Science.gov

Sample records for intracellular serpin regulates

  1. Intracellular serpins, firewalls and tissue necrosis.

    PubMed

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis. PMID:18215520

  2. Human SERPINB12 Is an Abundant Intracellular Serpin Expressed in Most Surface and Glandular Epithelia.

    PubMed

    Niehaus, Jason Z; Good, Misty; Jackson, Laura E; Ozolek, John A; Silverman, Gary A; Luke, Cliff J

    2015-11-01

    The intracellular serine protease inhibitors (serpins) are an important family of proteins that protect cells form proteinase-mediated injury. Understanding the tissue and cellular expression pattern of this protein family can provide important insights into their physiologic roles. For example, high expression in epithelial tissues, such as lung, may suggest a biologic function in cellular defense, secretion, or selective absorption. Although the expression pattern of many of the intracellular serpins has been well described, one member of this class, SERPINB12, has not been carefully examined. We generated a mouse monoclonal antibody directed against human SERPINB12 and delineated its specificity and tissue and cell type distribution pattern through immunoblotting and immunohistochemistry, respectively. This monoclonal antibody was human specific and did not cross-react with other human intracellular serpins or mouse Serpinb12. SERPINB12 was found in nearly all the tissues investigated. In addition, this serpin was found in multiple cell types within individual tissues but primarily the epithelium. These data suggest that SERPINB12, like some other intracellular serpins, may play a vital role in barrier function by providing protection of epithelial cells. PMID:26220980

  3. The aggregation-prone intracellular serpin SRP-2 fails to transit the ER in Caenorhabditis elegans.

    PubMed

    Silverman, Richard M; Cummings, Erin E; O'Reilly, Linda P; Miedel, Mark T; Silverman, Gary A; Luke, Cliff J; Perlmutter, David H; Pak, Stephen C

    2015-05-01

    Familial encephalopathy with neuroserpin inclusions bodies (FENIB) is a serpinopathy that induces a rare form of presenile dementia. Neuroserpin contains a classical signal peptide and like all extracellular serine proteinase inhibitors (serpins) is secreted via the endoplasmic reticulum (ER)-Golgi pathway. The disease phenotype is due to gain-of-function missense mutations that cause neuroserpin to misfold and aggregate within the ER. In a previous study, nematodes expressing a homologous mutation in the endogenous Caenorhabditis elegans serpin, srp-2, were reported to model the ER proteotoxicity induced by an allele of mutant neuroserpin. Our results suggest that SRP-2 lacks a classical N-terminal signal peptide and is a member of the intracellular serpin family. Using confocal imaging and an ER colocalization marker, we confirmed that GFP-tagged wild-type SRP-2 localized to the cytosol and not the ER. Similarly, the aggregation-prone SRP-2 mutant formed intracellular inclusions that localized to the cytosol. Interestingly, wild-type SRP-2, targeted to the ER by fusion to a cleavable N-terminal signal peptide, failed to be secreted and accumulated within the ER lumen. This ER retention phenotype is typical of other obligate intracellular serpins forced to translocate across the ER membrane. Neuroserpin is a secreted protein that inhibits trypsin-like proteinase. SRP-2 is a cytosolic serpin that inhibits lysosomal cysteine peptidases. We concluded that SRP-2 is neither an ortholog nor a functional homolog of neuroserpin. Furthermore, animals expressing an aggregation-prone mutation in SRP-2 do not model the ER proteotoxicity associated with FENIB. PMID:25786854

  4. The Aggregation-Prone Intracellular Serpin SRP-2 Fails to Transit the ER in Caenorhabditis elegans

    PubMed Central

    Silverman, Richard M.; Cummings, Erin E.; O’Reilly, Linda P.; Miedel, Mark T.; Silverman, Gary A.; Luke, Cliff J.; Perlmutter, David H.; Pak, Stephen C.

    2015-01-01

    Familial encephalopathy with neuroserpin inclusions bodies (FENIB) is a serpinopathy that induces a rare form of presenile dementia. Neuroserpin contains a classical signal peptide and like all extracellular serine proteinase inhibitors (serpins) is secreted via the endoplasmic reticulum (ER)–Golgi pathway. The disease phenotype is due to gain-of-function missense mutations that cause neuroserpin to misfold and aggregate within the ER. In a previous study, nematodes expressing a homologous mutation in the endogenous Caenorhabditis elegans serpin, srp-2, were reported to model the ER proteotoxicity induced by an allele of mutant neuroserpin. Our results suggest that SRP-2 lacks a classical N-terminal signal peptide and is a member of the intracellular serpin family. Using confocal imaging and an ER colocalization marker, we confirmed that GFP-tagged wild-type SRP-2 localized to the cytosol and not the ER. Similarly, the aggregation-prone SRP-2 mutant formed intracellular inclusions that localized to the cytosol. Interestingly, wild-type SRP-2, targeted to the ER by fusion to a cleavable N-terminal signal peptide, failed to be secreted and accumulated within the ER lumen. This ER retention phenotype is typical of other obligate intracellular serpins forced to translocate across the ER membrane. Neuroserpin is a secreted protein that inhibits trypsin-like proteinase. SRP-2 is a cytosolic serpin that inhibits lysosomal cysteine peptidases. We concluded that SRP-2 is neither an ortholog nor a functional homolog of neuroserpin. Furthermore, animals expressing an aggregation-prone mutation in SRP-2 do not model the ER proteotoxicity associated with FENIB. PMID:25786854

  5. Ostrinia furnacalis serpin-3 regulates melanization cascade by inhibiting a prophenoloxidase-activating protease.

    PubMed

    Chu, Yuan; Zhou, Fan; Liu, Yang; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Serine protease cascade-mediated prophenolxidase activation is a prominent innate immune response in insect defense against the invading pathogens. Serpins regulate this reaction to avoid excessive activation. However, the function of serpins in most insect species, especially in some non-model agriculture insect pests, is largely unknown. We here cloned a full-length cDNA for a serpin, named as serpin-3, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of serpin-3 encodes 462-amino acid residue protein with a 19-residue signal peptide. It contains a reactive center loop strikingly similar to the proteolytic activation site in prophenoloxidase. Sequence comparison indicates that O. furnacalis serpin-3 is an apparent ortholog of Manduca sexta serpin-3, a defined negative regulator of melanization reaction. Serpin-3 mRNA and protein levels significantly increase after a bacterial or fungal injection. Recombinant serpin-3 efficiently blocks prophenoloxidase activation in larval plasma in a concentration-dependent manner. It forms SDS-stable complexes with serine protease 13 (SP13), and prevents SP13 from cleaving prophenoloxidase. Injection of recombinant serpin-3 into larvae results in decreased fungi-induced melanin synthesis and reduced the expression of attacin, cecropin, gloverin, and peptidoglycan recognition protein-1 genes in the fat body. Altogether, serpin-3 plays important roles in the regulation of prophenoloxidase activation and antimicrobial peptide production in O. furnacalis larvae. PMID:25818483

  6. Production, characterization, and use of serpin antibodies.

    PubMed

    Kummer, J Alain; Strik, Merel C M; Bladergroen, Bellinda A; Hack, C Erik

    2004-02-01

    Serine protease inhibitors (serpins) constitute a still expanding superfamily of structural similar proteins, which are localized extracellularly and intracellularly. Serpins play a central role in the regulation of a wide variety of (patho) physiological processes including coagulation, fibrinolysis, inflammation, development, tumor invasion, and apoptosis. Serpins have a unique mechanism of inhibition that involves a profound change in conformational state upon interaction with their protease. This conformational change enables the production of monoclonal antibodies specific for native, complexed, and inactivated serpins. Antibodies, and assays based on these antibodies, have been helpful in elucidating the (patho) physiological function of serpins in the last decade. Serpin-specific antibodies can be used for: (1) structure-function studies such as detection of conformational changes; (2) identification of target-proteases; (3) the detection and quantification of serpin and serpin-protease complexes in bodily fluids by immunoassays such as ELISA, RIA or FACS; (4) detection of serpins in tissues by immunohistochemistry; and (5) possible therapeutical interventions. This review summarizes the techniques we have used to obtain and screen antibodies against extra- and intracellular serpins, as well as the use of these antibodies for some of the above-mentioned purposes.

  7. Distribution of the human intracellular serpin protease inhibitor 8 in human tissues.

    PubMed

    Strik, Merel C; Bladergroen, Bellinda A; Wouters, Dorine; Kisiel, Walter; Hooijberg, Jan Hendrik; Verlaan, Angelique R; Hordijk, Peter L; Schneider, Pascal; Hack, C Erik; Kummer, J Alain

    2002-11-01

    Ovalbumin-like serine protease inhibitors are mainly localized intracellularly and their in vivo functions are largely unknown. To elucidate their physiological role(s), we studied the expression of one of these inhibitors, protease inhibitor 8 (PI-8), in normal human tissues by immunohistochemistry using a PI-8-specific monoclonal antibody. PI-8 was strongly expressed in the nuclei of squamous epithelium of mouth, pharynx, esophagus, and epidermis, and by the epithelial layer of skin appendages, particularly by more differentiated epithelial cells. PI-8 was also expressed by monocytes and by neuroendocrine cells in the pituitary gland, pancreas, and digestive tract. Monocytes showed nuclear and cytoplasmic localization of PI-8, whereas neuroendocrine cells showed only cytoplasmic staining. In vitro nuclear localization of PI-8 was confirmed by confocal analysis using serpin-transfected HeLa cells. Furthermore, mutation of the P(1) residue did not affect the subcellular distribution pattern of PI-8, indicating that its nuclear localization is independent of the interaction with its target protease. We conclude that PI-8 has a unique distribution pattern in human tissues compared to the distribution patterns of other intracellular serpins. Additional studies must be performed to elucidate its physiological role.

  8. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells

    PubMed Central

    Reina, Jeffrey; Morais Freitas, Vanessa

    2016-01-01

    Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse biological activities including regulation of cell adhesion, migration, death, control of gene expression and oxidative stress response. Initially described as a tumor and metastasis suppressor, clinical data brought controversies to the field, as some studies reported no correlation between SerpinB5 expression and prognosis value. These data underscore the importance of understanding SerpinB5 function in a normal physiological context and the molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in different cell lines, but the signaling pathways involved and the biological significance of this post-translational modification in vivo remains to be explored. In this study we investigated SerpinB5 expression, subcellular localization and phosphorylation in different stages of the mouse mammary gland development and the signaling pathway involved. Here we show that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and remains at constant levels during post-lactational regression (involution). Using high resolution isoelectric focusing followed but immunoblot, we found at least 8 different phosphoforms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we took advantage of the non-transformed MCF-10A model system, as we have previously observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5 phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5 nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phosphorylation are developmentally

  9. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells.

    PubMed

    Tamazato Longhi, Mariana; Magalhães, Magna; Reina, Jeffrey; Morais Freitas, Vanessa; Cella, Nathalie

    2016-01-01

    Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse biological activities including regulation of cell adhesion, migration, death, control of gene expression and oxidative stress response. Initially described as a tumor and metastasis suppressor, clinical data brought controversies to the field, as some studies reported no correlation between SerpinB5 expression and prognosis value. These data underscore the importance of understanding SerpinB5 function in a normal physiological context and the molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in different cell lines, but the signaling pathways involved and the biological significance of this post-translational modification in vivo remains to be explored. In this study we investigated SerpinB5 expression, subcellular localization and phosphorylation in different stages of the mouse mammary gland development and the signaling pathway involved. Here we show that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and remains at constant levels during post-lactational regression (involution). Using high resolution isoelectric focusing followed but immunoblot, we found at least 8 different phosphoforms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we took advantage of the non-transformed MCF-10A model system, as we have previously observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5 phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5 nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phosphorylation are developmentally

  10. TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma.

    PubMed

    Sang, Yi; Chen, Ming-Yuan; Luo, Donghua; Zhang, Ru-Hua; Wang, Li; Li, Mei; Luo, Rongzhen; Qian, Chao-Nan; Shao, Jian-Yong; Zeng, Yi-Xin; Kang, Tiebang

    2015-10-01

    Metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). However, the molecular mechanisms of NPC metastasis are poorly understood. Here, using our customized gene microarray containing all of the known human transcription factors and the current markers for epithelial-mesenchymal transition, we report that TEL2 was down-regulated in highly metastatic NPC cells and the metastatic tissues in lymph node. Mechanistically, TEL2 inhibits the cell migration and invasion in vitro and metastasis in vivo by directly suppressing the SERPINE1 promoter in NPC. Consistently, an inverse correlation was observed between the protein levels of TEL2 and SERPINE1 using clinical NPC samples. Collectively, we have provided the first evidence that TEL2 plays a key role in NPC metastasis by directly down-regulating SERPINE1, and that this novel axis of TEL2 / SERPINE1 may be valuable to develop new strategies for treating NPC patients with metastasis.

  11. TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma.

    PubMed

    Sang, Yi; Chen, Ming-Yuan; Luo, Donghua; Zhang, Ru-Hua; Wang, Li; Li, Mei; Luo, Rongzhen; Qian, Chao-Nan; Shao, Jian-Yong; Zeng, Yi-Xin; Kang, Tiebang

    2015-10-01

    Metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). However, the molecular mechanisms of NPC metastasis are poorly understood. Here, using our customized gene microarray containing all of the known human transcription factors and the current markers for epithelial-mesenchymal transition, we report that TEL2 was down-regulated in highly metastatic NPC cells and the metastatic tissues in lymph node. Mechanistically, TEL2 inhibits the cell migration and invasion in vitro and metastasis in vivo by directly suppressing the SERPINE1 promoter in NPC. Consistently, an inverse correlation was observed between the protein levels of TEL2 and SERPINE1 using clinical NPC samples. Collectively, we have provided the first evidence that TEL2 plays a key role in NPC metastasis by directly down-regulating SERPINE1, and that this novel axis of TEL2 / SERPINE1 may be valuable to develop new strategies for treating NPC patients with metastasis. PMID:26335051

  12. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance.

    PubMed

    Gettins, Peter G W; Olson, Steven T

    2016-08-01

    Serpins are a widely distributed family of high molecular mass protein proteinase inhibitors that can inhibit both serine and cysteine proteinases by a remarkable mechanism-based kinetic trapping of an acyl or thioacyl enzyme intermediate that involves massive conformational transformation. The trapping is based on distortion of the proteinase in the complex, with energy derived from the unique metastability of the active serpin. Serpins are the favoured inhibitors for regulation of proteinases in complex proteolytic cascades, such as are involved in blood coagulation, fibrinolysis and complement activation, by virtue of the ability to modulate their specificity and reactivity. Given their prominence as inhibitors, much work has been carried out to understand not only the mechanism of inhibition, but how it is fine-tuned, both spatially and temporally. The metastability of the active state raises the question of how serpins fold, whereas the misfolding of some serpin variants that leads to polymerization and pathologies of liver disease, emphysema and dementia makes it clinically important to understand how such polymerization might occur. Finally, since binding of serpins and their proteinase complexes, particularly plasminogen activator inhibitor-1 (PAI-1), to the clearance and signalling receptor LRP1 (low density lipoprotein receptor-related protein 1), may affect pathways linked to cell migration, angiogenesis, and tumour progression, it is important to understand the nature and specificity of binding. The current state of understanding of these areas is addressed here. PMID:27470592

  13. TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma

    PubMed Central

    Zhang, Ru-Hua; Wang, Li; Li, Mei; Luo, Rongzhen; Qian, Chao-Nan; Shao, Jian-Yong; Zeng, Yi-Xin; Kang, Tiebang

    2015-01-01

    Metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). However, the molecular mechanisms of NPC metastasis are poorly understood. Here, using our customized gene microarray containing all of the known human transcription factors and the current markers for epithelial-mesenchymal transition, we report that TEL2 was down-regulated in highly metastatic NPC cells and the metastatic tissues in lymph node. Mechanistically, TEL2 inhibits the cell migration and invasion in vitro and metastasis in vivo by releasing its direct suppression on the SERPINE1 promoter in NPC. Consistently, an inverse correlation was observed between the protein levels of TEL2 and SERPINE1 using clinical NPC samples. Collectively, we have provided the first evidence that TEL2 plays a key role in NPC metastasis by directly down-regulating SERPINE1, and that this novel axis of TEL2 / SERPINE1 may be valuable to develop new strategies for treating NPC patients with metastasis. PMID:26335051

  14. Origin of Serpin-Mediated Regulation of Coagulation and Blood Pressure

    PubMed Central

    Wang, Yunjie; Köster, Katharina; Lummer, Martina; Ragg, Hermann

    2014-01-01

    Vertebrates evolved an endothelium-lined hemostatic system and a pump-driven pressurized circulation with a finely-balanced coagulation cascade and elaborate blood pressure control over the past 500 million years. Genome analyses have identified principal components of the ancestral coagulation system, however, how this complex trait was originally regulated is largely unknown. Likewise, little is known about the roots of blood pressure control in vertebrates. Here we studied three members of the serpin superfamily that interfere with procoagulant activity and blood pressure of lampreys, a group of basal vertebrates. Angiotensinogen from these jawless fish was found to fulfill a dual role by operating as a highly selective thrombin inhibitor that is activated by heparin-related glycosaminoglycans, and concurrently by serving as source of effector peptides that activate type 1 angiotensin receptors. Lampreys, uniquely among vertebrates, thus use angiotensinogen for interference with both coagulation and osmo- and pressure regulation. Heparin cofactor II from lampreys, in contrast to its paralogue angiotensinogen, is preferentially activated by dermatan sulfate, suggesting that these two serpins affect different facets of thrombin’s multiple roles. Lampreys also express a lineage-specific serpin with anti-factor Xa activity, which demonstrates that another important procoagulant enzyme is under inhibitory control. Comparative genomics suggests that orthologues of these three serpins were key components of the ancestral hemostatic system. It appears that, early in vertebrate evolution, coagulation and osmo- and pressure regulation crosstalked through antiproteolytically active angiotensinogen, a feature that was lost during vertebrate radiation, though in gnathostomes interplay between these traits is effective. PMID:24840053

  15. Intracellular serpin SERPINB6 (PI6) is abundantly expressed by human mast cells and forms complexes with beta-tryptase monomers.

    PubMed

    Strik, Merel C M; Wolbink, Angela; Wouters, Dorine; Bladergroen, Bellinda A; Verlaan, Angelique R; van Houdt, Inge S; Hijlkema, Sanne; Hack, C Erik; Kummer, J Alain

    2004-04-01

    SERPINB6 (PI6) is a member of the intracellular serine protease inhibitors (serpins). Previous studies showed that SERPINB6 is localized mainly in the cytoplasm of endothelial cells, some epithelial cells, monocytes, and neutrophils. In these cells SERPINB6 is thought to prevent cellular damage by scavenging leaking lysosomal proteases. We show here, using novel, well-defined monoclonal antibodies, that SERPINB6 is abundantly expressed by mast cells in all organs and by the human mast cell line HMC-1. Gel filtration experiments revealed that the latter cells contain a high-molecular-weight form of SERPINB6, which consists of sodium dodecyl sulfate (SDS)-stable complexes of this inhibitor with monomeric beta-tryptase. Expression of SERPINB6 by mast cells was compared with those of tryptase and CD117 (c-kit) in biopsies from patients with different forms of mast cell disease. In all cases the lesional mast cells expressed SERPINB6, and, in diffuse cutaneous mastocytosis and mastocytoma, SERPINB6 was expressed by a substantially higher number of mast cells when compared with tryptase. In conclusion, SERPINB6 is abundantly expressed by normal mast cells and by mast cells in mastocytoma lesions. We suggest that in mast cells, SERPINB6 serves to regulate the activity of endogenous beta-tryptase in the cytoplasm.

  16. Down-regulation of SerpinB2 is associated with gefitinib resistance in non-small cell lung cancer and enhances invadopodia-like structure protrusions

    PubMed Central

    Bae, Song Yi; Park, Hyen Joo; Hong, Ji-Young; Lee, Hye-Jung; Lee, Sang Kook

    2016-01-01

    The failure of targeted therapy due to the resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, is considered a major problem in the treatment of non-small cell lung cancer (NSCLC) patients. SerpinB2, a component of the urokinase plasminogen activator (uPA) system, has been recognized as a biomarker for the progression and metastasis of lung cancer. Nevertheless, the relationship between SerpinB2 and EGFR-TKI resistance has not been elucidated. Here, we report that SerpinB2 is down-regulated in gefitinib-resistant (H292-Gef) cells compared to gefitinib-sensitive (H292) cells. The low SerpinB2 levels in H292-Gef cells were also associated with an enhancement in invasiveness and increase in the length of invadopodia-like structures in the cells. The effect on invasiveness and gefitinib sensitivity was confirmed by knockdown and overexpression of SerpinB2. In addition, the possibility to overcome the resistance through the up-regulation of SerpinB2 was supported by employing an antitumor agent yuanhuadine (YD). Treatment with YD effectively elevated SerpinB2 levels and suppressed invasive properties in H292-Gef cells. Collectively, these findings demonstrate the prospective role of SerpinB2 as a novel biomarker for acquired gefitinib resistance and a potential target for NSCLC treatment. PMID:27558531

  17. Crystal structure of native Anopheles gambiae Serpin-2, a negative regulator of melanization in mosquitoes

    PubMed Central

    An, Chunju; Lovell, Scott; Kanost, Michael R.; Battaile, Kevin P.; Michel, Kristin

    2011-01-01

    Serpins are the dominant group of protease inhibitors in metazoans that control a wide variety of biological processes including major innate immune reactions. One of these inhibitors, SRPN2, controls melanization in mosquitoes – a powerful, arthropod-specific innate immune response. SRPN2 depletion from the hemolymph of adult female mosquitoes significantly reduces longevity and therefore this serpin is a potential target for novel insecticides. We report here the crystal structure of SRPN2 in its native conformation from the African malaria mosquito, Anopheles gambiae to 1.75 Å resolution. SRPN2 adopts a similar fold as observed for other serpins with a core of three β-sheets surrounded by nine α-helices with an exposed reactive center loop (RCL) that extends from the protein body. Similar to other native serpin structures, several residues within the reactive center loop were disordered and could not be modeled. Intriguingly, the N-terminal hinge of the RCL in SRPN2 was found to be inserted into β-sheet A, suggesting a potential activation mechanism analogous to heparin-mediated activation of Antithrombin III. PMID:21465556

  18. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response.

    PubMed

    Wei, Xiumei; Xu, Jie; Yang, Jianmin; Liu, Xiangquan; Zhang, Ranran; Wang, Weijun; Yang, Jialong

    2015-01-01

    Serpin is an important member of serine protease inhibitors (SPIs), which is capable of regulating proteolytic events and involving in a variety of physiological processes. In present study, a Serpin homolog was identified from Octopus ocellatus (designated as OoSerpin). Full-length cDNA of OoSerpin was of 1735 bp, containing a 5' untranslated region of 214 bp, a 3' UTR of 282 bp, and an open reading frame of 1239 bp. The open reading frame encoded a polypeptide of 412 amino acids which has a predicted molecular weight of 46.5 kDa and an isoelectric point of 8.52. The OoSerpin protein shares 37% sequence identity with other Serpins from Mus musculus (NP_941373) and Ixodes scapularis (XP_002407493). The existence of a conserved SERPIN domain strongly suggested that OoSerpin was a member of the Serpin subfamily. Expression patterns of OoSerpin, both in tissues and towards bacterial stimulation, were then characterized. The mRNA of OoSerpin was constitutively expressed at different levels in all tested tissues of untreated O. ocellatus, including mantle (lowest), muscle, renal sac, gill, hemocyte, gonad, systemic heart, and hepatopancreas (highest). The transcriptional level of OoSerpin was significantly up-regulated (P<0.01) in O. ocellatus upon bacterial challenges with Vibrio anguillarum and Micrococcus luteus, indicating its involvement in the antibacterial immune response. Furthermore, rOoSerpin, the recombinant protein of OoSerpin, exhibited strong abilities to inhibit proteinase activities of trypsin and chymotrypsin as well as the growth of Escherichia coli. Our results demonstrate that OoSerpin is a potential antibacterial factor involved in the immune response of O. ocellatus against bacterial infection.

  19. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response.

    PubMed

    Wei, Xiumei; Xu, Jie; Yang, Jianmin; Liu, Xiangquan; Zhang, Ranran; Wang, Weijun; Yang, Jialong

    2015-01-01

    Serpin is an important member of serine protease inhibitors (SPIs), which is capable of regulating proteolytic events and involving in a variety of physiological processes. In present study, a Serpin homolog was identified from Octopus ocellatus (designated as OoSerpin). Full-length cDNA of OoSerpin was of 1735 bp, containing a 5' untranslated region of 214 bp, a 3' UTR of 282 bp, and an open reading frame of 1239 bp. The open reading frame encoded a polypeptide of 412 amino acids which has a predicted molecular weight of 46.5 kDa and an isoelectric point of 8.52. The OoSerpin protein shares 37% sequence identity with other Serpins from Mus musculus (NP_941373) and Ixodes scapularis (XP_002407493). The existence of a conserved SERPIN domain strongly suggested that OoSerpin was a member of the Serpin subfamily. Expression patterns of OoSerpin, both in tissues and towards bacterial stimulation, were then characterized. The mRNA of OoSerpin was constitutively expressed at different levels in all tested tissues of untreated O. ocellatus, including mantle (lowest), muscle, renal sac, gill, hemocyte, gonad, systemic heart, and hepatopancreas (highest). The transcriptional level of OoSerpin was significantly up-regulated (P<0.01) in O. ocellatus upon bacterial challenges with Vibrio anguillarum and Micrococcus luteus, indicating its involvement in the antibacterial immune response. Furthermore, rOoSerpin, the recombinant protein of OoSerpin, exhibited strong abilities to inhibit proteinase activities of trypsin and chymotrypsin as well as the growth of Escherichia coli. Our results demonstrate that OoSerpin is a potential antibacterial factor involved in the immune response of O. ocellatus against bacterial infection. PMID:25449372

  20. Production of serpins using yeast expression systems.

    PubMed

    Pemberton, Philip A; Bird, Phillip I

    2004-02-01

    Serpins occupy a unique niche in the field of biology. As more of them are discovered, the need to produce sufficient quantities of each to aid experimental and therapeutic research increases. Yeast expression systems are well suited for the production of recombinant serpins. The genetics of many yeast species is well understood and readily manipulated to induce the targeted over-production of many different serpins. In addition, protease-deficient strains of certain species are available and a few species carry out post-translational modifications resembling those of humans. Yeasts are easy to grow and multiply readily in simple culture media hence the cost of production is low, while the scale of production can be small or large. The disadvantages are the inability of most yeast(s) to perform complex post-translational modifications and a lower product yield of secreted protein compared to intracellular protein production. However, for the intracellular production of serpins, in particular the clade B serpins that do not have complex post-translational modifications, yeast expression systems should be among the first systems considered. PMID:14698631

  1. Serpins in thrombosis, hemostasis and fibrinolysis

    PubMed Central

    RAU, J. C.; BEAULIEU, L. M.; HUNTINGTON, J. A.; CHURCH, F. C.

    2009-01-01

    Summary Hemostasis and fibrinolysis, the biological processes that maintain proper blood flow, are the consequence of a complex series of cascading enzymatic reactions. Serine proteases involved in these processes are regulated by feedback loops, local cofactor molecules, and serine protease inhibitors (serpins). The delicate balance between proteolytic and inhibitory reactions in hemostasis and fibrinolysis, described by the coagulation, protein C and fibrinolytic pathways, can be disrupted, resulting in the pathological conditions of thrombosis or abnormal bleeding. Medicine capitalizes on the importance of serpins, using therapeutics to manipulate the serpin-protease reactions for the treatment and prevention of thrombosis and hemorrhage. Therefore, investigation of serpins, their cofactors, and their structure-function relationships is imperative for the development of state-of-the-art pharmaceuticals for the selective fine-tuning of hemostasis and fibrinolysis. This review describes key serpins important in the regulation of these pathways: antithrombin, heparin cofactor II, protein Z-dependent protease inhibitor, α1-protease inhibitor, protein C inhibitor, α2-antiplasmin and plasminogen activator inhibitor-1. We focus on the biological function, the important structural elements, their known non-hemostatic roles, the pathologies related to deficiencies or dysfunction, and the therapeutic roles of specific serpins. PMID:17635716

  2. Serpins in thrombosis, hemostasis and fibrinolysis.

    PubMed

    Rau, J C; Beaulieu, L M; Huntington, J A; Church, F C

    2007-07-01

    Hemostasis and fibrinolysis, the biological processes that maintain proper blood flow, are the consequence of a complex series of cascading enzymatic reactions. Serine proteases involved in these processes are regulated by feedback loops, local cofactor molecules, and serine protease inhibitors (serpins). The delicate balance between proteolytic and inhibitory reactions in hemostasis and fibrinolysis, described by the coagulation, protein C and fibrinolytic pathways, can be disrupted, resulting in the pathological conditions of thrombosis or abnormal bleeding. Medicine capitalizes on the importance of serpins, using therapeutics to manipulate the serpin-protease reactions for the treatment and prevention of thrombosis and hemorrhage. Therefore, investigation of serpins, their cofactors, and their structure-function relationships is imperative for the development of state-of-the-art pharmaceuticals for the selective fine-tuning of hemostasis and fibrinolysis. This review describes key serpins important in the regulation of these pathways: antithrombin, heparin cofactor II, protein Z-dependent protease inhibitor, alpha(1)-protease inhibitor, protein C inhibitor, alpha(2)-antiplasmin and plasminogen activator inhibitor-1. We focus on the biological function, the important structural elements, their known non-hemostatic roles, the pathologies related to deficiencies or dysfunction, and the therapeutic roles of specific serpins. PMID:17635716

  3. SerpinB1 deficiency is not associated with increased susceptibility to pulmonary emphysema in mice.

    PubMed

    Cremona, Tiziana P; Tschanz, Stefan A; von Garnier, Christophe; Benarafa, Charaf

    2013-12-01

    Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.

  4. SerpinB2 protection of retinoblastoma protein from calpain enhances tumor cell survival

    PubMed Central

    Tonnetti, Laura; Netzel-Arnett, Sarah; Darnell, Grant A.; Hayes, Tamara; Buzza, Marguerite S.; Anglin, Ian E.; Suhrbier, Andreas; Antalis, Toni M.

    2008-01-01

    The tumor suppressor retinoblastoma protein, Rb, plays a pivotal role in the regulation of cell proliferation and sensitivity to apoptosis through binding to E2F transcription factors. Loss of Rb in response to genotoxic stress or inflammatory cytokines can enhance cell death, in part, by eliminating Rb-mediated repression of proapoptotic gene transcription. Here we show that calpain cleavage of Rb facilitates Rb loss by proteasome degradation and that this may occur during TNFα induced apoptosis. The cytoprotective, Rb-binding protein, SerpinB2 (Plasminogen activator inhibitor type 2; PAI-2) protects Rb from calpain cleavage, increasing Rb levels and enhancing cell survival. Chromatin immunoprecipitation assays show that the increased Rb levels selectively enhance Rb- repression of proapoptotic gene transcription. This cytoprotective role of SerpinB2 is illustrated by reduced susceptibility of SerpinB2-deficient mice to multistage skin carcinogenesis, where Rb dependent cell proliferation competes with apoptosis during initiation of papilloma development. These data identify SerpinB2 as cell survival factor that modulates Rb-repression of proapoptotic signal transduction, and define a new post-translational mechanism for selective regulation of the intracellular levels of Rb. PMID:18632617

  5. Engineering D-helix of antithrombin in alpha-1-proteinase inhibitor confers antiinflammatory properties on the chimeric serpin.

    PubMed

    Yang, L; Dinarvand, P; Qureshi, S H; Rezaie, A R

    2014-07-01

    Antithrombin (AT) is a heparin-binding serpin in plasma which regulates the proteolytic activity of procoagulant proteases of the clotting cascade. In addition to being an anticoagulant, AT also exhibits antiinflammatory activities when it binds to cell surface heparan sulfate proteoglycans (HSPGs) on the endothelium via its basic residues of D-helix to elicit intracellular signalling responses. By contrast to AT, α1-proteinase inhibitor (α1-PI) is a non-heparin-binding serpin that exhibits very slow reactivity with coagulation proteases and possesses no HSPG-dependent antiinflammatory properties. To determine whether the antiinflammatory signaling specificity of AT can be transferred to α1-PI, we replaced the D-helix of human α1-PI with the corresponding sequence of human AT and expressed the chimeric serpin α1-PI/D-helix) in a bacterial expression system. High molecular weight heparin bound to α1-PI/D-helix and accelerated the inhibition of thrombin by the serpin mutant by a template mechanism reminiscent of the cofactor effect of heparin on inhibition of thrombin by AT. Like AT, α1-PI/D-helix exhibited antiinflammatory properties in both cellular and animal models. Thus, α1-PI/D-helix inhibited the barrier-disruptive effect of proinflammatory cytokines and inhibited the activation of nuclear factor-κB transcription factor in lipopolysaccharide-stimulated endothelial cells by a concentration-dependent manner. Furthermore, the chimeric serpin reduced lipopolysaccharide-mediated lethality, elicited a vascular protective effect and inhibited infiltration of activated leukocytes to the peritoneal cavity of mice in an HMGB1-mediated inflammatory model. These results suggest that grafting the D-helix of AT to α1-PI confers antiinflammatory properties on the serpin and that the chimeric serpin may have therapeutic utility for treating inflammatory disorders. PMID:24522239

  6. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  7. Comparison of two serpins of Clonorchis sinensis by bioinformatics, expression, and localization in metacercaria

    PubMed Central

    Yang, Yabo; Hu, Dong; Wang, Lexun; Liang, Chi; Hu, Xuchu; Xu, Jin; Huang, Yan; Yu, Xinbing

    2014-01-01

    Clonorchiasis, which has been an important public health problem in China, is caused by ingestion of raw or undercooked fish contaminated by live metacercaria. Therefore, preventing fish from infecting is of great significance for controlling the disease. SERPINs (serine protease inhibitors) are well known as negative regulators of hemostasis, thrombolysis, and innate immune responses. In the present study, two full-length sequences encoding SERPIN were identified from metacercaria cDNA library of Clonorchis sinensis (C. sinensis) and were denominated as CsSERPIN and CsSERPIN3, respectively. Bioinformatics analysis showed that the two sequences shares 35.9% identity to each other. Both of the sequences have SERPIN domain and the greatest difference between the two domains is the reactive centre loop. Transmembrane region was found in CsSERPIN3 while not in CsSERPIN. The expression of the two CsSERPINs was significantly higher at the life stage of metacercaria than that of adult. The transcription levels of CsSERPIN and CsSERPIN3 at metacercaria stage were 3.249- and 11.314-fold of that at adult stage, respectively. Furthermore, the expression of CsSERPIN was 4.32-fold of that of CsSERPIN3 at metacercaria stage. Immunobiochemistry revealed that CsERPIN was dispersed at subtegument and oral sucker of metacercaria, while CsSERPIN3 localized intensely in the tegument of metacercaria of C. sinensis inside of the cyst wall. All these indicated that the CsSERPINs play important roles at metacercaria stage of the parasite. CsSERPIN may take part in regulation of endogenous serine proteinase and CsSERPIN3 may be involved in immune evasion and be a potential candidate for vaccine and drug target for clonorchiasis. PMID:24831344

  8. Intracellular Na+ regulates epithelial Na+ channel maturation.

    PubMed

    Heidrich, Elisa; Carattino, Marcelo D; Hughey, Rebecca P; Pilewski, Joseph M; Kleyman, Thomas R; Myerburg, Mike M

    2015-05-01

    Epithelial Na(+) channel (ENaC) function is regulated by the intracellular Na(+) concentration ([Na(+)]i) through a process known as Na(+) feedback inhibition. Although this process is known to decrease the expression of proteolytically processed active channels on the cell surface, it is unknown how [Na(+)]i alters ENaC cleavage. We show here that [Na(+)]i regulates the posttranslational processing of ENaC subunits during channel biogenesis. At times when [Na(+)]i is low, ENaC subunits develop mature N-glycans and are processed by proteases. Conversely, glycan maturation and sensitivity to proteolysis are reduced when [Na(+)]i is relatively high. Surface channels with immature N-glycans were not processed by endogenous channel activating proteases, nor were they sensitive to cleavage by exogenous trypsin. Biotin chase experiments revealed that the immature surface channels were not converted into mature cleaved channels following a reduction in [Na(+)]i. The hypothesis that [Na(+)]i regulates ENaC maturation within the biosynthetic pathways is further supported by the finding that Brefeldin A prevented the accumulation of processed surface channels following a reduction in [Na(+)]i. Therefore, increased [Na(+)]i interferes with ENaC N-glycan maturation and prevents the channel from entering a state that allows proteolytic processing. PMID:25767115

  9. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells.

  10. Structural insights into the unique inhibitory mechanism of the silkworm protease inhibitor serpin18

    PubMed Central

    Guo, Peng-Chao; Dong, Zhaoming; Zhao, Ping; Zhang, Yan; He, Huawei; Tan, Xiang; Zhang, Weiwei; Xia, Qingyou

    2015-01-01

    Serpins generally serve as inhibitors that utilize a mobile reactive center loop (RCL) as bait to trap protease targets. Here, we present the crystal structure of serpin18 from Bombyx mori at 1.65 Å resolution, which has a very short and stable RCL. Activity analysis showed that the inhibitory target of serpin18 is a cysteine protease rather than a serine protease. Notably, this inhibitiory reaction results from the formation of an intermediate complex, which then follows for the digestion of protease and inhibitor into small fragments. This activity differs from previously reported modes of inhibition for serpins. Our findings have thus provided novel structural insights into the unique inhibitory mechanism of serpin18. Furthermore, one physiological target of serpin18, fibroinase, was identified, which enables us to better define the potential role for serpin18 in regulating fibroinase activity during B. mori development. PMID:26148664

  11. A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Tirloni, Lucas; Seixas, Adriana; Mulenga, Albert; Vaz, Itabajara da Silva; Termignoni, Carlos

    2014-02-01

    Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential roles in many organisms. In arthropods these proteins are involved in innate immune system, morphogenesis and development. In mammals serpins regulate pathways that are essential to life such as blood coagulation, fibrinolysis, inflammation and complement activation, some of which are considered the host's first line of defense to hematophagous and/or blood dueling parasites. Thus, it is hypothesized that ticks use serpins to evade host defense, facilitating parasitism. This study describes eighteen full-length cDNA sequences encoding serpins identified in Rhipicephalus (Boophilus) microplus, here named RmS 1-18 (R. microplus serpin). Spatial and temporal transcriptional profiling demonstrated that R. microplus serpins are transcribed during feeding, suggesting their participation in tick physiology regulation. We speculate that the majority of R. microplus serpins are conserved in other ticks, as indicated by phylogeny analysis. Over half of the 18 RmSs are putatively functional in the extracellular environment, as indicated by putative signal peptides on 11 of 18 serpins. Comparative modeling and structural-based alignment revealed that R. microplus serpins in this study retain the consensus secondary of typical serpins. This descriptive study enlarges the knowledge on the molecular biology of R. microplus, an important tick species.

  12. Host metabolism regulates intracellular growth of Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey L; Engel, Juan C; Jacobi, David; Lee, Chih-Hao; Burleigh, Barbara A

    2013-01-16

    Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas' disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite's replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection. PMID:23332160

  13. Host metabolism regulates intracellular growth of Trypanosoma cruzi

    PubMed Central

    Caradonna, Kacey L.; Engel, Juan C.; Jacobi, David; Lee, Chih-Hao; Burleigh, Barbara A.

    2012-01-01

    SUMMARY Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite’s replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection. PMID:23332160

  14. Intracellular events regulating cross-presentation

    PubMed Central

    Wagner, Claudia S.; Grotzke, Jeffrey E.; Cresswell, Peter

    2012-01-01

    Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteasomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER) that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on major histocompatibility complex class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation. PMID:22675326

  15. Human papilloma virus transformed CaSki cells constitutively express high levels of functional SerpinB2.

    PubMed

    Major, Lee; Schroder, Wayne A; Gardner, Joy; Fish, Richard J; Suhrbier, Andreas

    2011-02-01

    Many malignant tissues, including human papilloma virus (HPV)-associated cancers, express SerpinB2, also known as plasminogen activator inhibitor type-2 (PAI-2). Whether SerpinB2 is expressed by the HPV-transformed cancer cells, and if so, whether SerpinB2 is mutated or behaves aberrantly remains unclear. Here we show that HPV-transformed CaSki cells express high levels of constitutive wild-type SerpinB2, with cellular distribution, glycosylation, secretion, cleavage, induction and urokinase binding similar to that reported for primary cells. Neutralization of secreted SerpinB2 failed to affect CaSki cell migration or growth. Lentivirus-based over-expression of SerpinB2 also had no effect on growth, and we were unable to confirm a role for SerpinB2 in binding or regulating expression of the retinoblastoma protein. CaSki cells thus emerge as a useful tool for studying SerpinB2, with the physiological function of SerpinB2 expression by tumor cells remaining controversial. Using CaSki cells as a source of endogenous SerpinB2, we confirmed that SerpinB2 efficiently binds the proteasomal subunit member β1. PMID:20974129

  16. SerpinB2 is critical to Th2 immunity against enteric nematode infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SerpinB2, a member of the serine protease inhibitor family, is expressed by macrophages and up-regulated significantly by inflammation. Recent studies implicated a role for SerpinB2 in the control of Th1 and Th2 immune responses, but the mechanisms of these effects are unknown. In the current study...

  17. SerpinB3 and Yap Interplay Increases Myc Oncogenic Activity

    PubMed Central

    Turato, Cristian; Cannito, Stefania; Simonato, Davide; Villano, Gianmarco; Morello, Elisabetta; Terrin, Liliana; Quarta, Santina; Biasiolo, Alessandra; Ruvoletto, Mariagrazia; Martini, Andrea; Fasolato, Silvano; Zanus, Giacomo; Cillo, Umberto; Gatta, Angelo; Parola, Maurizio; Pontisso, Patrizia

    2015-01-01

    SerpinB3 has been recently described as an early marker of liver carcinogenesis, but the potential mechanistic role of this serpin in tumor development is still poorly understood. Overexpression of Myc often correlates with more aggressive tumour forms, supporting its involvement in carcinogenesis. Yes-associated protein (Yap), the main effector of the Hippo pathway, is a central regulator of proliferation and it has been found up-regulated in hepatocellular carcinomas. The study has been designed to investigate and characterize the interplay and functional modulation of Myc by SerpinB3 in liver cancer. Results from this study indicate that Myc was up-regulated by SerpinB3 through calpain and Hippo-dependent molecular mechanisms in transgenic mice and hepatoma cells overexpressing human SerpinB3, and also in human hepatocellular carcinomas. Human recombinant SerpinB3 was capable to inhibit the activity of Calpain in vitro, likely reducing its ability to cleave Myc in its non oncogenic Myc-nick cytoplasmic form. SerpinB3 indirectly increased the transcription of Myc through the induction of Yap pathway. These findings provide for the first time evidence that SerpinB3 can improve the production of Myc through direct and indirect mechanisms that include the inhibition of generation of its cytoplasmic form and the activation of Yap pathway. PMID:26634820

  18. A proprotein convertase-inhibiting serpin with an endoplasmic reticulum targeting signal from Branchiostoma lanceolatum, a close relative of vertebrates

    PubMed Central

    Bentele, Caterina; Krüger, Olaf; Tödtmann, Ulf; Oley, Mareke; Ragg, Hermann

    2006-01-01

    Lancelets are considered to take a key position in the evolution of lineages leading to vertebrates. Herein, a serpin from the lancelet Branchiostoma lanceolatum, Bl-Spn1, was identified that inhibits the PCs (proprotein convertases) PC1/3 and furin. The inhibitor forms SDS-stable complexes with either of its targets. Analysis of the inhibitor/furin reaction products by mass spectroscopy assigns the enzyme's cleavage position C-terminally to Met-Met-Lys-Arg↓ in the reactive site loop of Spn1, in concordance with the classical recognition/cleavage site of the principal vertebrate PCs. The inhibitor is equipped with a canonical ER (endoplasmic reticulum) retrieval signal, Lys-Asp-Glu-Leu (KDEL), marking the inhibitor as a guardian of the cellular secretory routes. Deletion of the ER retrieval signal results in the export of the inhibitor into the medium of transfected COS-7 cells, consistent with the assigned intracellular location. These results identify Bl-Spn1 as the first serpin that may inhibit PC1/3-like subtilases at their natural sites of action. Phylogenetic comparisons support a concept implying a general role for ER-residing serpins in the surveillance of subtilase-like enzymes along the constitutive and regulated secretory pathways of metazoans including a role in the defence of intruders that turn PCs to their propagation. PMID:16445382

  19. Serpine2, a potential novel target for combating melanoma metastasis

    PubMed Central

    Wu, Qi Wei

    2016-01-01

    Early stages of melanoma can be treated by surgical resection of tumor, but there is still no effective treatment once it is progressed to metastatic phases. Although growing family of both metastasis promoting and metastasis suppressor genes have been reported, the molecular mechanisms governing melanoma metastatic cascade are still not completely understood. Therefore, defining the molecules that govern melanoma metastasis may aid the development of more effective therapeutic strategies for combating cancer. In the present study, we found that Serpin Peptidase Inhibitor 2, Serpine2 was involved in the metastasis of melanoma cells. The requirement of Serpine2 in the migration of melanoma cells was confirmed by gene silencing and over-expression in vitro. Moreover, down-regulation of Serpine2 expression strikingly inhibited melanoma cellular metastasis in vivo. Finally, we found that Serpine2 promotes melanoma metastasis through the glycogen synthesis kinase 3β, GSK-3β signaling pathway. To conclude, our findings suggested a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma. PMID:27347308

  20. Preferential intracellular pH regulation: hypotheses and perspectives.

    PubMed

    Shartau, Ryan B; Baker, Daniel W; Crossley, Dane A; Brauner, Colin J

    2016-08-01

    The regulation of vertebrate acid-base balance during acute episodes of elevated internal PCO2  is typically characterized by extracellular pH (pHe) regulation. Changes in pHe are associated with qualitatively similar changes in intracellular tissue pH (pHi) as the two are typically coupled, referred to as 'coupled pH regulation'. However, not all vertebrates rely on coupled pH regulation; instead, some preferentially regulate pHi against severe and maintained reductions in pHe Preferential pHi regulation has been identified in several adult fish species and an aquatic amphibian, but never in adult amniotes. Recently, common snapping turtles were observed to preferentially regulate pHi during development; the pattern of acid-base regulation in these species shifts from preferential pHi regulation in embryos to coupled pH regulation in adults. In this Commentary, we discuss the hypothesis that preferential pHi regulation may be a general strategy employed by vertebrate embryos in order to maintain acid-base homeostasis during severe acute acid-base disturbances. In adult vertebrates, the retention or loss of preferential pHi regulation may depend on selection pressures associated with the environment inhabited and/or the severity of acid-base regulatory challenges to which they are exposed. We also consider the idea that the retention of preferential pHi regulation into adulthood may have been a key event in vertebrate evolution, with implications for the invasion of freshwater habitats, the evolution of air breathing and the transition of vertebrates from water to land. PMID:27489212

  1. Regulation of dopamine transporter trafficking by intracellular amphetamine.

    PubMed

    Kahlig, Kristopher M; Lute, Brandon J; Wei, Yuqiang; Loland, Claus J; Gether, Ulrik; Javitch, Jonathan A; Galli, Aurelio

    2006-08-01

    The dopamine (DA) transporter (DAT) mediates the removal of released DA. DAT is the major molecular target responsible for the rewarding properties and abuse potential of the psychostimulant amphetamine (AMPH). AMPH has been shown to reduce the number of DATs at the cell surface, and this AMPH-induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn(2+)) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn(2+) and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A-hDAT. Furthermore, direct intracellular application of AMPH, via a whole-cell patch pipette, stimulated the trafficking of Y335A-hDAT. Taken together, these data suggest that the DAT transport cycle is not required for AMPH-induced down-regulation and that an increase of intracellular AMPH is an essential component of DAT redistribution.

  2. Characterisation of serpin polymers in vitro and in vivo.

    PubMed

    Belorgey, Didier; Irving, James A; Ekeowa, Ugo I; Freeke, Joanna; Roussel, Benoit D; Miranda, Elena; Pérez, Juan; Robinson, Carol V; Marciniak, Stefan J; Crowther, Damian C; Michel, Claire H; Lomas, David A

    2011-03-01

    Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.

  3. Intracellular Calcium Regulates Nonsense-Mediated mRNA Decay

    PubMed Central

    Nickless, Andrew; Jackson, Erin; Marasa, Jayne; Nugent, Patrick; Mercer, Robert W.; Piwnica-Worms, David; You, Zhongsheng

    2014-01-01

    The nonsense-mediated mRNA decay (NMD) pathway selectively eliminates aberrant transcripts containing premature translation termination codons (PTCs) and regulates the levels of a number of physiological mRNAs. NMD modulates the clinical outcome of a variety of human diseases, including cancer and many genetic disorders, and may represent an important target for therapeutic intervention. Here we have developed a novel multicolored, bioluminescence-based reporter system that can specifically and effectively assay NMD in live human cells. Using this reporter system, we conducted a robust high-throughput small-molecule screen in human cells and, unpredictably, identified a group of cardiac glycosides including ouabain and digoxin as potent inhibitors of NMD. Cardiac glycoside-mediated effects on NMD are dependent on binding and inhibiting the Na+/K+-ATPase on the plasma membrane and subsequent elevation of intracellular calcium levels. Induction of calcium release from endoplasmic reticulum also leads to inhibition of NMD. Thus, this study reveals intracellular calcium as a key regulator of NMD and has important implications for exploiting NMD in the treatment of disease. PMID:25064126

  4. Reduced serpinB9-mediated caspase-1 inhibition can contribute to autoinflammatory disease

    PubMed Central

    van der Burgh, Robert; Meeldijk, Jan; Jongeneel, Lieneke; Frenkel, Joost; Bovenschen, Niels

    2016-01-01

    Patients who suffer from autoinflammatory disease (AID) exhibit seemingly uncontrolled release of interleukin (IL)-1β. The presence of this inflammatory cytokine triggers immune activation in absence of pathogens and foreign material. The mechanisms that contribute to ‘sterile inflammation’ episodes in AID patients are not fully understood, although for some AIDs underlying genetic causes have been identified. We show that the serine protease inhibitor B9 (serpinB9) regulates IL-1β release in human monocytes. SerpinB9 function is more commonly known for its role in control of granzyme B. SerpinB9 however also serves to restrain IL-1β maturation through caspase-1 inhibition. We here describe an autoinflammatory disease-associated serpinB9 (c.985G>T, A329S) variant, which we discovered in a patient with unknown AID. Using patient cells and serpinB9 overexpressing monocytic cells, we show the A329S variant of serpinB9 exhibits unobstructed granzyme B inhibition, but compromised caspase-1 inhibition. SerpinB9 gene variants might contribute to AID development. PMID:26992230

  5. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin.

    PubMed

    Huang, Carlos P; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J; Howell, Stephen B

    2014-03-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu(+) was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu(+) was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression of the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ∼50% reduced steady-state exchangeable Cu by 22-23% and increased the sensitivity of 2008 cells by a factor of 2.6-2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu(+) by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu(+), and that CTR2 regulates both the level of exchangeable Cu(+) and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics. PMID:24522273

  6. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin.

