) on the distribution of intracellular free Ca{sup 2+} using digital imaging fluorescence microscopy of Fura-2 fluorescence of single VSMC cultured from rat aortas. When incubated with HEPES buffer solution containing 1.2mM Mg{sup 2+}, the myocytes are spindle-shaped, and the basal level of (Ca{sup 2+}){sub i} estimated from the ratio (F340/F380) is 96.6 {plus minus} 7.9nM with a heterogeneous distribution. (Mg{sup 2+}){sub o} withdrawal from the incubation medium induces consistently a dramatic increment of (Ca{sup 2+}){sub i} up to 579.6 {plus minus} 39.3nM, about a 5.8-fold elevation compared to control experiments. Similarly, lowering (Mg{sup 2+}){sub o} to 0.3mM (the lowest physiological range) elevates (Ca{sup 2+}){sub i} to the intermediate level of 348.0 {plus minus} 31.5nM. However, the heterogeneous distribution of (Ca{sup 2+}){sub i} is still evident when (Mg{sup 2+}){sub o} is lowered. Simultaneously to the (Ca{sup 2+}){sub i} increments, cell shapes were changed. In contrast, elevation of (Mg{sup 2+}){sub o} to 4.8mM was found to decrease (Ca{sup 2+}){sub i} to 72.0 {plus minus} 4.6nM. Removal of (Ca{sup 2+}){sub o}, however, abolished the increments of (Ca{sup 2+}){sub i} induced by (Mg{sup 2+}){sub o} withdrawal. These results demonstrate that (Mg{sup 2+}){sub o} regulated (Ca{sup 2+}){sub i} and geometry of VSMC, probably through controlling plasma membrane permeability to Ca{sup 2+}.

  15. High-antibody-producing Chinese hamster ovary cells up-regulate intracellular protein transport and glutathione synthesis.

    PubMed

    Orellana, Camila A; Marcellin, Esteban; Schulz, Benjamin L; Nouwens, Amanda S; Gray, Peter P; Nielsen, Lars K

    2015-02-06

    Chinese hamster ovary (CHO) cells are the preferred production host for therapeutic monoclonal antibodies (mAb) due to their ability to perform post-translational modifications and their successful approval history. The completion of the genome sequence for CHO cells has reignited interest in using quantitative proteomics to identify markers of good production lines. Here we applied two different proteomic techniques, iTRAQ and SWATH, for the identification of expression differences between a high- and low-antibody-producing CHO cell lines derived from the same transfection. More than 2000 proteins were quantified with 70 of them classified as differentially expressed in both techniques. Two biological processes were identified as differentially regulated by both methods: up-regulation of glutathione biosynthesis and down-regulation of DNA replication. Metabolomic analysis confirmed that the high producing cell line displayed higher intracellular levels of glutathione. SWATH further identified up-regulation of actin filament processes and intracellular transport and down regulation of several growth-related processes. These processes may be important for conferring high mAb production and as such are promising candidates for targeted engineering of high-expression cell lines.

  16. Regulation of melatonin production and intracellular calcium concentrations in the trout pineal organ.

    PubMed

    Meissl, H; Kroeber, S; Yáñez, J; Korf, H W

    1996-12-01

    The present in vitro study correlates measurements of the melatonin production from trout pineal organs with those of the intracellular calcium concentration in pinealocytes. Melatonin production increases with decreasing irradiance and shows maximal values in darkness. Some pinealocytes exhibit spontaneous calcium oscillations, although most of them have a stable basal calcium concentration. Diminishing extracellular calcium and enhancing magnesium reduces melatonin release in the light-and dark-adapted state. The application of Co2+ decreases melatonin secretion in the mesopic and scotopic range, reversibly blocks spontaneous calcium oscillations, reduces the basal intracellular calcium concentration in non-oscillating pinealocytes, and inhibits the KCl-induced rise in intracellular calcium. Application of glutamate, norepinephrine, isoproterenol, or dopamine has no significant effect on melatonin secretion. Norepinephrine does not influence the calcium concentration in any of the trout pinealocytes. Treatment with the GABAA-receptor agonist muscimol causes a slight reduction of melatonin release in the mesopic and scotopic range of illumination, without affecting intracellular calcium concentrations. Thus, Co2+ and low calcium/high magnesium buffer reduce melatonin release through an action on the calcium concentration in trout pinealocytes and not through a blockade of synaptic transmission. All the data show that the trout pineal organ synthesizes and releases melatonin in relation to the irradiance of the incident light and that neuronal inputs have a minor, if any, influence on melatonin synthesis.

  17. ESCRTs regulate amyloid precursor protein sorting in multivesicular bodies and intracellular amyloid-β accumulation.

    PubMed

    Edgar, James R; Willén, Katarina; Gouras, Gunnar K; Futter, Clare E

    2015-07-15

    Intracellular amyloid-β (Aβ) accumulation is a key feature of early Alzheimer's disease and precedes the appearance of Aβ in extracellular plaques. Aβ is generated through proteolytic processing of amyloid precursor protein (APP), but the intracellular site of Aβ production is unclear. APP has been localized to multivesicular bodies (MVBs) where sorting of APP onto intraluminal vesicles (ILVs) could promote amyloidogenic processing, or reduce Aβ production or accumulation by sorting APP and processing products to lysosomes for degradation. Here, we show that APP localizes to the ILVs of a subset of MVBs that also traffic EGF receptor (EGFR), and that it is delivered to lysosomes for degradation. Depletion of the endosomal sorting complexes required for transport (ESCRT) components, Hrs (also known as Hgs) or Tsg101, inhibited targeting of APP to ILVs and the subsequent delivery to lysosomes, and led to increased intracellular Aβ accumulation. This was accompanied by dramatically decreased Aβ secretion. Thus, the early ESCRT machinery has a dual role in limiting intracellular Aβ accumulation through targeting of APP and processing products to the lysosome for degradation, and promoting Aβ secretion.

  18. Characterization of intracellular growth regulator icgR by utilizing transcriptomics to identify mediators of pathogenesis in Shigella flexneri.

    PubMed

    Morris, Carolyn R; Grassel, Christen L; Redman, Julia C; Sahl, Jason W; Barry, Eileen M; Rasko, David A

    2013-09-01

    Shigella species Gram-negative bacteria which cause a diarrheal disease, known as shigellosis, by invading and destroying the colonic mucosa and inducing a robust inflammatory response. With no vaccine available, shigellosis annually kills over 600,000 children in developing countries. This study demonstrates the utility of combining high-throughput bioinformatic methods with in vitro and in vivo assays to provide new insights into pathogenesis. Comparisons of in vivo and in vitro gene expression identified genes associated with intracellular growth. Additional bioinformatics analyses identified genes that are present in S. flexneri isolates but not in the three other Shigella species. Comparison of these two analyses revealed nine genes that are differentially expressed during invasion and that are specific to S. flexneri. One gene, a DeoR family transcriptional regulator with decreased expression during invasion, was further characterized and is now designated icgR, for intracellular growth regulator. Deletion of icgR caused no difference in growth in vitro but resulted in increased intracellular replication in HCT-8 cells. Further in vitro and in vivo studies using high-throughput sequencing of RNA transcripts (RNA-seq) of an isogenic ΔicgR mutant identified 34 genes that were upregulated under both growth conditions. This combined informatics and functional approach has allowed the characterization of a gene and pathway previously unknown in Shigella pathogenesis and provides a framework for further identification of novel virulence factors and regulatory pathways.

  19. Effect of zinc binding residues in growth hormone (GH) and altered intracellular zinc content on regulated GH secretion.

    PubMed

    Petkovic, Vibor; Miletta, Maria Consolata; Eblé, Andrée; Iliev, Daniel I; Binder, Gerhard; Flück, Christa E; Mullis, Primus E

    2013-11-01

    Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.

  20. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.

  1. Regulation of cAMP Intracellular Levels in Human Platelets Stimulated by 2-Arachidonoylglycerol.

    PubMed

    Signorello, Maria Grazia; Leoncini, Giuliana

    2016-05-01

    We demonstrated that in human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) decreased dose- and time-dependently cAMP intracellular levels. No effect on cAMP decrease induced by 2-AG was observed in the presence of the adenylate cyclase inhibitor SQ22536 as well in platelets pretreated with the thromboxane A2 receptor antagonist, SQ29548 or with aspirin, inhibitor of arachidonic acid metabolism through the cyclooxygenase pathway. An almost complete recovering of cAMP level was measured in platelets pretreated with the specific inhibitor of phosphodiesterase (PDE) 3A, milrinone. In platelets pretreated with LY294002 or MK2206, inhibitors of PI3K/AKT pathway, and with U73122, inhibitor of phospholipase C pathway, only a partial prevention was shown. cAMP intracellular level depends on synthesis by adenylate cyclase and hydrolysis by PDEs. In 2-AG-stimulated platelets adenylate cyclase activity seems to be unchanged. In contrast PDEs appear to be involved. In particular PDE3A was specifically activated, as milrinone reversed cAMP reduction by 2-AG. 2-AG enhanced PDE3A activity through its phosphorylation. The PI3K/AKT pathway and PKC participate to this PDE3A phosphorylation/activation mechanism as it was greatly inhibited by platelet pretreatment with LY294002, MK2206, U73122, or the PKC specific inhibitor GF109203X. Taken together these data suggest that 2-AG potentiates its power of platelet agonist reducing cAMP intracellular level.

  2. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  3. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice

    SciTech Connect

    Zemel, M.B.; Kim, J.H.; Woychik, R.P.; Michaud, E.J.; Hadwell, S.H.; Patel, I.R.; Wilkison, W.O.

    1995-05-23

    Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca{sup 2+} is believed to play a role in mediating insulin action and dysregulation of Ca{sup 2+} flux is observed in diabetic animals and humans, we examined the status of intracellular Ca{sup 2+} in mice carrying the dominant agouti allele, viable yellow (A{sup vy}). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca{sup 2+}]{sub i}) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca{sup 2+}]{sub i} in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca{sup 2+}]{sub i}. 36 refs., 3 figs., 2 tabs.

  4. Protein-protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression.

    PubMed

    Shao, Dongmin; Okuse, Kenji; Djamgoz, Mustafa B A

    2009-07-01

    Voltage-gated sodium channels (VGSCs), classically known to play a central role in excitability and signalling in nerves and muscles, have also been found to be expressed in a range of 'non-excitable' cells, including lymphocytes, fibroblasts and endothelia. VGSC abnormalities are associated with various diseases including epilepsy, long-QT syndrome 3, Brugada syndrome, sudden infant death syndrome and, more recently, various human cancers. Given their pivotal role in a wide range of physiological and pathophysiological processes, regulation of functional VGSC expression has been the subject of intense study. An emerging theme is post-translational regulation and macro-molecular complexing by protein-protein interactions and intracellular trafficking, leading to changes in functional VGSC expression in plasma membrane. This partially involves endoplasmic reticulum associated degradation and ubiquitin-proteasome system. Several proteins have been shown to associate with VGSCs. Here, we review the interactions involving VGSCs and the following proteins: p11, ankyrin, syntrophin, beta-subunit of VGSC, papin, ERM and Nedd4 proteins. Protein kinases A and C, as well as Ca(2+)-calmodulin dependent kinase II that have also been shown to regulate intracellular trafficking of VGSCs by changing the balance of externalization vs. internalization, and an effort is made to separate these effects from the short-term phosphorylation of mature proteins in plasma membrane. Two further modulatory mechanisms are reciprocal interactions with the cytoskeleton and, late-stage, activity-dependent regulation. Thus, the review gives an updated account of the range of post-translational molecular mechanisms regulating functional VGSC expression. However, many details of VGSC subtype-specific regulation and pathophysiological aspects remain unknown and these are highlighted throughout for completeness.

  5. The Keap1/Nrf2 Protein Axis Plays a Role in Osteoclast Differentiation by Regulating Intracellular Reactive Oxygen Species Signaling*

    PubMed Central

    Kanzaki, Hiroyuki; Shinohara, Fumiaki; Kajiya, Mikihito; Kodama, Tetsuya

    2013-01-01

    Reactive oxygen species (ROS) act as intracellular signaling molecules in the regulation of receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation, but they also have cytotoxic effects that include peroxidation of lipids and oxidative damage to proteins and DNA. Cellular protective mechanisms against oxidative stress include transcriptional control of cytoprotective enzymes by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). This study investigated the relationship between Nrf2 and osteoclastogenesis. Stimulation of osteoclast precursors (mouse primary peritoneal macrophages and RAW 264.7 cells) with RANKL resulted in the up-regulation of kelch-like ECH-associated protein 1 (Keap1), a negative regulator of Nrf2. It also decreased the Nrf2/Keap1 ratio, and it down-regulated cytoprotective enzymes (heme oxygenase-1, γ-glutamylcysteine synthetase, and glucose-6-phosphate dehydrogenase). Nrf2 overexpression up-regulated the expression of cytoprotective enzymes, decreased ROS levels, decreased the number of tartrate-resistant acid phosphatase-positive multinucleated cells, reduced marker genes for osteoclast differentiation, and attenuated bone destruction in both in vitro and in vivo models. Overexpression of Keap1 or RNAi knockdown of Nrf2 exerted the opposite actions. In addition, in vivo local Nrf2 overexpression attenuated lipopolysaccharide-mediated RANKL-dependent cranial bone destruction in vivo. This is the first study to show that the Keap1/Nrf2 axis regulates RANKL-dependent osteoclastogenesis through modulation of intracellular ROS signaling via expression of cytoprotective enzymes. This raises the exciting possibility that the Keap1-Nrf2 axis may be a therapeutic target for the treatment of bone destructive disease. PMID:23801334

  6. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium.

    PubMed Central

    Mason, S. J.; Paradiso, A. M.; Boucher, R. C.

    1991-01-01

    1 The role of extracellular nucleotides in regulation of ion transport activities (short circuit current, Isc) of human respiratory epithelia was studied. 2 Application of nucleotides to the apical or basolateral membrane of human nasal epithelium induced a concentration-dependent increase in Isc. 3 The rank order of potency of purine- or pyrimidine-induced changes in Isc of normal human nasal epithelium when applied to the apical membrane (UTP greater than or equal to ATP greater than ATP gamma S greater than 2MeSATP greater than ADP beta S much greater than beta gamma MeATP greater than or equal to alpha beta MeATP) or basolateral membrane (2MeSATP greater than UTP greater than ATP greater than ATP gamma S greater than alpha beta MeATP greater than beta gamma MeATP) is consistent with involvement of a P2 purinoceptor. A similar rank order of potencies was observed for nucleotide effects on intracellular calcium measured by Fura-2 fluorescence using microspectrofluorimetry. 4 Similar nucleotide potency in the regulation of ion transport and intracellular calcium in cystic fibrosis (CF) airway epithelium (UTP greater than or equal to ATP) was observed, suggesting purinoceptors might be used to stimulate ion transport processes that would promote hydration of airway secretions and facilitate their clearance from CF lungs. 5 These data provide evidence for the regulation of ion transport by P2 purinoceptors in normal and cystic fibrosis human airway epithelium. PMID:1718521

  7. Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons

    PubMed Central

    Ogra, Yasumitsu; Tejima, Aya; Hatakeyama, Naohiro; Shiraiwa, Moeko; Wu, Siyuan; Ishikawa, Tsutomu; Yawata, Ayako; Anan, Yasumi; Suzuki, Noriyuki

    2016-01-01

    It is suspected that some neurodegenerative diseases are a result of the disturbance of copper (Cu) homeostasis, although it remains unclear whether the disturbance of Cu homeostasis has aberrant effects on neurons. Herein, we investigated Cu metabolism specifically in neurons in terms of changes in the intracellular Cu concentration and the expression of Cu-regulating genes, such as Cu transporters and metallothioneins (MTs), before and after the differentiation of rat pheochromocytoma cells (PC12 cells) into neurons. After the differentiation, Cu and Zn imaging with fluorescent probes revealed an increase in intracellular Cu concentration. The concentrations of other essential metals, which were determined by an inductively coupled plasma mass spectrometer, were not altered. The mRNA expression of the Cu influx transporter, Ctr1, was decreased after the differentiation, and the differentiated cells acquired tolerance to Cu and cisplatin, another substrate of Ctr1. In addition, the expression of MT-3, a brain-specific isoform, was increased, contrary to the decreased expression of MT-1 and MT-2. Taken together, the differentiation of PC12 cells into neurons induced MT-3 expression, thereby resulting in intracellular Cu accumulation. The decrease in Ctr1 expression was assumed to be a response aimed at abolishing the physiological accumulation of Cu after the differentiation. PMID:27623342

  8. A dynamically changing intracellular water network serves as a universal regulator of the cell: the water-governed cycle.

    PubMed

    Szolnoki, Zoltán

    2007-06-01

    The functioning of enzymes and protein folding are well known to be assisted by the surrounding chaperoning water molecules, which are connected to the protein via non-covalent, dynamically changing chemical bonds. A molecular intracellular network of weak non-covalent connections may be presumed to exist in living cells. The roles of such non-covalent networks are examined in terms of a molecular model which postulates a universal enzyme and biochemical mechanism regulating the maintenance of chemical stability in living cells.

  9. Intracellular degradation in the regulation of secretion of apolipoprotein B-100 by rabbit hepatocytes.

    PubMed

    Cartwright, I J; Higgins, J A

    1996-03-15

    Isolated rabbit hepatocytes were incubated with [35S]methionine to label intracellular pools of apolipoprotein B (apo-B). The cells were then reincubated with an excess of unlabelled methionine in the presence of oleate or protease inhibitors and the intracellular sites of accumulation of radiolabelled apo-B and the mass of apo-B were determined by isolation and analysis of subcellular fractions. Oleate or inhibitors of metalloproteases (o-phenanthroline), serine proteases (aprotinin), serine/cysteine proteases (leupeptin) or cysteins proteases (calpain inhibitor I; ALLN) but not aspartate proteases (pepstatin) resulted in inhibition of the cellular degradation of apo-B. The effect of o-phenanthroline was reversed by the addition of zinc ions. Oleate, o-phenanthroline and leupeptin also stimulated secretion of radiolabelled apo-B; the effects of the inhibitors and oleate were additive, suggesting that they could act via different mechanisms. o-Phenanthroline caused accumulation of apo-B in the rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER) membranes; leupeptin caused accumulation of apo-B in the SER and cis-Golgi membranes, and ALLN and aprotinin caused accumulation of apo-B in the trans-Golgi membranes. These results suggest that intracellular degradation of apo-B occurs in the endoplasmic reticulum and in the trans-Golgi membranes and involves different proteases. Apo-B that accumulates in the ER membrane can be diverted into the lumen for secretion; however, apo-B that accumulates in the trans-Golgi membrane is irretrievably diverted from secretion.

  10. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells

    PubMed Central

    Lu, Yinzhong; Wan, Jun; Yang, Zhifeng; Lei, Xiling; Niu, Qi; Jiang, Lanxin; Passtoors, Willemijn M.; Zang, Aiping; Fraering, Patrick C.; Wu, Fang

    2017-01-01

    Deregulation of the TAM (TYRO3, AXL, and MERTK) family of receptor tyrosine kinases (RTKs) has recently been demonstrated to predominately promote survival and chemoresistance of cancer cells. Intramembrane proteolysis mediated by presenilin/γ-secretase is known to regulate the homeostasis of some RTKs. In the present study, we demonstrate that AXL, but not TYRO3 or MERTK, is efficiently and sequentially cleaved by α- and γ-secretases in various types of cancer cell lines. Proteolytic processing of AXL redirected signaling toward a secretase-mediated pathway, away from the classic, well-known, ligand-dependent canonical RTK signaling pathway. The AXL intracellular domain cleavage product, but not full-length AXL, was further shown to translocate into the nucleus via a nuclear localization sequence that harbored a basic HRRKK motif. Of interest, we found that the γ-secretase–uncleavable AXL mutant caused an elevated chemoresistance in non–small-cell lung cancer cells. Altogether, our findings suggest that AXL can undergo sequential processing mediated by various proteases kept in a homeostatic balance. This newly discovered post-translational processing of AXL may provide an explanation for the diverse functions of AXL, especially in the context of drug resistance in cancer cells.—Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., Passtoors, W. M., Zang, A., Fraering, P. C., Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. PMID:28034848

  11. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  12. Regulation of the Membrane Insertion and Conductance Activity of the Metamorphic Chloride Intracellular Channel Protein CLIC1 by Cholesterol

    PubMed Central

    Valenzuela, Stella M.; Alkhamici, Heba; Brown, Louise J.; Almond, Oscar C.; Goodchild, Sophia C.; Carne, Sonia; Curmi, Paul M. G.; Holt, Stephen A.; Cornell, Bruce A.

    2013-01-01

    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer. PMID:23457643

  13. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    PubMed

    Valenzuela, Stella M; Alkhamici, Heba; Brown, Louise J; Almond, Oscar C; Goodchild, Sophia C; Carne, Sonia; Curmi, Paul M G; Holt, Stephen A; Cornell, Bruce A

    2013-01-01

    The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  14. Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain

    PubMed Central

    Ahn, Ji-Seon; Ann, Eun-Jung; Kim, Mi-Yeon; Yoon, Ji-Hye; Lee, Hye-Jin; Jo, Eun-Hye; Lee, Keesook; Lee, Ji Shin; Park, Hee-Sae

    2016-01-01

    Autophagy is a highly conserved mechanism that degrades long-lived proteins and dysfunctional organelles, and contributes to cell fate. In this study, autophagy attenuates Notch1 signaling by degrading the Notch1 intracellular domain (Notch1-IC). Nutrient-deprivation promotes Notch1-IC phosphorylation by MEKK1 and phosphorylated Notch1-IC is recognized by Fbw7 E3 ligase. The ubiquitination of Notch1-IC by Fbw7 is essential for the interaction between Notch1-IC and p62 and for the formation of aggregates. Inhibition of Notch1 signaling prevents the transformation of breast cancer cells, tumor progression, and metastasis. The expression of Notch1 and p62 is inversely correlated with Beclin1 expression in human breast cancer patients. These results show that autophagy inhibits Notch1 signaling by promoting Notch1-IC degradation and therefore plays a role in tumor suppression. PMID:27806347

  15. Intracellular Theileria annulata Promote Invasive Cell Motility through Kinase Regulation of the Host Actin Cytoskeleton

    PubMed Central

    Ma, Min; Baumgartner, Martin

    2014-01-01

    The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities. PMID:24626571

  16. S-Nitrosylation Regulates Nuclear Translocation of Chloride Intracellular Channel Protein CLIC4*

    PubMed Central

    Malik, Mariam; Shukla, Anjali; Amin, Palak; Niedelman, Wendy; Lee, Jessica; Jividen, Kasey; Phang, Juanita M.; Ding, Jinhui; Suh, Kwang S.; Curmi, Paul M. G.; Yuspa, Stuart H.

    2010-01-01

    Nuclear translocation of chloride intracellular channel protein CLIC4 is essential for its role in Ca2+-induced differentiation, stress-induced apoptosis, and modulating TGF-β signaling in mouse epidermal keratinocytes. However, post-translational modifications on CLIC4 that govern nuclear translocation and thus these activities remain to be elucidated. The structure of CLIC4 is dependent on the redox environment, in vitro, and translocation may depend on reactive oxygen and nitrogen species in the cell. Here we show that NO directly induces nuclear translocation of CLIC4 that is independent of the NO-cGMP pathway. Indeed, CLIC4 is directly modified by NO through S-nitrosylation of a cysteine residue, as measured by the biotin switch assay. NO enhances association of CLIC4 with the nuclear import proteins importin α and Ran. This is likely a result of the conformational change induced by S-nitrosylated CLIC4 that leads to unfolding of the protein, as exhibited by CD spectra analysis and trypsinolysis of the modified protein. Cysteine mutants of CLIC4 exhibit altered nitrosylation, nuclear residence, and stability, compared with the wild type protein likely as a consequence of altered tertiary structure. Moreover, tumor necrosis factor α-induced nuclear translocation of CLIC4 is dependent on nitric-oxide synthase activity. Inhibition of nitric-oxide synthase activity inhibits tumor necrosis factor α-induced nitrosylation and association with importin α and Ran and ablates CLIC4 nuclear translocation. These results suggest that S-nitrosylation governs CLIC4 structure, its association with protein partners, and thus its intracellular distribution. PMID:20504765

  17. Using C. elegans to Identify the Protease Targets of Serpins In Vivo

    PubMed Central

    Bhatia, Sangeeta R.; Miedel, Mark T.; Chotoo, Cavita K.; Graf, Nathan J.; Hood, Brian L.; Conrads, Thomas P.; Silverman, Gary A.; Luke, Cliff J.

    2015-01-01

    Most serpins inhibit serine and/or cysteine proteases, and their inhibitory activities are usually defined in vitro. However, the physiological protease targets of most serpins are unknown despite many years of research. This may be due to the rapid degradation of the inactive serpin:protease complexes and/or the conditions under which the serpin inhibits the protease. The model organism Caenorhabditis elegans is an ideal system for identifying protease targets due to powerful forward and reverse genetics, as well as the ease of creating transgenic animals. Using combinatorial approaches of genetics and biochemistry in C. elegans, the true in vivo protease targets of the endogenous serpins can be elucidated. PMID:21683259

  18. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells.

    PubMed

    Kim, J A; Kang, Y S; Lee, S H; Lee, E H; Yoo, B H; Lee, Y S

    1999-08-11

    Glibenclamide, an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 human hepatoblastoma cells. Glibenclamide increased intracellular Ca(2+) concentration, which was significantly inhibited by Ca(2+) release blockers dantrolene and TMB-8. BAPTA/AM, an intracellular Ca(2+) chelator, and the Ca(2+) release blockers significantly inhibited glibenclamide-induced apoptosis. Glibanclamide also increased intracellular Cl(-) concentration, which was significantly blocked by CFTR Cl(-) channel activators levamisole and bromotetramisole. These activators also significantly inhibited both intracellular Ca(2+) release and apoptosis induced by glibenclamide. The expression of CFTR protein in the cells was confirmed by Western blot analysis. These results suggest that glibenclamide induced apoptosis through inhibition of CFTR Cl(-) channels and intracellular Ca(2+) release and that this protein may be a good target for treatment of human hepatomas.

  19. Caspase-1 (interleukin-1beta-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9.

    PubMed Central

    Annand, R R; Dahlen, J R; Sprecher, C A; De Dreu, P; Foster, D C; Mankovich, J A; Talanian, R V; Kisiel, W; Giegel, D A

    1999-01-01

    The regulation of caspases, cysteine proteinases that cleave their substrates after aspartic residues, is poorly understood, even though they are involved in tightly regulated cellular processes. The recently discovered serpin analogue proteinase inhibitor 9 (PI9) is unique among human serpin analogues in that it has an acidic residue in the putative specificity-determining position of the reactive-site loop. We measured the ability of PI9 to inhibit the amidolytic activity of several caspases. The hydrolysis of peptide substrates by caspase-1 (interleukin-1beta-converting enzyme), caspase-4 and caspase-8 is inhibited by PI9 in a time-dependent manner. The rate of reaction of caspase-1 with PI9, as well as the rate of substrate hydrolysis of the initial caspase-PI9 complex, shows a hyperbolic dependence on the concentration of PI9, indicative of a two-step kinetic mechanism for inhibition with an apparent second-order rate constant of 7x10(2) M(-1).s(-1). The hydrolysis of a tetrapeptide substrate by caspase-3 is not inhibited by PI9. The complexes of caspase-1 and caspase-4 with PI9 can be immunoprecipitated but no complex with caspase-3 can be detected. No complex can be immunoprecipitated if the active site of the caspase is blocked with a covalent inhibitor. These results show that PI9 is an inhibitor of caspase-1 and to a smaller extent caspase-4 and caspase-8, but not of the more distantly related caspase-3. PI9 is the first example of a human serpin analogue that inhibits members of this class of cysteine proteinases. PMID:10477277

  20. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro.

    PubMed Central

    Thayer, S A; Miller, R J

    1990-01-01

    1. Simultaneous whole-cell patch-clamp and Fura-2 microfluorimetric recordings of calcium currents (ICa) and the intracellular free Ca2+ concentration ([Ca2+]i) were made from neurones grown in primary culture from the dorsal root ganglion of the rat. 2. Cells held at -80 mV and depolarized to 0 mV elicited a ICa that resulted in an [Ca2+]i transient which was not significantly buffered during the voltage step and lasted long after the cell had repolarized and the current ceased. The process by which the cell buffered [Ca2+]i back to basal levels could best be described with a single-exponential equation. 3. The membrane potential versus ICa and [Ca2+]i relationship revealed that the peak of the [Ca2+]i transient evoked at a given test potential closely paralleled the magnitude of the ICa suggesting that neither voltage-dependent nor Ca2(+)-induced Ca2+ release from intracellular stores made a significant contribution to the [Ca2+]i transient. 4. When the cell was challenged with Ca2+ loads of different magnitude by varying the duration or potential of the test pulse, [Ca2+]i buffering was more effective for larger Ca2+ loads. The relationship between the integrated ICa and the peak of the [Ca2+]i transient reached an asymptote at large Ca2+ loads indicating that Ca2(+)-dependent processes became more efficient or that low-affinity processes had been recruited. 5. Inhibition of Ca2+ influx with neuropeptide Y demonstrated that inhibition of a large ICa produced minor alterations in the peak of the [Ca2+]i transient, while inhibition of smaller currents produced corresponding decreases in the [Ca2+]i transient. Thus, inhibition of the ICa was reflected by a change in the peak [Ca2+]i only when submaximal Ca2+ loads were applied to the cell, implying that modulation of [Ca2+]i is dependent on the activation state of the cells. 6. Intracellular dialysis with the mitochondrial Ca2+ uptake blocker Ruthenium Red in whole-cell patch-clamp experiments removed the buffering

  1. Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit.

    PubMed Central

    Lorenz, J N; Schnermann, J; Brosius, F C; Briggs, J P; Furspan, P B

    1992-01-01

    Studies were performed to assess whether ATP-sensitive K+ (KATP) channels on rabbit preglomerular vessels can influence afferent arteriolar (AA) tone. K+ channels with a slope conductance of 258 +/- 13 (n = 7) pS and pronounced voltage dependence were demonstrated in excised patches from vascular smooth muscle cells of microdissected preglomerular segments. Channel activity was markedly reduced by 1 mM ATP and in a dose-dependent fashion by glibenclamide (10(-9) M to 10(-6) M), a specific antagonist of KATP channels. 10(-5) M diazoxide, a K+ channel opener, activated these channels in the presence of ATP, and this effect was also blocked by glibenclamide. To determine the role of these KATP channels in the control of vascular tone, diazoxide was tested on isolated perfused AA. After preconstriction from a control diameter of 13.1 +/- 1.1 to 3.5 +/- 2.1 microns with phenylephrine (PE), addition of 10(-5) M diazoxide dilated vessels to 11.2 +/- 0.7 microns, which was not different from control. Further addition of 10(-5) M glibenclamide reconstricted the vessels to 5.8 +/- 1.5 microns (n = 5; P less than 0.03). In support of its specificity for KATP channels, glibenclamide did not reverse verapamil induced dilation in a separate series of experiments. To determine whether intracellular ATP levels can effect AA tone, studies were conducted to test the effect of the glycolytic inhibitor 2-deoxy-D-glucose. After preconstriction from 13.4 +/- 3.2 to 7.7 +/- 1.3 microns with PE, bath glucose was replaced with 6 mM 2-deoxy-D-glucose. Within 10 min, the arteriole dilated to a mean value of 11.8 +/- 1.4 microns (n = 6; NS compared to control). Subsequent addition of 10(-5) M glibenclamide significantly reconstricted the vessels to a diameter of 8.6 +/- 0.5 micron (P less than 0.04). These data demonstrate that KATP channels are present on the preglomerular vasculature and that changes in intracellular ATP can directly influence afferent arteriolar tone via these channels

  2. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome

    PubMed Central

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  3. Relationship between L-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes.

    PubMed

    Magistretti, P J; Chatton, J-Y

    2005-01-01

    Glutamate uptake into astrocytes and the resulting increase in intracellular Na+ (Na+(i)) have been identified as a key signal coupling excitatory neuronal activity to increased glucose utilization. Arguments based mostly on mathematical modeling led to the conclusion that physiological concentrations of glutamate more than double astrocytic Na+/K+-ATPase activity, which should proportionally increase its ATP hydrolysis rate. This hypothesis was tested in the present study by fluorescence monitoring of free Mg2+ (Mg2+(i)), a parameter that inversely correlates with ATP levels. Glutamate application measurably increased Mg2+(i) (i.e. decreased ATP), which was reversible after glutamate washout. Na+(i) and ATP changes were then directly compared by simultaneous Na+(i) and Mg2+ imaging. Glutamate increased both parameters with different rates and blocking the Na+/K+-ATPase during the glutamate-evoked Na+(i) response, resulted in a drop of Mg2+(i) levels (i.e. increased ATP). Taken together, this study demonstrates the tight correlation between glutamate transport, Na+ homeostasis and ATP levels in astrocytes.

  4. Intracellular Ca alternans: coordinated regulation by sarcoplasmic reticulum release, uptake, and leak.

    PubMed

    Xie, Lai-Hua; Sato, Daisuke; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2008-09-15

    Beat-to-beat alternation in the cardiac intracellular Ca (Ca(i)) transient can drive action potential (AP) duration alternans, creating a highly arrhythmogenic substrate. Although a steep dependence of fractional sarcoplasmic reticulum (SR) Ca release on SR Ca load has been shown experimentally to promote Ca(i) alternans, theoretical studies predict that other factors are also important. Here we present an iterated map analysis of the coordinated effects of SR Ca release, uptake, and leak on the onset of Ca(i) alternans. Predictions were compared to numerical simulations using a physiologically realistic AP model as well as to AP clamp experiments in isolated patch-clamped rabbit ventricular myocytes exposed to 1), the Ca channel agonist BayK8644 (100 nM) to increase SR Ca load and release fraction, 2), overexpression of an adenoviral SERCA2a construct to increase SR Ca uptake, and 3), low-dose FK506 (20 microM) or ryanodine (1 microM) to increase SR Ca leak. Our findings show that SR Ca release, uptake, and leak all have independent direct effects that promote (release and leak) or suppress (uptake) Ca(i) alternans. However, since each factor affects the other by altering SR Ca load, the net balance of their direct and indirect effects determines whether they promote or suppress alternans. Thus, BayK8644 promotes, whereas Ad-SERCA2a overexpression, ryanodine, and FK506 suppress, Ca(i) alternans under AP clamp conditions.

  5. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin

    PubMed Central

    Kardon, Julia R.; Reck-Peterson, Samara L.; Vale, Ronald D.

    2009-01-01

    Dynactin, a large multisubunit complex, is required for intracellular transport by dynein; however, its cellular functions and mechanism of action are not clear. Prior studies suggested that dynactin increases dynein processivity by tethering the motor to the microtubule through its own microtubule binding domains. However, this hypothesis could not be tested without a recombinant source of dynactin. Here, we have produced recombinant dynactin and dynein in Saccharomyces cerevisiae, and examined the effect of dynactin on dynein in single-molecule motility assays. We show that dynactin increases the run length of single dynein motors, but does not alter the directionality of dynein movement. Enhancement of dynein processivity by dynactin does not require the microtubule (MT) binding domains of Nip100 (the yeast p150Glued homolog). Dynactin lacking these MT binding domains also supports the proper localization and function of dynein during nuclear segregation in vivo. Instead, a segment of the coiled-coil of Nip100 is required for these activities. Our results directly demonstrate that dynactin increases the processivity of dynein through a mechanism independent of microtubule tethering. PMID:19293377

  6. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration.