    PubMed

    Huang, Carlos P; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J; Howell, Stephen B

    2014-03-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu(+) was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu(+) was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression of the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ∼50% reduced steady-state exchangeable Cu by 22-23% and increased the sensitivity of 2008 cells by a factor of 2.6-2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu(+) by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu(+), and that CTR2 regulates both the level of exchangeable Cu(+) and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics.

  7. Copper Transporter 2 Regulates Intracellular Copper and Sensitivity to Cisplatin

    PubMed Central

    Huang, Carlos P.; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J.; Howell, Stephen B.

    2014-01-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu+ was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu+ was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ~50% reduced steady-state exchangeable Cu by 22–23% and increased the sensitivity of 2008 cells by a factor of 2.6 – 2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu+ by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu+, and that CTR2 regulates both the level of exchangeable Cu+ and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics. PMID:24522273

  8. Role of intracellular calcium in cellular volume regulation

    SciTech Connect

    Wong, S.M.; Chase, H.S. Jr.

    1986-06-01

    We investigated the role of intracellular calcium in epithelial cell volume regulation using cells isolated from the toad urinary bladder. A suspension of cells was prepared by treatment of the bladder with collagenase followed by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid. The cells retained their ion-transporting capabilities: ouabain (1 mM) and amiloride (10 microM) inhibited cellular uptake of /sup 86/Rb and /sup 22/Na, respectively. Using a Coulter counter to measure cellular volume, we found that we could swell cells either by reducing the extracellular osmolality or by adding the permeant solute urea (45 mM) isosmotically. Under both conditions, cells first swelled and then returned to their base-line volume, in spite of the continued presence of the stimulus to swell. Volume regulation was inhibited when cells were swelled at low extracellular (Ca) (100 nM) and was retarded in cells preloaded with the calcium buffer quin 2. Swelling increased the intracellular free calcium concentration ((Ca)i), as measured by quin 2 fluorescence: (Ca)i increased 35 +/- 9 nM (n = 6) after hypotonic swelling and 42 +/- 3 nM (n = 3) after urea swelling. Reducing extracellular (Ca) to less than 100 nM prevented the swelling-induced increase in (Ca)i, suggesting that the source of the increase in (Ca)i was extracellular. This result was confirmed in measurements of cellular uptake of 45Ca: the rate of uptake was significantly higher in swollen cells compared with control (1.1 +/- 0.2 vs. 0.4 +/- 0.1 fmol . cell-1 X 5 min-1). Our experiments provide the first demonstration that cellular swelling increases (Ca)i. This increase is likely to play a critical role in cellular volume regulation.

  9. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis.

    PubMed

    Thangaraju, M; Sharma, K; Liu, D; Shen, S H; Srikant, C B

    1999-04-01

    The G protein-coupled receptor agonist somatostatin (SST)-induces apoptosis in MCF-7 human breast cancer cells. This is associated with induction of wild-type p53, Bax, and an acidic endonuclease. We have shown recently that its cytotoxic signaling is mediated via membrane-associated SHP-1 and is dependent on decrease in intracellular pH (pHi) to 6.5. Here we investigated the relationship between intracellular acidification and SHP-1 in cytotoxic signaling. Clamping of pHi at 7.25 by the proton-ionophore nigericin abolished SST-signaled apoptosis without affecting its ability to regulate SHP-1, p53, and Bax. Apoptosis could be induced by nigericin clamping of pHi to 6.5. Such acidification-induced apoptosis was not observed at pHi <6.0 or >6.7. pHi-dependent apoptosis was associated with the translocation of SHP-1 to the membrane, enhanced in cells overexpressing SHP-1, and was abolished by its inactive mutant SHP-1C455S. Acidification caused by inhibition of Na+/H+ exchanger and H+ ATPase (pHi = 6.55 and 6.65, respectively) also triggered apoptosis. The effect of concurrent inhibition of Na+/H+ exchanger and H(+)-ATPase on pHi and apoptosis was comparable with that of SST. Acidification-induced, SHP-1-dependent apoptosis occurred in breast cancer cell lines in which SST was cytotoxic (MCF-7 and T47D) or not (MDA-MB-231). We conclude that: (a) SST-induced SHP-1-dependent acidification occurs subsequent to or independent of the induction of p53 and Bax; (b) SST-induced intracellular acidification may arise due to inhibition of Na+/H+ exchanger and H(+)-ATPase; and (c) SHP-1 is necessary not only for agonist-induced acidification but also for the execution of acidification-dependent apoptosis. We suggest that combined targeting of SHP-1 and intracellular acidification may lead to a novel strategy of anticancer therapy bypassing the need for receptor-mediated signaling.

  10. Intracellular Energetic Units regulate metabolism in cardiac cells.

    PubMed

    Saks, Valdur; Kuznetsov, Andrey V; Gonzalez-Granillo, Marcela; Tepp, Kersti; Timohhina, Natalja; Karu-Varikmaa, Minna; Kaambre, Tuuli; Dos Santos, Pierre; Boucher, François; Guzun, Rita

    2012-02-01

    This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs). Beta II tubulin association with the mitochondrial outer membrane, when co-expressed with mitochondrial creatine kinase (MtCK) specifically limits the permeability of voltage-dependent anion channel for adenine nucleotides. In the MtCK reaction this interaction changes the regulatory kinetics of respiration through a decrease in the affinity for adenine nucleotides and an increase in the affinity for creatine. Metabolic Control Analysis of the coupled MtCK-ATP Synthasome in permeabilized cardiomyocytes showed a significant increase in flux control by steps involved in ADP recycling. Mathematical modeling of compartmentalized energy transfer represented by ICEUs shows that cyclic changes in local ADP, Pi, phosphocreatine and creatine concentrations during contraction cycle represent effective metabolic feedback signals when amplified in the coupled non-equilibrium MtCK-ATP Synthasome reactions in mitochondria. This mechanism explains the regulation of respiration on beat to beat basis during workload changes under conditions of metabolic stability. This article is part of a Special Issue entitled "Local Signaling in Myocytes." PMID:21816155

  11. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  12. Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation

    PubMed Central

    Paulsson, Johan; Berg, Otto G.; Ehrenberg, Måns

    2000-01-01

    Many regulatory molecules are present in low copy numbers per cell so that significant random fluctuations emerge spontaneously. Because cell viability depends on precise regulation of key events, such signal noise has been thought to impose a threat that cells must carefully eliminate. However, the precision of control is also greatly affected by the regulatory mechanisms' capacity for sensitivity amplification. Here we show that even if signal noise reduces the capacity for sensitivity amplification of threshold mechanisms, the effect on realistic regulatory kinetics can be the opposite: stochastic focusing (SF). SF particularly exploits tails of probability distributions and can be formulated as conventional multistep sensitivity amplification where signal noise provides the degrees of freedom. When signal fluctuations are sufficiently rapid, effects of time correlations in signal-dependent rates are negligible and SF works just like conventional sensitivity amplification. This means that, quite counterintuitively, signal noise can reduce the uncertainty in regulated processes. SF is exemplified by standard hyperbolic inhibition, and all probability distributions for signal noise are first derived from underlying chemical master equations. The negative binomial is suggested as a paradigmatic distribution for intracellular kinetics, applicable to stochastic gene expression as well as simple systems with Michaelis–Menten degradation or positive feedback. SF resembles stochastic resonance in that noise facilitates signal detection in nonlinear systems, but stochastic resonance is related to how noise in threshold systems allows for detection of subthreshold signals and SF describes how fluctuations can make a gradual response mechanism work more like a threshold mechanism. PMID:10852944

  13. IQGAP1: a regulator of intracellular spacetime relativity.

    PubMed

    Malarkannan, Subramaniam; Awasthi, Aradhana; Rajasekaran, Kamalakannan; Kumar, Pawan; Schuldt, Kristina M; Bartoszek, Allison; Manoharan, Niranjan; Goldner, Nicholas K; Umhoefer, Colleen M; Thakar, Monica S

    2012-03-01

    Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.

  14. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    SciTech Connect

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  15. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  16. Regulation of the epithelial Na(+) channel by intracellular Na(+).

    PubMed

    Awayda, M S

    1999-08-01

    The hypothesis that the intracellular Na(+) concentration ([Na(+)](i)) is a regulator of the epithelial Na(+) channel (ENaC) was tested with the Xenopus oocyte expression system by utilizing a dual-electrode voltage clamp. [Na(+)](i) averaged 48.1 +/- 2.2 meq (n = 27) and was estimated from the amiloride-sensitive reversal potential. [Na(+)](i) was increased by direct injection of 27.6 nl of 0.25 or 0.5 M Na(2)SO(4). Within minutes of injection, [Na(+)](i) stabilized and remained elevated at 97.8 +/- 6.5 meq (n = 9) and 64. 9 +/- 4.4 (n = 5) meq 30 min after the initial injection of 0.5 and 0.25 M Na(2)SO(4), respectively. This increase of [Na(+)](i) caused a biphasic inhibition of ENaC currents. In oocytes injected with 0.5 M Na(2)SO(4) (n = 9), a rapid decrease of inward amiloride-sensitive slope conductance (g(Na)) to 0.681 +/- 0.030 of control within the first 3 min and a secondary, slower decrease to 0.304 +/- 0.043 of control at 30 min were observed. Similar but smaller inhibitions were also observed with the injection of 0.25 M Na(2)SO(4). Injection of isotonic K(2)SO(4) (70 mM) or isotonic K(2)SO(4) made hypertonic with sucrose (70 mM K(2)SO(4)-1.2 M sucrose) was without effect. Injection of a 0.5 M concentration of either K(2)SO(4), N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thus increases of [Na(+)](i) have multiple specific inhibitory effects on ENaC that can be temporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min. PMID:10444397

  17. Brief report: serpin Spi2A as a novel modulator of hematopoietic progenitor cell formation.

    PubMed

    Li, Lei; Byrne, Susan M; Rainville, Nicole; Su, Su; Jachimowicz, Edward; Aucher, Anne; Davis, Daniel M; Ashton-Rickardt, Philip G; Wojchowski, Don M

    2014-09-01

    Prime regulation over hematopoietic progenitor cell (HPC) production is exerted by hematopoietins (HPs) and their Janus kinase-coupled receptors (HP-Rs). For HP/HP-R studies, one central challenge in determining specific effects involves the delineation of nonredundant signal transduction factors and their lineage restricted actions. Via loss-of-function studies, we define roles for an HP-regulated Serpina3g/Spi2A intracellular serpin during granulomyelocytic, B-cell, and hematopoietic stem cell (HSC) formation. In granulomyelocytic progenitors, granulocyte macrophage colony stimulating factor (GMCSF) strongly induced Serpina3g expression with Stat5 dependency. Spi2A-knockout (KO) led to 20-fold decreased CFU-GM formation, limited GMCSF-dependent granulocyte formation, and compromised neutrophil survival upon tumor necrosis factor alpha (TNF-α) exposure. In B-cell progenitors, Serpina3g was an interleukin-7 (IL7) target. Spi2A-KO elevated CFU-preB greater than sixfold and altered B-cell formation in competitive bone marrow transplant (BMT), and CpG challenge experiments. In HSCs, Serpina3g/Spi2A expression was also elevated. Spi2A-KO compromised LT-HSC proliferation (as well as lineage(neg) Sca1(pos) Kit(pos) (LSK) cell lysosomal integrity), and skewed LSK recovery post 5-FU. Spi2A therefore functions to modulate HP-regulated immune cell and HSC formation post-5-FU challenge.

  18. Regulation of lung surfactant secretion by intracellular pH.

    PubMed

    Chander, A

    1989-12-01

    We investigated secretion of lung surfactant phosphatidylcholine (PC) using isolated perfused rat lung preparation after labeling the lung lipids in vitro with [methyl-3H]choline. The perfusion medium was Krebs-Ringer bicarbonate buffer (pH 7.4) containing 10 mM glucose and 3% fatty acid-poor bovine serum albumin. After ventilation of lungs with air containing 5% CO2 (control) for 1 h, 0.91% +/- 0.04 (mean +/- SE, n = 6) of total lung lipid radioactivity (greater than 95% in PC) was recovered in the cell-free lavage fluid. The secretion of PC was increased with terbutaline (50 microM), 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP, 100 microM), phorbol L2-myristate 13-acetate (30 ng/ml), and ATP (1 mM), in each case by approximately 150%. Secretion of PC was also increased by 160% if the lungs were ventilated with air containing 0% CO2. The low CO2-mediated PC secretion was time and concentration dependent. The dose-response curve for 0-10% CO2 was S-shaped. The low CO2-induced increase in PC secretion could be largely reversed with diffusible weak acids (25 mM, acetate or butyrate) in the perfusion medium. An increase (70%) in secretion was also induced with 10 mM NH4Cl, suggesting a role for intracellular alkalosis. These observations suggest that intracellular alkalosis stimulates lung surfactant secretion. Alkalosis-stimulated secretion of PC was additive with that with terbutaline (5 X 10(-7) to 5 X 10(-4) M) or 10(-4) M 8-BrcAMP, suggesting that alkalosis effect was not mediated through the beta-adrenergic pathway of surfactant secretion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2514603

  19. Possible regulation of caffeine-induced intracellular Ca2+ mobilization by intracellular free Na+.

    PubMed

    Sorimachi, M; Yamagami, K; Nishimura, S; Kuramoto, K

    1992-12-01

    To gain some understanding of the regulatory mechanism involved in caffeine-induced Ca2+ release in adrenal chromaffin cells, we took advantage of the paradoxical observation that removal of divalent cations potentiated the secretory response to caffeine. We measured the concentration of cytosolic free Ca2+ ([Ca]in) in isolated cat chromaffin cells, by fura-2 microfluorometry, to see whether there was any correlation between the secretory response and the rise in [Ca]in. The caffeine-induced [Ca]in rise and catecholamine secretion were increased by treatment of cells with a divalent cation-deficient solution. These potentiated responses were strongly inhibited either by pretreatment with ryanodine, by the reduction of the external Na+ concentration, or by the addition of Ca2+ channel blockers. Removal of divalent cations caused a large rise in the cytosolic free Na+ concentration ([Na]in), which was measured using SBFI microfluorometry. This rise in [Na]in was reduced either by adding Ca2+ channel blockers or by reducing the external Na+ concentration. These results show a good correlation between caffeine-induced Ca2+ release and [Na]in at the time of stimulation, suggesting that caffeine-induced Ca2+ release is regulated by [Na]in. PMID:1431907

  20. Rab proteins: The key regulators of intracellular vesicle transport

    SciTech Connect

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  1. Regulation of intracellular heme trafficking revealed by subcellular reporters.

    PubMed

    Yuan, Xiaojing; Rietzschel, Nicole; Kwon, Hanna; Walter Nuno, Ana Beatriz; Hanna, David A; Phillips, John D; Raven, Emma L; Reddi, Amit R; Hamza, Iqbal

    2016-08-30

    Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models.

  2. Regulation of intracellular heme trafficking revealed by subcellular reporters.

    PubMed

    Yuan, Xiaojing; Rietzschel, Nicole; Kwon, Hanna; Walter Nuno, Ana Beatriz; Hanna, David A; Phillips, John D; Raven, Emma L; Reddi, Amit R; Hamza, Iqbal

    2016-08-30

    Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models. PMID:27528661

  3. Ectdomain shedding and regulated intracellular proteolysis in the central nervous system.

    PubMed

    Montes de Oca-B, Pavel

    2010-12-01

    The term Ectodomain Shedding (ES) refers to extracellular domain proteolytic release from cell membrane molecules. This proteolysis is mediated mainly by matrix metalloproteases (MMP) or disintegrin and metalloproteases (ADAM), although some other proteases may mediate it. Virtually, all functional categories of cell membrane molecules are subject of this kind of proteolysis, for this reason ES is involved in different cellular processes such as proliferation, apoptosis, migration, differentiation or pathologies such as inflammation, cancer and degeneration among others. ES releases membrane molecule's extracellular domain (or ectodomain) to the extracellular milieu where it can play different biological functions. ES of transmembrane molecules also generates membrane attached terminal fragments comprising transmembrane and intracellular domains that enable their additional processing by intracellular proteases known as Regulated Intracellular Proteolysis (RIP). This second proteolytic cleavage delivers molecule's intracellular domain (ICD) that carry out intracellular functions. RIP is mediated by the group of intracellular cleaving proteases (i-CLiPs) that include presenilin from the γ-secretase complex. In the CNS the best well known ES is that of the Amyloid Precursor Protein, although many other membrane molecules expressed by cells of the CNS are also subject to ES and RIP. In this review, these molecules are summarized, and some meaningful examples are highlighted and described. In addition, ES and RIP implications in the context of cell biology are discussed. Finally, some considerations that rise from the study of ES and RIP are formulated in view of the unexpected roles of intracellular fragments.

  4. Ontogeny of intracellular isosmotic regulation in the european lobster Homarus gammarus (L.).

    PubMed

    Haond, C; Bonnal, L; Sandeaux, R; Charmantier, G; Trilles, J P

    1999-01-01

    Intracellular free amino acids were measured in the abdominal muscle of the three larval instars, postlarvae, and juveniles of the lobster Homarus gammarus, acclimated to seawater (35 per thousand) and to a dilute medium (22 per thousand), to study intracellular isosmotic regulation throughout the development of this species. Transfer to low salinity was followed by a highly significant drop of free amino acids level in all developmental stages. The main regulated amino acids were glycine, proline, and alanine. The level of regulation of total free amino acids changed at metamorphosis: the decrease in total free amino acids at low salinity was 46% in the three larval instars, but it was only 29% in postlarvae and 20% in juveniles. These results suggest that free amino acids, mainly glycine, proline, and alanine, are involved in intracellular isosmotic regulation in the lobster, with different levels of involvement in pre- and postmetamorphic stages. The ontogenetic changes in intracellular isosmotic regulation are discussed in relation to the changes in extracellular regulation (osmoregulation) in the lobster. PMID:10521321

  5. Role of heparin and non heparin binding serpins in coagulation and angiogenesis: A complex interplay.

    PubMed

    Bhakuni, Teena; Ali, Mohammad Farhan; Ahmad, Irshad; Bano, Shadabi; Ansari, Shoyab; Jairajpuri, Mohamad Aman

    2016-08-15

    Pro-coagulant, anti-coagulant and fibrinolytic pathways are responsible for maintaining hemostatic balance under physiological conditions. Any deviation from these pathways would result in hypercoagulability leading to life threatening diseases like myocardial infarction, stroke, portal vein thrombosis, deep vein thrombosis (DVT) and pulmonary embolism (PE). Angiogenesis is the process of sprouting of new blood vessels from pre-existing ones and plays a critical role in vascular repair, diabetic retinopathy, chronic inflammation and cancer progression. Serpins; a superfamily of protease inhibitors, play a key role in regulating both angiogenesis and coagulation. They are characterized by the presence of highly conserved secondary structure comprising of 3 β-sheets and 7-9 α-helices. Inhibitory role of serpins is modulated by binding to cofactors, specially heparin and heparan sulfate proteoglycans (HSPGs) present on cell surfaces and extracellular matrix. Heparin and HSPGs are the mainstay of anti-coagulant therapy and also have therapeutic potential as anti-angiogenic inhibitors. Many of the heparin binding serpins that regulate coagulation cascade are also potent inhibitors of angiogenesis. Understanding the molecular mechanism of the switch between their specific anti-coagulant and anti-angiogenic role during inflammation, stress and regular hemostasis is important. In this review, we have tried to integrate the role of different serpins, their interaction with cofactors and their interplay in regulating coagulation and angiogenesis.

  6. Role of heparin and non heparin binding serpins in coagulation and angiogenesis: A complex interplay.

    PubMed

    Bhakuni, Teena; Ali, Mohammad Farhan; Ahmad, Irshad; Bano, Shadabi; Ansari, Shoyab; Jairajpuri, Mohamad Aman

    2016-08-15

    Pro-coagulant, anti-coagulant and fibrinolytic pathways are responsible for maintaining hemostatic balance under physiological conditions. Any deviation from these pathways would result in hypercoagulability leading to life threatening diseases like myocardial infarction, stroke, portal vein thrombosis, deep vein thrombosis (DVT) and pulmonary embolism (PE). Angiogenesis is the process of sprouting of new blood vessels from pre-existing ones and plays a critical role in vascular repair, diabetic retinopathy, chronic inflammation and cancer progression. Serpins; a superfamily of protease inhibitors, play a key role in regulating both angiogenesis and coagulation. They are characterized by the presence of highly conserved secondary structure comprising of 3 β-sheets and 7-9 α-helices. Inhibitory role of serpins is modulated by binding to cofactors, specially heparin and heparan sulfate proteoglycans (HSPGs) present on cell surfaces and extracellular matrix. Heparin and HSPGs are the mainstay of anti-coagulant therapy and also have therapeutic potential as anti-angiogenic inhibitors. Many of the heparin binding serpins that regulate coagulation cascade are also potent inhibitors of angiogenesis. Understanding the molecular mechanism of the switch between their specific anti-coagulant and anti-angiogenic role during inflammation, stress and regular hemostasis is important. In this review, we have tried to integrate the role of different serpins, their interaction with cofactors and their interplay in regulating coagulation and angiogenesis. PMID:27372899

  7. Feedback Regulation of Cell-Substratum Adhesion by Integrin-Mediated Intracellular Ca2+ Signaling

    NASA Astrophysics Data System (ADS)

    Sjaastad, Michael D.; Angres, Brigitte; Lewis, Richard S.; Nelson, W. James

    1994-08-01

    Integrin binding to extracellular matrix (ECM) regulates cell migration and gene expression in embryogenesis, metastasis, wound healing, and the inflammatory response. In many cases, binding of integrins to ECM triggers intracellular signaling pathways. The regulatory roles of intracellular signaling mechanisms in these events are poorly understood. Using single-cell analysis, we demonstrate that beads coated with peptide containing Arg-Gly-Asp (RGD), an integrin recognition motif found in many ECM proteins, elicit a rapid transient increase in intracellular calcium in Madin-Darby canine kidney (MDCK) epithelial cells. Also, significantly more beads bind to responding cells than to nonresponders. Several independent methods that inhibit RGD-induced Ca2+ signaling decrease both the number of beads bound and the strength of adhesion to an RGD-coated substratum. These results indicate that intracellular Ca2+ signaling participates in a positive feedback loop that enhances integrin-mediated cell adhesion

  8. Intracellular Regulation of Cross-Presentation during Dendritic Cell Maturation

    PubMed Central

    Wagner, Claudia S.; Grotzke, Jeff; Cresswell, Peter

    2013-01-01

    We have investigated the effect of different maturation stimuli on the ability of mature dendritic cells (DCs) to cross-present newly acquired particulate antigens. Cross-presentation was impaired in DCs matured by treatment with TNF-α, CpG and LPS, but was less affected upon CD40L-induced maturation. The difference could not be explained by decreased antigen uptake or translocation into the cytosol, but decreased cross-presentation ability did correlate with increased phagosomal/lysosomal acidification. Nevertheless, intra-phagosomal degradation of OVA was not increased in matured samples, suggesting that decreasing phagosomal pH may also regulate cross-presentation by a mechanism other than enhancing degradation. PMID:24098562

  9. Synphilin-1 binds ATP and regulates intracellular energy status.

    PubMed

    Li, Tianxia; Liu, Jingnan; Smith, Wanli W

    2014-01-01

    Recent studies have suggested that synphilin-1, a cytoplasmic protein, is involved in energy homeostasis. Overexpression of synphilin-1 in neurons results in hyperphagia and obesity in animal models. However, the mechanism by which synphilin-1 alters energy homeostasis is unknown. Here, we used cell models and biochemical approaches to investigate the cellular functions of synphilin-1 that may affect energy balance. Synphilin-1 was pulled down by ATP-agarose beads, and the addition of ATP and ADP reduced this binding, indicating that synphilin-1 bound ADP and ATP. Synphilin-1 also bound GMP, GDP, and GTP but with a lower affinity than it bound ATP. In contrast, synphilin-1 did not bind with CTP. Overexpression of synphilin-1 in HEK293T cells significantly increased cellular ATP levels. Genetic alteration to abolish predicted ATP binding motifs of synphilin-1 or knockdown of synphilin-1 by siRNA reduced cellular ATP levels. Together, these data demonstrate that synphilin-1 binds and regulates the cellular energy molecule, ATP. These findings provide a molecular basis for understanding the actions of synphilin-1 in energy homeostasis.

  10. Heparin alters viral serpin, serp-1, anti-thrombolytic activity to anti-thrombotic activity.

    PubMed

    Li, Xing; Schneider, Heather; Peters, Andrew; Macaulay, Colin; King, Elaine; Sun, Yunming; Liu, Liying; Dai, Erbin; Davids, Jennifer A; McFadden, Grant; Lucas, Alexandra

    2008-01-01

    Serine protease inhibitors (serpins) regulate coagulation and inflammation. Heparin, a glycosaminoglycan, is an important cofactor for modulation of the inhibitory function of mammalian serpins. The secreted myxoma viral serpin, Serp-1 exerts profound anti-inflammatory activity in a wide range of animal models. Serp-1 anti-inflammatory and anti-atherogenic activity is dependent upon inhibition of the uPA / uPA receptor thrombolytic complex. We demonstrate here that heparin binds to Serp-1 and enhances Serp-1 inhibition of thrombin, a human pro-thrombotic serine protease, in vitro, altering inhibitory activity to a more predominant anti-thrombotic activity. Heparin also facilitates the simultaneous thrombin-mediated cleavage of Serp-1 and prevents formation of a serpin-typical SDS-resistant complex, implying mutual neutralization of Serp-1 and thrombin. In a cell-based assay, heparin facilitates Serp-1 reversal of cellular activation by stabilizing cellular membrane fluidity in thrombin-activated monocytes. In conclusion, heparin and other GAGs serve as cofactors enhancing Serp-1 regulation of local thrombotic and inflammatory pathways. PMID:18949070

  11. Regulation and control of intracellular algae (= zooxanthellae) in hard corals

    PubMed Central

    Jones, R. J.; Yellowlees, D.

    1997-01-01

    To examine algal (= zooxanthellae) regulation and control, and the factors determining algal densities in hard corals, the zooxanthellae mitotic index and release rates were regularly determined in branch tips from a colony of a staghorn coral, Acropora formosa, recovering from a coral 'bleaching' event (the stress-related dissociation of the coral–algal symbiosis). Mathematical models based upon density-dependent decreases in the algal division frequency and increases in algal release rates during the post-bleaching recovery period accurately predict the observed recovery period (ca. 20 weeks). The models suggest that (i) the colony recovered its algal population from the division of the remaining zooxanthellae, and (ii) the continual loss of zooxanthellae significantly slowed the recovery of the coral. Possible reasons for the 'paradoxical' loss of healthy zooxanthellae from the bleached coral are discussed in terms of endodermal processes occurring in the recovering coral and the redistribution of newly formed zooxanthellae to aposymbiotic host cells. At a steady-state algal density of 2.1 x 106 zooxanthellae cm-2 at the end of the recovery period, the zooxanthellae would have to form a double layer of cells in the coral tissues, consistent with microscopic observations. Neighbouring colonies of A. formosa with inherently higher algal densities possess proportionately smaller zooxanthellae. Results suggest that space availability and the size of the algal symbionts determines the algal densities in the coral colonies. The large increases in the algal densities reported in corals exposed to elevated nutrient concentrations (i.e between a two- and five-fold increase in the algal standing stock) are not consistent with this theory. We suggest that increases of this magnitude are a product of the experimental conditions: reasons for this statement are discussed. We propose that the stability of the coral–algal symbiosis under non-stress conditions, and the

  12. Intracellular pathways regulating ciliary beating of rat brain ependymal cells

    PubMed Central

    Nguyen, Thien; Chin, Wei-Chun; O’Brien, Jennifer A; Verdugo, Pedro; Berger, Albert J

    2001-01-01

    The mammalian brain ventricles are lined with ciliated ependymal cells. As yet little is known about the mechanisms by which neurotransmitters regulate cilia beat frequency (CBF). Application of 5-HT to ependymal cells in cultured rat brainstem slices caused CBF to increase. 5-HT had an EC50 of 30 μM and at 100 μM attained a near-maximal CBF increase of 52.7 ± 4.1 % (mean ± s.d.) (n= 8). Bathing slices in Ca2+-free solution markedly reduced the 5-HT-mediated increase in CBF. Fluorescence measurements revealed that 5-HT caused a marked transient elevation in cytosolic Ca2+ ([Ca2+]c) that then slowly decreased to a plateau level. Analysis showed that the [Ca2+]c transient was due to release of Ca2+ from inositol 1,4,5-trisphosphate (IP3)-sensitive stores; the plateau was probably due to extracellular Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels. Application of ATP caused a sustained decrease in CBF. ATP had an EC50 of about 50 μM and 100 μM ATP resulted in a maximal 57.5 ± 6.5 % (n= 12) decrease in CBF. The ATP-induced decrease in CBF was unaffected by lowering extracellular [Ca2+], and no changes in [Ca2+]c were observed. Exposure of ependymal cells to forskolin caused a decrease in CBF. Ciliated ependymal cells loaded with caged cAMP exhibited a 54.3 ± 7.5 % (n= 9) decrease in CBF following uncaging. These results suggest that ATP reduces CBF by a Ca2+-independent cAMP-mediated pathway. Application of 5-HT and adenosine-5′-O-3-thiotriphosphate (ATP-γ-S) to acutely isolated ciliated ependymal cells resulted in CBF responses similar to those of ependymal cells in cultured slices suggesting that these neurotransmitters act directly on these cells. The opposite response of ciliated ependymal cells to 5-HT and ATP provides a novel mechanism for their active involvement in central nervous system signalling. PMID:11179397

  13. Regulation of acetylcholine release by intracellular acidification of developing motoneurons in Xenopus cell cultures

    PubMed Central

    Chen, Yu-Hwa; Wu, Mei-Lin; Fu, Wen-Mei

    1998-01-01

    The effects of intracellular pH changes on the acetylcholine (ACh) release and cytoplasmic Ca2+ concentration at developing neuromuscular synapses were studied in Xenopus nerve-muscle co-cultures. Spontaneous and evoked ACh release of motoneurons was monitored by using whole-cell voltage-clamped myocytes. Intracellular alkalinization with 15 mm NH4Cl slightly reduced the frequency of spontaneous synaptic currents (SSCs). However, cytosolic acidification following withdrawal of extracellular NH4Cl caused a marked and transient increase in spontaneous ACh release. Another method of cytosolic acidification was used in which NaCl in Ringer solution was replaced with weak organic acids. The increase in spontaneous ACh release paralleled the level of intracellular acidification resulting from addition of these organic acids. Acetate and propionate but not isethionate, methylsulphate and glucuronate, caused an increase in intracellular pH and a marked increase in spontaneous ACh release. Impulse-evoked ACh release was slightly augmented by intracellular alkalinization and inhibited by cytosolic acidification. Cytosolic acidification was accompanied by an elevation in the cytoplasmic Ca2+ concentration ([Ca2+]i), resulting from both external Ca2+ influx and intracellular Ca2+ mobilization. In contrast, the increase in [Ca2+]i induced by high K+ was inhibited by cytosolic acidification. We conclude that cytosolic acidification regulates spontaneous and evoked ACh release differentially in Xenopus motoneurons, increasing spontaneous ACh release but inhibiting evoked ACh release. PMID:9490814

  14. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.

    PubMed

    Corduan, Aurélie; Plé, Hélène; Laffont, Benoit; Wallon, Thérèse; Plante, Isabelle; Landry, Patricia; Provost, Patrick

    2015-05-01

    Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation. PMID:25673011

  15. SERPINE2 Inhibits IL-1α-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF-κB/AP-1 Pathways

    PubMed Central

    Scotece, Morena; Abella, Vanessa; Lois, Ana; Lopez, Veronica; Pino, Jesus; Gomez, Rodolfo; Gomez-Reino, Juan J.; Gualillo, Oreste

    2015-01-01

    Objectives Osteoarthritis (OA) is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs) in chondrocytes, contributing thus to the extracellular matrix (ECM) degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2), under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored. Methods SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis. Results Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1. Conclusions Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA. PMID:26305372

  16. Stress-induced inhibition of nonsense mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11

    PubMed Central

    Martin, Leenus; Gardner, Lawrence B.

    2014-01-01

    SLC7A11 encodes a subunit of the xCT cystine/glutamate amino acid transport system and plays a critical role in the generation of glutathione and the protection of cells from oxidative stress. Expression of SLC7A11 promotes tumorigenesis and chemotherapy resistance, but while SLC7A11 has been previously noted to be upregulated in hypoxic cells its regulation has not been fully delineated. We have recently shown that nonsense mediated RNA decay (NMD) is inhibited by cellular stresses generated by the tumor microenvironment, including hypoxia, and augments tumorigenesis. Here we demonstrate that the inhibition of NMD by various cellular stresses leads to the stabilization and upregulation of SLC7A11 mRNA and protein. The inhibition of NMD and upregulation of SLC7A11 augments intracellular cystine transport, and increases intracellular levels of cysteine and glutathione. Accordinglyy, the inhibition of NMD protects cells against oxidative stress via SLC7A11 upregulation. Together our studies identify a mechanism for the dynamic regulation of SLC7A11, through the stress-inhibited regulation of NMD, and add to the growing evidence that the inhibition of NMD is an adaptive response. PMID:25399695

  17. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling.

    PubMed

    Stephen, Terri-Leigh; Higgs, Nathalie F; Sheehan, David F; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I Lorena; Kittler, Josef T

    2015-12-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function. PMID:26631479

  18. Transcriptional regulation of the Chlamydia heat shock stress response in an intracellular infection

    PubMed Central

    Hanson, Brett R.; Tan, Ming

    2015-01-01

    Summary Bacteria encode heat shock proteins that aid in survival during stressful growth conditions. In addition, the major heat shock proteins of the intracellular bacterium Chlamydia trachomatis have been associated with immune pathology and disease. We developed a ChIP-qPCR method to study the regulation of chlamydial heat shock gene regulation during an intracellular infection. This approach allowed us to show that chlamydial heat shock genes are regulated by the transcription factor HrcA within an infected cell, providing validation for previous in vitro findings. Induction of chlamydial heat shock gene expression by elevated temperature was due to loss of HrcA binding to heat shock promoters, supporting a mechanism of derepression. This heat shock response was rapid, while recovery of HrcA binding and return to non-stress transcript levels occurred more slowly. We also found that control of heat shock gene expression was differentially regulated over the course of the intracellular Chlamydia infection. There was evidence of HrcA-mediated regulation of heat shock genes throughout the chlamydial developmental cycle but the level of repression was lower at early times. This is the first study of Chlamydia-infected cells showing the effect of an environmental signal on transcription factor-DNA binding and target gene expression in the bacterium. PMID:26075961

  19. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    PubMed

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited. PMID:24256552

  20. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    PubMed

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.

  1. Intracellular pH regulation in isolated hepatopancreas cells from the Roman snail (Helix pomatia).

    PubMed

    Manzl, Claudia; Krumschnabel, Gerhard; Schwarzbaum, Pablo J; Chabicovsky, Monika; Dallinger, Reinhard

    2004-01-01

    The mechanisms of intracellular pH (pHi) regulation were studied in isolated hepatopancreas cells from the Roman snail, Helix pomatia. The relationship between intracellular and extracellular pH indicated that pHi is actively regulated in these cells. At least three pHi-regulatory ion transporters were found to be present in these cells and to be responsible for the maintenance of pHi: an amiloride-sensitive Na+/H+ exchanger, a 4-acetamido-4'-isothiocyanostilbene-2,2'disulfonic acid (SITS)-sensitive, presumably Na(+)-dependent, Cl-/HCO3-exchanger, and a bafilomycin-sensitive H(+)-pump. Inhibition of one of these transporters alone did not affect steady state pHi, whereas incubation with amiloride and SITS in combination resulted in a significant intracellular acidification. Following the induction of intracellular acidosis by addition of the weak acid Na+propionate, the Na+/H+ exchanger was immediately activated leading to a rapid recovery of pHi towards the baseline level. Both the SITS-sensitive mechanism and the H(+)-pump responded more slowly, but were of similar importance for pHi recovery. Measurement of pHi recovery from acidification in the three discernible types of hepatopancreas cells with a video fluorescence image system revealed slightly differing response patterns, the physiological significance of which remains to be determined. PMID:14695690

  2. Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella Typhi.

    PubMed

    Haghjoo, Erik; Galán, Jorge E

    2007-06-01

    Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of typhoid fever, is an exclusively human pathogen. Little is known about specific factors that may confer to this bacterium its unique pathogenic features. One of these determinants is CdtB, a homologue of the active subunit of the cytolethal distending toxin, which causes DNA damage leading to cell cycle arrest and distension of intoxicated cells. A unique property of S. Typhi CdtB is that it is only synthesized when this bacterium is within an intracellular compartment. Through a genetic screen, we have identified a transcriptional regulatory protein that controls the intracellular expression of cdtB. This regulator, which we have named IgeR, is a member of the DeoR family of transcriptional regulatory proteins and is highly conserved in all S. enterica serovars. IgeR directly binds the cdtB promoter and represses its expression in the extracellular environment. Microarray analysis identified additional IgeR-regulated genes that are involved in virulence. Constitutive expression of igeR resulted in the reduction of intracellular expression of cdtB by S. Typhi and in significant impairment of the virulence of Salmonella enterica serovar Typhimurium (S. Typhimurium) in mice. We propose that IgeR may co-ordinate gene expression during Salmonella's transition from an extracellular to an intracellular environment. PMID:17555437

  3. TMEM203 Is a Novel Regulator of Intracellular Calcium Homeostasis and Is Required for Spermatogenesis

    PubMed Central

    Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.

    2015-01-01

    Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873

  4. Intracellular oxygen determined by respiration regulates localization of Ras and prenylated proteins

    PubMed Central

    Kim, A; Davis, R; Higuchi, M

    2015-01-01

    Reduction of mitochondrial DNA (mtDNA) content induces the reduction of oxidative phosphorylation and dependence on fermentative glycolysis, that is, the Warburg effect. In aggressive prostate cancer (PCa), the reduction of mtDNA reduces oxygen consumption, increases intracellular oxygen concentration, and induces constitutive activation of Ras. Many essential proteins for cell death, growth, differentiation, and development, such as Ras, require prenylation for subcellular localization and activation. Prenylation of a protein is defined as the attachment of isoprenoids to a cysteine residue at or near the C-terminus. 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) produces isoprenoids, and is posttranslationally regulated by oxygen. We investigated a critical role of intracellular oxygen in membrane localization of prenylated proteins. Localization of prenylated proteins (H-Ras, prelamin A/C, and Rab5a) was observed in poorly differentiated PCa (PC-3) and well-differentiated PCa (LNCaP) cells. PC-3 cells exhibited high intracellular oxygen concentration, and H-Ras, prelamin A/C, and Rab5a were localized to various membranes (Golgi and plasma membrane, nuclear membrane, and early endosomes, respectively). Remarkably, exogenous hypoxia (0.2% O2) in PC-3 cells induced intracellular hypoxia and changed the localization of the prenylated proteins. H-Ras and Rab5a were translocated to cytosol, and prelamin A/C was in the nucleus forming an abnormal nuclear envelope. The localization was reversed by mevalonate indicating the involvement of mevalonate pathway. In contrast, in LNCaP cells, exhibiting low intracellular oxygen concentration, H-Ras and Rab5a were localized in the cytosol, and prelamin A/C was inside the nucleus forming an inadequate nuclear envelope. Exogenous hyperoxia (40% O2) increased the intracellular oxygen concentration and induced Ras translocation from cytosol to the membrane. Prelamin A/C was translocated to the nuclear membrane and formed a

  5. Intracellular oxygen determined by respiration regulates localization of Ras and prenylated proteins.

    PubMed

    Kim, A; Davis, R; Higuchi, M

    2015-07-16

    Reduction of mitochondrial DNA (mtDNA) content induces the reduction of oxidative phosphorylation and dependence on fermentative glycolysis, that is, the Warburg effect. In aggressive prostate cancer (PCa), the reduction of mtDNA reduces oxygen consumption, increases intracellular oxygen concentration, and induces constitutive activation of Ras. Many essential proteins for cell death, growth, differentiation, and development, such as Ras, require prenylation for subcellular localization and activation. Prenylation of a protein is defined as the attachment of isoprenoids to a cysteine residue at or near the C-terminus. 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) produces isoprenoids, and is posttranslationally regulated by oxygen. We investigated a critical role of intracellular oxygen in membrane localization of prenylated proteins. Localization of prenylated proteins (H-Ras, prelamin A/C, and Rab5a) was observed in poorly differentiated PCa (PC-3) and well-differentiated PCa (LNCaP) cells. PC-3 cells exhibited high intracellular oxygen concentration, and H-Ras, prelamin A/C, and Rab5a were localized to various membranes (Golgi and plasma membrane, nuclear membrane, and early endosomes, respectively). Remarkably, exogenous hypoxia (0.2% O2) in PC-3 cells induced intracellular hypoxia and changed the localization of the prenylated proteins. H-Ras and Rab5a were translocated to cytosol, and prelamin A/C was in the nucleus forming an abnormal nuclear envelope. The localization was reversed by mevalonate indicating the involvement of mevalonate pathway. In contrast, in LNCaP cells, exhibiting low intracellular oxygen concentration, H-Ras and Rab5a were localized in the cytosol, and prelamin A/C was inside the nucleus forming an inadequate nuclear envelope. Exogenous hyperoxia (40% O2) increased the intracellular oxygen concentration and induced Ras translocation from cytosol to the membrane. Prelamin A/C was translocated to the nuclear membrane and formed a

  6. The Spn4 gene of Drosophila encodes a potent furin-directed secretory pathway serpin

    PubMed Central

    Richer, Martin J.; Keays, Clairessa A.; Waterhouse, Jennifer; Minhas, Jessey; Hashimoto, Carl; Jean, François

    2004-01-01

    Proprotein convertases (PCs) are an important class of host-cell serine endoproteases implicated in many physiological and pathological processes. Owing to their expanding roles in the proteolytic events required for generating infectious microbial pathogens and for tumor growth and invasiveness, there is increasing interest in identifying endogenous PC inhibitors. Here we report the identification of Spn4A, a previously uncharacterized secretory pathway serine protease inhibitor (serpin) from Drosophila melanogaster that contains a consensus furin cleavage site, -ArgP4-Arg-Lys-ArgP1↓-, in its reactive site loop (RSL). Our biochemical and kinetics analysis revealed that recombinant Spn4A inhibits human furin (Ki, 13 pM; kass, 3.2 × 107 M–1·s–1) and Drosophila PC2 (Ki, 3.5 nM; kass, 9.2 × 104 M–1·s–1) by a slow-binding mechanism characteristic of serpin molecules and forms a kinetically trapped SDS-stable complex with each enzyme. For both PCs, the stoichiometry of inhibition by Spn4A is nearly 1, which is characteristic of known physiological serpin–protease interactions. Mass analysis of furin–Spn4A reaction products identified the actual reactive site center of Spn4A to be -ArgP4-Arg-Lys-ArgP1↓-. Moreover, we demonstrate that Spn4A's highly effective PC inhibition properties are critically dependent on the unusual length of its RSL, which is composed of 18 aa instead of the typical 17-residue RSL found in most other inhibitory serpins. The identification of Spn4A, the most potent and effective natural serpin of PCs identified to date, suggests that Spn4A could be a prototype of endogenous serpins involved in the precise regulation of PC-dependent proteolytic cleavage events in the secretory pathway of eukaryotic cells. PMID:15247425

  7. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants.

    PubMed

    Barbez, Elke; Kubeš, Martin; Rolčík, Jakub; Béziat, Chloé; Pěnčík, Aleš; Wang, Bangjun; Rosquete, Michel Ruiz; Zhu, Jinsheng; Dobrev, Petre I; Lee, Yuree; Zažímalovà, Eva; Petrášek, Jan; Geisler, Markus; Friml, Jiří; Kleine-Vehn, Jürgen

    2012-05-01

    The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program. The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) and cellular auxin transport. We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-dependent regulation of plant growth by determining the cellular sensitivity to auxin. PILS proteins regulate intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signalling. PILS activity affects the level of endogenous auxin indole-3-acetic acid (IAA), presumably via intracellular accumulation and metabolism. Our findings reveal that the transport machinery to compartmentalize auxin within the cell is of an unexpected molecular complexity and demonstrate this compartmentalization to be functionally important for a number of developmental processes. PMID:22504182

  8. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  9. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium

    PubMed Central

    Vallabhapurapu, Subrahmanya D.; Blanco, Víctor M.; Sulaiman, Mahaboob K.; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S.; Qi, Xiaoyang

    2015-01-01

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS. PMID:26462157

  10. Identification and characterization of a serpin from Emeria acervulina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria. A serpin from Eimeria acervulina was cloned, expressed and partially characterized. Random screening of an E. acervulina sporozoite cDNA library identified a singl...

  11. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling

    PubMed Central

    Miller, Evan W.; Dickinson, Bryan C.; Chang, Christopher J.

    2010-01-01

    Hydrogen peroxide (H2O2) produced by cell-surface NADPH Oxidase (Nox) enzymes is emerging as an important signaling molecule for growth, differentiation, and migration processes. However, how cells spatially regulate H2O2 to achieve physiological redox signaling over nonspecific oxidative stress pathways is insufficiently understood. Here we report that the water channel Aquaporin-3 (AQP3) can facilitate the uptake of H2O2 into mammalian cells and mediate downstream intracellular signaling. Molecular imaging with Peroxy Yellow 1 Methyl-Ester (PY1-ME), a new chemoselective fluorescent indicator for H2O2, directly demonstrates that aquaporin isoforms AQP3 and AQP8, but not AQP1, can promote uptake of H2O2 specifically through membranes in mammalian cells. Moreover, we show that intracellular H2O2 accumulation can be modulated up or down based on endogenous AQP3 expression, which in turn can influence downstream cell signaling cascades. Finally, we establish that AQP3 is required for Nox-derived H2O2 signaling upon growth factor stimulation. Taken together, our findings demonstrate that the downstream intracellular effects of H2O2 can be regulated across biological barriers, a discovery that has broad implications for the controlled use of this potentially toxic small molecule for beneficial physiological functions. PMID:20724658

  12. Intracellular role of adenylyl cyclase in regulation of lateral pseudopod formation during Dictyostelium chemotaxis.

    PubMed

    Stepanovic, Vesna; Wessels, Deborah; Daniels, Karla; Loomis, William F; Soll, David R

    2005-04-01

    Cyclic AMP (cAMP) functions as the extracellular chemoattractant in the aggregation phase of Dictyostelium development. There is some question, however, concerning what role, if any, it plays intracellularly in motility and chemotaxis. To test for such a role, the behavior of null mutants of acaA, the adenylyl cyclase gene that encodes the enzyme responsible for cAMP synthesis during aggregation, was analyzed in buffer and in response to experimentally generated spatial and temporal gradients of extracellular cAMP. acaA- cells were defective in suppressing lateral pseudopods in response to a spatial gradient of cAMP and to an increasing temporal gradient of cAMP. acaA- cells were incapable of chemotaxis in natural waves of cAMP generated by majority control cells in mixed cultures. These results indicate that intracellular cAMP and, hence, adenylyl cyclase play an intracellular role in the chemotactic response. The behavioral defects of acaA- cells were surprisingly similar to those of cells of null mutants of regA, which encodes the intracellular phosphodiesterase that hydrolyzes cAMP and, hence, functions opposite adenylyl cyclase A (ACA). This result is consistent with the hypothesis that ACA and RegA are components of a receptor-regulated intracellular circuit that controls protein kinase A activity. In this model, the suppression of lateral pseudopods in the front of a natural wave depends on a complete circuit. Hence, deletion of any component of the circuit (i.e., RegA or ACA) would result in the same chemotactic defect.

  13. A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin).

    PubMed

    Ulbricht, David; Pippel, Jan; Schultz, Stephan; Meier, René; Sträter, Norbert; Heiker, John T

    2015-09-15

    SerpinA12 (vaspin) is thought to be mainly expressed in adipose tissue and has multiple beneficial effects on metabolic, inflammatory and atherogenic processes related to obesity. KLK7 (kallikrein 7) is the only known protease target of vaspin to date and is inhibited with a moderate inhibition rate. In the crystal structure, the cleavage site (P1-P1') of the vaspin reactive centre loop is fairly rigid compared with the flexible residues before P2, possibly supported by an ionic interaction of P1' glutamate (Glu(379)) with an arginine residue (Arg(302)) of the β-sheet C. A P1' glutamate seems highly unusual and unfavourable for the protease KLK7. We characterized vaspin mutants to investigate the roles of these two residues in protease inhibition and recognition by vaspin. Reactive centre loop mutations changing the P1' residue or altering the reactive centre loop conformation significantly increased inhibition parameters, whereas removal of the positive charge within β-sheet C impeded the serpin-protease interaction. Arg(302) is a crucial contact to enable vaspin recognition by KLK7 and it supports moderate inhibition of the serpin despite the presence of the detrimental P1' Glu(379), which clearly represents a major limiting factor for vaspin-inhibitory activity. We also show that the vaspin-inhibition rate for KLK7 can be modestly increased by heparin and demonstrate that vaspin is a heparin-binding serpin. Noteworthily, we observed vaspin as a remarkably thermostable serpin and found that Glu(379) and Arg(302) influence heat-induced polymerization. These structural and functional results reveal the mechanistic basis of how reactive centre loop sequence and exosite interaction in vaspin enable KLK7 recognition and regulate protease inhibition as well as stability of this adipose tissue-derived serpin.

  14. Release of plasminogen activator inhibitor-1 from human astrocytes is regulated by intracellular ceramide.

    PubMed

    Kimura, M; Soeda, S; Oda, M; Ochiai, T; Kihara, T; Ono, N; Shimeno, H

    2000-12-15

    The present study underscores a regulatory role of intracellular ceramide in astrocytes for the release of an extracellular serine protease, tissue-type plasminogen activator (t-PA), and its inhibitor, plasminogen activator inhibitor-1 (PAI-1). Treatment of cultured human astrocytes with N-acetylsphingosine, a cell-permeable short-chain ceramide analogue or daunorubicin that could increase intracellular ceramide via activation of ceramide synthase or sphingomyelin hydrolysis increased the release of t-PA and conversely decreased the PAI-1 release. Interestingly, treatment of the astrocytes with tumor necrosis factor (TNF)-alpha also increased the intracellular ceramide levels but caused the elevation of PAI-1 release without altering the t-PA release. These data suggest that the generation of ceramide in astrocytes is linked at least with the regulation of PAI-1 release. We also demonstrate that the suppression of PAI-1 release with daunorubicin accelerates the cell death of neuronally differentiated PC12 cells and suggest an antiapoptotic role of PAI-1 in the nervous system.