    PubMed Central

    Billingsley, M L; Kincaid, R L

    1997-01-01

    This review attempts to summarize what is known about tau phosphorylation in the context of both normal cellular function and dysfunction. However, conceptions of tau function continue to evolve, and it is likely that the regulation of tau distribution and metabolism is complex. The roles of microtubule-associated kinases and phosphatases have yet to be fully described, but may afford insight into how tau phosphorylation at the distal end of the axon regulates cytoskeletal-membrane interactions. Finally, lipid and glycosaminoglycan modification of tau structure affords yet more complexity for regulation and aggregation. Continued work will help to determine what is causal and what is coincidental in Alzheimer's disease, and may lead to identification of therapeutic targets for halting the progression of paired helical filament formation. PMID:9169588

  7. Protein kinase C-zeta and protein kinase B regulate distinct steps of insulin endocytosis and intracellular sorting.

    PubMed

    Fiory, Francesca; Oriente, Francesco; Miele, Claudia; Romano, Chiara; Trencia, Alessandra; Alberobello, Anna Teresa; Esposito, Iolanda; Valentino, Rossella; Beguinot, Francesco; Formisano, Pietro

    2004-03-19

    We have investigated the molecular mechanisms regulating insulin internalization and intracellular sorting. Insulin internalization was decreased by 50% upon incubation of the cells with the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002. PI3K inhibition also reduced insulin degradation and intact insulin release by 50 and 75%, respectively. Insulin internalization was reduced by antisense inhibition of protein kinase C-zeta (PKCzeta) expression and by overexpression of a dominant negative PKCzeta mutant (DN-PKCzeta). Conversely, overexpression of PKCzeta increased insulin internalization as a function of the PKCzeta levels achieved in the cells. Expression of wild-type protein kinase B (PKB)-alpha or of a constitutively active form (myr-PKB) did not significantly alter insulin internalization and degradation but produced a 100% increase of intact insulin release. Inhibition of PKB by a dominant negative mutant (DN-PKB) or by the pharmacological inhibitor ML-9 reduced intact insulin release by 75% with no effect on internalization and degradation. In addition, overexpression of Rab5 completely rescued the effect of PKCzeta inhibition on insulin internalization but not that of PKB inhibition on intact insulin recycling. Indeed, PKCzeta bound to and activated Rab5. Thus, PI3K controls different steps within the insulin endocytic itinerary. PKCzeta appears to mediate the PI3K effect on insulin internalization in a Rab5-dependent manner, whereas PKB directs intracellular sorting toward intact insulin release.

  8. Dual chemotaxis signalling regulates Dictyostelium development: intercellular cyclic AMP pulses and intracellular F-actin disassembly waves induce each other.

    PubMed

    Vicker, Michael G; Grutsch, James F

    2008-10-01

    Aggregating Dictyostelium discoideum amoebae periodically emit and relay cAMP, which regulates their chemotaxis and morphogenesis into a multicellular, differentiated organism. Cyclic AMP also stimulates F-actin assembly and chemotactic pseudopodium extension. We used actin-GFP expression to visualise for the first time intracellular F-actin assembly as a spatio-temporal indicator of cell reactions to cAMP, and thus the kinematics of cell communication, in aggregating streams. Every natural cAMP signal pulse induces an autowave of F-actin disassembly, which propagates from each cell's leading end to its trailing end at a linear rate, much slower than the calculated and measured velocities of cAMP diffusion in aggregating Dictyostelium. A sequence of transient reactions follows behind the wave, including anterior F-actin assembly, chemotactic pseudopodium extension and cell advance at the cell front and, at the back, F-actin assembly, extension of a small retrograde pseudopodium (forcing a brief cell retreat) and chemotactic stimulation of the following cell, yielding a 20s cAMP relay delay. These dynamics indicate that stream cell behaviour is mediated by a dual signalling system: a short-range cAMP pulse directed from one cell tail to an immediately following cell front and a slower, long-range wave of intracellular F-actin disassembly, each inducing the other.

  9. The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation.

    PubMed

    Ma, Hansong; Hagen, Ferry; Stekel, Dov J; Johnston, Simon A; Sionov, Edward; Falk, Rama; Polacheck, Itzhack; Boekhout, Teun; May, Robin C

    2009-08-04

    In 1999, the population of Vancouver Island, Canada, began to experience an outbreak of a fatal fungal disease caused by a highly virulent lineage of Cryptococcus gattii. This organism has recently spread to the Canadian mainland and Pacific Northwest, but the molecular cause of the outbreak remains unknown. Here we show that the Vancouver Island outbreak (VIO) isolates have dramatically increased their ability to replicate within macrophages of the mammalian immune system in comparison with other C. gattii strains. We further demonstrate that such enhanced intracellular parasitism is directly linked to virulence in a murine model of cryptococcosis, suggesting that this phenotype may be the cause of the outbreak. Finally, microarray studies on 24 C. gattii strains reveals that the hypervirulence of the VIO isolates is characterized by the up-regulation of a large group of genes, many of which are encoded by mitochondrial genome or associated with mitochondrial activities. This expression profile correlates with an unusual mitochondrial morphology exhibited by the VIO strains after phagocytosis. Our data thus demonstrate that the intracellular parasitism of macrophages is a key driver of a human disease outbreak, a finding that has significant implications for a wide range of other human pathogens.

  10. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione.

    PubMed

    Kwak, Min-Kyu; Lee, Mun-Hyoung; Park, Seong-Jun; Shin, Sang-Min; Liu, Rui; Kang, Sa-Ouk

    2016-03-01

    Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation.

  11. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation

    PubMed Central

    Tong, Yanju; Song, Fuyong

    2015-01-01

    The transcription-regulating activity of TFEB is dependent on its phosphorylation modification, but the phosphatase(s) involved in TFEB dephosphorylation have remained elusive. It has now become clear that lysosomal calcium signaling activates calcineurin, an endogenous serine/threonine phosphatase, which dephosphorylate TFEB leading to upregulation of autophagy. PMID:26043755

  12. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens

    PubMed Central

    Habib, Samar; El Andaloussi, Abdeljabar; Hisham, Ahmed; Ismail, Nahed

    2016-01-01

    Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK) cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE), which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8–10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia. PMID:27092553

  13. Factors Regulating Cell Wall Thickening and Intracellular Iodophilic Polysaccharide Storage in Streptococcus mutans

    PubMed Central

    Mattingly, S. J.; Daneo-Moore, L.; Shockman, G. D.

    1977-01-01

    The effects of a series of different antibiotics on the synthesis and accumulation of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), protein, cell wall peptidoglycan (PG), and intracellular iodophilic polysaccharide (IPS) in Streptococcus mutans FA-1 were examined. d-Cycloserine, penicillin G, or vancomycin treatment resulted in rapid inhibitions of PG synthesis and a consequent decrease in the relative amount of lysine found in PG fractions. Decreases in culture turbidity, an indicator of gross cellular lysis, were not observed. Secondary inhibitions of the rates and extent of syntheses of DNA, RNA, and protein were observed. With all three inhibitors of PG synthesis, IPS synthesis continued for varying time intervals but, at most, resulted in only relatively small and transient increases in cellular IPS content. Chloramphenicol inhibited protein synthesis but permitted continued synthesis of RNA and PG. After 6 h, the cells contained 42% of their [3H] lysine in the PG fraction compared with 25% in exponential-phase cells, a good indication of thickened cell walls. In the presence of chloramphenicol, cellular IPS content increased about 2.5-fold during the first 45 min and then decreased to a level (13%) at 6 h very similar to that of exponential-phase cells (about 10%). Rifampin inhibition of RNA (and, consequently, also protein) synthesis resulted in accumulation of cellular PG and IPS. After 6 h, IPS accounted for 38% of the cellular dry weight, and the cells contained 43% of their lysine in PG. Thus, rifampin-inhibited cells appear to have both thickened walls and a high IPS content. The correlation between inhibition of RNA synthesis and IPS accumulation was confirmed by exposing cultures to rifampin for 60 min and then removing the drug, thus permitting the cells to regrow. Upon removal of rifampin and resumption of RNA synthesis, cellular IPS content rapidly decreased to the level expected for exponentialphase cells. PMID:892902

  14. Aging is a primary risk factor for cardiac arrhythmias: disruption of intracellular Ca2+ regulation as a key suspect.

    PubMed

    Hatch, Fiona; Lancaster, Matthew K; Jones, Sandra A

    2011-08-01

    Aging is an inevitable time-dependent progression associated with a functional decline of the cardiovascular system even in 'healthy' individuals. Age positively correlates with an increasing risk of cardiac problems including arrhythmias. Not only the prevalence but also the severity of arrhythmias escalates with age. The reasons for this are multifactorial but dysregulation of intracellular calcium within the heart is likely to play a key role in initiating and perpetuating these life-threatening events. We now know that several aspects of cardiac calcium regulation significantly change with advancing age - changes that could produce electrical instability. Further development of knowledge of the mechanisms underlying these changes will allow us to reduce what currently is an inevitable increase in the incidence of arrhythmias in the elderly.

  15. Critical role for NAD glycohydrolase in regulation of erythropoiesis by hematopoietic stem cells through control of intracellular NAD content.

    PubMed

    Nam, Tae-Sik; Park, Kwang-Hyun; Shawl, Asif Iqbal; Kim, Byung-Ju; Han, Myung-Kwan; Kim, Youngho; Moss, Joel; Kim, Uh-Hyun

    2014-06-06

    NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.

  16. Isolation and characterization of the nuclear serpin MENT.

    PubMed

    Grigoryev, Sergei; McGowan, Sheena

    2011-01-01

    A balance between proteolytic activity and protease inhibition is required to maintain the appropriate function of biological systems in which proteases play a role. The Myeloid and Erythroid Nuclear Termination protein, MENT, is a nonhistone heterochromatin-associated serpin that is an effective inhibitor of the papain-like cysteine proteases. Our laboratories have extensively investigated the dual functions of this protein, namely, chromatin condensation and protease inhibition. Unlike other serpins to date, MENT contains a unique insertion between the C- and D-helices known as the "M-loop." This loop contains two critical functional motifs that allow the nuclear function of MENT, namely, nuclear localization and DNA binding. However, the nuclear function of MENT is not restricted to the activities of the M-loop alone. In vitro, MENT brings about the dramatic remodeling of chromatin into higher-order structures by forming protein bridges via its reactive center loop. Further, we have determined that in a protease-mediated effect, DNA can act as a cofactor to accelerate the rate at which MENT can inhibit its target proteases. In this chapter, we discuss the isolation of MENT from native chicken blood as well as recombinant protein produced in Escherichia coli. Various techniques including in vitro functional assays and biophysical characterization are explained that can be used to elucidate the ability of the protein to interact with DNA and other deoxynucleoprotein complexes. In situ chromatin precipitation using natively purified MENT is also detailed.

  17. Intracellular Acid-extruding regulators and the effect of lipopolysaccharide in cultured human renal artery smooth muscle cells.

    PubMed

    Loh, Shih-Hurng; Lee, Chung-Yi; Tsai, Yi-Ting; Shih, Shou-Jou; Chen, Li-Wei; Cheng, Tzu-Hurng; Chang, Chung-Yi; Tsai, Chein-Sung

    2014-01-01

    Homeostasis of the intracellular pH (pHi) in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na(+)-H(+) exchanger (NHE) and the Na(+)-HCO3(-) co-transporter (NBC) have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs) remains unclear. It has been demonstrated that lipopolysaccharide (LPS)-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca(2+)]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse) is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a) the resting pHi is 7.19 ± 0.03 and 7.10 ± 0.02 for HEPES- and CO2/HCO3(-)- buffered solution, respectively; (b) apart from the housekeeping NHE1, another Na(+)-coupled HCO3(-) transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c) three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral), NBCe1 (SLC4A4; electrogenic) and NBCe2 (SLC4A5), are detected in protein/mRNA level; and (d) pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner.

  18. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  19. SERPINE2/Protease Nexin-1 in vivo multiple functions: Does the puzzle make sense?

    PubMed

    Monard, Denis

    2017-02-01

    Cultures of glial cells and fibroblasts allowed and lead to the identification SERPINE2/Protease Nexin-1 (SERPINE2/PN-1). Cellular, biochemical, immunological and molecular characterization substantiated its variable expression in many organs as a function of development, adult stages, pathological situations or following injury. It is not a circulating serpin, but as other members of the family, its target specificity is influenced by components of the extracellular matrix. The challenges are to identify where and when SERPINE2/PN-1 modulatory action becomes crucial or even possibly specific in a mosaic of feasible in vivo impacts. Data providing correlations are not sufficient to satisfy this aim. Genetically modified mice, or tissue derived thereof, provide interesting in vivo models to identify and study the relevance of this serpin. This review will highlight sometimes-intriguing results indicating a crucial impact of SERPINE2/PN-1, especially in the vasculature, the nervous system or the behavior of cancer cells in vivo. Data presently available will be discussed in an attempt to define general trends in the diversity of SERPINE2/PN-1 modes of action in vivo.

  20. Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization.

    PubMed

    Khan, Mohammad Sazzad; Singh, Poonam; Azhar, Asim; Naseem, Asma; Rashid, Qudsia; Kabir, Mohammad Anaul; Jairajpuri, Mohamad Aman

    2011-01-01

    The serpins (serine proteinase inhibitors) are structurally similar but functionally diverse proteins that fold into a conserved structure and employ a unique suicide substrate-like inhibitory mechanism. Serpins play absolutely critical role in the control of proteases involved in the inflammatory, complement, coagulation and fibrinolytic pathways and are associated with many conformational diseases. Serpin's native state is a metastable state which transforms to a more stable state during its inhibitory mechanism. Serpin in the native form is in the stressed (S) conformation that undergoes a transition to a relaxed (R) conformation for the protease inhibition. During this transition the region called as reactive center loop which interacts with target proteases, inserts itself into the center of β-sheet A to form an extra strand. Serpin is delicately balanced to perform its function with many critical residues involved in maintaining metastability. However due to its typical mechanism of inhibition, naturally occurring serpin variants produces conformational instability that allows insertion of RCL of one molecule into the β-sheet A of another to form a loop-sheet linkage leading to its polymerization and aggregation. Thus understanding the molecular basis and amino acid involved in serpin polymerization mechanism is critical to devising strategies for its cure.

  1. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin.

    PubMed

    Galkina, Svetlana I; Sud'ina, Galina F; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na(+) and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl(-) efflux through chloride channels and Na(+) influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  2. Annexin A2 and S100A10 Regulate Human Papillomavirus Type 16 Entry and Intracellular Trafficking in Human Keratinocytes

    PubMed Central

    Dziduszko, Agnieszka

    2013-01-01

    Human papillomaviruses (HPVs) cause benign and malignant tumors of the mucosal and cutaneous epithelium. The initial events regulating HPV infection impact the establishment of viral persistence, which is requisite for malignant progression of HPV-infected lesions. However, the precise mechanisms involved in HPV entry into host cells, including the cellular factors regulating virus uptake, are not clearly defined. We show that HPV16 exposure to human keratinocytes initiates epidermal growth factor receptor (EGFR)-dependent Src protein kinase activation that results in phosphorylation and extracellular translocation of annexin A2 (AnxA2). HPV16 particles interact with AnxA2 in association with S100A10 as a heterotetramer at the cell surface in a Ca2+-dependent manner, and the interaction appears to involve heparan-sulfonated proteoglycans. We show multiple lines of evidence that this interaction promotes virus uptake into host cells. An antibody to AnxA2 prevents HPV16 internalization, whereas an antibody to S100A10 blocks infection at a late endosomal/lysosomal site. These results suggest that AnxA2 and S100A10 have separate roles during HPV16 binding, entry, and trafficking. Our data additionally imply that AnxA2 and S100A10 may be involved in regulating the intracellular trafficking of virus particles prior to nuclear delivery of the viral genome. PMID:23637395

  3. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin

    SciTech Connect

    Galkina, Svetlana I. . E-mail: galkina@genebee.msu.su; Sud'ina, Galina F.; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na{sup +} and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl{sup -} efflux through chloride channels and Na{sup +} influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  4. Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes.

    PubMed

    Dziduszko, Agnieszka; Ozbun, Michelle A

    2013-07-01

    Human papillomaviruses (HPVs) cause benign and malignant tumors of the mucosal and cutaneous epithelium. The initial events regulating HPV infection impact the establishment of viral persistence, which is requisite for malignant progression of HPV-infected lesions. However, the precise mechanisms involved in HPV entry into host cells, including the cellular factors regulating virus uptake, are not clearly defined. We show that HPV16 exposure to human keratinocytes initiates epidermal growth factor receptor (EGFR)-dependent Src protein kinase activation that results in phosphorylation and extracellular translocation of annexin A2 (AnxA2). HPV16 particles interact with AnxA2 in association with S100A10 as a heterotetramer at the cell surface in a Ca(2+)-dependent manner, and the interaction appears to involve heparan-sulfonated proteoglycans. We show multiple lines of evidence that this interaction promotes virus uptake into host cells. An antibody to AnxA2 prevents HPV16 internalization, whereas an antibody to S100A10 blocks infection at a late endosomal/lysosomal site. These results suggest that AnxA2 and S100A10 have separate roles during HPV16 binding, entry, and trafficking. Our data additionally imply that AnxA2 and S100A10 may be involved in regulating the intracellular trafficking of virus particles prior to nuclear delivery of the viral genome.

  5. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

    PubMed

    Chen, Esther J; Kaiser, Chris A

    2002-11-12

    The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

  6. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex

    PubMed Central

    Peyre, Elise; Silva, Carla G.; Nguyen, Laurent

    2015-01-01

    During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex. PMID:25926769

  7. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  8. Circulating SerpinB1 levels and clinical features in patients with type 2 diabetes

    PubMed Central

    Takebayashi, Kohzo; Hara, Kenji; Terasawa, Tomoko; Naruse, Rika; Suetsugu, Mariko; Tsuchiya, Takafumi; Inukai, Toshihiko

    2016-01-01

    Objective The main purpose of this study was to investigate the association of serum SerpinB1 levels and various parameters in patients with type 2 diabetes. The effect of canagliflozin (a sodium glucose cotransporter 2 (SGLT2) inhibitor), which can decrease circulating insulin levels, on serum SerpinB1 levels was also investigated. A recent study suggests that the serum levels of SerpinB1, also known as monocyte neutrophil elastase inhibitor, increase with insulin resistance, may have a protective effect for pancreatic β cells, and may decrease insulin resistance. Research design and methods The study included 30 patients with type 2 diabetes hospitalized for glycemic control and 10 control subjects. Results SerpinB1 levels were significantly higher in patients with type 2 diabetes, compared with that in heathy control subjects (10.01±3.59 vs 5.69±1.64 ng/mL, p<0.0001). Serum SerpinB1 levels had a significant negative correlation with low-density lipoprotein cholesterol (LDL-C) (p=0.0123). Serum SerpinB1 levels had a significant positive association or trend toward a positive association with age and with hemoglobin A1c (HbA1c), and significant negative association with LDL-C levels in some multiple regression analysis models. Patients treated with statins had a tendency toward higher serum SerpinB1 levels, compared with those patients not treated with statins. During a 3-day observation period both with and without canagliflozin treatment, the serum SerpinB1 levels did not change. Conclusions Serum SerpinB1 levels are elevated in patients with type 2 diabetes compared with that in healthy subjects and are negatively correlated with serum LDL-C. PMID:27933185

  9. SerpinB5 interacts with KHDRBS3 and FBXO32 in gastric cancer cells.

    PubMed

    Lei, Ke-Feng; Liu, Bing-Ya; Wang, Yan-Fang; Chen, Xue-Hua; Yu, Bei-Qin; Guo, Yan; Zhu, Zheng-Gang

    2011-11-01

    Mammary serine protease inhibitor B5 (SerpinB5) is a potential oncogene in gastric cancer (GC); however, the molecular mechanism by which SerpinB5 promotes oncogenesis remains elusive. In this study, SerpinB5-associated proteins were selected based on yeast two-hybrid screening and microarray analysis after RNA interference and were validated using co-immunoprecipitation (Co-IP) and RNA Co-IP. The expression profiles of the interacting proteins were analyzed by Western blotting and immunohistochemistry. The effects of SerpinB5 on KHDRBS3 and FBXO32 expression in GC cells were analyzed using real-time PCR and Western blotting after the expression of SerpinB5 was modified. By yeast two-hybrid screening and microarray analysis, FBXO32 and KHDRBS3 were found to be SerpinB5-interacting proteins. The interactions were confirmed by Co-IP. An RNA co-immunoprecipitation assay found that KHDRBS3 interacted with FBXO32 mRNA. The expression of SerpinB5 was much stronger in the nucleus of GC cells. FBXO32 was expressed at higher levels in the cytoplasm of GC cells. KHDRBS3 was primarily detected in the nucleus of normal mucosal cells. SerpinB5 expression was modified in GC cells, KHDRBS3 mRNA levels remained stable, however, FBXO32 mRNA levels changed 24 h after changes in KHDRBS3 protein levels were detected. In conclusion, SerpinB5 interacts with KHDRBS3 and FBXO32, and KHDRBS3 can interact with FBXO32 mRNA.

  10. Influence of plasminogen activator inhibitor-1 (SERPINE1) 4G/5G polymorphism on circulating SERPINE-1 antigen expression in HCC associated with viral infection.

    PubMed

    Divella, Rosa; Mazzocca, Antonio; Gadaleta, Cosimo; Simone, Giovanni; Paradiso, Angelo; Quaranta, Michele; Daniele, Antonella

    2012-01-01

    Hepatocarcinogenesis is heavily influenced by chronic hepatitis B (HBV) and C (HCV) infection. Elevated levels of plasminogen activator inhibitor-1 (SERPINE1/PAI-1) have been reported in patients with hepatocellular carcinoma (HCC) associated with viral infection. The gene encoding SERPINE1 is highly polymorphic and the frequently associated 4/5 guanosine (4G/5G) polymorphism in the gene promoter may influence its expression. Here, we investigated the distribution of genotypes and the frequency of alleles of the 4G/5G polymorphism in patients with HCC, the influence of the 4G/5G polymorphism on plasma SERPINE1 levels and its association with viral infection. A total of 75 patients with HCC were enrolled: 32 (42.6%) were HBV(+)/HCV(+), 11 (14.6%) were only HCV(+), and 32 (42.6%) were negative for both viruses. A control group of healthy donors was also enrolled (n=50). SERPINE1 plasma concentrations were determined by ELISA and the detection of the promoter 4G/5G polymorphism was performed by an allele-specific PCR analysis. We found that the frequency of both the 4G/4G genotype (p=0.02) and the 4G allele (p=0.006) were significantly higher in patients with HCC compared to the control group, and particularly higher in patients with HCC co-infected with HBV(+)/HCV(+) than in those with no viral infection. We also found that patients with the 4G/4G genotype had significantly higher plasma SERPINE1 protein levels when compared with patients with the 4G/5G or 5G/5G genotype (p<0.001). Differences in frequency of 4G allele and genetic variability of 4G/5G SERPINE1 polymorphism with a higher level of SERPINE1 protein in patients with HCC with HBV(+)/HCV(+) than those without infection, suggest the presence of two distinct pathogenic mechanisms in hepatocarcinogenesis, depending on the etiology.

  11. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport.

    PubMed

    Smith, Andrew J; Daut, Jürgen; Schwappach, Blanche

    2011-06-01

    14-3-3 proteins regulate the function and subcellular sorting of membrane proteins. Often, 14-3-3 binding to client proteins requires phosphorylation of the client, but the relevant kinase is unknown in most cases. We summarize current progress in identifying kinases that target membrane proteins with 14-3-3 binding sites and discuss the molecular mechanisms of 14-3-3 action. One of the kinases involved is Akt/PKB, which has recently been shown to activate the 14-3-3-dependent switch in a number of client membrane proteins.

  12. Intra-cellular mechanism of Anti-Müllerian hormone (AMH) in regulation of follicular development.

    PubMed

    Hayes, Emily; Kushnir, Vitaly; Ma, Xiaoting; Biswas, Anindita; Prizant, Hen; Gleicher, Norbert; Sen, Aritro

    2016-09-15

    Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-β superfamily and plays a crucial role in testicular and ovarian functions. In clinical practice, AMH is used as a diagnostic and/or prognostic marker in women in association with ovulation induction and in various pathophysiological conditions. Despite widespread clinical use of AMH, our mechanistic understanding of AMH actions in regulating follicular development is limited. Using a mouse model, we in this study report that in vivo AMH treatment while stalls follicular development and inhibits ovulation, also prevents follicular atresia. We further show that these AMH actions are mediated through induction of two miRNAs, miR-181a and miR-181b, which regulate various aspects of FSH signaling and follicular growth, ultimately affecting downstream gene expression and folliculogenesis. We also report that in this mouse model AMH pre-treatment prior to superovulation improves oocyte yield. These studies, therefore, offer new mechanistic insight into AMH actions in folliculogenesis and point toward potential utilization of AMH as a therapeutic agent.

  13. Box C/D Small Nucleolar RNA (snoRNA) U60 Regulates Intracellular Cholesterol Trafficking*

    PubMed Central

    Brandis, Katrina A.; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J.; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E.; Ory, Daniel S.

    2013-01-01

    Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function. PMID:24174535

  14. Box C/D small nucleolar RNA (snoRNA) U60 regulates intracellular cholesterol trafficking.

    PubMed

    Brandis, Katrina A; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E; Ory, Daniel S

    2013-12-13

    Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.

  15. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  16. Differential regulation of Sciaenops ocellatus viperin expression by intracellular and extracellular bacterial pathogens.

    PubMed

    Dang, Wei; Zhang, Min; Hu, Yong-hua; Sun, Li

    2010-08-01

    Viperin is an antiviral protein that has been found to exist in diverse vertebrate organisms and is involved in innate immunity against the infection of a wide range of viruses. However, it is largely unclear as to the potential role played by viperin in bacterial infection. In this study, we identified the red drum Sciaenops ocellatus viperin gene (SoVip) and analyzed its expression in relation to bacterial challenge. The complete gene of SoVip is 2570 bp in length and contains six exons and five introns. The open reading frame of SoVip is 1065 bp, which is flanked by a 5'-untranslated region (UTR) of 34 bp and a 3'-UTR of 350 bp. The deduced amino acid sequence of SoVip shares extensive identities with the viperins of several fish species and possesses the conserved domain of the radical S-adenosylmethionine superfamily proteins. Expressional analysis showed that constitutive expression of SoVip was relatively high in blood, muscle, brain, spleen, and liver, and low in kidney, gill, and heart. Experimental challenges with poly(I:C) and bacterial pathogens indicated that SoVip expression in liver was significantly upregulated by poly(I:C) and the fish pathogen Edwardsiella tarda but down-regulated by the fish pathogens Listonella anguillarum and Streptococcus iniae. Similar differential induction patterns were also observed at cellular level with primary hepatocytes challenged with E. tarda, L. anguillarum, and S. iniae. Infection study showed that all three bacterial pathogens could attach to cultured primary hepatocytes but only E. tarda was able to invade into and survive in hepatocytes. Together these results indicate that SoVip is involved in host immune response during bacterial infection and is differentially regulated at transcription level by different bacterial pathogens.

  17. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Haupenthal, Viola J.; Zimmer, Valerie C.; Hartmann, Tobias

    2013-01-01

    One of the characteristic hallmarks of Alzheimer’s disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes. PMID:24391587

  18. Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection

    PubMed Central

    Arkatkar, Tanvi; Gupta, Rishein; Li, Weidang; Yu, Jieh-Juen; Wali, Shradha; Neal Guentzel, M; Chambers, James P; Christenson, Lane K; Arulanandam, Bernard P

    2015-01-01

    The hallmark of chlamydial infection is the development of upper genital pathology in the form of hydrosalpinx and oviduct and/or tubal dilatation. Although molecular events leading to genital tissue presentation and cellular architectural remodelling are unclear, early-stage host immune responses are believed to contribute to these long-term sequelae. Recently, we reported the contribution of selected infection-associated microRNAs (miRs) in the generation of host immunity at early-stage infection (day 6 after intravaginal Chlamydia muridarum challenge in C57BL/6 mice). In this report, we describe the contribution of an infection-associated microRNA, i.e. miR-214, to host immunity. Chlamydia muridarum infection in the C57BL/6 mouse genital tract significantly down-regulated miR-214 while up-regulating intracellular adhesion molecule 1 (ICAM1) gene expression. These in vivo observations were confirmed by establishing direct regulation of ICAM-1 by miR-214 in ex vivo genital cell cultures in the presence of miR-214 mimic and inhibitor. Because, ICAM-1 contributes to recruitment of neutrophils following infection, we also demonstrated that alteration of ICAM1 by miR-214 in interleukin-17A-deficient (IL-17A−/−) mice correlated with reduction of neutrophils infiltrating genital tissue at day 6 after challenge. Additionally, these early-stage events resulted in significantly decreased genital pathology in IL-17A−/− mice compared with C57BL/6 mice. This report provides evidence for early-stage regulation of ICAM1 by microRNAs, resulting in reduction of genital pathology associated with chlamydial infection. PMID:25865776

  19. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  20. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells

    PubMed Central

    2012-01-01

    Background Investigating the cellular and molecular signatures in eukaryotic cells following exposure to nanoparticles will further our understanding on the mechanisms mediating nanoparticle induced effects. This study illustrates the molecular effects of silver nanoparticles (Ag-np) in normal human lung cells, IMR-90 and human brain cancer cells, U251 with emphasis on gene expression, induction of inflammatory mediators and the interaction of Ag-np with cytosolic proteins. Results We report that silver nanoparticles are capable of adsorbing cytosolic proteins on their surface that may influence the function of intracellular factors. Gene and protein expression profiles of Ag-np exposed cells revealed up regulation of many DNA damage response genes such as Gadd 45 in both the cell types and ATR in cancer cells. Moreover, down regulation of genes necessary for cell cycle progression (cyclin B and cyclin E) and DNA damage response/repair (XRCC1 and 3, FEN1, RAD51C, RPA1) was observed in both the cell lines. Double strand DNA damage was observed in a dose dependant manner as evidenced in γH2AX foci assay. There was a down regulation of p53 and PCNA in treated cells. Cancer cells in particular showed a concentration dependant increase in phosphorylated p53 accompanied by the cleavage of caspase 3 and PARP. Our results demonstrate the involvement of NFκB and MAP kinase pathway in response to Ag-np exposure. Up regulation of pro-inflammatory cytokines such as interleukins (IL-8, IL-6), macrophage colony stimulating factor, macrophage inflammatory protein in fibroblasts following Ag-np exposure were also observed. Conclusion In summary, Ag-np can modulate gene expression and protein functions in IMR-90 cells and U251 cells, leading to defective DNA repair, proliferation arrest and inflammatory response. The observed changes could also be due to its capability to adsorb cytosolic proteins on its surface. PMID:22321936

  1. The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes.

    PubMed

    Miguez, J M; Simonneaux, V; Pevet, P

    1997-09-01

    This study investigated whether the activation of pinealocyte beta-adrenergic receptors is involved in the regulation of serotonin (5-HT) synthesis and release, as it is for melatonin production. In addition, the role of the intra- and extra-cellular 5-HT in modulating the synthesis of melatonin induced by the beta-adrenergic agonist isoproterenol (ISO) was also studied. The incubation of dissociated pinealocytes with 0.1-10 microM ISO resulted in a concentration-dependent increase of melatonin synthesis. 5-HT release and intracellular 5-HT content were increased by 0.1 and 1 microM ISO but they were reduced after ISO 10 microM. Moreover, when incubated with the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), the secretion of 5-HT as well as the intracellular 5-HT levels were markedly reduced in both ISO-stimulated and unstimulated conditions. Melatonin release was also inhibited by PCPA, although it responded in the expected manner to increasing concentrations of ISO. These data indicate that the release of 5-HT from pinealocytes depends on the availability of cytoplasmic 5-HT, which in turn is highly dependent on the tryptophan hydroxylase activity. In cells stimulated with moderate ISO concentrations, 5-HT release may be an important regulatory process of pineal 5-HT. After a large stimulation of N-acetyltransferase (NAT) activity by ISO, the synthesis of melatonin prevails on 5-HT release, whose decrease is associated to a deficit of intracellular 5-HT. On the other hand, the present study shows that the incubation of pineal cells with high concentrations of 5-HT or with a selective 5-HT2 receptor agonist, alpha-methyl-5-hydroxytryptamine, reverses partially the inhibitory effect of PCPA on the ISO-stimulated melatonin synthesis. In contrast the 5-HT2 antagonist, ketanserin, results in an inhibiton of the release of melatonin following ISO stimulation. These results suggest that released 5-HT may have a role in the full expression of the beta

  2. Intracellular Ca(2+)-Mg(2+)-ATPase regulates calcium influx and acrosomal exocytosis in bull and ram spermatozoa.

    PubMed

    Dragileva, E; Rubinstein, S; Breitbart, H

    1999-11-01

    channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.

  3. A crucial role for cAMP and protein kinase A in D1 dopamine receptor regulated intracellular calcium transients.

    PubMed

    Dai, Rujuan; Ali, Mohammad K; Lezcano, Nelson; Bergson, Clare

    2008-01-01

    D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.

  4. Regulation of the collagenase-3 receptor and its role in intracellular ligand processing in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Walling, H. W.; Chan, P. T.; Omura, T. H.; Barmina, O. Y.; Fiacco, G. J.; Jeffrey, J. J.; Partridge, N. C.

    1998-01-01

    We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space.

  5. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    PubMed

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent KD, 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations.

  6. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy

    PubMed Central

    Gocek, Elzbieta; Studzinski, George P.

    2015-01-01

    The current standard regimens for the treatment of acute myeloid leukemia (AML) are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with specific relevance to vitamin D and its derivatives, since they have featured prominently in recent scientific literature as having anti-cancer properties. Since microRNAs also are known to be regulated by activated vitamin D, this is also briefly discussed here, as are the implications of the emerging acquisition of transcriptosome data and potentiation of the biological effects of vitamin D by other compounds. While there are ongoing clinical trials of various compounds that affect signaling pathways, more studies are needed to establish the clinical utility of vitamin D in the treatment of cancer. PMID:26239344

  7. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.

    PubMed

    Zhang, Yu; Ge, Cheng; Wang, Lin; Liu, Xinxin; Chen, Yifei; Li, Mengmeng; Zhang, Mei

    2015-01-02

    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux.

  8. Regulating Toxin-Antitoxin Expression: Controlled Detonation of Intracellular Molecular Timebombs

    PubMed Central

    Hayes, Finbarr; Kędzierska, Barbara

    2014-01-01

    Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within. PMID:24434949

  9. Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica.

    PubMed

    Wakayama, Keishi; Yamaguchi, Sakiko; Takeuchi, Akihito; Mizumura, Tasuku; Ozawa, Shotaro; Tomizuka, Noboru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2016-11-01

    In this study we found that the methylotrophic yeast Pichia methanolica showed impaired growth on high methanol medium (>5%, or 1.56 M, methanol). In contrast, P. methanolica grew well on glucose medium containing 5% methanol, but the growth defects reappeared on glucose medium supplemented with 5 mM formaldehyde. During methanol growth of P. methanolica, formaldehyde accumulated in the medium up to 0.3 mM before it was consumed rapidly based on cell growth. These findings indicate that the growth defect of P. methanolica on high methanol media is not caused directly by methanol toxicity, but rather by formaldehyde, which is a key toxic intermediate of methanol metabolism. Moreover, during methanol growth of P. methanolica, expression of enzymes in the methanol-oxidation pathway were induced before the alcohol oxidase isozymes Mod1p and Mod2p, and Mod1p expression was induced before Mod2p. These results suggest that to avoid excess accumulation of formaldehyde-the toxic intermediate of methanol metabolism-P. methanolica grown on methanol strictly regulates the order in which methanol-metabolizing enzymes are expressed.

  10. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    SciTech Connect

    Liu, Chun; Ge, Beihai; He, Chao; Zhang, Yi; Liu, Xiaowen; Liu, Kejian; Qian, Cuiping; Zhang, Yu; Peng, Wenzhong; Guo, Xiaomei

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.

  11. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation.

    PubMed

    Nagel, Alexis K; Ball, Lauren E

    2015-01-01

    The inducible, nutrient-sensitive posttranslational modification of protein Ser/Thr residues with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs on histones, transcriptional regulators, metabolic enzymes, oncogenes, tumor suppressors, and many critical intermediates of growth factor signaling. Cycling of O-GlcNAc modification on and off of protein substrates is catalyzed by the actions of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. To date, there are less than 150 publications addressing the role of O-GlcNAc modification in cancer and over half were published in the last 2 years. These studies have clearly established that increased expression of OGT and hyper-O-GlcNAcylation is common to human cancers of breast, prostate, colon, lung, and pancreas. Furthermore, attenuating OGT activity reduces tumor growth in vitro and metastasis in vivo. This chapter discusses the structure and function of the O-GlcNAc cycling enzymes, mechanisms by which protein O-GlcNAc modification sense changes in nutrient status, the influence of O-GlcNAc cycling enzymes on glucose metabolism, and provides an overview of recent observations regarding the role of O-GlcNAcylation in cancer.

  12. Intracellular calcium in canine cultured tracheal smooth muscle cells is regulated by M3 muscarinic receptors.

    PubMed Central

    Yang, C. M.; Yo, Y. L.; Wang, Y. Y.