  15. Phosphate-Regulated Induction of Intracellular Ribonucleases in Cultured Tomato (Lycopersicon esculentum) Cells 1

    PubMed Central

    Löffler, Andreas; Abel, Steffen; Jost, Wolfgang; Beintema, Jaap J.; Glund, Konrad

    1992-01-01

    Four intracellular RNases were found to be induced in cultured tomato (Lycopersicon esculentum) cells upon phosphate starvation. Localization studies revealed three (RNases LV 1-3) in the vacuoles and one (RNase LX) outside these organelles. All of these RNases were purified to homogeneity and were shown to be type I RNases on the basis of type of splitting, substrate, and base specificity at the cleavage site, molecular weight, isoelectric point, and pH optimum. Moreover, RNase LV 3 was shown by fingerprinting of tryptic digests on reversed-phase high-performance liquid chromatography and sequencing the N terminus and two tryptic peptides to be structurally very similar to a recently characterized extracellular RNase LE which is also phosphate regulated (Nürnberger et al. [1990] Plant Physiol 92: 970-976; Jost et al. [1991] Eur J Biochem 198: 1-6). Expression of the four intracellular RNases is induced by depleting the cells of phosphate and repressed by adding phosphate. Our studies indicate that higher plants, in addition to secreting enzymes for scavanging phosphate under starvation conditions, also induce intracellularly emergency rescue systems. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668816

  16. Galectin-3 regulates intracellular trafficking of epidermal growth factor receptor through Alix and promotes keratinocyte migration

    PubMed Central

    Liu, Wei; Hsu, Daniel K.; Chen, Huan-Yuan; Yang, Ri-Yao; Carraway, Kermit L.; Isseroff, Roslyn R.; Liu, Fu-Tong

    2012-01-01

    The epidermal growth factor receptor (EGFR)-mediated signaling pathways are important in a variety of cellular processes, including cell migration and wound re-epithelialization. Intracellular trafficking of EGFR is critical for maintaining EGFR surface expression. Galectin-3, a member of an animal lectin family, has been implicated in a number of physiological and pathological processes. Through studies of galectin-3-deficient mice and cells isolated from these mice, we demonstrated that absence of galectin-3 impairs keratinocyte migration and skin wound re-epithelialization. We have linked this pro-migratory function to a crucial role of cytosolic galectin-3 in controlling intracellular trafficking and cell surface expression of EGFR after EGF stimulation. Without galectin-3, the surface levels of EGFR are dramatically reduced and the receptor accumulates diffusely in the cytoplasm. This is associated with reduced rates of both endocytosis and recycling of the receptor. We have provided evidence that this novel function of galectin-3 may be mediated through interaction with its binding partner Alix, which is a protein component of the endosomal sorting complex required for transport (ESCRT) machinery. Our results suggest that galectin-3 is potentially a critical regulator of a number of important cellular responses through its intracellular control of trafficking of cell surface receptors. PMID:22785133

  17. Intracellular Cl- as a signaling ion that potently regulates Na+/HCO3- transporters.

    PubMed

    Shcheynikov, Nikolay; Son, Aran; Hong, Jeong Hee; Yamazaki, Osamu; Ohana, Ehud; Kurtz, Ira; Shin, Dong Min; Muallem, Shmuel

    2015-01-20

    Cl(-) is a major anion in mammalian cells involved in transport processes that determines the intracellular activity of many ions and plasma membrane potential. Surprisingly, a role of intracellular Cl(-) (Cl(-) in) as a signaling ion has not been previously evaluated. Here we report that Cl(-) in functions as a regulator of cellular Na(+) and HCO3 (-) concentrations and transepithelial transport through modulating the activity of several electrogenic Na(+)-HCO3 (-) transporters. We describe the molecular mechanism(s) of this regulation by physiological Cl(-) in concentrations highlighting the role of GXXXP motifs in Cl(-) sensing. Regulation of the ubiquitous Na(+)-HCO3(-) co-transport (NBC)e1-B is mediated by two GXXXP-containing sites; regulation of NBCe2-C is dependent on a single GXXXP motif; and regulation of NBCe1-A depends on a cryptic GXXXP motif. In the basal state NBCe1-B is inhibited by high Cl(-) in interacting at a low affinity GXXXP-containing site. IP3 receptor binding protein released with IP3 (IRBIT) activation of NBCe1-B unmasks a second high affinity Cl(-) in interacting GXXXP-dependent site. By contrast, NBCe2-C, which does not interact with IRBIT, has a single high affinity N-terminal GXXP-containing Cl(-) in interacting site. NBCe1-A is unaffected by Cl(-) in between 5 and 140 mM. However, deletion of NBCe1-A residues 29-41 unmasks a cryptic GXXXP-containing site homologous with the NBCe1-B low affinity site that is involved in inhibition of NBCe1-A by Cl(-) in. These findings reveal a cellular Cl(-) in sensing mechanism that plays an important role in the regulation of Na(+) and HCO3 (-) transport, with critical implications for the role of Cl(-) in cellular ion homeostasis and epithelial fluid and electrolyte secretion.

  18. Apoplastic and intracellular plant sugars regulate developmental transitions in witches’ broom disease of cacao

    PubMed Central

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-01-01

    Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440

  19. Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao.

    PubMed

    Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães

    2015-03-01

    Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.

  20. Characterization and expression analysis of serpins in the Chinese mitten crab Eriocheir sinensis.

    PubMed

    Li, Qing; Liu, Lihua; Wang, Yang; Xie, Jing; He, Lin; Wang, Qun

    2016-01-10

    Serpins are a family of serine protease inhibitors that regulate physiological functions and are found widely in animals, plants and microorganisms. However, there are few reports on the role of serpins in the Chinese mitten crab, Eriocheir sinensis. We cloned two serpin genes from E. sinensis, named Esserpin-2 and Esserpin-3. Quantitative and semi-quantitative real-time PCR results showed that Esserpin-3 mRNA transcripts were detected in all the examined E. sinensis tissues, but were most highly expressed in immune tissues, including the gills, hepatopancreas and intestines. Lower levels of Esserpin-3 expression were detected in the accessory gland, testis and stomach, while the muscle and heart showed minimal expression. Esserpin-3 was differentially expressed throughout testis developmental stages. Esserpin-3 protein was localized in the tube wall and lumen of the accessory gland. In the testes, Esserpin-3 was detected in spermatogonia, spermatocytes and spermatids. As Esserpin-3 was also detected in the sperm contained within the seminal vesicles, it is suggested to be an intrinsic sperm protein. During the acrosome reaction, Esserpin-3 expression reduced gradually and completely disappeared after the reaction. Together, our results indicate that Esserpin-3 is an intrinsic sperm protein involved in regulation of sperm maturation and the acrosome reaction in E. sinensis.

  1. Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz

    PubMed Central

    Tsruya, Rachel; Schlesinger, Ayelet; Reich, Aderet; Gabay, Limor; Sapir, Amir; Shilo, Ben-Zion

    2002-01-01

    Spitz (Spi) is a TGFα homolog that is a cardinal ligand for the Drosophila EGF receptor throughout development. Cleavage of the ubiquitously expressed transmembrane form of Spi (mSpi) precedes EGF receptor activation. We show that the Star and Rhomboid (Rho) proteins are necessary for Spi cleavage in Drosophila cells. Complexes between the Spi and Star proteins, as well as between the Star and Rho proteins were identified, but no Spi–Star–Rho triple complex was detected. This observation suggests a sequential activity of Star and Rho in mSpi processing. The interactions between Spi and Star regulate the intracellular trafficking of Spi. The Spi precursor is retained in the periphery of the nucleus. Coexpression of Star promotes translocation of Spi to a compartment where Rho is present both in cells and in embryos. A Star deletion construct that maintains binding to Spi and Rho, but is unable to facilitate Spi translocation, lost biological activity. These results underscore the importance of regulated intracellular trafficking in processing of a TGFα family ligand. PMID:11799065

  2. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression

    PubMed Central

    Soliman, Elwy M.; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H.; Dranoff, Jonathan A.

    2010-01-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca2+ signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca2+ signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca2+ chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca2+ signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca2+ signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca2+ signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca2+ signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca2+ are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis. PMID:19131107

  3. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration.

    PubMed

    Dingyu, Wang; Fanjie, Meng; Zhengzheng, Ding; Baosheng, Huang; Chao, Yang; Yi, Pan; Huiwen, Wu; Jun, Guo; Gang, Hu

    2016-09-01

    Intracellular tension is the most important characteristic of neuron polarization as well as the growth and regeneration of axons, which can be generated by motor proteins and conducted along the cytoskeleton. To better understand this process, we created Förster resonance energy transfer (FRET)-based tension probes that can be incorporated into microfilaments to provide a real-time measurement of forces in neuron cytoskeletons. We found that our probe could be used to assess the structural tension of neuron polarity. Nerve growth factor (NGF) upregulated structural forces, whereas the glial-scar inhibitors chondroitin sulfate proteoglycan (CSPG) and aggrecan weakened such forces. Notably, the tension across axons was distributed uniformly and remarkably stronger than that in the cell body in NGF-stimulated neurons. The mechanosensors talin/vinculin could antagonize the effect of glial-scar inhibitors via structural forces. However, E-cadherin was closely associated with glial-scar inhibitor-induced downregulation of structural forces. Talin/vinculin was involved in the negative regulation of E-cadherin transcription through the nuclear factor-kappa B pathway. Collectively, this study clarified the mechanism underlying intracellular tension in the growth and regeneration of axons which, conversely, can be regulated by talin and E-cadherin.

  4. Intracellular pH regulation in chicken enterocytes: the importance of extracellular pH.

    PubMed

    Peral, M J; Calonge, M L; Ilundáin, A A

    1995-11-01

    The present work reports the effect of pHo on pHi and Na(+)-H+ exchanger activity. Intracellular pH tended to follow pHo, but the proton distribution across the cell membrane is not at electrochemical equilibrium. Removal of external Na+ acidified the cells by both reversing the direction of the Na(+)-H+ exchanger and hyperpolarizing the cell membrane potential. The relationship between pHo and the rate of Na(+)-dependent proton efflux following an acid load suggests that external protons interact with the Na(+)-H+ exchanger at a single site with an apparent pK (-log of the dissociation constant) of 7.22. The results demonstrate that maintenance of pHo in the physiological range is essential for maintenance of normal cell pH and that the activity of the Na(+)-H+ exchanger involved in pHi regulation is affected by external protons. The results also suggest that, at least at low pHo, some intracellular mechanism is involved in pHi regulation. PMID:8962700

  5. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response

    PubMed Central

    Zhao, Kai; Zhang, Meng; Zhang, Lei; Wang, Peng; Song, Guanhua; Liu, Bingyu; Wu, Haifeng; Yin, Zhinan; Gao, Chengjiang

    2016-01-01

    Osteopontin (OPN) is a multifunctional protein involved in both innate immunity and adaptive immunity. However, the function of OPN, especially the intracellular form OPN (iOPN) on innate antiviral immune response remains elusive. Here, we demonstrated that iOPN is an essential positive regulator to protect the host from virus infection. OPN deficiency or knockdown significantly attenuated virus-induced IRF3 activation, IFN-β production and antiviral response. Consistently, OPN-deficient mice were more susceptible to VSV infection than WT mice. Mechanistically, iOPN was found to interact with tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) and inhibit Triad3A-mediated K48-linked polyubiquitination and degradation of TRAF3 through the C-terminal fragment of iOPN. Therefore, our findings delineated a new function for iOPN to act as a positive regulator in innate antiviral immunity through stabilization of TRAF3. PMID:27026194

  6. Intracellular localization of differentially regulated RNA-specific adenosine deaminase isoforms in inflammation.

    PubMed

    Yang, Jing-Hua; Nie, Yongzhan; Zhao, Qingchuan; Su, Yingjun; Pypaert, Marc; Su, Haili; Rabinovici, Reuven

    2003-11-14

    Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional process that amplifies the repertoire of protein production. Recently, the induction of this process through up-regulation of the editing enzyme RNA-specific adenosine deaminase 1 (ADAR1) was documented during acute inflammation. Here we report that the inflammation-induced up-regulation of ADAR1 involves differential production and intracellular localization of several isoforms with distinct RNA-binding domains and localization signals. These include the full-length ADAR1 (p150) and two functionally active short isoforms (p80 and p110). ADAR1 p80 starts at a methionine 519 (M519) due to alternative splicing in exon 2, which deletes the putative nuclear localization signal, the Z-DNA binding domain, and the entire RNA binding domain I. ADAR1 p110 is the mouse homologue of the human ADAR1 110-kDa variant (M246), which retains the second half of the Z-DNA binding domain, all RNA binding domains, and the deaminase domain. Additional variations are found in the third RNA binding domain of ADAR1; they are differentially regulated during inflammation, generating isoforms with different levels of activities. Studies in several cell types transfected with ADAR1-EGFP chimeras demonstrated that the p150 and p80 variants are localized in the cytoplasm and nucleolus, respectively. In agreement with this observation, endogenous ADAR1 was identified in the cytoplasm and nucleolus of mouse splenocytes and HeLa cells. Since the ADAR1 variants are differentially regulated during acute inflammation, it suggests that the localization of these variants and of A-to-I RNA editing in the cytoplasm, nucleus, and nucleolus is intracellularly reorganized in response to inflammatory stimulation. PMID:12954622

  7. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour.

    PubMed

    Motamedi-Shad, Neda; Jagger, Alistair M; Liedtke, Maximilian; Faull, Sarah V; Nanda, Arjun Scott; Salvadori, Enrico; Wort, Joshua L; Kay, Christopher W M; Heyer-Chauhan, Narinder; Miranda, Elena; Perez, Juan; Ordóñez, Adriana; Haq, Imran; Irving, James A; Lomas, David A

    2016-10-01

    Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.

  8. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour.

    PubMed

    Motamedi-Shad, Neda; Jagger, Alistair M; Liedtke, Maximilian; Faull, Sarah V; Nanda, Arjun Scott; Salvadori, Enrico; Wort, Joshua L; Kay, Christopher W M; Heyer-Chauhan, Narinder; Miranda, Elena; Perez, Juan; Ordóñez, Adriana; Haq, Imran; Irving, James A; Lomas, David A

    2016-10-01

    Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation. PMID:27407165

  9. Cellular folding pathway of a metastable serpin.

    PubMed

    Chandrasekhar, Kshama; Ke, Haiping; Wang, Ning; Goodwin, Theresa; Gierasch, Lila M; Gershenson, Anne; Hebert, Daniel N

    2016-06-01

    Although proteins generally fold to their thermodynamically most stable state, some metastable proteins populate higher free energy states. Conformational changes from metastable higher free energy states to lower free energy states with greater stability can then generate the work required to perform physiologically important functions. However, how metastable proteins fold to these higher free energy states in the cell and avoid more stable but inactive conformations is poorly understood. The serpin family of metastable protease inhibitors uses large conformational changes that are downhill in free energy to inhibit target proteases by pulling apart the protease active site. The serpin antithrombin III (ATIII) targets thrombin and other proteases involved in blood coagulation, and ATIII misfolding can thus lead to thrombosis and other diseases. ATIII has three disulfide bonds, two near the N terminus and one near the C terminus. Our studies of ATIII in-cell folding reveal a surprising, biased order of disulfide bond formation, with early formation of the C-terminal disulfide, before formation of the N-terminal disulfides, critical for folding to the active, metastable state. Early folding of the predominantly β-sheet ATIII domain in this two-domain protein constrains the reactive center loop (RCL), which contains the protease-binding site, ensuring that the RCL remains accessible. N-linked glycans and carbohydrate-binding molecular chaperones contribute to the efficient folding and secretion of functional ATIII. The inability of a number of disease-associated ATIII variants to navigate the folding reaction helps to explain their disease phenotypes. PMID:27222580

  10. [Roles of intracellular calcium and monomeric G-proteins in regulating exocytosis of human neutrophils].

    PubMed

    Zhu, Ying; Wang, Jun-Han; Wu, Jian-Min; Xu, Tao; Zhang, Chun-Guang

    2003-12-25

    Neutrophils play a major role in host defense against microbial infection. There are some clues indicate that neutrophils may also play a role in the pathophysiology of the airway obstruction in chronic asthma. We studied the roles of intracellular calcium and GTP gamma S in the regulation of neutrophils exocytosis using pipette perfusion and membrane capacitance measurement technique in whole cell patch clamp configuration. The results showed that the membrane capacitance increase induced by calcium revealed a biphasic process. The first phase occurred when the calcium level was between 0.2-14 micromol/L with a plateau amplitude of 1.23 pF and a calcium EC50 of 1.1 micromol/L. This phase might correspond to the release of the tertiary granules. The second phase occurred when the calcium concentration was between 20-70 micromol/L with a plateau increment of 6.36 pF, the calcium EC50 being about 33 micromol/L. This phase might represent the release of the primary and secondary granules. Intracellular calcium also simultaneously increased the exocytotic rate and the eventual extent in neutrophils. On the other hand, GTP gamma S can increase the exocytotic rate in a dose-dependent manner but had no effect on the eventual extent of membrane capacitance increment (>6 pF) if the cell was stimulated for a long period (>20 min). GTP gamma S (ranging from 20 to 100 micromol/L) induced the neutrophils to release all four types of the granules at very low intracellular calcium level. PMID:14695488

  11. Vitamin E and Phosphoinositides Regulate the Intracellular Localization of the Hepatic α-Tocopherol Transfer Protein.

    PubMed

    Chung, Stacey; Ghelfi, Mikel; Atkinson, Jeffrey; Parker, Robert; Qian, Jinghui; Carlin, Cathleen; Manor, Danny

    2016-08-12

    α-Tocopherol (vitamin E) is an essential nutrient for all vertebrates. From the eight naturally occurring members of the vitamin E family, α-tocopherol is the most biologically active species and is selectively retained in tissues. The hepatic α-tocopherol transfer protein (TTP) preferentially selects dietary α-tocopherol and facilitates its transport through the hepatocyte and its secretion to the circulation. In doing so, TTP regulates body-wide levels of α-tocopherol. The mechanisms by which TTP facilitates α-tocopherol trafficking in hepatocytes are poorly understood. We found that the intracellular localization of TTP in hepatocytes is dynamic and responds to the presence of α-tocopherol. In the absence of the vitamin, TTP is localized to perinuclear vesicles that harbor CD71, transferrin, and Rab8, markers of the recycling endosomes. Upon treatment with α-tocopherol, TTP- and α-tocopherol-containing vesicles translocate to the plasma membrane, prior to secretion of the vitamin to the exterior of the cells. The change in TTP localization is specific to α-tocopherol and is time- and dose-dependent. The aberrant intracellular localization patterns of lipid binding-defective TTP mutants highlight the importance of protein-lipid interaction in the transport of α-tocopherol. These findings provide the basis for a proposed mechanistic model that describes TTP-facilitated trafficking of α-tocopherol through hepatocytes. PMID:27307040

  12. Intracellular univalent cations and the regulation of the BALB/c-3T3 cell cycle

    PubMed Central

    1981-01-01

    Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed. PMID:7204489

  13. Hepatic progenitor cells express SerpinB3

    PubMed Central

    2014-01-01

    Background In the setting of liver injury hepatic progenitor cells are activated, counterbalancing the inhibited regenerative capacity of mature hepatocytes. Chronic activation of this compartment may give rise to a subset of liver tumours with poor prognosis. SerpinB3, a serpin over-expressed in injured liver and in primary liver cancer, has been shown to induce apoptosis resistance, epithelial to mesenchymal transition and to increase TGF-beta and Myc expression. Aim of the present study was to explore the presence of SerpinB3 in hepatic progenitor cells in human livers and in a mouse model of liver stem/progenitor cell activation. Hepatic progenitor cells were analysed in foetal and adult livers at protein and transcriptional levels. To induce experimental activation of the liver stem/progenitor compartment, C57BL/6J mice were injected with lipopolysaccharide plus D-galactosamine and were sacrificed at different time points. Liver cDNA was amplified using specific primers for mouse-homologous SerpinB3 isoforms and automatically sequenced. Results The presence of SerpinB3 in the progenitor cell compartment was detected in sorted human foetal and adult epithelial cell adhesion molecule (EpCAM) positive liver cells. By immunohistochemistry SerpinB3 was found in human cirrhotic livers in portal areas with progenitor cell activation showing ductular proliferation. CK-7, CK-19, EpCAM and CD-90 positive cell were also positive for SerpinB3. In the animal model, time course analysis in liver specimens revealed a progressive increase of SerpinB3 and a parallel decrease of activated caspase 3, which was barely detectable at 20 hours. Transcription analysis confirmed the presence of SerpinB3-homologous only in the liver of injured mice and sequence analysis proved its belonging to mouse Serpinb3b. Conclusion SerpinB3 is highly expressed in hepatic stem/progenitor cell compartment of both foetal and adult livers. PMID:24517394

  14. Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling.

    PubMed

    O'Donnell, Allyson F; Apffel, Alex; Gardner, Richard G; Cyert, Martha S

    2010-10-15

    Extracellular signals regulate trafficking events to reorganize proteins at the plasma membrane (PM); however, few effectors of this regulation have been identified. β-Arrestins relay signaling cues to the trafficking machinery by controlling agonist-stimulated endocytosis of G-protein-coupled receptors. In contrast, we show that yeast α-arrestins, Aly1 and Aly2, control intracellular sorting of Gap1, the general amino acid permease, in response to nutrients. These studies are the first to demonstrate association of α-arrestins with clathrin and clathrin adaptor proteins (AP) and show that Aly1 and Aly2 interact directly with the γ-subunit of AP-1, Apl4. Aly2-dependent trafficking of Gap1 requires AP-1, which mediates endosome-to-Golgi transport, and the nutrient-regulated kinase, Npr1, which phosphorylates Aly2. During nitrogen starvation, Npr1 phosphorylation of Aly2 may stimulate Gap1 incorporation into AP-1/clathrin-coated vesicles to promote Gap1 trafficking from endosomes to the trans-Golgi network. Ultimately, increased Aly1-/Aly2-mediated recycling of Gap1 from endosomes results in higher Gap1 levels within cells and at the PM by diverting Gap away from trafficking pathways that lead to vacuolar degradation. This work defines a new role for arrestins in membrane trafficking and offers insight into how α-arrestins coordinate signaling events with protein trafficking.

  15. Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin.

    PubMed

    Fivaz, Marc; Meyer, Tobias

    2005-08-01

    The Ras/MAPK pathway regulates synaptic plasticity and cell survival in neurons of the central nervous system. Here, we show that KRas, but not HRas, acutely translocates from the plasma membrane (PM) to the Golgi complex and early/recycling endosomes in response to neuronal activity. Translocation is reversible and mediated by the polybasic-prenyl membrane targeting motif of KRas. We provide evidence that KRas translocation occurs through sequestration of the polybasic-prenyl motif by Ca2+/calmodulin (Ca2+/CaM) and subsequent release of KRas from the PM, in a process reminiscent of GDP dissociation inhibitor-mediated membrane recycling of Rab and Rho GTPases. KRas translocation was accompanied by partial intracellular redistribution of its activity. We conclude that the polybasic-prenyl motif acts as a Ca2+/CaM-regulated molecular switch that controls PM concentration of KRas and redistributes its activity to internal sites. Our data thus define a novel signaling mechanism that differentially regulates KRas and HRas localization and activity in neurons.

  16. β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration

    PubMed Central

    Yu, Helen Wenshin; Chen, Yin-Quan; Huang, Chi-Ming; Liu, Ching-Yi; Chiou, Arthur; Wang, Yang-Kao; Tang, Ming-Jer; Kuo, Jean-Cheng

    2015-01-01

    Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β-PIX (PAK-interacting exchange factor-β). In H1299 cells, β-PIX's activity was found not to be down-regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β-PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β-PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β-PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity. PMID:25683605

  17. Coxiella burnetii Transcriptional Analysis Reveals Serendipity Clusters of Regulation in Intracellular Bacteria

    PubMed Central

    Leroy, Quentin; Lebrigand, Kevin; Armougom, Fabrice; Barbry, Pascal; Thiéry, Richard; Raoult, Didier

    2010-01-01

    Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is mainly transmitted to humans through an aerosol route. A spore-like form allows C. burnetii to resist different environmental conditions. Because of this, analysis of the survival strategies used by this bacterium to adapt to new environmental conditions is critical for our understanding of C. burnetii pathogenicity. Here, we report the early transcriptional response of C. burnetii under temperature stresses. Our data show that C. burnetii exhibited minor changes in gene regulation under short exposure to heat or cold shock. While small differences were observed, C. burnetii seemed to respond similarly to cold and heat shock. The expression profiles obtained using microarrays produced in-house were confirmed by quantitative RT-PCR. Under temperature stresses, 190 genes were differentially expressed in at least one condition, with a fold change of up to 4. Globally, the differentially expressed genes in C. burnetii were associated with bacterial division, (p)ppGpp synthesis, wall and membrane biogenesis and, especially, lipopolysaccharide and peptidoglycan synthesis. These findings could be associated with growth arrest and witnessed transformation of the bacteria to a spore-like form. Unexpectedly, clusters of neighboring genes were differentially expressed. These clusters do not belong to operons or genetic networks; they have no evident associated functions and are not under the control of the same promoters. We also found undescribed but comparable clusters of regulation in previously reported transcriptomic analyses of intracellular bacteria, including Rickettsia sp. and Listeria monocytogenes. The transcriptomic patterns of C. burnetii observed under temperature stresses permits the recognition of unpredicted clusters of regulation for which the trigger mechanism remains unidentified but which may be the result of a new mechanism of epigenetic regulation. PMID:21203564

  18. Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals

    NASA Astrophysics Data System (ADS)

    Asai, Daisuke; Kang, Jeong-Hun; Toita, Riki; Tsuchiya, Akira; Niidome, Takuro; Nakashima, Hideki; Katayama, Yoshiki

    2009-03-01

    Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)α as a trigger to activate transgene expression. We prepared a PKCα-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [γ-32P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCα, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCα inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCα activity.

  19. Circadian Clock in a Mouse Colon Tumor Regulates Intracellular Iron Levels to Promote Tumor Progression.

    PubMed

    Okazaki, Fumiyasu; Matsunaga, Naoya; Okazaki, Hiroyuki; Azuma, Hiroki; Hamamura, Kengo; Tsuruta, Akito; Tsurudome, Yuya; Ogino, Takashi; Hara, Yukinori; Suzuki, Takuya; Hyodo, Kenji; Ishihara, Hiroshi; Kikuchi, Hiroshi; To, Hideto; Aramaki, Hironori; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-03-25

    Iron is an important biological catalyst and is critical for DNA synthesis during cell proliferation. Cellular iron uptake is enhanced in tumor cells to support increased DNA synthesis. Circadian variations in DNA synthesis and proliferation have been identified in tumor cells, but their relationship with intracellular iron levels is unclear. In this study, we identified a 24-h rhythm in iron regulatory protein 2 (IRP2) levels in colon-26 tumors implanted in mice. Our findings suggest that IRP2 regulates the 24-h rhythm of transferrin receptor 1 (Tfr1) mRNA expression post-transcriptionally, by binding to RNA stem-loop structures known as iron-response elements. We also found thatIrp2mRNA transcription is promoted by circadian clock genes, including brain and muscle Arnt-like 1 (BMAL1) and the circadian locomotor output cycles kaput (CLOCK) heterodimer. Moreover, growth in colon-26(Δ19) tumors expressing the clock-mutant protein (CLOCK(Δ19)) was low compared with that in wild-type colon-26 tumor. The time-dependent variation of cellular iron levels, and the proliferation rate in wild-type colon-26 tumor was decreased by CLOCK(Δ19)expression. Our findings suggest that circadian organization contributes to tumor cell proliferation by regulating iron metabolism in the tumor.

  20. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    PubMed

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae.

  1. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    PubMed

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. PMID:27208308

  2. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling1[OPEN

    PubMed Central

    2016-01-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. PMID:27208308

  3. SERPINE1, PAI-1 protein coding gene, methylation levels and epigenetic relationships with adiposity changes in obese subjects with metabolic syndrome features under dietary restriction

    PubMed Central

    Lopez-Legarrea, Patricia; Mansego, Maria Luisa; Zulet, Marian Angeles; Martinez, Jose Alfredo

    2013-01-01

    Plasminogen activator inhibitor 1 (PAI-1) has been associated with metabolic disorders, through different mechanisms, which could involve changes in DNA methylation. This work aimed to assess the potential relationships of the cytosine methylation levels within SERPINE1 gene transcriptional regulatory region, which codes for PAI-1, in peripheral white blood cells with anthropometrical, metabolic and inflammatory features. Forty-six obese subjects with metabolic syndrome features followed Control or Metabolic Syndrome Reduction in Navarra (RESMENA) energy-restricted (−30%E) diets for 8 weeks. SERPINE1 transcriptional regulatory region methylation at baseline was analyzed by a microarray technical. Both dietary strategies reduced anthropometric and biochemical parameters. The Control group significantly reduced plasma PAI-1 concentrations but not the RESMENA group. Participants from both nutritional interventions with higher SERPINE1 methylation levels at baseline showed significantly major reductions in body weight, total fat mass, android fat mass, total cholesterol and triglycerides, as compared with those with lower initial SERPINE1 methylation levels. In conclusion, the DNA methylation levels of SERPINE1 transcriptional regulatory region were associated with some metabolic and anthropometric changes in obese subjects with metabolic syndrome under energy restriction, suggesting a complex epigenetic network in the regulation of this recognized pro-inflammatory marker. (www.clinicaltrials.gov; NCT01087086) PMID:24249967

  4. A Serpin Shapes the Extracellular Environment to Prevent Influenza A Virus Maturation

    PubMed Central

    Dittmann, Meike; Hoffmann, Hans-Heinrich; Scull, Margaret A.; Gilmore, Rachel H.; Bell, Kierstin L.; Ciancanelli, Michael; Wilson, Sam J.; Crotta, Stefania; Yu, Yingpu; Flatley, Brenna; Xiao, Jing W.; Casanova, Jean-Laurent; Wack, Andreas; Bieniasz, Paul D.; Rice, Charles M.

    2015-01-01

    Summary Interferon-stimulated genes (ISGs) act in concert to provide a tight barrier against viruses. Recent studies have shed light on the contribution of individual ISG effectors to the antiviral state, but most have examined those acting on early, intracellular stages of the viral life cycle. Here, we applied an image-based screen to identify ISGs inhibiting late stages of influenza A virus (IAV) infection. We unraveled a directly antiviral function for the gene SERPINE1, encoding plasminogen activator inhibitor 1 (PAI-1). By targeting extracellular airway proteases, PAI-1 inhibits IAV glycoprotein cleavage, thereby reducing infectivity of progeny viruses. This was biologically relevant for IAV restriction in vivo. Further, partial PAI-1 deficiency, attributable to a polymorphism in human SERPINE1, conferred increased susceptibility to IAV in vitro. Together, our findings reveal that manipulating the extracellular environment to inhibit the last step in a virus life cycle is an important mechanism of the antiviral response. PMID:25679759

  5. Marine sulfated glycans with serpin-unrelated anticoagulant properties.

    PubMed

    Glauser, Bianca F; Mourão, Paulo A S; Pomin, Vitor H

    2013-01-01

    Marine organisms are a rich source of sulfated polysaccharides with unique structures. Fucosylated chondroitin sulfate (FucCS) from the sea cucumber Ludwigothurea grisea and sulfated galactan from the red alga Botryocladia occidentalis are one of these unusual molecules. Besides their uncommon structures, they also exhibit high anticoagulant and antithrombotic effects. Earlier, it was considered that the anticoagulant activities of these two marine glycans were driven mainly by a catalytic serpin-dependent mechanism likewise the mammalian heparins. Its serpin-dependent anticoagulant action relies on promoting thrombin and/or factor Xa inhibition by their specific natural inhibitors (the serpins antithrombin and heparin cofactor II). However, as opposed to heparins, these two previously mentioned marine glycans were proved still capable in promoting coagulation inhibition using serpin-free plasmas. This puzzle observation was further investigated and clearly demonstrated that the cucumber FucCS and the red algal sulfated galactan have an unusual serpin-independent anticoagulant effect by inhibiting the formation of factor Xa and/or thrombin through the procoagulants tenase and prothrombinase complexes, respectively. These marine polysaccharides with unusual anticoagulant effects open clearly new perspectives for the development of new antithrombotic drugs as well as push the glycomics project.

  6. Aluminum-dependent regulation of intracellular silicon in the aquatic invertebrate Lymnaea stagnalis

    PubMed Central

    Desouky, Mahmoud; Jugdaohsingh, Ravin; McCrohan, Catherine R.; White, Keith N.; Powell, Jonathan J.

    2002-01-01

    Silicon is essential for some plants, diatoms, and sponges but, in higher animals, its endogenous regulation has not been demonstrated. Silicate ions may be natural ligands for aluminum and here we show that, in the freshwater snail (Lymnaea stagnalis), intracellular silicon seems specifically up-regulated in response to sublethal aluminum exposure. X-ray microanalysis showed that exposure of snails to low levels of aluminum led to its accumulation in lysosomal granules, accompanied by marked up-regulation of silicon. Increased lysosomal levels of silicon were a specific response to aluminum because cadmium and zinc had no such effect. Furthermore, intra-lysosomal sulfur from metallothionein and other sulfur-containing ligands was increased after exposure to cadmium and zinc but not aluminum. To ensure that these findings indicated a specific in vivo response, and not ex vivo formation of hydroxy-aluminosilicates (HAS) from added aluminum (555 μg/liter) and water-borne silicon (43 μg/liter), two further studies were undertaken. In a ligand competition assay the lability of aluminum (527 μg/liter) was completely unaffected by the presence of silicon (46 μg/liter), suggesting the absence of HAS. In addition, exogenous silicon (6.5 mg/liter), added to the water column to promote formation of HAS, caused a decrease in lysosomal aluminum accumulation, showing that uptake of HAS would not explain the loading of aluminum into lysosomal granules. These findings, and arguments on the stability, lability, and kinetics of aluminum–silicate interactions, suggest that a silicon-specific mechanism exists for the in vivo detoxification of aluminum, which provides regulatory evidence of silicon in a multicellular organism. PMID:11891333

  7. Altered intracellular pH regulation in neutrophils from patients with cystic fibrosis.

    PubMed

    Coakley, R J; Taggart, C; Canny, G; Greally, P; O'Neill, S J; McElvaney, N G

    2000-07-01

    Cystic fibrosis (CF) is a condition characterized by neutrophil-mediated lung damage and bacterial colonization. The physiological basis for reported functional alterations in CF neutrophils, including increased release of neutrophil elastase, myeloperoxidase, and oxidants, is unknown. These processes are, however, regulated by intracellular pH (pH(i)). We demonstrate here that pH(i) regulation is altered in neutrophils from CF patients. Although resting pH(i) is similar, pH(i) after acid loading and activation (N-formyl-methionyl-leucyl-phenylalanine and phorbol 12-myristate 13-acetate) is more acidic in CF cells than in normal cells. Furthermore, patients with non-CF-related bronchiectasis handle acid loading and activation in a fashion similar to subjects with normal neutrophils, suggesting that chronic pulmonary inflammation alone does not explain the difference in pH(i). This is further supported by data showing that normal neutrophils exposed to the CF pulmonary milieu respond by increasing pH(i) as opposed to decreasing pH(i) as seen in activated CF neutrophils. These pH(i) differences in activated or acid-loaded CF neutrophils are abrogated by ZnCl(2) but not by amiloride and bafilomycin A(1), suggesting that passive proton conductance is abnormal in CF. In addition, DIDS, which inhibits HCO(3)(-)/Cl(-) exchange, causes alkalinization of control but not of CF neutrophils, suggesting that anion transport is also abnormal in CF neutrophils. In summary, we have shown that pH(i) regulation in CF neutrophils is intrinsically abnormal, potentially contributing to the pulmonary manifestations of the condition.

  8. Three sorghum serpin recombinant proteins inhibit midgut trypsin activity and growth of corn earworm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sorghum (Sorghum bicolor) genome contains at least 17 putative serpin (serine protease inhibitor) open reading frames, some of which are induced by pathogens. Recent transcriptome studies found that most of the putative serpins are expressed but their roles are unknown. Four sorghum serpins were...

  9. Biodegradable DNA-Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation.

    PubMed

    Zhang, Chuan; Hao, Liangliang; Calabrese, Colin M; Zhou, Yu; Choi, Chung Hang J; Xing, Hang; Mirkin, Chad A

    2015-10-28

    By grafting multiple DNA strands onto one terminus of a polyester chain, a DNA-brush block copolymer that can assemble into micelle structure is constructed. These micelle spherical nucleic acids have a density of nucleic acids that is substantively higher than linear DNA block copolymer structures, which makes them effective cellular transfection and intracellular gene regulation agents.

  10. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions

    SciTech Connect

    Brodie, C.; Sampson, S.R.

    1989-07-01

    The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of (/sup 3/H)ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive /sup 86/Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers (Na)i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases (Na+)i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in (Ca)i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle.

  11. Regulation of Epidermal Growth Factor Receptor Signaling by Endocytosis and Intracellular Trafficking

    SciTech Connect

    Burke, Patrick; Schooler, Kevin; Wiley, H S.

    2001-06-01

    Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated following endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules using reversibly-biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. Using a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that following internalization, EGFR remained active in the early endosomes. However, receptors were inactivated prior to degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, while others, such as Eps8, were only found with intracellular receptors. During the inactivation phase, c-Cbl became EGFR-associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment-specific . In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction.

  12. Intracellular signaling pathway regulation of myelination and remyelination in the CNS.

    PubMed

    Gaesser, Jenna M; Fyffe-Maricich, Sharyl L

    2016-09-01

    The restoration of myelin sheaths on demyelinated axons remains a major obstacle in the treatment of multiple sclerosis (MS). Currently approved therapies work by modulating the immune system to reduce the number and rate of lesion formation but are only partially effective since they are not able to restore lost myelin. In the healthy CNS, myelin continues to be generated throughout life and spontaneous remyelination occurs readily in response to insults. In patients with MS, however, remyelination eventually fails, at least in part as a result of a failure of oligodendrocyte precursor cell (OPC) differentiation and the subsequent production of new myelin. A better understanding of the molecular mechanisms and signaling pathways that drive the process of myelin sheath formation is therefore important in order to speed the development of novel therapeutics designed to target remyelination. Here we review data supporting critical roles for three highly conserved intracellular signaling pathways: Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK in the regulation of OPC differentiation and myelination both during development and in remyelination. Potential points of crosstalk between the three pathways and important areas for future research are also discussed.

  13. Intracellular pH regulation by acid-base transporters in mammalian neurons

    PubMed Central

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  14. Strain-specific regulation of intracellular Wolbachia density in multiply infected insects.

    PubMed

    Mouton, L; Henri, H; Bouletreau, M; Vavre, F

    2003-12-01

    Vertically transmitted symbionts suffer a severe reduction in numbers when they pass through host generations, resulting in genetic homogeneity or even clonality of their populations. Wolbachia endosymbionts that induce cytoplasmic incompatibility in their hosts depart from this rule, because cytoplasmic incompatibility actively maintains multiple infection within hosts. Hosts and symbionts are thus probably under peculiar selective pressures that must shape the way intracellular bacterial populations are regulated. We studied the density and location of Wolbachia within adult Leptopilina heterotoma, a haplodiploid wasp that is parasitic on Drosophila and that is naturally infected with three Wolbachia strains, but for which we also obtained one simply infected and two doubly infected lines. Comparison of these four lines by quantitative polymerase chain reaction using a real-time detection system showed that total Wolbachia density varies according to the infection status of individuals, while the specific density of each Wolbachia strain remains constant regardless of the presence of other strains. This suggests that Wolbachia strains do not compete with one another within the same host individual, and that a strain-specific regulatory mechanism is operating. We discuss the regulatory mechanisms that are involved, and how this process might have evolved as a response to selective pressures acting on both partners. PMID:14629360

  15. Monitoring of Intracellular Tau Aggregation Regulated by OGA/OGT Inhibitors

    PubMed Central

    Lim, Sungsu; Haque, Md. Mamunul; Nam, Ghilsoo; Ryoo, Nayeon; Rhim, Hyewhon; Kim, Yun Kyung

    2015-01-01

    Abnormal phosphorylation of tau has been considered as a key pathogenic mechanism inducing tau aggregation in multiple neurodegenerative disorders, collectively called tauopathies. Recent evidence showed that tau phosphorylation sites are protected with O-linked β-N-acetylglucosamine (O-GlcNAc) in normal brain. In pathological condition, tau is de-glycosylated and becomes a substrate for kinases. Despite the importance of O-GlcNAcylation in tau pathology, O-GlcNAc transferase (OGT), and an enzyme catalyzing O-GlcNAc to tau, has not been carefully investigated in the context of tau aggregation. Here, we investigated intracellular tau aggregation regulated by BZX2, an inhibitor of OGT. Upon the inhibition of OGT, tau phosphorylation increased 2.0-fold at Ser199 and 1.5-fold at Ser396, resulting in increased tau aggregation. Moreover, the BZX2 induced tau aggregation was efficiently reduced by the treatment of Thiamet G, an inhibitor of O-GlcNAcase (OGA). Our results demonstrated the protective role of OGT in tau aggregation and also suggest the counter-regulatory mechanism of OGA and OGT in tau pathology. PMID:26343633

  16. Serpin-independent anticoagulant activity of a fucosylated chondroitin sulfate.

    PubMed

    Glauser, Bianca F; Pereira, Mariana S; Monteiro, Robson Q; Mourão, Paulo A S

    2008-09-01

    Fucosylated chondroitin sulfate is a glycosaminoglycan from sea cucumber composed of a chondroitin sulfate-like core with branches of sulfated fucose. This glycosaminoglycan has high anticoagulant and antithrombotic activities. Its serpin-dependent anticoagulant activity is mostly due to activating thrombin inhibition by heparin cofactor II. Here, we evaluated the anticoagulant activity of fucosylated chondroitin sulfate using antithrombin- and heparin cofactor II-free plasmas. In contrast to mammalian heparin, the invertebrate glycosaminoglycan is still able to prolong coagulation time and delay thrombin and factor Xa generation in serpin-free plasmas. These observations suggest that fucosylated chondroitin sulfate has a serpin-independent anticoagulant effect. We further investigated this effect using purified blood coagulation proteins. Clearly, fucosylated chondroitin sulfate inhibits the intrinsic tenase and prothrombinase complexes, which are critical for thrombin generation. It is possible that the invertebrate chondroitin sulfate inhibits interactions between cofactor Va and factor Xa. We also employed chemically modified polysaccharides in order to trace a structure versus activity relationship. Removal of the sulfated fucose branches, but not reduction of the glucuronic acid residues to glucose, abolished its activity. In conclusion, fucosylated chondroitin sulfate has broader effects on the coagulation system than mammalian glycosaminoglycans. In addition to its serpin-dependent inhibition of coagulation protease, it also inhibits the generation of factor Xa and thrombin by the tenase and prothrombinase complexes, respectively. In plasma systems, the serpin-independent anticoagulant effect of fucosylated chondroitin sulfate predominates over its serpin-dependent action. This glycosaminoglycan opens new avenues for the development of antithrombotic agents.

  17. Intracellular calcium regulation among subpopulations of rat dorsal root ganglion neurons

    PubMed Central

    Lu, Shao-Gang; Zhang, Xiulin; Gold, Michael S

    2006-01-01

    Primary afferent neurons are functionally heterogeneous. To determine whether this functional heterogeneity reflects, in part, heterogeneity in the regulation of the concentration of intracellular Ca2+ ([Ca2+]i), the magnitude and decay of evoked Ca2+ transients were assessed in subpopulations of dorsal root ganglion (DRG) neurons with voltage clamp and fura-2 ratiometric imaging. To determine whether differences in evoked Ca2+ transients among subpopulations of DRG neurons reflected differences in the contribution of Ca2+ regulatory mechanisms, pharmacological techniques were employed to assess the contribution of influx, efflux, release and uptake pathways. Subpopulations of DRG neurons were defined by cell body size, binding of the plant lectin IB4 and responsiveness to the algogenic compound capsaicin (CAP). Ca2+ transients were evoked with 30 mm K+ or voltage steps to 0 mV. There were marked differences between subpopulations of neurons with respect to both the magnitude and decay of the Ca2+ transient, with the largest and most slowly decaying Ca2+ transients in small-diameter, IB4-positive, CAP-responsive neurons. The smallest and most rapidly decaying transients were in large-diameter, IB4-negative and CAP-unresponsive DRG neurons. These differences were not due to a differential distribution of voltage-gated Ca2+ currents. However, these differences did appear to reflect a differential contribution of other influx, efflux, release and uptake mechanisms between subpopulations of neurons. These results suggest that electrical activity in subpopulations of DRG neurons will have a differential influence on Ca2+-regulated phenomena such as spike adaptation, transmitter release and gene transcription. Significantly more activity should be required in large-diameter non-nociceptive afferents than in small-diameter nociceptive afferents to have a comparable influence on these processes. PMID:16945973

  18. Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart

    PubMed Central

    Mazurek, Stefan R.

    2016-01-01

    Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR’s many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies. PMID:27251471

  19. Modular TRAPP complexes regulate intracellular protein trafficking through multiple Ypt/Rab GTPases in Saccharomyces cerevisiae.

    PubMed

    Zou, Shenshen; Liu, Yutao; Zhang, Xiu Qi; Chen, Yong; Ye, Min; Zhu, Xiaoping; Yang, Shu; Lipatova, Zhanna; Liang, Yongheng; Segev, Nava

    2012-06-01

    Ypt/Rab are key regulators of intracellular trafficking in all eukaryotic cells. In yeast, Ypt1 is essential for endoplasmic reticulum (ER)-to-Golgi transport, whereas Ypt31/32 regulate Golgi-to-plasma membrane and endosome-to-Golgi transport. TRAPP is a multisubunit complex that acts as an activator of Ypt/Rab GTPases. Trs85 and Trs130 are two subunits specific for TRAPP III and TRAPP II, respectively. Whereas TRAPP III was shown to acts as a Ypt1 activator, it is still controversial whether TRAPP II acts as a Ypt1 or Ypt31/32 activator. Here, we use GFP-Snc1 as a tool to study transport in Ypt and TRAPP mutant cells. First, we show that expression of GFP-Snc1 in trs85Δ mutant cells results in temperature sensitivity. Second, we suggest that in ypt1ts and trs85Δ, but not in ypt31Δ/32ts and trs130ts mutant cells, GFP-Snc1 accumulates in the ER. Third, we show that overexpression of Ypt1, but not Ypt31/32, can suppress both the growth and GFP-Snc1 accumulation phenotypes of trs85Δ mutant cells. In contrast, overexpression of Ypt31, but not Ypt1, suppresses the growth and GFP-Snc1 transport phenotypes of trs130ts mutant cells. These results provide genetic support for functional grouping of Ypt1 with Trs85-containing TRAPP III and Ypt31/32 with Trs130-containing TRAPP II.

  20. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid.

    PubMed

    Kwak, Min-Kyu; Song, Sung-Hyun; Ku, MyungHee; Kang, Sa-Ouk

    2015-07-01

    Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression. PMID:25957768

  1. Developmental expression of chicken antithrombin III is regulated by increased RNA abundance and intracellular processing.

    PubMed

    Amrani, D L; Rosenberg, J; Samad, F; Bergtrom, G; Banfield, D K

    1993-01-23

    We isolated and sequenced a 432 bp cDNA to cAT-III, that encoded 115 nucleotides of 5' untranslated sequence, a 17 amino acid long signal peptide and residues 1-88 of the mature protein, and used it to prepare a probe for measuring and correlating the developmental changes of steady-state cAT-III mRNA levels with known changes in antigen levels. Densitometric analysis of nuclease protection (n = 2), Northern blot (n = 4), and slot blots (n = 3) of total RNA from chick livers of 16-day-old embryos to 6-day-old chicks showed a 2.6 +/- 0.5-fold increase in steady-state cAT-III mRNA levels. Assay of functional mRNA levels by in vitro translation of poly(A)+ RNA and specific immunoprecipitation of 35S-Met-labelled cAT-III was comparable to RNA analysis (16-day-old embryos vs. 10-day-old hatchlings). We evaluated whether there were developmental differences in post-translational secretion which may also contribute to the regulation of the circulating level of this protein. Pulse-chase studies of freshly-isolated hepatocytes from 16-day-old embryos and 10-day-old hatchlings maintained in suspension demonstrated a approx. 5.0-5.5-fold increase in cAT-III levels at steady-state secretion. The above findings indicate that changes in circulating cAT-III levels during late embryonic development are primarily due to increased abundance of cAT-III mRNA. In addition, we postulate that post-translational intracellular processing may account for further differences in circulating protein levels. PMID:8424948

  2. An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite.

    PubMed

    Sundaram, Sabarinath; Rathinasabapathi, Bala; Ma, Lena Q; Rosen, Barry P

    2008-03-01

    To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism.

  3. Intra-ChIP: studying gene regulation in an intracellular pathogen.

    PubMed

    Hanson, Brett R; Tan, Ming

    2016-08-01

    Intracellular bacteria that reside within a host cell use a variety of strategies to exploit this unique niche. While these organisms are technically challenging to study in the context of an infected host cell, recent advances have led to an improved understanding of how the intracellular environment impacts bacterial gene expression. We recently demonstrated that chromatin immunoprecipitation (ChIP) can be used to quantify transcription factor binding in the obligate intracellular pathogen Chlamydia trachomatis within infected cells. Furthermore, we showed it was possible to experimentally modulate transcription factor binding while simultaneously measuring changes in transcription. Here we discuss these findings as well as other recent work that has used ChIP to study intracellular pathogens within infected cells. We also discuss technical considerations associated with this approach and its possible future applications.

  4. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling.

    PubMed

    Walther, Cornelia; Ferguson, Stephen S G

    2015-06-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.

  5. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    PubMed

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.

  6. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    PubMed Central

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  7. High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin ‘suicide’ inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined. Results We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities. Conclusions In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon ‘switching’. This is the first structure of a Drosophila serpin reported to date

  8. Effect of mutations of the human serpin protein corticosteroid-binding globulin on cortisol-binding, thermal and protease sensitivity.

    PubMed

    Braun, Beate C; Meyer, Hellmuth-A; Reetz, Antje; Fuhrmann, Ulrike; Köhrle, Josef

    2010-05-01

    Corticosteroid-binding globulin (CBG, transcortin) belongs to the serpin family of serine protease inhibitors (SERPINA6) and is mainly secreted by the liver. The negative acute phase protein CBG regulates free cortisol levels in the blood and distributes cortisol to its target tissues. So far no CBG serpin partner protease has been identified. However, its cleavage by human neutrophil elastase destroys ligand binding capacity and supposedly liberates cortisol at sites of inflammation. Here we report on the recombinant expression and secretion of human wild-type CBG and several novel mutants by human 293-EBNA cells. Functional characterization of wild-type and mutant CBG revealed distinct differences in ligand binding sensitivity to heat or elastase. Certain mutants are almost devoid of cortisol binding activity (Q232R and CBG Lyon), some display higher sensitivity for heat inactivation (G335V, Q232R and CBG Lyon) or for elastase cleavage (G335V). CBG mutant T342A is more resistant to elastase cleavage. Our data support the validity of the serpin structural concept. The expression system used provides functionally active human recombinant transcortin for further functional characterization of wild-type and human CBG mutant variants, which have been associated with altered serum free cortisol levels or pathophysiological constellations such as increased body weight, fatigue or hypotension.