    1993-01-01

    1. The regulation of cytosolic Ca2+ concentrations ([Ca2+]i) during exposure to carbachol was measured directly in canine cultured tracheal smooth muscle cells (TSMCs) loaded with fura-2. Stimulation of muscarinic cholinoceptors (muscarinic AChRs) by carbachol produced a dose-dependent rise in [Ca2+]i which was followed by a stable plateau phase. The EC50 values of carbachol for the peak and sustained plateau responses were 0.34 and 0.33 microM, respectively. 2. Atropine (10 microM) prevented all the responses to carbachol, and when added during a response to carbachol, significantly, but not completely decreased [Ca2+]i within 5 s. Therefore, the changes in [Ca2+]i by carbachol were mediated through the muscarinic AChRs. 3. AF-DX 116 (a selective M2 antagonist) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, a selective M3 antagonist) inhibited the carbachol-stimulated increase in [Ca2+]i with pKB values of 6.4 and 9.4, respectively, corresponding to low affinity for AF-DX 119 and high affinity for 4-DAMP in antagonizing this response. 4. The plateau elevation of [Ca2+]i was dependent on the presence of external Ca2+. Removal of Ca2+ by the addition of 2 mM EGTA caused the [Ca2+]i to decline rapidly to the resting level. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen which then declined to the resting level; the sustained elevation of [Ca2+]i could then be evoked by the addition of Ca2+ (1.8 mM) in the continued presence of carbachol.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8298822

  13. Intracellular regulation of protein degradation during sepsis is different in fast- and slow-twitch muscle.

    PubMed

    Tiao, G; Lieberman, M; Fischer, J E; Hasselgren, P O

    1997-03-01

    We tested the hypothesis that the difference in the response to sepsis of protein breakdown between fast- and slow-twitch skeletal muscle reflects differential activation of the energy-ubiquitin-dependent proteolytic pathway. In addition, we defined the time course and the tissue specificity of sepsis-induced changes in the expression of the ubiquitin pathway. Sepsis was induced in rats by cecal ligation and puncture; control rats were sham operated. Energy-dependent protein breakdown was measured in incubated extensor digitorum longus (EDL) and soleus muscles. Ubiquitin mRNA levels were determined by Northern blot analysis. Sepsis resulted in increased energy-dependent protein breakdown and upregulated expression of ubiquitin mRNA in the fast-twitch EDL but not in the slow-twitch soleus muscle. The sepsis-induced increase in ubiquitin mRNA levels in the EDL muscle was noticeable before the increase in energy-dependent protein breakdown. Sepsis increased ubiquitin mRNA levels in the diaphragm (a mixed fiber-type muscle) but not in heart, liver, kidney, or intestine, consistent with a tissue-specific regulation of the ubiquitin system during sepsis. The results suggest that the difference in protein breakdown during sepsis between fast- and slow-twitch muscles reflects differential activation of the energy-ubiquitin-dependent proteolytic pathway. The data also suggest that the expression of the ubiquitin pathway is upregulated in a time-dependent fashion during sepsis and that this response is not a generalized phenomenon but is tissue specific.

  14. Structurally similar estradiol analogs uniquely alter the regulation of intracellular signaling pathways.

    PubMed

    Yarger, James G; Babine, Robert E; Bittner, Michael; Shanle, Erin; Xu, Wei; Hershberger, Pamela; Nye, Steven H

    2013-02-01

    Ligand structure can affect the activation of nuclear receptors, such as estrogen receptors (ERs), and their control of signaling pathways for cellular responses including death and differentiation. We hypothesized that distinct biological functions of similar estradiol (E(2)) analogs could be identified by integrating gene expression patterns obtained from human tumor cell lines with receptor binding and functional data for the purpose of developing compounds for treatment of a variety of diseases. We compared the estrogen receptor subtype selectivity and impact on signaling pathways for three distinct, but structurally similar, analogs of E(2). Modifications in the core structure of E(2) led to pronounced changes in subtype selectivity for estrogen receptors, ER-α or ER-β, along with varying degrees of ER dimerization and activation. While all three E(2) analogs are predominantly ER-β agonists, the cell growth inhibitory activity commonly associated with this class of compounds was detected for only two of the analogs and might be explained by a ligand-specific pattern of gene transcription. Microarray studies using three different human tumor cell lines demonstrated that the analogs distinctly affect the transcription of genes in signaling pathways for chromosome replication, cell death, and oligodendrocyte progenitor cell differentiation. That the E(2) analogs could lower tumor cell viability and stimulate neuronal differentiation confirmed that gene expression data could accurately distinguish biological activity of the E(2) analogs. The findings reported here confirm that cellular responses can be regulated by making key structural alterations to the core structure of endogenous ER ligands.

  15. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    PubMed

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers.

  16. Two Phosphodiesterase Genes, PDEL and PDEH, Regulate Development and Pathogenicity by Modulating Intracellular Cyclic AMP Levels in Magnaporthe oryzae

    PubMed Central

    Zhang, Haifeng; Liu, Kaiyue; Zhang, Xing; Tang, Wei; Wang, Jiansheng; Guo, Min; Zhao, Qian; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2011-01-01

    Cyclic AMP (cAMP) signaling plays an important role in regulating multiple cellular responses, such as growth, morphogenesis, and/or pathogenicity of eukaryotic organisms such as fungi. As a second messenger, cAMP is important in the activation of downstream effector molecules. The balance of intracellular cAMP levels depends on biosynthesis by adenylyl cyclases (ACs) and hydrolysis by cAMP phosphodiesterases (PDEases). The rice blast fungus Magnaporthe oryzae contains a high-affinity (PdeH/Pde2) and a low-affinity (PdeL/Pde1) PDEases, and a previous study showed that PdeH has a major role in asexual differentiation and pathogenicity. Here, we show that PdeL is required for asexual development and conidial morphology, and it also plays a minor role in regulating cAMP signaling. This is in contrast to PdeH whose mutation resulted in major defects in conidial morphology, cell wall integrity, and surface hydrophobicity, as well as a significant reduction in pathogenicity. Consistent with both PdeH and PdeL functioning in cAMP signaling, disruption of PDEH only partially rescued the mutant phenotype of ΔmagB and Δpka1. Further studies suggest that PdeH might function through a feedback mechanism to regulate the expression of pathogenicity factor Mpg1 during surface hydrophobicity and pathogenic development. Moreover, microarray data revealed new insights into the underlying cAMP regulatory mechanisms that may help to identify potential pathogenicity factors for the development of new disease management strategies. PMID:21386978

  17. Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats

    PubMed Central

    Olivares-García, V; Torre-Villalvazo, I; Velázquez-Villegas, L; Alemán, G; Lara, N; López-Romero, P; Torres, N; Tovar, A R; Díaz-Villaseñor, A

    2015-01-01

    Background/Objective: Dietary fat sources modulate fasting serum concentration of adipokines, particularly adiponectin. However, previous studies utilized obese animals in which adipose tissue function is severely altered. Thus, the present study aimed to assess the postprandial regulation of adipokine secretion in nonobese rats that consumed high-fat diet (HFD) composed of different types of fat for a short time. Methods: The rats were fed a control diet or a HFD containing coconut, safflower or soybean oil (rich in saturated fatty acid, monounsaturated fatty acid or polyunsaturated fatty acid, respectively) for 21 days. The serum concentrations of adiponectin, leptin, retinol, retinol-binding protein-4 (RBP-4), visfatin and resistin were determined at fasting and after refeeding. Adiponectin multimerization and intracellular localization, as well as the expression of endoplasmic reticulum (ER) chaperones and transcriptional regulators, were evaluated in epididymal white adipose tissue. Results: In HFD-fed rats, serum adiponectin was significantly decreased 30 min after refeeding. With coconut oil, all three multimeric forms were reduced; with safflower oil, only the high-molecular-weight (HMW) and medium-molecular-weight (MMW) forms were decreased; and with soybean oil, only the HMW form was diminished. These reductions were due not to modifications in mRNA abundance or adiponectin multimerization but rather to an increment in intracellular localization at the ER and plasma membrane. Thus, when rats consumed a HFD, the type of dietary fat differentially affected the abundance of endoplasmic reticulum resident protein 44 kDa (ERp44), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ (PPARγ) mRNAs, all of which are involved in the post-translational processing of adiponectin required for its secretion. Leptin, RBP-4, resistin and visfatin serum concentrations did not change during fasting, whereas modest alterations were observed after

  18. Intracellular pH-regulating mechanism of the squid axon. Interaction between DNDS and extracellular Na+ and HCO3-

    PubMed Central

    1989-01-01

    Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene- 2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models. PMID:2915212

  19. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  20. Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects.

    PubMed

    Mallo, Natalia; Lamas, Jesús; de Felipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-10-01

    The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.

  1. Three-dimensional structure of a schistosome serpin revealing an unusual configuration of the helical subdomain

    SciTech Connect

    Granzin, Joachim; Huang, Ying; Topbas, Celalettin; Huang, Wenying; Wu, Zhiping; Misra, Saurav; Hazen, Stanley L.; Blanton, Ronald E.; Lee, Xavier; Weiergräber, Oliver H.

    2012-06-01

    The crystal structure of ShSPI, a serpin from the blood fluke S. haematobium, reveals some peculiar features of the helical subdomain which have not been observed previously in the serpin superfamily. Parasitic organisms are constantly challenged by the defence mechanisms of their respective hosts, which often depend on serine protease activities. Consequently, protease inhibitors such as those belonging to the serpin superfamily have emerged as protective elements that support the survival of the parasites. This report describes the crystal structure of ShSPI, a serpin from the trematode Schistosoma haematobium. The protein is exposed on the surface of invading cercaria as well as of adult worms, suggesting its involvement in the parasite–host interaction. While generally conforming to the well established serpin fold, the structure reveals several distinctive features, mostly concerning the helical subdomain of the protein. It is proposed that these peculiarities are related to the unique biological properties of a small serpin subfamily which is conserved among pathogenic schistosomes.

  2. Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells.

    PubMed

    Rajapakshe, Anupama R; Podyma-Inoue, Katarzyna A; Terasawa, Kazue; Hasegawa, Katsuya; Namba, Toshimitsu; Kumei, Yasuhiro; Yanagishita, Masaki; Hara-Yokoyama, Miki

    2015-02-01

    The intracellular positioning of both lysosomes and mitochondria meets the requirements of degradation and energy supply, which are respectively the two major functions for cellular maintenance. The positioning of both lysosomes and mitochondria is apparently affected by the nutrient status of the cells. However, the mechanism coordinating the positioning of the organelles has not been sufficiently elucidated. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) are highly glycosylated proteins that are abundant in lysosomal membranes. In the present study, we demonstrated that the siRNA-mediated downregulation of LAMP-1, LAMP-2 or their combination enhanced the perinuclear localization of mitochondria, in the pre-osteoblastic cell line MC3T3-E1. On the other hand, in the osteocytic cell line MLO-Y4, in which both the lysosomes and mitochondria originally accumulate in the perinuclear region and mitochondria also fill dendrites, the effect of siRNA of LAMP-1 or LAMP-2 was barely observed. LAMPs are not directly associated with mitochondria, and there do not seem to be any accessory molecules commonly required to recruit the motor proteins to lysosomes and mitochondria. Our results suggest that LAMPs may regulate the positioning of lysosomes and mitochondria. A possible mechanism involving the indirect and context-dependent action of LAMPs is discussed.

  3. Proton/l-Glutamate Symport and the Regulation of Intracellular pH in Isolated Mesophyll Cells 1

    PubMed Central

    Snedden, Wayne A.; Chung, Induk; Pauls, Randy H.; Bown, Alan W.

    1992-01-01

    Addition of l-[U-14C]glutamate to a suspension of mechanically isolated asparagus (Asparagus sprengeri Regel) mesophyll cells results in (a) alkalinization of the medium, (b) uptake of l-[U-14C]glutamate, and (c) efflux of [14C]4-aminobutyrate, a product of glutamate decarboxylation. All three phenomena were eliminated by treatment with 1 millimolar aminooxyacetate. In vitro glutamate decarboxylase (GAD) assays showed that (a) 2 millimolar aminooxyacetate eliminated enzyme activity, (b) activity was pyridoxal phosphate-dependent, and (c) activity exhibited a sharp pH optimum at 6.0 that decreased to 20% of optimal activity at pH 5.0 and 7.0. Addition of 1.5 millimolar sodium butyrate or sodium acetate to cell suspensions caused immediate alkalinization of the medium followed by a resumption of acidification of the medium at a rate approximately double the initial rate. The data indicate that (a) continued H+/l-glutamate contransport is dependent upon GAD activity, (b) the pH-dependent properties of GAD are consistent with a role in a metabolic pH-stat, and (c) the regulation of intracellular pH during H+/l-Glu symport may involve both H+ consumption during 4-aminobutyrate production and ATP-driven H+ efflux. PMID:16668938

  4. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility.

    PubMed

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2016-09-27

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.

  5. Cyclic AMP regulation of arachidonic acid (AA) release and phospholipid metabolism in human monocytes: modulation by intracellular calcium

    SciTech Connect

    Hoffstein, S.T.; Manzi, R.M.; Godfrey, R.W.

    1986-05-01

    Stimulation of inflammatory cells by specific ligands results in activation of phospholipase(s) and production of oxygenation products of AA. The authors have employed (/sup 3/H)AA labeled monocytes to examine the involvement of cAMP in regulating phospholipase activity as measured by percent of incorporated (/sup 3/H)AA released and TLC analysis of (/sup 3/H)AA cellular lipids. Maximum release of radiolabel (31 +/- 5%) occurred upon challenge with the calcium ionophore A23187/sup -/ (10..mu..M), while FMLP (1..mu..M) yielded 15 +/- 1% and untreated cells 8 +/- 1%. Pretreatment of monocytes with isobutyl methyl xanthine/sup -/(IBMX) or dibutyrl cyclic AMP (d-cAMP) inhibited FMLP stimulated release with IC/sub 50/'s of 2.5 x 10/sup -5/M and 8 x 10/sup -5/M respectively. Exposure of monocytes to maximal levels of IBMX (5 x 10/sup -4/M) or d-cAMP (10/sup -3/M) also reduced release from controls by 40%, while A23187 induced release was uneffected by either. Examination of (/sup 3/H) AA labeled phospholipids showed that phosphatidylcholine (PC) and phosphatidylinositol were the major pools labeled and that stimulation by FMLP or A23187 appeared to deplete the PC pool exclusively. Prior exposure to IBMX or d-cAMP inhibited the loss from the PC pool only in untreated or FMLP stimulated cells. The data suggests that a phospholipase A/sub 2/ activity, directly primarily towards PC, is regulated by cAMP possibly by inhibiting receptor mediated increases in intracellular calcium levels.

  6. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans.

    PubMed

    Lažetić, Vladimir; Fay, David S

    2017-01-01

    Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.

  7. The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells.

    PubMed

    Palmisano, Ilaria; Bagnato, Paola; Palmigiano, Angela; Innamorati, Giulio; Rotondo, Giuseppe; Altimare, Domenico; Venturi, Consuelo; Sviderskaya, Elena V; Piccirillo, Rosanna; Coppola, Massimiliano; Marigo, Valeria; Incerti, Barbara; Ballabio, Andrea; Surace, Enrico M; Tacchetti, Carlo; Bennett, Dorothy C; Schiaffino, Maria Vittoria

    2008-11-15

    The protein product of the ocular albinism type 1 gene, named OA1, is a pigment cell-specific G protein-coupled receptor exclusively localized to intracellular organelles, namely lysosomes and melanosomes. Loss of OA1 function leads to the formation of macromelanosomes, suggesting that this receptor is implicated in organelle biogenesis, however the mechanism involved in the pathogenesis of the disease remains obscure. We report here the identification of an unexpected abnormality in melanosome distribution both in retinal pigment epithelium (RPE) and skin melanocytes of Oa1-knock-out (KO) mice, consisting in a displacement of the organelles from the central cytoplasm towards the cell periphery. Despite their depletion from the microtubule (MT)-enriched perinuclear region, Oa1-KO melanosomes were able to aggregate at the centrosome upon disruption of the actin cytoskeleton or expression of a dominant-negative construct of myosin Va. Consistently, quantification of organelle transport in living cells revealed that Oa1-KO melanosomes displayed a severe reduction in MT-based motility; however, this defect was rescued to normal following inhibition of actin-dependent capture at the cell periphery. Together, these data point to a defective regulation of organelle transport in the absence of OA1 and imply that the cytoskeleton might represent a downstream effector of this receptor. Furthermore, our results enlighten a novel function for OA1 in pigment cells and suggest that ocular albinism type 1 might result from a different pathogenetic mechanism than previously thought, based on an organelle-autonomous signalling pathway implicated in the regulation of both membrane traffic and transport.

  8. Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies.

    PubMed

    Gout, E; Bligny, R; Douce, R

    1992-07-15

    The regulation of the cytoplasmic and vacuolar pH values (pHc and pHv) in sycamore (Acer pseudoplatanus L.) cells was analyzed using 31P and 13C nuclear magnetic resonance spectroscopy. Suspension-cultured cells were compressed in the NMR tube and perfused with the help of an original arrangement enabling a tight control of the pH (external pH, pHe) of the carefully oxygenated circulating nutrient medium. Intracellular pH values were measured from the chemical shifts of: CH2-linked carboxyl groups of citric acid below pH 5.7; orthophosphate between pH 5.7 and 8.0; 13C-enriched bicarbonate over pH 8.0. pHc and pHv were independent of pHe over the range 4.5-7.5. In contrast intracellular pH values decreased rapidly below pHe 4.5 and increased progressively at pHe over 7.5. There was an acceleration in the rate of O2 consumption accompanied with a decrease in cytoplasmic ATP concentration as pHe decreased. When the rate of O2 consumption was approaching the uncoupled O2 uptake rate, a loss of pHc control was observed. It is concluded that as pHe decreased, the plasma membrane ATPase consumed more and more ATP to reject the invading H+ ions in order to maintain pHc at a constant value. Below pHe 4.5 the efficiency of the H+ pump to react to back leakage of H+ ions became insufficient, leading to an acidification of pHc and to an alkalinization of pHe. On the other hand, over pHe 7.5 a passive influx of OH- ions was observed, and pHc increased proportionally to the increase of pHe. Simultaneously appreciable amounts of organic acids (malate and citrate) were synthesized by cells during the course of the alkalinization of the cytoplasmic compartment. The synthesis of organic acids which partially counteract the alkalinization of the cytoplasmic compartment may result from a marked activation of the cytoplasmic phosphoenolpyruvate carboxylase induced by an increase in cytoplasmic bicarbonate concentration. The fluctuations of pHv followed a similar course to that of p

  9. Suppressors of a Host Range Mutation in the Rabbitpox Virus Serpin SPI-1 Map to Proteins Essential for Viral DNA Replication

    PubMed Central

    Luttge, Benjamin G.; Moyer, Richard W.

    2005-01-01

    The orthopoxvirus serpin SPI-1 is an intracellular serine protease inhibitor that is active against cathepsin G in vitro. Rabbitpox virus (RPV) mutants with deletions of the SPI-1 gene grow on monkey kidney cells (CV-1) but do not plaque on normally permissive human lung carcinoma cells (A549). This reduced-host-range (hr) phenotype suggests that SPI-1 may interact with cellular and/or other viral proteins. We devised a genetic screen for suppressors of SPI-1 hr mutations by first introducing a mutation into SPI-1 (T309R) at residue P14 of the serpin reactive center loop. The SPI-1 T309R serpin is inactive as a protease inhibitor in vitro. Introduction of the mutation into RPV leads to the same restricted hr phenotype as deletion of the SPI-1 gene. Second-site suppressors were selected by restoration of growth of the RPV SPI-1 T309R hr mutant on A549 cells. Both intragenic and extragenic suppressors of the T309R mutation were identified. One novel intragenic suppressor mutation, T309C, restored protease inhibition by SPI-1 in vitro. Extragenic suppressor mutations were mapped by a new procedure utilizing overlapping PCR products encompassing the entire genome in conjunction with marker rescue. One suppressor mutation, which also rendered the virus temperature sensitive for growth, mapped to the DNA polymerase gene (E9L). Several other suppressors mapped to gene D5R, an NTPase required for DNA replication. These results unexpectedly suggest that the host range function of SPI-1 may be associated with viral DNA replication by an as yet unknown mechanism. PMID:15994811

  10. Characterization and expression analysis of serpinB3, the first clade B serine protease inhibitor in Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Liu, Yongjie; Hou, Fujun; Liu, Xiaolin

    2017-02-24

    Currently, about nine serpin clades (A-I) were preferentially observed in higher animals and clustered on the basis of function. Of these, eight clades contain extracellular proteins, while clade B contains predominantly intracellular proteins. In the present study, the first clade B serpin (named LvserpinB3) was identified from the Pacific white shrimp Litopenaeus vannamei. LvserpinB3 encoded a 412-amino acid protein with a 19-amino acid signal peptide and a serpin domain. Moreover, a transmembrane helix (TMHs) was predicted to be located on the N-terminal of LvserpinB3. Alignment with the cDNA sequence indicated that the genomic LvserpinB3 gene contains 2 exons and 1 intron. The P1-P1' scissile bond of the core feature reactive center loop (RCL) represented for Arginine-Isoleucine (RI), which was in accordance with PmserpinB3, Msserpin-4, -5 and -7. The highest mRNA expression level of LvserpinB3 was detected in hepatopancreas. A significant decrease of LvserpinB3 was detected in hepatopancreas at 6 h post Vibrio anguillarum injection, and later on, the expression of LvserpinB3 was remarkably elevated at 24 h post bacterial challenge. Suppression of LvserpinB3 in vivo by double-stranded RNA (dsRNA) mediated RNA interference (RNAi) led to a significant increase in the transcripts of LvSP1 (Serine protease 1), LvPPAE2 (Prophenoloxidase-activating Enzyme 2) and cumulative mortality. Furthermore, rLvserpinB3 protein was expressed and purified in vitro for the prophenoloxidase inhibition assay. The rLvserpinB3 protein can strongly impede the extent of proPO cascade. All above imply that LvserpinB3 might be an inhibitor for prophenoloxidase-activating system.

  11. Suppressors of a host range mutation in the rabbitpox virus serpin SPI-1 map to proteins essential for viral DNA replication.

    PubMed

    Luttge, Benjamin G; Moyer, Richard W

    2005-07-01

    The orthopoxvirus serpin SPI-1 is an intracellular serine protease inhibitor that is active against cathepsin G in vitro. Rabbitpox virus (RPV) mutants with deletions of the SPI-1 gene grow on monkey kidney cells (CV-1) but do not plaque on normally permissive human lung carcinoma cells (A549). This reduced-host-range (hr) phenotype suggests that SPI-1 may interact with cellular and/or other viral proteins. We devised a genetic screen for suppressors of SPI-1 hr mutations by first introducing a mutation into SPI-1 (T309R) at residue P14 of the serpin reactive center loop. The SPI-1 T309R serpin is inactive as a protease inhibitor in vitro. Introduction of the mutation into RPV leads to the same restricted hr phenotype as deletion of the SPI-1 gene. Second-site suppressors were selected by restoration of growth of the RPV SPI-1 T309R hr mutant on A549 cells. Both intragenic and extragenic suppressors of the T309R mutation were identified. One novel intragenic suppressor mutation, T309C, restored protease inhibition by SPI-1 in vitro. Extragenic suppressor mutations were mapped by a new procedure utilizing overlapping PCR products encompassing the entire genome in conjunction with marker rescue. One suppressor mutation, which also rendered the virus temperature sensitive for growth, mapped to the DNA polymerase gene (E9L). Several other suppressors mapped to gene D5R, an NTPase required for DNA replication. These results unexpectedly suggest that the host range function of SPI-1 may be associated with viral DNA replication by an as yet unknown mechanism.

  12. Regulation of intracellular cyclic AMP in skeletal muscle cells involves the efflux of cyclic nucleotide to the extracellular compartment

    PubMed Central

    Godinho, Rosely Oliveira; Costa-Jr, Valter Luiz

    2003-01-01

    This report analyses the intracellular and extracellular accumulation of cyclic AMP in primary rat skeletal muscle cultures, after direct and receptor-dependent stimulation of adenylyl cyclase (AC). Isoprenaline, calcitonin gene-related peptide (CGRP) and forskolin induced a transient increase in the intracellular cyclic AMP that peaked 5 min after onset stimulation. Under stimulation with isoprenaline or CGRP, the intracellular cyclic AMP initial rise was followed by an exponential decline, reaching 46 and 52% of peak levels in 10 min, respectively. Conversely, the forskolin-dependent accumulation of intracellular cyclic AMP decreased slowly and linearly, reaching 49% of the peak level in 30 min. The loss of intracellular cyclic AMP from peak levels, induced by direct or receptor-induced activation of AC, was followed by an increase in the extracellular cyclic AMP. This effect was independent on PDEs, since it was obtained in the presence of 3-isobutyl-1-methylxanthine (IBMX). Besides, in isoprenaline treated cells, the beta-adrenoceptor antagonist propranolol reduced both intra- and extracellular accumulation of cyclic AMP, whereas the organic anion transporter inhibitor probenecid reduced exclusively the extracellular accumulation. Together our data show that direct or receptor-dependent activation of skeletal muscle AC results in a transient increase in the intracellular cyclic AMP, despite the continuous presence of the stimulus. The temporal declining of intracellular cyclic AMP was not dependent on the cyclic AMP breakdown but associated to the efflux of cyclic nucleotide to the extracellular compartment, by an active transport since it was prevented by probenecid. PMID:12642402

  13. Maternal Serum Serpin B7 Is Associated With Early Spontaneous Preterm Birth

    PubMed Central

    Parry, Samuel; Zhang, Heping; Biggio, Joseph; Bukowski, Radek; Varner, Michael; Xu, Yaji; Andrews, William W.; Saade, George R.; Esplin, M. Sean; Leite, Rita; Ilekis, John; Reddy, Uma M.; Sadovsky, Yoel; Blair, Ian A.

    2014-01-01

    Objective To identify serum biomarkers of early spontaneous preterm birth (SPTB) using semi-quantitative proteomic analyses. Study Design Nested case-control study of pregnant women with previous SPTB. Maternal serum was collected at 19 to 24 and 28 to 32 weeks gestation, and analyzed by liquid chromatography-multiple-reaction monitoring-mass spectrometry. Targeted and shotgun proteomics identified 31 candidate proteins that were differentially expressed in pooled serum samples from spontaneous preterm (<34 weeks - cases) and term deliveries (controls). Candidate protein expression was compared in individual serum samples between cases and controls matched by age and race groups, and clinical site. Protein expression was verified by Western blot in the placenta and fetal membranes from cases and controls. Results Serum samples were available for 35 cases and 35 controls at 19 to 24 weeks, and 16 cases and 16 controls at 28 to 32 weeks. One protein, serpin B7, yielded serum concentrations that differed between cases and controls. The mean concentration of serpin B7 at 28 to 32 weeks was 1.5-fold higher in women with subsequent preterm deliveries compared to controls; there was no difference at 19 to 24 weeks. Higher levels of serpin B7 at both gestational age windows were associated with a shorter interval to delivery, and higher levels of serpin B7 in samples from 28 to 32 weeks were associated with a lower gestational age at delivery. Western blotting identified serpin B7 protein in placenta, amnion, and chorion from cases and controls. Conclusion Targeted and shotgun serum proteomics analyses associated one protein, serpin B7, with early SPTB. Our results require validation in other cohorts and analysis of the possible mechanistic role of serpin B7 in parturition. PMID:24954659

  14. Intracellular redox equilibrium is essential for the constitutive expression of AP-1 dependent genes in resting cells: studies on TGF-β1 regulation.

    PubMed

    González-Ramos, Marta; Mora, Inés; de Frutos, Sergio; Garesse, Rafael; Rodríguez-Puyol, Manuel; Olmos, Gemma; Rodríguez-Puyol, Diego

    2012-06-01

    The mechanisms involved in the continuous expression of constitutive genes are unclear. We hypothesize that steady state intracellular reactive oxygen species (ROS), which their levels are tightly maintained, could be regulating the expression of these constitutive genes in resting cells. We analyzed the regulation of an important constitutive gene, TGF-β1, after decreasing intracellular ROS concentration in human mesangial cells. Decreased intracellular hydrogen peroxide by catalase addition reduced TGF-β1 protein, mRNA expression and promoter activity. Furthermore, catalase decreased the basal activity of Activated Protein-1 (AP-1) that regulates TGF-β1 promoter activity. This effect disappeared when AP-1 binding site was removed. Similar results were observed with another protein containing AP-1 binding sites in its promoter, such as eNOS, but it was not the case in other constitutive genes without any AP-1 binding site, as COX1 or PKG1. The pharmacological inhibition of the different ROS synthesis sources by blocking NADPH oxidase, the mitochondrial respiratory chain or xanthine oxidase, or the use of human fibroblasts with genetically deficient mitochondrial activity, induced a similar, significant reduction of steady state ROS concentration as the one observed with catalase. Moreover, there was decreased TGF-β1 expression in all the cases excepting the xanthine oxidase blockade. These findings suggest a novel role for the steady state intracellular ROS concentration, where the compartmentalized, different systems involved in the intracellular ROS production, could be essential for the expression of constitutive AP1-dependent genes, as TGF-β1.

  15. Sphingosine kinase 2 (Sphk2) regulates platelet biogenesis by providing intracellular sphingosine 1-phosphate (S1P).

    PubMed

    Zhang, Lin; Urtz, Nicole; Gaertner, Florian; Legate, Kyle R; Petzold, Tobias; Lorenz, Michael; Mazharian, Alexandra; Watson, Steve P; Massberg, Steffen

    2013-08-01

    Human megakaryocytes (MKs) release trillions of platelets each day into the circulation to maintain normal homeostatic platelet levels. We have previously shown that extracellular sphingosine 1-phosphate (S1P) plays a key role in thrombopoiesis via its receptor S1pr1. In addition to its role as an extracellular mediator, S1P can also function as a second messenger in the intracellular compartment. Although signaling via intracellular S1P is involved in various cellular processes, a role in thrombopoiesis has not been examined. Sphingosine kinases are the key enzymes that produce intracellular S1P. Here we report that sphingosine kinase 2 (Sphk2) is the major messenger RNA species present in MKs. Sphk2 predominantly localizes to the nucleus and is the major source of intracellular S1P in MKs. Loss of Sphk2 significantly reduced intracellular S1P in MKs and downregulated the expression and activity of Src family kinases (SFKs). Loss of Sphk2 and inhibition of SFK activity resulted in defective intravascular proplatelet shedding, the final stage of thrombopoiesis. Correspondingly, mice lacking Sphk2 in the hematopoietic system display thrombocytopenia. Together, our data suggest that Sphk2 provides the source of intracellular S1P that controls thrombopoiesis, which is associated with SFK expression and activity in MKs.

  16. Intracellular pH regulates basolateral K+ and Cl- conductances in colonic epithelial cells by modulating Ca2+ activation

    PubMed Central

    1991-01-01

    The role of intracellular pH as a modulator of basolateral K+ and Cl- conductances in epithelial cells was studied using digitonin- permeabilized colonic cell layers so that cytosolic pH could be clamped at specific values, while basolateral K+ and Cl- conductances were activated by stepwise increases in intracellular free Ca2+. Increasing the intracellular pH from 6.6 to 8.0 enhanced the sensitivity of both ionic conductances to intracellular Ca2+, but changing extracellular pH had no effect. Maximal K+ and Cl- currents activated by Ca2+ were not affected by changes in intracellular pH, suggesting that protons do not alter the conduction properties of the channels. Hill analysis of the Ca2+ activation process revealed that raising the cytosolic pH from 6.6 to 8.0 reduced the K1/2 for Ca2+ activation. In the absence of Ca2+, changes in intracellular pH did not have a significant effect on the basolateral K+ and Cl- conductances. These results are consistent with the notion that changes in cytosolic pH can modulate basolateral conductances by modifying the action of calcium, perhaps by acting at or near the activation site to provide a mechanism of variable "gain control." PMID:1719125

  17. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity.

    PubMed

    Schaefers, Matthew M; Liao, Tiffany L; Boisvert, Nicole M; Roux, Damien; Yoder-Himes, Deborah; Priebe, Gregory P

    2017-01-01

    Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC), which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF) and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence.

  18. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity

    PubMed Central

    Liao, Tiffany L.; Boisvert, Nicole M.; Priebe, Gregory P.

    2017-01-01

    Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC), which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF) and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence. PMID:28046077

  19. Osmolytes as modulators of conformational changes in serpins.

    PubMed

    Chow, M K; Devlin, G L; Bottomley, S P

    2001-11-01

    Protein misfolding and aggregation play an integral role in many diseases. The misfolding of the serpin (SERine Proteinase INhibitor) alpha1-antitrypsin results in the accumulation of insoluble polymers within hepatocytes and alpha1-antitrypsin deficiency in plasma, predisposing patients to liver cirrhosis and emphysema. We have examined the effect of three naturally occurring osmolytes, sarcosine, glycine betaine and trimethylamine N-oxide, on conformational changes in alpha1-antitrypsin. All three solutes protected native alpha1-antitrypsin against thermally induced polymerisation and inactivation in a concentration-dependent manner. Further spectroscopic analysis showed that sarcosine stabilises the native conformation of alpha1-antitrypsin, thus hindering its conversion to an intermediate state and subsequent polymerisation. On refolding in the presence of sarcosine, alpha1-antitrypsin formed a heterogeneous population, with increasing proportions of molecules adopting an inactive conformation in higher concentrations of the osmolyte. These data show that sarcosine can be used to prevent abnormal structural changes in native alpha1-antitrypsin, but is ineffective in facilitating the correct folding of the protein. The implications of these results in the context of conformational changes and states adopted by alpha1-antitrypsin are discussed.

  20. Regulation of intracellular pH in the smooth muscle of guinea-pig ureter: Na+ dependence.

    PubMed Central

    Aickin, C C

    1994-01-01

    1. Mechanisms involved in the regulation of intracellular pH (pHi) in smooth muscle cells of guinea-pig ureter have been investigated using double-barrelled pH-sensitive microelectrodes in isolated strips of tissue. 2. Removal of CO2-HCO3- from the superfusing solution caused a fall in the steady-state pHi except in a few cells which had been excised from the animal for many hours (usually > 24 h). The pHi value was 7.22 +/- 0.09 (n = 89; mean +/- S.D. of an observation) in solution buffered with 5% CO2-21 mM HCO3-, compared with 6.92 +/- 0.24 (n = 67) in the nominal absence of CO2-HCO3-. Recovery from experimentally induced acidosis was faster in the presence, rather than nominal absence, of CO2-HCO3- (mean half-times of 2.7 +/- 0.7 min, n = 41, and 4.6 +/- 1.3 min, n = 12, respectively). These results suggest the presence of both HCO(3-)-dependent and -independent mechanisms for the effective extrusion of acid equivalents. 3. Recovery from acidosis was dependent on external Na+ (Na+o) in both the presence and nominal absence of CO2-HCO3-, with an apparent half-maximal activation at approximately 4 and 20 mM Na+o, respectively. Removal of Na+o in the steady state caused a fall in pHi which proceeded at a faster rate in the presence rather than in the nominal absence of CO2-HCO3-. 4. Amiloride (100 microM-1 mM) reversibly inhibited the recovery from acidosis and caused a fall in the steady-state pHi when applied in the nominal absence of CO2-HCO3-, but had no measurable effect on either the recovery from acidosis or steady-state pHi in the presence of CO2-HCO3-. These results suggest that Na(+)-H+ exchange was responsible for extrusion of acid equivalents in the nominal absence of CO2 and HCO3-, but that it played little part under more physiological conditions. 5. Although Na(+)-H+ exchange appeared to be activated below a pHi of about 7.2, it was incapable of maintaining a 'normal' pHi in the nominal absence of CO2-HCO3- in freshly excised cells, where values

  1. Some immunomodulatory effects of probiotic bacteria might be due to porcine neutrophil elastase inhibitor, a serpin present in MRS broth.

    PubMed

    Urdaci, María C; Sánchez, Borja

    2009-01-29

    Use of conditioned media (CM) is a common practice for the study of the immunomodulatory effects of probiotic bacteria on the human host. Serpins and other immunomodulatory proteins/peptides that are present in CM may be responsible for some of the observed effects, which in fact might have been attributed to probiotic bacteria. The exact effects of serpin have thus to be assessed.

  2. Expression of MMP9, SERPINE1 and miR-134 as prognostic factors in esophageal cancer

    PubMed Central

    Klimczak-Bitner, Anna Agnieszka; Kordek, Radzisław; Bitner, Jan; Musiał, Jacek; Szemraj, Janusz

    2016-01-01

    Esophageal cancer (EC) is a malignant tumor with a typically poor prognosis for patients. It is well known that certain microRNA (miRNA/miR) genes can regulate other genes responsible for carcinogenesis. In the present study, a group of these genes (miR-21, miR-134, miR-205 and miR-495) and genes connected with cancer-related pathways (MET, MMP9, PDGFA and SERPINE1) were chosen for analysis in order to find a potential correlation between their expression and the clinicopathological factors of EC. Esophageal tumors and adjacent non-cancerous tissue specimens were collected from a total of 63 patients and embedded in paraffin. Commercial arrays were used on KYSE-30, KYSE-150 and KYSE-270 EC cell lines in order to find genes of different expression profiles compared with those acquired from the control Het-1A cell line. Quantitative polymerase chain reaction was used on formalin-fixed, paraffin-embedded samples in order to analyze the expression of the genes chosen in the earlier step. The results were analyzed by the Kruskal-Wallis and Mann-Whitney U tests, Spearman's rank correlation coefficient, Kaplan-Meier methods and the long-rank test. Only miR-495 was not expressed in the analyzed samples. The expression of MMP9 and SERPINE1 was significantly coefficient with age range (P=0.011 and P=0.044, respectively) according to the Kruskal-Wallis test. The Spearman's rank-order correlation measurement showed that there was a coefficient correlation between age and miR-134 expression. The same measurement demonstrated a correlation between age range and MMP9 expression. The expression of miR-134 and MMP9 were also found to be correlated. In all cases, a value of P<0.049 was recorded. Overall, the present study demonstrated that MMP9, SERPINE1 and miR-134 were the most prognostic genes in Caucasian patients with EC. PMID:27895782

  3. Regulation of intracellular calcium in cortical neurons transgenic for human Aβ40 and Aβ42 following nutritive challenge

    PubMed Central

    Shirwany, Najeeb A; Xie, Jun; Guo, Qing

    2009-01-01

    The pathogenesis of Alzheimer's Disease (AD) is not fully understood. Amyloid plaques could be causally linked to neuronal loss in AD. Two proteolytic products of the Amyloid Precursor Protein (APP), Amyloid β40 (Aβ40) and Amyloid β42 (Aβ42), are considered to be critical in the neurodegeneration seen in AD. However, in transgenic mice that overexpress human Aβ40 or Aβ42, it was shown that Aβ42 was much more amyloidogenic than Aβ40. In contrast to this observation, we have found that cultured cortical neurons from mice transgenic for human Aβ40 and for Aβ42 are both and statistically equally vulnerable to nutritive challenge induced by trophic factor withdrawal (TFW). Aberrant regulation of InsP3R (Inositol triphosphate receptor)-mediated calcium release has been implicated in neuronal cell death. It is however not clear whether this pathway plays a critical role in cortical neurons transgenic for different species of human Aβ. We now report that Aβ40 and Aβ42 equally exacerbated intracellular calcium response to TFW in cortical neurons following TFW. When bradykinin (BK), a potent stimulant of InsP3R-mediated calcium release from ER, was applied to these cells, wild-type (WT) neurons exhibited a steep rise in [Ca2+]i but this was not observed in either Aβ transgenic type. Similarly, when 1 μM Xestopongin C (XeC), a specific blocker of InsP3R, was applied to these neurons, WT cells showed a significant attenuation of increase in [Ca2+]i following TFW, while elevation in [Ca2+]i induced by TFW remained largely unchanged in Aβ40 and Aβ42 cells. Finally, when we treated these cells with a Ca2+ chelator (BAPTA; 10 μM), all three cell types had a marked attenuation of [Ca2+]i. These findings indicate that the exacerbated calcium dysregulation following TFW in Aβ transgenic neurons are likely to be mediated by calcium channels other than ER InsP3R receptors. Overall, our results also suggest that a highly amyloidogenic Abeta species, such as Aβ42

  4. Polyphenol oxidase from wheat bran is a serpin.

    PubMed

    Yamasaki, Yoshiki; Konno, Haruyoshi; Noda, Kazuhiko

    2008-01-01

    Polyphenol oxidase (PPO; EC 1.10.3.2) was isolated from wheat bran by a procedure that included ammonium sulfate fractionation, batch adsorption by DEAE-cellulofine, CM-cellulofine column chromatography, DEAE-cellulofine column chromatography, preparative isoelectric focusing, adsorption on the membrane of a Vivapure Q Maxi H spin column, and heat treatment. These procedures led to 150-fold purification with 4.2% recovery. The PPO was homogeneous by SDS/PAGE. The relative molecular weight of the PPO was estimated to be 37,000 based on its mobility in SDS/PAGE. The isoelectric point of the PPO was 4.4. The K(m) values of the PPO for caffeic acid, chlorogenic acid, pyrocatechol, 4-methyl catechol and l-DOPA as substrates were 0.077, 0.198, 1.176, 1.667 and 4.545 mM. The PPO was strongly inhibited by tropolone. The K(i) value for tropolone is 2.2 x 10(-7) M. The sequence of the 15 N-terminal amino-acid residues was determined to be ATDVRLSIAHQTRFA, which was identical to those of serpin from Triticum aestivum and protein Z from Hordeum vulgare. The PPO strongly inhibited the activity of trypsin, which is an enzyme of serine proteases; 50% inhibition was observed with 1.5 x 10(-7) M PPO. The K(i) value for PPO is 2.3 x 10(-8) M. The wheat bran PPO should be a very important protein for protecting wheat against disease, virus, insect and herbivore damages by both the activities of PPO and protease inhibitor.

  5. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  6. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  7. Increased intracellular Ca(2+) decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells.

    PubMed

    Yu, Yang; Xie, Qi; Liu, Weimin; Guo, Yuting; Xu, Na; Xu, Lu; Liu, Shibing; Li, Songyan; Xu, Ye; Sun, Liankun

    2017-02-01

    Previous studies have reported that intracellular Ca(2+) signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca(2+) and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDP(S)) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer.

  8. Local and Global Effects of a Cavity Filling Mutation in a Metastable Serpin

    PubMed Central

    Sengupta, Tanusree; Tsutsui, Yuko; Wintrode, Patrick L.

    2009-01-01

    The serpins are an unusual class of protease inhibitors which fold to a metastable form and subsequently undergo a massive conformational change to a stable form when they inhibit their target proteases. The driving force for this conformational change has been extensively investigated by site directed mutagenesis, and it has been found that mutations which stabilize the metastable form frequently result in activity deficiency. Here we employ hydrogen/deuterium exchange to probe the effects of a cavity filling mutant of α1AT. The Gly117→Phe substitution fills a cavity between the F-helix and the face of β-sheet A, stabilizes the metastable form of α1AT by ∼4 kcal/mole and results in a 60% reduction in inhibitory activity against elastase. Globally, the G117F substitution alters the unfolding mechanism by eliminating the molten globule intermediate that is seen in Wild Type unfolding. Remarkably, this is accomplished primarily by destabilizing the molten globule rather than stabilizing the metastable native state. Locally, conformational flexibility in the native state is reduced in specific regions: the top of the F-helix, β-strands 5A, 1C and 4C, and helix D. Excepting strand 4C, all of these regions mediate or propagate conformational changes. The F-helix and strand 5A must be displaced during protease inhibition, displacement of strand 1C is required for polymer formation, and helix D is a site (in antithrombin) of allosteric regulation. Our results indicate that these functionally important regions form a delocalized network of residues that are dynamically coupled, and that both local and global stability mediate inhibitory activity. PMID:19624115

  9. Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.

    PubMed Central

    Pende, M; Holtzclaw, L A; Curtis, J L; Russell, J T; Gallo, V

    1994-01-01

    Oligodendrocytes and their progenitors (O-2A) express functional kainate- and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptors. The physiological consequences of activation of these receptors were studied in purified rat cortical O-2A progenitors and in the primary oligodendrocyte cell line CG-4. Changes in the mRNA levels of a set of immediate early genes were studied and were correlated to intracellular Ca2+ concentration, as measured by fura-2 Ca2+ imaging. Both in CG-4 and in cortical O-2A progenitors, basal mRNA levels of NGFI-A were much higher than c-fos, c-jun, or jun-b. Glutamate, kainate, and AMPA greatly increased NGFI-A mRNA and protein by activation of membrane receptors in a Ca(2+)-dependent fashion. Agonists at non-N-methyl-D-aspartate receptors promoted transmembrane Ca2+ influx through voltage-dependent channels as well as kainate and/or AMPA channels. The influx of Ca2+ ions occurring through glutamate-gated channels was sufficient by itself to increase the expression of NGFI-A mRNA. AMPA receptors were found to be directly involved in intracellular Ca2+ and NGFI-A mRNA regulation, because the effects of kainate were greatly enhanced by cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA but not kainate receptors. Our results indicate that glutamate acting at AMPA receptors regulates immediate early gene expression in cells of the oligodendrocyte lineage by increasing intracellular calcium. Consequently, modulation of these receptor channels may have immediate effects at the genomic level and regulate oligodendrocyte development at critical stages. Images PMID:8159727

  10. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING

    PubMed Central

    Yang, Bo; Yan, Shanshan; Zhou, Haiyan; He, Lan; Lin, Guomei; Lian, Zhexiong; Jiang, Zhengfan; Sun, Bing

    2015-01-01

    Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING. PMID:26114947

  11. Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. Role of third intracellular m2 loop and G protein-coupled receptor kinase 2.

    PubMed

    Tsuga, H; Kameyama, K; Haga, T; Honma, T; Lameh, J; Sadée, W

    1998-02-27

    Internalization and down-regulation of human muscarinic acetylcholine m2 receptors (hm2 receptors) and a hm2 receptor mutant lacking a central part of the third intracellular loop (I3-del m2 receptor) were examined in Chinese hamster ovary (CHO-K1) cells stably expressing these receptors and G protein-coupled receptor kinase 2 (GRK2). Agonist-induced internalization of up to 80-90% of hm2 receptors was demonstrated by measuring loss of [3H]N-methylscopolamine binding sites from the cell surface, and transfer of [3H]quinuclidinyl benzilate binding sites from the plasma membrane into the light-vesicle fractions separated by sucrose density gradient centrifugation. Additionally, translocation of hm2 receptors with endocytic vesicles were visualized by immunofluorescence confocal microscopy. Agonist-induced down-regulation of up to 60-70% of hm2 receptors was demonstrated by determining the loss of [3H]quinuclidinyl benzilate binding sites in the cells. The half-time (t1/2) of internalization and down-regulation in the presence of 10(-4) M carbamylcholine was estimated to be 9.5 min and 2.3 h, respectively. The rates of both internalization and down-regulation of hm2 receptors in the presence of 10(-6) M or lower concentrations of carbamylcholine were markedly increased by coexpression of GRK2. Agonist-induced internalization of I3-del m2 receptors was barely detectable upon incubation of cells for 1 h, but agonist-induced down-regulation of up to 40-50% of I3-del m2 receptors occurred upon incubation with 10(-4) M carbamylcholine for 16 h. However, the rate of down-regulation was lower compared with wild type receptors (t1/2 = 9.9 versus 2.3 h). These results indicate that rapid internalization of hm2 receptors is facilitated by their phosphorylation with GRK2 and does not occur in the absence of the third intracellular loop, but down-regulation of hm2 receptors may occur through both GRK2-facilitating pathway and third intracellular loop-independent pathways.

  12. Isolation and molecular characterization of a major hemolymph serpin from the triatomine, Panstrongylus megistus

    PubMed Central

    2014-01-01

    Background Chagas disease kills 2.5 thousand people per year of 15 million persons infected in Latin America. The disease is caused by the protozoan, Trypanosome cruzi, and vectored by triatomine insects, including Panstrongylus megistus, an important vector in Brazil. Medicines treating Chagas disease have unpleasant side effects and may be ineffective, therefore, alternative control techniques are required. Knowledge of the T. cruzi interactions with the triatomine host needs extending and new targets/strategies for control identified. Serine and cysteine peptidases play vital roles in protozoan life cycles including invasion and entry of T. cruzi into host cells. Peptidase inhibitors are, therefore, promising targets for disease control. Methods SDS PAGE and chromatograpy detected and isolated a P. megistus serpin which was peptide sequenced by mass spectrometry. A full amino acid sequence was obtained from the cDNA and compared with other insect serpins. Reverse transcription PCR analysis measured serpin transcripts of P. megistus tissues with and without T. cruzi infection. Serpin homology modeling used the Swiss Model and Swiss-PDB viewer programmes. Results The P. megistus serpin (PMSRP1) has a ca. 40 kDa molecular mass with 404 amino acid residues. A reactive site loop contains a highly conserved hinge region but, based on sequence alignment, the normal cleavage site for serine proteases at P1-P1′ was translocated to the putative position P4′-P5′. A small peptide obtained corresponded to the C-terminal 40 amino acid region. The secondary structure of PMSRP1 indicated nine α-helices and three β-sheets, similar to other serpins. PMSRP1 transcripts occurred in all tested tissues but were highest in the fat body and hemocytes. Levels of mRNA encoding PMSRP1 were significantly modulated in the hemocytes and stomach by T. cruzi infection indicating a role for PMSRP1 in the parasite interactions with P. megistus. Conclusions For the first time, a

  13. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat.

    PubMed Central

    Buckler, K J; Vaughan-Jones, R D; Peers, C; Nye, P C

    1991-01-01

    1. The dual-emission pH-sensitive fluoroprobe carboxy-SNARF-1 (carboxy-seminaptharhodofluor) was used to measure pHi in type I cells enzymically dispersed from the neonatal rat carotid body. 2. Steady-state pHi in cells bathed in a HEPES-buffered Tyrode solution (pH 7.4) was found to be remarkably alkaline (pHi = 7.77) whereas cells bathed in a CO2-HCO3(-)-buffered Tyrode solution (pH 7.4) had a more 'normal' pHi (pHi = 7.28). These observations were further substantiated by using an independent nullpoint test method to determine pHi. 3. Intracellular intrinsic buffering (beta, determined by acidifying the cell using an NH4Cl pre-pulse) was in the range 7-20 mM per pH unit and appeared to be dependent upon pHi with beta increasing as pHi decreased. 4. In cells bathed in a HEPES-buffered Tyrode solution, pHi recovery from an induced intracellular acid load (10 mM-NH4Cl pre-pulse) was inhibited by the Na(+)-H+ exchange inhibitor ethyl isopropyl amiloride (EIPA; 150 microM) or substitution of Nao+ with N-methyl-D-glucamine (NMG). Both EIPA and Nao+ removal also caused a rapid intracellular acidification, which in the case of Nao+ removal, was readily reversible. The rate of this acidification was similar for both Nao+ removal and EIPA addition. 5. Transferring cells from a HEPES-buffered Tyrode solution to one buffered with 5% CO2-HCO3- resulted in an intracellular acidification which was partially, or wholly, sustained. The rate of acidification upon transfer to CO2-HCO3- was considerably slowed by the membrane permeant carbonic anhydrase inhibitor, acetazolamide, thus indicating the presence of the enzyme in these cells. 6. In CO2-HCO3(-)-buffered Tyrode solution, pHi recovery from an intracellular acidosis (NH4+ pre-pulse) was only partially inhibited by EIPA or amiloride whereas Nao+ removal completely inhibited the recovery. The stilbene DIDS (4,4-diisothiocyanatostilbenedisulphonic acid, 200 microM) also partially inhibited pHi recovery following an induced

  14. Intracellular Heat Shock Protein-70 Negatively Regulates Toll-like Receptor-4 Signaling in the Newborn Intestinal Epithelium1

    PubMed Central

    Afrazi, Amin; Sodhi, Chhinder P.; Good, Misty; Jia, Hongpeng; Siggers, Richard; Yazji, Ibrahim; Neal, Matthew D.; Prindle, Thomas; Grant, Zachary; Branca, Maria F.; Ozolek, John; Chang, Eugene; Hackam, David J.

    2012-01-01

    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal-related mortality in premature infants, and develops under conditions of exaggerated Toll-like receptor-4 (TLR4) signaling in the newborn intestinal epithelium. Since NEC does not develop spontaneously despite the presence of seemingly tonic stimulation of intestinal TLR4, we hypothesized that mechanisms must exist to constrain TLR4 signaling that become diminished during NEC pathogenesis, and focused on the intracellular stress response protein and chaperone Heat Shock Protein-70 (Hsp70). We now demonstrate that the induction of intracellular Hsp70 in enterocytes dramatically reduced TLR4 signaling as assessed by LPS-induced NFkB translocation, cytokine expression and apoptosis. These findings were confirmed in vivo, using mice that either globally lacked Hsp70 or which over-expressed Hsp70 within the intestinal epithelium. TLR4 activation itself significantly increased Hsp70 expression in enterocytes, which provided a mechanism of auto-inhibition of TLR4 signaling in enterocytes. In seeking to define the mechanisms involved, intracellular Hsp70-mediated inhibition of TLR4 signaling required both its substrate-binding EEVD-domain and association with the co-chaperone CHIP, resulting in ubiquitination and proteosomal degradation of TLR4. The expression of Hsp70 in the intestinal epithelium was significantly decreased in murine and human NEC compared to healthy controls, suggesting loss of Hsp70 protection from TLR4 could lead to NEC. In support of this, intestinal-Hsp70 overexpression in mice and pharmacologic upregulation of Hsp70 reversed TLR4-induced cytokines and enterocyte apoptosis, and prevented and treated experimental NEC. Thus, a novel TLR4 regulatory pathway exists within the newborn gut involving Hsp70 that may be pharmacologically activated to limit NEC severity. PMID:22461698

  15. Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E-115 cells.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2002-11-01

    Imidacloprid (IMI) is the principal neonicotinoid (the only major new class of synthetic insecticides of the past three decades). The excellent safety profile of IMI is not shared with a metabolite, desnitro-IMI (DNIMI), which displays high toxicity to mammals associated with agonist action at the alpha4beta2 nicotinic acetylcholine receptor (nAChR) in brain. This study examines the hypothesis that IMI, DNIMI, and (-)-nicotine activate the extracellular signal-regulated kinase (ERK) cascade via primary interaction with the alpha4beta2 nAChR in mouse neuroblastoma N1E-115 cells. These three nicotinic agonists induce phosphorylation of ERK (p44/p42) in a concentration-dependent manner with an optimal incubation period of 30 min. DNIMI (1 microM)-induced ERK activation is blocked by nicotinic antagonist mecamylamine but not by alpha-bungarotoxin and muscarinic antagonist atropine. This activation is prevented by intracellular Ca(2+) chelator BAPTA-AM but not by removal of external Ca(2+) using EGTA and Ca(2+)-free medium. 2-Aminoethoxy-diphenylborate, a blocker for inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from intracellular stores, inhibits DNIMI-induced ERK activation but a high level of ryanodine (to block ryanodine receptor-mediated Ca(2+) release) does not. The inhibitor U-73122 for phospholipase C (to suppress IP(3) production) prevents ERK activation evoked by DNIMI. Inhibitors for protein kinase C (PKC) (GF109203X) and ERK kinase (PD98059) block this activation whereas an inhibitor (H-89) for cyclic AMP-dependent protein kinase does not. Thus, neonicotinoids activate the ERK cascade triggered by primary action at the alpha4beta2 nAChR with an involvement of intracellular Ca(2+) mobilization possibly mediated by IP(3). It is further suggested that intracellular Ca(2+) activates a sequential pathway from PKC to ERK.

  16. SERPINE2 is a possible candidate promotor for lymph node metastasis in testicular cancer

    SciTech Connect

    Nagahara, Akira; Nakayama, Masashi; Oka, Daizo; Tsuchiya, Mutsumi; Kawashima, Atsunari; Mukai, Masatoshi; Nakai, Yasutomo; Takayama, Hitoshi; Nishimura, Kazuo; Jo, Yoshimasa; Nagai, Atsushi; Okuyama, Akihiko; Nonomura, Norio

    2010-01-22

    Testicular germ cell tumors (TGCTs) commonly metastasize to the lymph node or lung. However, it remains unclear which genes are associated with TGCT metastasis. The aim of this study was to identify gene(s) that promoted human TGCT metastasis. We intraperitoneally administered conditioned medium (CM) from JKT-1, a cell-line from a human testicular seminoma, or JKT-HM, a JKT-1 cell sub-line with high metastatic potential, into mice with JKT-1 xenografts. Administration of CM from JKT-HM significantly promoted lymph node metastasis. A cDNA microarray analysis showed that JKT-HM cells highly expressed the Serpine peptidase inhibitor, clade E, member 2 (SERPINE2), which encodes a secreted protein. Administration of CM from SERPINE2-silenced JKT-HM cells inhibited lymph node metastasis in the xenograft model, compared with administration of CM from JKT-HM cells. There was no significant difference in xenograft volume. Moreover, administration of CM from SERPINE2-over-expressing JKT-1 was likely to promote lymph node metastasis in the xenograft model. There was no difference in the in vitro proliferation or migration of JKT-1 cells cultured with CM from JKT-HM cells, compared to that with CM from JKT-1. There was no promotion of proliferation or lymphangiogenesis in the xenografts, as measured by Ki-67 and LYVE-1 immunohistochemistry, respectively. Although we could not clarify how SERPINE2 promoted lymph node metastasis, it may be a promoter in the development of lymph node metastasis in the human seminoma cells in a mouse xenograft model.

  17. Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9.

    PubMed

    Vercammen, Dominique; Belenghi, Beatrice; van de Cotte, Brigitte; Beunens, Tine; Gavigan, Julie-Ann; De Rycke, Riet; Brackenier, Anouk; Inzé, Dirk; Harris, Jennifer L; Van Breusegem, Frank

    2006-12-08

    Metacaspases are distant relatives of animal caspases found in plants, fungi and protozoa. We demonstrated previously that two type II metacaspases of Arabidopsis thaliana, AtMC4 and AtMC9 are Arg/Lys-specific cysteine-dependent proteases. We screened a combinatorial tetrapeptide library of 130,321 substrates with AtMC9. Here, we show that AtMC9 is a strict Arg/Lys-specific protease. Based on the position-specific scoring matrix derived from the substrate library results, the tetrapeptide Val-Arg-Pro-Arg was identified as an optimized substrate. AtMC9 had a kcat/KM of 4.6x10(5) M-1 s-1 for Ac-Val-Arg-Pro-Arg-amido-4-methyl-coumarin, representing a more than 10-fold improvement over existing fluorogenic substrates. A yeast two-hybrid screen with catalytically inactive AtMC9 as bait identified a serine protease inhibitor, designated AtSerpin1, which was found to be a potent inhibitor of AtMC9 activity in vitro through cleavage of its reactive center loop and covalent binding to AtMC9. On the basis of the substrate profiling of AtMC9 and confirmation through site-directed mutagenesis, the inhibitory P4-P1 cleavage site of AtSerpin1 was determined to be Ile-Lys-Leu-Arg351. Further mutagenesis of the AtSerpin1 inhibitory cleavage site modulated AtMC9 inhibition positively or negatively. Both AtMC9 and AtSerpin1 were localized in the extracellular space, suggesting an in vivo interaction as well. To our knowledge, this is the first report of plant protease inhibition by a plant serpin.

  18. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium.

    PubMed

    Horikawa, Hideki; Kato, Takahiro A; Mizoguchi, Yoshito; Monji, Akira; Seki, Yoshihiro; Ohkuri, Takatoshi; Gotoh, Leo; Yonaha, Megumi; Ueda, Tadashi; Hashioka, Sadayuki; Kanba, Shigenobu

    2010-10-01

    Microglia, which are a major glial component of the central nervous system (CNS), have recently been suggested to mediate neuroinflammation through the release of pro-inflammatory cytokines and nitric oxide (NO). Microglia are also known to play a critical role as resident immunocompetent and phagocytic cells in the CNS. Immunological dysfunction has recently been demonstrated to be associated with the pathophysiology of depression. However, to date there have only been a few studies on the relationship between microglia and depression. We therefore investigated if antidepressants can inhibit microglial activation in vitro. Our results showed that the selective serotonin reuptake inhibitors (SSRIs) paroxetine and sertraline significantly inhibited the generation of NO and tumor necrosis factor (TNF)-α from interferon (IFN)-γ-activated 6-3 microglia. We further investigated the intracellular signaling mechanism underlying NO and TNF-α release from IFN-γ-activated 6-3 microglia. Our results suggest that paroxetine and sertraline may inhibit microglial activation through inhibition of IFN-γ-induced elevation of intracellular Ca(2+). Our results suggest that the inhibitory effect of paroxetine and sertraline on microglial activation may not be a prerequisite for antidepressant function, but an additional beneficial effect.

  19. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance.

    PubMed

    Tang, Xiao; Basavarajappa, Devaraj; Haeggström, Jesper Z; Wan, Min

    2015-08-01

    Bioactive peptide LL-37/hCAP18, the only human member of the cathelicidin family, plays important roles in killing various pathogens, as well as in immune modulation. We demonstrate that LL-37 is internalized by human macrophages in a time-, dose-, temperature-, and peptide sequence-dependent endocytotic process. Both clathrin- and caveolae/lipid raft-mediated endocytosis pathways are involved in LL-37 internalization. We find that the P2X7 receptor (P2X7R) plays an important role in LL-37 internalization by human macrophages because significantly less internalized LL-37 was detected in macrophages pretreated with P2X7R antagonists or, more specifically, in differentiated THP-1 cells in which the P2X7R gene had been silenced. Furthermore, this P2X7R-mediated LL-37 internalization is primarily connected to the clathrin-mediated endocytosis pathway. In addition, our results demonstrate that internalized LL-37 traffics to endosomes and lysosomes and contributes to intracellular clearance of bacteria by human macrophages, coinciding with increased reactive oxygen species and lysosome formation. Finally, we show that human macrophages have the potential to import LL-37 released from activated human neutrophils. In conclusion, our study unveils a novel mechanism by which human macrophages internalize antimicrobial peptides to improve their intracellular pathogen clearance.

  20. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  1. Bayesian phylogeny analysis of vertebrate serpins illustrates evolutionary conservation of the intron and indels based six groups classification system from lampreys for ∼500 MY

    PubMed Central

    2015-01-01

    The serpin superfamily is characterized by proteins that fold into a conserved tertiary structure and exploits a sophisticated and irreversible suicide-mechanism of inhibition. Vertebrate serpins are classified into six groups (V1–V6), based on three independent biological features—genomic organization, diagnostic amino acid sites and rare indels. However, this classification system was based on the limited number of mammalian genomes available. In this study, several non-mammalian genomes are used to validate this classification system using the powerful Bayesian phylogenetic method. This method supports the intron and indel based vertebrate classification and proves that serpins have been maintained from lampreys to humans for about 500 MY. Lampreys have fewer than 10 serpins, which expand into 36 serpins in humans. The two expanding groups V1 and V2 have SERPINB1/SERPINB6 and SERPINA8/SERPIND1 as the ancestral serpins, respectively. Large clusters of serpins are formed by local duplications of these serpins in tetrapod genomes. Interestingly, the ancestral HCII/SERPIND1 locus (nested within PIK4CA) possesses group V4 serpin (A2APL1, homolog of α2-AP/SERPINF2) of lampreys; hence, pointing to the fact that group V4 might have originated from group V2. Additionally in this study, details of the phylogenetic history and genomic characteristics of vertebrate serpins are revisited. PMID:26157611

  2. Adenine nucleotides and intracellular Ca2+ regulate a voltage-dependent and glucose-sensitive potassium channel in neurosecretory cells.

    PubMed

    Onetti, C G; Lara, J; García, E

    1996-05-01

    Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.

  3. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths.

    PubMed

    Swietach, Pawel; Patiar, Shalini; Supuran, Claudiu T; Harris, Adrian L; Vaughan-Jones, Richard D

    2009-07-24

    We have studied the role of carbonic anhydrase 9 (CA9), a cancer-associated extracellular isoform of the enzyme carbonic anhydrase in multicellular spheroid growths (radius of approximately 300 microm) of human colon carcinoma HCT116 cells. Spheroids were transfected with CA9 (or empty vector) and imaged confocally (using fluorescent dyes) for both intracellular pH (pH(i)) and pH in the restricted extracellular spaces (pH(e)). With no CA9 expression, spheroids developed very low pH(i) (approximately 6.3) and reduced pH(e) (approximately 6.9) at their core, associated with a diminishing gradient of acidity extending out to the periphery. With CA9 expression, core intracellular acidity was less prominent (pH(i) = approximately 6.6), whereas extracellular acidity was enhanced (pH(e) = approximately 6.6), so that radial pH(i) gradients were smaller and radial pH(e) gradients were larger. These effects were reversed by eliminating CA9 activity with membrane-impermeant CA inhibitors. The observation that CA9 activity reversibly reduces pH(e) indicates the enzyme is facilitating CO(2) excretion from cells (by converting vented CO(2) to extracellular H(+)), rather than facilitating membrane H(+) transport (such as H(+) associated with metabolically generated lactic acid). This latter process requires titration of exported H(+) ions with extracellular HCO(3)(-), which would reduce rather than increase extracellular acidity. In a multicellular structure, the net effect of CA9 on pH(e) will depend on the cellular CO(2)/lactic acid emission ratio (set by local oxygenation and membrane HCO(3)(-) uptake). Our results suggest that CO(2)-producing tumors may express CA9 to facilitate CO(2) excretion, thus raising pH(i) and reducing pH(e), which promotes tumor proliferation and survival. The results suggest a possible basis for attenuating tumor development through inhibiting CA9 activity.

  4. An Na(+)-independent short-chain fatty acid transporter contributes to intracellular pH regulation in murine colonocytes

    PubMed Central

    1995-01-01

    Short-chain fatty acids (SCFAs) are the major anions in the colonic lumen. Experiments studied how intracellular pH (pHi) of isolated colonocytes was affected by exposure to SCFAs normally found in the colon. Isolated crypt fragments were loaded with SNARF-1 (a fluorescent dye with pH-sensitive excitation and emission spectra) and studied in a digital imaging microscope. Intracellular pH was measured in individual colonocytes as the ratio of fluorescence intensity in response to alternating excitation wavelengths (575/505 nm). After exposure to 65 mM acetate, propionate, n-butyrate, or iso-butyrate in isosmotic Na(+)- free media (substituted with tetramethylammonia), all colonocytes acidified rapidly and then > 90% demonstrated a pHi alkalinization (Na(+)-independent pHi recovery). Upon subsequent removal of the SCFA, pHi alkalinized beyond the starting pHi (a pHi overshoot). Using propionate as a test SCFA, experiments demonstrate that the acidification and pHi overshoot are explained by transmembrane influx and efflux of nonionized SCFA, respectively. The basis for the pHi overshoot is shown to be accumulation of propionate during pHi alkalinization. The Na(+)-independent pHi recovery (a) demonstrates saturable propionate activation kinetics; (b) demonstrates substrate specificity for unmodified aliphatic carbon chains; (c) occurs after exposure to SCFAs of widely different metabolic activity, (d) is electroneutral; and (e) is not inhibited by changes in the K+ gradient, Cl- gradient or addition of the anion transport inhibitors DIDS (1 mM), SITS (1 mM), alpha-cyano-4-hydroxycinnamate (4 mM), or probenicid (1 mM). Results suggest that most mouse colonocytes have a previously unreported SCFA transporter which mediates Na(+)-independent pHi recovery. PMID:7658194

  5. Altered Expression of Brain Proteinase-Activated Receptor-2, Trypsin-2 and Serpin Proteinase Inhibitors in Parkinson's Disease.

    PubMed

    Hurley, Michael J; Durrenberger, Pascal F; Gentleman, Steve M; Walls, Andrew F; Dexter, David T

    2015-09-01

    Neuroinflammation is thought to contribute to cell death in neurodegenerative disorders, but the factors involved in the inflammatory process are not completely understood. Proteinase-activated receptor-2 (PAR2) expression in brain is increased in Alzheimer's disease and multiple sclerosis, but the status of PAR2 in Parkinson's disease is unknown. This study examined expression of PAR2 and endogenous proteinase activators (trypsin-2, mast cell tryptase) and proteinase inhibitors (serpin-A5, serpin-A13) in areas vulnerable and resistant to neurodegeneration in Parkinson's disease at different Braak α-synuclein stages of the disease in post-mortem brain. In normal aged brain, expression of PAR-2, trypsin-2, and serpin-A5 and serpin-A13 was found in neurons and microglia, and alterations in the amount of immunoreactivity for these proteins were found in some brain regions. Namely, there was a decrease in neurons positive for serpin-A5 in the dorsal motor nucleus, and serpin-A13 expression was reduced in the locus coeruleus and primary motor cortex, while expression of PAR2, trypsin-2 and both serpins was reduced in neurons within the substantia nigra. There was an increased number of microglia that expressed serpin-A5 in the dorsal motor nucleus of vagus and elevated numbers of microglia that expressed serpin-A13 in the substantia nigra of late Parkinson's disease cases. The number of microglia that expressed trypsin-2 increased in primary motor cortex of incidental Lewy body disease cases. Analysis of Parkinson's disease cases alone indicated that serpin-A5 and serpin-A13, and trypsin-2 expression in midbrain and cerebral cortex was different in cases with a high incidence of L-DOPA-induced dyskinesia and psychosis compared to those with low levels of these treatment-induced side effects. This study showed that there was altered expression in brain of PAR2 and some proteins that can control its function in Parkinson's disease. Given the role of PAR2 in

  6. TceSR two-component regulatory system of Brucella melitensis 16M is involved in invasion, intracellular survival and regulated cytotoxicity for macrophages.

    PubMed

    Li, Z; Fu, Q; Wang, Z; Li, T; Zhang, H; Guo, F; Wang, Y; Zhang, J; Chen, C

    2015-06-01

    The mechanisms of invasion and intracellular survival of Brucella are still poorly understood. Previous studies showed that the two-component regulatory systems (TCSs) play an important role in the intracellular survival of Brucella. To investigate if TCSs involve in the virulence and cytotoxicity of Brucella melitensis, we introduced a mutation into one of the TCSs in chromosome II in Br. melitensis 16M strain, and generated 16MΔTceSR, a mutant of Br. melitensis 16M strain. In vitro infection experiments using murine macrophage cell line (RAW 264.7) showed that the survival of 16MΔTceSR mutant in macrophages decreased 0·91-log compared with that of wild type Br. melitensis 16M strain at 2 h postinfection, replication of 16MΔTceSR mutant in macrophages was 5·65-log, which was much lower than that wild type strain. Results of lactate dehydrogenase cytotoxicity assays in macrophages demonstrated high dose infection with wide type strain produced high level cytotoxicity to macrophages, but 16MΔTceSR mutant had very low level cytotoxicity, indicating mutation of TCSs impaired the cytotoxicity of Br. melitensis to macrophages. Animal experiments showed that the spleen colonization of 16MΔTceSR was significantly reduced compared with its wild type strains. The lower levels of survival of 16MΔTceSR in various stress conditions suggested that the mutation of the TCSs of Br. melitensis was the causative factor of its reduced resistance to stress conditions. Taken together, our results demonstrated TCS TceSR involves in the intracellular survival, virulence and cytotoxicity of Br. melitensis during its infection. Significance and impact of the study: Two-component systems (TCSs) are predominant bacterial signal transduction mechanisms. The pathogenicity of Brucella is due to its ability to adapt to the intracellular environment including low levels of acidic pH, high-salt and heat shock. TCSs are designed to sense diverse stimuli, transfer signals and enact an

  7. Hyperglycemia-Suppressed Expression of Serpine1 Contributes to Delayed Epithelial Wound Healing in Diabetic Mouse Corneas

    PubMed Central

    Sun, Haijing; Mi, Xiaofan; Gao, Nan; Yan, Chenxi; Yu, Fu-Shin

    2015-01-01

    Purpose. Patients with diabetes mellitus (DM) are at an increased risk for developing corneal complications, including delayed wound healing. The purpose of this study was to characterize the expression and the function of Serpine1 and other components of urokinase plasminogen activator (uPA)–proteolytic system in delayed epithelial wound healing in diabetic mouse corneas. Methods. Mice of the strain C57BL/6 were induced to develop diabetes by streptozotocin, and wound-healing assays were performed 10 weeks afterward. Gene expression and/or distribution were assessed by real-time PCR, Western blotting, and/or immunohistochemistry. The role of Serpine1 in mediating epithelial wound closure was determined by subconjunctival injections of neutralizing antibodies in either normal or recombinant protein in diabetic corneas. Enzyme assay for matrix metalloproteinase (MMP)-3 was also performed. Results. The expressions of Serpine1 (PAI-1), Plau (uPA), and Plaur (uPA receptor) were upregulated in response to wounding, and these upregulations were significantly suppressed by hyperglycemia. In healing epithelia, Plau and Serpine1 were abundantly expressed at the leading edge of the healing epithelia of normal and, to a lesser extent, diabetic corneas. Inhibition of Serpine1 delayed epithelial wound closure in normal corneas, whereas recombinant Serpine1 accelerated it in diabetic corneas. The Plau and MMP-3 mRNA levels and MMP-3 enzymatic activities were correlated to Serpine1 levels and/or the rates of epithelial wound closure. Conclusions. Serpine1 plays a role in mediating epithelial wound healing and its impaired expression may contribute to delayed wound healing in DM corneas. Hence, modulating uPA proteolytic pathway may represent a new approach for treating diabetic keratopathy. PMID:26024123

  8. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner.