  9. Structural and Inhibitory Effects of Hinge Loop Mutagenesis in Serpin-2 from the Malaria Vector Anopheles gambiae*

    PubMed Central

    Zhang, Xin; Meekins, David A.; An, Chunju; Zolkiewski, Michal; Battaile, Kevin P.; Kanost, Michael R.; Lovell, Scott; Michel, Kristin

    2015-01-01

    Serpin-2 (SRPN2) is a key negative regulator of the melanization response in the malaria vector Anopheles gambiae. SRPN2 irreversibly inhibits clip domain serine proteinase 9 (CLIPB9), which functions in a serine proteinase cascade culminating in the activation of prophenoloxidase and melanization. Silencing of SRPN2 in A. gambiae results in spontaneous melanization and decreased life span and is therefore a promising target for vector control. The previously determined structure of SRPN2 revealed a partial insertion of the hinge region of the reactive center loop (RCL) into β sheet A. This partial hinge insertion participates in heparin-linked activation in other serpins, notably antithrombin III. SRPN2 does not contain a heparin binding site, and any possible mechanistic function of the hinge insertion was previously unknown. To investigate the function of the SRPN2 hinge insertion, we developed three SRPN2 variants in which the hinge regions are either constitutively expelled or inserted and analyzed their structure, thermostability, and inhibitory activity. We determined that constitutive hinge expulsion resulted in a 2.7-fold increase in the rate of CLIPB9Xa inhibition, which is significantly lower than previous observations of allosteric serpin activation. Furthermore, we determined that stable insertion of the hinge region did not appreciably decrease the accessibility of the RCL to CLIPB9. Together, these results indicate that the partial hinge insertion in SRPN2 does not participate in the allosteric activation observed in other serpins and instead represents a molecular trade-off between RCL accessibility and efficient formation of an inhibitory complex with the cognate proteinase. PMID:25525260

  10. Novel Combinatorial Therapeutic Targeting of PAI-1 (SERPINE1) Gene Expression in Alzheimer's Disease

    PubMed Central

    Kutz, Stacie M.; Higgins, Craig E.; Higgins, Paul J.

    2013-01-01

    Summary Accumulation of neurotoxic amyloid peptides (Aβ) in the brain, generated by β-site proteolytic processing of the amyloid precursor protein (APP), is the hallmark pathophysiologic feature of Alzheimer's disease. The plasmin-activating cascade, in which urokinase (uPA) and tissue-type (tPA) plasminogen activators convert plasminogen to the broad-spectrum protease plasmin, appears to serve a protective, Aβ-clearing, role in the central nervous system. Plasmin degrades Aβ and catalyzes α- site APP proteolysis generating nontoxic peptides. Plasmin activation in the brain is negatively regulated by the fast-acting clade E serine protease inhibitor (SERPIN) plasminogen activator inhibitor type-1 (PAI-1; SERPINE1) resulting in Aβ accumulation. PAI-1 and its major physiological inducer TGF-β1, moreover, are both increased in Alzheimer's disease models and implicated in the etiology and progression of human neurodegenerative disorders. Current findings support the hypothesis that targeting of PAI-1 function (by small molecule drugs) and/or gene expression (by histone deacetylase inhibitors) may constitute a clinically-relevant molecular approach to the therapy of neurodegenerative diseases associated with increased PAI-1 levels. PMID:23847772

  11. Silk gland-specific proteinase inhibitor serpin16 from the Bombyx mori shows cysteine proteinase inhibitory activity.

    PubMed

    Guo, Peng-Chao; Dong, Zhaoming; Xiao, Li; Li, Tao; Zhang, Yan; He, Huawei; Xia, Qingyou; Zhao, Ping

    2015-01-30

    Serpins (serine proteinase inhibitors) are widely distributed in different species and are well known for their inhibitory activities towards serine proteinases. Here, we report the functional characterization of Bombyx mori serpin16. Expression analysis showed that serpin16 was specifically expressed at high levels in the silk gland at both the transcriptional and translational levels. Moreover, homology modeling and multi-sequence alignment suggested that serpin16 had a canonical serpin fold, but it contained a unique reactive center loop, which was obviously shorter than that of typical serpins. Inhibitory activity analyses revealed that the target proteinase of serpin18 is a cysteine proteinase, rather than a serine proteinase. Furthermore, a Michaelis complex model of serpin16 with its target proteinase was constructed to explain the structural basis of how serpin16 recognizes the cysteine proteinase and its target specificity.

  12. DNA Damage–Induced Bcl-xL Deamidation Is Mediated by NHE-1 Antiport Regulated Intracellular pH

    PubMed Central

    Zhao, Rui; Oxley, David; Smith, Trevor S; Follows, George A; Green, Anthony R; Alexander, Denis R

    2007-01-01

    The pro-survival protein Bcl-xL is critical for the resistance of tumour cells to DNA damage. We have previously demonstrated, using a mouse cancer model, that oncogenic tyrosine kinase inhibition of DNA damage–induced Bcl-xL deamidation tightly correlates with T cell transformation in vivo, although the pathway to Bcl-xL deamidation remains unknown and its functional consequences unclear. We show here that rBcl-xL deamidation generates an iso-Asp52/iso-Asp66 species that is unable to sequester pro-apoptotic BH3-only proteins such as Bim and Puma. DNA damage in thymocytes results in increased expression of the NHE-1 Na/H antiport, an event both necessary and sufficient for subsequent intracellular alkalinisation, Bcl-xL deamidation, and apoptosis. In murine thymocytes and tumour cells expressing an oncogenic tyrosine kinase, this DNA damage–induced cascade is blocked. Enforced intracellular alkalinisation mimics the effects of DNA damage in murine tumour cells and human B-lineage chronic lymphocytic leukaemia cells, thereby causing Bcl-xL deamidation and increased apoptosis. Our results define a signalling pathway leading from DNA damage to up-regulation of the NHE-1 antiport, to intracellular alkalanisation to Bcl-xL deamidation, to apoptosis, representing the first example, to our knowledge, of how deamidation of internal asparagine residues can be regulated in a protein in vivo. Our findings also suggest novel approaches to cancer therapy. PMID:17177603

  13. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis.

    PubMed

    Coceres, V M; Alonso, A M; Nievas, Y R; Midlej, V; Frontera, L; Benchimol, M; Johnson, P J; de Miguel, N

    2015-08-01

    The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction.

  14. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis.

    PubMed

    Coceres, V M; Alonso, A M; Nievas, Y R; Midlej, V; Frontera, L; Benchimol, M; Johnson, P J; de Miguel, N

    2015-08-01

    The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction. PMID:25703821

  15. Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurones.

    PubMed Central

    Budde, T; Biella, G; Munsch, T; Pape, H C

    1997-01-01

    1. The regulation of the hyperpolarization-activated cation current, Ih, in thalamocortical neurones by intracellular calcium ions has been implemented in a number of mathematical models on the waxing and waning behaviour of synchronized rhythmic activity in thalamocortical circuits. In the present study, the Ca2+ dependence of Ih in thalamocortical neurones was experimentally investigated by combining Ca2+ imaging and patch-clamp techniques in the ventrobasal thalamic complex (VB) in vitro. 2. Properties of Ih were analysed before and during rhythmic stimulation of Ca2+ entry by trains of depolarizing voltage pulses. Despite a significant increase in intracellular Ca2+ concentration ([Ca2+]i) from resting levels of 74 +/- 23 nM to 251 +/- 78 nM upon rhythmic stimulation, significant differences in the voltage dependence of Ih activation did not occur (half-maximal activation at -86.4 +/- 1.3 mV vs. -85.2 +/- 2.9 mV; slope of the activation curve, 11.2 +/- 2.4 mV vs. 12.5 +/- 2.5 mV). Recording of Ih with predefined values of [Ca2+]i (13.2 nM or 10.01 microM in the patch pipette) revealed no significant differences in the activation curve or the fully activated I-V relationship of Ih. 3. In comparison, stimulation of the intracellular cyclic adenosine monophosphate (cAMP) pathway induced a significantly positive shift in Ih voltage dependence of +5.1 +/- 1.9 mV, with no alteration in the fully activated I-V relationship. 4. These data argue against a direct regulation of Ih by intracellular Ca2+, and particularly do not support a primary role of Ca(2+)-dependent modulation of the Ih channels in the waxing and waning of sleep spindle oscillations in thalamocortical neurones. Images Figure 1 PMID:9288676

  16. THE ROLE OF INTRACELLULAR SODIUM (Na+) IN THE REGULATION OF CALCIUM (Ca2+)-MEDIATED SIGNALING AND TOXICITY

    PubMed Central

    Yu, Xian-Min; Groveman, Bradley R; Fang, Xiao-Qian; Lin, Shuang-Xiu

    2010-01-01

    It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of excessive calcium ion (Ca2+) entry in central neurons, which may activate degradative processes and thereby cause cell death. Therefore, NMDARs are now recognized to play a key role in the development of many diseases associated with injuries to the central nervous system (CNS). However, it remains a mystery how NMDAR activity is recruited in the cellular processes leading to excitotoxicity and how NMDAR activity can be controlled at a physiological level. The sodium ion (Na+) is the major cation in extracellular space. With its entry into the cell, Na+ can act as a critical intracellular second messenger that regulates many cellular functions. Recent data have shown that intracellular Na+ can be an important signaling factor underlying the up-regulation of NMDARs. While Ca2+ influx during the activation of NMDARs down-regulates NMDAR activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition and thereby potentiate both NMDAR activity and inward Ca2+ flow. Extensive investigations have been conducted to clarify mechanisms underlying Ca2+-mediated signaling. This review focuses on the roles of Na+ in the regulation of Ca2+-mediated NMDAR signaling and toxicity. PMID:21243124

  17. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions. PMID:27017356

  18. Subcellular Dynamics of Multifunctional Protein Regulation: Mechanisms of GAPDH Intracellular Translocation

    PubMed Central

    Sirover, Michael A.

    2012-01-01

    Multidimensional proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibit distinct activities unrelated to their originally identified functions. Apart from glycolysis, GAPDH participates in iron metabolism, membrane trafficking, histone biosynthesis, the maintenance of DNA integrity and receptor mediated cell signaling. Further, multifunctional proteins exhibit distinct changes in their subcellular localization reflecting their new activities. As such, GAPDH is not only a cytosolic protein but is localized in the membrane, the nucleus, polysomes, the ER and the Golgi. In addition, although the initial subcellular localizations of multifunctional proteins may be of significance, dynamic changes in intracellular distribution may occur as a consequence of those new activities. As such, regulatory mechanisms may exist through which cells control multifunctional protein expression as a function of their subcellular localization. The temporal sequence through which subcellular translocation and the acquisition of new GAPDH functions is considered as well as post-translational modification as a basis for its intracellular transport. PMID:22388977

  19. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.

  20. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice

    SciTech Connect

    Zemel, M.B.; Kim, J.H.; Woychik, R.P.; Michaud, E.J.; Hadwell, S.H.; Patel, I.R.; Wilkison, W.O.

    1995-05-23

    Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca{sup 2+} is believed to play a role in mediating insulin action and dysregulation of Ca{sup 2+} flux is observed in diabetic animals and humans, we examined the status of intracellular Ca{sup 2+} in mice carrying the dominant agouti allele, viable yellow (A{sup vy}). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca{sup 2+}]{sub i}) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca{sup 2+}]{sub i} in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca{sup 2+}]{sub i}. 36 refs., 3 figs., 2 tabs.

  1. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase.

    PubMed

    Roth, M; Hoechst, M; Afting, E G

    1981-01-01

    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  2. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  3. Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons.

    PubMed

    Ogra, Yasumitsu; Tejima, Aya; Hatakeyama, Naohiro; Shiraiwa, Moeko; Wu, Siyuan; Ishikawa, Tsutomu; Yawata, Ayako; Anan, Yasumi; Suzuki, Noriyuki

    2016-01-01

    It is suspected that some neurodegenerative diseases are a result of the disturbance of copper (Cu) homeostasis, although it remains unclear whether the disturbance of Cu homeostasis has aberrant effects on neurons. Herein, we investigated Cu metabolism specifically in neurons in terms of changes in the intracellular Cu concentration and the expression of Cu-regulating genes, such as Cu transporters and metallothioneins (MTs), before and after the differentiation of rat pheochromocytoma cells (PC12 cells) into neurons. After the differentiation, Cu and Zn imaging with fluorescent probes revealed an increase in intracellular Cu concentration. The concentrations of other essential metals, which were determined by an inductively coupled plasma mass spectrometer, were not altered. The mRNA expression of the Cu influx transporter, Ctr1, was decreased after the differentiation, and the differentiated cells acquired tolerance to Cu and cisplatin, another substrate of Ctr1. In addition, the expression of MT-3, a brain-specific isoform, was increased, contrary to the decreased expression of MT-1 and MT-2. Taken together, the differentiation of PC12 cells into neurons induced MT-3 expression, thereby resulting in intracellular Cu accumulation. The decrease in Ctr1 expression was assumed to be a response aimed at abolishing the physiological accumulation of Cu after the differentiation. PMID:27623342

  4. Changes in intracellular copper concentration and copper-regulating gene expression after PC12 differentiation into neurons

    PubMed Central

    Ogra, Yasumitsu; Tejima, Aya; Hatakeyama, Naohiro; Shiraiwa, Moeko; Wu, Siyuan; Ishikawa, Tsutomu; Yawata, Ayako; Anan, Yasumi; Suzuki, Noriyuki

    2016-01-01

    It is suspected that some neurodegenerative diseases are a result of the disturbance of copper (Cu) homeostasis, although it remains unclear whether the disturbance of Cu homeostasis has aberrant effects on neurons. Herein, we investigated Cu metabolism specifically in neurons in terms of changes in the intracellular Cu concentration and the expression of Cu-regulating genes, such as Cu transporters and metallothioneins (MTs), before and after the differentiation of rat pheochromocytoma cells (PC12 cells) into neurons. After the differentiation, Cu and Zn imaging with fluorescent probes revealed an increase in intracellular Cu concentration. The concentrations of other essential metals, which were determined by an inductively coupled plasma mass spectrometer, were not altered. The mRNA expression of the Cu influx transporter, Ctr1, was decreased after the differentiation, and the differentiated cells acquired tolerance to Cu and cisplatin, another substrate of Ctr1. In addition, the expression of MT-3, a brain-specific isoform, was increased, contrary to the decreased expression of MT-1 and MT-2. Taken together, the differentiation of PC12 cells into neurons induced MT-3 expression, thereby resulting in intracellular Cu accumulation. The decrease in Ctr1 expression was assumed to be a response aimed at abolishing the physiological accumulation of Cu after the differentiation. PMID:27623342

  5. Protein-protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression.

    PubMed

    Shao, Dongmin; Okuse, Kenji; Djamgoz, Mustafa B A

    2009-07-01

    Voltage-gated sodium channels (VGSCs), classically known to play a central role in excitability and signalling in nerves and muscles, have also been found to be expressed in a range of 'non-excitable' cells, including lymphocytes, fibroblasts and endothelia. VGSC abnormalities are associated with various diseases including epilepsy, long-QT syndrome 3, Brugada syndrome, sudden infant death syndrome and, more recently, various human cancers. Given their pivotal role in a wide range of physiological and pathophysiological processes, regulation of functional VGSC expression has been the subject of intense study. An emerging theme is post-translational regulation and macro-molecular complexing by protein-protein interactions and intracellular trafficking, leading to changes in functional VGSC expression in plasma membrane. This partially involves endoplasmic reticulum associated degradation and ubiquitin-proteasome system. Several proteins have been shown to associate with VGSCs. Here, we review the interactions involving VGSCs and the following proteins: p11, ankyrin, syntrophin, beta-subunit of VGSC, papin, ERM and Nedd4 proteins. Protein kinases A and C, as well as Ca(2+)-calmodulin dependent kinase II that have also been shown to regulate intracellular trafficking of VGSCs by changing the balance of externalization vs. internalization, and an effort is made to separate these effects from the short-term phosphorylation of mature proteins in plasma membrane. Two further modulatory mechanisms are reciprocal interactions with the cytoskeleton and, late-stage, activity-dependent regulation. Thus, the review gives an updated account of the range of post-translational molecular mechanisms regulating functional VGSC expression. However, many details of VGSC subtype-specific regulation and pathophysiological aspects remain unknown and these are highlighted throughout for completeness. PMID:19401147

  6. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  7. Down-regulation of the P-glycoprotein relevant for multidrug resistance by intracellular acidification through the crosstalk of MAPK signaling pathways.

    PubMed

    Jin, Weina; Lu, Ying; Li, Qinghua; Wang, Jian; Zhang, Hongju; Chang, Guoqiang; Lin, Yani; Pang, Tianxiang

    2014-09-01

    In our previous study, we have found that the tumor multidrug resistance mediated by P-glycoprotein could be reversed by sustained intracellular acidification through down-regulating the multidrug resistance gene 1 mRNA and P-glycoprotein expression. However, the molecular events linking the intracellular acidification and the regulation of P-glycoprotein remain unclear. In the present study, the molecular pathways involved in the regulation of P-glycoprotein expression by the intracellular acidification were investigated. We found that the P-glycoprotein expression was down-regulated by the intracellular acidification through inhibition of p38 mitogen-activated protein kinase (MAPK) and the activation of c-Jun N-terminal kinase (JNK) in the resisitant K562/DOX cells. In the sensitive K562 and HL60 cell lines, the changes of the p38 MAPK expression after the acidification are not as obvious as that of K562/DOX cells, but the activation of extracellular signal-regulated kinase (ERK) is also observed, which indicates that the down-regulation of p38 MAPK by the intracellular acidification might be the resistant cell line specific. Blockade of ERK and JNK signaling by the inhibitors or RNA interference increased p38MAPK activities suggesting that cross-talk within MAPKs is also important for this response. Our study provides the first direct evidence that the reversal of P-glycoprotein-mediated multidrug resistance by intracellular acidification is mediated by the crosstalk of MAPK signaling pathways.

  8. Serpine2/PN-1 Is Required for Proliferative Expansion of Pre-Neoplastic Lesions and Malignant Progression to Medulloblastoma

    PubMed Central

    Vaillant, Catherine; Kool, Marcel; Schwarzentruber-Schauerte, Alexandra; Méreau, Hélène; Cabuy, Erik; Lobrinus, Johannes A.; Pfister, Stefan; Zuniga, Aimée; Frank, Stephan; Zeller, Rolf

    2015-01-01

    Background Medulloblastomas are malignant childhood brain tumors that arise due to the aberrant activity of developmental pathways during postnatal cerebellar development and in adult humans. Transcriptome analysis has identified four major medulloblastoma subgroups. One of them, the Sonic hedgehog (SHH) subgroup, is caused by aberrant Hedgehog signal transduction due to mutations in the Patched1 (PTCH1) receptor or downstream effectors. Mice carrying a Patched-1 null allele (Ptch1∆/+) are a good model to study the alterations underlying medulloblastoma development as a consequence of aberrant Hedgehog pathway activity. Results Transcriptome analysis of human medulloblastomas shows that SERPINE2, also called Protease Nexin-1 (PN-1) is overexpressed in most medulloblastomas, in particular in the SHH and WNT subgroups. As siRNA-mediated lowering of SERPINE2/PN-1 in human medulloblastoma DAOY cells reduces cell proliferation, we analyzed its potential involvement in medulloblastoma development using the Ptch1∆/+ mouse model. In Ptch1∆/+ mice, medulloblastomas arise as a consequence of aberrant Hedgehog pathway activity. Genetic reduction of Serpine2/Pn-1 interferes with medulloblastoma development in Ptch1∆/+ mice, as ~60% of the pre-neoplastic lesions (PNLs) fail to develop into medulloblastomas and remain as small cerebellar nodules. In particular the transcription factor Atoh1, whose expression is essential for development of SHH subgroup medulloblastomas is lost. Comparative molecular analysis reveals the distinct nature of the PNLs in young Ptch1∆/+Pn-1Δ/+ mice. The remaining wild-type Ptch1 allele escapes transcriptional silencing in most cases and the aberrant Hedgehog pathway activity is normalized. Furthermore, cell proliferation and the expression of the cell-cycle regulators Mycn and Cdk6 are significantly reduced in PNLs of Ptch1∆/+Pn-1Δ/+ mice. Conclusions Our analysis provides genetic evidence that aberrant Serpine2/Pn-1 is required for

  9. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis.

    PubMed

    Anderson, Gregory G; Goller, Carlos C; Justice, Sheryl; Hultgren, Scott J; Seed, Patrick C

    2010-03-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharide capsule is a key constituent of the IBC matrix. Compared to prototypic E. coli K1 strain UTI89, a capsule assembly mutant had a fitness defect in functionally TLR4(+) and TLR4(-) mice, suggesting a protective role of capsule in inflamed and noninflamed hosts. K1 capsule assembly and synthesis mutants had dramatically reduced IBC formation, demonstrating the common requirement for K1 polysaccharide in IBC development. The capsule assembly mutant appeared dispersed in the cytoplasm of the bladder epithelial cells and failed to undergo high-density intracellular replication during later stages of infection, when the wild-type strain continued to form serial generations of IBC. Deletion of the sialic acid regulator gene nanR partially restored IBC formation in the capsule assembly mutant. These data suggest that capsule is necessary for efficient IBC formation and that aberrant sialic acid accumulation, resulting from disruption of K1 capsule assembly, produces a NanR-mediated defect in intracellular proliferation and IBC development. Together, these data demonstrate the complex but important roles of UPEC polysaccharide encapsulation and sialic acid signaling in multiple stages of UTI pathogenesis.

  10. Epigenetics: A New Model for Intracellular Parasite-Host Cell Regulation.

    PubMed

    Robert McMaster, W; Morrison, Charlotte J; Kobor, Michael S

    2016-07-01

    Intracellular protozoan parasites are an extremely important class of pathogens that cause a spectrum of diseases in human and animal hosts. There is a growing body of evidence suggesting that protozoan parasites, like other prokaryotic and viral pathogens, manipulate host cells via epigenetic modifications of the host genome that alter transcription and corresponding signaling pathways. In light of these data, we examine the role of epigenetics in downregulation of host macrophages by Leishmania that could potentially lead to a permanent state of inactivation, thus favoring pathogen survival and disease progression. PMID:27142564

  11. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells

    SciTech Connect

    Allen, J.C.; Navran, S.S.; Seidel, C.L.; Dennison, D.K.; Amann, J.M.; Jemelka, S.K.

    1989-04-01

    Enzymatically dispersed cells from canine saphenous vein and femoral artery were grown in fetal calf serum and studied at day 0 (freshly dispersed) through confluence in primary culture. Intracellular Na levels (Nai), but not intracellular K (Ki), were increased after 24 h in culture and then decreased to a steady state by 4 days. Na+ pump site number (( /sup 3/H) ouabain binding) increased through day 3 and remained elevated. Nai was still elevated at 2 days when the Na+ pump site number began to increase. Total pump turnover (maximum ouabain-inhibited /sup 86/Rb uptake) reflected the increase in Na+ pump site number. These key events precede the observed increases in both protein production and cellular proliferation. If the same cells are maintained in defined medium, without fetal calf serum, Nai, Ki, and the number of (/sup 3/H)ouabain binding sites do not change with time. These data are consistent with the suggestion that the initial mitogenic response of vascular smooth muscle cells to fetal calf serum involves an increased Na+ influx, and a Nai accumulation, caused by low Na+ pump density. The synthesis of new pump sites effects a decrease in the accumulated Nai, which may be related to cell proliferation.

  12. LacI(Ts)-regulated expression as an in situ intracellular biomolecular thermometer.

    PubMed

    McCabe, K M; Lacherndo, E J; Albino-Flores, I; Sheehan, E; Hernandez, M

    2011-05-01

    In response to needs for in situ thermometry, a temperature-sensitive vector was adapted to report changes in the intracellular heat content of Escherichia coli in near-real time. This model system utilized vectors expressing increasing quantities of β-galactosidase in response to stepwise temperature increases through a biologically relevant range (22 to 45°C). As judged by calibrated fluorometric and colorimetric reporters, both whole E. coli cells and lysates expressed significant repeatable changes in β-galactosidase activity that were sensitive to temperature changes of less than 1°C (35 to 45°C). This model system suggests that changes in cellular heat content can be detected independently of the medium in which cells are maintained, a feature of particular importance where the medium is heterogeneous or nonaqueous, or otherwise has a low heat transfer capacity. We report here that the intracellular temperature can be reliably obtained in near-real time using reliable fluorescent reporting systems from cellular scales, with a 20°C range of detection and at least 0.7°C sensitivity between 35 and 45°C. PMID:21378059

  13. Regulation of intracellular pH in neuronal and glial tumour cells, studied by multinuclear NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1994-06-01

    The effect of extracellular pH (pHe) on intracellular pH (pHi) and cellular metabolism was examined by multinuclear NMR spectroscopy of cells in vivo and in vitro. A decrease in pHe from 7.4 to 6.4 led to a significant drop in pHi, in both neuronal and glial tumour cells, as detected by in vivo 31P NMR of cells embedded in basement membrane gel threads. A more than 50% decrease in both the phosphocreatine (PCr) level and derivatives of glycolysis (i.e., glycerol 3-phosphate) was observed, concomitantly to the fall in pHi. A 50% decrease in intracellular lactate levels was seen in in vivo 1H NMR spectra under these conditions. Reperfusion with fresh medium (pHe 7.4) resulted in the full recovery of pHi, simultaneously with an increase in both PCr and intracellular lactate back to their control levels. Perchloric acid and lipid extract measurements confirmed the observations made by in vivo 31P and 1H NMR spectroscopy and further showed a decrease both in tricarboxylic acid cycle activity and phospholipid synthesis. The data revealed no significant differences between the neuronal and glial tumour cells investigated. pHi measurements in the presence of inhibitors of the various pH regulatory mechanisms showed that the Na+/H+ exchanger, the carbonic anhydrase and at least one of the bicarbonate-transport systems are involved in pH regulation of both cell types. The results suggest that Na+/H+ exchange is the preferred mechanism by which both neuronal and glial cells regulate their pHi after extracellular acidification.

  14. Intracellular calcium and its sodium-independent regulation in voltage-clamped snail neurones.

    PubMed Central

    Kennedy, H J; Thomas, R C

    1995-01-01

    1. We have used both Ca(2+)-sensitive microelectrodes and fura-2 to measure the intracellular free calcium ion concentration ([Ca2+]i or its negative log, pCai) of snail neurones voltage clamped to -50 or -60 mV. Using Ca(2+)-sensitive microelectrodes, [Ca2+]i was found to be approximately 174 nM and pCai, 6.76 +/- 0.09 (mean +/- S.E.M.; n = 11); using fura-2, [Ca2+]i was approximately 40 nM and pCai, 7.44 +/- 0.06 (mean +/- S.E.M., n = 10). 2. Depolarizations (1-20 s) caused an increase in [Ca2+]i which was abolished by removal of extracellular Ca2+, indicating that the rise in [Ca2+]i was due to Ca2+ influx through voltage-activated Ca2+ channels. 3. Caffeine (10-20 mM) caused an increase in [Ca2+]i in the presence or absence of extracellular Ca2+. The effects of caffeine on [Ca2+]i could be prevented by ryanodine. 4. Thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a small increase in resting [Ca2+]i and slowed the rate of recovery from Ca2+ loads following 20 s depolarizations. 5. Neither replacement of extracellular sodium with N-methyl-D-glucamine (NMDG), nor loading the cells with intracellular sodium, had any effect on resting [Ca2+]i or the rate of recovery of [Ca2+]i following depolarizations. 6. The mitochondrial uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (CCmP) caused a small gradual rise in resting [Ca2+]i. Removal of extracellular sodium during exposure to CCmP had no further effect on [Ca2+]i. 7. Intracellular orthovanadate caused an increase in resting [Ca2+]i and prevented the full recovery of [Ca2+]i following small Ca2+ loads, but removal of extracellular sodium did not cause a rise in [Ca2+]i. We conclude that there is no Na(+)-Ca2+ exchanger present in the cell body of these neurones and that [Ca2+]i is maintained by an ATP-dependent Ca2+ pump. Images Figure 1 PMID:7623274

  15. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics

    PubMed Central

    Biesiadecki, Brandon J.; Davis, Jonathan P.; Ziolo, Mark T.; Janssen, Paul M.L.

    2014-01-01

    Cardiac muscle relaxation is an essential step in the cardiac cycle. Even when the contraction of the heart is normal and forceful, a relaxation phase that is too slow will limit proper filling of the ventricles. Relaxation is too often thought of as a mere passive process that follows contraction. However, many decades of advancements in our understanding of cardiac muscle relaxation have shown it is a highly complex and well-regulated process. In this review, we will discuss three distinct events that can limit the rate of cardiac muscle relaxation: the rate of intracellular calcium decline, the rate of thin-filament de-activation, and the rate of cross-bridge cycling. Each of these processes are directly impacted by a plethora of molecular events. In addition, these three processes interact with each other, further complicating our understanding of relaxation. Each of these processes is continuously modulated by the need to couple bodily oxygen demand to cardiac output by the major cardiac physiological regulators. Length-dependent activation, frequency-dependent activation, and β-adrenergic regulation all directly and indirectly modulate calcium decline, thin-filament deactivation, and cross-bridge kinetics. We hope to convey our conclusion that cardiac muscle relaxation is a process of intricate checks and balances, and should not be thought of as a single rate-limiting step that is regulated at a single protein level. Cardiac muscle relaxation is a system level property that requires fundamental integration of three governing systems: intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. PMID:25484996

  16. Intracellular pH-regulating mechanism of the squid axon. Relation between the external Na+ and HCO-3 dependences

    PubMed Central

    1985-01-01

    The intracellular pH-regulating mechanism of the squid axon was examined for its dependence on the concentrations of external Na+ and HCO3-, always at an external pH (pHo) of 8.0. Axons having an initial intracellular pH (pHi) of approximately 7.4 were internally dialyzed with a solution of pH 6.5 that contained 400 mM Cl- and no Na+. After pHi had fallen to approximately 6.6, dialysis was halted, thereby returning control of pHi to the axon. With external Na+ and HCO-3 present, intracellular pH (pHi) increased because of the activity of the pHi-regulating system. The acid extrusion rate (i.e., equivalent efflux of H+, JH) is the product of the pHi recovery rate, intracellular buffering power, and the volume-to-surface ratio. The [HCO3-]o dependence of JH was examined at three fixed levels of [Na+]o: 425, 212, and 106 mM. In all three cases, the apparent Jmax was approximately 19 pmol X cm-2 X s-1. However, the apparent Km (HCO3-) was approximately inversely proportional to [Na+]o, rising from 2.6 to 5.4 to 9.7 mM as [Na+]o was lowered from 425 to 212 to 106 mM, respectively. The [Na+]o dependence of JH was similarly examined at three fixed levels of [HCO3-]o: 12, 6, and 3 mM. The Jmax values did not vary significantly from those in the first series of experiments. The apparent Km (Na+), however, was approximately inversely related to [HCO3-]o, rising from 71 to 174 to 261 mM as [HCO3-]o was lowered from 12 to 6 to 3 mM, respectively. These results agree with the predictions of the ion-pair model of acid extrusion, which has external Na+ and CO3= combining to form the ion pair NaCO3-, which then exchanges for internal Cl-. When the JH data are replotted as a function of [NaCO3- ]o, data from all six groups of experiments fall along the same Michaelis-Menten curve, with an apparent Km (NaCO3-) of 80 microM. The ordered and random binding of Na+ and CO3= cannot be ruled out as possible models, but are restricted in allowable combinations of rate constants. PMID

  17. Using C. elegans to Identify the Protease Targets of Serpins In Vivo

    PubMed Central

    Bhatia, Sangeeta R.; Miedel, Mark T.; Chotoo, Cavita K.; Graf, Nathan J.; Hood, Brian L.; Conrads, Thomas P.; Silverman, Gary A.; Luke, Cliff J.

    2015-01-01

    Most serpins inhibit serine and/or cysteine proteases, and their inhibitory activities are usually defined in vitro. However, the physiological protease targets of most serpins are unknown despite many years of research. This may be due to the rapid degradation of the inactive serpin:protease complexes and/or the conditions under which the serpin inhibits the protease. The model organism Caenorhabditis elegans is an ideal system for identifying protease targets due to powerful forward and reverse genetics, as well as the ease of creating transgenic animals. Using combinatorial approaches of genetics and biochemistry in C. elegans, the true in vivo protease targets of the endogenous serpins can be elucidated. PMID:21683259

  18. Regulation of the system x(C)- cystine/glutamate exchanger by intracellular glutathione levels in rat astrocyte primary cultures.

    PubMed

    Seib, Todd Michael; Patel, Sarjubhai Amratbhai; Bridges, Richard James

    2011-10-01

    The system x(C)- (Sx(C)-) transporter functions to mediate the exchange of extracellular cystine (L-Cys(2)) and intracellular glutamate (L-Glu). Internalized L-Cys(2) serves as a rate-limiting precursor for the biosynthesis of glutathione (GSH), while the externalized L-Glu can contribute to either excitatory signaling or excitotoxicity. In the present study the influence of culture conditions (with and without dibutyryl-cAMP) and GSH levels on the expression of Sx(C)- were investigated in primary rat astrocyte cultures. Sx(C)- activity in dbcAMP-treated cells was nearly sevenfold greater than in untreated astrocytes and increased further (∼threefold) following the depletion of intracellular GSH with buthionine sulfoximine. This increase in Sx(C)- triggered by GSH depletion was only observed in the dbcAMP-treated phenotype and was distinct from the Nrf2-mediated response initiated by exposure to electrophiles. Changes in Sx(C)- activity correlated with increases in both protein and mRNA levels of the xCT subunit of the Sx(C)- heterodimer, an increase in the V(max) for L-Glu uptake and was linked temporally to GSH levels. This induction of Sx(C)- was not mimicked by hydrogen peroxide nor attenuated by nonspecific antioxidants but was partially prevented by the co-administration of the cell-permeant thiols GSH-ethyl ester and N-acetylcysteine. These findings demonstrate that the expression of Sx(C)- on astrocytes is dynamically regulated by intracellular GSH levels in a cell- and phenotype-dependent manner. The presence of this pathway likely reflects the inherent vulnerability of the CNS to oxidative damage and raises interesting questions as to the functional consequences of changes in Sx(C)- activity in CNS injury and disease.

  19. Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel.

    PubMed

    Farnsworth, Nikki L; Mead, Benjamin E; Antunez, Lorena R; Palmer, Amy E; Bryant, Stephanie J

    2014-11-01

    The goal of this study was to investigate the role of fixed negative charges in regulating cartilage-like tissue production by chondrocytes under static and dynamic three-dimensional culture, and to determine whether intracellular calcium ([Ca(2+)]i) is involved in mediating this response. Initial experiments using the 3D neutral hydrogel were conducted in static isotonic culture with ionic and non-ionic osmolytes added to the culture medium. Tissue production by bovine chondrocytes with non-ionic osmolytes was 1.9-fold greater than with ionic osmolytes, suggesting that the ionic nature of the osmolyte is an important regulator of tissue production. To investigate fixed negative charges, a 3D culture system containing encapsulated chondrocytes was employed based on a synthetic and neutral hydrogel platform within which negatively charged chondroitin sulfate was incorporated in a controlled manner. Incorporation of negative charges did not affect the mechanical properties of the hydrogel; however, intracellular ion concentration was elevated from the culture medium (330 mOsm) and estimated to be similar to that in ~400 mOsm culture medium. With dynamic loading, GAG synthesis decreased by 26% in neutral hydrogels cultured in 400mOsm medium, and increased by 26% in charged gels cultured in 330 mOsm. Treatment of chondrocyte-seeded hydrogels with the Ca(2+) chelator BAPTA-AM decreased GAG synthesis by 32-46% and was similar among all conditions, suggesting multiple roles for Ca(2+) mediated tissue production including with ionic osmolytes. In conclusion, findings from this study suggest that a dynamic ionic environment regulates tissue synthesis and points to [Ca(2+)]i signaling as a potential mediator. PMID:25128592

  20. Structure function analysis of serpin super-family: "a computational approach".

    PubMed

    Singh, Poonam; Jairajpuri, Mohamad Aman

    2014-01-01

    Serine Protease inhibitors (serpins) are a super-family of proteins that controls the proteinases involved in the inflammation, complementation, coagulation and fibrinolytic pathways. Serpins are prone to conformational diseases due to a complex inhibition mechanism that involves large scale conformational change, and their susceptibility to undergo point mutations might lead to functional defects. Serpins are associated with diseases like emphysema/cirrhosis, angioedema, familial dementia, chronic obstructive bronchitis and thrombosis. Serpin polymerization based pathologies are fairly widespread and devising a cure has been difficult due to lack of clarity regarding its mechanism. Serpin can exist in various conformational states and has a variable cofactor binding ability. It has a large genome and proteome database which can be utilized to gain critical insight into their structure, mechanism and defects. Comprehensive computational studies on the serpin family is lacking, most of the work done till date is limited and deals mostly with few individual serpins. We have tried to analyze few aspect of this family using diverse computational biology tools and have shown the following: a) the importance of residue burial linked shift in the conformational stability as a major factor in increasing the polymer propensity in serpins. b) Amino acids involved in the polymerization are in general completely buried in the native conformation. c) An isozyme specific antithrombin study showed the structural basis of improved heparin binding to beta antithrombin as compared to alpha-antithrombin. d) A comprehensive cavity analysis showed its importance in inhibition and polymerizaiton and finally e) an interface analysis of various serpin protease complexes identified critical evolutionary conserved residues in exosite that determines its protease specificity. This work introduces the problem and emphasizes on the need for in-depth computational studies of serpin superfamily

  1. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome.

    PubMed

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-06-23

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway.

  2. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome

    PubMed Central

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  3. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    PubMed

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  4. Programmed Nanococktail for Intracellular Cascade Reaction Regulating Self-Synergistic Tumor Targeting Therapy.

    PubMed

    Chen, Wei-Hai; Luo, Guo-Feng; Qiu, Wen-Xiu; Lei, Qi; Hong, Sheng; Wang, Shi-Bo; Zheng, Di-Wei; Zhu, Cheng-Hui; Zeng, Xuan; Feng, Jun; Cheng, Si-Xue; Zhang, Xian-Zheng

    2016-02-10

    In this work, a ZnO based nanococktail with programmed functions is designed and synthesized for self-synergistic tumor targeting therapy. The nanococktail can actively target tumors via specific interaction of hyaluronic acid (HA) with CD44 receptors and respond to HAase-rich tumor microenvironment to induce intracellular cascade reaction for controlled therapy. The exposed cell-penetrating peptide (R8) potentiates the cellular uptake of therapeutic nanoparticles into targeted tumor cells. Then ZnO cocktail will readily degrade in acidic endo/lysosomes and induce the production of desired reactive oxygen species (ROS) in situ. The destructive ROS not only leads to serious cell damage but also triggers the on-demand drug release for precise chemotherapy, thus achieving enhanced antitumor efficiency synergistically. After tail vein injection of ZnO cocktail, a favorable tumor apoptosis rate (71.2 ± 8.2%) is detected, which is significantly superior to that of free drug, doxorubicin (12.9 ± 5.2%). Both in vitro and in vivo studies demonstrate that the tailor-made ZnO cocktail with favorable biocompatibility, promising tumor specificity, and self-synergistically therapeutic capacity opens new avenues for cancer therapy.

  5. Use of ion-sensitive microelectrodes to study intracellular free magnesium concentration and its regulation in mammalian cardiac muscle.

    PubMed

    Hall, S K; Fry, C H; Buri, A; McGuigan, J A

    Ion-sensitive microelectrodes (ISEs) have been used to measure intracellular [Mg2+] ([Mg2+]i) in cardiac muscle, although most measurements have tended to overestimate the value due to the poor selectivity of the Mg2+ ionophore in the sarcoplasm and to inaccurate collation of individual ISE measurements. This paper highlights the correct method for analysis of data from multiple ISE experiments. Since [Mg2+]i is constrained at a lower concentration than would be expected by passive distribution of the ion, some of the possible mechanisms underlying Mg2+ extrusion from ferret ventricular myocardium were investigated. During elevation of the extracellular [Mg], mean [Mg2+]i rose from 1.61 to 1.91 mM. The same intervention had no significant effect on membrane potential, intracellular [Na+] or pH measured with ISEs, and there was no change in resting [Ca2+], as assessed from fura-2 fluorescence. The data are not consistent with a simple mechanism for Na(+)-Mg2+ exchange as the primary mode of Mg2+ regulation in cardiac muscle or with an Mg2+ extrusion mechanism involving steady-state ion exchange.

  6. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration.

    PubMed Central

    Billingsley, M L; Kincaid, R L

    1997-01-01

    This review attempts to summarize what is known about tau phosphorylation in the context of both normal cellular function and dysfunction. However, conceptions of tau function continue to evolve, and it is likely that the regulation of tau distribution and metabolism is complex. The roles of microtubule-associated kinases and phosphatases have yet to be fully described, but may afford insight into how tau phosphorylation at the distal end of the axon regulates cytoskeletal-membrane interactions. Finally, lipid and glycosaminoglycan modification of tau structure affords yet more complexity for regulation and aggregation. Continued work will help to determine what is causal and what is coincidental in Alzheimer's disease, and may lead to identification of therapeutic targets for halting the progression of paired helical filament formation. PMID:9169588

  7. Human epithelial cystic fibrosis transmembrane conductance regulator without exon 5 maintains partial chloride channel function in intracellular membranes.

    PubMed Central

    Xie, J; Drumm, M L; Zhao, J; Ma, J; Davis, P B

    1996-01-01

    The cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR) is a splice variant of the epithelial CFTR, with lacks 30 amino acids encoded by exon 5 in the first intracellular loop. For examination of the role of exon 5 in CFTR channel function, a CFTR deletion mutant, in which exon 5 was removed from the human epithelial CFTR, was constructed. The wild type and delta exon5 CFTR were expressed in a human embryonic kidney cell line (293 HEK). Fully mature glycosylated CFTR (approximately 170 kDa) was immunoprecipitated from cells transfected with wild type CFTR cDNA, whereas cells transfected with delta exon5 CFTR express only a core-glycosylated from (approximately 140 kDa). The Western blot test performed on subcellular membrane fractions showed that delta exon5 CFTR was located in the intracellular membranes. Neither incubation at lower temperature (26 degrees C) nor stimulation of 293 HEK cells with forskolin or CPT-cAMP caused improvement in glycosylation and processing of delta exon5 CFTR proteins, indicating that the human epithelial CFTR lacking exon5 did not process properly in 293 HEK cells. On incorporation of intracellular membrane vesicles containing the delta exon5 CFTR proteins into the lipid bilayer membrane, functional phosphorylation- and ATP-dependent chloride channels were identified. CFTR channels with an 8-pS full-conductance state were observed in 14% of the experiments. The channel had an average open probability (Po) of 0.098 +/- 0.022, significantly less than that of the wild type CFTR (Po = 0.318 +/- 0.028). More frequently, the delta exon5 CFTR formed chloride channels with lower conductance states of approximately 2-3 and approximately 4-6 pS. These subconductance states were also observed with wild type CFTR but to a much lesser extent. Average Po for the 2-3-pS subconductance state, estimated from the area under the curve on an amplitude histogram, was 0.461 +/- 0.194 for delta exon5 CFTR and 0.332 +/- 0

  8. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens

    PubMed Central

    Habib, Samar; El Andaloussi, Abdeljabar; Hisham, Ahmed; Ismail, Nahed

    2016-01-01

    Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK) cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE), which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8–10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia. PMID:27092553

  9. Factors Regulating Cell Wall Thickening and Intracellular Iodophilic Polysaccharide Storage in Streptococcus mutans

    PubMed Central

    Mattingly, S. J.; Daneo-Moore, L.; Shockman, G. D.

    1977-01-01

    The effects of a series of different antibiotics on the synthesis and accumulation of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), protein, cell wall peptidoglycan (PG), and intracellular iodophilic polysaccharide (IPS) in Streptococcus mutans FA-1 were examined. d-Cycloserine, penicillin G, or vancomycin treatment resulted in rapid inhibitions of PG synthesis and a consequent decrease in the relative amount of lysine found in PG fractions. Decreases in culture turbidity, an indicator of gross cellular lysis, were not observed. Secondary inhibitions of the rates and extent of syntheses of DNA, RNA, and protein were observed. With all three inhibitors of PG synthesis, IPS synthesis continued for varying time intervals but, at most, resulted in only relatively small and transient increases in cellular IPS content. Chloramphenicol inhibited protein synthesis but permitted continued synthesis of RNA and PG. After 6 h, the cells contained 42% of their [3H] lysine in the PG fraction compared with 25% in exponential-phase cells, a good indication of thickened cell walls. In the presence of chloramphenicol, cellular IPS content increased about 2.5-fold during the first 45 min and then decreased to a level (13%) at 6 h very similar to that of exponential-phase cells (about 10%). Rifampin inhibition of RNA (and, consequently, also protein) synthesis resulted in accumulation of cellular PG and IPS. After 6 h, IPS accounted for 38% of the cellular dry weight, and the cells contained 43% of their lysine in PG. Thus, rifampin-inhibited cells appear to have both thickened walls and a high IPS content. The correlation between inhibition of RNA synthesis and IPS accumulation was confirmed by exposing cultures to rifampin for 60 min and then removing the drug, thus permitting the cells to regrow. Upon removal of rifampin and resumption of RNA synthesis, cellular IPS content rapidly decreased to the level expected for exponentialphase cells. PMID:892902

  10. Phosphorylation Regulating the Ratio of Intracellular CRY1 Protein Determines the Circadian Period

    PubMed Central

    Liu, Na; Zhang, Eric Erquan

    2016-01-01

    The core circadian oscillator in mammals is composed of transcription/translation feedback loop, in which cryptochrome (CRY) proteins play critical roles as repressors of their own gene expression. Although post-translational modifications, such as phosphorylation of CRY1, are crucial for circadian rhythm, little is known about how phosphorylated CRY1 contributes to the molecular clockwork. To address this, we created a series of CRY1 mutants with single amino acid substitutions at potential phosphorylation sites and performed a cell-based, phenotype-rescuing screen to identify mutants with aberrant rhythmicity in CRY-deficient cells. We report 10 mutants with an abnormal circadian period length, including long period (S280D and S588D), short period (S158D, S247D, T249D, Y266D, Y273D, and Y432D), and arrhythmicity (S71D and S404D). When expressing mutated CRY1 in HEK293 cells, we show that most of the mutants (S71D, S247D, T249D, Y266D, Y273D, and Y432D) exhibited reduction in repression activity compared with wild-type (WT) CRY1, whereas other mutants had no obvious change. Correspondingly, these mutants also showed differences in protein stability and cellular localization. We show that most of mutants are more stable than WT, except S158D, T249D, and S280D. Although the characteristics of the 10 mutants are various, they all impair the ratio balance of intracellular CRY1 protein. Thus, we conclude that the mutations caused distinct phenotypes most likely through the ratio of functional CRY1 protein in cells. PMID:27721804

  11. Intracellular pH regulation in isolated rat bile duct epithelial cells.

    PubMed Central

    Strazzabosco, M; Mennone, A; Boyer, J L

    1991-01-01

    To evaluate ion transport mechanisms in bile duct epithelium (BDE), BDE cells were isolated from bile duct-ligated rats. After short-term culture pHi was measured with a single cell microfluorimetric set-up using the fluorescent pHi indicator BCECF, and calibrated with nigericin in high K+ concentration buffer. Major contaminants were identified using vital markers. In HCO3(-)-free media, baseline pHi (7.03 +/- 0.12) decreased by 0.45 +/- 0.18 pH units after Na+ removal and by 0.12 +/- .04 after amiloride administration (1 mM). After acid loading (20 mM NH4Cl) pHi recovery was inhibited by both Na+ removal and amiloride (JH+ = 0.74 +/- 1.1, and JH+ = 2.28 +/- 0.8, respectively, vs. 5.47 +/- 1.97 and 5.97 +/- 1.76 mM/min, in controls, respectively). In HCO3- containing media baseline pHi was higher (7.16 +/- 0.1, n = 36, P less than 0.05) and was decreased by Na+ substitution but not by amiloride. Na+ removal inhibited pHi recovery after an intracellular acid load (0.27 +/- 0.26, vs. 7.7 +/- 4.1 mM/min, in controls), whereas amiloride reduced JH+ only by 27%. pH recovery was inhibited by DIDS (0.5-1 mM), but not by Cl- depletion. Finally, acute Cl- removal increased pHi by 0.18 pH units in the absence but not presence of DIDS. These data indicate that BDE cells possess mechanisms for Na+/H+ exchange, Na+:HCO3- symport and Cl-/HCO3 exchange. Therefore BDE may be capable of transepithelial H+/HCO3- transport. Images PMID:2022723

  12. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+

    PubMed Central

    Gebing, Tina; Reda, Sara; Schwaiger, Astrid; Leitner, Johannes; Wolny, Martin; Eckardt, Lars; Hoppe, Uta C.

    2016-01-01

    Introduction The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial. Methods Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice. Results Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-. Conclusion Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling. PMID:26849136

  13. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation

    PubMed Central

    Tong, Yanju; Song, Fuyong

    2015-01-01

    The transcription-regulating activity of TFEB is dependent on its phosphorylation modification, but the phosphatase(s) involved in TFEB dephosphorylation have remained elusive. It has now become clear that lysosomal calcium signaling activates calcineurin, an endogenous serine/threonine phosphatase, which dephosphorylate TFEB leading to upregulation of autophagy. PMID:26043755

  14. Critical role for NAD glycohydrolase in regulation of erythropoiesis by hematopoietic stem cells through control of intracellular NAD content.

    PubMed

    Nam, Tae-Sik; Park, Kwang-Hyun; Shawl, Asif Iqbal; Kim, Byung-Ju; Han, Myung-Kwan; Kim, Youngho; Moss, Joel; Kim, Uh-Hyun

    2014-06-01

    NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD. PMID:24759100

  15. Aging is a primary risk factor for cardiac arrhythmias: disruption of intracellular Ca2+ regulation as a key suspect.

    PubMed

    Hatch, Fiona; Lancaster, Matthew K; Jones, Sandra A

    2011-08-01

    Aging is an inevitable time-dependent progression associated with a functional decline of the cardiovascular system even in 'healthy' individuals. Age positively correlates with an increasing risk of cardiac problems including arrhythmias. Not only the prevalence but also the severity of arrhythmias escalates with age. The reasons for this are multifactorial but dysregulation of intracellular calcium within the heart is likely to play a key role in initiating and perpetuating these life-threatening events. We now know that several aspects of cardiac calcium regulation significantly change with advancing age - changes that could produce electrical instability. Further development of knowledge of the mechanisms underlying these changes will allow us to reduce what currently is an inevitable increase in the incidence of arrhythmias in the elderly.

  16. The CovS/CovR Acid Response Regulator Is Required for Intracellular Survival of Group B Streptococcus in Macrophages

    PubMed Central

    Cumley, Nicola J.; Smith, Leanne M.; Anthony, Mark

    2012-01-01

    Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and septicemia. The ability of this organism to survive inside phagocytic cells is poorly understood but thought to be an important step for the establishment of disease in the host. Here, we demonstrate that GBS shows prolonged survival within J774 macrophages and that the capacity to survive is not significantly changed across a diverse range of strains representing different serotypes, multilocus sequence types (MLST), and sites of clinical isolation. Using staining for the lysosome-associated membrane protein (LAMP) and by pharmacological inhibition of phagosome acidification, we demonstrate that streptococci reside in a phagosome and that acidification of the phagosome is required for GBS to survive intracellularly. Moreover, we show that the GBS two-component system CovS/CovR, which is the major acid response regulator in this organism, is required for survival inside the phagosome. PMID:22331428

  17. Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways.

    PubMed

    Dhillon, Sandeep S; Belsham, Denise D

    2011-04-11

    Leptin acts as a key peripheral hormone in distinct neurons in the hypothalamus to modulate both reproductive function and energy homeostasis. The control of neuropeptide Y (NPY) secretion is an example of a process that can be differentially regulated by leptin. In order to further understand these distinct modulatory effects, we have used immortalized, neuronal hypothalamic cell lines expressing NPY, mHypoE-38 and mHypoE-46. We found that these cell lines express the endogenous leptin receptor, ObRb, and secrete detectable levels of NPY. We exposed the neurons to 100nM leptin for 1h and determined that the basal levels of NPY in the cell lines were differentially regulated: NPY secretion was inhibited in mHypoE-46 neurons, whereas NPY secretion was induced in the mHypoE-38 neurons. In order to determine the mechanisms involved in the divergent regulation of NPY release, we analyzed the activity of a number of signaling components using phospho-specific antibodies directed towards specific proteins in the MAP kinase, PI3K, and AMPK pathways, among others. We found that leptin activated a different combination of second messengers in each cell line. Importantly, we could link the regulation of NPY secretion to different signaling pathways, AMPK in the mHypoE-46 and both MAPK and PI3K in the mHypoE-38 neurons. This is the first demonstration that leptin can specifically regulate individual NPY neuron secretory responses through distinct signaling pathways.