    PubMed

    Kim, Guen Tae; Lee, Se Hee; Kim, Jong Il; Kim, Young Min

    2014-04-01

    The induction of apoptosis in cancer cells is a therapeutic strategy for the treatment of cancer. In the present study, we investigated the regulatory mechanisms responsible for quercetin-induced apoptosis, mamely the increased expression of sestrin 2 and the activation of the 5' AMP-activated protein kinase (AMPK)/p38 MAPK signaling pathway. Our results revealed that quercetin induced apoptosis by generating the production of intracellular reactive oxygen species (ROS) and increasing the expression of sestrin 2. The induction of apoptosis by quercetin occurred through the activation of the AMPK/p38 signaling pathway and was dependent on sestrin 2. However, the silencing of sestrin 2 using small interfering RNA (siRNA) targeting sestrin 2 revealed that quercetin did not regulate AMPK or p38 phosphorylation in the cells in which sestrin 2 was silenced. On the other hand, it has been previously reported that sestrin 2 expression is not dependent on p53 expression under hypoxic conditions, whereas DNA damage is dependent on p53. We demonstrate that the increase in the expression of sestrin 2 by quercetin-generated intracellular ROS is p53-independent. The increased expression of sestrin 2 induced apoptosis through the AMPK/p38 signaling pathway in the HT-29 colon cancer cells, which are p53 mutant, treated with quercetin. Thus, our data suggest that quercetin induces apoptosis by reducing mitochondrial membrane potential, generating intracellular ROS production and increasing sestrin 2 expression through the AMPK/p38 pathway. In addition, p53 is not a necessary element for an apoptotic event induced by sestrin 2.

  9. Regulation of NF-κB oscillation by spatial parameters in true intracellular space (TiCS)

    NASA Astrophysics Data System (ADS)

    Ohshima, Daisuke; Sagara, Hiroshi; Ichikawa, Kazuhisa

    2013-10-01

    Transcription factor NF-κB is activated by cytokine stimulation, viral infection, or hypoxic environment leading to its translocation to the nucleus. The nuclear NF-κB is exported from the nucleus to the cytoplasm again, and by repetitive import and export, NF-κB shows damped oscillation with the period of 1.5-2.0 h. Oscillation pattern of NF-κB is thought to determine the gene expression profile. We published a report on a computational simulation for the oscillation of nuclear NF-κB in a 3D spherical cell, and showed the importance of spatial parameters such as diffusion coefficient and locus of translation for determining the oscillation pattern. Although the value of diffusion coefficient is inherent to protein species, its effective value can be modified by organelle crowding in intracellular space. Here we tested this possibility by computer simulation. The results indicate that the effective value of diffusion coefficient is significantly changed by the organelle crowding, and this alters the oscillation pattern of nuclear NF-κB.

  10. Vcx1 and ESCRT components regulate intracellular pH homeostasis in the response of yeast cells to calcium stress.

    PubMed

    Papouskova, Klara; Jiang, Linghuo; Sychrova, Hana

    2015-03-01

    Endosomal sorting complexes required for transport (ESCRTs) are involved in the formation of multivesicular bodies and sorting of targeted proteins to the yeast vacuole. The deletion of seven genes encoding components of the ESCRT machinery render Saccharomyces cerevisiae cells sensitive to high extracellular CaCl2 concentrations as well as to low pH in media. In this work, we focused on intracellular pH (pHin) homeostasis of these mutants. None of the studied ESCRT mutants exhibited an altered pHin level compared to the wild type under standard growth conditions. Nevertheless, 60 min of CaCl2 treatment resulted in a more significant drop in pHin levels in these mutants than in the wild type, suggesting that pHin homeostasis is affected in ESCRT mutants upon the addition of calcium. Similarly, CaCl2 treatment caused a bigger pHin decrease in cells lacking the vacuolar Ca(2+)/H(+) antiporter Vcx1 which indicates a role for this protein in the maintenance of proper pHin homeostasis when cells need to cope with a high CaCl2 concentration in media. Importantly, ESCRT gene deletions in the vcx1Δ strain did not result in an increase in the CaCl2-invoked drop in the pHin levels of cells, which demonstrates a genetic interaction between VCX1 and studied ESCRT genes.

  11. Bloody cerebrospinal fluid from patients with subarachnoid hemorrhage alters intracellular calcium regulation in cultured human vascular endothelial cells.

    PubMed

    Nakagawa, K; Hirai, K; Aoyagi, M; Yamamoto, K; Hirakawa, K; Katayama, Y

    2000-09-01

    Endothelial cell dysfunction may contribute to cerebral vasospasm and aggravation of ischemic brain damage following subarachnoid hemorrhage (SAH). It has been suggested that oxyhemoglobin derived from subarachnoid blood clots might be a prime candidate for cerebral vasospasm. In this study, cisternal bloody cerebrospinal fluid (bCSF) was collected from SAH patients four and seven days after aneurysmal rupture, and the effects of bCSF on the cell growth and intracellular calcium ion ([Ca2+]i) dynamics were investigated in cultured human umbilical vein endothelial cells. CSF collected from patients undergoing other intracranial surgeries was used as a control. Pre-treatment with bCSF4 significantly facilitated cell proliferation and DNA synthesis in the cultured endothelial cells, and significantly enhanced histamine-induced [Ca2+]i increase, while acute treatment of the bCSF elicited no [Ca2+]i change. Pre-treatment with interleukin-1 beta showed a similar significant enhancement of the histamine-induced [Ca2+]i response, while pre-treatment with high concentrations of serum or interleukin-6 did not change the [Ca2+]i response. It is concluded that bCSF collected from SAH patients contains some substances which enhance endothelial cell proliferation and sensitivity to inflammatory mediator.

  12. Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels.

    PubMed

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F; Dickman, Martin B

    2006-06-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.

  13. Nitric oxide regulates cardiac intracellular Na⁺ and Ca²⁺ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism.

    PubMed

    Pavlovic, Davor; Hall, Andrew R; Kennington, Erika J; Aughton, Karen; Boguslavskyi, Andrii; Fuller, William; Despa, Sanda; Bers, Donald M; Shattock, Michael J

    2013-08-01

    In the heart, Na/K-ATPase regulates intracellular Na(+) and Ca(2+) (via NCX), thereby preventing Na(+) and Ca(2+) overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na(+) and Ca(2+) and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p<0.05, n=6) and all were abolished by Ca(2+)-chelation (EGTA 10mM) or NOS inhibition l-NAME (1mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50=3.8 μM; n=6/grp), via decrease in Km, in PLM(WT) but not PLM(KO) or PLM(3SA) myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na(+) (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM(3SA) mouse hearts but not PLM(WT) and PLM(KO). We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na(+) and Ca(2+) overload and arrhythmias. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

  14. beta-sitosterol decreases irradiation-induced thymocyte early damage by regulation of the intracellular redox balance and maintenance of mitochondrial membrane stability.

    PubMed

    Li, Chun Rong; Zhou, Zhe; Lin, Ru Xin; Zhu, Dan; Sun, Yu Ning; Tian, Lin Lin; Li, Lu; Gao, Yue; Wang, Sheng Qi

    2007-10-15

    Both radiation injury and oxidation toxicity occur when cells are exposed to ion irradiation (IR), ultimately leading to apoptosis. This study was designed to determine the effect of beta-sitosterol (BSS) on early cellular damage in irradiated thymocytes and a possible mechanism of effect on irradiation-mediated activation of the apoptotic pathways. Thymocytes were irradiated (6 Gy) with or without BSS. Cell apoptosis and apoptosis-related proteins were evaluated. BSS decreased irradiation-induced cell death and nuclear DNA strand breaks while attenuating intracellular reactive oxygen species (ROS) and increasing the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). BSS decreased the release of cytochrome c from mitochondria to the cytosol and the mitochondrio-nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, BSS partially inhibited the radiation-induced increase of cleaved caspase 3 and cleaved PARP, and attenuated the activation of JNK and AP-1. In addition, evidence suggests that ROS generated by irradiation are involved in this course of cell damage. The results indicate that BSS confers a radioprotective effect on thymocytes by regulation of the intracellular redox balance which is carried out via the scavenging of ROS and maintenance of mitochondrial membrane stability.

  15. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells.

    PubMed

    Faria, R X; Cascabulho, C M; Reis, R A M; Alves, Luiz Anastácio

    2010-07-01

    The P2X(7) receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X(7) receptor is induced by increasing the intracellular Ca(2+) concentration (Faria et al., Am J Physiol Cell Physiol 297:C28-C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X(7) large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca(2+)-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X(7) receptor large-channel formation in 2BH4 cells and peritoneal macrophages.

  16. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.

    PubMed

    Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang

    2016-05-01

    Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans.

  17. Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus.

    PubMed

    Kovářová, Zuzana; Chmelař, Jindřich; Sanda, Miloslav; Brynda, Jiří; Mareš, Michael; Rezáčová, Pavlína

    2010-11-01

    IRS-2 from the hard tick Ixodes ricinus belongs to the serpin family of protease inhibitors. It is produced in the salivary glands of the tick and its anti-inflammatory activity suggests that it plays a role in parasite-host interaction. Recombinant IRS-2 prepared by heterologous expression in a bacterial system was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the primitive tetragonal space group P4(3) and diffracted to 1.8 Å resolution. Mass-spectrometric and electrophoretic analyses revealed that IRS-2 was cleaved by contaminating proteases during crystallization. This processing of IRS-2 mimicked the specific cleavage of the serpin by its target protease and resulted in a more stable form (the so-called relaxed conformation), which produced well diffracting crystals. Activity profiling with specific substrates and inhibitors demonstrated traces of serine and cysteine proteases in the protein stock solution.

  18. Intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal

    PubMed Central

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don

    2015-01-01

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870

  19. Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development.

    PubMed

    Phillips, K P; Baltz, J M

    1999-04-15

    We report here that at least one major pHi-regulatory mechanism, the HCO3-/Cl- exchanger, is quiescent in unfertilized mouse eggs but becomes fully activated during early development following fertilization. Zygotes (8-12 h postfertilization) exhibited a marked intracellular alkalinization upon external Cl- removal, which is indicative of active HCO3-/Cl- exchangers, in contrast to the very small response observed in eggs. In addition, efflux of Cl- from eggs upon external Cl- removal was much slower than that from zygotes, indicating additional pathways for Cl- to cross the plasma membrane in zygotes. Furthermore, while zygotes quickly recovered from an induced alkalosis, eggs exhibited only a slow, incomplete recovery. Following in vitro fertilization (IVF), increased HCO3-/Cl- exchanger activity was first detectable about 4 h postfertilization and reached the maximal level after about 8 h. The upregulation of HCO3-/Cl- exchanger activity after fertilization appeared to occur by activation of existing, inactive exchangers rather than by synthesis or transport of new exchangers, as the increase in activity following IVF was unaffected by inhibition of protein synthesis or by disruption of the Golgi apparatus or the cytoskeleton. This activation may depend on the Ca2+ transients which follow fertilization, as suppression of these transients, using the Ca2+ chelator BAPTA, reduced subsequent upregulation of HCO3-/Cl- exchanger activity by about 50%. Activation of pHi-regulatory systems may be a widespread feature of the earliest period of embryonic development, not restricted to species such as marine invertebrates as previously believed.

  20. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Perreault, C. L.; Shannon, R. P.; Komamura, K.; Vatner, S. F.; Morgan, J. P.

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.

  1. [A new role for corticosteroid binding globulin (CBG), member of SERPIN superfamily].

    PubMed

    Séralini, G E

    1991-01-01

    Recent advances in molecular endocrinology have shed a new light on the role and mode of action of CBG. It is now not only demonstrated that this plasma glycoprotein, a steroid carrier, can be internalized by glucocorticoid target tissues, but it is also certain that CBG mRNA is synthesized by extra-hepatic tissues. Moreover, some authors have reported a modulation of CBG properties by free fatty acids. The existence of CBG receptors (or high affinity membrane-binding sites), and even a positive effect of CBG on adenylate cyclase activity, have also been reported. To progress in the understanding of these diverse results, one must first integrate them in a general scheme where it is considered that CBG is a member of the SERPIN (SERine Protease INhibitors) superfamily. In the case of CBG, that means a protein which functions as a substrate for elastase at the surface of neutrophils, for instance at sites of inflammation. CBG is specifically cleaved by this protease at a precise site close to its carboxy-terminus. This induces a conformation change and disrupts the binding between glucocorticoids and CBG, and promotes a significant and local release of glucocorticoids (over 90% of them are bound to CBG in human plasma). In this context, CBG directs glucocorticoids to sites of inflammation, and plays in consequence a crucial role in efficient glucocorticoid action in physiology. The elucidation of the CBG sequence, the knowledge of its gene structure, and the discovery of its chromosomal localization near two other SERPIN genes, are three sets of data in concordance to demonstrate that CBG is a SERPIN; and this has allowed the understanding of a new role for CBG, possibly with important consequences in pathology. Moreover, it could be more appropriate to say that CBG is a member of the SERine Protease INhibitors and Substrates superfamily (SERPINS).

  2. Molecular cloning, characterization and in vitro expression of SERPIN B1 of bighorn sheep (Ovis canadensis) and domestic sheep (Ovis aries), and comparison with that of other species.

    PubMed

    Subramaniam, Renuka; Dassanayake, Rohana P; Norimine, Junzo; Brown, Wendy C; Knowles, Donald P; Srikumaran, Subramaniam

    2010-10-15

    Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a result of PMN lysis and degranulation. It is conceivable that PMNs of BHS exhibit decreased quantity and/or activity of SERPIN B1 which results in enhanced tissue injury and decreased bacterial clearance in pneumonic lungs of BHS. The objective of this study was to clone and express SERPIN B1 of BHS and DS, and develop antibodies to facilitate quantification of SERPIN B1. The 1,134bp cDNA of SERPIN B1 of BHS and DS encodes a polypeptide of 377 amino acids. SERPIN B1 of BHS and DS exhibits 100% identity at the nucleotide and amino acid levels. The amino acid sequence of ovine (BHS/DS) SERPIN B1 displays 69%, 71%, 74%, 78% and 80% identity with that of rats, dogs, mice, humans and horses, respectively. Ovine SERPIN B1 expressed in Escherichia coli was used to develop polyclonal antibodies in mice. Western blot analysis revealed the specificity of these antibodies for ovine rSERPIN B1.

  3. Role of Snf1p in Regulation of Intracellular Sorting of the Lactose and Galactose Transporter Lac12p in Kluyveromyces lactis†

    PubMed Central

    Wiedemuth, Christian; Breunig, Karin D.

    2005-01-01

    The protein kinase Snf1/AMPK plays a central role in carbon and energy homeostasis in yeasts and higher eukaryotes. To work out which aspects of the Snf1-controlled regulatory network are conserved in evolution, the Snf1 requirement in galactose metabolism was analyzed in the yeast Kluyveromyces lactis. Whereas galactose induction was only delayed, K. lactis snf1 mutants failed to accumulate the lactose/galactose H+ symporter Lac12p in the plasma membran,e as indicated by Lac12-green fluorescent protein fusions. In contrast to wild-type cells, the fusion protein was mostly intracellular in the mutant. Growth on galactose and galactose uptake could be restored by the KHT3 gene, which encodes a new transporter of the HXT subfamily of major facilitators These findings indicate a new role of Snf1p in regulation of sugar transport in K. lactis. PMID:15821131

  4. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    PubMed

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  5. Multi-drug Resistance Protein 4 (MRP4)-mediated Regulation of Fibroblast Cell Migration Reflects a Dichotomous Role of Intracellular Cyclic Nucleotides*

    PubMed Central

    Sinha, Chandrima; Ren, Aixia; Arora, Kavisha; Moon, Chang-Suk; Yarlagadda, Sunitha; Zhang, Weiqiang; Cheepala, Satish B.; Schuetz, John D.; Naren, Anjaparavanda P.

    2013-01-01

    It has long been known that cyclic nucleotides and cyclic nucleotide-dependent signaling molecules control cell migration. However, the concept that it is not just the absence or presence of cyclic nucleotides, but a highly coordinated balance between these molecules that regulates cell migration, is new and revolutionary. In this study, we used multidrug resistance protein 4 (MRP4)-expressing cell lines and MRP4 knock-out mice as model systems and wound healing assays as the experimental system to explore this unique and emerging concept. MRP4, a member of a large family of ATP binding cassette transporter proteins, localizes to the plasma membrane and functions as a nucleotide efflux transporter and thus plays a role in the regulation of intracellular cyclic nucleotide levels. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) isolated from Mrp4−/− mice have higher intracellular cyclic nucleotide levels and migrate faster compared with MEFs from Mrp4+/+ mice. Using FRET-based cAMP and cGMP sensors, we show that inhibition of MRP4 with MK571 increases both cAMP and cGMP levels, which results in increased migration. In contrast to these moderate increases in cAMP and cGMP levels seen in the absence of MRP4, a robust increase in cAMP levels was observed following treatment with forskolin and isobutylmethylxanthine, which decreases fibroblast migration. In response to externally added cell-permeant cyclic nucleotides (cpt-cAMP and cpt-cGMP), MEF migration appears to be biphasic. Altogether, our studies provide the first experimental evidence supporting the novel concept that balance between cyclic nucleotides is critical for cell migration. PMID:23264633

  6. Intracellular pH regulation by Na⁺/H⁺ exchanger-1 (NHE1) is required for growth factor-induced mammary branching morphogenesis.

    PubMed

    Jenkins, Edmund C; Debnath, Shawon; Gundry, Stephen; Gundry, Sajini; Uyar, Umit; Fata, Jimmie E

    2012-05-01

    Regulation of intracellular pH (pHi) and protection against cytosolic acidification is primarily a function of the ubiquitous plasma membrane Na+/H+exchanger-1 (NHE1), which uses a highly conserved process to transfer cytosolic hydrogen ions (H+) across plasma membranes in exchange for extracellular sodium ions (Na+). Growth factors, which are essential regulators of morphogenesis, have also been found to be key activators of NHE1 exchanger activity; however, the crosstalk between both has not been fully evaluated during organ development. Here we report that mammary branching morphogenesis induced by transforming growth factor-alpha (TGFα) requires PI3K-dependent NHE1-activation and subsequent pHi alkalization. Inhibiting NHE1 activity after TGFα stimulation with 10 μM of the NHE1-specific inhibitor N-Methyl-N-isobutyl Amiloride (MIA) dramatically disrupted branching morphogenesis, induced extensive proliferation, ectopic expression of the epithelial hyper-proliferative marker Keratin-6 and sustained activation of MAPK. Together these findings indicate a novel developmental signaling cascade involving TGFα>PI3K>NHE1>pHi alkalization, which leads to a permissible environment for MAPK negative feedback inhibition and thus regulated mammary branching morphogenesis.

  7. Different rate-limiting activities of intracellular pH regulators for HCO3(-) secretion stimulated by forskolin and carbachol in rat parotid intralobular ducts.

    PubMed

    Ueno, Kaori; Hirono, Chikara; Kitagawa, Michinori; Shiba, Yoshiki; Sugita, Makoto

    2016-11-01

    Intracellular pH (pHi) regulation fundamentally participates in maintaining HCO3(-) release from HCO3(-)-secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na(+)-H(+) exchanger (NHE) to pHi regulation for HCO3(-) secretion by cAMP and Ca(2+) signals. Resting pHi was dispersed between 7.4 and 7.9. Forskolin consistently decreased pHi showing the dominance of pHi-lowering activities, but carbachol gathered pHi around 7.6. CA inhibition suppressed the forskolin-induced decrease in pHi, while it allowed carbachol to consistently increase pHi by revealing that carbachol prominently activated NHE via Ca(2+)-calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pHi, which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pHi-lowering CA and pHi-raising NHE, respectively, to regulate pHi for HCO3(-) secretion.

  8. Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin

    PubMed Central

    Tewari, Ritika; Jarvela, Timothy; Linstedt, Adam D.

    2014-01-01

    Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin. PMID:25079690

  9. The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation.

    PubMed

    Mercurio, Sonia; Petrillo, Sara; Chiabrando, Deborah; Bassi, Zuni Irma; Gays, Dafne; Camporeale, Annalisa; Vacaru, Andrei; Miniscalco, Barbara; Valperga, Giulio; Silengo, Lorenzo; Altruda, Fiorella; Baron, Margaret H; Santoro, Massimo Mattia; Tolosano, Emanuela

    2015-06-01

    Feline leukemia virus subgroup C receptor 1 (Flvcr1) encodes two heme exporters: FLVCR1a, which localizes to the plasma membrane, and FLVCR1b, which localizes to mitochondria. Here, we investigated the role of the two Flvcr1 isoforms during erythropoiesis. We showed that, in mice and zebrafish, Flvcr1a is required for the expansion of committed erythroid progenitors but cannot drive their terminal differentiation, while Flvcr1b contributes to the expansion phase and is required for differentiation. FLVCR1a-down-regulated K562 cells have defective proliferation, enhanced differentiation, and heme loading in the cytosol, while FLVCR1a/1b-deficient K562 cells show impairment in both proliferation and differentiation, and accumulate heme in mitochondria. These data support a model in which the coordinated expression of Flvcr1a and Flvcr1b contributes to control the size of the cytosolic heme pool required to sustain metabolic activity during the expansion of erythroid progenitors and to allow hemoglobinization during their terminal maturation. Consistently, reduction or increase of the cytosolic heme rescued the erythroid defects in zebrafish deficient in Flvcr1a or Flvcr1b, respectively. Thus, heme export represents a tightly regulated process that controls erythropoiesis.

  10. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein.

    PubMed Central

    Munemitsu, S; Albert, I; Souza, B; Rubinfeld, B; Polakis, P

    1995-01-01

    The APC tumor-suppressor protein associates with beta-catenin, a cell adhesion protein that is upregulated by the WNT1 oncogene. We examined the effects of exogenous APC expression on the distribution and amount of beta-catenin in a colorectal cancer cell containing only mutant APC. Expression of wild-type APC caused a pronounced reduction in total beta-catenin levels by eliminating an excessive supply of cytoplasmic beta-catenin indigenous to the SW480 colorectal cancer cell line. This reduction was due to an enhanced rate of beta-catenin protein degradation. Truncated mutant APC proteins, characteristic of those associated with cancer, lacked this activity. Mutational analysis revealed that the central region of the APC protein, which is typically deleted or severely truncated in tumors, was responsible for the down-regulation of beta-catenin. These results suggest that the tumor-suppressor activity of mutant APC may be compromised due to a defect in its ability to regulate beta-catenin. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7708772

  11. Evidence for estrogen-dependent uterine serpin (SERPINA14) expression during estrus in the bovine endometrial glandular epithelium and lumen.

    PubMed

    Ulbrich, Susanne E; Frohlich, Thomas; Schulke, Katy; Englberger, Eva; Waldschmitt, Nadine; Arnold, Georg J; Reichenbach, Horst-Dieter; Reichenbach, Myriam; Wolf, Eckhard; Meyer, Heinrich H D; Bauersachs, Stefan

    2009-10-01

    Uterine secretions have a dominant impact on the environment in which embryo development takes place. The uterine serpins (SERPINA14, previously known as UTMP) are found most abundantly during pregnancy in the uterus of ruminants. Although progesterone is currently assumed to be the major regulator of SERPINA14 expression, our recent study of transcriptome changes in bovine endometrium during the estrous cycle unexpectedly detected a marked upregulation of SERPINA14 mRNA levels at estrus. The present study describes the full-length mRNA sequence, genomic organization, and putative promoter elements of the SERPINA14 gene. The SERPINA14 mRNA abundance was quantified by real-time RT-PCR in intercaruncular endometrium at several time points during the estrous cycle and early pregnancy. Highest levels were found at estrus, followed by a dramatic decrease and a moderate expression during the luteal phase. Transcript levels were higher in pregnant endometrium compared with controls at Day 18. At estrus, immunoreactive protein was localized in deep glandular epithelium, and Western blotting concomitantly showed the 52-kDa form in uterine flushings. SERPINA14 mRNA was significantly upregulated in glandular endometrial cells in vitro after stimulation with estradiol-17beta and progesterone, but not after interferon-tau treatment. Our results clearly demonstrate that SERPINA14 appears distinctly in bovine endometrium during the estrus phase. A supporting role toward providing a well-prepared endometrial environment for passing gametes, especially sperm, is assumed.

  12. Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions.

    PubMed

    Kim, Tae Kwon; Tirloni, Lucas; Radulovic, Zeljko; Lewis, Lauren; Bakshi, Mariam; Hill, Creston; da Silva Vaz, Itabajara; Logullo, Carlos; Termignoni, Carlos; Mulenga, Albert

    2015-08-01

    Tick saliva serine protease inhibitors (serpins) facilitate tick blood meal feeding through inhibition of protease mediators of host defense pathways. We previously identified a highly conserved Amblyomma americanum serpin 19 that is characterised by its reactive center loop being 100% conserved in ixodid ticks. In this study, biochemical characterisation reveals that the ubiquitously transcribed A. americanum serpin 19 is an anti-coagulant protein, inhibiting the activity of five of the eight serine protease blood clotting factors. Pichia pastoris-expressed recombinant (r) A. americanum serpin 19 inhibits the enzyme activity of trypsin, plasmin and blood clotting factors (f) Xa and XIa, with stoichiometry of inhibition estimated at 5.1, 9.4, 23.8 and 28, respectively. Similar to typical inhibitory serpins, recombinant A. americanum serpin 19 forms irreversible complexes with trypsin, fXa and fXIa. At a higher molar excess of recombinant A. americanum serpin 19, fXIIa is inhibited by 82.5%, and thrombin (fIIa), fIXa, chymotrypsin and tryptase are inhibited moderately by 14-29%. In anti-hemostatic functional assays, recombinant A. americanum serpin 19 inhibits thrombin but not ADP and cathepsin G activated platelet aggregation, delays clotting in recalcification and thrombin time assays by up to 250s, and up to 40s in the activated partial thromboplastin time assay. Given A. americanum serpin 19 high cross-tick species conservation, and specific reactivity of recombinant A. americanum serpin 19 with antibodies to A. americanum tick saliva proteins, we conclude that recombinant A. americanum serpin 19 is a potential candidate for development of a universal tick vaccine.

  13. Biodegradable DNA-brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation

    PubMed Central

    Zhang, Chuan; Hao, Liangliang; Calabrese, Colin M.; Zhou, Yu; Choi, Chung Hang J.; Xing, Hang; Mirkin, Chad A.

    2015-01-01

    A new strategy for synthesizing spherical nucleic acid (SNA) nanostructures from biodegradable DNA block copolymers is reported. Multiple DNA strands are grafted to one end of a polyester chain (poly-caprolactone) to generate an amphiphilic DNA brush block copolymer (DBBC) structure capable of assembling into spherical micelles in aqueous solution. These novel DBBC-based micelle-SNAs exhibit a higher surface density of nucleic acids compared to micelle structures assembled from an analogous linear DNA block copolymer (DBC), which endows them with the ability to more efficiently enter cells without the need for transfection agents. Importantly, the new SNAs show effective gene regulation without observable cellular toxicity in mammalian cell culture. PMID:26297167

  14. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl– concentration

    PubMed Central

    König, Jens; Schreiber, Rainer; Voelcker, Thilo; Mall, Marcus; Kunzelmann, Karl

    2001-01-01

    Activation of the CFTR Cl– channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis transmembrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl– currents. Similar to CFTR, ClC-0 Cl– currents also inhibit ENaC, as well as high extracellular Na+ and Cl– in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl–. PMID:11606421

  15. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody

    PubMed Central

    Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer. PMID:25663946

  16. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription

    PubMed Central

    Tuand, Krizia; Stijnen, Pieter; Volders, Karolien; Declercq, Jeroen; Nuytens, Kim; Meulemans, Sandra; Creemers, John

    2016-01-01

    Background Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. Methods Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. Results Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. Conclusion Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for

  17. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR.

    PubMed

    Huguet, F; Calvez, M L; Benz, N; Le Hir, S; Mignen, O; Buscaglia, P; Horgen, F D; Férec, C; Kerbiriou, M; Trouvé, P

    2016-09-01

    Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.

  18. Hormonal regulation of intracellular lipolysis in C57BL/6J mice: effect of diet-induced adiposity and data normalization.

    PubMed

    Bederman, Ilya R; Previs, Stephen F

    2008-10-01

    The breakdown of intracellular triglycerides in adipose tissue provides fatty acids and glycerol as substrates for oxidation. However, the exposure of target organs to excess free fatty acids is associated with the development of insulin resistance and impaired regulation of carbohydrate metabolism, suggesting that the control of triglyceride breakdown is an important factor in balancing health and disease. We have studied the temporal influence of diet-induced changes in adiposity on the response of intracellular lipolysis to epinephrine +/- insulin using freshly isolated adipocytes from C57BL/6J mice fed a low-fat (10% kcal) or high-fat (HF, 45% kcal) diet for 1, 4, or 12 weeks. In this model, we also tested how data normalization affects the interpretation. The contribution of the epididymal fat to total body mass increased by approximately 15%, 45%, and 100% after 1, 4, and 12 weeks of HF diet consumption, respectively. In addition, HF feeding led to an increase in fasting insulin, that is, approximately 2-fold greater in HF- vs low-fat-fed mice at 4 and 12 weeks. We found that diet-induced changes in adiposity did not alter the lipolytic response to epinephrine when data were normalized per DNA (ie, per cell); however, the lipolytic potential of the organ (ie, the lipolytic rate per cell multiplied by the total number of cells) was increased in isolated adipocytes after 4 and 12 weeks of HF feeding. We also observed a marked impairment in insulin-mediated inhibition of epinephrine-stimulated lipolysis after 4 and 12 weeks of HF feeding, demonstrating that diet-induced adiposity leads to insulin resistance in adipocytes. In conclusion, HF feeding in mice leads to greater rates of lipolysis via (1) an increase in the number of fat cells and (2) a defect in insulin signaling in adipocytes. The combination of these 2 alterations on the control of intracellular lipolysis suggests a mechanism(s) that (partly) explains how target organs could be exposed to excess

  19. Aryl hydrocarbon receptor-independent up-regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells.

    PubMed

    Mayati, Abdullah; Le Ferrec, Eric; Lagadic-Gossmann, Dominique; Fardel, Olivier

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (B(a)P) constitute a major family of widely-distributed environmental toxic contaminants, known as potent ligands of the aryl hydrocarbon receptor (AhR). B(a)P has been recently shown to trigger an early and transient increase of intracellular calcium concentration ([Ca(2+)](i)), involved in AhR-related up-regulation of target genes by B(a)P. This study was designed to determine whether AhR may play a role in [Ca(2+)](i) induction provoked by B(a)P. We demonstrated that, in addition to B(a)P, various PAHs, including pyrene and benzo(e)pyrene, known to not or only very poorly interact with AhR, similarly up-regulated [Ca(2+)](i) in human endothelial HMEC-1 cells. Moreover, α-naphthoflavone, a flavonoïd antagonist of AhR, was also able to induce [Ca(2+)](i). Knocking-down AhR expression in HMEC-1 cells through transfection of siRNAs, was finally demonstrated to not prevent B(a)P-mediated induction of [Ca(2+)](i), whereas it efficiently counteracted B(a)P-mediated induction of the referent AhR target gene cytochrome P-450 1B1. Taken together, these data demonstrate that environmental PAHs trigger [Ca(2+)](i) induction in an AhR-independent manner.

  20. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels

    PubMed Central

    Wei, Shipeng; Roessler, Bryan C.; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L.; Kirk, Kevin L.

    2015-01-01

    The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.—Wei, S., Roessler, B. C., Icyuz, M., Chauvet, S., Tao, B., Hartman IV, J. L., Kirk, K. L. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. PMID:26606940

  1. Heat Shock Protein 90 Has Roles in Intracellular Calcium Homeostasis, Protein Tyrosine Phosphorylation Regulation, and Progesterone-Responsive Sperm Function in Human Sperm

    PubMed Central

    Chen, Aijun; Jiang, Youfang; Xie, Haifeng; Shi, Qixian; Zhang, Songying; Ni, Ya

    2014-01-01

    Heat shock protein 90 plays critical roles in client protein maturation, signal transduction, protein folding and degradation, and morphological evolution; however, its function in human sperm is not fully understood. Therefore, our objective in this study was to elucidate the mechanism by which heat shock protein 90 exerts its effects on human sperm function. By performing indirect immunofluorescence staining, we found that heat shock protein 90 was localized primarily in the neck, midpiece, and tail regions of human sperm, and that its expression increased with increasing incubation time under capacitation conditions. Geldanamycin, a specific inhibitor of heat shock protein 90, was shown to inhibit this increase in heat shock protein 90 expression in western blotting analyses. Using a multifunctional microplate reader to examine Fluo-3 AM-loaded sperm, we observed for the first time that inhibition of heat shock protein 90 by using geldanamycin significantly decreased intracellular calcium concentrations during capacitation. Moreover, western blot analysis showed that geldanamycin enhanced tyrosine phosphorylation of several proteins, including heat shock protein 90, in a dose-dependent manner. The effects of geldanamycin on human sperm function in the absence or presence of progesterone was evaluated by performing chlortetracycline staining and by using a computer-assisted sperm analyzer. We found that geldanamycin alone did not affect sperm capacitation, hyperactivation, and motility, but did so in the presence of progesterone. Taken together, these data suggest that heat shock protein 90, which increases in expression in human sperm during capacitation, has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-stimulated sperm function. In this study, we provide new insights into the roles of heat shock protein 90 in sperm function. PMID:25541943

  2. Mitsugumin 53 regulates extracellular Ca2+ entry and intracellular Ca2+ release via Orai1 and RyR1 in skeletal muscle

    PubMed Central

    Ahn, Mi Kyoung; Lee, Keon Jin; Cai, Chuanxi; Huang, Mei; Cho, Chung-Hyun; Ma, Jianjie; Lee, Eun Hui

    2016-01-01

    Mitsugumin 53 (MG53) participates in the membrane repair of various cells, and skeletal muscle is the major tissue that expresses MG53. Except for the regulatory effects of MG53 on SERCA1a, the role(s) of MG53 in the unique functions of skeletal muscle such as muscle contraction have not been well examined. Here, a new MG53-interacting protein, Orai1, is identified in skeletal muscle. To examine the functional relevance of the MG53-Orai1 interaction, MG53 was over-expressed in mouse primary or C2C12 skeletal myotubes and the functional properties of the myotubes were examined using cell physiological and biochemical approaches. The PRY-SPRY region of MG53 binds to Orai1, and MG53 and Orai1 are co-localized in the plasma membrane of skeletal myotubes. MG53-Orai1 interaction enhances extracellular Ca2+ entry via a store-operated Ca2+ entry (SOCE) mechanism in skeletal myotubes. Interestingly, skeletal myotubes over-expressing MG53 or PRY-SPRY display a reduced intracellular Ca2+ release in response to K+-membrane depolarization or caffeine stimulation, suggesting a reduction in RyR1 channel activity. Expressions of TRPC3, TRPC4, and calmodulin 1 are increased in the myotubes, and MG53 directly binds to TRPC3, which suggests a possibility that TRPC3 also participates in the enhanced extracellular Ca2+ entry. Thus, MG53 could participate in regulating extracellular Ca2+ entry via Orai1 during SOCE and also intracellular Ca2+ release via RyR1 during skeletal muscle contraction. PMID:27841305

  3. Identification and functional characterizations of serpin8, a potential prophenoloxidase-activating protease inhibitor in Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Liu, Yongjie; Sun, Yuhang; Wang, Qiai; Hou, Fujun; Liu, Xiaolin

    2017-01-01

    Serpins have been characterized from varieties of organisms by their inhibitory roles on serine or cysteine proteases. However, research for the functional study of serpins in crustacean is relatively small. To fully clarify the immune characterizations of serpin, a novel serpin (named Lvserpin8) encoding 414 amino acids with a 19-amino acid signal peptide and a serpin domain was identified from the Pacific white shrimp Litopenaeus vannamei. Sequence analysis indicated that the genomic Lvserpin8 gene contains 5 exons and 4 introns. The P1 residues of the predicted scissile bond in the reactive center loop (RCL) region represented for Lysine (Lys), which is in accordance with Pmserpin8, Dmserpin27A, Ofserpin3, Bmserpin3 and Msserpin3. Quantitative results showed that high mRNA expression of Lvserpin8 was detected in hepatopancreas and testis. Notably, a significant increase of Lvserpin8 was appeared post injection of Vibrio anguillarum, and Micrococcus lysodeikticus. Moreover, Lvserpin8 was knocked down in vivo by double-stranded RNA (dsRNA) mediated RNA interference (RNAi). Suppression of Lvserpin8 led to a significant increase in the transcripts of LvPPAE2 (Prophenoloxidase-activating Enzyme 2) and cumulative mortality. What's more, recombinant Lvserpin8 protein (rLvserpin8) displayed inhibition roles on trypsin activity, and prophenoloxidase activation. Taken together, the results implied that Lvserpin8 may be involved in shrimp innate immunity via the inhibition of prophenoloxidase-activating proteases.

  4. Chronic exposure to fibrin and fibrinogen differentially regulates intracellular Ca2+ in human pulmonary arterial smooth muscle and endothelial cells.

    PubMed

    Firth, Amy L; Yau, Jocelyn; White, Amanda; Chiles, Peter G; Marsh, James J; Morris, Timothy A; Yuan, Jason X-J

    2009-06-01

    Acute pulmonary embolism occurs in more than half a million people a year in the United States. Chronic thromboembolic pulmonary hypertension (CTEPH) develops in approximately 4% of these patients due to unresolved thromboemboli. CTEPH is thus a relatively common, progressive, and potentially fatal disease. One currently proposed theory for the poor resolution advocates that modification of fibrinogen in CTEPH patients causes resistance of emboli to fibrinolysis. The current study investigated the regulation of cytosolic Ca(2+) ([Ca(2+)](cyt)), central to the control of cell migration, proliferation, and contraction, by chronic exposure of pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells to fibrinogen and fibrin. Basal [Ca(2+)](cyt) was substantially elevated in PAEC after culture on fibrinogen, fibrin, and thrombin and in PASMC on fibrinogen and fibrin. In PAEC, fibrinogen significantly decreased the peak [Ca(2+)](cyt) transient (P <0.001) without a change in the transient peak width (at 50% of the peak height). This response was independent of effects on the proteinase-activated receptor (PAR) 1. Furthermore, chronic exposure to thrombin, an activator of PAR, significantly reduced the peak agonist-induced Ca(2+) release in PAEC, but increased it in PASMC. The recovery rate of the agonist-induced [Ca(2+)](cyt) transients decelerated in PASMC chronically exposed to fibrin; a small increase of the peak Ca(2+) was also observed. Substantial augmentation of PASMC (but not PAEC) proliferation was observed in response to chronic fibrin exposure. In conclusion, chronic exposure to fibrinogen, fibrin, and thrombin caused differential changes in [Ca(2+)](cyt) in PAEC and PASMC. Such changes in [Ca(2+)](cyt) may contribute to vascular changes in patients who have CTEPH where the pulmonary vasculature is persistently exposed to thromboemboli.

  5. Chronic exposure to fibrin and fibrinogen differentially regulates intracellular Ca2+ in human pulmonary arterial smooth muscle and endothelial cells

    PubMed Central

    Firth, Amy L.; Yau, Jocelyn; White, Amanda; Chiles, Peter G.; Marsh, James J.; Morris, Timothy A.; Yuan, Jason X.-J.

    2009-01-01

    Acute pulmonary embolism occurs in more than half a million people a year in the United States. Chronic thromboembolic pulmonary hypertension (CTEPH) develops in ∼4% of these patients due to unresolved thromboemboli. CTEPH is thus a relatively common, progressive, and potentially fatal disease. One currently proposed theory for the poor resolution advocates that modification of fibrinogen in CTEPH patients causes resistance of emboli to fibrinolysis. The current study investigated the regulation of cytosolic Ca2+ ([Ca2+]cyt), central to the control of cell migration, proliferation, and contraction, by chronic exposure of pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells to fibrinogen and fibrin. Basal [Ca2+]cyt was substantially elevated in PAEC after culture on fibrinogen, fibrin, and thrombin and in PASMC on fibrinogen and fibrin. In PAEC, fibrinogen significantly decreased the peak [Ca2+]cyt transient (P <0.001) without a change in the transient peak width (at 50% of the peak height). This response was independent of effects on the proteinase-activated receptor (PAR) 1. Furthermore, chronic exposure to thrombin, an activator of PAR, significantly reduced the peak agonist-induced Ca2+ release in PAEC, but increased it in PASMC. The recovery rate of the agonist-induced [Ca2+]cyt transients decelerated in PASMC chronically exposed to fibrin; a small increase of the peak Ca2+ was also observed. Substantial augmentation of PASMC (but not PAEC) proliferation was observed in response to chronic fibrin exposure. In conclusion, chronic exposure to fibrinogen, fibrin, and thrombin caused differential changes in [Ca2+]cyt in PAEC and PASMC. Such changes in [Ca2+]cyt may contribute to vascular changes in patients who have CTEPH where the pulmonary vasculature is persistently exposed to thromboemboli. PMID:19363122

  6. Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo.

    PubMed

    Kim-Kaneyama, Joo-ri; Suzuki, Wataru; Ichikawa, Kiyoko; Ohki, Takahiro; Kohno, Yoko; Sata, Masataka; Nose, Kiyoshi; Shibanuma, Motoko

    2005-03-01

    Hic-5 is a focal adhesion protein belonging to the paxillin LIM family that shuttles in and out of the nucleus. In the present study, we examined the expression of Hic-5 among mouse tissues by immunohistochemistry and found its expression only in smooth-muscle cells in several tissues. This result is consistent with a previous report on adult human tissues and contradicts the relatively ubiquitous expression of paxillin, the protein most homologous to Hic-5. One factor characterizing smooth-muscle cells in vivo is a continuous exposure to mechanical stretching in the organs. To study the involvement of Hic-5 in cellular responses to mechanical stress, we exposed mouse embryo fibroblasts to a uni-axial cyclic stretching and found that Hic-5 was relocalized from focal adhesions to stress fibers through its C-terminal LIM domains during the stress. In sharp contrast to this, paxillin did not change its focal-adhesion-based localization. Of the factors tested, which included interacting partners of Hic-5, only CRP2 (an only-LIM protein expressed in vascular smooth-muscle cells) and GIT1 were, like Hic-5, localized to stress fibers during the cyclic stretching. Interestingly, Hic-5 showed a suppressive effect on the contractile capability of cells embedded in three-dimensional collagen gels, and the effect was further augmented when CRP2 co-localized with Hic-5 to fiber structures of those cells. These results suggested that Hic-5 was a mediator of tensional force, translocating directly from focal adhesions to actin stress fibers upon mechanical stress and regulating the contractile capability of cells in the stress fibers.

  7. Regulation of Leukemic Cell Differentiation through the Vitamin D Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein Trafficking and Stability

    PubMed Central

    Gocek, Elżbieta; Baurska, Hanna; Marchwicka, Aleksandra; Marcinkowska, Ewa

    2012-01-01

    1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these acting together. PMID:23213549

  8. Dual role of CO2/HCO3(-) buffer in the regulation of intracellular pH of three-dimensional tumor growths.

    PubMed

    Hulikova, Alzbeta; Vaughan-Jones, Richard D; Swietach, Pawel

    2011-04-22

    Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (∼10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor

  9. Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients

    PubMed Central

    Téllez-Gabriel, Marta; León, Xavier; Virós, David; López, Montserrat; Gallardo, Alberto; Céspedes, Maria Virtudes; Casanova, Isolda; López-Pousa, Antonio; Mangues, Maria Antonia; Quer, Miquel; Barnadas, Agustí; Mangues, Ramón

    2015-01-01

    High SERPINE1 expression is a common event in head and neck squamous cell carcinoma (HNSCC); however, whether it plays a role in determining clinical outcome remains still unknown. We studied SERPINE1 as a prognostic marker in two HNSCC patient cohorts. In a retrospective study (n = 80), high expression of SERPINE1 was associated with poor progression-free (p = 0.022) and cancer-specific (p = 0.040) survival. In a prospective study (n = 190), high SERPINE1 expression was associated with poor local recurrence-free (p = 0.022), progression-free (p = 0.002) and cancer-specific (p = 0.006) survival. SERPINE1 expression was identified as an independent risk factor for progression-free survival in patients treated with chemo-radiotherapy or radiotherapy (p = 0.043). In both patient cohorts, high SERPINE1 expression increased the risk of metastasis spread (p = 0.045; p = 0.029). The association between SERPINE1 expression and survival was confirmed using the HNSCC cohort included in The Cancer Genome Atlas project (n = 507). Once again, patients showing high expression had a poorer survival (p < 0.001). SERPINE1 over-expression in HNSCC cells reduced cell proliferation and enhanced migration. It also protected cells from cisplatin-induced apoptosis, which was accompanied by PI3K/AKT pathway activation. Downregulation of SERPINE1 expression had the opposite effect. We propose SERPINE1 expression as a prognostic marker that could be used to stratify HNSCC patients according to their risk of recurrence. PMID:26359694

  10. A rabbitpox virus serpin gene controls host range by inhibiting apoptosis in restrictive cells.

    PubMed Central

    Brooks, M A; Ali, A N; Turner, P C; Moyer, R W

    1995-01-01

    Poxviruses are unique among viruses in encoding members of the serine proteinase inhibitor (serpin) superfamily. Orthopoxviruses contain three serpins, designated SPI-1, SPI-2, and SPI-3. SPI-1 encodes a 40-kDa protein that is required for the replication of rabbitpox virus (RPV) in PK-15 or A549 cells in culture (A. N. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:305-314, 1994). Examination of nonpermissive human A549 cells infected with an RPV mutant disrupted in the SPI-1 gene (RPV delta SPI-1) suggests there are no gross defects in protein or DNA synthesis. The proteolytic processing of late viral structural proteins, a feature of orthopoxvirus infections associated with the maturation of virus particles, also appears relatively normal. However, very few mature virus particles of any kind are produced compared with the level found in infections with wild-type RPV. Morphological examination of RPV delta SPI-1-infected A549 cells, together with an observed fragmentation of cellular DNA, suggests that the host range defect is associated with the onset of apoptosis. Apoptosis is seen only in RPV delta SPI-1 infection of nonpermissive (A549 or PK-15) cells and is absent in all wild-type RPV infections and RPV delta SPI-2 mutant infections examined to date. Although the SPI-1 gene is expressed early, before DNA replication, the triggering apoptotic event occurs late in the infection, as RPV delta SPI-1-infected A549 cells do not undergo apoptosis when infections are carried out in the presence of cytosine arabinoside. While the SPI-2 (crmA) gene, when transfected into cells, has been shown to inhibit apoptosis, our experiments provide the first indication that a poxvirus serpin protein can inhibit apoptosis during a poxvirus infection. PMID:7494278

  11. The KEEP ON GOING Protein of Arabidopsis Regulates Intracellular Protein Trafficking and Is Degraded during Fungal Infection[C][W][OA

    PubMed Central

    Gu, Yangnan; Innes, Roger W.

    2012-01-01

    In plants, the trans-Golgi network and early endosomes (TGN/EE) function as the central junction for major endomembrane trafficking events, including endocytosis and secretion. Here, we demonstrate that the KEEP ON GOING (KEG) protein of Arabidopsis thaliana localizes to the TGN/EE and plays an essential role in multiple intracellular trafficking processes. Loss-of-function keg mutants exhibited severe defects in cell expansion, which correlated with defects in vacuole morphology. Confocal microscopy revealed that KEG is required for targeting of plasma membrane proteins to the vacuole. This targeting process appeared to be blocked at the step of multivesicular body (MVB) fusion with the vacuolar membrane as the MVB-associated small GTPase ARA6 was also blocked in vacuolar delivery. In addition, loss of KEG function blocked secretion of apoplastic defense proteins, indicating that KEG plays a role in plant immunity. Significantly, KEG was degraded specifically in cells infected by the fungus Golovinomyces cichoracearum, suggesting that this pathogen may target KEG to manipulate the host secretory system as a virulence strategy. Taking these results together, we conclude that KEG is a key component of TGN/EE that regulates multiple post-Golgi trafficking events in plants, including vacuole biogenesis, targeting of membrane-associated proteins to the vacuole, and secretion of apoplastic proteins. PMID:23192225

  12. Overexpression of the cystic fibrosis transmembrane conductance regulator in NIH 3T3 cells lowers membrane potential and intracellular pH and confers a multidrug resistance phenotype.

    PubMed Central

    Wei, L Y; Stutts, M J; Hoffman, M M; Roepe, P D

    1995-01-01

    Because of the similarities between the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance (MDR) proteins, recent observations of decreased plasma membrane electrical potential (delta psi) in cells overexpressing either MDR protein or the CFTR, and the effects of delta psi on passive diffusion of chemotherapeutic drugs, we have analyzed chemotherapeutic drug resistance for NIH 3T3 cells overexpressing different levels of functional CFTR. Three separate clones not previously exposed to chemotherapeutic drugs exhibit resistance to doxorubicin, vincristine, and colchicine that is similar to MDR transfectants not previously exposed to chemotherapeutic drugs. Two other clones expressing lower levels of CFTR are less resistant. As shown previously these clones exhibit decreased plasma membrane delta psi similar to MDR transfectants, but four of five exhibit mildly acidified intracellular pH in contrast to MDR transfectants, which are in general alkaline. Thus the MDR protein and CFTR-mediated MDR phenotypes are distinctly different. Selection of two separate CFTR clones on either doxorubicin or vincristine substantially increases the observed MDR and leads to increased CFTR (but not measurable MDR or MRP) mRNA expression. CFTR overexpressors also exhibit a decreased rate of 3H -vinblastine uptake. These data reveal a new and previously unrecognized consequence of CFTR expression, and are consistent with the hypothesis that membrane depolarization is an important determinant of tumor cell MDR. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:8519988

  13. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase.

    PubMed

    Woo, Joohan; Shin, Dong Hoon; Kim, Hyun Jong; Yoo, Hae Young; Zhang, Yin-Hua; Nam, Joo Hyun; Kim, Woo Kyung; Kim, Sung Joon

    2016-08-01

    TWIK-related two-pore domain K(+) channels 1 and 2 (TREKs) are activated under various physicochemical conditions. However, the directions in which they are regulated by PI(4,5)P2 and intracellular ATP are not clearly presented yet. In this study, we investigated the effects of ATP and PI(4,5)P2 on overexpressed TREKs (HEK293T and COS-7) and endogenously expressed TREK-2 (mouse astrocytes and WEHI-231 B cells). In all of these cells, both TREK-1 and TREK-2 currents were spontaneously increased by dialysis with ATP-free pipette solution for whole-cell recording (ITREK-1,w-c and ITREK-2w-c) or by membrane excision for inside-out patch clamping without ATP (ITREK-1,i-o and ITREK-2,i-o). Steady state ITREK-2,i-o was reversibly decreased by 3 mM ATP applied to the cytoplasmic side, and this reduction was prevented by wortmannin, a PI-kinase inhibitor. An exogenous application of PI(4,5)P2 inhibited the spontaneously increased ITREKs,i-o, suggesting that intrinsic PI(4,5)P2 maintained by intracellular ATP and PI kinase may set the basal activity of TREKs in the intact cells. The inhibition of intrinsic TREK-2 by ATP was more prominent in WEHI-231 cells than astrocytes. Interestingly, unspecific screening of negative charges by poly-L-lysine also inhibited ITREK-2,i-o. Application of PI(4,5)P2 after the poly-L-lysine treatment showed dose-dependent dual effects, initial activation and subsequent inhibition of ITREK-2,i-o at low and high concentrations, respectively. In HEK293T cells coexpressing TREK-2 and a voltage-sensitive PI(4,5)P2 phosphatase, sustained depolarization increased ITREK-2,w-c initially (<5 s) but then decreased the current below the control level. In HEK293T cells coexpressing TREK-2 and type 3 muscarinic receptor, application of carbachol induced transient activation and sustained suppression of ITREK-2,w-c and cell-attached ITREK-2. The inhibition of TREK-2 by unspecific electrostatic quenching, extensive dephosphorylation, or sustained hydrolysis

  14. Ovalbumin-related Protein X Is a Heparin-binding Ov-Serpin Exhibiting Antimicrobial Activities*

    PubMed Central

    Réhault-Godbert, Sophie; Labas, Valérie; Helloin, Emmanuelle; Hervé-Grépinet, Virginie; Slugocki, Cindy; Berges, Magali; Bourin, Marie-Christine; Brionne, Aurélien; Poirier, Jean-Claude; Gautron, Joël; Coste, Franck; Nys, Yves

    2013-01-01

    Ovalbumin family contains three proteins with high sequence similarity: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX). Ovalbumin is the major egg white protein with still undefined function, whereas the biological activity of OVAX and OVAY has not yet been explored. Similar to ovalbumin and OVAY, OVAX belongs to the ovalbumin serine protease inhibitor family (ov-serpin). We show that OVAX is specifically expressed by the magnum tissue, which is responsible for egg white formation. OVAX is also the main heparin-binding protein of egg white. This glycoprotein with a predicted reactive site at Lys367-His368 is not able to inhibit trypsin, plasmin, or cathepsin G with or without heparin as a cofactor. Secondary structure of OVAX is similar to that of ovalbumin, but the three-dimensional model of OVAX reveals the presence of a cluster of exposed positive charges, which potentially explains the affinity of this ov-serpin for heparin, as opposed to ovalbumin. Interestingly, OVAX, unlike ovalbumin, displays antibacterial activities against both Listeria monocytogenes and Salmonella enterica sv. Enteritidis. These properties partly involve heparin-binding site(s) of the molecule as the presence of heparin reverses its anti-Salmonella but not its anti-Listeria potential. Altogether, these results suggest that OVAX and ovalbumin, although highly similar in sequence, have peculiar sequential and/or structural features that are likely to impact their respective biological functions. PMID:23615912

  15. Elevated Concentrations of SERPINE2/Protease Nexin-1 and Secretory Leukocyte Protease Inhibitor in the Serum of Patients with Papillary Thyroid Cancer

    PubMed Central

    Stępień, Tomasz; Brożyna, Mateusz; Kuzdak, Krzysztof; Komorowski, Jan

    2017-01-01

    Introduction. SERPINE2 and secretory leukocyte protease inhibitor (SLPI) are proteins with anticoagulant properties which could promote solid tumor growth. However, their role in the pathogenesis of thyroid cancer has not been determined. Materials and Methods. The aim of this study was to assess serum SERPINE2 and SLPI concentrations in a group of 36 patients with papillary thyroid cancer (PTC) and a group of 19 subjects with multinodular nontoxic goiter (MNG). The control group (CG) consisted of 20 healthy volunteers. Blood samples were collected one day before surgery. Serum SERPINE2 and SLPI concentrations were measured using specific ELISA methods. Results. Significantly higher concentrations of SERPINE2 and SLPI were found in patients with PTC as compared with MNG and controls. Positive correlation was found between SERPINE2 and SLPI concentrations in PTC patients. The levels of SERPINE2 and SLPI did not differ significantly between MNG and healthy controls. Conclusions. Our results indicate that SERPINE2 and SLPI play a significant role in the development of papillary thyroid cancer and imply that the evaluation of serum concentrations of both anticoagulant molecules may be considered as additional marker for the differentiation of malignancies during the preoperative diagnosis of patients with thyroid gland tumors. PMID:28255192

  16. uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy

    PubMed Central

    Pavón, Miguel Angel; Arroyo-Solera, Irene; Céspedes, Maria Virtudes; Casanova, Isolda; León, Xavier; Mangues, Ramón

    2016-01-01

    There is strong evidence supporting the role of the plasminogen activator system in head and neck squamous cell carcinoma (HNSCC), particularly of its uPA (urokinase plasminogen activator) / uPAR (urokinase plasminogen activator receptor) and SERPINE1 components. Overexpression of uPA/uPAR and SERPINE1 enhances tumor cell migration and invasion and plays a key role in metastasis development, conferring poor prognosis. The apparent paradox of uPA/uPAR and its inhibitor SERPINE1 producing similar effects is solved by the identification of SERPINE1 activated signaling pathways independent of uPA inhibition. Both uPA/uPAR and SERPINE1 are directly linked to the induction of epithelial-to-mesenchymal transition, the acquisition of stem cell properties and resistance to antitumor agents. The aim of this review is to provide insight on the deregulation of these proteins in all these processes. We also summarize their potential value as prognostic biomarkers or potential drug targets in HNSCC patients. Concomitant overexpression of uPA/uPAR and SERPINE1 is associated with a higher risk of metastasis and could be used to identify patients that would benefit from an adjuvant treatment. In the future, the specific inhibitors of uPA/uPAR and SERPINE1, which are still under development, could be used to design new therapeutic strategies in HNSCCs. PMID:27385000

  17. Intracellular pH regulation in isolated trout gill mitochondrion-rich (MR) cell subtypes: evidence for Na+/H+ activity.

    PubMed

    Parks, Scott K; Tresguerres, Martin; Galvez, Fernando; Goss, Greg G

    2010-02-01

    We have studied intracellular pH (pH(i)) recovery in isolated trout gill mitochondrion-rich (MR) cells following acidification by the NH(4)Cl pre-pulse technique. Within a mixed MR cell population, one cell type displayed Na(+)-independent pH(i) recovery while the other cell type lacked a Na(+)-independent pH(i) recovery. Cells displaying Na(+) independent recovery exhibited a significantly higher buffering capacity compared to cells lacking Na(+)-independent pH(i) recovery. Cells displaying Na(+) independent recovery were identified as PNA(+) (peanut lectin agluttinin binding) MR cells while those unable to recover were identified as PNA(-) (non-peanut lectin agluttinin binding) MR cells. Therefore, recovery from acidification in the absence of Na(+) provides a direct functional marker for PNA(+) and PNA(-) MR cells. Re-addition of Na(+) to acidified cells resulted in a transient pH(i) recovery in both cell types. This event was abolished by amiloride (500 microM) but it was insensitive to phenamil (50 microM). The phorbol ester PMA (1 microM) potentiated the Na(+) induced pH(i) recovery suggesting that activation by PKC is required for continuous Na(+)/H(+) exchanger activity in trout gill MR cells. This study is the first functional description of pH(i) recovery in lectin-identified trout gill MR cells and provides insight into a putative cellular signaling mechanism that may control pH(i) regulation in the gill epithelium.

  18. [Preparation of recombinant serpins B3 and B4 and investigation of their specific interactions with antibodies using hydrogel-based microarrays].

    PubMed

    Butvilovskaya, V I; Tsybulskaya, M V; Tikhonov, A A; Talibov, V O; Belousov, P V; Sazykin, A Yu; Schwartz, A M; Putlyaeva, L V; Surzhikov, S A; Stomakhin, A A; Solopova, O N; Rubina, A Yu

    2015-01-01

    The objective of this work was to obtain preparations of recombinant squamous-cell carcinoma antigens (serpins B3 and B4) and to investigate their interactions with different monoclonal antibodies using hydrogel-based microarrays (biochips). Two genetic constructs encoding full-length serpin B3 and serpin B4 molecules were created to produce recombinant SPB3 and SPB4 proteins carrying a N-terminal His6-tag. Monoclonal antibodies against serpin B3 (H3, C5, H5, H81, and G9) were also obtained. An experimental gel-based biological microchip was designed to contain gel elements that carry immobilized antibodies against SPB3, immobilized commercial monoclonal SCC107 and SCC140 antibodies against squamous-cell carcinoma antigen (SCCA), and gel elements with immobilized SPB3 or SPB4. Judging by the specificity of recombinant SPB3 and SPB4, which bind to monoclonal antibodies against SCCA and, according to the manufacturer's data, can recognize conformational epitopes of both SPB3 and SPB4, it was concluded that the obtained recombinant serpins had the correct tertiary structure. A biochip-based direct immunoassay showed that SPB4 could bind effectively only to SCC107 and SCC140 antibodies, while SPB3 interacted specifically not only with these antibodies, but also with H3 and C5 monoclonal antibodies. Using biochip-based sandwich immunoassay, a pair of monoclonal antibodies SCC107/C5 that interacted specifically with serpin B3 but did not interact with serpin B4 was identified. Thus, it has been demonstrated that serpin B3 can be selectively determined in the presence of highly homologous serpin B4 using a biochip-based assay.

  19. Cloning and molecular characterization of a human intracellular serine proteinase inhibitor.

    PubMed Central

    Coughlin, P; Sun, J; Cerruti, L; Salem, H H; Bird, P

    1993-01-01

    We describe a cDNA encoding a serine proteinase inhibitor present in placental tissue and the cytosolic fraction of K562 cells. On the basis of its interaction with thrombin, through which it was discovered, the inhibitor has been operationally named the placental thrombin inhibitor (PTI). Amino acid sequence comparisons suggest that its reactive center is located at Arg-341 and Cys-342, that it lacks a classical N-terminal signal sequence, and that it has the highest degree of similarity to intracellular serine proteinase inhibitors (serpins), such as the human monocyte/neutrophil elastase inhibitor and the equine leukocyte elastase inhibitor. PTI also resembles these inhibitors in that it contains oxidation-sensitive residues adjacent to the reactive site. The PTI cDNA was expressed in rabbit reticulocyte lysate and in COS-7 cells and a 42-kDa protein was produced. Recombinant PTI formed a 67-kDa complex when incubated with thrombin. The ability of native PTI to bind thrombin was destroyed by incubation with iodoacetamide. Analysis of human tissue mRNA indicated that PTI is expressed widely with the highest levels in cardiac and skeletal muscle and placenta. We conclude that PTI is a member of an emerging class of intracellular serpins. Images Fig. 2 Fig. 3 Fig. 4 PMID:8415716

  20. Preventing serpin aggregation: The molecular mechanism of citrate action upon antitrypsin unfolding

    SciTech Connect

    Pearce, Mary C.; Morton, Craig J.; Feil, Susanne C.; Hansen, Guido; Adams, Julian J.; Parker, Michael W.; Bottomley, Stephen P.

    2008-11-21

    The aggregation of antitrypsin into polymers is one of the causes of neonatal hepatitis, cirrhosis, and emphysema. A similar reaction resulting in disease can occur in other human serpins, and collectively they are known as the serpinopathies. One possible therapeutic strategy involves inhibiting the conformational changes involved in antitrypsin aggregation. The citrate ion has previously been shown to prevent antitrypsin aggregation and maintain the protein in an active conformation; its mechanism of action, however, is unknown. Here we demonstrate that the citrate ion prevents the initial misfolding of the native state to a polymerogenic intermediate in a concentration-dependent manner. Furthermore, we have solved the crystal structure of citrate bound to antitrypsin and show that a single citrate molecule binds in a pocket between the A and B beta-sheets, a region known to be important in maintaining antitrypsin stability.

  1. 4G/5G polymorphism and haplotypes of SERPINE1 in atherosclerotic diseases of coronary arteries.

    PubMed

    Koch, Werner; Schrempf, Matthias; Erl, Anna; Mueller, Jakob C; Hoppmann, Petra; Schömig, Albert; Kastrati, Adnan

    2010-06-01

    We assessed the association between common variation at the SERPINE1 (PAI1) locus and myocardial infarction (MI). Haplotype-tagging polymorphisms, including the 4G/5G deletion/insertion polymorphism and seven single nucleotide polymorphisms, were analysed in a German sample containing 3,657 cases with MI and 1,211 controls. The association between the 4G/5G polymorphism and MI was examined in a meta-analysis of data extracted from 32 studies (13,267 cases/14,716 controls). In addition, the relation between the 4G/5G polymorphism and coronary diseases, comprising MI, coronary artery disease, coronary heart disease, or the acute coronary syndrome, was assessed in a combined analysis enclosing 43 studies (17,278 cases/18,039 controls). None of the tagging polymorphisms was associated with MI in the present sample (p 1.0%) 8-marker haplotypes was related to the risk of MI. In a meta-analysis specifically addressing the association with MI, no elevated risk was found in the carriers of the 4G allele (OR 1.07, 95% CI 0.99-1.16; p = 0.11). A more general combined analysis of coronary diseases showed a marginally increased risk in 4G allele carriers (OR 1.08, 95% CI 1.00-1.16; p = 0.044). In essence, tagging polymorphisms, including the 4G/5G polymorphism, and common haplotypes of the SERPINE1 gene region were not associated with MI in a German sample, and no compelling evidence was obtained for a relationship of the 4G/5G polymorphism to MI and coronary atherosclerosis in a meta-analysis.

  2. Regulation by intracellular Ca sup 2+ and cyclic AMP of the growth factor-induced ruffling membrane formation and stimulation of fluid-phase endocytosis and exocytosis

    SciTech Connect

    Miyata, Yoshihiko Tokyo Metropolitan Inst. of Medical Science ); Nishida, Eisuke; Sakai, Hikoichi ); Koyasu, Shigeo; Yahara, Ichiro )

    1989-04-01

    Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) induce formation of ruffling membranes and stimulate the fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells. An increase in intracellular Ca{sup 2+} concentration by treatment with A23187, a calcium ionophore, or an increase in intracellular cAMP level by treatment with dibutyryl cAMP or forskolin almost completely inhibited the insulin-, IGF-I-, or EGF-induced formation of ruffling membranes. Increases in Ca{sup 2+} or cAMP concentration also inhibited almost completely the stimulation of fluid-phase endocytosis and exocytosis elicited by these growth factors. These results suggest that the growth factor-induced ruffling membrane formation and the stimulation of fluid-phase endocytosis and exocytosis have a common regulatory mechanism involving intracellular concentrations of Ca{sup 2+} and cAMP. {sup 125}I-EGF binding assays and immunoprecipitation experiments with anti-phosphotyrosine antibody revealed that treatment of KB cells with A23187, dibutyryl cAMP, or forskolin did not inhibit the EGF binding to the cells nor subsequent tyrosine autophosphorylation of its receptors. These results indicate that Ca{sup 2+}- and/or cAMP-sensitive intracellular reactions exist downstream from the receptor kinase activation in the process of these early cellular responses.

  3. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation

    PubMed Central

    Bruserud, Øystein; Reikvam, Håkon; Fredly, Hanne; Skavland, Jørn; Hagen, Karen-Marie; van Hoang, Tuyen Thy; Brenner, Annette K.; Kadi, Amir; Astori, Audrey; Gjertsen, Bjørn Tore; Pendino, Frederic

    2015-01-01

    The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication. PMID:25605239

  4. Inhibitory activity of a heterochromatin-associated serpin (MENT) against papain-like cysteine proteinases affects chromatin structure and blocks cell proliferation.

    PubMed

    Irving, James A; Shushanov, Sain S; Pike, Robert N; Popova, Evgenya Y; Brömme, Dieter; Coetzer, Theresa H T; Bottomley, Stephen P; Boulynko, Iaroslava A; Grigoryev, Sergei A; Whisstock, James C

    2002-04-12

    MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein) is a developmentally regulated chromosomal serpin that condenses chromatin in terminally differentiated avian blood cells. We show that MENT is an effective inhibitor of the papain-like cysteine proteinases cathepsins L and V. In addition, ectopic expression of MENT in mammalian cells is apparently sufficient to inhibit a nuclear papain-like cysteine proteinase and prevent degradation of the retinoblastoma protein, a major regulator of cell proliferation. MENT also accumulates in the nucleus, causes a strong block in proliferation, and promotes condensation of chromatin. Variants of MENT with mutations or deletions within the M-loop, which contains a nuclear localization signal and an AT-hook motif, reveal that this region mediates nuclear transport and morphological changes associated with chromatin condensation. Non-inhibitory mutants of MENT were constructed to determine whether its inhibitory activity has a role in blocking proliferation. These mutations changed the mode of association with chromatin and relieved the block in proliferation, without preventing transport to the nucleus. We conclude that the repressive effect of MENT on chromatin is mediated by its direct interaction with a nuclear protein that has a papain-like cysteine proteinase active site.

  5. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    SciTech Connect

    Arai, Roberto J.; Debbas, Victor; Stern, Arnold; Monteiro, Hugo P.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.

  6. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure.

    PubMed

    Robichaux, Michael A; Chenaux, George; Ho, Hsin-Yi Henry; Soskis, Michael J; Greenberg, Michael E; Henkemeyer, Mark; Cowan, Christopher W

    2016-04-01

    The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.

  7. Regulation of renal artery smooth muscle tone by alpha1-adrenoceptors: role of voltage-gated calcium channels and intracellular calcium stores.

    PubMed

    Eckert, R E; Karsten, A J; Utz, J; Ziegler, M

    2000-04-01

    The ischemia induced vasospasm of the renal arterial blood vessels mediated by alpha1-adrenoceptors is of importance for the loss of kidney function. This is based on reduced perfusion of the kidney cortex occurring in kidney transplant and organ preserving surgery. The present study considered the intracellular mechanism of the norepinephrine (NE) induced renal artery vasospasm by using swine renal artery smooth muscle ring. Norepinephrine and phenylephrine (PE) induced dose-dependent and fully reversible isometric contractions with a threshold concentration of 10 nM (n = 7) and 10 nM (n = 4), and an EC50 of 0.3 microM and 1 microM, respectively. The receptor was identified as alpha1A-subtype. The contraction was completely inhibited by verapamil (IC50 = 1.51 microM; n = 11) and diltiazem (IC50 = 9.49 microM; n = 8) and 85% by nifedipine (IC50 = 0.13 microM; n = 21). Blockade of the intracellular inositol- 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store by thapsigargin (1 microM, n = 7) or suppression of Ca2+ release from the intracellular Ca2+-sensitive Ca2+ store by ryanodine (100 microM, n = 4) inhibited the PE induced contraction by 39.5% and 47.6%, respectively. The results suggest a key role of voltage-dependent Ca2+ channels and intracellular Ca2+ stores in the alpha1A-adrenoceptor induced contraction of the renal artery.

  8. Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

    PubMed Central

    Wijerathne, Tharaka Darshana; Kim, Jihyun; Yang, Dongki

    2017-01-01

    Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat–containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical BKCa activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting γ2 subunit, hLRRC52. As previously reported, Slo3 K+ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 K+ current, and internal alkalinization and Ca2+ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 K+ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular Ca2+. In contrast, elevation of intracellular Ca2+ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate Ca2+-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm. PMID:28280418

  9. Amblyomma americanum (L.) (Acari: Ixodidae) tick salivary gland serine protease inhibitor (serpin) 6 is secreted into tick saliva during tick feeding.

    PubMed

    Chalaire, Katelyn Cox; Kim, Tae Kwon; Garcia-Rodriguez, Heidy; Mulenga, Albert

    2011-02-15

    In order to successfully feed and transmit disease agents, ticks are thought to inject serine protease inhibitors (serpins) into the host to modulate host defense responses to tick feeding, such as inflammation, the complement activation pathway and blood coagulation. In this study, we show that Amblyomma americanum (Aam) serpin (S) 6 is putatively injected into the host during tick feeding, in that the antibody to recombinant (r) AamS6 specifically reacted with the expected ∼43/45 kDa AamS6 protein band on western blots of pilocarpine-induced tick saliva. Additionally, antibodies to tick saliva proteins that were generated by repeated 48 h infestations of rabbits with adult A. americanum specifically reacted with rAamS6. We speculate that AamS6 is associated with regulating events at the start of the tick feeding process, as temporal and spatial RT-PCR and western blot analyses revealed that both AamS6 mRNA and protein are strongly expressed during the first 24-72 h of feeding time before starting to fade from 96 h. The AamS6 protein has an apparently slow turnover rate in that, although the injection of AamS6 dsRNA into unfed ticks triggered complete disruption of the AamS6 mRNA by the 48 h feeding time point, western blot analysis of protein extracts of the same animals showed that the AamS6 protein that may have been expressed prior to disruption of the AamS6 mRNA was not depleted. We speculate that the presence of the AamS6 protein in ticks despite the complete disruption of the AamS6 mRNA explains the observation that RNAi-mediated silencing of the AamS6 mRNA did not affect the ability of A. americanum ticks to attach onto host skin, successfully feed and lay eggs. These findings are discussed in regards to advances in the molecular biology of ticks.

  10. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.

  11. Down-regulation of L-selectin expression in neutrophils by nonsteroidal anti-inflammatory drugs: role of intracellular ATP concentration.