  18. Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen

    PubMed Central

    Willett, Jonathan W.; Herrou, Julien; Briegel, Ariane; Rotskoff, Grant; Crosson, Sean

    2015-01-01

    We have functionally and structurally defined an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival of the global zoonotic pathogen Brucella abortus. Our study delineates phosphoryl transfer through this molecular pathway, which initiates from the sensor kinase CckA and proceeds through the ChpT phosphotransferase to two regulatory substrates: CtrA and CpdR. Genetic perturbation of this system results in defects in cell growth and division site selection, and a specific viability deficit inside human phagocytic cells. Thus, proper control of B. abortus division site polarity is necessary for survival in the intracellular niche. We further define the structural foundations of signaling from the central phosphotransferase, ChpT, to its response regulator substrate, CtrA, and provide evidence that there are at least two modes of interaction between ChpT and CtrA, only one of which is competent to catalyze phosphoryltransfer. The structure and dynamics of the active site on each side of the ChpT homodimer are distinct, supporting a model in which quaternary structure of the 2:2 ChpT–CtrA complex enforces an asymmetric mechanism of phosphoryl transfer between ChpT and CtrA. Our study provides mechanistic understanding, from the cellular to the atomic scale, of a conserved transcriptional regulatory system that controls the cellular and infection biology of B. abortus. More generally, our results provide insight into the structural basis of two-component signal transduction, which is broadly conserved in bacteria, plants, and fungi. PMID:26124143

  19. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin

    SciTech Connect

    Galkina, Svetlana I. . E-mail: galkina@genebee.msu.su; Sud'ina, Galina F.; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na{sup +} and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl{sup -} efflux through chloride channels and Na{sup +} influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  20. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  1. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex

    PubMed Central

    Peyre, Elise; Silva, Carla G.; Nguyen, Laurent

    2015-01-01

    During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex. PMID:25926769

  2. Direct Sensing of Intracellular pH by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channel*♦

    PubMed Central

    Chen, Jeng-Haur; Cai, Zhiwei; Sheppard, David N.

    2009-01-01

    In cystic fibrosis (CF), dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel disrupts epithelial ion transport and perturbs the regulation of intracellular pH (pHi). CFTR modulates pHi through its role as an ion channel and by regulating transport proteins. However, it is unknown how CFTR senses pHi. Here, we investigate the direct effects of pHi on recombinant CFTR using excised membrane patches. By altering channel gating, acidic pHi increased the open probability (Po) of wild-type CFTR, whereas alkaline pHi decreased Po and inhibited Cl− flow through the channel. Acidic pHi potentiated the MgATP dependence of wild-type CFTR by increasing MgATP affinity and enhancing channel activity, whereas alkaline pHi inhibited the MgATP dependence of wild-type CFTR by decreasing channel activity. Because these data suggest that pHi modulates the interaction of MgATP with the nucleotide-binding domains (NBDs) of CFTR, we examined the pHi dependence of site-directed mutations in the two ATP-binding sites of CFTR that are located at the NBD1:NBD2 dimer interface (site 1: K464A-, D572N-, and G1349D-CFTR; site 2: G551D-, K1250M-, and D1370N-CFTR). Site 2 mutants, but not site 1 mutants, perturbed both potentiation by acidic pHi and inhibition by alkaline pHi, suggesting that site 2 is a critical determinant of the pHi sensitivity of CFTR. The effects of pHi also suggest that site 2 might employ substrate-assisted catalysis to ensure that ATP hydrolysis follows NBD dimerization. We conclude that the CFTR Cl− channel senses directly pHi. The direct regulation of CFTR by pHi has important implications for the regulation of epithelial ion transport. PMID:19837660

  3. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. PMID:27091863

  4. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  5. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  6. Intra-cellular mechanism of Anti-Müllerian hormone (AMH) in regulation of follicular development.

    PubMed

    Hayes, Emily; Kushnir, Vitaly; Ma, Xiaoting; Biswas, Anindita; Prizant, Hen; Gleicher, Norbert; Sen, Aritro

    2016-09-15

    Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-β superfamily and plays a crucial role in testicular and ovarian functions. In clinical practice, AMH is used as a diagnostic and/or prognostic marker in women in association with ovulation induction and in various pathophysiological conditions. Despite widespread clinical use of AMH, our mechanistic understanding of AMH actions in regulating follicular development is limited. Using a mouse model, we in this study report that in vivo AMH treatment while stalls follicular development and inhibits ovulation, also prevents follicular atresia. We further show that these AMH actions are mediated through induction of two miRNAs, miR-181a and miR-181b, which regulate various aspects of FSH signaling and follicular growth, ultimately affecting downstream gene expression and folliculogenesis. We also report that in this mouse model AMH pre-treatment prior to superovulation improves oocyte yield. These studies, therefore, offer new mechanistic insight into AMH actions in folliculogenesis and point toward potential utilization of AMH as a therapeutic agent. PMID:27235859

  7. Kinetic Intermediates en Route to the Final Serpin-Protease Complex

    PubMed Central

    Maddur, Ashoka A.; Swanson, Richard; Izaguirre, Gonzalo; Gettins, Peter G. W.; Olson, Steven T.

    2013-01-01

    Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism. PMID:24047901

  8. Species-Specific Serological Detection for Schistosomiasis by Serine Protease Inhibitor (SERPIN) in Multiplex Assay

    PubMed Central

    Tanigawa, Chihiro; Fujii, Yoshito; Miura, Masashi; Nzou, Samson Muuo; Mwangi, Anne Wanjiru; Nagi, Sachiyo; Hamano, Shinjiro; Njenga, Sammy M.; Mbanefo, Evaristus Chibunna; Hirayama, Kenji; Mwau, Matilu; Kaneko, Satoshi

    2015-01-01

    Background Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance. Methodology/Principal Findings Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman’s rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006). Conclusions/Significance Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system. PMID:26291988

  9. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Haupenthal, Viola J.; Zimmer, Valerie C.; Hartmann, Tobias

    2013-01-01

    One of the characteristic hallmarks of Alzheimer’s disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes. PMID:24391587

  10. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  11. Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection

    PubMed Central

    Arkatkar, Tanvi; Gupta, Rishein; Li, Weidang; Yu, Jieh-Juen; Wali, Shradha; Neal Guentzel, M; Chambers, James P; Christenson, Lane K; Arulanandam, Bernard P

    2015-01-01

    The hallmark of chlamydial infection is the development of upper genital pathology in the form of hydrosalpinx and oviduct and/or tubal dilatation. Although molecular events leading to genital tissue presentation and cellular architectural remodelling are unclear, early-stage host immune responses are believed to contribute to these long-term sequelae. Recently, we reported the contribution of selected infection-associated microRNAs (miRs) in the generation of host immunity at early-stage infection (day 6 after intravaginal Chlamydia muridarum challenge in C57BL/6 mice). In this report, we describe the contribution of an infection-associated microRNA, i.e. miR-214, to host immunity. Chlamydia muridarum infection in the C57BL/6 mouse genital tract significantly down-regulated miR-214 while up-regulating intracellular adhesion molecule 1 (ICAM1) gene expression. These in vivo observations were confirmed by establishing direct regulation of ICAM-1 by miR-214 in ex vivo genital cell cultures in the presence of miR-214 mimic and inhibitor. Because, ICAM-1 contributes to recruitment of neutrophils following infection, we also demonstrated that alteration of ICAM1 by miR-214 in interleukin-17A-deficient (IL-17A−/−) mice correlated with reduction of neutrophils infiltrating genital tissue at day 6 after challenge. Additionally, these early-stage events resulted in significantly decreased genital pathology in IL-17A−/− mice compared with C57BL/6 mice. This report provides evidence for early-stage regulation of ICAM1 by microRNAs, resulting in reduction of genital pathology associated with chlamydial infection. PMID:25865776

  12. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts.

    PubMed

    Price, Daniel R G; Feng, Honglin; Baker, James D; Bavan, Selvan; Luetje, Charles W; Wilson, Alex C C

    2014-01-01

    Endosymbiotic associations have played a major role in evolution. However, the molecular basis for the biochemical interdependence of these associations remains poorly understood. The aphid-Buchnera endosymbiosis provides a powerful system to elucidate how these symbioses are regulated. In aphids, the supply of essential amino acids depends on an ancient nutritional symbiotic association with the gamma-proteobacterium Buchnera aphidicola. Buchnera cells are densely packed in specialized aphid bacteriocyte cells. Here we confirm that five putative amino acid transporters are highly expressed and/or highly enriched in Acyrthosiphon pisum bacteriocyte tissues. When expressed in Xenopus laevis oocytes, two bacteriocyte amino acid transporters displayed significant levels of glutamine uptake, with transporter ACYPI001018, LOC100159667 (named here as Acyrthosiphon pisum glutamine transporter 1, ApGLNT1) functioning as the most active glutamine transporter. Transporter ApGLNT1 has narrow substrate selectivity, with high glutamine and low arginine transport capacity. Notably, ApGLNT1 has high binding affinity for arginine, and arginine acts as a competitive inhibitor for glutamine transport. Using immunocytochemistry, we show that ApGLNT1 is localized predominantly to the bacteriocyte plasma membrane, a location consistent with the transport of glutamine from A. pisum hemolymph to the bacteriocyte cytoplasm. On the basis of functional transport data and localization, we propose a substrate feedback inhibition model in which the accumulation of the essential amino acid arginine in A. pisum hemolymph reduces the transport of the precursor glutamine into bacteriocytes, thereby regulating amino acid biosynthesis in the bacteriocyte. Structural similarities in the arrangement of hosts and symbionts across endosymbiotic systems suggest that substrate feedback inhibition may be mechanistically important in other endosymbioses.

  13. Differential regulation of Sciaenops ocellatus viperin expression by intracellular and extracellular bacterial pathogens.

    PubMed

    Dang, Wei; Zhang, Min; Hu, Yong-hua; Sun, Li

    2010-08-01

    Viperin is an antiviral protein that has been found to exist in diverse vertebrate organisms and is involved in innate immunity against the infection of a wide range of viruses. However, it is largely unclear as to the potential role played by viperin in bacterial infection. In this study, we identified the red drum Sciaenops ocellatus viperin gene (SoVip) and analyzed its expression in relation to bacterial challenge. The complete gene of SoVip is 2570 bp in length and contains six exons and five introns. The open reading frame of SoVip is 1065 bp, which is flanked by a 5'-untranslated region (UTR) of 34 bp and a 3'-UTR of 350 bp. The deduced amino acid sequence of SoVip shares extensive identities with the viperins of several fish species and possesses the conserved domain of the radical S-adenosylmethionine superfamily proteins. Expressional analysis showed that constitutive expression of SoVip was relatively high in blood, muscle, brain, spleen, and liver, and low in kidney, gill, and heart. Experimental challenges with poly(I:C) and bacterial pathogens indicated that SoVip expression in liver was significantly upregulated by poly(I:C) and the fish pathogen Edwardsiella tarda but down-regulated by the fish pathogens Listonella anguillarum and Streptococcus iniae. Similar differential induction patterns were also observed at cellular level with primary hepatocytes challenged with E. tarda, L. anguillarum, and S. iniae. Infection study showed that all three bacterial pathogens could attach to cultured primary hepatocytes but only E. tarda was able to invade into and survive in hepatocytes. Together these results indicate that SoVip is involved in host immune response during bacterial infection and is differentially regulated at transcription level by different bacterial pathogens. PMID:20420911

  14. Regulation of the collagenase-3 receptor and its role in intracellular ligand processing in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Walling, H. W.; Chan, P. T.; Omura, T. H.; Barmina, O. Y.; Fiacco, G. J.; Jeffrey, J. J.; Partridge, N. C.

    1998-01-01

    We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space.

  15. Intracellular distribution of differentially phosphorylated dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).

    PubMed

    Kaczmarski, Wojciech; Barua, Madhabi; Mazur-Kolecka, Bozena; Frackowiak, Janusz; Dowjat, Wieslaw; Mehta, Pankaj; Bolton, David; Hwang, Yu-Wen; Rabe, Ausma; Albertini, Giorgio; Wegiel, Jerzy

    2014-02-01

    The gene encoding dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age-associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell-compartment-specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that, in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Coimmunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two-dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5-6.5 in the nucleus, 7.2-8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate-affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment-specific functions of DYRK1A may depend on its phosphorylation pattern. PMID:24327345

  16. Identification of Serpin Determinants of Specificity and Selectivity for Furin Inhibition through Studies of α1PDX (α1-Protease Inhibitor Portland)-Serpin B8 and Furin Active-site Loop Chimeras*

    PubMed Central

    Izaguirre, Gonzalo; Qi, Lixin; Lima, Mary; Olson, Steven T.

    2013-01-01

    α1-Protease inhibitor Portland (α1PDX) is an engineered serpin family inhibitor of the proprotein convertase (PC), furin, that exhibits high specificity but limited selectivity for inhibiting furin over other PC family proteases. Here, we characterize serpin B8, a natural inhibitor of furin, together with α1PDX-serpin B8 and furin-PC chimeras to identify determinants of serpin specificity and selectivity for furin inhibition. Replacing reactive center loop (RCL) sequences of α1PDX with those of serpin B8 demonstrated that both the P4–P1 RXXR recognition sequence as well as the P1′–P5′ sequence are critical determinants of serpin specificity for furin. Alignments of PC catalytic domains revealed four variable active-site loops whose role in furin reactivity with serpin B8 was tested by engineering furin-PC loop chimeras. The furin(298–300) loop but not the other loops differentially affected furin reactivity with serpin B8 and α1PDX in a manner that depended on the serpin RCL-primed sequence. Modeling of the serpin B8-furin Michaelis complex identified serpin exosites in strand 3C close to the 298–300 loop whose substitution in α1PDX differentially affected furin reactivity depending on the furin loop and serpin RCL-primed sequences. These studies demonstrate that RCL-primed residues, strand 3C exosites, and the furin(298–300) loop are critical determinants of serpin reactivity with furin, which may be exploited in the design of specific and selective α1PDX inhibitors of PCs. PMID:23744066

  17. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs.

    PubMed

    Hayes, Finbarr; Kędzierska, Barbara

    2014-01-15

    Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.

  18. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.

    PubMed

    Zhang, Yu; Ge, Cheng; Wang, Lin; Liu, Xinxin; Chen, Yifei; Li, Mengmeng; Zhang, Mei

    2015-01-01

    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux.

  19. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    SciTech Connect

    Liu, Chun; Ge, Beihai; He, Chao; Zhang, Yi; Liu, Xiaowen; Liu, Kejian; Qian, Cuiping; Zhang, Yu; Peng, Wenzhong; Guo, Xiaomei

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.

  20. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.

    PubMed

    Zhang, Yu; Ge, Cheng; Wang, Lin; Liu, Xinxin; Chen, Yifei; Li, Mengmeng; Zhang, Mei

    2015-01-01

    Dickkopf1 (DKK1), a canonical Wnt/β-catenin pathway antagonist, is closely associated with cardiovascular disease and adipogenesis. We performed an in vitro study to determine whether oxidized low-density lipoprotein (ox-LDL) increased the expression of DKK1 in macrophages and whether β-catenin and liver X receptor α (LXRα) were involved in this regulation. Induction of DKK1 expression by ox-LDL decreased the level of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) via a Wnt/β-catenin pathway and increased ATP-binding cassette transporter A/G1 (ABCA/G1) levels via a signal transducer and activator of transcription 3 (STAT3) pathway. Lower LOX-1 and higher ABCA/G1 levels inhibited cholesterol loading in macrophages. In conclusion, ox-LDL may induce DKK1 expression in macrophages to inhibit the accumulation of lipids through a mechanism that involves downregulation of LOX-1-mediated lipid uptake and upregulation of ABCA/G1-dependent cholesterol efflux. PMID:25436422

  1. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation.

    PubMed

    Nagel, Alexis K; Ball, Lauren E

    2015-01-01

    The inducible, nutrient-sensitive posttranslational modification of protein Ser/Thr residues with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs on histones, transcriptional regulators, metabolic enzymes, oncogenes, tumor suppressors, and many critical intermediates of growth factor signaling. Cycling of O-GlcNAc modification on and off of protein substrates is catalyzed by the actions of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. To date, there are less than 150 publications addressing the role of O-GlcNAc modification in cancer and over half were published in the last 2 years. These studies have clearly established that increased expression of OGT and hyper-O-GlcNAcylation is common to human cancers of breast, prostate, colon, lung, and pancreas. Furthermore, attenuating OGT activity reduces tumor growth in vitro and metastasis in vivo. This chapter discusses the structure and function of the O-GlcNAc cycling enzymes, mechanisms by which protein O-GlcNAc modification sense changes in nutrient status, the influence of O-GlcNAc cycling enzymes on glucose metabolism, and provides an overview of recent observations regarding the role of O-GlcNAcylation in cancer.

  2. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis.

    PubMed

    Carbone, John W; Margolis, Lee M; McClung, James P; Cao, Jay J; Murphy, Nancy E; Sauter, Edward R; Combs, Gerald F; Young, Andrew J; Pasiakos, Stefan M

    2013-12-01

    This study was undertaken to characterize the ubiquitin proteasome system (UPS) response to varied dietary protein intake, energy deficit (ED), and consumption of a mixed meal. A randomized, controlled trial of 39 adults consuming protein at 0.8 (recommended dietary allowance [RDA]), 1.6 (2×-RDA), or 2.4 (3×-RDA) g · kg(-1) · d(-1) for 31 d. A 10-d weight maintenance (WM) period was followed by 21 d of 40% ED. Ubiquitin (Ub)-mediated proteolysis and associated gene expression were assessed in the postabsorptive (fasted) and postprandial (fed; 480 kcal, 20 g protein) states after WM and ED by using muscle biopsies, fluorescence-based assays, immunoblot analysis, and real-time qRT-PCR. In the assessment of UPS responses to varied protein intakes, ED, and feeding, the RDA, WM, and fasted measures served as appropriate controls. ED resulted in the up-regulation of UPS-associated gene expression, as mRNA expression of the atrogenes muscle RING finger-1 (MuRF1) and atrogin-1 were 1.2- and 1.3-fold higher (P<0.05) for ED than for WM. However, mixed-meal consumption attenuated UPS-mediated proteolysis, independent of energy status or dietary protein, as the activities of the 26S proteasome subunits β1, β2, and β5 were lower (P<0.05) for fed than for fasted. Muscle protein ubiquitylation was also 45% lower (P<0.05) for fed than for fasted, regardless of dietary protein and energy manipulations. Independent of habitual protein intake and despite increased MuRF1 and atrogin-1 mRNA expression during ED, consuming a protein-containing mixed meal attenuates Ub-mediated proteolysis.

  3. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis.

    PubMed

    Carbone, John W; Margolis, Lee M; McClung, James P; Cao, Jay J; Murphy, Nancy E; Sauter, Edward R; Combs, Gerald F; Young, Andrew J; Pasiakos, Stefan M

    2013-12-01

    This study was undertaken to characterize the ubiquitin proteasome system (UPS) response to varied dietary protein intake, energy deficit (ED), and consumption of a mixed meal. A randomized, controlled trial of 39 adults consuming protein at 0.8 (recommended dietary allowance [RDA]), 1.6 (2×-RDA), or 2.4 (3×-RDA) g · kg(-1) · d(-1) for 31 d. A 10-d weight maintenance (WM) period was followed by 21 d of 40% ED. Ubiquitin (Ub)-mediated proteolysis and associated gene expression were assessed in the postabsorptive (fasted) and postprandial (fed; 480 kcal, 20 g protein) states after WM and ED by using muscle biopsies, fluorescence-based assays, immunoblot analysis, and real-time qRT-PCR. In the assessment of UPS responses to varied protein intakes, ED, and feeding, the RDA, WM, and fasted measures served as appropriate controls. ED resulted in the up-regulation of UPS-associated gene expression, as mRNA expression of the atrogenes muscle RING finger-1 (MuRF1) and atrogin-1 were 1.2- and 1.3-fold higher (P<0.05) for ED than for WM. However, mixed-meal consumption attenuated UPS-mediated proteolysis, independent of energy status or dietary protein, as the activities of the 26S proteasome subunits β1, β2, and β5 were lower (P<0.05) for fed than for fasted. Muscle protein ubiquitylation was also 45% lower (P<0.05) for fed than for fasted, regardless of dietary protein and energy manipulations. Independent of habitual protein intake and despite increased MuRF1 and atrogin-1 mRNA expression during ED, consuming a protein-containing mixed meal attenuates Ub-mediated proteolysis. PMID:23965841

  4. Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats

    PubMed Central

    Olivares-García, V; Torre-Villalvazo, I; Velázquez-Villegas, L; Alemán, G; Lara, N; López-Romero, P; Torres, N; Tovar, A R; Díaz-Villaseñor, A

    2015-01-01

    Background/Objective: Dietary fat sources modulate fasting serum concentration of adipokines, particularly adiponectin. However, previous studies utilized obese animals in which adipose tissue function is severely altered. Thus, the present study aimed to assess the postprandial regulation of adipokine secretion in nonobese rats that consumed high-fat diet (HFD) composed of different types of fat for a short time. Methods: The rats were fed a control diet or a HFD containing coconut, safflower or soybean oil (rich in saturated fatty acid, monounsaturated fatty acid or polyunsaturated fatty acid, respectively) for 21 days. The serum concentrations of adiponectin, leptin, retinol, retinol-binding protein-4 (RBP-4), visfatin and resistin were determined at fasting and after refeeding. Adiponectin multimerization and intracellular localization, as well as the expression of endoplasmic reticulum (ER) chaperones and transcriptional regulators, were evaluated in epididymal white adipose tissue. Results: In HFD-fed rats, serum adiponectin was significantly decreased 30 min after refeeding. With coconut oil, all three multimeric forms were reduced; with safflower oil, only the high-molecular-weight (HMW) and medium-molecular-weight (MMW) forms were decreased; and with soybean oil, only the HMW form was diminished. These reductions were due not to modifications in mRNA abundance or adiponectin multimerization but rather to an increment in intracellular localization at the ER and plasma membrane. Thus, when rats consumed a HFD, the type of dietary fat differentially affected the abundance of endoplasmic reticulum resident protein 44 kDa (ERp44), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ (PPARγ) mRNAs, all of which are involved in the post-translational processing of adiponectin required for its secretion. Leptin, RBP-4, resistin and visfatin serum concentrations did not change during fasting, whereas modest alterations were observed after

  5. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  6. Intracellular pH-regulating mechanism of the squid axon. Interaction between DNDS and extracellular Na+ and HCO3-

    PubMed Central

    1989-01-01

    Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene- 2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models. PMID:2915212

  7. Regulation of L-type calcium current by intracellular magnesium in rat cardiac myocytes

    PubMed Central

    Wang, Min; Tashiro, Michiko; Berlin, Joshua R

    2004-01-01

    calcineurin. Thus, physiologically relevant [Mg2+]i modulates ICa by counteracting the effects of Ca2+ channel phosphorylation and by an unknown [Ca2+]i-dependent mechanism. The magnitude of these effects suggests that changes in [Mg2+]i could be critical in regulating l-type channel gating. PMID:14617671

  8. Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects.

    PubMed

    Mallo, Natalia; Lamas, Jesús; de Felipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-10-01

    The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.

  9. Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects.

    PubMed

    Mallo, Natalia; Lamas, Jesús; de Felipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-10-01

    The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment. PMID:27480055

  10. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates.

    PubMed

    Lawrence, D A; Ginsburg, D; Day, D E; Berkenpas, M B; Verhamme, I M; Kvassman, J O; Shore, J D

    1995-10-27

    The serine protease inhibitors of the serpin family are an unusual group of proteins thought to have metastable native structures. Functionally, they are unique among polypeptide protease inhibitors, although their precise mechanism of action remains controversial. Conflicting results from previous studies have suggested that the stable serpin-protease complex is trapped in either a tight Michaelis-like structure, a tetrahedral intermediate, or an acyl-enzyme. In this report we show that, upon association with a target protease, the serpin reactive-center loop (RCL) is cleaved resulting in formation of an acyl-enzyme intermediate. This cleavage is coupled to rapid movement of the RCL into the body of the protein bringing the inhibitor closer to its lowest free energy state. From these data we suggest a model for serpin action in which the drive toward the lowest free energy state results in trapping of the protease-inhibitor complex as an acyl-enzyme intermediate. PMID:7592687

  11. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    PubMed

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers.

  12. Serpine1 Mediates Porphyromonas gingivalis Induced Insulin Secretion in the Pancreatic Beta Cell Line MIN6

    PubMed Central

    Bhat, Uppoor G.; Watanabe, Keiko

    2015-01-01

    Periodontitis is an inflammatory disease resulting in destruction of gingiva and alveolar bone caused by an exuberant host immunological response to periodontal pathogens. Results from a number of epidemiological studies indicate a close association between diabetes and periodontitis. Results from cross-sectional studies indicate that subjects with periodontitis have a higher odds ratio of developing insulin resistance (IR). However, the mechanisms by which periodontitis influences the development of diabetes are not known. Results from our previous studies using an animal model of periodontitis suggest that periodontitis accelerates the onset of hyperinsulinemia and IR. In addition, LPS from a periodontal pathogen, Porphyromonas gingivalis (Pg), stimulates Serpine1 expression in the pancreatic beta cell line MIN6. Based on these observations, we hypothesized that a periodontal pathogen induces hyperinsulinemia and Serpine1 may be involved in this process. To test this hypothesis, we co-incubated Pg with the pancreatic beta cell line MIN6 and measured the effect on insulin secretion by MIN6 cells. We further determined the involvement of Serpine1 in insulin secretion by downregulating Serpine1 expression. Our results indicated that Pg stimulated insulin secretion by approximately 3.0 fold under normoglycemic conditions. In a hyperglycemic state, Pg increased insulin secretion by 1.5 fold. Pg significantly upregulated expression of the Serpine1 gene and this was associated with increased secretion of insulin by MIN6 cells. However, cells with downregulated Serpine1 expression were resistant to Pg stimulated insulin secretion under normoglycemic conditions. We conclude that the periodontal pathogen, Pg, induced insulin secretion by MIN6 cells and this induction was, in part, Serpine1 dependent. Thus, Serpine1 may play a pivotal role in insulin secretion during the accelerated development of hyperinsulinemia and the resulting IR in the setting of periodontitis. PMID

  13. Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP(+)/NADPH ratio.

    PubMed

    Itsumi, M; Inoue, S; Elia, A J; Murakami, K; Sasaki, M; Lind, E F; Brenner, D; Harris, I S; Chio, I I C; Afzal, S; Cairns, R A; Cescon, D W; Elford, A R; Ye, J; Lang, P A; Li, W Y; Wakeham, A; Duncan, G S; Haight, J; You-Ten, A; Snow, B; Yamamoto, K; Ohashi, P S; Mak, T W

    2015-11-01

    Isocitrate dehydrogenase-1 (Idh1) is an important metabolic enzyme that produces NADPH by converting isocitrate to α-ketoglutarate. Idh1 is known to reduce reactive oxygen species (ROS) induced in cells by treatment with lipopolysaccharide (LPS) in vitro. Here, we used Idh1-deficient knockout (Idh1 KO) mice to investigate the role of Idh1 in antioxidant defense in vivo. Idh1 KO mice showed heightened susceptibility to death induced by LPS and exhibited increased serum levels of inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. The serum of LPS-injected Idh1 KO mice also contained elevated levels of AST, a marker of inflammatory liver damage. Furthermore, after LPS injection, livers of Idh1 KO mice showed histological evidence of elevated oxidative DNA damage compared with livers of wild-type (WT) mice. Idh1 KO livers showed a faster and more pronounced oxidative stress than WT livers. In line with that, Idh1 KO hepatocytes showed higher ROS levels and an increase in the NADP(+)/NADPH ratio when compared with hepatocytes isolated from WT mice. These results suggest that Idh1 has a physiological function in protecting cells from oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Our findings suggest that stimulation of Idh1 activity may be an effective therapeutic strategy for reducing oxidative stress during inflammatory responses, including the early stages of septic shock.

  14. Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells.

    PubMed

    Rajapakshe, Anupama R; Podyma-Inoue, Katarzyna A; Terasawa, Kazue; Hasegawa, Katsuya; Namba, Toshimitsu; Kumei, Yasuhiro; Yanagishita, Masaki; Hara-Yokoyama, Miki

    2015-02-01

    The intracellular positioning of both lysosomes and mitochondria meets the requirements of degradation and energy supply, which are respectively the two major functions for cellular maintenance. The positioning of both lysosomes and mitochondria is apparently affected by the nutrient status of the cells. However, the mechanism coordinating the positioning of the organelles has not been sufficiently elucidated. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) are highly glycosylated proteins that are abundant in lysosomal membranes. In the present study, we demonstrated that the siRNA-mediated downregulation of LAMP-1, LAMP-2 or their combination enhanced the perinuclear localization of mitochondria, in the pre-osteoblastic cell line MC3T3-E1. On the other hand, in the osteocytic cell line MLO-Y4, in which both the lysosomes and mitochondria originally accumulate in the perinuclear region and mitochondria also fill dendrites, the effect of siRNA of LAMP-1 or LAMP-2 was barely observed. LAMPs are not directly associated with mitochondria, and there do not seem to be any accessory molecules commonly required to recruit the motor proteins to lysosomes and mitochondria. Our results suggest that LAMPs may regulate the positioning of lysosomes and mitochondria. A possible mechanism involving the indirect and context-dependent action of LAMPs is discussed.

  15. Identification of the nuclear export signals that regulate the intracellular localization of the mouse CMP-sialic acid synthetase

    SciTech Connect

    Fujita, Akiko; Sato, Chihiro; Kitajima, Ken. E-mail: kitajima@agr.nagoya-u.ac.jp

    2007-03-30

    The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.

  16. Arv1 regulates PM and ER membrane structure and homeostasis but is dispensable for intracellular sterol transport

    PubMed Central

    Georgiev, Alexander G.; Johansen, Jesper; Ramanathan, Vidhya D.; Sere, Yves Y.; Beh, Christopher T.; Menon, Anant K.

    2013-01-01

    The pan-eukaryotic endoplasmic reticulum (ER) membrane protein Arv1 has been suggested to play a role in intracellular sterol transport. We tested this proposal by comparing sterol traffic in wild-type and Arv1-deficient Saccharomyces cerevisiae. We used fluorescence microscopy to track the retrograde movement of exogenously supplied dehydroergosterol (DHE) from the plasma membrane (PM) to the ER and lipid droplets and high performance liquid chromatography to quantify, in parallel, the transport-coupled formation of DHE esters. Metabolic labeling and subcellular fractionation were used to assay anterograde transport of ergosterol from the ER to the PM. We report that sterol transport between the ER and PM is unaffected by Arv1 deficiency. Instead, our results indicate differences in ER morphology and the organization of the PM lipid bilayer between wild-type and arv1Δ cells suggesting a distinct role for Arv1 in membrane homeostasis. In arv1Δ cells, specific defects affecting single C-terminal transmembrane domain proteins suggest that Arv1 might regulate membrane insertion of tail-anchored proteins involved in membrane homoeostasis. PMID:23668914

  17. Arv1 regulates PM and ER membrane structure and homeostasis but is dispensable for intracellular sterol transport.

    PubMed

    Georgiev, Alexander G; Johansen, Jesper; Ramanathan, Vidhya D; Sere, Yves Y; Beh, Christopher T; Menon, Anant K

    2013-08-01

    The pan-eukaryotic endoplasmic reticulum (ER) membrane protein Arv1 has been suggested to play a role in intracellular sterol transport. We tested this proposal by comparing sterol traffic in wild-type and Arv1-deficient Saccharomyces cerevisiae. We used fluorescence microscopy to track the retrograde movement of exogenously supplied dehydroergosterol (DHE) from the plasma membrane (PM) to the ER and lipid droplets and high performance liquid chromatography to quantify, in parallel, the transport-coupled formation of DHE esters. Metabolic labeling and subcellular fractionation were used to assay anterograde transport of ergosterol from the ER to the PM. We report that sterol transport between the ER and PM is unaffected by Arv1 deficiency. Instead, our results indicate differences in ER morphology and the organization of the PM lipid bilayer between wild-type and arv1Δ cells suggesting a distinct role for Arv1 in membrane homeostasis. In arv1Δ cells, specific defects affecting single C-terminal transmembrane domain proteins suggest that Arv1 might regulate membrane insertion of tail-anchored proteins involved in membrane homoeostasis.

  18. Three-dimensional structure of a schistosome serpin revealing an unusual configuration of the helical subdomain

    SciTech Connect

    Granzin, Joachim; Huang, Ying; Topbas, Celalettin; Huang, Wenying; Wu, Zhiping; Misra, Saurav; Hazen, Stanley L.; Blanton, Ronald E.; Lee, Xavier; Weiergräber, Oliver H.

    2012-06-01

    The crystal structure of ShSPI, a serpin from the blood fluke S. haematobium, reveals some peculiar features of the helical subdomain which have not been observed previously in the serpin superfamily. Parasitic organisms are constantly challenged by the defence mechanisms of their respective hosts, which often depend on serine protease activities. Consequently, protease inhibitors such as those belonging to the serpin superfamily have emerged as protective elements that support the survival of the parasites. This report describes the crystal structure of ShSPI, a serpin from the trematode Schistosoma haematobium. The protein is exposed on the surface of invading cercaria as well as of adult worms, suggesting its involvement in the parasite–host interaction. While generally conforming to the well established serpin fold, the structure reveals several distinctive features, mostly concerning the helical subdomain of the protein. It is proposed that these peculiarities are related to the unique biological properties of a small serpin subfamily which is conserved among pathogenic schistosomes.

  19. Regulation of intracellular pH during H+-coupled oligopeptide absorption in enterocytes from guinea-pig ileum

    PubMed Central

    Hayashi, Hisayoshi; Suzuki, Yuichi

    1998-01-01

    The mechanisms for regulating the intracellular pH (pHi) level during oligopeptide absorption were investigated in the enterocytes from guinea-pig ileum by identifying the acid-base transporters responsible for extruding H+ that enters the cell through the H+-oligopeptide cotransporter. The pHi level was measured by microfluorometry in an isolated villus tip loaded with the pH-sensitive fluoroprobe 2′7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). The oligopeptide-induced increment in the short-circuit current (Isc) was determined in a mucosal sheet in Ussing chambers. A CO2/HCO3−-buffered solution was used. The superfusion of glycylglycine (Gly-Gly, l0 mM) caused a decrease in pHi level, which returned to the basal level after removing Gly-Gly. This pHi recovery was strongly dependent on extracellular Na+. Amiloride partially inhibited the pHi recovery rate with an IC50 value of 41 μM, the maximum inhibition being approximately 70%. In the presence of amiloride at its maximum concentration (0.3 mM), the addition of 0.6 mM DIDS caused a further decrease, but did not abolish the pHi recovery rate. In the absence of CO2 and HCO3−, the pHi recovery was almost completely abolished by 0.3 mM amiloride. The intracellular H+ accumulation induced by 0.3 mM amiloride or by 0.6 mM DIDS, as estimated from the pHi decrease and buffer capacity, was significantly greater during Gly-Gly superfusion than under resting conditions. The increase in Isc induced by luminal glycylproline was attenuated by either removing serosal Na+ or by adding 0.5 mM amiloride or 0.6 mM DIDS to the serosal side. We conclude that both Na+-dependent, amiloride-sensitive acid extrusion, probably by the Na+-H+ exchanger, and Na+- and HCO3−-dependent, DIDS-sensitive acid extrusion, possibly by the Na+-HCO3− cotransporter, are involved in extruding H+ that enters cells by the H+-oligopeptide cotransport. It is proposed that these acid extrusion (or base loading) mechanisms are present

  20. The interaction between AMPKβ2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content.

    PubMed

    Oligschlaeger, Yvonne; Miglianico, Marie; Dahlmans, Vivian; Rubio-Villena, Carla; Chanda, Dipanjan; Garcia-Gimeno, Maria Adelaida; Coumans, Will A; Liu, Yilin; Voncken, J Willem; Luiken, Joost J F P; Glatz, Jan F C; Sanz, Pascual; Neumann, Dietbert

    2016-04-01

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKβ1 and AMPK-β2 wild-type (WT) isoforms bind to R6. The AMPKβ-R6 interaction was stronger with the muscle-specific AMPKβ2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKβ2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKβ2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle.

  1. Intracellular pH regulates basolateral K+ and Cl- conductances in colonic epithelial cells by modulating Ca2+ activation

    PubMed Central

    1991-01-01

    The role of intracellular pH as a modulator of basolateral K+ and Cl- conductances in epithelial cells was studied using digitonin- permeabilized colonic cell layers so that cytosolic pH could be clamped at specific values, while basolateral K+ and Cl- conductances were activated by stepwise increases in intracellular free Ca2+. Increasing the intracellular pH from 6.6 to 8.0 enhanced the sensitivity of both ionic conductances to intracellular Ca2+, but changing extracellular pH had no effect. Maximal K+ and Cl- currents activated by Ca2+ were not affected by changes in intracellular pH, suggesting that protons do not alter the conduction properties of the channels. Hill analysis of the Ca2+ activation process revealed that raising the cytosolic pH from 6.6 to 8.0 reduced the K1/2 for Ca2+ activation. In the absence of Ca2+, changes in intracellular pH did not have a significant effect on the basolateral K+ and Cl- conductances. These results are consistent with the notion that changes in cytosolic pH can modulate basolateral conductances by modifying the action of calcium, perhaps by acting at or near the activation site to provide a mechanism of variable "gain control." PMID:1719125

  2. Maternal Serum Serpin B7 Is Associated With Early Spontaneous Preterm Birth

    PubMed Central

    Parry, Samuel; Zhang, Heping; Biggio, Joseph; Bukowski, Radek; Varner, Michael; Xu, Yaji; Andrews, William W.; Saade, George R.; Esplin, M. Sean; Leite, Rita; Ilekis, John; Reddy, Uma M.; Sadovsky, Yoel; Blair, Ian A.

    2014-01-01

    Objective To identify serum biomarkers of early spontaneous preterm birth (SPTB) using semi-quantitative proteomic analyses. Study Design Nested case-control study of pregnant women with previous SPTB. Maternal serum was collected at 19 to 24 and 28 to 32 weeks gestation, and analyzed by liquid chromatography-multiple-reaction monitoring-mass spectrometry. Targeted and shotgun proteomics identified 31 candidate proteins that were differentially expressed in pooled serum samples from spontaneous preterm (<34 weeks - cases) and term deliveries (controls). Candidate protein expression was compared in individual serum samples between cases and controls matched by age and race groups, and clinical site. Protein expression was verified by Western blot in the placenta and fetal membranes from cases and controls. Results Serum samples were available for 35 cases and 35 controls at 19 to 24 weeks, and 16 cases and 16 controls at 28 to 32 weeks. One protein, serpin B7, yielded serum concentrations that differed between cases and controls. The mean concentration of serpin B7 at 28 to 32 weeks was 1.5-fold higher in women with subsequent preterm deliveries compared to controls; there was no difference at 19 to 24 weeks. Higher levels of serpin B7 at both gestational age windows were associated with a shorter interval to delivery, and higher levels of serpin B7 in samples from 28 to 32 weeks were associated with a lower gestational age at delivery. Western blotting identified serpin B7 protein in placenta, amnion, and chorion from cases and controls. Conclusion Targeted and shotgun serum proteomics analyses associated one protein, serpin B7, with early SPTB. Our results require validation in other cohorts and analysis of the possible mechanistic role of serpin B7 in parturition. PMID:24954659

  3. TGF-β1 and Serpine 1 expression changes in traumatic deep vein thrombosis.

    PubMed

    Mo, J W; Zhang, D F; Ji, G L; Liu, X Z; Fan, B

    2015-10-30

    The objective of this study was to investigate the expression changes of transforming growth factor β1 (TGF-β1) and Serpine 1 in rats with traumatic deep vein thrombosis (DVT). In total, 60 male Sprague Dawley rats were divided into model (N = 50) and control groups (Group A, N = 10). From the model group, 10 rats were randomly selected after modeling as the pre-thrombosis group (Group B, N = 10), and the remaining 40 rats in the model group were divided into the thrombosis (Group C) and no thrombosis groups (Group D) depending on whether DVT was apparent at 25 h after modeling. All rats were dissected and the total RNAs of the femoral veins were extracted. TGF-β1 and Serpine 1 expression was detected by microarray and polymerase chain reaction (PCR) analyses, and the related signal pathways were analyzed using bioinformatic analysis. Of the 40 rats, DVT was evident in 23, yielding an incidence rate of 57.50%. TGF-β1 and Serpine 1 expression increased significantly at 2.5 h after modeling, while DVT began to form at 25 h after modeling. Both PCR and microarray analysis showed that TGF-β1 and Serpine 1 expression levels were significantly higher in the thrombosis group than in the other groups (P < 0.05). Bioinformatic analysis indicated that TGF-β1 was an upstream regulatory gene of Serpine 1 and could induce Serpine 1 overexpression. Together, these results suggested that TGF-β1 and Serpine 1 overexpression might play an important role in DVT formation and have predictive values.

  4. Intracellular pH of giant salivary gland cells of the leech Haementeria ghilianii: regulation and effects on secretion.

    PubMed

    Wuttke, W A; Munsch, T; Berry, M S

    1994-04-01

    1. Intracellular pH (pHi) and membrane potential (Em) of giant salivary gland cells of the leech, Haementeria ghilianii, were measured with double-barrelled, neutral-carrier, pH-sensitive microelectrodes. 2. Em was -51 +/- 11.2 mV and pHi was 6.98 +/- 0.1 (mean +/- S.D., N = 41) in Hepes-buffered saline (nominally HCO3(-)-free; extracellular pH, pHe = 7.4). pHi was independent of Em. 3. Amiloride (2 mmol l-1) had no effect on resting pHi or on pHi recovery from an acid load (induced by the NH4+ pre-pulse technique). Removal of external Na+ produced a progressive acidification which was blocked by amiloride, and the drug also slowed the recovery of pHi on reintroduction of Na+. The results indicate the presence of an electroneutral Na+/H+ exchanger whose access to amiloride is competitively blocked by Na+. 4. In certain smaller cells of the gland, which probably form a separate population, removal of external Na+ did not affect pHi, and recovery from an acid load was blocked by amiloride. There may, therefore, be two types of Na+/H+ exchanger, differing in reversibility and sensitivity to amiloride. 5. Recovery of pHi from NH4(+)-induced acid loading was not affected by bicarbonate-buffered saline (2% CO2; 11 mmol l-1 HCO3-) or by addition of the anion-exchange blocker SITS (10(-4) mol l-1). This suggests that there is no significant contribution of a HCO3(-)-dependent transport mechanism to pHi regulation in the gland cells. 6. Removal of external Cl- slowly reduced pHi and there was a transient increase (overshoot) in pHi when Cl- was reintroduced. These effects of Cl- are probably explained by changes in the Na+ gradient. Intracellular Na+ and Cl- activities were measured with ion-selective microelectrodes. 7. Acidification with NH4+ was difficult, probably because of the cells' poor permeability to this ion. Attempts to introduce NH4+ via the Na+ pump or Na+/Cl- transporter were not successful. The H+/K+ ionophore nigericin (1 microgram ml-1), however, produced

  5. ß-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation.

    PubMed

    Li, Jiao; Imtiaz, Mohammad S; Beard, Nicole A; Dulhunty, Angela F; Thorne, Rick; vanHelden, Dirk F; Laver, Derek R

    2013-01-01

    Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca(2+) and Mg(2+) and the role of these changes in SR Ca(2+) release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca(2+)] <1 µM, ß-adrenergic stimulation increased luminal Ca(2+) activation of single RyR channels, decreased luminal Mg(2+) inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg(2+). At cytoplasmic [Ca(2+)] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg(2+) and Ca(2+) inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca(2+) activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca(2+) binding to the luminal Ca(2+) site and decreasing its affinity for luminal Mg(2+) and 2) decreasing affinity of the low-affinity Ca(2+)/Mg(2+) cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter.

  6. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  7. Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight.

    PubMed

    Agrawal, Neha; Venkiteswaran, Gayatri; Sadaf, Sufia; Padmanabhan, Nisha; Banerjee, Santanu; Hasan, Gaiti

    2010-01-27

    Calcium (Ca(2+)) signaling is known to regulate the development, maintenance and modulation of activity in neuronal circuits that underlie organismal behavior. In Drosophila, intracellular Ca(2+) signaling by the inositol 1,4,5-trisphosphate receptor and the store-operated channel (dOrai) regulates the formation and function of neuronal circuits that control flight. Here, we show that restoring InsP(3)R activity in insulin-producing neurons of flightless InsP(3)R mutants (itpr) during pupal development can rescue systemic flight ability. Expression of the store operated Ca(2+) entry (SOCE) regulator dSTIM in insulin-producing neurons also suppresses compromised flight ability of InsP(3)R mutants suggesting that SOCE can compensate for impaired InsP(3)R function. Despite restricted expression of wild-type InsP(3)R and dSTIM in insulin-producing neurons, a global restoration of SOCE and store Ca(2+) is observed in primary neuronal cultures from the itpr mutant. These results suggest that restoring InsP(3)R-mediated Ca(2+) release and SOCE in a limited subset of neuromodulatory cells can influence systemic behaviors such as flight by regulating intracellular Ca(2+) homeostasis in a large population of neurons through a non-cell-autonomous mechanism. PMID:20107057

  8. The C-terminal tail of protein kinase D2 and protein kinase D3 regulates their intracellular distribution

    SciTech Connect

    Papazyan, Romeo; Rozengurt, Enrique; Rey, Osvaldo . E-mail: orey@mednet.ucla.edu

    2006-04-14

    We generated a set of GFP-tagged chimeras between protein kinase D2 (PKD2) and protein kinase D3 (PKD3) to examine in live cells the contribution of their C-terminal region to their intracellular localization. We found that the catalytic domain of PKD2 and PKD3 can localize to the nucleus when expressed without other kinase domains. However, when the C-terminal tail of PKD2 was added to its catalytic domain, the nuclear localization of the resulting protein was inhibited. In contrast, the nuclear localization of the CD of PKD3 was not inhibited by its C-terminal tail. Furthermore, the exchange of the C-terminal tail of PKD2 and PKD3 in the full-length proteins was sufficient to exchange their intracellular localization. Collectively, these data demonstrate that the short C-terminal tail of these kinases plays a critical role in determining their cytoplasmic/nuclear localization.

  9. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons.

    PubMed

    Wang, Xiaohui; Wang, Li; Jiang, Ruirui; Yuan, Yuan; Yu, Qianqian; Li, Yameng

    2015-11-19

    An imbalance of intracellular calcium homeostasis induced by amyloid β-protein (Aβ) contributes to the pathogenesis of Alzheimer's disease (AD), such as deficits in learning and memory. Therefore, regulation of calcium homeostasis may represent a new strategy for treatment of AD. Growing evidence suggests that type 2 diabetes mellitus (T2DM) and AD are closely related in pathogenesis. Thus, drugs used in treatment of T2DM may modify the pathogenesis of AD. This study demonstrated that Exendin-4, which is a glucagon-like peptide-1 (GLP-1) analog used as a therapeutic drug for T2DM, significantly antagonized suppression of long-term potentiation (LTP) induced by Aβ1-42 in the rat hippocampal CA1 region in vivo. This neuroprotection may be mediated by regulation of calcium homeostasis. Pretreatment with Exendin-4 suppressed Aβ1-42-induced elevation in intracellular calcium concentration ([Ca(2+)]i) through L-type voltage-dependent calcium channels (L-VDCCs) and N-methyl-D-aspartate receptors (NMDARs). Furthermore, Exendin-4 antagonized the decrease in p-Ca(2+)/calmodulin-dependent protein kinase IIα (p-CaMKIIα) induced by Aβ1-42 in the rat hippocampal CA1 region. Thus, the neuroprotective effects of Exendin-4, which likely involve regulation of calcium homeostasis, provide theoretical support for using Exendin-4 to treat and prevent AD in the future.

  10. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons.

    PubMed

    Wang, Xiaohui; Wang, Li; Jiang, Ruirui; Yuan, Yuan; Yu, Qianqian; Li, Yameng

    2015-11-19

    An imbalance of intracellular calcium homeostasis induced by amyloid β-protein (Aβ) contributes to the pathogenesis of Alzheimer's disease (AD), such as deficits in learning and memory. Therefore, regulation of calcium homeostasis may represent a new strategy for treatment of AD. Growing evidence suggests that type 2 diabetes mellitus (T2DM) and AD are closely related in pathogenesis. Thus, drugs used in treatment of T2DM may modify the pathogenesis of AD. This study demonstrated that Exendin-4, which is a glucagon-like peptide-1 (GLP-1) analog used as a therapeutic drug for T2DM, significantly antagonized suppression of long-term potentiation (LTP) induced by Aβ1-42 in the rat hippocampal CA1 region in vivo. This neuroprotection may be mediated by regulation of calcium homeostasis. Pretreatment with Exendin-4 suppressed Aβ1-42-induced elevation in intracellular calcium concentration ([Ca(2+)]i) through L-type voltage-dependent calcium channels (L-VDCCs) and N-methyl-D-aspartate receptors (NMDARs). Furthermore, Exendin-4 antagonized the decrease in p-Ca(2+)/calmodulin-dependent protein kinase IIα (p-CaMKIIα) induced by Aβ1-42 in the rat hippocampal CA1 region. Thus, the neuroprotective effects of Exendin-4, which likely involve regulation of calcium homeostasis, provide theoretical support for using Exendin-4 to treat and prevent AD in the future. PMID:26390937

  11. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING

    PubMed Central

    Yang, Bo; Yan, Shanshan; Zhou, Haiyan; He, Lan; Lin, Guomei; Lian, Zhexiong; Jiang, Zhengfan; Sun, Bing

    2015-01-01

    Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING. PMID:26114947

  12. Evaluation of potential implication of membrane estrogen binding sites on ERE-dependent transcriptional activity and intracellular estrogen receptor-alpha regulation in MCF-7 breast cancer cells.