    PubMed

    Gómez-Gaviro, M V; Domínguez-Jiménez, C; Carretero, J M; Sabando, P; González-Alvaro, I; Sánchez-Madrid, F; Díaz-González, F

    2000-11-15

    L-selectin is an adhesion molecule that plays an essential role in the early events of the inflammatory response. Our group has recently described that several nonsteroidal anti-inflammatory drugs (NSAIDs) are able to induce both in vivo and in vitro the shedding of L-selectin in neutrophils through an unknown mechanism. In this work, we have studied potential mechanisms involved in the shedding of L-selectin induced by NSAIDs. This effect of NSAIDs did not involve any detectable intracellular calcium flux. Pretreatment of neutrophils either with Ro 31-8220 and H7, 2 specific inhibitors of protein kinase C (PKC), or with inhibitors of protein tyrosine kinases such as tyrphostin A25 or herbimycin A did not prevent the NSAID-mediated L-selectin shedding. However, the KD-IX-73-4, an inhibitor of L-selectin proteolysis was able to block the effect of NSAIDs on L-selectin expression. Remarkably, NSAIDs caused a variable reduction in the neutrophil intracellular ATP concentration that highly correlated with the differential ability of NSAIDs to trigger L-selectin shedding (r = 0.8, P <.01). In agreement with this finding, azide plus 2-deoxy-D-glucose, 2 metabolic blockers, also induced a rapid L-selectin shedding (65% +/- 8%) without affecting the neutrophil viability, activation, or expression level of other surface molecules with soluble isoforms such as CD16 and CD59. These data indicate that the maintenance of L-selectin on the neutrophil surface requires energy consumption, which suggests that L-selectin is shed in neutrophils by default. Interestingly, NSAIDs seem to cause the shedding of L-selectin, at least in part, through the reduction of the intracellular ATP concentration.

  12. Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes.

    PubMed

    Perron, Michel J; Blouse, Grant E; Shore, Joseph D

    2003-11-28

    Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.

  13. Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells.

    PubMed

    Heimlich, Gerd; Cidlowski, John A

    2006-01-27

    Apoptosis is a genetic program for the removal of unwanted cells from an organism, which is distinct from necrosis by its characteristic volume loss or apoptotic volume decrease. This cell shrinkage is the result of ion redistribution that is crucial for both the activation and execution of apoptosis. Here we report that UV-C but not Fas ligand treatment results in a significant decrease in intracellular chloride that can be abolished by modulation of chloride flux using either the chloride channel inhibitor SITS or medium with a reduced chloride concentration. Accordingly, downstream events are diminished during UV-C-induced apoptosis following chloride flux modulation, whereas Fas ligand-induced apoptotic characteristics are not affected. Moreover, the activation of the mitogen-activated protein kinase signal transduction pathway early in the apoptotic signaling cascade was affected by chloride flux in Jurkat T-cells. Thus, an alteration of intracellular chloride plays an important role in the activation of signaling molecules upstream of the mitochondria, specifically impairing the intrinsic but not extrinsic apoptotic pathway.

  14. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus.

    PubMed

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin

    2014-08-01

    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (p<0.0001) and blinded radiographs indicated that the Serp-1 group had significantly less erosions than the controls (p<0.01). Delayed-type hypersensitivity was lower in the Serp-1 group but antibody titers to type II collagen were not significantly altered. Recipients had minimal histopathologic synovial changes and did not develop neutralizing antibodies to Serp-1. These results indicate that Serp-1 impedes the pathogenesis of CIA and suggests that the therapeutic potential of serine proteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further.

  15. Acid Denaturation of alpha1-antitrypsin: characterization of a novel mechanism of serpin polymerization.

    PubMed

    Devlin, Glyn L; Chow, Michelle K M; Howlett, Geoffrey J; Bottomley, Stephen P

    2002-12-06

    The native serpin architecture is extremely sensitive to mutation and environmental factors. These factors induce the formation of a partially folded species that results in the production of inactive loop-sheet polymers. The deposition of these aggregates in tissue, results in diseases such as liver cirrhosis, thrombosis, angioedema and dementia. In this study, we characterize the kinetics and conformational changes of alpha(1)-antitrypsin polymerization at pH 4 using tryptophan fluorescence, circular dichroism, turbidity changes and thioflavin T binding. These biophysical techniques have demonstrated that polymerization begins with a reversible conformational change that results in partial loss of secondary structure and distortion at the top of beta-sheet A. This is followed by two bimolecular processes. First, protodimers are formed, which can be dissociated by changing the pH back to 8. Then, an irreversible conformational change occurs, resulting in the stabilization of the dimers with a concomitant increase in beta-sheet structure, allowing for subsequent polymer extension. Electron microscopy analysis of the polymers, coupled with the far-UV CD and thioflavin T properties of the pH 4 polymers suggest they do not form via the classical loop-beta-sheet A linkage. However, they more closely resemble those formed by the pathological variant M(malton). Taken together, these data describe a novel kinetic mechanism of serine proteinase inhibitor polymerization.

  16. Contrasting effects of intracellular redox couples on the regulation of maxi-K channels in isolated myocytes from rabbit pulmonary artery.

    PubMed Central

    Thuringer, D; Findlay, I

    1997-01-01

    1. The effects of intracellular redox couples were investigated on the activation by voltage, Ca2+ and NS 1619 of maxi-K channels in enzymatically isolated smooth muscle cells from large pulmonary arteries of rabbits. 2. In inside-out membrane patches, maxi-K channels were characterized by a single-channel conductance of 266 pS in symmetrical 140 mM KCl solutions. The relationship between the open-state probability (Po) and the membrane potential could be fitted to the Boltzmann equation. The activating action of intracellular Ca2+ was reversible, concentration dependent, and was manifested as the reduction in the voltage necessary to half-activate the channel (V1/2) with no change in the slope factor. NS 1619 also predisposed the maxi-K channel to open at more hyperpolarized membrane potentials. 3. The oxidizing agent 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB, 1 mM) activated maxi-K channels by inducing a negative shift of the activity-voltage curve, while the reducing agent 2-hydroxy-1-ethanethiol (beta-mercaptoethanol) (BME, 1 mM) had no effect. DTNB increased the efficacy of Ca2+ in activating maxi-K channels. The action of DTNB was not reversible upon wash-out, but could be counteracted by BME. 4. Maxi-K channel activity was unaffected by other oxidizing agents, such as NAD (2 mM) and glutathione disulphide (GSSG, 5 mM), or by their reduced forms (NADH and GSH). Mg-ATP (0.1 and 1 mM) increased the channel activity in a dose-dependent manner, while guanine nucleotides (100 microM GTP gamma S, 500 microM GDP and 200 microM GDP beta S) had no effect. 5. Our data suggest that a change in the intracellular redox state, which would be expected during acute hypoxia, does not alter the activity of maxi-K channels of large pulmonary artery smooth muscle cells. The sulfhydryl-specific redox reagents (DTNB and BME) must act through another regulatory mechanism. PMID:9161977

  17. Contrasting effects of intracellular redox couples on the regulation of maxi-K channels in isolated myocytes from rabbit pulmonary artery.

    PubMed

    Thuringer, D; Findlay, I

    1997-05-01

    1. The effects of intracellular redox couples were investigated on the activation by voltage, Ca2+ and NS 1619 of maxi-K channels in enzymatically isolated smooth muscle cells from large pulmonary arteries of rabbits. 2. In inside-out membrane patches, maxi-K channels were characterized by a single-channel conductance of 266 pS in symmetrical 140 mM KCl solutions. The relationship between the open-state probability (Po) and the membrane potential could be fitted to the Boltzmann equation. The activating action of intracellular Ca2+ was reversible, concentration dependent, and was manifested as the reduction in the voltage necessary to half-activate the channel (V1/2) with no change in the slope factor. NS 1619 also predisposed the maxi-K channel to open at more hyperpolarized membrane potentials. 3. The oxidizing agent 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB, 1 mM) activated maxi-K channels by inducing a negative shift of the activity-voltage curve, while the reducing agent 2-hydroxy-1-ethanethiol (beta-mercaptoethanol) (BME, 1 mM) had no effect. DTNB increased the efficacy of Ca2+ in activating maxi-K channels. The action of DTNB was not reversible upon wash-out, but could be counteracted by BME. 4. Maxi-K channel activity was unaffected by other oxidizing agents, such as NAD (2 mM) and glutathione disulphide (GSSG, 5 mM), or by their reduced forms (NADH and GSH). Mg-ATP (0.1 and 1 mM) increased the channel activity in a dose-dependent manner, while guanine nucleotides (100 microM GTP gamma S, 500 microM GDP and 200 microM GDP beta S) had no effect. 5. Our data suggest that a change in the intracellular redox state, which would be expected during acute hypoxia, does not alter the activity of maxi-K channels of large pulmonary artery smooth muscle cells. The sulfhydryl-specific redox reagents (DTNB and BME) must act through another regulatory mechanism.

  18. An AraC-Type Transcriptional Regulator Encoded on the Enterococcus faecalis Pathogenicity Island Contributes to Pathogenesis and Intracellular Macrophage Survival▿

    PubMed Central

    Coburn, Phillip S.; Baghdayan, Arto S.; Dolan, GT; Shankar, Nathan

    2008-01-01

    A gene encoding a putative AraC-type transcriptional regulator was identified on the 153-kb pathogenicity island (PAI) found among virulent Enterococcus faecalis strains. In an effort to understand the function of this regulator, designated PerA (for pathogenicity island-encoded regulator), we first examined the expression of the perA gene in the original PAI strain MMH594 and in an unrelated clinical isolate E99 by reverse transcription-PCR. Interestingly, expression analysis revealed no detectable perA transcript in MMH594, whereas a transcript was observed in strain E99. Nucleotide sequence analysis revealed that this altered expression between the two strains was attributable to the differential location of an IS1191 element within the putative promoter region upstream of the perA gene. In order to determine the role of this putative regulator in E. faecalis pathogenesis, a perA-deficient mutant was created in strain E99, and the wild-type and mutant pair were compared for phenotypic differences. In in vitro biofilm assays, the mutant strain showed a significantly higher level of growth medium-specific biofilm formation compared to the wild type. However, in a murine intraperitoneal infection model, the mutant strain was significantly less pathogenic. The mutant was also attenuated for survival within macrophages in vitro. These findings highlight the importance of PerA as a regulator of biofilm formation and survival within macrophages and is likely a regulator controlling determinants important to pathogenesis. PMID:18824537

  19. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  20. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death1[OPEN

    PubMed Central

    Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-01-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB. In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. PMID:26884487

  1. Extra and intracellular calcium signaling pathway(s) differentially regulate histamine-induced myometrial contractions during early and mid-pregnancy stages in buffaloes (Bubalus bubalis).

    PubMed

    Sharma, Abhishek; Nakade, Udayraj P; Choudhury, Soumen; Yadav, Rajkumar Singh; Garg, Satish Kumar

    2017-04-01

    This study examines the differential role of calcium signaling pathway(s) in histamine-induced uterotonic action during early and mid-pregnancy stages in buffaloes. Compared to mid pregnancy, tonic contraction, amplitude and mean-integral tension were significantly increased by histamine to produce myometrial contraction during early pregnancy with small effects on phasic contraction and frequency. Although uterotonic action of histamine during both stages of pregnancy is sensitive to nifedipine (a L-type Ca(2+) channels blocker) and NNC55-0396 (T-type Ca(2+) channels blocker), the role of extracellular calcium seems to be more significant during mid-pregnancy as in this stage histamine produced only 9.38±0.96% contraction in Ca(2+) free-RLS compared to 21.60±1.45% in uteri of early pregnancy stage. Intracellular calcium plays major role in histamine-induced myometrial contraction during early pregnancy as compared to mid pregnancy, as in the presence of cyclopiazonic acid (CPA) Ca(2+)-free RLS, histamine produced significantly higher contraction in myometrial strips of early-pregancy in comparison to mid-pregnancy (10.59±1.58% and 3.13±0.46%, respectively). In the presence of U-73122, the DRC of histamine was significantly shifted towards right with decrease in maximal effect (Emax) only in early pregnancy suggesting the predominant role of phospholipase-C (PL-C) in this stage of pregnancy.

  2. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Tokuda, Eiichi; Watanabe, Shunsuke; Okawa, Eriko; Ono, Shin-ichi

    2015-04-01

    Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), an incurable motor neuron disease. The pathogenesis of the disease is poorly understood, but intracellular copper dyshomeostasis has been implicated as a key process in the disease. We recently observed that metallothioneins (MTs) are an excellent target for the modification of copper dyshomeostasis in a mouse model of ALS (SOD1(G93A)). Here, we offer a therapeutic strategy designed to increase the level of endogenous MTs. The upregulation of endogenous MTs by dexamethasone, a synthetic glucocorticoid, significantly improved the disease course and rescued motor neurons in SOD1(G93A) mice, even if the induction was initiated when peak body weight had decreased by 10%. Neuroprotection was associated with the normalization of copper dyshomeostasis, as well as with decreased levels of SOD1(G93A) aggregates. Importantly, these benefits were clearly mediated in a MT-dependent manner, as dexamethasone did not provide any protection when endogenous MTs were abolished from SOD1(G93A) mice. In conclusion, the upregulation of endogenous MTs represents a promising strategy for the treatment of ALS linked to mutant SOD1.

  3. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway

    PubMed Central

    Tam, Joshua H. K.; Cobb, M. Rebecca; Seah, Claudia; Pasternak, Stephen H.

    2016-01-01

    The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease. PMID:27776132

  4. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    PubMed Central

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment. PMID:27221742

  5. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  6. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages.

    PubMed

    Verneuil, Nicolas; Sanguinetti, Maurizio; Le Breton, Yoann; Posteraro, Brunella; Fadda, Giovanni; Auffray, Yanick; Hartke, Axel; Giard, Jean-Christophe

    2004-08-01

    In order to identify regulators of the oxidative stress response in Enterococcus faecalis, an important human pathogen, several genes annotated as coding for transcriptional regulators were inactivated by insertional mutagenesis. One mutant, affected in the ef2958 locus (designated hypR [hydrogen peroxide regulator]), appeared to be highly sensitive to oxidative challenge caused by hydrogen peroxide. Moreover, testing of the hypR mutant by using an in vivo-in vitro macrophage infection model resulted in a highly significant reduction in survival compared to the survival of parent strain JH2-2. Northern blot analyses were carried out with probes specific for genes encoding known antioxidant enzymes, and they showed that the ahpCF (alkyl hydroperoxide reductase) transcript was expressed less in mutant cells. Mobility shift protein-DNA binding assays revealed that HypR regulated directly the expression of hypR itself and the ahpCF operon. Our combined results showed that HypR appeared to be directly involved in the expression of ahpCF genes under oxidative stress conditions and suggested that this regulator could contribute to the virulence of E. faecalis.

  7. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    PubMed Central

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  8. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling.

    PubMed

    Corral-Jara, Karla F; Trujillo-Ochoa, Jorge L; Realpe, Mauricio; Panduro, Arturo; Gómez-Leyva, Juan F; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia; Fierro, Nora A

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1.

  9. Revisiting intracellular calcium signaling semantics.

    PubMed

    Haiech, Jacques; Audran, Emilie; Fève, Marie; Ranjeva, Raoul; Kilhoffer, Marie-Claude

    2011-12-01

    Cells use intracellular free calcium concentration changes for signaling. Signal encoding occurs through both spatial and temporal modulation of the free calcium concentration. The encoded message is detected by an ensemble of intracellular sensors forming the family of calcium-binding proteins (CaBPs) which must faithfully translate the message using a new syntax that is recognized by the cell. The cell is home to a significant although limited number of genes coding for proteins involved in the signal encoding and decoding processes. In a cell, only a subset of this ensemble of genes is expressed, leading to a genetic regulation of the calcium signal pathways. Calmodulin (CaM), the most ubiquitous expressed intracellular calcium-binding protein, plays a major role in calcium signal translation. Similar to a hub, it is central to a large and finely tuned network, receiving information, integrating it and dispatching the cognate response. In this review, we examine the different steps starting with an external stimulus up to a cellular response, with special emphasis on CaM and the mechanism by which it decodes calcium signals and translates it into exquisitely coordinated cellular events. By this means, we will revisit the calcium signaling semantics, hoping that we will ease communication between scientists dealing with calcium signals in different biological systems and different domains.

  10. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    NASA Astrophysics Data System (ADS)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  11. Pregnane X Receptor Regulates Pathogen-Induced Inflammation and Host Defense against an Intracellular Bacterial Infection through Toll-like Receptor 4

    PubMed Central

    Qiu, Zhijuan; Cervantes, Jorge L.; Cicek, Basak B.; Mukherjee, Subhajit; Venkatesh, Madhukumar; Maher, Leigh A.; Salazar, Juan C.; Mani, Sridhar; Khanna, Kamal M.

    2016-01-01

    The nuclear pregnane X receptor (PXR) plays a central role in regulating xenobiotic metabolism. We now report a novel role for PXR as a critical negative regulator of innate immunity after infection. Pxr−/− mice exhibited remarkably elevated pro-inflammatory cytokine and chemokine production following infection with Listeria monocytogenes (Lm). Despite the more robust innate immune response, Pxr−/− mice were highly susceptible to Lm infection. Surprisingly, disruption of the Toll-like receptor 4 (TLR4) but not TLR2 signaling restored the inflammation to normal levels and the ability to clear Lm in Pxr−/− mice. Mechanistically, the heightened inflammation in Pxr−/− mice resulted in the death of inflammatory monocytes that led to the enhanced susceptibility to Lm infection. These data demonstrated that PXR regulated pathogen-induced inflammation and host defense against Lm infection through modulating the TLR4 pathway. In summary, we discovered an apical role for PXR in regulating innate immunity. In addition, we uncovered a remarkable negative impact of the TLR4 pathway in controlling the quality of the inflammatory response and host defense against a gram-positive bacterial infection. PMID:27550658

  12. Phosphorylation of intracellular proteins related to the multihormonal regulation of prolactin: comparison of normal anterior pituitary cells in culture with the tumor-derived GH cell lines

    SciTech Connect

    Beretta, L.; Boutterin, M.C.; Sobel, A.

    1988-01-01

    We have previously identified a group of cytoplasmic phosphoproteins (proteins 1-11) whose phosphorylation could be related, on a pharmacological basis, to the multihormonal regulation of PRL synthesis and release in the anterior pituitary tumor-derived GH cell lines. Phosphoproteins with identical migration properties on two-dimensional electrophoresis gels were also detectable in normal rat anterior pituitary cells in culture. We designed appropriate culture and (/sup 32/P) phosphate-labeling conditions allowing to analyze the regulation of the phosphorylation of these proteins in normal pituitary cells. TRH, 12-O-tetradecanoylphorbol-13-acetate, and vasoactive intestinal peptide induced the same qualitative changes in phosphorylation of proteins 1-11 in normal as in GH cells. Quantitative differences observed are most likely due to the heterogeneity of primary pituitary cultures. Phosphorylation changes affecting proteins 14-16, not previously detected in GH cells, were also observed with normal anterior pituitary cells. GH cell lines have lost the sensitivity of pituitary lactotrophs for dopamine, an important physiological inhibitor of PRL synthesis and release. In normal anterior pituitary cells in culture, dopamine inhibited also the TRH-stimulated phosphorylation of proteins 1-10, thus strengthening the correlation between phosphorylation of these proteins and multihormonal regulation of pituitary cell functions. Our results indicate: 1) that the same phosphoproteins as in GH cells are related to the multihormonal regulation of nontumoral, normal anterior pituitary cells in culture; 2) that dopamine acts by interfering with the phosphorylation of these proteins.

  13. The protease cathepsin L regulates Th17 cell differentiation.

    PubMed

    Hou, Lifei; Cooley, Jessica; Swanson, Richard; Ong, Poh Chee; Pike, Robert N; Bogyo, Matthew; Olson, Steven T; Remold-O'Donnell, Eileen

    2015-12-01

    Previously we reported that IL-17(+) T cells, primarily IL-17(+) γδ cells, are increased in mice lacking the protease inhibitor serpinB1 (serpinb1(-/-) mice). Here we show that serpinB1-deficient CD4 cells exhibit a cell-autonomous and selective deficiency in suppressing T helper 17 (Th17) cell differentiation. This suggested an opposing role for one or more protease in promoting Th17 differentiation. We found that several SerpinB1-inhibitable cysteine cathepsins are induced in Th17 cells, most prominently cathepsin L (catL); this was verified by peptidase assays, active site labeling and Western blots. Moreover, Th17 differentiation was suppressed by both broad cathepsin inhibitors and catL selective inhibitors. CatL is present in Th17 cells as single chain (SC)- and two-chain (TC)-forms. Inhibiting asparagine endopeptidase (AEP) blocked conversion of SC-catL to TC-catL and increased generation of serpinb1(-/-) Th17 cells, but not wild-type Th17 cells. These findings suggest that SC-catL is biologically active in promoting Th17 generation and is counter-regulated by serpinB1 and secondarily by AEP. Thus, in addition to regulation by cytokines and transcription factors, differentiation of CD4 cells to Th17 cells is actively regulated by a catL-serpinB1-AEP module. Targeting this protease regulatory module could be an approach to treating Th17 cell-driven autoimmune disorders.

  14. Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization.

    PubMed

    Ellis, John G; Davila, Monica; Chakrabarti, Ratna

    2003-01-17

    Mitogen-activated protein kinase (MAPK) pathways are major signaling systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified Giardia lamblia homologues of two members of the MAPK family ERK1 and ERK2. Functional characterization of giardial ERK1 and ERK2 revealed that both kinases were expressed in trophozoites and encysting cells as 44- and 41-kDa polypeptides, respectively, and were catalytically active. Analysis of the kinetic parameters of the recombinant proteins showed that ERK2 is approximately 5 times more efficient than ERK1 in phosphorylating myelin basic protein as a substrate, although the phosphorylating efficiency of the native ERK1 and ERK2 appeared to be the same. Immunofluorescence analysis of the subcellular localization of ERK1 and ERK2 in trophozoites showed ERK1 staining mostly in the median body and in the outer edges of the adhesive disc and ERK2 staining in the nuclei and in the caudal flagella. Our study also showed a noticeable change in the subcellular distribution of ERK2 during encystation, which became more punctate and mostly cytoplasmic, but no significant change in the ERK1 localization at any time during encystation. Interestingly, both ERK1 and ERK2 enzymes exhibited a significantly reduced kinase activity during encystation reaching a minimum at 24 h, except for an initial approximately 2.5-fold increase in the ERK1 activity at 2 h, which resumed back to the normal levels at 48 h despite no apparent change in the expression level of either one of these kinases in encysting cells. A reduced concentration of the phosphorylated ERK1 and ERK2 was also evident in these cells at 24 h. Our study suggests a functional distinction between ERK1 and ERK2 and that these kinases may play a critical role in trophozoite differentiation into cysts.

  15. Cloning of human Ca2+ homoeostasis endoplasmic reticulum protein (CHERP): regulated expression of antisense cDNA depletes CHERP, inhibits intracellular Ca2+ mobilization and decreases cell proliferation.

    PubMed Central

    Laplante, J M; O'Rourke, F; Lu, X; Fein, A; Olsen, A; Feinstein, M B

    2000-01-01

    A monoclonal antibody which blocks InsP(3)-induced Ca(2+) release from isolated endoplasmic reticulum was used to isolate a novel 4.0 kb cDNA from a human erythroleukaemia (HEL) cell cDNA expression library. A corresponding mRNA transcript of approx. 4.2 kb was present in all human cell lines and tissues examined, but cardiac and skeletal muscle had an additional transcript of 6.4 kb. The identification in GenBank(R) of homologous expressed sequence tags from many tissues and organisms suggests that the gene is ubiquitously expressed in higher eukaryotes. The gene was mapped to human chromosome 19p13.1. The cDNA predicts a 100 kDa protein, designated Ca(2+) homoeostasis endoplasmic reticulum protein (CHERP), with two putative transmembrane domains, multiple consensus phosphorylation sites, a polyglutamine tract of 12 repeats and regions of imperfect tryptophan and histadine octa- and nona-peptide repeats. In vitro translation of the full-length cDNA produced proteins of M(r) 128000 and 100000, corresponding to protein bands detected by Western blotting of many cell types. CHERP was co-localized in HEL cells with the InsP(3) receptor by two-colour immunofluorescence. Transfection of HEL cells with antisense cDNA led to an 80% decline in CHERP within 5 days of antisense induction, with markedly decreased intracellular Ca(2+) mobilization by thrombin, decreased DNA synthesis and growth arrest, indicating that the protein has an important function in Ca(2+) homoeostasis, growth and proliferation. PMID:10794731

  16. Filamin A interaction with the CXCR4 third intracellular loop regulates endocytosis and signaling of WT and WHIM-like receptors.

    PubMed

    Gómez-Moutón, Concepción; Fischer, Thierry; Peregil, Rosa M; Jiménez-Baranda, Sonia; Stossel, Thomas P; Nakamura, Fumihiko; Mañes, Santos

    2015-02-12

    Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare congenital immunodeficiency often caused by mutations in the last 10 to 19 C-terminal amino acids of CXCR4. These mutations impair CXCR4 internalization and increase responsiveness to CXCL12. The CXCR4 C-terminal domain (C-tail) also has a binding site for the actin-binding protein filamin A (FLNA); it is not known whether FLNA binds to WHIM CXCR4 mutants or whether this interaction is implicated in the hyperfunction of these receptors. Here we show that, in addition to interacting with the CXCR4 C-tail, FLNA interacted with a region in the receptor third intracellular loop (ICL3) spanning amino acids 238 to 246. This interaction involved specific FLNA repeats and was sensitive to Rho kinase inhibition. Deletion of the 238-246 motif accelerated CXCL12-induced wild-type (WT) receptor endocytosis but enabled CXCL12-mediated endocytosis and normalized signaling by the WHIM-associated receptor CXCR4(R334X). CXCL12 stimulation triggered CXCR4(R334X) internalization in FLNA-deficient M2 cells but not in the FLNA-expressing M2 subclone A7; this suggests a role for FLNA in stabilization of WHIM-like CXCR4 at the cell surface. FLNA increased β-arrestin2 binding to CXCR4(R334X) in vivo, which provides a molecular basis for FLNA-mediated hyperactivation of WHIM receptor signaling. We propose that FLNA interaction with ICL3 is central for endocytosis and signaling of WT and WHIM-like CXCR4 receptors.

  17. TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production.

    PubMed

    McNab, Finlay W; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S; Wu, Xuemei; Graham, Christine M; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C; O'Garra, Anne

    2013-08-15

    Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of mortality and morbidity worldwide, causing ≈ 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1, and TNF-α, as well as IFN-γ and CD4(+) Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I IFN have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to M. tuberculosis in murine models through the negative regulation of key proinflammatory cytokines and the subsequent Th1 response. We show in this study, using a combination of transcriptomic analysis, genetics, and pharmacological inhibitors, that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I IFN production. The TPL-2-ERK1/2 signaling pathway regulated production by macrophages of several cytokines important in the immune response to M. tuberculosis as well as regulating induction of a large number of additional genes, many in a type I IFN-dependent manner. In the absence of TPL-2 in vivo, excess type I IFN promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I IFN may promote susceptibility to this important disease.

  18. fundTPL-2 – ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I Interferon Production3

    PubMed Central

    McNab, Finlay W.; Ewbank, John; Rajsbaum, Ricardo; Stavropoulos, Evangelos; Martirosyan, Anna; Redford, Paul S.; Wu, Xuemei; Graham, Christine M.; Saraiva, Margarida; Tsichlis, Philip; Chaussabel, Damien; Ley, Steven C.; O’Garra, Anne

    2013-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of mortality and morbidity worldwide, causing approximately 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1 and TNF-α, as well as IFN-γ and CD4+ Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I interferon have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to Mtb in murine models through the negative regulation of key pro-inflammatory cytokines and the subsequent Th1 response. We show here, using a combination of transcriptomic analysis, genetics and pharmacological inhibitors that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I interferon production. The TPL-2-ERK1/2 signalling pathway regulated production by macrophages of several cytokines important in the immune response to Mtb as well as regulating induction of a large number of additional genes, many in a type I IFN dependent manner. In the absence of TPL-2 in vivo, excess type I interferon promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I interferon may promote susceptibility to this important disease. PMID:23842752

  19. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  20. Two isoforms of the T-cell intracellular antigen 1 (TIA-1) splicing factor display distinct splicing regulation activities. Control of TIA-1 isoform ratio by TIA-1-related protein.

    PubMed

    Izquierdo, José M; Valcárcel, Juan

    2007-07-06

    TIA-1 (T-cell Intracellular Antigen 1) and TIAR (TIA-1-related protein) are RNA-binding proteins involved in the regulation of alternative pre-mRNA splicing and other aspects of RNA metabolism. Various isoforms of these proteins exist in mammals. For example, TIA-1 presents two major isoforms (TIA-1a and TIA-1b) generated by alternative splicing of exon 5 that differ by eleven amino acids exclusive of the TIA-1a isoform. Here we show that the relative expression of TIA-1 and TIAR isoforms varies in different human tissues and cell lines, suggesting distinct functional properties and regulated isoform expression. We report that whereas TIA-1 isoforms show similar subcellular distribution and RNA binding, TIA-1b displays enhanced splicing stimulatory activity compared with TIA-1a, both in vitro and in vivo. Interestingly, TIAR depletion from HeLa and mouse embryonic fibroblasts results in an increased ratio of TIA-1b/a expression, suggesting that TIAR regulates the relative expression of TIA-1 isoforms. Taken together, the results reveal distinct functional properties of TIA-1 isoforms and the existence of a regulatory network that controls isoform expression.

  1. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.

  2. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1.

    PubMed

    Jensen, Jan K; Dolmer, Klavs; Gettins, Peter G W

    2009-07-03

    The low density lipoprotein receptor-related protein (LRP) is the principal clearance receptor for serpins and serpin-proteinase complexes. The ligand binding regions of LRP consist of clusters of cysteine-rich approximately 40-residue complement-like repeats (CR), with cluster II being the principal ligand-binding region. To better understand the specificity of binding at different sites within the cluster and the ability of LRP to discriminate in vivo between uncomplexed and proteinase-complexed serpins, we have systematically examined the affinities of plasminogen activator inhibitor-1 (PAI-1) and proteinase nexin-1 (PN-1) in their native, cleaved, and proteinase-complexed states to (CR)(2) and (CR)(3) fragments of LRP cluster II. A consistent blue shift of the CR domain tryptophan fluorescence suggested a common mode of serpin binding, involving lysines on the serpin engaging the acidic region around the calcium binding site of the CR domain. High affinity binding of non-proteinase-complexed PAI-1 and PN-1 occurred to all fragments containing three CR domains (3-59 nm) and most that contain only two CR domains, although binding energies to different (CR)(3) fragments differed by up to 18% for PAI-1 and 9% for PN-1. No detectable difference in affinity was seen between native and cleaved serpin. However, the presence of proteinase in complex with the serpin enhanced affinity modestly and presumably nonspecifically. This may be sufficient to give preferential binding of such complexes in vivo at the relevant physiological concentrations.

  3. Cloning of the 5' regulatory regions and functional characterization of the core promoters of ovine PLAU (u-PA) and SERPIN1 (PAI-1).

    PubMed

    Lampidonis, A D; Theodorou, G; Pecorini, C; Rebucci, R; Baldi, A; Politis, I

    2011-12-01

    The activation of plasminogen plays a crucial role in various extracellular proteolytic events (fibrinolysis, cell migration, ovulation and involution of the mammary gland). In the present study we describe the isolation of the 5' proximal and distal promoter regions of ovine PLAU (urokinase plasminogen activator, u-PA) and SERPIN1 (plasminogen activator inhibitor 1, PAI-1) genes for the first time in ruminants. Analysis of the 5.645kb 5'-flanking region of u-PA revealed a putative TATA-less promoter. In contrast the isolated 2.787kb 5'-flanking region of PAI-1 included a TATA-box. It should be noted that both genes lack the initiator motif around the transcription start site. The two genes share a number of transcription factor binding sites, namely Nuclear Factor-kappa B, Stimulating Protein 1 and Activating protein 1, suggesting co-expression of the two genes. Moreover, additional, not shared, transcription factor binding sites were identified in u-PA and PAI-1. More important of these are the cis-regulatory elements for plasminogen activator inhibitor 2 located in the distal promoter region of u-PA, suggesting an involvement of the other specific inhibitor in the regulation of ovine u-PA gene expression, and the three stress response elements sites present in the proximal and distal promoter of PAI-1. Different genomic fragments of the two 5' flanking regions were directionally cloned into a suitable reporter vector upstream of a promoter-less luciferase gene. Transient transfection into bovine mammary epithelial (BME-UV) cells demonstrated that the regions of -384/+27 and -382/+22 for the u-PA and PAI-1genes, respectively, potentially function as core promoter regions.

  4. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration

    PubMed Central

    Laorden, María Luisa; Milanés, María Victoria

    2016-01-01

    Background: Most classes of addictive substances alter the function and structural plasticity of the brain reward circuitry. Midkine (MK) and pleiotrophin (PTN) are growth/differentiation cytokines which, similarly to neurotrophins, play an important role in repair, neurite outgrowth, and cell differentiation. PTN or MK signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), leads to the activation of extracellular signal-regulated kinases and thymoma viral proto-oncogene. This activation induces morphological changes and modulates addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. Methods: In the present work we studied the effect of acute morphine administration, chronic morphine administration, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the nucleus accumbens. Results: Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were up-regulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminoceptive neurons expressed RPTPβ/ζ. Conclusions: All these observations suggest that the neurotrophic and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by cytokines. PMID:26164717

  5. Extending the cellulosome paradigm: the modular Clostridium thermocellum cellulosomal serpin PinA is a broad-spectrum inhibitor of subtilisin-like proteases.

    PubMed

    O Cuív, Páraic; Gupta, Rajesh; Goswami, Hareshwar P; Morrison, Mark

    2013-10-01

    Clostridium thermocellum encodes a cellulosomal, modular, and thermostable serine protease inhibitor (serpin), PinA. PinA stability but not inhibitory activity is affected by the Fn(III) and Doc(I) domains, and PinA is a broad inhibitor of subtilisin-like proteases and may play a key role in protecting the cellulosome from protease attack.

  6. Molecular cloning, characterization and in vitro expression of SERPIN B1 of bighorn sheep (Ovis canadensis) and domestic sheep (Ovis aries), and comparison with that of other species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a resu...

  7. Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain.

    PubMed

    Mishra, Archana; Traut, Matthias H; Becker, Lore; Klopstock, Thomas; Stein, Valentin; Klein, Rüdiger

    2014-03-19

    Normal brain function requires balanced development of excitatory and inhibitory synapses. An imbalance in synaptic transmission underlies many brain disorders such as epilepsy, schizophrenia, and autism. Compared with excitatory synapses, relatively little is known about the molecular control of inhibitory synapse development. We used a genetic approach in mice to identify the Ig superfamily member IgSF9/Dasm1 as a candidate homophilic synaptic adhesion protein that regulates inhibitory synapse development. IgSF9 is expressed in pyramidal cells and subsets of interneurons in the CA1 region of hippocampus. Electrophysiological recordings of acute hippocampal slices revealed that genetic inactivation of the IgSF9 gene resulted in fewer functional inhibitory synapses; however, the strength of the remaining synapses was unaltered. These physiological abnormalities were correlated with decreased expression of inhibitory synapse markers in IgSF9(-/-) mice, providing anatomical evidence for a reduction in inhibitory synapse numbers, whereas excitatory synapse development was normal. Surprisingly, knock-in mice expressing a mutant isoform of IgSF9 lacking the entire cytoplasmic domain (IgSF9(ΔC/ΔC) mice) had no defects in inhibitory synapse development, providing genetic evidence that IgSF9 regulates synapse development via ectodomain interactions rather than acting itself as a signaling receptor. Further, we found that IgSF9 mediated homotypic binding and cell aggregation, but failed to induce synapse formation, suggesting that IgSF9 acts as a cell adhesion molecule (CAM) to maintain synapses. Juvenile IgSF9(-/-) mice exhibited increased seizure susceptibility indicative of an imbalance in synaptic excitation and inhibition. These results provide genetic evidence for a specific role of IgSF9 in inhibitory synapse development/maintenance, presumably by its CAM-like activity.

  8. Intracellular signal transduction pathways in the regulation of fowl sperm motility: evidence for the involvement of phosphatidylinositol 3-kinase (PI3-K) cascade.