    PubMed

    Seo, Hye Sook; Leclercq, Guy

    2002-01-01

    The potential involvement of membrane estrogen binding sites in the induction of ERE-dependent transcriptional activity as well as in the regulation of intracellular estrogen receptor alpha (ER-alpha) level under estradiol (E2) stimulation was investigated. Our approach relied upon the use of two DCC-treated E2-BSA (bovine serum albumin) solutions (E2-6-BSA and E2-17-BSA). The absence of detectable free E2 in these solutions was established. Both E2-BSA conjugates led to a transient dose-dependent stimulation of the expression of ERE-luciferase (LUC) reporter gene in MVLN cells (MCF-7 cells stably transfected with a pVit-tk-LUC reporter plasmid), a property not recorded with free E2, which maintained enhanced transcriptional activity during the whole experiment. A very low concentration of E2 (10 pM) synergistically acted with E2-BSA conjugates. Hence, ERE-dependent transcriptional activity induced by these conjugates appeared to result from their known interactions with membrane estrogen binding sites. Anti-estrogens (AEs: 4-OH-TAM and RU 58,668), which antagonize genomic ER responses, abrogated the luciferase activity induced by E2-BSA conjugates, confirming a potential relationship between membrane-related signals and intracellular ER. Moreover, induction of luciferase was recorded when the cells were exposed to IBMX (3-isobutyl-1-methylxanthine) and cyclic nucleotides (cAMP/cGMP), suggesting the implication of the latter in the signal transduction pathway leading to the expression of the reporter gene. Growth factors (IGF-I, EGF and TGF-alpha) also slightly stimulated luciferase and synergistically acted with 10 pM E2, or 1 microM E2-BSA conjugates, in agreement with the concept of a cross-talk between steroids and peptides acting on the cell membrane. Remarkably, E2-BSA conjugates, IBMX and all investigated growth factors failed to down-regulate intracellular ER in MCF-7 cells, indicating the need for a direct intracellular interaction of the ligand with the

  13. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat.

    PubMed Central

    Buckler, K J; Vaughan-Jones, R D; Peers, C; Nye, P C

    1991-01-01

    1. The dual-emission pH-sensitive fluoroprobe carboxy-SNARF-1 (carboxy-seminaptharhodofluor) was used to measure pHi in type I cells enzymically dispersed from the neonatal rat carotid body. 2. Steady-state pHi in cells bathed in a HEPES-buffered Tyrode solution (pH 7.4) was found to be remarkably alkaline (pHi = 7.77) whereas cells bathed in a CO2-HCO3(-)-buffered Tyrode solution (pH 7.4) had a more 'normal' pHi (pHi = 7.28). These observations were further substantiated by using an independent nullpoint test method to determine pHi. 3. Intracellular intrinsic buffering (beta, determined by acidifying the cell using an NH4Cl pre-pulse) was in the range 7-20 mM per pH unit and appeared to be dependent upon pHi with beta increasing as pHi decreased. 4. In cells bathed in a HEPES-buffered Tyrode solution, pHi recovery from an induced intracellular acid load (10 mM-NH4Cl pre-pulse) was inhibited by the Na(+)-H+ exchange inhibitor ethyl isopropyl amiloride (EIPA; 150 microM) or substitution of Nao+ with N-methyl-D-glucamine (NMG). Both EIPA and Nao+ removal also caused a rapid intracellular acidification, which in the case of Nao+ removal, was readily reversible. The rate of this acidification was similar for both Nao+ removal and EIPA addition. 5. Transferring cells from a HEPES-buffered Tyrode solution to one buffered with 5% CO2-HCO3- resulted in an intracellular acidification which was partially, or wholly, sustained. The rate of acidification upon transfer to CO2-HCO3- was considerably slowed by the membrane permeant carbonic anhydrase inhibitor, acetazolamide, thus indicating the presence of the enzyme in these cells. 6. In CO2-HCO3(-)-buffered Tyrode solution, pHi recovery from an intracellular acidosis (NH4+ pre-pulse) was only partially inhibited by EIPA or amiloride whereas Nao+ removal completely inhibited the recovery. The stilbene DIDS (4,4-diisothiocyanatostilbenedisulphonic acid, 200 microM) also partially inhibited pHi recovery following an induced

  14. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation.

    PubMed

    Peterson, F C; Gordon, N C; Gettins, P G

    2000-10-01

    A structural understanding of the nature and scope of serpin inhibition mechanisms has been limited by the inability so far to crystallize any serpin-proteinase complex. We describe here the application of [(1)H-(15)N]-HSQC NMR on uniformly and residue-selectively (15)N-labeled serpin alpha(1)-proteinase inhibitor (Pittsburgh variant with stabilizing mutations) to provide a nonperturbing and exquisitely sensitive means of probing the conformation of the serpin alone and in a noncovalent complex with inactive, serine 195-modified, bovine trypsin. The latter should be a good model both for the few examples of reversible serpin-proteinase complexes and for the initial Michaelis-like complex formed en route to irreversible covalent inhibition. Cleavage of the reactive center loop, with subsequent insertion into beta-sheet A, caused dramatic perturbation of most of the NMR cross-peaks. This was true for both the uniformly labeled and alanine-specifically labeled samples. The spectra of uniformly or leucine- or alanine-specifically labeled alpha(1)-proteinase inhibitor in noncovalent complex with unlabeled inactive trypsin gave almost no detectable chemical shift changes of cross-peaks, but some general increase in line width. Residue-specific assignments of the four alanines in the reactive center loop, at P12, P11, P9, and P4, allowed specific examination of the behavior of the reactive center loop. All four alanines showed higher mobility than the body of the serpin, consistent with a flexible reactive center loop, which remained flexible even in the noncovalent complex with proteinase. The three alanines near the hinge point for insertion showed almost no chemical shift perturbation upon noncovalent complex formation, while the alanine at P4 was perturbed, presumably by interaction with the active site of bound trypsin. Reporters from both the body of the serpin and the reactive center loop therefore indicate that noncovalent complex formation involves no

  15. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes.

    PubMed

    Olson, S T; Bock, P E; Kvassman, J; Shore, J D; Lawrence, D A; Ginsburg, D; Björk, I

    1995-12-15

    The contribution of a covalent bond to the stability of complexes of serine proteinases with inhibitors of the serpin family was evaluated by comparing the affinities of beta-trypsin and the catalytic serine-modified derivative, beta-anhydrotrypsin, for several serpin and non-serpin (Kunitz) inhibitors. Kinetic analyses showed that anhydrotrypsin had little or no ability to compete with trypsin for binding to alpha 1-proteinase inhibitor (alpha 1PI), plasminogen activator inhibitor 1 (PAI-1), antithrombin (AT), or AT-heparin complex when present at up to a 100-fold molar excess over trypsin. By contrast, equimolar levels of anhydrotrypsin blocked trypsin binding to non-serpin inhibitors. Equilibrium binding studies of inhibitor-enzyme interactions monitored by inhibitor displacement of the fluorescence probe, p-aminobenzamidine, from the enzyme active site, confirmed that the binding of serpins to anhydrotrypsin was undetectable in the case of alpha 1PI or AT (KI > 10(-5) M), of low affinity in the case of AT-heparin complex (KI 7-9 x 10(-6) M), and of moderate affinity in the case of PAI-1 (KI 2 x 10(-7) M). This contrasted with the stoichiometric high affinity binding of the serpins to trypsin as well as of the non-serpin inhibitors to both trypsin and anhydrotrypsin. Maximal KI values for serpin-trypsin interactions of 1 to 8 x 10(-11) M, obtained from kinetic analyses of association and dissociation rate constants, indicated that the affinity of serpins for trypsin was minimally 4 to 6 orders of magnitude greater than that of anhydrotrypsin. Anhydrotrypsin, unlike trypsin, failed to induce the characteristic fluorescence changes in a P9 Ser-->Cys PAI-1 variant labeled with a nitrobenzofuran fluorescent probe (NBD) which were shown previously to report the serpin conformational change associated with active enzyme binding. These results demonstrate that a covalent interaction involving the proteinase catalytic serine contributes a major fraction of the binding

  16. Targeting serpins in high-throughput and structure-based drug design.

    PubMed

    Chang, Yi-Pin; Mahadeva, Ravi; Patschull, Anathe O M; Nobeli, Irene; Ekeowa, Ugo I; McKay, Adam R; Thalassinos, Konstantinos; Irving, James A; Haq, Imran; Nyon, Mun Peak; Christodoulou, John; Ordóñez, Adriana; Miranda, Elena; Gooptu, Bibek

    2011-01-01

    Native, metastable serpins inherently tend to undergo stabilizing conformational transitions in mechanisms of health (e.g., enzyme inhibition) and disease (serpinopathies). This intrinsic tendency is modifiable by ligand binding, thus structure-based drug design is an attractive strategy in the serpinopathies. This can be viewed as a labor-intensive approach, and historically, its intellectual attractiveness has been tempered by relatively limited success in development of drugs reaching clinical practice. However, the increasing availability of a range of powerful experimental systems and higher-throughput techniques is causing academic and early-stage industrial pharmaceutical approaches to converge. In this review, we outline the different systems and techniques that are bridging the gap between what have traditionally been considered distinct disciplines. The individual methods are not serpin-specific. Indeed, many have only recently been applied to serpins, and thus investigators in other fields may have greater experience of their use to date. However, by presenting examples from our work and that of other investigators in the serpin field, we highlight how techniques with potential for automation and scaling can be combined to address a range of context-specific challenges in targeting the serpinopathies.

  17. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    PubMed

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498

  18. Isolation and molecular characterization of a major hemolymph serpin from the triatomine, Panstrongylus megistus

    PubMed Central

    2014-01-01

    Background Chagas disease kills 2.5 thousand people per year of 15 million persons infected in Latin America. The disease is caused by the protozoan, Trypanosome cruzi, and vectored by triatomine insects, including Panstrongylus megistus, an important vector in Brazil. Medicines treating Chagas disease have unpleasant side effects and may be ineffective, therefore, alternative control techniques are required. Knowledge of the T. cruzi interactions with the triatomine host needs extending and new targets/strategies for control identified. Serine and cysteine peptidases play vital roles in protozoan life cycles including invasion and entry of T. cruzi into host cells. Peptidase inhibitors are, therefore, promising targets for disease control. Methods SDS PAGE and chromatograpy detected and isolated a P. megistus serpin which was peptide sequenced by mass spectrometry. A full amino acid sequence was obtained from the cDNA and compared with other insect serpins. Reverse transcription PCR analysis measured serpin transcripts of P. megistus tissues with and without T. cruzi infection. Serpin homology modeling used the Swiss Model and Swiss-PDB viewer programmes. Results The P. megistus serpin (PMSRP1) has a ca. 40 kDa molecular mass with 404 amino acid residues. A reactive site loop contains a highly conserved hinge region but, based on sequence alignment, the normal cleavage site for serine proteases at P1-P1′ was translocated to the putative position P4′-P5′. A small peptide obtained corresponded to the C-terminal 40 amino acid region. The secondary structure of PMSRP1 indicated nine α-helices and three β-sheets, similar to other serpins. PMSRP1 transcripts occurred in all tested tissues but were highest in the fat body and hemocytes. Levels of mRNA encoding PMSRP1 were significantly modulated in the hemocytes and stomach by T. cruzi infection indicating a role for PMSRP1 in the parasite interactions with P. megistus. Conclusions For the first time, a

  19. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  20. SERPINE2 is a possible candidate promotor for lymph node metastasis in testicular cancer

    SciTech Connect

    Nagahara, Akira; Nakayama, Masashi; Oka, Daizo; Tsuchiya, Mutsumi; Kawashima, Atsunari; Mukai, Masatoshi; Nakai, Yasutomo; Takayama, Hitoshi; Nishimura, Kazuo; Jo, Yoshimasa; Nagai, Atsushi; Okuyama, Akihiko; Nonomura, Norio

    2010-01-22

    Testicular germ cell tumors (TGCTs) commonly metastasize to the lymph node or lung. However, it remains unclear which genes are associated with TGCT metastasis. The aim of this study was to identify gene(s) that promoted human TGCT metastasis. We intraperitoneally administered conditioned medium (CM) from JKT-1, a cell-line from a human testicular seminoma, or JKT-HM, a JKT-1 cell sub-line with high metastatic potential, into mice with JKT-1 xenografts. Administration of CM from JKT-HM significantly promoted lymph node metastasis. A cDNA microarray analysis showed that JKT-HM cells highly expressed the Serpine peptidase inhibitor, clade E, member 2 (SERPINE2), which encodes a secreted protein. Administration of CM from SERPINE2-silenced JKT-HM cells inhibited lymph node metastasis in the xenograft model, compared with administration of CM from JKT-HM cells. There was no significant difference in xenograft volume. Moreover, administration of CM from SERPINE2-over-expressing JKT-1 was likely to promote lymph node metastasis in the xenograft model. There was no difference in the in vitro proliferation or migration of JKT-1 cells cultured with CM from JKT-HM cells, compared to that with CM from JKT-1. There was no promotion of proliferation or lymphangiogenesis in the xenografts, as measured by Ki-67 and LYVE-1 immunohistochemistry, respectively. Although we could not clarify how SERPINE2 promoted lymph node metastasis, it may be a promoter in the development of lymph node metastasis in the human seminoma cells in a mouse xenograft model.

  1. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation.

    PubMed

    Kousted, Tina M; Skjoedt, Karsten; Petersen, Steen V; Koch, Claus; Vitved, Lars; Sochalska, Maja; Lacroix, Céline; Andersen, Lisbeth M; Wind, Troels; Andreasen, Peter A; Jensen, Jan K

    2014-01-01

    Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between the loop connecting α-helix F with β-strand 3A and the loop connecting α-helix A with β-strand 1B. We conclude that antibody binding causes a direct blockage of the final critical step of protease translocation, resulting in abortive inhibition and premature release of reactive centre cleaved PN-1. These new antibodies will provide a powerful tool to study the in vivo role of PN-1's protease inhibitory activity.

  2. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H).

    PubMed

    Kawai, Shigeyuki; Murata, Kousaku

    2008-04-01

    The functions of NAD(H) (NAD(+) and NADH) and NADP(H) (NADP(+) and NADPH) are undoubtedly significant and distinct. Hence, regulation of the intracellular balance of NAD(H) and NADP(H) is important. The key enzymes involved in the regulation are NAD kinase and NADP phosphatase. In 2000, we first succeeded in identifying the gene for NAD kinase, thereby facilitating worldwide studies of this enzyme from various organisms, including eubacteria, archaea, yeast, plants, and humans. Molecular biological study has revealed the physiological function of this enzyme, that is to say, the significance of NADP(H), in some model organisms. Structural research has elucidated the tertiary structure of the enzyme, the details of substrate-binding sites, and the catalytic mechanism. Research on NAD kinase also led to the discovery of archaeal NADP phosphatase. In this review, we summarize the physiological functions, applications, and structure of NAD kinase, and the way we discovered archaeal NADP phosphatase.

  3. Intracellular pH and its relationship to regulation of ion transport in normal and cystic fibrosis human nasal epithelia.

    PubMed

    Willumsen, N J; Boucher, R C

    1992-09-01

    1. Intracellular pH (pHi) of cultured human airway epithelial cells from normal and cystic fibrosis (CF) subjects were measured with double-barrelled pH-sensitive liquid exchanger microelectrodes. The cells, which were grown to confluence on a permeable collagen matrix support, were mounted in a modified miniature Ussing chamber. All studies were conducted under open circuit conditions. Values are given as means +/- S.E.M. and n refers to the number of preparations. 2. Normal preparations (n = 15) were characterized by a transepithelial potential difference (Vt) of -18 +/- 2 mV, an apical membrane potential (Va) of -19 +/- 2 mV, a basolateral membrane potential (Vb) of -37 +/- 2 mV, a transepithelial resistance (Rt) of 253 +/- 15 omega cm2, a fractional apical membrane resistance (fRa) of 0.40 +/- 0.04 and an equivalent short circuit current (Ieq) of -73 +/- 7 microA cm-2. 3. CF preparations (n = 13) were characterized by a Vt of -46 +/- 7 mV, a Va of 3 +/- 5 mV, a Vb of -43 +/- 3 mV, Rt of 373 +/- 47 omega cm2, fRa of 0.44 +/- 0.04 and an Ieq of -130 +/- 16 microA cm-2. All parameters except Vb and fRa were significantly different (P < 0.025) from those of normal preparations. 4. Despite large differences in electrochemical driving force for proton flow across the apical cell membranes between normal and CF preparations (-4 +/- 3 mV and 20 +/- 7 mV, respectively), pHi was similar (7.15 +/- 0.02 and 7.11 +/- 0.05, respectively). The driving force across the basolateral membrane was similar in normal and CF preparations (22 +/- 3 and 26 +/- 3 mV, respectively). 5. Intracellular alkalinization achieved by removal of CO2 from the luminal Ringer solution or by luminal ammonium prepulse led to stimulation of Ieq in both normal (from -58 to -70 microA cm-2, n = 4; P < 0.05) and CF (from -144 to -163 microA cm-2, n = 4; P < 0.005) preparations. The increase in Ieq was associated with a reduction of Rt, increase in fRa, and hyperpolarization of Vb. All changes in

  4. Bayesian phylogeny analysis of vertebrate serpins illustrates evolutionary conservation of the intron and indels based six groups classification system from lampreys for ∼500 MY

    PubMed Central

    2015-01-01

    The serpin superfamily is characterized by proteins that fold into a conserved tertiary structure and exploits a sophisticated and irreversible suicide-mechanism of inhibition. Vertebrate serpins are classified into six groups (V1–V6), based on three independent biological features—genomic organization, diagnostic amino acid sites and rare indels. However, this classification system was based on the limited number of mammalian genomes available. In this study, several non-mammalian genomes are used to validate this classification system using the powerful Bayesian phylogenetic method. This method supports the intron and indel based vertebrate classification and proves that serpins have been maintained from lampreys to humans for about 500 MY. Lampreys have fewer than 10 serpins, which expand into 36 serpins in humans. The two expanding groups V1 and V2 have SERPINB1/SERPINB6 and SERPINA8/SERPIND1 as the ancestral serpins, respectively. Large clusters of serpins are formed by local duplications of these serpins in tetrapod genomes. Interestingly, the ancestral HCII/SERPIND1 locus (nested within PIK4CA) possesses group V4 serpin (A2APL1, homolog of α2-AP/SERPINF2) of lampreys; hence, pointing to the fact that group V4 might have originated from group V2. Additionally in this study, details of the phylogenetic history and genomic characteristics of vertebrate serpins are revisited. PMID:26157611

  5. Neuropeptide Y regulates intracellular calcium through different signalling pathways linked to a Y1-receptor in rat mesenteric small arteries

    PubMed Central

    Prieto, Dolores; Buus, Carsten L; Mulvany, Michael J; Nilsson, Holger

    2000-01-01

    Simultaneous measurements of intracellular calcium concentration ([Ca2+]i) and tension were performed to clarify whether the mechanisms which cause the neuropeptide Y (NPY)-elicited contraction and potentiation of noradrenaline contractions, and the NPY inhibition of forskolin responses are linked to a single or different NPY receptor(s) in rat mesenteric small arteries.In resting arteries, NPY moderately elevated [Ca2+]i and tension. These effects were antagonized by the selective Y1 receptor antagonist, (R)-N2-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]-D-arginineamide (BIBP 3226) (apparent pKB values of 8.54±0.25 and 8.27±0.17, respectively).NPY (0.1 μM) caused a near 3 fold increase in sensitivity to noradrenaline but did not significantly modify the tension-[Ca2+]i relationship for this agonist. BIBP 3226 competitively antagonized the contractile response to NPY in arteries submaximally preconstricted with noradrenaline (pA2 7.87±0.20).In arteries activated by vasopressin, the adenylyl cyclase activator forskolin (3 μM) induced a maximum relaxation and a return of [Ca2+]i to resting levels. NPY completely inhibited these effects. The contractile responses to NPY in arteries maximally relaxed with either sodium nitroprusside (SNP) or nifedipine were not significantly higher than those evoked by the peptide at resting tension, in contrast to the contractions to NPY in forskolin-relaxed arteries. BIBP 3226 competitively antagonized the contraction to NPY in forskolin-relaxed arteries with a pA2 of 7.92±0.29.Electrical field stimulation (EFS) at 8–32 Hz caused large contractions in arteries relaxed with either forskolin or noradrenaline in the presence of phentolamine. These responses to EFS were inhibited by BIBP 3226. Similar EFS in resting, non-activated arteries did not produce any response.The present results suggest that different intracellular pathways are linked to a single NPY Y1 receptor in intact rat mesenteric small arteries, and provide

  6. Neuropeptide Y regulates intracellular calcium through different signalling pathways linked to a Y(1)-receptor in rat mesenteric small arteries.

    PubMed

    Prieto, D; Buus, C L; Mulvany, M J; Nilsson, H

    2000-04-01

    Simultaneous measurements of intracellular calcium concentration ([Ca(2+)](i)) and tension were performed to clarify whether the mechanisms which cause the neuropeptide Y (NPY)-elicited contraction and potentiation of noradrenaline contractions, and the NPY inhibition of forskolin responses are linked to a single or different NPY receptor(s) in rat mesenteric small arteries. In resting arteries, NPY moderately elevated [Ca(2+)](i) and tension. These effects were antagonized by the selective Y(1) receptor antagonist, (R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]-D-argininea mide (BIBP 3226) (apparent pK(B) values of 8.54+/-0.25 and 8.27+/-0.17, respectively). NPY (0.1 microM) caused a near 3 fold increase in sensitivity to noradrenaline but did not significantly modify the tension-[Ca(2+)](i) relationship for this agonist. BIBP 3226 competitively antagonized the contractile response to NPY in arteries submaximally preconstricted with noradrenaline (pA(2) 7.87+/-0.20). In arteries activated by vasopressin, the adenylyl cyclase activator forskolin (3 microM) induced a maximum relaxation and a return of [Ca(2+)](i) to resting levels. NPY completely inhibited these effects. The contractile responses to NPY in arteries maximally relaxed with either sodium nitroprusside (SNP) or nifedipine were not significantly higher than those evoked by the peptide at resting tension, in contrast to the contractions to NPY in forskolin-relaxed arteries. BIBP 3226 competitively antagonized the contraction to NPY in forskolin-relaxed arteries with a pA(2) of 7.92+/-0.29. Electrical field stimulation (EFS) at 8-32 Hz caused large contractions in arteries relaxed with either forskolin or noradrenaline in the presence of phentolamine. These responses to EFS were inhibited by BIBP 3226. Similar EFS in resting, non-activated arteries did not produce any response. The present results suggest that different intracellular pathways are linked to a single NPY Y(1) receptor in intact rat

  7. Hyperglycemia-Suppressed Expression of Serpine1 Contributes to Delayed Epithelial Wound Healing in Diabetic Mouse Corneas

    PubMed Central

    Sun, Haijing; Mi, Xiaofan; Gao, Nan; Yan, Chenxi; Yu, Fu-Shin

    2015-01-01

    Purpose. Patients with diabetes mellitus (DM) are at an increased risk for developing corneal complications, including delayed wound healing. The purpose of this study was to characterize the expression and the function of Serpine1 and other components of urokinase plasminogen activator (uPA)–proteolytic system in delayed epithelial wound healing in diabetic mouse corneas. Methods. Mice of the strain C57BL/6 were induced to develop diabetes by streptozotocin, and wound-healing assays were performed 10 weeks afterward. Gene expression and/or distribution were assessed by real-time PCR, Western blotting, and/or immunohistochemistry. The role of Serpine1 in mediating epithelial wound closure was determined by subconjunctival injections of neutralizing antibodies in either normal or recombinant protein in diabetic corneas. Enzyme assay for matrix metalloproteinase (MMP)-3 was also performed. Results. The expressions of Serpine1 (PAI-1), Plau (uPA), and Plaur (uPA receptor) were upregulated in response to wounding, and these upregulations were significantly suppressed by hyperglycemia. In healing epithelia, Plau and Serpine1 were abundantly expressed at the leading edge of the healing epithelia of normal and, to a lesser extent, diabetic corneas. Inhibition of Serpine1 delayed epithelial wound closure in normal corneas, whereas recombinant Serpine1 accelerated it in diabetic corneas. The Plau and MMP-3 mRNA levels and MMP-3 enzymatic activities were correlated to Serpine1 levels and/or the rates of epithelial wound closure. Conclusions. Serpine1 plays a role in mediating epithelial wound healing and its impaired expression may contribute to delayed wound healing in DM corneas. Hence, modulating uPA proteolytic pathway may represent a new approach for treating diabetic keratopathy. PMID:26024123

  8. Tomato QM-Like Protein Protects Saccharomyces cerevisiae Cells against Oxidative Stress by Regulating Intracellular Proline Levels

    PubMed Central

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F.; Dickman, Martin B.

    2006-01-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants. PMID:16751508

  9. Regulation of NF-κB oscillation by spatial parameters in true intracellular space (TiCS)

    NASA Astrophysics Data System (ADS)

    Ohshima, Daisuke; Sagara, Hiroshi; Ichikawa, Kazuhisa

    2013-10-01

    Transcription factor NF-κB is activated by cytokine stimulation, viral infection, or hypoxic environment leading to its translocation to the nucleus. The nuclear NF-κB is exported from the nucleus to the cytoplasm again, and by repetitive import and export, NF-κB shows damped oscillation with the period of 1.5-2.0 h. Oscillation pattern of NF-κB is thought to determine the gene expression profile. We published a report on a computational simulation for the oscillation of nuclear NF-κB in a 3D spherical cell, and showed the importance of spatial parameters such as diffusion coefficient and locus of translation for determining the oscillation pattern. Although the value of diffusion coefficient is inherent to protein species, its effective value can be modified by organelle crowding in intracellular space. Here we tested this possibility by computer simulation. The results indicate that the effective value of diffusion coefficient is significantly changed by the organelle crowding, and this alters the oscillation pattern of nuclear NF-κB.

  10. A single conserved leucine residue on the first intracellular loop regulates ER export of G protein-coupled receptors.

    PubMed

    Duvernay, Matthew T; Dong, Chunmin; Zhang, Xiaoping; Robitaille, Mélanie; Hébert, Terence E; Wu, Guangyu

    2009-05-01

    The intrinsic structural determinants for export trafficking of G protein-coupled receptors (GPCRs) have been mainly identified in the termini of the receptors. In this report, we determined the role of the first intracellular loop (ICL1) in the transport from the endoplasmic reticulum (ER) to the cell surface of GPCRs. The alpha(2B)-adrenergic receptor (AR) mutant lacking the ICL1 is unable to traffic to the cell surface and to initiate signaling measured as ERK1/2 activation. Mutagenesis studies identify a single Leu48 residue in the ICL1 modulates alpha(2B)-AR export from the ER. The ER export function of the Leu48 residue can be substituted by Phe, but not Ile, Val, Tyr and Trp, and is unlikely involved in correct folding or dimerization of alpha(2B)-AR in the ER. Importantly, the isolated Leu residue is remarkably conserved in the center of the ICL1s among the family A GPCRs and is also required for the export to the cell surface of beta(2)-AR, alpha(1B)-AR and angiotensin II type 1 receptor. These data indicate a crucial role for a single Leu residue within the ICL1 in ER export of GPCRs.

  11. Nitric oxide regulates cardiac intracellular Na+ and Ca2 + by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism☆

    PubMed Central

    Pavlovic, Davor; Hall, Andrew R.; Kennington, Erika J.; Aughton, Karen; Boguslavskyi, Andrii; Fuller, William; Despa, Sanda; Bers, Donald M.; Shattock, Michael J.

    2013-01-01

    In the heart, Na/K-ATPase regulates intracellular Na+ and Ca2 + (via NCX), thereby preventing Na+ and Ca2 + overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na+ and Ca2 + and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p < 0.05, n = 6) and all were abolished by Ca2 +-chelation (EGTA 10 mM) or NOS inhibition l-NAME (1 mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50 = 3.8 μM; n = 6/grp), via decrease in Km, in PLMWT but not PLMKO or PLM3SA myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na+ (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6 mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM3SA mouse hearts but not PLMWT and PLMKO. We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na+ and Ca2 + overload and arrhythmias. This article is part of a Special Issue entitled “Na+ Regulation in Cardiac Myocytes”. PMID:23612119

  12. Nitric oxide regulates cardiac intracellular Na⁺ and Ca²⁺ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism.

    PubMed

    Pavlovic, Davor; Hall, Andrew R; Kennington, Erika J; Aughton, Karen; Boguslavskyi, Andrii; Fuller, William; Despa, Sanda; Bers, Donald M; Shattock, Michael J

    2013-08-01

    In the heart, Na/K-ATPase regulates intracellular Na(+) and Ca(2+) (via NCX), thereby preventing Na(+) and Ca(2+) overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na(+) and Ca(2+) and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p<0.05, n=6) and all were abolished by Ca(2+)-chelation (EGTA 10mM) or NOS inhibition l-NAME (1mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50=3.8 μM; n=6/grp), via decrease in Km, in PLM(WT) but not PLM(KO) or PLM(3SA) myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na(+) (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM(3SA) mouse hearts but not PLM(WT) and PLM(KO). We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na(+) and Ca(2+) overload and arrhythmias. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

  13. Modified serpinA1 as risk marker for Parkinson’s disease dementia: Analysis of baseline data

    PubMed Central

    Halbgebauer, Steffen; Nagl, Magdalena; Klafki, Hans; Haußmann, Ute; Steinacker, Petra; Oeckl, Patrick; Kassubek, Jan; Pinkhardt, Elmar; Ludolph, Albert C.; Soininen, Hilkka; Herukka, Sanna-Kaisa; Wiltfang, Jens; Otto, Markus

    2016-01-01

    Early detection of dementia in Parkinson disease is a prerequisite for preventive therapeutic approaches. Modified serpinA1 in cerebrospinal fluid (CSF) was suggested as an early biomarker for differentiation between Parkinson patients with (PDD) or without dementia (PD). Within this study we aimed to further explore the diagnostic value of serpinA1. We applied a newly developed nanoscale method for the detection of serpinA1 based on automated capillary isoelectric focusing (CIEF). A clinical sample of 102 subjects including neurologically healthy controls (CON), PD and PDD patients was investigated. Seven serpinA1 isoforms of different charge were detected in CSF from all three diagnostic groups. The mean CSF signals of the most acidic serpinA1 isoform differed significantly (p < 0.01) between PDD (n = 29) and PD (n = 37) or CON (n = 36). Patients above the cut-off of 6.4 have a more than six times higher risk for an association with dementia compared to patients below the cut off. We propose this serpinA1 CIEF-immunoassay as a novel tool in predicting cognitive impairment in PD patients and therefore for patient stratification in therapeutic trials. PMID:27184740

  14. Merlin, a “Magic” Linker Between the Extracellular Cues and Intracellular Signaling Pathways that Regulate Cell Motility, Proliferation, and Survival

    PubMed Central

    Stamenkovic, Ivan; Yu, Qin

    2010-01-01

    Genetic alterations of neurofibromatosis type 2 (NF2) gene lead to the development of schwannomas, meningiomas, and ependymomas. Mutations of NF2 gene were also found in thyroid cancer, mesothelioma, and melanoma, suggesting that it functions as a tumor suppressor in a wide spectrum of cells. The product of NF2 gene is merlin (moesinezrin-radixin-like protein), a member of the Band 4.1 superfamily proteins. Merlin shares significant sequence homology with the ERM (Ezrin-Radixin-Moesin) family proteins and serves as a linker between transmembrane proteins and the actin-cytoskeleton. Merlin is a multifunctional protein and involved in integrating and regulating the extracellular cues and intracellular signaling pathways that control cell fate, shape, proliferation, survival, and motility. Recent studies showed that merlin regulates the cell-cell and cell-matrix adhesions and functions of the cell surface adhesion/extracellular matrix receptors including CD44 and that merlin and CD44 antagonize each other's function and work upstream of the mammalian Hippo signaling pathway. Furthermore, merlin plays important roles in stabilizing the contact inhibition of proliferation and in regulating activities of several receptor tyrosine kinases. Accumulating data also suggested an emerging role of merlin as a negative regulator of growth and progression of several non-NF2 associated cancer types. Together, these recent advances have improved our basic understanding about merlin function, its regulation, and the major signaling pathways regulated by merlin and provided the foundation for future translation of these findings into the clinic for patients bearing the cancers in which merlin function and/or its downstream signaling pathways are impaired or altered. PMID:20491622

  15. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Perreault, C. L.; Shannon, R. P.; Komamura, K.; Vatner, S. F.; Morgan, J. P.

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.

  16. Role of Snf1p in regulation of intracellular sorting of the lactose and galactose transporter Lac12p in Kluyveromyces lactis.

    PubMed

    Wiedemuth, Christian; Breunig, Karin D

    2005-04-01

    The protein kinase Snf1/AMPK plays a central role in carbon and energy homeostasis in yeasts and higher eukaryotes. To work out which aspects of the Snf1-controlled regulatory network are conserved in evolution, the Snf1 requirement in galactose metabolism was analyzed in the yeast Kluyveromyces lactis. Whereas galactose induction was only delayed, K. lactis snf1 mutants failed to accumulate the lactose/galactose H+ symporter Lac12p in the plasma membran,e as indicated by Lac12-green fluorescent protein fusions. In contrast to wild-type cells, the fusion protein was mostly intracellular in the mutant. Growth on galactose and galactose uptake could be restored by the KHT3 gene, which encodes a new transporter of the HXT subfamily of major facilitators These findings indicate a new role of Snf1p in regulation of sugar transport in K. lactis. PMID:15821131

  17. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    PubMed

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  18. Arabidopsis AtSerpin1, Crystal Structure and in Vivo Interaction with Its Target Protease RESPONSIVE TO DESICCATION-21 (RD21)

    SciTech Connect

    Lampl, Nardy; Budai-Hadrian, Ofra; Davydov, Olga; Joss, Tom V.; Harrop, Stephen J.; Curmi, Paul M.G.; Roberts, Thomas H.; Fluhr, Robert

    2010-05-25

    In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 {angstrom}. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.

  19. No Association of SERPINE1 -675 Polymorphism With Sepsis Susceptibility: A Meta-Analysis.

    PubMed

    Shi, Chengfang; Sui, Zhifu; Li, Li; Yang, Rongya

    2015-11-01

    The serine protease inhibitor clade E member 1 (SERPINE1) gene has been suggested to exert great influence on the development of sepsis. But there is little overlap in the results of association between SERPINE1 -675 4G/5G polymorphism and sepsis.To get a more precise estimation of this association, we conducted a meta-analysis with a relatively larger sample size including 1806 cases and 2239 controls. Odds ratio (OR) with 95% confidence interval (CI) was used to evaluate the relationship between -675 4G/5G polymorphism and sepsis susceptibility. Subgroup analyses were conducted based on ethnicity and source of controls.The results showed that there was no association of the SERPINE1 polymorphism and sepsis susceptibility (5G5G vs 4G4G: OR = 0.87, CI = 0.75-1.03; 5G5G+4G5G vs 4G4G: OR = 0.93, CI = 0.84-1.02; 5G5G vs 4G4G+4G5G: OR = 0.96, CI = 0.83-1.11; 5G vs 4G: OR = 0.94, CI = 0.86-1.01; 4G5G vs 4G4G: OR = 0.90, CI = 0.80-1.01). Nor did any subgroup analysis indicate a significant association.In conclusion, -675 4G/5G polymorphism in the SERPINE1 gene may not be associated with the risk of sepsis. PMID:26559247

  20. Molecular cloning, characterization and in vitro expression of SERPIN B1 of bighorn sheep (Ovis canadensis) and domestic sheep (Ovis aries), and comparison with that of other species.

    PubMed

    Subramaniam, Renuka; Dassanayake, Rohana P; Norimine, Junzo; Brown, Wendy C; Knowles, Donald P; Srikumaran, Subramaniam

    2010-10-15

    Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a result of PMN lysis and degranulation. It is conceivable that PMNs of BHS exhibit decreased quantity and/or activity of SERPIN B1 which results in enhanced tissue injury and decreased bacterial clearance in pneumonic lungs of BHS. The objective of this study was to clone and express SERPIN B1 of BHS and DS, and develop antibodies to facilitate quantification of SERPIN B1. The 1,134bp cDNA of SERPIN B1 of BHS and DS encodes a polypeptide of 377 amino acids. SERPIN B1 of BHS and DS exhibits 100% identity at the nucleotide and amino acid levels. The amino acid sequence of ovine (BHS/DS) SERPIN B1 displays 69%, 71%, 74%, 78% and 80% identity with that of rats, dogs, mice, humans and horses, respectively. Ovine SERPIN B1 expressed in Escherichia coli was used to develop polyclonal antibodies in mice. Western blot analysis revealed the specificity of these antibodies for ovine rSERPIN B1.

  1. Rapid burst of H2O2 by plant growth regulators increases intracellular Ca2+ amounts and modulates CD4+ T cell activation.

    PubMed

    Ahmed, Asma; Mukherjee, Sambuddho; Deobagkar, Mukta; Naik, Tanushree; Nandi, Dipankar

    2010-11-01

    The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H(2)O(2). In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca(2+) concentrations [Ca(2+)](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNFα and IFNγ by CD4(+) T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca(2+) ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling.

  2. The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation.

    PubMed

    Mercurio, Sonia; Petrillo, Sara; Chiabrando, Deborah; Bassi, Zuni Irma; Gays, Dafne; Camporeale, Annalisa; Vacaru, Andrei; Miniscalco, Barbara; Valperga, Giulio; Silengo, Lorenzo; Altruda, Fiorella; Baron, Margaret H; Santoro, Massimo Mattia; Tolosano, Emanuela

    2015-06-01

    Feline leukemia virus subgroup C receptor 1 (Flvcr1) encodes two heme exporters: FLVCR1a, which localizes to the plasma membrane, and FLVCR1b, which localizes to mitochondria. Here, we investigated the role of the two Flvcr1 isoforms during erythropoiesis. We showed that, in mice and zebrafish, Flvcr1a is required for the expansion of committed erythroid progenitors but cannot drive their terminal differentiation, while Flvcr1b contributes to the expansion phase and is required for differentiation. FLVCR1a-down-regulated K562 cells have defective proliferation, enhanced differentiation, and heme loading in the cytosol, while FLVCR1a/1b-deficient K562 cells show impairment in both proliferation and differentiation, and accumulate heme in mitochondria. These data support a model in which the coordinated expression of Flvcr1a and Flvcr1b contributes to control the size of the cytosolic heme pool required to sustain metabolic activity during the expansion of erythroid progenitors and to allow hemoglobinization during their terminal maturation. Consistently, reduction or increase of the cytosolic heme rescued the erythroid defects in zebrafish deficient in Flvcr1a or Flvcr1b, respectively. Thus, heme export represents a tightly regulated process that controls erythropoiesis.

  3. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.

    PubMed

    Droppelmann, Cristian A; Sáez, Doris E; Asenjo, Joel L; Yáñez, Alejandro J; García-Rocha, Mar; Concha, Ilona I; Grez, Manuel; Guinovart, Joan J; Slebe, Juan C

    2015-12-01

    Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes. PMID:26417114

  4. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR.

    PubMed

    Huguet, F; Calvez, M L; Benz, N; Le Hir, S; Mignen, O; Buscaglia, P; Horgen, F D; Férec, C; Kerbiriou, M; Trouvé, P

    2016-09-01

    Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.

  5. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription

    PubMed Central

    Tuand, Krizia; Stijnen, Pieter; Volders, Karolien; Declercq, Jeroen; Nuytens, Kim; Meulemans, Sandra; Creemers, John

    2016-01-01

    Background Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. Methods Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. Results Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. Conclusion Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for

  6. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.

    PubMed

    Droppelmann, Cristian A; Sáez, Doris E; Asenjo, Joel L; Yáñez, Alejandro J; García-Rocha, Mar; Concha, Ilona I; Grez, Manuel; Guinovart, Joan J; Slebe, Juan C

    2015-12-01

    Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.

  7. Novel scabies mite serpins inhibit the three pathways of the human complement system.

    PubMed

    Mika, Angela; Reynolds, Simone L; Mohlin, Frida C; Willis, Charlene; Swe, Pearl M; Pickering, Darren A; Halilovic, Vanja; Wijeyewickrema, Lakshmi C; Pike, Robert N; Blom, Anna M; Kemp, David J; Fischer, Katja

    2012-01-01

    Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement

  8. NOS1AP modulates intracellular Ca2+ in cardiac myocytes and is up-regulated in dystrophic cardiomyopathy

    PubMed Central

    Treuer, Adriana V; Gonzalez, Daniel R

    2014-01-01

    NOS1AP gene (nitric oxide synthase 1-adaptor protein) is strongly associated with abnormalities in the QT interval of the electrocardiogram and with sudden cardiac death. To determine the role of NOS1AP in the physiology of the cardiac myocyte, we assessed the impact of silencing NOS1AP, using siRNA, on [Ca2+]i transients in neonatal cardiomyocytes. In addition, we examined the co-localization of NOS1AP with cardiac ion channels, and finally, evaluated the expression of NOS1AP in a mouse model of dystrophic cardiomyopathy. Using siRNA, NOS1AP levels were reduced to ~30% of the control levels (p<0.05). NOS1AP silencing in cardiac myocytes reduced significantly the amplitude of electrically evoked calcium transients (p<0.05) and the degree of S-nitrosylation of the cells (p<0.05). Using confocal microscopy, we evaluated NOS1AP subcellular location and interactions with other proteins by co-localization analysis. NOS1AP showed a high degree of co-localization with the L-type calcium channel and the inwardly rectifying potassium channel Kir3.1, a low degree of co-localization with the ryanodine receptor (RyR2) and alfa-sarcomeric actin and no co-localization with connexin 43, suggesting functionally relevant interactions with the ion channels that regulate the action potential duration. Finally, using immunofluorescence and Western blotting, we observed that in mice with dystrophic cardiomyopathy, NOS1AP was significantly up-regulated (p<0.05). These results suggest for a role of NOS1AP on cardiac arrhythmias, acting on the L-type calcium channel, and potassium channels, probably through S-nitrosylation. PMID:24665357

  9. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody.

    PubMed

    Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer.

  10. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody

    PubMed Central

    Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer. PMID:25663946

  11. The regulation of intracellular pH studied by 31P- and 1H-NMR spectroscopy in superfused guinea-pig cerebral cortex slices.

    PubMed

    Brooks, K J; Bachelard, H S

    1992-10-01

    (1) The intracellular pH (pHi) of superfused slices of guinea-pig cerebral cortex was measured in 31P-NMR spectra using the chemical shifts of intracellular inorganic phosphate (Pi) and of 2-deoxyglucose 6-phosphate (DOG6P). The pHi was found to be 7.30 +/- 0.04 (SD, n = 15) in bicarbonate-buffered medium and 7.20 +/- 0.05 (n = 10, P < 0.001) in bicarbonate-free HEPES buffer of the same pH (7.4). (2) Decreases in pHe below 7.05 resulted in pHi falling to similar values, with a decrease in the energy state. There was no change in intracellular lactate as assessed by 1H-NMR. (3) The tissues showed an ability to buffer higher pH: increasing pHe to 8.0 had no effect on pHi, PCr or lactate. (4) In order to characterize possible mechanisms of pH regulation in the tissue, the recovery from acid insult was investigated under various conditions. Initially pHi was decreased to 6.44 +/- 0.15 (n = 15) by exposure to media containing 6 mM bicarbonate gassed with O2/CO2, 80:20 (pHe 6.4). When this medium was replaced by normal bicarbonate buffer (pH 7.4) there was full recovery of pHi to 7.31 +/- 0.05 (n = 15), whereas replacing the buffer with HEPES resulted in incomplete recovery of pHi to 6.88 +/- 0.15 (n = 15, P < 0.001). (5) In the presence of the carbonic anhydrase inhibitor, acetazolamide (1 mM), or the sodium/proton exchange inhibitor, amiloride (1 mM), there was an incomplete return of pHi to the control value (pHi 6.90 +/- 0.20, n = 5, P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1303163

  12. Apical Na+/H+ antiporter and glycolysis-dependent H+-ATPase regulate intracellular pH in the rabbit S3 proximal tubule.

    PubMed Central

    Kurtz, I

    1987-01-01

    The apical transport processes responsible for proton secretion were studied in the isolated perfused rabbit S3 proximal tubule. Intracellular pH (pHi) was measured with the pH dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. Steady state pHi in S3 tubules in nominally HCO3(-)-free solutions was 7.08 +/- 0.03. Removal of Na+ (lumen) caused a decrease in pHi of 0.34 +/- 0.06 pH/min. The decrease in pHi was inhibited 62% by 1 mM amiloride (lumen) and was unaffected by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (lumen) and Cl- removal (lumen, bath). After a brief exposure to 20 mM NH4Cl, pHi fell by approximately 0.7 and recovered at a rate of 0.89 +/- 0.15 pH/min in the nominal absence of Na+, HCO3-, organic anions, and SO4(2-) (lumen, bath). 1 mM N,N'-dicyclohexylcarbodiimide (lumen), 1 mM N-ethylmaleimide (lumen), 0.5 mM colchicine (bath), and 0.5 mM iodoacetic acid (lumen, bath) inhibited the Na+-independent pHi recovery rate by 73%, 55%, 77%, and 86%, respectively, whereas 1 mM KCN (lumen, bath) did not inhibit pHi recovery. Reduction of intracellular, but not extracellular chloride, also decreased the Na+-independent pHi recovery rate. In conclusion, the S3 proximal tubule has an apical Na+/H+ antiporter with a Michaelis constant for Na+ of 29 mM and a maximum velocity of 0.47 pH/min. S3 tubules also possess a plasma membrane H+-ATPase that can regulate pHi, has a requirement for intracellular chloride, and utilizes ATP derived primarily from glycolysis. PMID:2888787

  13. A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and Neisseria meningitidis Virulence

    PubMed Central

    Veyrier, Frédéric J.; Boneca, Ivo G.; Cellier, Mathieu F.; Taha, Muhamed-Kheir

    2011-01-01

    Neisseria meningitidis (Nm) and N. gonorrhoeae (Ng) are adapted to different environments within their human host. If the basis of this difference has not yet been fully understood, previous studies (including our own data) have reported that, unlike Ng, Nm tolerates high manganese concentrations. As transition metals are essential regulators of cell growth and host pathogen interactions, we aimed to address mechanisms of Nm Mn2+ tolerance and its pathogenic consequences. Using bioinformatics, gene deletion and heterologous expression we identified a conserved bacterial manganese resistance factor MntX (formerly YebN). The predicted structure suggests that MntX represents a new family of transporters exporting Mn. In the Neisseria genus, this exporter is present and functional in all Nm isolates but it is mutated in a majority of Ng strains and commonly absent in nonpathogenic species. In Nm, Mn2+ export via MntX regulates the intracellular Mn/Fe ratio and protects against manganese toxicity that is exacerbated in low iron conditions. MntX is also important for N. meningitidis to resist killing by human serum and for survival in mice blood during septicemia. The present work thus points to new clues about Mn homeostasis, its interplay with Fe metabolism and the influence on N. meningitidis physiology and pathogenicity. PMID:21980287

  14. Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions.

    PubMed

    Kim, Tae Kwon; Tirloni, Lucas; Radulovic, Zeljko; Lewis, Lauren; Bakshi, Mariam; Hill, Creston; da Silva Vaz, Itabajara; Logullo, Carlos; Termignoni, Carlos; Mulenga, Albert

    2015-08-01

    Tick saliva serine protease inhibitors (serpins) facilitate tick blood meal feeding through inhibition of protease mediators of host defense pathways. We previously identified a highly conserved Amblyomma americanum serpin 19 that is characterised by its reactive center loop being 100% conserved in ixodid ticks. In this study, biochemical characterisation reveals that the ubiquitously transcribed A. americanum serpin 19 is an anti-coagulant protein, inhibiting the activity of five of the eight serine protease blood clotting factors. Pichia pastoris-expressed recombinant (r) A. americanum serpin 19 inhibits the enzyme activity of trypsin, plasmin and blood clotting factors (f) Xa and XIa, with stoichiometry of inhibition estimated at 5.1, 9.4, 23.8 and 28, respectively. Similar to typical inhibitory serpins, recombinant A. americanum serpin 19 forms irreversible complexes with trypsin, fXa and fXIa. At a higher molar excess of recombinant A. americanum serpin 19, fXIIa is inhibited by 82.5%, and thrombin (fIIa), fIXa, chymotrypsin and tryptase are inhibited moderately by 14-29%. In anti-hemostatic functional assays, recombinant A. americanum serpin 19 inhibits thrombin but not ADP and cathepsin G activated platelet aggregation, delays clotting in recalcification and thrombin time assays by up to 250s, and up to 40s in the activated partial thromboplastin time assay. Given A. americanum serpin 19 high cross-tick species conservation, and specific reactivity of recombinant A. americanum serpin 19 with antibodies to A. americanum tick saliva proteins, we conclude that recombinant A. americanum serpin 19 is a potential candidate for development of a universal tick vaccine. PMID:25957161

  15. Moderate activation of autophagy regulates the intracellular calcium ion concentration and mitochondrial membrane potential in beta-amyloid-treated PC12 cells.

    PubMed

    Xue, Zhongfeng; Guo, Yalei; Fang, Yongqi

    2016-04-01

    Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disease. Aggregated beta-amyloid (Aβ) disturbs Ca(2+) homeostasis and causes mitochondrial dysfunction and finally underlies AD. Recent evidence suggests that autophagy initiation by Beclin-1 protein might be involved in the pathogenesis of AD. However, the effects of Beclin-1 dependent autophagy on intracellular calcium ion concentration ([Ca(2+)]i) and mitochondrial membrane potential (MMP) is unclear. The effects of Beclin-1 dependent autophagy that were activated by a gradient concentration of autophagy activator rapamycin or inhibited by autophagy inhibitor 3-methyladenine (3-MA) on cell viability and cell morphology were examined. Pretreatment with rapamycin significantly up-regulated the expression of Beclin-1 in response to Aβ1-42 application, but after pretreatment with 3-MA it was significantly down-regulated. Moderate activation of Beclin-1 dependent autophagy had an up regulation effect on cell viability and could maintain the original morphology of cells. Furthermore, rapamycin or 3-MA on [Ca(2+)]i and MMP in Aβ1-42 treatment of PC12 cells were evaluated. We also report that PC12 cells treated with Aβ1-42 showed an increase in [Ca(2+)]i but a decrease in MMP when compared to the normal control. However the application of rapamycin prior to this prevented the increase in [Ca(2+)]i and the decrease in MMP in response to Aβ1-42. When 3-MA was applied this exacerbated the effect of Aβ1-42 on the [Ca(2+)]i and the MMP. This shows that moderate activation of Beclin-1 dependent autophagy by rapamycin can modulate Ca(2+) homeostasis and maintain MMP in response to Aβ1-42 induced cytotoxicity and so may have a preventive function in AD. PMID:26923671

  16. Regulation of autophagy by α1-antitrypsin: "a foe of a foe is a friend".

    PubMed

    Shapira, Michal G; Khalfin, Boris; Lewis, Eli C; Parola, Abraham H; Nathan, Ilana

    2014-10-27

    Autophagy is involved in both the cell protective and the cell death process but its mechanism is largely unknown. The present work unravels a novel intracellular mechanism by which the serpin α1-antitrypsin (AAT) acts as a novel negative regulator of autophagic cell death. For the first time, the role of intracellularly synthesized AAT, other than in liver cells, is demonstrated. Autophagic cell death was induced by N-α-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and tamoxifen. By utilizing a fluorescently tagged TPCK analog, AAT was "fished out" (pulled out) as a TPCK intracellular protein target. The interaction was further verified by competition binding experiments. Both inducers caused downregulation of AAT expression associated with activation of trypsin-like proteases. Furthermore, silencing AAT by siRNA induced autophagic cell death. Moreover, AAT administration to cultured cells prevented autophagic cell death. This new mechanism could have implications in the treatment of diseases by the regulation of AAT levels in which autophagy has a detrimental function. Furthermore, the results imply that the high synthesis of endogenous AAT by cancer cells could provide a novel resistance mechanism of cancer against autophagic cell death.

  17. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism.

    PubMed

    Egelund, R; Petersen, T E; Andreasen, P A

    2001-02-01

    The formation of stable complexes between serpins and their target serine proteinases indicates formation of an ester bond between the proteinase active-site serine and the serpin P1 residue [Egelund, R., Rodenburg, K.W., Andreasen, P.A., Rasmussen, M.S., Guldberg, R.E. & Petersen, T.E. (1998) Biochemistry 37, 6375-6379]. An important question concerning serpin inhibition is the contrast between the stability of the ester bond in the complex and the rapid hydrolysis of the acyl-enzyme intermediate in general serine proteinase-catalysed peptide bond hydrolysis. To answer this question, we used limited proteolysis to detect conformational differences between free urokinase-type plasminogen activator (uPA) and uPA in complex with plasminogen activator inhibitor-1 (PAI-1). Whereas the catalytic domain of free uPA, pro-uPA, uPA in complex with non-serpin inhibitors and anhydro-uPA in a non-covalent complex with PAI-1 was resistant to proteolysis, the catalytic domain of PAI-1-complexed uPA was susceptible to proteolysis. The cleavage sites for four different proteinases were localized in specific areas of the C-terminal beta-barrel of the catalytic domain of uPA, providing evidence that the serpin inhibitory mechanism involves a serpin-induced massive rearrangement of the proteinase active site, including the specificity pocket, the oxyanion hole, and main-chain binding area, rendering the proteinase unable to complete the normal hydrolysis of the acyl-enzyme intermediate. The distorted region includes the so-called activation domain, also known to change conformation on zymogen activation.

  18. Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis.

    PubMed

    Grimm, Elizabeth A; Ellerhorst, Julie; Tang, Chi-Hui; Ekmekcioglu, Suhendan

    2008-09-01

    Human melanoma tumors cells are known to express the enzyme, inducible nitric oxide synthase (iNOS), which is responsible for cytokine induced nitric oxide (NO) production during immune responses. This constitutive expression of iNOS in many patients' tumor cells, as well as its strong association with poor patient survival, have led to the consideration of iNOS as a molecular marker of poor prognosis, as well as a possible target for therapy. The expression of iNOS in patient tumors was found to associate with nitrotyrosine, COX2, pSTAT3, and arginase. Using human melanoma patients' samples as well as cell lines, we have further evidence supporting intracellular NO production by detection of nitrotyrosine and also by use of DAF-2DA staining. Experiments were performed to scavenge the endogenous NO (with c-PTIO) resulting in melanoma cell growth inhibition; this was restored with SIN-1 (NO and O2-donor) providing data to support a functional role of this gas. Our goal is to understand the aberrant biology leading to this curious phenomenon, and to regulate it in favor of patient treatments.

  19. The intracellular fate of zonula occludens 2 is regulated by the phosphorylation of SR repeats and the phosphorylation/O-GlcNAcylation of S257.

    PubMed

    Quiros, Miguel; Alarcón, Lourdes; Ponce, Arturo; Giannakouros, Thomas; González-Mariscal, Lorenza

    2013-08-01

    Zona occludens 2 (ZO-2) has a dual localization. In confluent epithelia, ZO-2 is present at tight junctions (TJs), whereas in sparse proliferating cells it is also found at the nucleus. Previously we demonstrated that in sparse cultures, newly synthesized ZO-2 travels to the nucleus before reaching the plasma membrane. Now we find that in confluent cultures newly synthesized ZO-2 goes directly to the plasma membrane. Epidermal growth factor induces through AKT activation the phosphorylation of the kinase for SR repeats, serine arginine protein kinase 1, which in turn phosphorylates ZO-2, which contains 16 SR repeats. This phosphorylation induces ZO-2 entry into the nucleus and accumulation in speckles. ZO-2 departure from the nucleus requires intact S257, and stabilizing the β-O-linked N-acetylglucosylation (O-GlcNAc) of S257 with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase, triggers nuclear exportation and proteosomal degradation of ZO-2. At the plasma membrane ZO-2 is not O-GlcNAc, and instead, as TJs mature, it becomes phosphorylated at S257 by protein kinase Cζ. This late phosphorylation of S257 is required for the correct cytoarchitecture to develop, as cells transfected with ZO-2 mutant S257A or S257E form aberrant cysts with multiple lumens. These results reveal novel posttranslational modifications of ZO-2 that regulate the intracellular fate of this protein. PMID:23804652

  20. The spatiotemporal expression and localization implicates a potential role for SerpinB11 in the process of mouse spermatogenesis and apoptosis.

    PubMed

    Yang, Yanzhou; Ma, Wenzhi; Ma, Huiming; Sun, Miao; Chang, Qing; Pei, Xiuying; Wang, Yanrong

    2015-01-01

    In this study, the spatiotemporal expression of SerpinB11 in the mouse testis from postnatal 1-60 d was checked, the SerpinB11 protein strongly localized in the intermediate spermatogonia, B-type spermatogonium, preleptotene spermatocyte, leptonema spermatocyte, zygotene spermatocyte, but weakly localized in the pachytene spermatocyte, diplotene spermatocyte, sphere sperm, and the apoptotic sperm was positive stained of SerpinB11 protein, the localization of cell cycle marker CDK4 and meiosis marker SCP3 were investigated, and the SCP3 and SerpinB11 colocalized in the intermediate spermatogonia, B-type spermatogonium, preleptotene spermatocyte. Taken together, these results suggested that SerpinB11 might involved in spermatogenesis and apoptosis. PMID:24785531

  1. A novel role for carbon monoxide as a potent regulator of intracellular Ca2+ and nitric oxide in rat pancreatic acinar cells.

    PubMed

    Moustafa, Amira; Habara, Yoshiaki

    2014-12-01

    Carbon monoxide (CO) is known as an essential gaseous messenger that regulates a wide array of physiological and pathological processes, similar to nitric oxide (NO) and hydrogen sulfide. The aim of the present study was to elucidate the potential role of CO in Ca(2+) homeostasis and to explore the underlying mechanisms in pancreatic acinar cells. The exogenous application of a CO-releasing molecule dose-dependently increased intracellular Ca(2+) concentration ([Ca(2+)]i). A heme oxygenase (HO) inducer increased [Ca(2+)]i in a concentration-dependent manner, and the increase was diminished by an HO inhibitor. The CO-induced [Ca(2+)]i increase persisted in the absence of extracellular Ca(2+), indicating that Ca(2+) release is the initial source for the increase. The inhibition of G protein, phospholipase C (PLC), and inositol 1,4,5-trisphosphate (IP3) receptor diminished the CO-induced [Ca(2+)]i increase. CO upregulated endothelial nitric oxide synthase (eNOS) expression and stimulated NO production, and NOS inhibitor, calmodulin inhibitor, or the absence of extracellular Ca(2+) eliminated the latter response. Blocking the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway abolished CO-induced NO production. Pretreatment with an NOS inhibitor, NO scavenger, or soluble guanylate cyclase inhibitor, did not affect the CO-induced [Ca(2+)]i increase, indicating that NO, soluble guanylate cyclase, and cyclic guanosine 5'-monophosphate are not involved in the CO-induced [Ca(2+)]i increase. CO inhibited the secretory responses to CCK-octapeptide or carbachol. We conclude that CO acts as a regulator not only for [Ca(2+)]i homeostasis via a PLC-IP3-IP3 receptor cascade but also for NO production via the calmodulin and PI3K-Akt/PKB pathway, and both CO and NO interact. Moreover, CO may provide potential therapy to ameliorate acute pancreatitis by inhibiting amylase secretion.

  2. Sarcolemmal localisation of Na+/H+ exchange and Na+-HCO3- co-transport influences the spatial regulation of intracellular pH in rat ventricular myocytes.

    PubMed

    Garciarena, Carolina D; Ma, Yu-ling; Swietach, Pawel; Huc, Laurence; Vaughan-Jones, Richard D

    2013-05-01

    Membrane acid extrusion by Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC) is essential for maintaining a low cytoplasmic [H(+)] (∼60 nm, equivalent to an intracellular pH (pHi) of 7.2). This protects myocardial function from the high chemical reactivity of H(+) ions, universal end-products of metabolism. We show here that, in rat ventricular myocytes, fluorescent antibodies map the NBC isoforms NBCe1 and NBCn1 to lateral sarcolemma, intercalated discs and transverse tubules (t-tubules), while NHE1 is absent from t-tubules. This unexpected difference matches functional measurements of pHi regulation (using AM-loaded SNARF-1, a pH fluorophore). Thus, myocyte detubulation (by transient exposure to 1.5 m formamide) reduces global acid extrusion on NBC by 40%, without affecting NHE1. Similarly, confocal pHi imaging reveals that NBC stimulation induces spatially uniform pHi recovery from acidosis, whereas NHE1 stimulation induces pHi non-uniformity during recovery (of ∼0.1 units, for 2-3 min), particularly at the ends of the cell where intercalated discs are commonly located, and where NHE1 immunostaining is prominent. Mathematical modelling shows that this induction of local pHi microdomains is favoured by low cytoplasmic H(+) mobility and long H(+) diffusion distances, particularly to surface NHE1 transporters mediating high membrane flux. Our results provide the first evidence for a spatial localisation of [H(+)]i regulation in ventricular myocytes, suggesting that, by guarding pHi, NHE1 preferentially protects gap junctional communication at intercalated discs, while NBC locally protects t-tubular excitation-contraction coupling.

  3. Anticoagulant activity of a sulfated galactan: serpin-independent effect and specific interaction with factor Xa.

    PubMed

    Glauser, Bianca F; Rezende, Ricardo M; Melo, Fabio R; Pereira, Mariana S; Francischetti, Ivo M B; Monteiro, Robson Q; Rezaie, Alireza R; Mourão, Paulo A S

    2009-12-01

    An algal sulfated galactan has high anticoagulant and antithrombotic activities. Its serpin-dependent anticoagulant action is due to promoting thrombin and factor (F)Xa inhibition by antithrombin and heparin cofactor II. Here, we evaluated the anticoagulant effect of the algal sulfated galactan using serpin-free plasma. In contrast to heparin, the sulfated galactan is still able to prolong coagulation time and delay thrombin and FXa generation in serpin-free plasma. We further investigated this effect using purified blood coagulation proteins, discovering that sulfated galactan inhibits the intrinsic tenase and prothrombinase complexes, which are critical for FXa and thrombin generation, respectively. We also investigated the mechanism by which sulfated galactan promotes FXa inhibition by antithrombin using specific recombinant mutants of the protease. We show that sulfated galactan interacts with the heparin-binding exosite of FXa and Arg-236 and Lys-240 of this site are critical residues for this interaction, as observed for heparin. Thus, sulfated galactan and heparin have similar high-affinity and specificity for interaction with FXa, though they have differences in their chemical structures. Similar to heparin, the ability of sulfated galactan to potentiate FXa inhibition by antithrombin is calcium-dependent. However, in contrast to heparin, this effect is not entirely dependent on the conformation of the gamma-carboxyglutamic acid-rich domain of the protease. In conclusion, sulfated galactan and heparin have some similar effects on blood coagulation, but also differ significantly at the molecular level. This sulfated galactan opens new perspective for the development of antithrombotic drugs.

  4. Anticoagulant activity of a sulfated galactan: serpin-independent effect and specific interaction with factor Xa

    PubMed Central

    Glauser, Bianca F.; Rezende, Ricardo M.; Melo, Fabio R.; Pereira, Mariana S.; Francischetti, Ivo M. B.; Monteiro, Robson Q.; Rezaie, Alireza R.; Mourão, Paulo A.S.

    2009-01-01

    Summary An algal sulfated galactan has high anticoagulant and antithrombotic activities. Its serpin-dependent anticoagulant action is due to promoting thrombin and factor Xa inhibition by antithrombin and heparin cofactor II. Here, we evaluated the anticoagulant effect of the algal sulfated galactan using serpin-free plasma. In contrast to heparin, the sulfated galactan is still able to prolong coagulation time and delay thrombin and factor Xa generation in serpin-free plasma. We further investigated this effect using purified blood coagulation proteins, discovering that sulfated galactan inhibits the intrinsic tenase and prothrombinase complexes, which are critical for factor Xa and thrombin generation, respectively. We also investigated the mechanism by which sulfated galactan promotes factor Xa inhibition by antithrombin using specific recombinant mutants of the protease. We show that sulfated galactan interacts with the heparin-binding exosite of factor Xa and Arg-236 and Lys-240 of this site are critical residues for this interaction, as observed for heparin. Thus, sulfated galactan and heparin have similar high-affinity and specificity for interaction with factor Xa, though they have differences in their chemical structures. Similar to heparin, the ability of sulfated galactan to potentiate factor Xa inhibition by antithrombin is calcium-dependent. However, in contrast to heparin, this effect is not entirely dependent on the conformation of the γ-carboxyglutamic acid-rich domain of the protease. In conclusion, sulfated galactan and heparin have some similar effects on blood coagulation, but also differ significantly at the molecular level. This sulfated galactan opens new perspective for the development of antithrombotic drugs. PMID:19967150

  5. Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients

    PubMed Central

    Téllez-Gabriel, Marta; León, Xavier; Virós, David; López, Montserrat; Gallardo, Alberto; Céspedes, Maria Virtudes; Casanova, Isolda; López-Pousa, Antonio; Mangues, Maria Antonia; Quer, Miquel; Barnadas, Agustí; Mangues, Ramón

    2015-01-01

    High SERPINE1 expression is a common event in head and neck squamous cell carcinoma (HNSCC); however, whether it plays a role in determining clinical outcome remains still unknown. We studied SERPINE1 as a prognostic marker in two HNSCC patient cohorts. In a retrospective study (n = 80), high expression of SERPINE1 was associated with poor progression-free (p = 0.022) and cancer-specific (p = 0.040) survival. In a prospective study (n = 190), high SERPINE1 expression was associated with poor local recurrence-free (p = 0.022), progression-free (p = 0.002) and cancer-specific (p = 0.006) survival. SERPINE1 expression was identified as an independent risk factor for progression-free survival in patients treated with chemo-radiotherapy or radiotherapy (p = 0.043). In both patient cohorts, high SERPINE1 expression increased the risk of metastasis spread (p = 0.045; p = 0.029). The association between SERPINE1 expression and survival was confirmed using the HNSCC cohort included in The Cancer Genome Atlas project (n = 507). Once again, patients showing high expression had a poorer survival (p < 0.001). SERPINE1 over-expression in HNSCC cells reduced cell proliferation and enhanced migration. It also protected cells from cisplatin-induced apoptosis, which was accompanied by PI3K/AKT pathway activation. Downregulation of SERPINE1 expression had the opposite effect. We propose SERPINE1 expression as a prognostic marker that could be used to stratify HNSCC patients according to their risk of recurrence. PMID:26359694

  6. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase.

    PubMed

    Woo, Joohan; Shin, Dong Hoon; Kim, Hyun Jong; Yoo, Hae Young; Zhang, Yin-Hua; Nam, Joo Hyun; Kim, Woo Kyung; Kim, Sung Joon

    2016-08-01

    TWIK-related two-pore domain K(+) channels 1 and 2 (TREKs) are activated under various physicochemical conditions. However, the directions in which they are regulated by PI(4,5)P2 and intracellular ATP are not clearly presented yet. In this study, we investigated the effects of ATP and PI(4,5)P2 on overexpressed TREKs (HEK293T and COS-7) and endogenously expressed TREK-2 (mouse astrocytes and WEHI-231 B cells). In all of these cells, both TREK-1 and TREK-2 currents were spontaneously increased by dialysis with ATP-free pipette solution for whole-cell recording (ITREK-1,w-c and ITREK-2w-c) or by membrane excision for inside-out patch clamping without ATP (ITREK-1,i-o and ITREK-2,i-o). Steady state ITREK-2,i-o was reversibly decreased by 3 mM ATP applied to the cytoplasmic side, and this reduction was prevented by wortmannin, a PI-kinase inhibitor. An exogenous application of PI(4,5)P2 inhibited the spontaneously increased ITREKs,i-o, suggesting that intrinsic PI(4,5)P2 maintained by intracellular ATP and PI kinase may set the basal activity of TREKs in the intact cells. The inhibition of intrinsic TREK-2 by ATP was more prominent in WEHI-231 cells than astrocytes. Interestingly, unspecific screening of negative charges by poly-L-lysine also inhibited ITREK-2,i-o. Application of PI(4,5)P2 after the poly-L-lysine treatment showed dose-dependent dual effects, initial activation and subsequent inhibition of ITREK-2,i-o at low and high concentrations, respectively. In HEK293T cells coexpressing TREK-2 and a voltage-sensitive PI(4,5)P2 phosphatase, sustained depolarization increased ITREK-2,w-c initially (<5 s) but then decreased the current below the control level. In HEK293T cells coexpressing TREK-2 and type 3 muscarinic receptor, application of carbachol induced transient activation and sustained suppression of ITREK-2,w-c and cell-attached ITREK-2. The inhibition of TREK-2 by unspecific electrostatic quenching, extensive dephosphorylation, or sustained hydrolysis

  7. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase.

    PubMed

    Woo, Joohan; Shin, Dong Hoon; Kim, Hyun Jong; Yoo, Hae Young; Zhang, Yin-Hua; Nam, Joo Hyun; Kim, Woo Kyung; Kim, Sung Joon

    2016-08-01

    TWIK-related two-pore domain K(+) channels 1 and 2 (TREKs) are activated under various physicochemical conditions. However, the directions in which they are regulated by PI(4,5)P2 and intracellular ATP are not clearly presented yet. In this study, we investigated the effects of ATP and PI(4,5)P2 on overexpressed TREKs (HEK293T and COS-7) and endogenously expressed TREK-2 (mouse astrocytes and WEHI-231 B cells). In all of these cells, both TREK-1 and TREK-2 currents were spontaneously increased by dialysis with ATP-free pipette solution for whole-cell recording (ITREK-1,w-c and ITREK-2w-c) or by membrane excision for inside-out patch clamping without ATP (ITREK-1,i-o and ITREK-2,i-o). Steady state ITREK-2,i-o was reversibly decreased by 3 mM ATP applied to the cytoplasmic side, and this reduction was prevented by wortmannin, a PI-kinase inhibitor. An exogenous application of PI(4,5)P2 inhibited the spontaneously increased ITREKs,i-o, suggesting that intrinsic PI(4,5)P2 maintained by intracellular ATP and PI kinase may set the basal activity of TREKs in the intact cells. The inhibition of intrinsic TREK-2 by ATP was more prominent in WEHI-231 cells than astrocytes. Interestingly, unspecific screening of negative charges by poly-L-lysine also inhibited ITREK-2,i-o. Application of PI(4,5)P2 after the poly-L-lysine treatment showed dose-dependent dual effects, initial activation and subsequent inhibition of ITREK-2,i-o at low and high concentrations, respectively. In HEK293T cells coexpressing TREK-2 and a voltage-sensitive PI(4,5)P2 phosphatase, sustained depolarization increased ITREK-2,w-c initially (<5 s) but then decreased the current below the control level. In HEK293T cells coexpressing TREK-2 and type 3 muscarinic receptor, application of carbachol induced transient activation and sustained suppression of ITREK-2,w-c and cell-attached ITREK-2. The inhibition of TREK-2 by unspecific electrostatic quenching, extensive dephosphorylation, or sustained hydrolysis

  8. Identification of Avian Corticosteroid-binding Globulin (SerpinA6) Reveals the Molecular Basis of Evolutionary Adaptations in SerpinA6 Structure and Function as a Steroid-binding Protein.

    PubMed

    Vashchenko, Ganna; Das, Samir; Moon, Kyung-Mee; Rogalski, Jason C; Taves, Matthew D; Soma, Kiran K; Van Petegem, Filip; Foster, Leonard J; Hammond, Geoffrey L

    2016-05-20

    Corticosteroid-binding globulin (CBG) was isolated from chicken serum and identified by mass spectrometry and genomic analysis. This revealed that the organization and synteny of avian and mammalian SerpinA6 genes are conserved. Recombinant zebra finch CBG steroid-binding properties reflect those of the natural protein in plasma and confirm its identity. Zebra finch and rat CBG crystal structures in complex with cortisol resemble each other, but their primary structures share only ∼40% identity, and their steroid-binding site topographies differ in several unexpected ways. Remarkably, a tryptophan that anchors ligands in mammalian CBG steroid-binding sites is replaced by an asparagine. Phylogenetic comparisons show that reptilian CBG orthologs share this unexpected property. Glycosylation of this asparagine in zebra finch CBG does not influence its steroid-binding affinity, but we present evidence that it may participate in protein folding and steroid-binding site formation. Substitutions of amino acids within zebra finch CBG that are conserved only in birds reveal how they contribute to their distinct steroid-binding properties, including their high (nanomolar) affinities for glucocorticoids, progesterone, and androgens. As in mammals, a protease secreted by Pseudomonas aeruginosa cleaves CBG in zebra finch plasma within its reactive center loop and disrupts steroid binding, suggesting an evolutionarily conserved property of CBGs. Measurements of CBG mRNA in zebra finch tissues indicate that liver is the main site of plasma CBG production, and anti-zebra finch CBG antibodies cross-react with CBGs in other birds, extending opportunities to study how CBG regulates the actions of glucocorticoids and sex steroids in these species.

  9. Conformational Modification of Serpins Transforms Leukocyte Elastase Inhibitor into an Endonuclease Involved in Apoptosis▿ †

    PubMed Central

    Padron-Barthe, Laura; Leprêtre, Chloé; Martin, Elisabeth; Counis, Marie-France; Torriglia, Alicia

    2007-01-01

    The best-characterized biochemical feature of apoptosis is degradation of genomic DNA into oligonucleosomes. The endonuclease responsible for DNA degradation in caspase-dependent apoptosis is caspase-activated DNase. In caspase-independent apoptosis, different endonucleases may be activated according to the cell line and the original insult. Among the known effectors of caspase-independent cell death, L-DNase II (LEI [leukocyte elastase inhibitor]-derived DNase II) has been previously characterized by our laboratory. We have thus shown that this endonuclease derives from the serpin superfamily member LEI by posttranslational modification (A. Torriglia, P. Perani, J. Y. Brossas, E. Chaudun, J. Treton, Y. Courtois, and M. F. Counis, Mol. Cell. Biol. 18:3612-3619, 1998). In this work, we assessed the molecular mechanism involved in the change in the enzymatic activity of this molecule from an antiprotease to an endonuclease. We report that the cleavage of LEI by elastase at its reactive center loop abolishes its antiprotease activity and leads to a conformational modification that exposes an endonuclease active site and a nuclear localization signal. This represents a novel molecular mechanism for a complete functional conversion induced by changing the conformation of a serpin. We also show that this molecular transformation affects cellular fate and that both endonuclease activity and nuclear translocation of L-DNase II are needed to induce cell death. PMID:17403905

  10. Ovalbumin-related protein X is a heparin-binding ov-serpin exhibiting antimicrobial activities.

    PubMed

    Réhault-Godbert, Sophie; Labas, Valérie; Helloin, Emmanuelle; Hervé-Grépinet, Virginie; Slugocki, Cindy; Berges, Magali; Bourin, Marie-Christine; Brionne, Aurélien; Poirier, Jean-Claude; Gautron, Joël; Coste, Franck; Nys, Yves

    2013-06-14

    Ovalbumin family contains three proteins with high sequence similarity: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX). Ovalbumin is the major egg white protein with still undefined function, whereas the biological activity of OVAX and OVAY has not yet been explored. Similar to ovalbumin and OVAY, OVAX belongs to the ovalbumin serine protease inhibitor family (ov-serpin). We show that OVAX is specifically expressed by the magnum tissue, which is responsible for egg white formation. OVAX is also the main heparin-binding protein of egg white. This glycoprotein with a predicted reactive site at Lys(367)-His(368) is not able to inhibit trypsin, plasmin, or cathepsin G with or without heparin as a cofactor. Secondary structure of OVAX is similar to that of ovalbumin, but the three-dimensional model of OVAX reveals the presence of a cluster of exposed positive charges, which potentially explains the affinity of this ov-serpin for heparin, as opposed to ovalbumin. Interestingly, OVAX, unlike ovalbumin, displays antibacterial activities against both Listeria monocytogenes and Salmonella enterica sv. Enteritidis. These properties partly involve heparin-binding site(s) of the molecule as the presence of heparin reverses its anti-Salmonella but not its anti-Listeria potential. Altogether, these results suggest that OVAX and ovalbumin, although highly similar in sequence, have peculiar sequential and/or structural features that are likely to impact their respective biological functions.

  11. Ovalbumin-related Protein X Is a Heparin-binding Ov-Serpin Exhibiting Antimicrobial Activities*

    PubMed Central

    Réhault-Godbert, Sophie; Labas, Valérie; Helloin, Emmanuelle; Hervé-Grépinet, Virginie; Slugocki, Cindy; Berges, Magali; Bourin, Marie-Christine; Brionne, Aurélien; Poirier, Jean-Claude; Gautron, Joël; Coste, Franck; Nys, Yves

    2013-01-01

    Ovalbumin family contains three proteins with high sequence similarity: ovalbumin, ovalbumin-related protein Y (OVAY), and ovalbumin-related protein X (OVAX). Ovalbumin is the major egg white protein with still undefined function, whereas the biological activity of OVAX and OVAY has not yet been explored. Similar to ovalbumin and OVAY, OVAX belongs to the ovalbumin serine protease inhibitor family (ov-serpin). We show that OVAX is specifically expressed by the magnum tissue, which is responsible for egg white formation. OVAX is also the main heparin-binding protein of egg white. This glycoprotein with a predicted reactive site at Lys367-His368 is not able to inhibit trypsin, plasmin, or cathepsin G with or without heparin as a cofactor. Secondary structure of OVAX is similar to that of ovalbumin, but the three-dimensional model of OVAX reveals the presence of a cluster of exposed positive charges, which potentially explains the affinity of this ov-serpin for heparin, as opposed to ovalbumin. Interestingly, OVAX, unlike ovalbumin, displays antibacterial activities against both Listeria monocytogenes and Salmonella enterica sv. Enteritidis. These properties partly involve heparin-binding site(s) of the molecule as the presence of heparin reverses its anti-Salmonella but not its anti-Listeria potential. Altogether, these results suggest that OVAX and ovalbumin, although highly similar in sequence, have peculiar sequential and/or structural features that are likely to impact their respective biological functions. PMID:23615912

  12. A Serpin Released by an Entomopathogen Impairs Clot Formation in Insect Defense System

    PubMed Central

    Hao, YouJin; Balasubramanian, Natesan; Jing, Yingjun; Montiel, Rafael; Faria, Tiago Q.; Brito, Rui M.; Simões, Nelson

    2013-01-01

    Steinernema carpocapsae is an entomopathogenic nematode widely used for the control of insect pests due to its virulence, which is mainly attributed to the ability the parasitic stage has to overcome insect defences. To identify the mechanisms underlying such a characteristic, we studied a novel serpin-like inhibitor (sc-srp-6) that was detected in a transcriptome analysis. Recombinant Sc-SRP-6 produced in Escherichia coli had a native fold of serpins belonging to the α-1-peptidase family and exhibited inhibitory activity against trypsin and α-chymotrypsin with Ki of 0.42×10−7 M and 1.22×10−7 M, respectively. Functional analysis revealed that Sc-SRP-6 inhibits insect digestive enzymes, thus preventing the hydrolysis of ingested particles. Moreover, Sc-SRP-6 impaired the formation of hard clots at the injury site, a major insect defence mechanism against invasive pathogens. Sc-SRP-6 does not prevent the formation of clot fibres and the activation of prophenoloxidases but impairs the incorporation of the melanin into the clot. Binding assays showed a complex formation between Sc-SRP-6 and three proteins in the hemolymph of lepidopteran required for clotting, apolipophorin, hexamerin and trypsin-like, although the catalytic inhibition occurred exclusively in trypsin-like. This data allowed the conclusion that Sc-SRP-6 promotes nematode virulence by inhibiting insect gut juices and by impairing immune clot reaction. PMID:23874900

  13. [Preparation of recombinant serpins B3 and B4 and investigation of their specific interactions with antibodies using hydrogel-based microarrays].

    PubMed

    Butvilovskaya, V I; Tsybulskaya, M V; Tikhonov, A A; Talibov, V O; Belousov, P V; Sazykin, A Yu; Schwartz, A M; Putlyaeva, L V; Surzhikov, S A; Stomakhin, A A; Solopova, O N; Rubina, A Yu

    2015-01-01

    The objective of this work was to obtain preparations of recombinant squamous-cell carcinoma antigens (serpins B3 and B4) and to investigate their interactions with different monoclonal antibodies using hydrogel-based microarrays (biochips). Two genetic constructs encoding full-length serpin B3 and serpin B4 molecules were created to produce recombinant SPB3 and SPB4 proteins carrying a N-terminal His6-tag. Monoclonal antibodies against serpin B3 (H3, C5, H5, H81, and G9) were also obtained. An experimental gel-based biological microchip was designed to contain gel elements that carry immobilized antibodies against SPB3, immobilized commercial monoclonal SCC107 and SCC140 antibodies against squamous-cell carcinoma antigen (SCCA), and gel elements with immobilized SPB3 or SPB4. Judging by the specificity of recombinant SPB3 and SPB4, which bind to monoclonal antibodies against SCCA and, according to the manufacturer's data, can recognize conformational epitopes of both SPB3 and SPB4, it was concluded that the obtained recombinant serpins had the correct tertiary structure. A biochip-based direct immunoassay showed that SPB4 could bind effectively only to SCC107 and SCC140 antibodies, while SPB3 interacted specifically not only with these antibodies, but also with H3 and C5 monoclonal antibodies. Using biochip-based sandwich immunoassay, a pair of monoclonal antibodies SCC107/C5 that interacted specifically with serpin B3 but did not interact with serpin B4 was identified. Thus, it has been demonstrated that serpin B3 can be selectively determined in the presence of highly homologous serpin B4 using a biochip-based assay. PMID:26510597

  14. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers.

    PubMed

    Schlau, N; Guan, L L; Oba, M

    2012-10-01

    Past research has focused on the prevention and management of subacute rumen acidosis by manipulating the ration; however, the severity of acidosis varies even among animals fed a common high-grain diet. The objectives of this study were to compare the ruminal volatile fatty acid (VFA) profile and expression of genes involved in the metabolism of butyrate, the VFA most extensively metabolized by the ruminal epithelium, and intracellular pH regulation in ruminal epithelial cells between acidosis-resistant (AR) and acidosis-susceptible (AS) steers. Acidosis indexes (area per day under pH 5.8 divided by dry matter intake) were measured for 17 steers fed a common high-grain diet, and the 3 steers with the lowest (1.4 ± 1.2 pH∙min/kg) and the 3 with the highest values (23.9 ± 7.4 pH∙min/kg) were classified as AR and AS, respectively, and used in the subsequent study. The steers were force-fed a diet containing 85% grain at 60% of the expected daily intake (5.8 ± 0.8 and 5.6 ± 0.6 kg for AR and AS, respectively) within 30 min. Mean ruminal pH over the postprandial 6-h period was higher for AR compared with AS (6.02 vs. 5.55), and mean total VFA concentration was 74% for AR compared with AS (122 vs. 164 mM). Molar proportion of butyrate in the ruminal fluid was 139% higher for AR compared with AS (17.5 vs. 7.33 mol/100 mol of VFA). Expression of monocarboxylate cotransporter isoform 1, sodium hydrogen exchanger isoforms 1 and 2, and anion exchangers (downregulated in adenoma and putative anion exchanger, isoform 1) did not differ between AR and AS steers. However, expression of sodium hydrogen exchanger isoform 3, which imports Na(+) to the epithelial cell and exports H(+) to the rumen, was 176% higher in AR steers than in AS steers. Higher ruminal pH for AR might be partly due to a faster rate of VFA absorption, lower VFA production, or both.

  15. Preventing serpin aggregation: The molecular mechanism of citrate action upon antitrypsin unfolding

    SciTech Connect

    Pearce, Mary C.; Morton, Craig J.; Feil, Susanne C.; Hansen, Guido; Adams, Julian J.; Parker, Michael W.; Bottomley, Stephen P.

    2008-11-21

    The aggregation of antitrypsin into polymers is one of the causes of neonatal hepatitis, cirrhosis, and emphysema. A similar reaction resulting in disease can occur in other human serpins, and collectively they are known as the serpinopathies. One possible therapeutic strategy involves inhibiting the conformational changes involved in antitrypsin aggregation. The citrate ion has previously been shown to prevent antitrypsin aggregation and maintain the protein in an active conformation; its mechanism of action, however, is unknown. Here we demonstrate that the citrate ion prevents the initial misfolding of the native state to a polymerogenic intermediate in a concentration-dependent manner. Furthermore, we have solved the crystal structure of citrate bound to antitrypsin and show that a single citrate molecule binds in a pocket between the A and B beta-sheets, a region known to be important in maintaining antitrypsin stability.

  16. Regulation by intracellular Ca sup 2+ and cyclic AMP of the growth factor-induced ruffling membrane formation and stimulation of fluid-phase endocytosis and exocytosis

    SciTech Connect

    Miyata, Yoshihiko Tokyo Metropolitan Inst. of Medical Science ); Nishida, Eisuke; Sakai, Hikoichi ); Koyasu, Shigeo; Yahara, Ichiro )

    1989-04-01

    Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) induce formation of ruffling membranes and stimulate the fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells. An increase in intracellular Ca{sup 2+} concentration by treatment with A23187, a calcium ionophore, or an increase in intracellular cAMP level by treatment with dibutyryl cAMP or forskolin almost completely inhibited the insulin-, IGF-I-, or EGF-induced formation of ruffling membranes. Increases in Ca{sup 2+} or cAMP concentration also inhibited almost completely the stimulation of fluid-phase endocytosis and exocytosis elicited by these growth factors. These results suggest that the growth factor-induced ruffling membrane formation and the stimulation of fluid-phase endocytosis and exocytosis have a common regulatory mechanism involving intracellular concentrations of Ca{sup 2+} and cAMP. {sup 125}I-EGF binding assays and immunoprecipitation experiments with anti-phosphotyrosine antibody revealed that treatment of KB cells with A23187, dibutyryl cAMP, or forskolin did not inhibit the EGF binding to the cells nor subsequent tyrosine autophosphorylation of its receptors. These results indicate that Ca{sup 2+}- and/or cAMP-sensitive intracellular reactions exist downstream from the receptor kinase activation in the process of these early cellular responses.

  17. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation

    PubMed Central

    Bruserud, Øystein; Reikvam, Håkon; Fredly, Hanne; Skavland, Jørn; Hagen, Karen-Marie; van Hoang, Tuyen Thy; Brenner, Annette K.; Kadi, Amir; Astori, Audrey; Gjertsen, Bjørn Tore; Pendino, Frederic

    2015-01-01

    The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication. PMID:25605239

  18. Inhibitory serpins from wheat grain with reactive centers resembling glutamine-rich repeats of prolamin storage proteins. Cloning and characterization of five major molecular forms.

    PubMed

    Ostergaard, H; Rasmussen, S K; Roberts, T H; Hejgaard, J

    2000-10-27

    Genes encoding proteins of the serpin superfamily are widespread in the plant kingdom, but the properties of very few plant serpins have been studied, and physiological functions have not been elucidated. Six distinct serpins have been identified in grains of hexaploid bread wheat (Triticum aestivum L.) by partial purification and amino acid sequencing. The reactive centers of all but one of the serpins resemble the glutamine-rich repetitive sequences in prolamin storage proteins of wheat grain. Five of the serpins, classified into two protein Z subfamilies, WSZ1 and WSZ2, have been cloned, expressed in Escherichia coli, and purified. Inhibitory specificity toward 17 proteinases of mammalian, plant, and microbial origin was studied. All five serpins were suicide substrate inhibitors of chymotrypsin and cathepsin G. WSZ1a and WSZ1b inhibited at the unusual reactive center P(1)-P(1)' Gln-Gln, and WSZ2b at P(2)-P(1) Leu-Arg-one of two overlapping reactive centers. WSZ1c with P(1)-P(1)' Leu-Gln was the fastest inhibitor of chymotrypsin (k(a) = 1.3 x 10(6) m(-1) s(-1)). WSZ1a was as efficient an inhibitor of chymotrypsin as WSZ2a (k(a) approximately 10(5) m(-1) s(-1)), which has P(1)-P(1)' Leu-Ser-a reactive center common in animal serpins. WSZ2b inhibited plasmin at P(1)-P(1)' Arg-Gln (k(a) approximately 10(3) m(-1) s(-1)). None of the five serpins inhibited Bacillus subtilisin A, Fusarium trypsin, or two subtilisin-like plant serine proteinases, hordolisin from barley green malt and cucumisin D from honeydew melon. Possible functions involving interactions with endogenous or exogenous proteinases adapted to prolamin degradation are discussed.

  19. Penile pseudomyogenic hemangioendothelioma/epithelioid sarcoma-like hemangioendothelioma with a novel pattern of SERPINE1-FOSB fusion detected by RT-PCR--report of a case.

    PubMed

    Ide, Yoshi-Hiro; Tsukamoto, Yoshitane; Ito, Takaaki; Watanabe, Takahiro; Nakagawa, Noboru; Haneda, Takashi; Nagai, Makoto; Yamanishi, Kiyofumi; Hirota, Seiichi

    2015-05-01

    We experienced a rare case of penile mesenchymal tumor in a 43-year-old Japanese man. At least three nodules were observed around the penis. The tumors were composed of spindle- to oval-shaped atypical cells with and without prominent nucleoli. These cells were like myogenic cells, but negative for myogenic markers. They were positive for endothelial markers, such as ERG, Fli1 and CD31. They were also positive for nuclear and cytoplasmic FOSB which are not expressed in epithelioid hemangioendothelioma or epithelioid sarcoma. These pathological and immunohistochemical findings strongly suggested pseudomyogenic hemangioendothelioma/epithelioid sarcoma-like hemangioendothelioma (PHE/ES-HE). Since a recent report directly proved that two cases of PHE/ES-HE have SERPINE1-FOSB fusion gene by reverse transcription-polymerase chain reaction (RT-PCR), we examined whether the fusion gene is present or not in the present case by RT-PCR using fresh frozen surgical material. Sequencing of the PCR product revealed that this case has SERPINE1-FOSB fusion. The fusion pattern of our case was different from those of two previously reported cases. In our case, 86 nucleotides of SERPINE1 intron 1 were inserted between SERPINE1 exon 1 and the middle portion of FOSB exon 1, and a putative translation start codon was identified in SERPINE1 intron 1. Thus, this is the third case of PHE/ES-HE with SERPINE1-FOSB fusion proved by RT-PCR.

  20. Intracellular pH in human arterial smooth muscle. Regulation by Na+/H+ exchange and a novel 5-(N-ethyl-N-isopropyl)amiloride-sensitive Na(+)- and HCO3(-)-dependent mechanism

    SciTech Connect

    Neylon, C.B.; Little, P.J.; Cragoe, E.J. Jr.; Bobik, A. )

    1990-10-01

    We investigated in a physiological salt solution (PSS) containing HCO3- the intracellular pH (pHi) regulating mechanisms in smooth muscle cells cultured from human internal mammary arteries, using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and 22Na+ influx rates. The recovery of pHi from an equivalent intracellular acidosis was more rapid when the cells were incubated in CO2/HCO3(-)-buffered PSS than in HEPES-buffered PSS. Recovery of pHi was dependent on extracellular Na+ (Km, 13.1 mM); however, it was not attenuated by 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), indicating the absence of SITS-sensitive HCO3(-)-dependent mechanisms. Recovery instead appeared mostly dependent on processes sensitive to 5-(N-ethyl-N-isopropyl)amiloride (EIPA), indicating the involvement of Na+/H+ exchange and a previously undescribed EIPA-sensitive Na(+)- and HCO3(-)-dependent mechanism. Differentiation between this HCO3(-)-dependent mechanism and Na+/H+ exchange was achieved after depletion of cellular ATP. Under these conditions, the NH4Cl-induced 22Na+ influx rate stimulated by intracellular acidosis was markedly attenuated in HEPES-buffered PSS but not in CO2/HCO3(-)-buffered PSS. EIPA also appeared to inhibit the two mechanisms differentially. In HEPES-buffered PSS containing 20 mM Na+, the EIPA inhibition curve for the intracellular acidosis-induced 22Na+ influx was monophasic (IC50, 39 nM), whereas in an identical CO2/HCO3(-)-buffered PSS, the inhibition curve exhibited biphasic characteristics (IC50, 37.3 nM and 312 microM). Taken together, the results indicate that Na+/H+ exchange and a previously undescribed EIPA-sensitive Na(+)- and HCO3(-)-dependent mechanism play an important role in regulating the pHi of human vascular smooth muscle.

  1. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    SciTech Connect

    Arai, Roberto J.; Debbas, Victor; Stern, Arnold; Monteiro, Hugo P.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.

  2. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure.

    PubMed

    Robichaux, Michael A; Chenaux, George; Ho, Hsin-Yi Henry; Soskis, Michael J; Greenberg, Michael E; Henkemeyer, Mark; Cowan, Christopher W

    2016-04-01

    The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.

  3. Intracellular calcium levels are differentially regulated in T lymphocytes triggered by anti-CD2 and anti-CD3 monoclonal antibodies.

    PubMed

    Spinozzi, F; Agea, E; Bistoni, O; Belia, S; Travetti, A; Gerli, R; Muscat, C; Bertotto, A

    1995-03-01

    Antigen and/or mitogen-driven T-cell activation is mediated by a rise in intracellular free Ca2+, as second messenger. A regulatory key role for this process is represented by membrane-associated [Ca2+/Mg2+] ATP-ase that is mainly devoted to extrusion of intracellular ion excess. In the present study we have investigated the kinetics of CA2+ fluxes in both resting and already activated (Jurkat T-cell line) T lymphocytes after CD3 and CD2 (T11(2) and T11(3)) triggering and focused our attention on plasma membrane [Ca2+/Mg2+] ATP-ase activity. In both resting T cells and Jurkat cell line, the CD2 stimulation was able to determine a rise in intracellular free Ca2+ higher than that observed after CD3 triggering. In addition, this calcium signal was independent of negative feedback control exerted by [Ca2+/Mg2+] ATP-ase, as well as of IP3 generation. Thus the CD2 molecular system may, together with cell-adhesion properties, act as an amplifier of Ca2+ signals that, if delivered in the context of other molecular systems, such as CD3 or MHC class II antigens, are essentially devoted to the polyclonal co-stimulatory recruitment of a larger cellular repertoire. PMID:7662514

  4. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.

  5. The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant.

    PubMed

    Bos, Ineke G A; Lubbers, Yvonne T P; Roem, Dorina; Abrahams, Jan Pieter; Hack, C Erik; Eldering, Eric

    2003-08-01

    C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.

  6. Intracellular Bacteria in Protozoa

    NASA Astrophysics Data System (ADS)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  7. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation.

    PubMed

    Roehrich, A Dorothea; Guillossou, Enora; Blocker, Ariel J; Martinez-Argudo, Isabel

    2013-02-01

    Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram-negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C-terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.

  8. Regulation of the spvR gene of the Salmonella typhimurium virulence plasmid during exponential-phase growth in intracellular salts medium and at stationary phase in L broth.

    PubMed

    Wilson, J A; Gulig, P A

    1998-07-01

    The authors previously showed that the SpvR-regulated spvABCD operon of the Salmonella typhimurium virulence plasmid is highly induced during exponential-phase growth by salmonellae intracellularly in mammalian cells and in a medium designed to mimic the intracellular environment of mammalian cells, intracellular salts medium (ISM), as well as at stationary phase in L broth (LB). The most relevant signal(s) for spv gene expression in vivo is not known. To elucidate the means by which salmonellae regulate the spv genes in response to the environment during the disease process, expression of the spvR gene, encoding the positive regulatory protein SpvR, was examined under these same growth conditions by using RNAse-protection analysis. spvR was expressed at a low, basal level during exponential growth in LB but was induced during exponential growth in ISM and during stationary phase in LB, the same conditions that increased expression of the spvABCD operon. Basal expression of spvR during exponential growth in LB was independent of both SpvR and the alternative sigma factor RpoS, whereas maximal induction of spvR was dependent on both SpvR and RpoS. In an RpoS- background, spvR message was decreased in stationary phase, whereas spvR exhibited residual RpoS-independent induction during exponential growth in ISM. Deletion of spvA from the virulence plasmid of S. typhimurium increased expression of spvR during stationary phase in LB, but not during exponential growth in ISM. These results suggest that expression of spvR is controlled by different regulatory factors, depending on the growth conditions encountered by the salmonellae.

  9. The molecular phylogeny of uterine serpins and its relationship to evolution of placentation.

    PubMed

    Padua, Maria B; Kowalski, Andrés A; Cañas, Miryan Y; Hansen, Peter J

    2010-02-01

    Uterine serpins (USs), designated as SERPINA14, are expressed in the endometrium in response to progesterone. All species identified as having USs exhibit epitheliochorial placentation and are in the Ruminantia and Suidae orders of the Laurasiatheria superorder. The objective was to identify US genes in species within and outside Laurasiatheria and evaluate whether evolution of the US gene was associated with development of the epitheliochorial placenta. Through queries of nucleotide and genomic databases, known US genes were identified (caprine, bovine, porcine, water buffalo), and new US coding sequences were found in dolphins, horses, dogs, and cats. The cat sequence contained several stop codons. No sequence was found in completed genomic sequences for primates, rodents, rabbits, opossums, or duck-billed platypuses. Reverse transcription-polymerase chain reaction confirmed expression of the US gene in the uterus of pregnant horses and dogs. The ratio of nonsynonymous/synonymous substitutions suggests that the US gene evolved under positive selection. In conclusion, the US gene evolved within the Laurasiatheria superorder to play a role in pregnancy for species with epitheliochorial placentation and some but not all Laurasiatheria species that have a different form of placentation. The positive selection taking place in the gene suggests development of species-specific functions.

  10. Erythropoietin-directed erythropoiesis depends on serpin inhibition of erythroblast lysosomal cathepsins.

    PubMed

    Dev, Arvind; Byrne, Susan M; Verma, Rakesh; Ashton-Rickardt, Philip G; Wojchowski, Don M

    2013-02-11

    Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for red blood cell production and exert important cytoprotective effects on select vascular, immune, and cancer cells. To discover novel EPO action modes, we profiled the transcriptome of primary erythroid progenitors. We report Serpina3g/Spi2A as a major new EPO/EPOR target for the survival of erythroid progenitors. In knockout mice, loss of Spi2A worsened anemia caused by hemolysis, radiation, or transplantation. EPO-induced erythropoiesis also was compromised. In particular, maturing erythroblasts required Spi2A for cytoprotection, with iron and reactive oxygen species as cytotoxic agents. Spi2A defects were ameliorated by cathepsin-B/L inhibition, and by genetic co-deletion of lysosomal cathepsin B. Pharmacological inhibition of cathepsin B/L enhanced EPO-induced red cell formation in normal mice. Overall, we define an unexpected EPO action mode via an EPOR-Spi2A serpin-cathepsin axis in maturing erythroblasts, with lysosomal cathepsins as novel therapeutic targets.

  11. Stochastic resonance in an intracellular genetic perceptron

    NASA Astrophysics Data System (ADS)

    Bates, Russell; Blyuss, Oleg; Zaikin, Alexey

    2014-03-01

    Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity.

  12. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells.

    PubMed

    Tham, Hong-Wai; Balasubramaniam, Vinod R M T; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-12-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  13. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication.

    PubMed

    Brawn, Lyndsey C; Hayward, Richard D; Koronakis, Vassilis

    2007-03-15

    Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.

  14. Mammalian farnesyltransferase α subunit regulates vacuolar protein sorting-associated protein 4A (Vps4A)--dependent intracellular trafficking through recycling endosomes.

    PubMed

    Kubala, Marta H; Norwood, Suzanne J; Gomez, Guillermo A; Jones, Alun; Johnston, Wayne; Yap, Alpha S; Mureev, Sergey; Alexandrov, Kirill

    2015-12-25

    The protein farnesyltransferase (FTase) mediates posttranslational modification of proteins with isoprenoid lipids. FTase is a heterodimer and although the β subunit harbors the active site, it requires the α subunit for its activity. Here we explore the other functions of the FTase α subunit in addition to its established role in protein prenylation. We found that in the absence of the β subunit, the α subunit of FTase forms a stable autonomous dimeric structure in solution. We identify interactors of FTase α using mass spectrometry, followed by rapid in vitro analysis using the Leishmania tarentolae cell - free system. Vps4A was validated for direct binding to the FTase α subunit both in vitro and in vivo. Analysis of the interaction with Vps4A in Hek 293 cells demonstrated that FTase α controls trafficking of transferrin receptor upstream of this protein. These results point to the existence of previously undetected biological functions of the FTase α subunit that includes control of intracellular membrane trafficking. PMID:26551458

  15. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway

    PubMed Central

    Tam, Joshua H. K.; Cobb, M. Rebecca; Seah, Claudia; Pasternak, Stephen H.

    2016-01-01

    The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease. PMID:27776132

  16. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells.

    PubMed

    Tham, Hong-Wai; Balasubramaniam, Vinod R M T; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-12-16

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.

  17. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling.

    PubMed

    Corral-Jara, Karla F; Trujillo-Ochoa, Jorge L; Realpe, Mauricio; Panduro, Arturo; Gómez-Leyva, Juan F; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia; Fierro, Nora A

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  18. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    PubMed Central

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  19. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling.

    PubMed

    Corral-Jara, Karla F; Trujillo-Ochoa, Jorge L; Realpe, Mauricio; Panduro, Arturo; Gómez-Leyva, Juan F; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia; Fierro, Nora A

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1.

  20. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death1[OPEN

    PubMed Central

    Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-01-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB. In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. PMID:26884487

  1. Intracellular calcium channels in protozoa.

    PubMed

    Docampo, Roberto; Moreno, Silvia N J; Plattner, Helmut

    2014-09-15

    Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.

  2. Intracellular Calcium Channels in Protozoa

    PubMed Central

    Docampo, Roberto; Moreno, Silvia N.J.; Plattner, Helmut

    2014-01-01

    Ca2+-signaling pathways and intracellular Ca2+ channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in 6 subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca2+ signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca2+ channels (TRPCs) and intracellular mechanosensitive Ca2+-channels in Paramecium and in parasitic protozoa. PMID:24291099

  3. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  4. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    PubMed Central

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment. PMID:27221742

  5. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    NASA Astrophysics Data System (ADS)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  6. Pregnane X Receptor Regulates Pathogen-Induced Inflammation and Host Defense against an Intracellular Bacterial Infection through Toll-like Receptor 4

    PubMed Central

    Qiu, Zhijuan; Cervantes, Jorge L.; Cicek, Basak B.; Mukherjee, Subhajit; Venkatesh, Madhukumar; Maher, Leigh A.; Salazar, Juan C.; Mani, Sridhar; Khanna, Kamal M.

    2016-01-01

    The nuclear pregnane X receptor (PXR) plays a central role in regulating xenobiotic metabolism. We now report a novel role for PXR as a critical negative regulator of innate immunity after infection. Pxr−/− mice exhibited remarkably elevated pro-inflammatory cytokine and chemokine production following infection with Listeria monocytogenes (Lm). Despite the more robust innate immune response, Pxr−/− mice were highly susceptible to Lm infection. Surprisingly, disruption of the Toll-like receptor 4 (TLR4) but not TLR2 signaling restored the inflammation to normal levels and the ability to clear Lm in Pxr−/− mice. Mechanistically, the heightened inflammation in Pxr−/− mice resulted in the death of inflammatory monocytes that led to the enhanced susceptibility to Lm infection. These data demonstrated that PXR regulated pathogen-induced inflammation and host defense against Lm infection through modulating the TLR4 pathway. In summary, we discovered an apical role for PXR in regulating innate immunity. In addition, we uncovered a remarkable negative impact of the TLR4 pathway in controlling the quality of the inflammatory response and host defense against a gram-positive bacterial infection. PMID:27550658

  7. Pregnane X Receptor Regulates Pathogen-Induced Inflammation and Host Defense against an Intracellular Bacterial Infection through Toll-like Receptor 4.