    PubMed

    Ashizawa, Koji; Omura, Yusuke; Katayama, Seiichi; Tatemoto, Hideki; Narumi, Kazunori; Tsuzuki, Yasuhiro

    2009-07-01

    The possible role of PI3-K in the reversible temperature-dependent immobilization of fowl sperm motility was investigated by using PI3-K inhibitor (LY294002) and its inactive analogue (LY303511). The existence of the PI3-K in fowl spermatozoa was also confirmed by Western blotting analysis. Fowl sperm motility in TES/NaCl buffer remained negligible at the avian body temperature of 40 degrees C but was maintained vigorously when the temperature was decreased to 30 degrees C. At 30 degrees C, no stimulation or inhibition of motility was observed after the addition of 2 mM CaCl2 and 10 microM LY294002 or LY303511: around 70-80% of spermatozoa remained motile. In contrast, at 40 degrees C, the motility of spermatozoa was activated immediately after the addition of Ca(2+), but the subsequent addition of LY294002 inhibited the motility again. The addition of LY303511 did not appreciably affect the Ca(2+)-supplemented sperm motility, which was maintained for at least 15 min. The ATP concentrations of spermatozoa after the addition of LY294002 + Ca(2+) or LY303511 + Ca(2+) were almost the same values compared with those of Ca(2+) alone at 40 degrees C, suggesting that the addition of LY294002 was not simply affecting membrane damage or inhibiting energy production in the spermatozoa, but may be acting on some part of the motility-regulating cascade. Immunoblotting of sperm extract using an antibody to PI3-K revealed a major cross-reacting protein of 85 kDa, which corresponds to the molecular weight of the subunit of PI3-K. These results suggest that PI3-K may be positively involved in the calcium-regulated maintenance of flagellar movement of fowl spermatozoa at 40 degrees C.

  9. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia.

    PubMed

    Zhao, Siqi; Zhang, Lijia; Lian, Guoning; Wang, Xiaoxiao; Zhang, Haotian; Yao, Xuechun; Yang, Jingyu; Wu, Chunfu

    2011-04-01

    Excessive activation of microglial cells has been implicated in various neuroinflammation. The present study showed that sildenafil, a PDE5 inhibitor, significantly suppressed NO, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) production induced by LPS in microglial cells through decreasing the protein and/or mRNA expressions of inducible NO synthase (iNOS), IL-1β and TNF-α in a concentration-dependent manner. Sildenafil also blocked IκBα phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). Moreover, the increase of the expression of gp91phox, a critical and catalytic subunit of NADPH oxidase, and the levels of intracellular reactive oxygen species (iROS) induced by LPS were markedly inhibited by sildenafil. In summary, these data suggest that sildenafil exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-κB (NF-κB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  10. Protein kinase RNA-like endoplasmic reticulum kinase (PERK)/calcineurin signaling is a novel pathway regulating intracellular calcium accumulation which might be involved in ventricular arrhythmias in diabetic cardiomyopathy.

    PubMed

    Liu, Zhongwei; Cai, Hui; Zhu, Haitao; Toque, Haroldo; Zhao, Na; Qiu, Chuan; Guan, Gongchang; Dang, Yonghui; Wang, Junkui

    2014-12-01

    We previously found that endoplasmic reticulum (ER) stress was involved in ventricular arrhythmias in diabetic cardiomyopathy. The present study was aimed to investigate the possible mechanism. In the in vivo study, diabetes cardiomyopathy (DCM) was induced by streptozotocin (STZ) injection. Hemodynamic and plasma brain natriuretic peptide (BNP) detections were used to evaluate cardiac functions; ECG was used to assess the vulnerability to arrhythmias by recording ventricular arrhythmia events (VAEs). In the in vitro study, high-glucose incubation was employed to mimic the diabetic environment of myocytes. Immunofluorescent staining was used to investigate the nuclear factor of activated T cells (NFAT) nuclear translocation and (FK506-binding protein 12.6) FKBP12.6 disassociation. [(3)H]-ryanodine binding assay was implemented to assess the channel activity of ryanodine receptor. In both in vivo and in vitro studies, activity of calcineurin was determined by colorimetric method, and western blotting was used to detect protein expression levels. In the in vivo study, we found that inhibition of both of ER stress and PERK activation decreased the VAEs in DCM rats, accompanied by reduced activity of calcineurin in myocardial tissue. In the in vitro study, in high-glucose incubated myocytes, the depletion of PERK reduced activity of calcineurin, decreased NFAT translocation and FKBP12.6 disassociation from ryanodine receptor 2 (RyR2). Furthermore, PERK deletion also reduced RyR2 channel activity and consequently impaired intracellular calcium accumulation. We concluded that PERK/calcineurin-pathway was involved in intracellular calcium regulation in myocytes in diabetic heart, which might be the mechanism inducing arrhythmias in DCM.

  11. A Forward-genetic Screen Identifies a Negative Regulator of Rapid Ca(2+)-dependent Cell Egress in the Intracellular Parasite Toxoplasma gondii.

    PubMed

    McCoy, James M; Stewart, Rebecca J; Uboldi, Alessandro D; Li, Dongdi; Schröder, Jan; Scott, Nichollas E; Papenfuss, Anthony T; Lehane, Adele M; Foster, Leonard J; Tonkin, Christopher J

    2017-03-03

    Toxoplasma gondii, like all apicomplexan parasites, uses Ca(2+)signalling pathways to activate gliding motility, which drives tissue dissemination, host cell invasion and egress. A group of plant-like Ca(2+)-dependent protein kinases (CDPKs), transduce cytosolic Ca(2+) flux into enzymatic activity, but the molecular details of their activity are poorly understood. To investigate how Ca(2+) signalling activates egress through CDPKs, we performed a forward-genetic screen to isolate gain-of-function mutants from an egress-deficient cdpk3-knockout strain. We recovered mutants that regained the ability to egress from host cells. These harboured mutations in the gene Suppressor of Ca(2+)-dependent Egress 1 (SCE1). Global phosphoproteomic analysis showed that SCE1 deletion restored many Δcdpk3-dependent phosphorylation events to near-wild type levels. We also show that phosphorylation of SCE1 is required to relieve its suppressive activity to potentiate egress, and that CDPK3 may regulate this phosphorylation. In summary, our work has uncovered a novel component and suppressor of Ca(2+)-dependent cell egress during the T. gondii lytic growth.

  12. Intracellular localization of human ZBP1: Differential regulation by the Z-DNA binding domain, Z{alpha}, in splice variants

    SciTech Connect

    Hong Thanh Pham; Park, Mi-Young; Kim, Kyeong Kyu; Kim, Yang-Gyun; Ahn, Jin-Hyun . E-mail: jahn@med.skku.ac.kr

    2006-09-15

    We investigated the subcellular distribution of human ZBP1, which harbors the N-terminal Z-DNA binding domains, Z{alpha} and Z{beta}. ZBP1 was distributed primarily in the cytoplasm and occasionally as nuclear foci in interferon (IFN)-treated primary hepatocellular carcinoma cells, and in several other transfected cell types. In leptomycin B (LMB)-treated cells, endogenous ZBP1 efficiently accumulated in nuclear foci, which overlapped PML oncogenic domains (PODs) or nuclear bodies (NBs). In transfection assays, the unique C-terminal region of ZBP1 was necessary for its typical cytoplasmic localization. Interestingly, the Z{alpha}-deleted form displayed an increased association with PODs compared to wild-type and, unlike wild-type, perfectly accumulated in PODs in LMB-treated cells, implying that the presence of Z{alpha} domain also facilitates the cytoplasmic localization. Our results demonstrate that ZBP1 is localized primarily in the cytoplasm but also associated with nuclear PODs in IFN or LMB-treated cells. Given that about half of ZBP1 mRNA lacks exon 2 encoding the Z{alpha} domain, our data also suggest that the localization of ZBP1 may be differentially regulated by the Z-DNA binding domain, Z{alpha}, in splice variants.

  13. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  14. Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells

    PubMed Central

    Choi, In-Wook; Ismail, Hassan Ahmed Hassan Ahmed; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Yuk, Jae-Min; Jo, Eun-Kyeong; Lee, Young-Ha

    2015-01-01

    provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells. PMID:26528819

  15. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.

  16. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1.

    PubMed

    Tokuda, Eiichi; Okawa, Eriko; Watanabe, Shunsuke; Ono, Shin-Ichi

    2014-03-01

    Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1(G93A)). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1(G93A) mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1(G93A) mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1(G93A) mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.

  17. Autophagy master regulator TFEB induces clearance of toxic SERPINA1/α-1-antitrypsin polymers.

    PubMed

    Pastore, Nunzia; Ballabio, Andrea; Brunetti-Pierri, Nicola

    2013-07-01

    Deficiency of SERPINA1/AAT [serpin peptidase inhibitor, clade A (α-1 antiproteinase, antitrypsin), member 1/α 1-antitrypsin] results in polymerization and aggregation of mutant SERPINA1 molecules in the endoplasmic reticulum of hepatocytes, triggering liver injury. SERPINA1 deficiency is the most common genetic cause of hepatic disease in children and is frequently responsible for chronic liver disease in adults. Liver transplantation is currently the only available treatment for the severe form of the disease. We found that liver-directed gene transfer of transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, results in marked reduction of toxic mutant SERPINA1 polymer, apoptosis and fibrosis in the liver of a mouse model of SERPINA1 deficiency. TFEB-mediated correction of hepatic disease is dependent upon increased degradation of SERPINA1 polymer in autolysosomes and decreased expression of SERPINA1 monomer. In conclusion, TFEB gene transfer is a novel strategy for treatment of liver disease in SERPINA1 deficiency. Moreover, this study suggests that TFEB-mediated cellular clearance may have broad applications for therapy of human disorders due to intracellular accumulation of toxic proteins.

  18. Experiment K-7-29: Connective Tissue Studies. Part 2; Changes in Muscle Serine Proteases, Serpins and Matrix Molecules

    NASA Technical Reports Server (NTRS)

    Festoff, B. W.; Ilyina-Kakueva, E. I.; Rayford, A. R.; Burkovskaya, T. E.; Reddy, B. R.; Rao, J. S.

    1994-01-01

    In zero or micro-gravity, type 1 muscle fibers atrophy and lose predominance, especially in slow-twitch muscles. No increase in mononuclear cells has been observed, just as in simple denervation, where both types 1 and 2 fibers atrophy, again without infiltration of cells, but with clear satellite cell proliferation. However, extracellular matrix (ECM) degradation takes place after denervation and if re-innervation is encouraged, functional recovery to near control levels may be achieved. No information is available concerning the ECM milieu, the activation of serine proteases, their efficacy in degrading ECM components and the production of locally-derived natural protease inhibitors (serpins) in effecting surface proteolytic control. In addition, no studies are available concerning the activation of these enzymes in micro- or zero gravity or their response to muscle injury on the ground and what alterations, if any, occur in space. These studies were the basis for the experiments in Cosmos 2044.

  19. BDI-modelling of complex intracellular dynamics.

    PubMed

    Jonker, C M; Snoep, J L; Treur, J; Westerhoff, H V; Wijngaards, W C A

    2008-03-07

    A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalized BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves understanding in nearly intuitive terms, without losing veracity: classical intentional state properties such as beliefs, desires and intentions are founded in reality through precise biochemical relations. In an extensive example, the complex regulation of Escherichia coli vis-à-vis lactose, glucose and oxygen is simulated as a discrete-state, continuous-time temporal decision manager. Thus a bridge is introduced between two different scientific areas: the area of BDI-modelling and the area of intracellular dynamics.

  20. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes*

    PubMed Central

    Nakajima, Chikako; Kulik, Akos; Frotscher, Michael; Herz, Joachim; Schäfer, Michael; Bock, Hans H.; May, Petra

    2013-01-01

    The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. PMID:23760271

  1. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide.

    PubMed

    Zhang, Lijia; Wu, Chunfu; Zhao, Siqi; Yuan, Dan; Lian, Guoning; Wang, Xiaoxiao; Wang, Lihui; Yang, Jingyu

    2010-03-01

    Our previous report has showed that demethoxycurcumin (DMC), a natural derivative of curcumin (Cur), exhibited stronger inhibitory activity on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production compared with Cur in lipopolysaccharide (LPS) activated rat primary microglia. In the present study, the effect and possible mechanism of DMC on the production of pro-inflammatory mediators in LPS-activated N9 microglial cells were further investigated. The results showed that DMC significantly suppressed the NO production induced by LPS in N9 microglial cells through inhibiting the protein and mRNA expression of inducible NO synthase (iNOS). DMC also decreased LPS-induced TNF-alpha and IL-1beta expression at both transcriptional and protein level in a concentration-dependent manner. Further studies revealed that DMC blocked IkappaBalpha phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, the level of intracellular reactive oxygen species (iROS) was significantly increased by LPS, which is mainly mediated by the up-regulated expression of gp91phox, the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. Both DMC and Cur could markedly decrease iROS production and the expression of NADPH oxidase induced by LPS, with more potent inhibitory activity of DMC. In summary, these data suggest that DMC exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-kappaB (NF-kappaB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  2. Internal affairs: investigating the Brucella intracellular lifestyle.

    PubMed

    von Bargen, Kristine; Gorvel, Jean-Pierre; Salcedo, Suzana P

    2012-05-01

    Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.

  3. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  4. Evolution of intracellular compartmentalization.

    PubMed

    Diekmann, Yoan; Pereira-Leal, José B

    2013-01-15

    Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.

  5. Lack of involvement of strand s1'A of the viral serpin CrmA in anti-apoptotic or caspase-inhibitory functions

    SciTech Connect

    Simonovic, Miljan; Denault, Jean-Bernard; Salvesen, Guy S.; Volz, Karl; Gettins, Peter G.W.

    2010-11-30

    CrmA is a cowpox virus serpin required for full host infectivity and virulence. Residues 51-56 (DKNKDD), the only region that differs significantly from related viral serpins, were investigated for functional importance. A 1.6 {angstrom} X-ray structure reported here showed that this region can adopt either structured or unstructured conformations. Three variants were expressed, one with the region 51-56 deleted, one substituted by alanines, and one in which this region was replaced by the sequence encoded in smallpox virus. NMR showed that the region is an exposed, flexible loop that can be deleted without perturbing the serpin. The region is also very susceptible to proteolysis. Significantly, inhibition of caspases 1 and 8 was unaffected by the mutations, and each of the variants was as effective as wild-type CrmA in promoting survival from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Thus, although the 51-56 region of CrmA is unique, and is exposed and highly susceptible to proteolysis, any in vivo role must involve a function other than proteinase inhibition or cell sparing.

  6. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  7. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  8. Intracellular pH in Sperm Physiology

    PubMed Central

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L.; Darszon, Alberto

    2014-01-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca2+ channel; Slo3, a K+ channel; the sperm-specific Na+/H+ exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. PMID:24887564

  9. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  10. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus.

    PubMed

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans.

  11. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus*

    PubMed Central

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2′-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans. PMID:26578518

  12. The selective inhibition of serpin aggregation by the molecular chaperone, alpha-crystallin, indicates a nucleation-dependent specificity.

    PubMed

    Devlin, Glyn L; Carver, John A; Bottomley, Stephen P

    2003-12-05

    Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that prevent the misfolding and aggregation of proteins. However, specific details about their substrate specificity and mechanism of chaperone action are lacking. alpha1-Antichymotrypsin (ACT) and alpha1-antitrypsin (alpha1-AT) are two closely related members of the serpin superfamily that aggregate through nucleation-dependent and nucleation-independent pathways, respectively. The sHsp alpha-crystallin was unable to prevent the nucleation-independent aggregation of alpha1-AT, whereas alpha-crystallin inhibited ACT aggregation in a dose-dependent manner. This selective inhibition of ACT aggregation coincided with the formation of a stable high molecular weight alpha-crystallin-ACT complex with a stoichiometry of 1 on a molar subunit basis. The kinetics of this interaction occur at the same rate as the loss of ACT monomer, suggesting that the monomeric species is bound by the chaperone. 4,4'-Dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (Bis-ANS) binding and far-UV circular dichroism data suggest that alpha-crystallin interacts specifically with a non-native conformation of ACT. The finding that alpha-crystallin does not interact with alpha1-AT under these conditions suggests that alpha-crystallin displays a specificity for proteins that aggregate through a nucleation-dependent pathway, implying that the dynamic nature of both the chaperone and its substrate protein is a crucial factor in the chaperone action of alpha-crystallin and other sHsps.

  13. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  14. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  15. Landmark discoveries in intracellular transport and secretion

    PubMed Central

    Paknikar, Kishore M

    2007-01-01

    Abstract Cellular protein transport and secretion is fundamental to the very existence of an organism, regulating important physiological functions such as reproduction, digestion, energy production, growth, neurotransmission, hormone release, water and ion transport, etc., all required for the survival and maintenance of homeostasis within an organism. Molecular understanding of transport and secretion of intracellular product has therefore been of paramount importance and aggressively investigated for over six decades. Only in the last 20 years, the general molecular mechanism of the process has come to light, following discovery of key proteins involved in ER-Golgi transport, and discovery of the ‘porosome’– the universal secretion machinery in cells. PMID:17635635

  16. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  17. NPC1, intracellular cholesterol trafficking and atherosclerosis.

    PubMed

    Yu, Xiao-Hua; Jiang, Na; Yao, Ping-Bo; Zheng, Xi-Long; Cayabyab, Francisco S; Tang, Chao-Ke

    2014-02-15

    Post-lysosomal cholesterol trafficking is an important, but poorly understood process that is essential to maintain lipid homeostasis. Niemann-Pick type C1 (NPC1), an integral membrane protein on the limiting membrane of late endosome/lysosome (LE/LY), is known to accept cholesterol from NPC2 and then mediate cholesterol transport from LE/LY to endoplasmic reticulum (ER) and plasma membrane in a vesicle- or oxysterol-binding protein (OSBP)-related protein 5 (ORP5)-dependent manner. Mutations in the NPC1 gene can be found in the majority of NPC patients, who accumulate massive amounts of cholesterol and other lipids in the LE/LY due to a defect in intracellular lipid trafficking. Liver X receptor (LXR) is the major positive regulator of NPC1 expression. Atherosclerosis is the pathological basis of coronary heart disease, one of the major causes of death worldwide. NPC1 has been shown to play a critical role in the atherosclerotic progression. In this review, we have summarized the role of NPC1 in regulating intracellular cholesterol trafficking and atherosclerosis.

  18. Myometrial oxytocin receptor expression and intracellular pathways.

    PubMed

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  19. [Measurement of intracellular pH].

    PubMed

    Hanaoka, K; Imai, M; Yoshitomi, K

    1992-09-01

    Since various cellular processes depend on changes in pH, the regulation of intracellular pH (pHi) is important both for the individual cell and for the organism. The mechanisms of the regulation of pHi can be investigated by monitoring pHi. In this report, we discuss the four major techniques available for measuring pHi, which are 1) Distribution of weak acids and bases, 2) pH-sensitive microelectrodes, 3) pH-sensitive dyes, and 4) Nuclear magnetic resonance. Among four techniques, the advantage of the microelectrode approach is that it can monitor membrane potential at the same time and be applied to a single cell. The dye technique is a relative new developing technique, which has lots of advantages. It is easy to use, and is capable of monitoring rapid pHi changes, and being applied to a smaller cell, or a single cell.

  20. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  1. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm.

    PubMed

    Wen, Liuying; Fukuda, Masako; Sunada, Mariko; Ishino, Sonoko; Ishino, Yoshizumi; Okita, Thomas W; Ogawa, Masahiro; Ueda, Takashi; Kumamaru, Toshihiro

    2015-10-01

    Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins.

  2. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells.

    PubMed

    Panossian, Alexander; Hamm, Rebecca; Kadioglu, Onat; Wikman, Georg; Efferth, Thomas

    2013-01-01

    Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents - extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipase C (PLC), and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by down-regulation of adenylate cyclase gene ADC2Y and up-regulation of phosphodiesterase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. Down-regulation of cAMP by adaptogens may decrease cAMP-dependent protein kinase A activity in various cells resulting in inhibition stress-induced catabolic transformations and saving of ATP for many ATP-dependant metabolic transformations. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific PLC and phosphatidylinositol 3-kinases (PI3Ks), key players for the regulation of NF-κB-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor (2.9-22.6 fold down-regulation), cholesterol ester transfer protein (5.1-10.6 fold down-regulation), heat shock protein Hsp70 (3.0-45.0 fold up-regulation), serpin peptidase inhibitor (neuroserpin), and 5-HT3 receptor of serotonin (2.2-6.6 fold down-regulation). These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental, and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while antagonistic

  3. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells

    PubMed Central

    Panossian, Alexander; Hamm, Rebecca; Kadioglu, Onat; Wikman, Georg; Efferth, Thomas

    2013-01-01

    Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents – extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipase C (PLC), and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by down-regulation of adenylate cyclase gene ADC2Y and up-regulation of phosphodiesterase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. Down-regulation of cAMP by adaptogens may decrease cAMP-dependent protein kinase A activity in various cells resulting in inhibition stress-induced catabolic transformations and saving of ATP for many ATP-dependant metabolic transformations. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific PLC and phosphatidylinositol 3-kinases (PI3Ks), key players for the regulation of NF-κB-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor (2.9–22.6 fold down-regulation), cholesterol ester transfer protein (5.1–10.6 fold down-regulation), heat shock protein Hsp70 (3.0–45.0 fold up-regulation), serpin peptidase inhibitor (neuroserpin), and 5-HT3 receptor of serotonin (2.2–6.6 fold down-regulation). These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental, and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while

  4. Association between the rs6950982 polymorphism near the SERPINE1 gene and blood pressure and lipid parameters in a high-cardiovascular-risk population: interaction with Mediterranean diet.

    PubMed

    Sotos-Prieto, Mercedes; Guillén, Marisa; Portolés, Olga; Sorlí, José V; González, José I; Asensio, Eva M; Corella, Dolores

    2013-07-01

    The SERPINE1 (serpin peptidase inhibitor, clade E, member 1) gene, better known by its previous symbol PAI-1 (plasminogen activator inhibitor 1), has been associated with cardiovascular phenotypes with differing results. Our aim was to examine the association between the rs6950982 (G > A) near the SERPINE1 gene, blood pressure (BP) and plasma lipid concentrations as well as the modulation of the polymorphism effects by adherence to Mediterranean diet (AMD). We studied 945 high-cardiovascular-risk subjects. Biochemical, clinical, dietary and genetic data (rs6950982) were obtained. We also determined the common rs1799768 (4G/5G), for checking independent effects. AMD was measured by a validated questionnaire, and four groups were considered. rs6950982 (A > G) and rs1799768 (4G/5G) were only in moderate-low linkage disequilibrium (D' = 0.719; r (2) = 0.167). The most significant associations we obtained were with rs6950982 (A > G). In males, the G allele was nominally associated with higher diastolic BP (AA: 81.5 ± 10.9, AG: 82.1 ± 11.4, GG: 85.7 ± 10.5 mmHg; P additive = 0.030) and systolic BP (AA + AG: 141.4 ± 6.9 mmHg vs. GG: 149.8 ± 8.0 mmHg; P recessive = 0.036). In the whole population, the rs6950982 was also associated with plasma lipids. Subject with the G allele presented higher total cholesterol (P additive = 0.016, P recessive = 0.011), low-density lipoprotein cholesterol (P additive = 0.032, P recessive = 0.031) and triglycerides (P additive = 0.040, P recessive = 0.029). AMD modulated the effect of rs6950982 on triglyceride concentrations (P for interaction = 0.036). Greater AMD reduced the higher triglyceride concentrations in GG subjects. No significant interactions were found for the other parameters. The rs6950982 was associated with higher BP in men and higher triglycerides in the whole population, this association being modulated by AMD.

  5. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study.

    PubMed

    Zile, Melanie A; Trayanova, Natalia A

    2016-01-01

    Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of pressure alternans, and action potential voltage alternans (APV-ALT), the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart

  6. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study

    PubMed Central

    Zile, Melanie A.

    2016-01-01

    Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of pressure alternans, and APV-ALT, the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart-failure-induced electrical and mechanical

  7. Tumour suppressors hamartin and tuberin: intracellular signalling.

    PubMed

    Krymskaya, Vera P

    2003-08-01

    Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.

  8. Quantitative proteomics of intracellular Porphyromonas gingivalis

    PubMed Central

    Xia, Qiangwei; Wang, Tiansong; Taub, Fred; Park, Yoonsuk; Capestany, Cindy A.; Lamont, Richard J.; Hackett, Murray

    2009-01-01

    Whole-cell quantitative proteomic analyses were conducted to investigate the change from an extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain ATCC 33277 internalized for 18 hours within human gingival epithelial cells and controls exposed to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that these changes are profound. A total of 385 proteins were over-expressed in internalized P. gingivalis relative to controls; 240 proteins were shown to be under-expressed. This represented in total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half of the proteins that were observed experimentally. Production of several proteases, including the classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null (no change) abundance ratios from technical replicates were used to assess the rate of quantitative false positives over the entire proteome. A global comparison between the direction of abundance change observed and previously published bioinformatic gene pair predictions for P. gingivalis will assist with future studies of P. gingivalis gene regulation and operon prediction. PMID:17979175

  9. Danger signals, inflammasomes, and the intricate intracellular lives of chlamydiae.

    PubMed

    Pettengill, Matthew A; Abdul-Sater, Ali; Coutinho-Silva, Robson; Ojcius, David M

    2016-10-01

    Chlamydiae are obligate intracellular bacterial pathogens, and as such are sensitive to alterations in the cellular physiology of their hosts. Chlamydial infections often cause pathologic consequences due to prolonged localized inflammation. Considerable advances have been made in the last few years regarding our understanding of how two key inflammation-associated signaling pathways influence the biology of Chlamydia infections: inflammation regulating purinergic signaling pathways significantly impact intracellular chlamydial development, and inflammasome activation modulates both chlamydial growth and infection mediated pro-inflammatory cytokine production. We review here elements of both pathways, presenting the latest developments contributing to our understanding of how chlamydial infections are influenced by inflammasomes and purinergic signaling.

  10. Intracellular Signalling in Retinal Ischemia

    DTIC Science & Technology

    1990-07-01

    36) However, vascularization of the RPE is not known to occur in human diseases of photoreceptor degeneration, such as retinitis pigmentosa ...A.C. (1986) Retinitis pigmentosa and retinal neovascularization. Ophthalmology 91, 1599- 1603. Figure la: Control rat retina, 8 weeks of age, central...TITLE (Include Security Classification) Intracellular Signalling in Retinal Ischemia 12. PERSONAL AUTHOR(S) Burns, Margaret Sue; Bellhorn, Roy William

  11. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  12. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  13. Cell-cell and intracellular lactate shuttles.

    PubMed

    Brooks, George A

    2009-12-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell-cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other.

  14. Cell–cell and intracellular lactate shuttles

    PubMed Central

    Brooks, George A

    2009-01-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. ‘Cell–cell’ and ‘intracellular lactate shuttle’ concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell–cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other. PMID:19805739

  15. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.

  16. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  17. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  18. Intracellular GTP level determines cell's fate toward differentiation and apoptosis

    SciTech Connect

    Meshkini, Azadeh; Yazdanparast, Razieh Nouri, Kazem

    2011-06-15

    Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

  19. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  20. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways.

    PubMed

    Borggrefe, Tilman; Lauth, Matthias; Zwijsen, An; Huylebroeck, Danny; Oswald, Franz; Giaimo, Benedetto Daniele

    2016-02-01

    Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.

  1. Uncoupling Caveolae from Intracellular Signaling In Vivo

    PubMed Central

    Kraehling, Jan R.; Hao, Zhengrong; Lee, Monica Y.; Vinyard, David J.; Velazquez, Heino; Liu, X.; Stan, Radu V.; Brudvig, Gary W.; Sessa, William C.

    2015-01-01

    Rationale Caveolin-1 negatively regulates eNOS derived NO production and this has been mapped to several residues on Cav-1 including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. Objective This study was designed to separate caveolae formation from its downstream signaling effects. Methods and Results An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of VASP were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of Cav-2, sucrose gradient and electron microscopy. Histological analysis of heart and lung, echocardiography and signaling were performed. Conclusions This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms. PMID:26602865

  2. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy.

    PubMed

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2014-11-01

    The aim of this study was to evaluate the mRNA and protein expression and the localization of progesterone receptor membrane component 1 (PGRMC1), PGRMC2, and the PGRMC1 partner serpine mRNA binding protein 1 (SERBP1) in the bovine CL on Days 2 to 5, 6 to 10, 11 to 16, and 17 to 20 of the estrous cycle as well as during Weeks 3 to 5, 6 to 8, and 9 to 12 of pregnancy (n = 5-6 per each period). The highest levels of PGRMC1 and PGRMC2 mRNA expression were found on Days 6 to 16 (P < 0.05) and 11 to 16, respectively, of the estrous cycle and during pregnancy (P < 0.001). The level of PGRMC1 protein was the highest (P < 0.05) on Days 11 to 16 of the estrous cycle compared with the other stages of the estrous cycle and pregnancy, whereas PGRMC2 protein expression (P < 0.001) was the highest on Days 17 to 20 and also during pregnancy. The mRNA expression of SERBP1 was increased (P < 0.05) on Days 11 to 16, whereas the level of its protein product was decreased (P < 0.05) on Days 6 to 10 of the estrous cycle and was at its lowest (P < 0.001) on Days 17 to 20. In pregnant cows, the patterns of SERBP1 mRNA and protein expression remained constant and were comparable with those observed during the estrous cycle. Progesterone receptor membrane component 1 and PGRMC2 localized to both large and small luteal cells, whereas SERBP1 was observed mainly in small luteal cells and much less frequently in large luteal cells. All proteins were also localized in the endothelial cells of blood vessels. The data obtained indicate the variable expression of PGRMC1, PGRMC2, and SERBP1 mRNA and protein in the bovine CL and suggest that progesterone may regulate CL function via its membrane receptors during both the estrous cycle and pregnancy.

  3. Modulation of Host miRNAs by Intracellular Bacterial Pathogens

    PubMed Central

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  4. Anomalous dynamics in intracellular transport

    NASA Astrophysics Data System (ADS)

    Dinner, Aaron

    2013-03-01

    This talk will describe quantitative analyses of particle tracking data for systems with cytoskeletally associated molecular motors to better understand the motions contributing to intracellular transport and, more generally, means for characterizing systems far from equilibrium. In particular, we have studied the motions of insulin-containing vesicles (granules) in a pancreatic beta cell line. We find subdiffusive behavior with correlations in both space and time. These data can be modeled by subordinating an ergodic random walk process to a non-ergodic one. We relate the dynamics to the underlying microtubule structure by imaging in the presence of the drug vinblastine. Our results provide a simple physical mechanism for how diverse pools of insulin granules and, in turn, biphasic secretion could arise. Time permitting, these dynamics will be compared with those of actomyosin assemblies.

  5. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    1. The ability of homologous series of alcohols, ketones, and aldehydes to cause alteration of intracellular catalase increases approximately threefold for each methylene group added, thus following Traube's rule. Equiactive concentrations of alcohols (methanol to octanol) varied over a 4,000-fold range, yet the average corresponding surface tension was 42 ± 2 dynes/cm., that for ketones 43 ± 2, and for aldehydes (above C1) 41 ± 3. 2. Above C8 the altering activity of alcohols ceased to follow Traube's rule, and at C18 was nil. Yet the surface activities of alcohols from nonanol to dodecanol did follow Traube's rule. These two facts show that the interface which is being affected by these agents is not the cell surface, for if it were, altering activity should not fall off between C9 and C12 where surface activity is undiminished; they show also that micelle formation by short range association of hydrocarbon "tails," usually invoked to explain decrease in biological activity of compounds above C8, is not responsible for this effect in these experiments, in which permeability of the cell membrane probably is involved. 3. The most soluble alcohols and aldehydes (alcohols C1 to C8; aldehydes C1, C2), but not ketones, cause, above optimal concentration, an irreversible inhibition of yeast catalase. 4. The critical concentration of altering agent (i.e., that concentration just sufficient to cause doubling of the catalase activity of the yeast suspension) was independent of the concentration of the yeast cells. 5. Viability studies show that the number of yeast cells killed by the altering agents was not related to the degree of activation of the catalase produced. While all the cells were invariably killed by concentrations of altering agent which produced complete activation, all the cells had been killed by concentrations which were insufficient to cause more than 50 per cent maximal activation. Further, the evidence suggested that the catalase may be partially

  6. Twenty years of fluorescence imaging of intracellular chloride

    PubMed Central

    Arosio, Daniele; Ratto, Gian Michele

    2014-01-01

    Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments. PMID:25221475

  7. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy.

    PubMed

    Okabe, Kohki; Inada, Noriko; Gota, Chie; Harada, Yoshie; Funatsu, Takashi; Uchiyama, Seiichi

    2012-02-28

    Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18-0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function.

  8. Physical and genetic mapping of the serpin gene cluster at 14q32.1: allelic association and a unique haplotype associated with alpha 1-antitrypsin deficiency.

    PubMed Central

    Byth, B. C.; Billingsley, G. D.; Cox, D. W.

    1994-01-01

    The alpha 1-antitrypsin (PI) gene is part of a cluster of structurally related serine protease inhibitor genes localized at chromosome 14q32.1, a cluster that includes the alpha 1-antichymotrypsin (AACT), protein C inhibitor (PCI), and corticosteroid-binding globulin (CBG) genes and the alpha 1-antitrypsin-like pseudogene (PIL). The order of the genes is refined here by genetic mapping using simple tandem repeat polymorphisms (STRPs) and by physical mapping in YACs. The order of the genes is (centromere)-CBG-PIL-PI-PCI-AACT-(telomere). Analysis of DNA haplotypes comprising STRP and RFLP markers in the serpin genes reveals considerable allelic association throughout the cluster. Furthermore, the common alpha 1-antitrypsin deficiency allele, PI*Z, has a unique DNA haplotype at the CBG, PIL, and PI loci, which extends over 60 kb in 97% of cases and in 44% of cases includes the PCI and AACT loci. This unique haplotype will be of use in examining a number of other diseases, particularly those with an inflammatory component, thought to be associated with alpha 1-antitrypsin deficiency or partial deficiency. Images Figure 1 Figure 3 PMID:7912884

  9. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.

    PubMed

    Kawahata, Miho; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2006-09-01

    Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.

  10. Intracellular Trafficking in Drosophila Visual System Development: A Basis for Pattern Formation Through Simple Mechanisms

    PubMed Central

    Chan, Chih-Chiang; Epstein, Daniel; Hiesinger, P. Robin

    2012-01-01

    Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product. PMID:21714102

  11. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  12. Intracellular Organisms as Placental Invaders

    PubMed Central

    Vigliani, Marguerite B.; Bakardjiev, Anna I.

    2015-01-01

    In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications. PMID:27695204

  13. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  14. T-cell intracellular antigens in health and disease

    PubMed Central

    Sánchez-Jiménez, Carmen; Izquierdo, José M

    2015-01-01

    T-cell intracellular antigen 1 (TIA1) and TIA1-related/like protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as components of cytotoxic T lymphocyte granules. They act in the nucleus as regulators of transcription and pre-mRNA splicing. In the cytoplasm, TIA1 and TIAR regulate and/or modulate the location, stability and/or translation of mRNAs. As knowledge of the different genes regulated by these proteins and the cellular/biological programs in which they are involved increases, it is evident that these antigens are key players in human physiology and pathology. This review will discuss the latest developments in the field, with physiopathological relevance, that point to novel roles for these regulators in the molecular and cell biology of higher eukaryotes. PMID:26036275

  15. T-cell intracellular antigens in health and disease.

    PubMed

    Sánchez-Jiménez, Carmen; Izquierdo, José M

    2015-01-01

    T-cell intracellular antigen 1 (TIA1) and TIA1-related/like protein (TIAR/TIAL1) are 2 proteins discovered in 1991 as components of cytotoxic T lymphocyte granules. They act in the nucleus as regulators of transcription and pre-mRNA splicing. In the cytoplasm, TIA1 and TIAR regulate and/or modulate the location, stability and/or translation of mRNAs. As knowledge of the different genes regulated by these proteins and the cellular/biological programs in which they are involved increases, it is evident that these antigens are key players in human physiology and pathology. This review will discuss the latest developments in the field, with physiopathological relevance, that point to novel roles for these regulators in the molecular and cell biology of higher eukaryotes.

  16. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    PubMed

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-04

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  17. Regulatory role of intracellular sodium ions in neurotransmitter secretion.

    PubMed

    Melinek, R; Lev-Tov, A; Meiri, H; Erulkar, S D; Rahamimoff, R

    1982-01-01

    Calcium ions are the main inducer of quantal transmitter release of the frog neuromuscular junction; but even in their virtual absence from the extracellular medium, nerve stimulation causes a prolonged augmentation of transmitter release. These facts led to the hyp