    PubMed

    Qiu, Zhijuan; Cervantes, Jorge L; Cicek, Basak B; Mukherjee, Subhajit; Venkatesh, Madhukumar; Maher, Leigh A; Salazar, Juan C; Mani, Sridhar; Khanna, Kamal M

    2016-01-01

    The nuclear pregnane X receptor (PXR) plays a central role in regulating xenobiotic metabolism. We now report a novel role for PXR as a critical negative regulator of innate immunity after infection. Pxr(-/-) mice exhibited remarkably elevated pro-inflammatory cytokine and chemokine production following infection with Listeria monocytogenes (Lm). Despite the more robust innate immune response, Pxr(-/-) mice were highly susceptible to Lm infection. Surprisingly, disruption of the Toll-like receptor 4 (TLR4) but not TLR2 signaling restored the inflammation to normal levels and the ability to clear Lm in Pxr(-/-) mice. Mechanistically, the heightened inflammation in Pxr(-/-) mice resulted in the death of inflammatory monocytes that led to the enhanced susceptibility to Lm infection. These data demonstrated that PXR regulated pathogen-induced inflammation and host defense against Lm infection through modulating the TLR4 pathway. In summary, we discovered an apical role for PXR in regulating innate immunity. In addition, we uncovered a remarkable negative impact of the TLR4 pathway in controlling the quality of the inflammatory response and host defense against a gram-positive bacterial infection. PMID:27550658

  8. Regulation of L- and N-types of Ca2+ channels by intracellular ATP4- in frog dorsal root ganglion neurons.

    PubMed

    Yuki, T; Yamaoka, K; Seyama, I

    1999-07-01

    The roles of free Mg2+ ions, ATP4- ions and Mg-ATP complexes in the regulation of N- and L-types of Ca2+ channels were studied in frog dorsal root ganglion (DRG) neurons using the whole-cell patch-clamp technique. Because Mg2+ ions interact with ATP4- ions to form Mg-ATP complexes, addition of one species can influence the concentrations of the other two. In this study their concentrations were carefully controlled by varying the concentrations of two constituents at a time while keeping the third constant. The effects of each of the three species on barium currents through L-type (IBaL) and N-type (IBaN) Ca2+ channels were plotted against its concentrations. The dose-response curves for ATP4- show that IBaL and IBaN proportionally increased with ATP4- concentrations up to 1 mM at three different Mg2+ concentrations. At a fixed concentration of ATP4-, IBaL and IBaN remained unchanged even when pMg changed from 3 to 5. Dose-response curves for IBaL and IBaN plotted against Mg-ATP concentration did not show a consistent pattern. H-7 and Mg2+ ions did not exert any blocking effect on the activity of either Ca2+ channel type, and neither dibutyryl-cAMP nor NKH-477 had any stimulating effect, suggesting that phosphorylation is not likely to be involved in ATP-induced potentiation. From these observations, it is concluded that L-type and N-type Ca2+ channels in frog DRG neurons are regulated by ATP4- ions alone, and that the neuronal Ca2+ channels are regulated by mechanisms that are different from those regulating the cardiac Ca2+ channels. PMID:10370096

  9. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.

  10. Effects of the inflammatory cytokines TNF-α and IL-13 on stromal interaction molecule-1 aggregation in human airway smooth muscle intracellular Ca(2+) regulation.

    PubMed

    Jia, Li; Delmotte, Philippe; Aravamudan, Bharathi; Pabelick, Christina M; Prakash, Y S; Sieck, Gary C

    2013-10-01

    Inflammation elevates intracellular Ca(2+) ([Ca(2+)]i) concentrations in airway smooth muscle (ASM). Store-operated Ca(2+) entry (SOCE) is an important source of [Ca(2+)]i mediated by stromal interaction molecule-1 (STIM1), a sarcoplasmic reticulum (SR) protein. In transducing SR Ca(2+) depletion, STIM1 aggregates to form puncta, thereby activating SOCE via interactions with a Ca(2+) release-activated Ca(2+) channel protein (Orai1) in the plasma membrane. We hypothesized that STIM1 aggregation is enhanced by inflammatory cytokines, thereby augmenting SOCE in human ASM cells. We used real-time fluorescence microscopic imaging to assess the dynamics of STIM1 aggregation and SOCE after exposure to TNF-α or IL-13 in ASM cells overexpressing yellow fluorescent protein-tagged wild-type STIM1 (WT-STIM1) and STIM1 mutants lacking the Ca(2+)-sensing EF-hand (STIM1-D76A), or lacking the cytoplasmic membrane binding site (STIM1ΔK). STIM1 aggregation was analyzed by monitoring puncta size during the SR Ca(2+) depletion induced by cyclopiazonic acid (CPA). We found that puncta size was increased in cells expressing WT-STIM1 after CPA. However, STIM1-D76A constitutively formed puncta, whereas STIM1ΔK failed to form puncta. Furthermore, cytokines increased basal WT-STIM1 puncta size, and the SOCE triggered by SR Ca(2+) depletion was increased in cells expressing WT-STIM1 or STIM1-D76A. Meanwhile, SOCE in cells expressing STIM1ΔK and STIM1 short, interfering RNA (siRNA) was decreased. Similarly, in cells overexpressing STIM1, the siRNA knockdown of Orai1 blunted SOCE. However, exposure to cytokines increased SOCE in all cells, increased basal [Ca(2+)]i, and decreased SR Ca(2+) content. These data suggest that cytokines induce a constitutive increase in STIM1 aggregation that contributes to enhanced SOCE in human ASM after inflammation. Such effects of inflammation on STIM1 aggregations may contribute to airway hyperresponsiveness. PMID:23713409

  11. Skb5, an SH3 adaptor protein, regulates Pmk1 MAPK signaling by controlling the intracellular localization of the MAPKKK Mkh1.

    PubMed

    Kanda, Yuki; Satoh, Ryosuke; Matsumoto, Saki; Ikeda, Chisato; Inutsuka, Natsumi; Hagihara, Kanako; Matzno, Sumio; Tsujimoto, Sho; Kita, Ayako; Sugiura, Reiko

    2016-08-15

    The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signaling module composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKK) and MAPKs. The MAPKKK Mkh1 is an initiating kinase in Pmk1 MAPK signaling, which regulates cell integrity in fission yeast (Schizosaccharomyces pombe). Our genetic screen for regulators of Pmk1 signaling identified Shk1 kinase binding protein 5 (Skb5), an SH3-domain-containing adaptor protein. Here, we show that Skb5 serves as an inhibitor of Pmk1 MAPK signaling activation by downregulating Mkh1 localization to cell tips through its interaction with the SH3 domain. Consistent with this, the Mkh1(3PA) mutant protein, with impaired Skb5 binding, remained in the cell tips, even when Skb5 was overproduced. Intriguingly, Skb5 needs Mkh1 to localize to the growing ends as Mkh1 deletion and disruption of Mkh1 binding impairs Skb5 localization. Deletion of Pck2, an upstream activator of Mkh1, impaired the cell tip localization of Mkh1 and Skb5 as well as the Mkh1-Skb5 interaction. Interestingly, both Pck2 and Mkh1 localized to the cell tips at the G1/S phase, which coincided with Pmk1 MAPK activation. Taken together, Mkh1 localization to cell tips is important for transmitting upstream signaling to Pmk1, and Skb5 spatially regulates this process. PMID:27451356

  12. Protein fraction isolated from epididymal fluid re-associates sperm in vitro: possible role of serpins in rat rosettes assembly.

    PubMed

    Monclus, María A; Andreina, Cesari; Cabrillana, María E; Lancellotti, Tania E Saez; Rensetti, Daniel E; Clementi, Marisa A; Boarelli, Paola V; Vincenti, Amanda E; Fornés, Miguel W

    2010-05-01

    In many mammalian species, sperm associate as a consequence of the epididymal transit. From the classic Rouleaux in guinea pig to the most recent work in mouse and echidna, authors have focused mainly on a detailed morphological description of this phenomenon. Some of these articles have also begun to describe the nature of the material present between sperm heads. Here, we try to better understand the factor/s involved in rat sperm association (Rosette). Based on previous work describing the appearance of Rosettes in the distal segments of the rat epididymis, we consider that sperm during their transit must be in contact with factor/s present in the caudal lumen in order to associate with each other. By an in vitro sperm re-associating assay, we try to determine the in vivo phenomenon observed in the lumen. The assay consists of co-incubating non-associated sperm with several protein fractions obtained from epididymal caudal fluid. After establishing the most active fraction, the proteins were characterized by MALDI-TOF mass spectrometry. Among the proteins we found two members of the serine protease inhibitors family; an alpha-1 antitrypsin and a new protein with an alpha-1 antitrypsin like domain which includes a sequence compatible with the serpins' reactive center loop. These serpins may play a role in the assembly/disassembly process of Rosettes by modulating lumenal protease activity. Finally, a biochemical-morphological model which explains the sperm-proteases interaction was proposed. PMID:20143401

  13. Two distinct intracellular Ca2+-release components act in opposite ways in the regulation of the auxin-dependent MIA biosynthesis in Catharanthus roseus cells.

    PubMed

    Poutrain, Pierre; Mazars, Christian; Thiersault, Martine; Rideau, Marc; Pichon, Olivier

    2009-01-01

    Calcium-mediated signalling is ubiquitous in both animals and plants. Changes in cytoplasmic free Ca(2+) concentration couple diverse arrays of stimuli to their specific responses, the specificity of the stimulus being determined by integrated actions between multiple Ca(2+) mobilization pathways. In this work, a pharmacological approach is reported, aimed at deciphering the role of calcium as a second messenger in the transduction pathway leading to the inhibitory effect of 2,4-dichlorophenoxyacetic acid (2,4-D), in regulating monoterpene indole alkaloid (MIA) biosynthesis in Catharanthus roseus cells. It is demonstrated here that auxin-dependent MIA biosynthesis is differentially regulated by two distinct calcium release components from internal stores in C. roseus showing pharmacological profiles similar to those displayed by animal RyR and IP3 channels. MIA biosynthesis is stimulated by caffeine (Ca(2+)-release activator through RyR channels) and by heparin and TMB8 (Ca(2+)-release inhibitors of IP3 channels) whereas MIA biosynthesis is inhibited by mastoparan (Ca(2+)-release activator of IP3 channels) and by ruthenium red and DHBP (Ca(2+)-release inhibitors of RyR channels). Furthermore, calcium, as 2,4-D, acts on MIA biosynthesis by regulating the monoterpene moiety of the MIA biosynthesis pathway since calcium channel modulators preferentially modulate g10h expression, the gene encoding the enzyme of the secoiridoid monoterpene pathway, that is the major target of 2,4-D action. In addition, the simultaneous use of caffeine (an activator of RyR channel in animals) and TMB8 (an inhibitor of the IP3 channel) in 2,4-D treated cells triggers a synergistic effect on MIA accumulation. This finding suggests an opposite and co-ordinated action of multiple Ca(2+)-release pathways in 2,4-D signal transduction, adding a new level of complexity to calcium signalling in plants and questioning the existence of RyR and IP3 channels in plants.

  14. Immobilization of the distal hinge in the labile serpin plasminogen activator inhibitor 1: identification of a transition state with distinct conformational and functional properties.

    PubMed

    De Taeye, Bart; Compernolle, Griet; Dewilde, Maarten; Biesemans, Wouter; Declerck, Paul J

    2003-06-27

    The serpin plasminogen activator inhibitor-1 (PAI-1) plays an important role in the regulation of the fibrinolytic activity in blood. In plasma, PAI-1 circulates mainly in the active conformation. However, PAI-1 spontaneously converts to a latent conformation. This conversion comprises drastic conformational changes in both the distal and the proximal hinge region of the reactive center loop. To study the functional and conformational rearrangements associated solely with the mobility of the proximal hinge, disulfide bonds were introduced to immobilize the distal hinge region. These mutants exhibited specific activities comparable with that of PAI-1-wt. However, the engineered disulfide bond had a major effect on the conformational and associated functional transitions. Strikingly, in contrast to PAI-1-wt, inactivation of these mutants yielded a virtually complete conversion to a substrate-like conformation. Comparison of the digestion pattern (with trypsin and elastase) of the mutants and PAI-1-wt revealed that the inactivated mutants have a conformation differing from that of latent and active PAI-1-wt. Unique trypsin-susceptible cleavage sites arose upon inactivation of these mutants. The localization of these exposed residues provides evidence that a displacement of alphahF has occurred, indicating that the proximal hinge is partly inserted between s3A and s5A. In conclusion, immobilization of the distal hinge region in PAI-1 allowed the identification of an "intermediate" conformation characterized by a partial insertion of the proximal hinge region. We hypothesize that locking PAI-1 in this transition state between active and latent conformations is associated with a displacement of alphahF, subsequently resulting in substrate behavior.

  15. Molecular cloning, characterization and in vitro expression of SERPIN B1 of bighorn sheep (Ovis canadensis) and domestic sheep (Ovis aries), and comparison with that of other species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a resu...

  16. Structural homologues P(II) and P(Z) of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions.

    PubMed

    de Zamaroczy, M

    1998-07-01

    P(II) (glnB) is a signal transduction protein that in Azospirillum brasilense is specifically required for nitrogen fixation. Little is known about whether and how its homologue P(Z) (glnZ) participates in the regulation of cellular functions. In this study, we have shown the regulatory action of the two proteins by analysing the relevant single and double null-mutant strains. The transcription of glnZ is monocistronic, and it starts mainly from a sigma54-dependent promoter, activated by NtrC. glnZ expression is dependent on the ntr system, even under conditions of nitrogen excess, and is greatly enhanced in the presence of aspartate. P(Z) is uridylylated in response to nitrogen limitation, like P(II), although different amounts of the two proteins are synthesized. P(II) is required for the dephosphorylation of NtrC. Thus, in the absence of P(II), the repression of nitrate assimilation is not promoted, which, in turn, leads to a high rate of ammonium excretion. Unexpectedly, P(II) and P(Z) proteins are not essential for the reversible modification of glutamine synthetase. (Methyl)ammonium transport into the cell is negatively regulated by P(Z). The growth of a double-mutant strain (glnB::kan; glnZ::omega) is drastically disabled, although wild-type growth is restored by complementation with either glnB or glnZ. We conclude that P(II) and P(Z), despite their structural similarity, are involved in different regulatory processes, except for that required for cell growth.

  17. Intracellular transactivation of epidermal growth factor receptor by α1A-adrenoceptor is mediated by phosphatidylinositol 3-kinase independently of activation of extracellular signal regulated kinases 1/2 and serine-threonine kinases in Chinese hamster ovary cells.

    PubMed

    Ulu, Nadir; Henning, Robert H; Guner, Sahika; Zoto, Teuta; Duman-Dalkilic, Basak; Duin, Marry; Gurdal, Hakan

    2013-10-01

    Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR. The transactivation mechanism was examined both by coexpression of a chimeric erythropoietin (EPO)-EGFR with an extracellular EPO and intracellular EGFR domain, and by pharmacologic inhibition of external and internal signaling routes. All three α1-AR subtypes transactivated EGFR, which was dependent on the increase in intracellular calcium. The EGFR kinase inhibitor AG1478 [4-(3'-chloroanilino)-6,7-dimethoxyquinazoline] abrogated α1A-AR and α1D-AR induced phosphorylation of EGFR, but both the inhibition of matrix metalloproteinases by GM6001 [(R)-N4-hydroxy-N(1)-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide] or blockade of EGFR by cetuximab did not. Stimulation of α1A-AR and α1D-AR also induced phosphorylation of EPO-EGFR chimeric receptors. Moreover, α1A-AR stimulation enhanced phosphorylation of extracellular signal regulated kinase (ERK) 1/2 and serine-threonine kinases (Akt), which were both unaffected by AG1478, indicating that ERK1/2 and Akt phosphorylation is independent of EGFR transactivation. Accordingly, inhibitors of ERK1/2 or Akt did not influence the α1A-AR-mediated EGFR transactivation. Inhibition of calcium/calmodulin-dependent kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K), and Src, however, did block EGFR transactivation by α1A-AR and α1D-AR. These findings demonstrate that all α1-AR subtypes transactivate EGFR, which is dependent on an intracellular signaling route involving an increase in calcium and activation of CaMKII, PI3K, and Src, but not the of ERK1/2 and Akt pathways.

  18. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism.

    PubMed

    Georgiou, Dimitra K; Dagnino-Acosta, Adan; Lee, Chang Seok; Griffin, Deric M; Wang, Hui; Lagor, William R; Pautler, Robia G; Dirksen, Robert T; Hamilton, Susan L

    2015-09-25

    Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle.

  19. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism*

    PubMed Central

    Georgiou, Dimitra K.; Dagnino-Acosta, Adan; Lee, Chang Seok; Griffin, Deric M.; Wang, Hui; Lagor, William R.; Pautler, Robia G.; Dirksen, Robert T.; Hamilton, Susan L.

    2015-01-01

    Ca2+ permeation and/or binding to the skeletal muscle L-type Ca2+ channel (CaV1.1) facilitates activation of Ca2+/calmodulin kinase type II (CaMKII) and Ca2+ store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca2+ binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle. PMID:26245899

  20. Intracellular chromium reduction.

    PubMed

    Arslan, P; Beltrame, M; Tomasi, A

    1987-10-22

    Two steps are involved in the uptake of Cr(VI): (1) the diffusion of the anion CrO4(2-) through a facilitated transport system, presumably the non-specific anion carrier and (2) the intracellular reduction of Cr(VI) to Cr(III). The intracellular reduction of Cr(VI), keeping the cytoplasmic concentration of Cr(VI) low, facilitates accumulation of chromate from extracellular medium into the cell. In the present paper, a direct demonstration of intracellular chromium reduction is provided by means of electron paramagnetic (spin) resonance (EPR) spectroscopy. Incubation of metabolically active rat thymocytes with chromate originates a signal which can be attributed to a paramagnetic species of chromium, Cr(V) or Cr(III). The EPR signal is originated by intracellular reduction of chromium since: (1) it is observed only when cells are incubated with chromate, (2) it is present even after extensive washings of the cells in a chromium-free medium; (3) it is abolished when cells are incubated with drugs able to reduce the glutathione pool, i.e., diethylmaleate or phorone; and (4) it is abolished when cells are incubated in the presence of a specific inhibitor of the anion carrier, 4-acetamido-4'-isothiocyanatostilbene-2-2'-disulfonic acid. PMID:2820507

  1. [Low molecular weight regulators of the intracellular insulin signal transduction as a correction method of the insulin resistance in the treatment of type 2 diabetes].

    PubMed

    Galenova, T I; Kyznetsova, M Y; Savchuk, O N; Ostapchenco, L I

    2016-01-01

    Insulin resistance is the characteristic feature of type 2 diabetes. This condition is manifested in the reduction of peripheral tissues sensitivity to the biological action of insulin and is expressed in the inhibition of cellular glucose absorption and metabolism in response to hormonal stimulation. At the cellular level, disorders which are realized both at the receptor and the postreceptor levels can serve a prerequisite to the formation of insulin resistance and are associated with a change in the amount or dysfunction of major molecular signaling cascade. Thus, the insulin receptor, as well as the other related signaling molecules can be considered as ideal therapeutic targets for the correction of insulin resistance and thus low molecular weight effectors which act on the individual links of insulin signaling cascade may be positioned as a new generation of anti-diabetic agents. This report provides information on the regulators of insulin receptor cascade, main advantages and disadvantages of their impact on biological targets and prospects for their therapeutic use as anti-diabetic drugs. PMID:26973184

  2. Intracellular parcel service: current issues in intracellular membrane trafficking.

    PubMed

    Herrmann, Johannes M; Spang, Anne

    2015-01-01

    Eukaryotic cells contain a multitude of membrane structures that are connected through a highly dynamic and complex exchange of their constituents. The vibrant instability of these structures challenges the classical view of defined, static compartments that are connected by different types of vesicles. Despite this astonishing complexity, proteins and lipids are accurately transported into the different intracellular membrane systems. Over the past few decades many factors have been identified that either mediate or regulate intracellular membrane trafficking. Like in a modern parcel sorting system of a logistics center, the cargo typically passes through several sequential sorting stations until it finally reaches the location that is specified by its individual address label. While each membrane system employs specific sets of factors, the transport processes typically operate on common principles. With the advent of genome- and proteome-wide screens, the availability of mutant collections, exciting new developments in microscope technology and sophisticated methods to study their dynamics, the future promises a broad and comprehensive picture of the processes by which eukaryotic cells sort their proteins.

  3. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  4. Photoperiodic regulation of insulin receptor mRNA and intracellular insulin signaling in the arcuate nucleus of the Siberian hamster, Phodopus sungorus.

    PubMed

    Tups, Alexander; Helwig, Michael; Stöhr, Sigrid; Barrett, Perry; Mercer, Julian G; Klingenspor, Martin

    2006-09-01

    During the last 5 years it has been well established that photoperiod-induced changes in body weight in the seasonal hamster, Phodopus sungorus, are accompanied by a marked seasonal cycle in leptin sensitivity. In the present study, we investigated the possible involvement of insulin signaling in seasonal body weight regulation. We analyzed the expression pattern and relative intensity of insulin receptor (IR), phosphatidylinositol 3-kinase (PI3-kinase), and protein tyrosine phosphatase 1B (PTP1B) mRNAs by in situ hybridization in the brains of juvenile female hamsters acclimated to either long- (LD) or short-day length (SD) for 8 wk, with or without superimposed food deprivation for 48 h. Furthermore, the hypothalamic concentration and distribution of phospho-AKT, a marker of PI3-kinase activity was determined by immunoblotting and immunohistochemistry. Eight weeks of acclimation to SD led to a substantial downregulation of IR, PTP1B gene expression, and phospho-AKT concentration in this brain region, whereas PI3-kinase mRNA was unchanged. Food deprivation induced a decrease in PTP1B and a trend toward lowered IR gene expression in LD but not in SD. Additionally, a striking increase in PTP1B gene expression in the thalamus was observed after food deprivation in both photoperiods. The direction of change in neuronal insulin signaling contrasts to the central catabolic nature of this pathway described in other species. SD-induced reduction in insulin signaling may be due to decline in body fat stores mediated by enhanced central leptin sensitivity. Increased anorexigenic tone of leptin may overwrite central insulin signaling to prevent catabolic overdrive.

  5. New evidence for coupled clock regulation of the normal automaticity of sinoatrial nodal pacemaker cells: bradycardic effects of ivabradine are linked to suppression of intracellular Ca²⁺ cycling.

    PubMed

    Yaniv, Yael; Sirenko, Syevda; Ziman, Bruce D; Spurgeon, Harold A; Maltsev, Victor A; Lakatta, Edward G

    2013-09-01

    Beneficial clinical bradycardic effects of ivabradine (IVA) have been interpreted solely on the basis of If inhibition, because IVA specifically inhibits If in sinoatrial nodal pacemaker cells (SANC). However, it has been recently hypothesized that SANC normal automaticity is regulated by crosstalk between an "M clock," the ensemble of surface membrane ion channels, and a "Ca(2+) clock," the sarcoplasmic reticulum (SR). We tested the hypothesis that crosstalk between the two clocks regulates SANC automaticity, and that indirect suppression of the Ca(2+) clock further contributes to IVA-induced bradycardia. IVA (3 μM) not only reduced If amplitude by 45 ± 6% in isolated rabbit SANC, but the IVA-induced slowing of the action potential (AP) firing rate was accompanied by reduced SR Ca(2+) load, slowed intracellular Ca(2+) cycling kinetics, and prolonged the period of spontaneous local Ca(2+) releases (LCRs) occurring during diastolic depolarization. Direct and specific inhibition of SERCA2 by cyclopiazonic acid (CPA) had effects similar to IVA on LCR period and AP cycle length. Specifically, the LCR period and AP cycle length shift toward longer times almost equally by either direct perturbations of the M clock (IVA) or the Ca(2+) clock (CPA), indicating that the LCR period reports the crosstalk between the clocks. Our numerical model simulations predict that entrainment between the two clocks that involves a reduction in INCX during diastolic depolarization is required to explain the experimentally AP firing rate reduction by IVA. In summary, our study provides new evidence that a coupled-clock system regulates normal cardiac pacemaker cell automaticity. Thus, IVA-induced bradycardia includes a suppression of both clocks within this system. PMID:23651631

  6. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.

  7. Experiment K-7-29: Connective Tissue Studies. Part 2; Changes in Muscle Serine Proteases, Serpins and Matrix Molecules

    NASA Technical Reports Server (NTRS)

    Festoff, B. W.; Ilyina-Kakueva, E. I.; Rayford, A. R.; Burkovskaya, T. E.; Reddy, B. R.; Rao, J. S.

    1994-01-01

    In zero or micro-gravity, type 1 muscle fibers atrophy and lose predominance, especially in slow-twitch muscles. No increase in mononuclear cells has been observed, just as in simple denervation, where both types 1 and 2 fibers atrophy, again without infiltration of cells, but with clear satellite cell proliferation. However, extracellular matrix (ECM) degradation takes place after denervation and if re-innervation is encouraged, functional recovery to near control levels may be achieved. No information is available concerning the ECM milieu, the activation of serine proteases, their efficacy in degrading ECM components and the production of locally-derived natural protease inhibitors (serpins) in effecting surface proteolytic control. In addition, no studies are available concerning the activation of these enzymes in micro- or zero gravity or their response to muscle injury on the ground and what alterations, if any, occur in space. These studies were the basis for the experiments in Cosmos 2044.

  8. Cell density and growth-dependent down-regulation of both intracellular calcium responses to agonist stimuli and expression of smooth-surfaced endoplasmic reticulum in MC3T3-E1 osteoblast-like cells.

    PubMed

    Koizumi, Toshiyuki; Hikiji, Hisako; Shin, Wee Soo; Takato, Tsuyoshi; Fukuda, Satoru; Abe, Takahiro; Koshikiya, Noboru; Iwasawa, Kuniaki; Toyo-oka, Teruhiko

    2003-02-21

    A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.

  9. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  10. Analysis of the Proteome of Intracellular Shigella flexneri Reveals Pathways Important for Intracellular Growth

    PubMed Central

    Pieper, Rembert; Fisher, C. R.; Suh, Moo-Jin; Huang, S.-T.; Parmar, P.

    2013-01-01

    Global proteomic analysis was performed with Shigella flexneri strain 2457T in association with three distinct growth environments: S. flexneri growing in broth (in vitro), S. flexneri growing within epithelial cell cytoplasm (intracellular), and S. flexneri that were cultured with, but did not invade, Henle cells (extracellular). Compared to in vitro and extracellular bacteria, intracellular bacteria had increased levels of proteins required for invasion and cell-to-cell spread, including Ipa, Mxi, and Ics proteins. Changes in metabolic pathways in response to the intracellular environment also were evident. There was an increase in glycogen biosynthesis enzymes, altered expression of sugar transporters, and a reduced amount of the carbon storage regulator CsrA. Mixed acid fermentation enzymes were highly expressed intracellularly, while tricarboxylic acid (TCA) cycle oxidoreductive enzymes and most electron transport chain proteins, except CydAB, were markedly decreased. This suggested that fermentation and the CydAB system primarily sustain energy generation intracellularly. Elevated levels of PntAB, which is responsible for NADPH regeneration, suggested a shortage of reducing factors for ATP synthesis. These metabolic changes likely reflect changes in available carbon sources, oxygen levels, and iron availability. Intracellular bacteria showed strong evidence of iron starvation. Iron acquisition systems (Iut, Sit, FhuA, and Feo) and the iron starvation, stress-associated Fe-S cluster assembly (Suf) protein were markedly increased in abundance. Mutational analysis confirmed that the mixed-acid fermentation pathway was required for wild-type intracellular growth and spread of S. flexneri. Thus, iron stress and changes in carbon metabolism may be key factors in the S. flexneri transition from the extra- to the intracellular milieu. PMID:24101689

  11. Circulating Levels of PAI-1 and SERPINE1 4G/4G Polymorphism Are Predictive of Poor Prognosis in HCC Patients Undergoing TACE1

    PubMed Central

    Divella, Rosa; Daniele, Antonella; Abbate, Ines; Savino, Eufemia; Casamassima, Porzia; Sciortino, Giancarlo; Simone, Giovanni; Gadaleta-Caldarola, Gennaro; Fazio, Vito; Gadaleta, Cosimo Damiano; Sabbà, Carlo; Mazzocca, Antonio

    2015-01-01

    Although several molecular markers have been proposed as prognostic of disease progression in Hepatocellular carcinoma (HCC), predictive markers of response to treatment are still unsatisfactory. Here, we propose a genetic polymorphism as a potential predictive factor of poor prognosis in HCC patients treated with transcatheter arterial chemoembolization (TACE). In particular, we show that the guanosine insertion/deletion polymorphism in the promoter region of SERPINE1 gene at the − 675 bp position, named 4G/4G, predicts poor prognosis in a cohort of 75 patients with HCC undergoing TACE. By a combination of ELISA and SERPINE1 promoter study, we found that the presence of elevated plasma levels of plasminogen activator inhibitor-1 (PAI-1) in patients with 4G/4G genotype is significantly associated with reduced overall survival compared to patients with 5G/5G or 4G/5G genotype in HCC patients after TACE. Our analysis provided evidence that variation in SERPINE1 gene plays a role in defining the outcome in patients treated with TACE. In addition to a poor disease outcome, the 4G/4G variant represents an unfavorable predictive factor for response to chemotherapy as well. PMID:26310373

  12. Lack of involvement of strand s1'A of the viral serpin CrmA in anti-apoptotic or caspase-inhibitory functions

    SciTech Connect

    Simonovic, Miljan; Denault, Jean-Bernard; Salvesen, Guy S.; Volz, Karl; Gettins, Peter G.W.

    2010-11-30

    CrmA is a cowpox virus serpin required for full host infectivity and virulence. Residues 51-56 (DKNKDD), the only region that differs significantly from related viral serpins, were investigated for functional importance. A 1.6 {angstrom} X-ray structure reported here showed that this region can adopt either structured or unstructured conformations. Three variants were expressed, one with the region 51-56 deleted, one substituted by alanines, and one in which this region was replaced by the sequence encoded in smallpox virus. NMR showed that the region is an exposed, flexible loop that can be deleted without perturbing the serpin. The region is also very susceptible to proteolysis. Significantly, inhibition of caspases 1 and 8 was unaffected by the mutations, and each of the variants was as effective as wild-type CrmA in promoting survival from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Thus, although the 51-56 region of CrmA is unique, and is exposed and highly susceptible to proteolysis, any in vivo role must involve a function other than proteinase inhibition or cell sparing.

  13. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  14. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  15. Nanoparticles Encapsulated with LL37 and Serpin A1 Promotes Wound Healing and Synergistically Enhances Antibacterial Activity.

    PubMed

    Fumakia, Miral; Ho, Emmanuel A

    2016-07-01

    Wound care is a serious healthcare concern, often complicated by prolonged inflammation and bacterial infection, which contributes significantly to mortality and morbidity. Agents commonly used to treat chronic wound infections are limited due to toxicity of the therapy, multifactorial etiology of chronic wounds, deep skin infections, lack of sustained controlled delivery of drugs, and development of drug resistance. LL37 is an endogenous host defense peptide possessing antimicrobial activity and is involved in the modulation of wound healing. Serpin A1 (A1) is an elastase inhibitor and has been shown to demonstrate wound-healing properties. Hence, our goal was to develop a topical combination nanomedicine for the controlled sustained delivery of LL37 and A1 at precise synergistic ratio combinations that will significantly promote wound closure, reduce bacterial contamination, and enhance anti-inflammatory activity. We have successfully developed the first solid lipid nanoparticle (SLN) formulation that can simultaneously deliver LL37 and A1 at specific ratios resulting in accelerated wound healing by promoting wound closure in BJ fibroblast cells and keratinocytes as well as synergistically enhancing antibacterial activity against S. aureus and E. coli in comparison to LL37 or A1 alone. PMID:27182713

  16. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. PMID:24887564

  17. Intracellular pH in Sperm Physiology

    PubMed Central

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L.; Darszon, Alberto

    2014-01-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca2+ channel; Slo3, a K+ channel; the sperm-specific Na+/H+ exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. PMID:24887564

  18. Mechanisms of intracellular ice formation.

    PubMed Central

    Muldrew, K; McGann, L E

    1990-01-01

    The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling. PMID:2306499

  19. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  20. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus.

    PubMed

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans.

  1. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus.

    PubMed

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans. PMID:26578518

  2. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  3. Tomato cystatin SlCYS8 as a stabilizing fusion partner for human serpin expression in plants.

    PubMed

    Sainsbury, Frank; Varennes-Jutras, Philippe; Goulet, Marie-Claire; D'Aoust, Marc-André; Michaud, Dominique

    2013-12-01

    Studies have reported the usefulness of fusion proteins to bolster recombinant protein yields in plants. Here, we assess the potential of tomato SlCYS8, a Cys protease inhibitor of the cystatin protein superfamily, as a stabilizing fusion partner for human alpha-1-antichymotrypsin (α1ACT) targeted to the plant cell secretory pathway. Using the model expression platform Nicotiana benthamiana, we show that the cystatin imparts a strong stabilizing effect when expressed as a translational fusion with α1ACT, allowing impressive accumulation yields of over 2 mg/g of fresh weight tissue for the human serpin, a 25-fold improvement on the yield of α1ACT expressed alone. Natural and synthetic peptide linkers inserted between SlCYS8 and α1ACT have differential effects on protease inhibitory potency of the two protein partners in vitro. They also have a differential impact on the yield of α1ACT, dependent on the extent to which the hybrid protein may remain intact in the plant cell environment. The stabilizing effect of SlCYS8 does not involve Cys protease inhibition and can be partly reproduced in the cytosol, where peptide linkers are less susceptible to degradation. The effect of SlCYS8 on α1ACT yields could be explained by: (i) an improved translation of the human protein coding sequence; and/or (ii) an overall stabilization of its tertiary structure preventing proteolytic degradation and/or polymerization. These findings suggest the potential of plant cystatins as stabilizing fusion partners for recombinant proteins in plant systems. They also underline the need for an empirical assessment of peptide linker functions in plant cell environments.

  4. Molecular characterization and expression profile of uterine serpin (SERPINA14) during different reproductive phases in water buffalo (Bubalus bubalis).

    PubMed

    Kandasamy, Sukumar; Jain, Asit; Kumar, Rohit; Agarwal, Sudhir K; Joshi, Paritosh; Mitra, Abhijit

    2010-10-01

    Uterine serpins (SERPINA14) play important roles during pregnancy in the farm animals. In this study, we have cloned and characterized cDNA sequence encoding the bubaline SERPINA14. We also studied its spatio-temporal expression in the uterine endometrium. The bubaline SERPINA14 has an open reading frame of 1299bp. Itshares ∼90% identity with the SERPINA14 of other ruminant livestock species. Phylogenetically, bubaline SERPINA14 has been placed in the same clade that contained other mammalian homologues with a maximum identity to bovine SERPINA14. Using an anti-ovine monoclonal antibody, Western blot analysis of the uterine fluid of buffalo during the early stage of pregnancy confirmed the presence of SERPINA14 of about 48,000Da. The results of quantitative real time PCR (RT-qPCR) as well as in situ hybridization demonstrated a stage and tissue specific expression of bubaline SERPINA14. The level of SERPINA14 mRNA was low during stage I (Days 3-5), which increased (P<0.05) during stage II (Days 6-15) and then subsequently declined during stage III (Days 16-21) of the estrus cycle. During early pregnancy (Days ∼30 of gestation) the level of SERPINA14 mRNA was as high as that during stage II of the estrus cycle. The SERPINA14 mRNA was localized in the glandular epithelium. The differential spatio-temporal expression of SERPINA14 in the uterine endometrium of buffalo suggests its plausible important roles in reproduction.

  5. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  6. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm

    PubMed Central

    Wen, Liuying; Fukuda, Masako; Sunada, Mariko; Ishino, Sonoko; Ishino, Yoshizumi; Okita, Thomas W.; Ogawa, Masahiro; Ueda, Takashi; Kumamaru, Toshihiro

    2015-01-01

    Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins. PMID:26136263

  7. A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network.

    PubMed Central

    Alconada, A; Bauer, U; Hoflack, B

    1996-01-01

    We have studied the intracellular trafficking of the envelope glycoprotein I (gpI) of the varicella-zoster virus, a human herpes virus whose assembly is believed to occur in the trans-Golgi network (TGN) and/or in endocytic compartments. When expressed in HeLa cells in the absence of additional virally encoded factors, this type-I membrane protein localizes to the TGN and cycles between this compartment and the cell surface. The expression of gpI promotes the recruitment of the AP-1 Golgi-specific assembly proteins onto TGN membranes, strongly suggesting that gpI, like the mannose 6-phosphate receptors, can leave the TGN in clathrin-coated vesicles for subsequent transport to endosomes. Its return from the cell surface to the TGN also occurs through endosomes. The transfer of the gpI cytoplasmic domain onto a reporter molecule shows that this domain is sufficient to confer TGN localization. Mutational analysis of this domain indicates that proper subcellular localization and cycling of gpI depend on two different determinants, a tyrosine-containing tetrapeptide related to endocytosis sorting signals and a cluster of acidic amino acids containing casein kinase II phosphorylatable residues. Thus, the VZV gpI and the mannose 6-phosphate receptors, albeit localized in different intracellular compartments at steady-state, follow similar trafficking pathways and share similar sorting mechanisms. Images PMID:8947032

  8. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm.

    PubMed

    Wen, Liuying; Fukuda, Masako; Sunada, Mariko; Ishino, Sonoko; Ishino, Yoshizumi; Okita, Thomas W; Ogawa, Masahiro; Ueda, Takashi; Kumamaru, Toshihiro

    2015-10-01

    Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins. PMID:26136263

  9. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    PubMed Central

    Li, Xianglu; Fusco, William G.; Seo, Keun S.; Bayles, Kenneth W.; Mosley, Erin E.; McGuire, Mark A.; Bohach, Gregory A.

    2009-01-01

    HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization. PMID:20016671

  10. Sirtuin inhibitor sirtinol is an intracellular iron chelator

    PubMed Central

    Gautam, R.; Akam, E. A.; Astashkin, A. V.; Loughrey, J. J.

    2015-01-01

    Sirtinol is a known inhibitor of sirtuin proteins, a family of deacetylases involved in the pathophysiology of aging. Spectroscopic and structural data reveal that this compound is also an iron chelator forming high-spin ferric species in vitro and in cultured leukemia cells. Interactions with the highly regulated iron pool therefore contribute to its overall intracellular agenda. PMID:25715179

  11. The effect of intracellular pH on the regulation of the Rab 16A and the alpha-amylase 1/6-4 promoter by abscisic acid and gibberellia.

    PubMed

    Heimovaara-Dijkstra, S; Mundy, J; Wang, M

    1995-02-01

    Intracellular pH (pHi) of barley aleurone cells is known to be affected by hormones and plant growth conditions. The possible mechanisms by which these pHi shifts influence the actions of abscisic acid (ABA) or gibberellin (GA) is being investigated. Here we report an attempt to study the effect of pHi on hormone-induced gene expression. We used weak acids and weak bases to artificially mimic the pHi changes brought about by ABA and GA and found that chloramphenicol acetyltransferase (CAT) expression controlled by the Rab promoter was affected while the alpha-amylase promoter seemed insensitive. CAT fused to the 35S promoter was used as a control which is not inducible by ABA or GA3. The expression of this construct was not significantly affected by artificial pHi changes.

  12. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study.

    PubMed

    Zile, Melanie A; Trayanova, Natalia A

    2016-01-01

    Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of pressure alternans, and action potential voltage alternans (APV-ALT), the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart

  13. Intracellular localization of the Menkes and Wilson's disease proteins and their role in intracellular copper transport.

    PubMed

    Suzuki, M; Gitlin, J D

    1999-08-01

    Copper is a heavy metal ion essential for the activity of a variety of enzymes in the body. In excess, copper is a very toxic ion and therefore efficient regulation of its metabolism is required. This is dramatically illustrated by the genetic disorders X-linked Menkes disease and autosomal recessive Wilson's disease. In 1993, both the Menkes and Wilson's genes were isolated and it was found that these genes encode homologous cation copper transporting P-type ATPase proteins. The Menkes protein (ATP7A) is expressed in most tissues, except liver. In contrast, the Wilson's protein (ATP7B) is abundantly expressed in liver. Intracellular localization of those proteins was investigated. Both ATP7A and ATP7B are localized in the trans-Golgi network and post-Golgi vesicular compartment (PGVC) in the cell. This intracellular localization was altered by the copper content present in the cell. This result may support the hypothesis that ATP7A and ATP7B are involved in cellular copper transport and those proteins could be suitable models for elucidating intracellular copper metabolism.

  14. Intracellular Ca2+ signaling and preimplantation development.

    PubMed

    Armant, D Randall

    2015-01-01

    The key, versatile role of intracellular Ca2+ signaling during egg activation after fertilization has been appreciated for several decades. More recently, evidence has accumulated supporting the concept that cytoplasmic Ca2+ is also a major signaling nexus during subsequent development of the fertilized ovum. This chapter will review the molecular reactions that regulate intracellular Ca2+ levels and cell function, the role of Ca2+ signaling during egg activation and specific examples of repetitive Ca2+ signaling found throughout pre- and peri-implantation development. Many of the upstream and downstream pathways utilized during egg activation are also critical for specific processes that take place during embryonic development. Much remains to be done to elucidate the full complexity of Ca2+ signaling mechanisms in preimplantation embryos to the level of detail accomplished for egg activation. However, an emerging concept is that because this second messenger can be modulated downstream of numerous receptors and is able to bind and activate multiple cytoplasmic signaling proteins, it can help the coordination of development through up- and downstream pathways that change with each embryonic stage.

  15. Magnetic tweezers for intracellular applications

    NASA Astrophysics Data System (ADS)

    Hosu, Basarab G.; Jakab, Károly; Bánki, Péter; Tóth, Ferenc I.; Forgacs, Gabor

    2003-09-01

    We have designed and constructed a versatile magnetic tweezer primarily for intracellular investigations. The micromanipulator uses only two coils to simultaneously magnetize to saturation micron-size superparamagnetic particles and generate high magnitude constant field gradients over cellular dimensions. The apparatus resembles a miniaturized Faraday balance, an industrial device used to measure magnetic susceptibility. The device operates in both continuous and pulse modes. Due to its compact size, the tweezers can conveniently be mounted on the stage of an inverted microscope and used for intracellular manipulations. A built-in temperature control unit maintains the sample at physiological temperatures. The operation of the tweezers was tested by moving 1.28 μm diameter magnetic beads inside macrophages with forces near 500 pN.

  16. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  17. Optogenetic control of intracellular signaling pathways.

    PubMed

    Zhang, Kai; Cui, Bianxiao

    2015-02-01

    Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, although useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks. Here we review recent achievements in using light to control intracellular signaling pathways and discuss future prospects for the field, including integration of new genetic approaches into optogenetics.

  18. Optogenetic control of intracellular signaling pathways

    PubMed Central

    Zhang, Kai; Cui, Bianxiao

    2014-01-01

    Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, though useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open up exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks. Here we review recent achievements in using light to control intracellular signaling pathways, and discuss future prospects for the field, including integration of new genetic approaches into optogenetics. PMID:25529484

  19. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  20. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  1. Cell–cell and intracellular lactate shuttles

    PubMed Central

    Brooks, George A

    2009-01-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously in diverse cells under fully aerobic conditions. ‘Cell–cell’ and ‘intracellular lactate shuttle’ concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of the cell–cell shuttles include lactate exchanges between between white-glycolytic and red-oxidative fibres within a working muscle bed, and between working skeletal muscle and heart, brain, liver and kidneys. Examples of intracellular lactate shuttles include lactate uptake by mitochondria and pyruvate for lactate exchange in peroxisomes. Lactate for pyruvate exchanges affect cell redox state, and by itself lactate is a ROS generator. In vivo, lactate is a preferred substrate and high blood lactate levels down-regulate the use of glucose and free fatty acids (FFA). As well, lactate binding may affect metabolic regulation, for instance binding to G-protein receptors in adipocytes inhibiting lipolysis, and thus decreasing plasma FFA availability. In vitro lactate accumulation upregulates expression of MCT1 and genes coding for other components of the mitochondrial reticulum in skeletal muscle. The mitochondrial reticulum in muscle and mitochondrial networks in other aerobic tissues function to establish concentration and proton gradients necessary for cells with high mitochondrial densities to oxidize lactate. The presence of lactate shuttles gives rise to the realization that glycolytic and oxidative pathways should be viewed as linked, as opposed to alternative, processes, because lactate, the product of one pathway, is the substrate for the other. PMID:19805739

  2. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.

  3. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.

    PubMed Central

    Wilhelm, D; Bender, K; Knebel, A; Angel, P

    1997-01-01

    Monofunctional alkylating agents like methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are potent inducers of cellular stress leading to chromosomal aberrations, point mutations, and cell killing. We show that these agents induce a specific cellular stress response program which includes the activation of Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPKs), p38 mitogen-activated protein kinase, and the upstream kinase SEK1/MKK4 and which depends on the reaction mechanism of the alkylating agent in question. Similar to another inducer of cellular stress, UV irradiation, damage of nuclear DNA by alkylation is not involved in the MMS-induced response. However, in contrast to UV and other inducers of the JNK/SAPKs and p38 pathways, activation of growth factor and G-protein-coupled receptors does not play a role in the MMS response. We identified the intracellular glutathione (GSH) level as critical for JNK/SAPK activation by MMS: enhancing the GSH level by pretreatment of the cells with GSH or N-acetylcysteine inhibits, whereas depletion of the cellular GSH pool causes hyperinduction of JNK/SAPK activity by MMS. In light of the JNK/SAPK-dependent induction of c-jun and c-fos transcription, and the Jun/Fos-induced transcription of xenobiotic-metabolizing enzymes, these data provide a potential critical role of JNK/SAPK and p38 in the induction of a cellular defense program against cytotoxic xenobiotics such as MMS. PMID:9234735

  4. Post-transcriptional regulation of programmed cell death 4 (PDCD4) mRNA by the RNA-binding proteins human antigen R (HuR) and T-cell intracellular antigen 1 (TIA1).

    PubMed

    Wigington, Callie P; Jung, Jeenah; Rye, Emily A; Belauret, Sara L; Philpot, Akahne M; Feng, Yue; Santangelo, Philip J; Corbett, Anita H

    2015-02-01

    Post-transcriptional processing of mRNA transcripts plays a critical role in establishing the gene expression profile of a cell. Such processing events are mediated by a host of factors, including RNA-binding proteins and microRNAs. A number of critical cellular pathways are subject to regulation at multiple levels that allow fine-tuning of key biological responses. Programmed cell death 4 (PDCD4) is a tumor suppressor and an important modulator of mRNA translation that is regulated by a number of mechanisms, most notably as a target of the oncomiR, miR-21. Here, we provide evidence for post-transcriptional regulation of PDCD4 by the RNA-binding proteins, HuR and TIA1. Complementary approaches reveal binding of both HuR and TIA1 to the PDCD4 transcript. Consistent with a model where RNA-binding proteins modulate the PDCD4 transcript, knockdown of HuR and/or TIA1 results in a significant decrease in steady-state PDCD4 mRNA and protein levels. However, fractionation experiments suggest that the mode of regulation of the PDCD4 transcript likely differs in the cytoplasm and the nucleus as the pool of PDCD4 mRNA present in the cytoplasm is more stable than the nuclear pool of PDCD4 transcript. We observe a competitive mode of binding between HuR and TIA1 on the PDCD4 transcript in the cytoplasm, suggesting that these two factors dynamically interact with one another as well as the PDCD4 transcript to maintain tight control of PDCD4 levels. Overall, this study reveals an additional set of regulatory interactions that modulate the expression of PDCD4, a key pro-apoptotic factor, and also reveals new insights into how HuR and TIA1 functions are integrated to achieve such regulation.

  5. Intracellular GTP level determines cell's fate toward differentiation and apoptosis

    SciTech Connect

    Meshkini, Azadeh; Yazdanparast, Razieh Nouri, Kazem

    2011-06-15

    Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

  6. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.

  7. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  8. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  9. Intracellular trafficking of nucleic acids.

    PubMed

    Zhou, Rui; Geiger, R Christopher; Dean, David A

    2004-11-01

    Until recently, the attention of most researchers has focused on the first and last steps of gene transfer, namely delivery to the cell and transcription, in order to optimise transfection and gene therapy. However, over the past few years, researchers have realised that the intracellular trafficking of plasmids is more than just a "black box" and is actually one of the major barriers to effective gene delivery. After entering the cytoplasm, following direct delivery or endocytosis, plasmids or other vectors must travel relatively long distances through the mesh of cytoskeletal networks before reaching the nuclear envelope. Once at the nuclear envelope, the DNA must either wait until cell division, or be specifically transported through the nuclear pore complex, in order to reach the nucleoplasm where it can be transcribed. This review focuses on recent developments in the understanding of these intracellular trafficking events as they relate to gene delivery. Hopefully, by continuing to unravel the mechanisms by which plasmids and other gene delivery vectors move throughout the cell, and by understanding the cell biology of gene transfer, superior methods of transfection and gene therapy can be developed.

  10. An intracellular anion channel critical for pigmentation

    PubMed Central

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. DOI: http://dx.doi.org/10.7554/eLife.04543.001 PMID:25513726

  11. An intracellular anion channel critical for pigmentation.

    PubMed

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. PMID:25513726

  12. Coxiella subversion of intracellular host signaling.

    PubMed

    Hussain, S Kauser; Voth, Daniel E

    2012-01-01

    Coxiella burnetii is a highly infectious bacterial pathogen that replicates in a specialized vacuole inside eukaryotic cells. Due to a prolonged growth cycle, Coxiella continuously manipulates cellular processes to generate this parasitophorous vacuole (PV) and promote host cell viability. Here, we discuss recent findings that indicate Coxiella modulates several host signaling pathways to influence survival and ensure intracellular replication. The pathogen actively inhibits apoptotic cell death and activates the pro-survival kinases Akt and Erk1/2 to promote host viability. Coxiella's anti-apoptotic activity also involves the interface between autophagy and apoptosis, which is regulated by the interaction of autophagy-related Beclin-1 and anti-apoptotic Bcl-2. Additionally, Coxiella requires host kinase activity for PV biogenesis and maintenance. Thus, signaling modulation by Coxiella is critical for multiple aspects of host cell parasitism. Collectively, recent signaling studies have enhanced our understanding of the unique Coxiella-host cell interaction. Identification of bacterial factors that regulate signaling events will further our ability to model this intriguing infectious process.

  13. Modulation of Host miRNAs by Intracellular Bacterial Pathogens

    PubMed Central

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  14. Modulation of Host miRNAs by Intracellular Bacterial Pathogens.

    PubMed

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  15. Twenty years of fluorescence imaging of intracellular chloride

    PubMed Central

    Arosio, Daniele; Ratto, Gian Michele

    2014-01-01

    Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments. PMID:25221475

  16. The Francisella tularensis migR, trmE, and cphA Genes Contribute to F. tularensis Pathogenicity Island Gene Regulation and Intracellular Growth by Modulation of the Stress Alarmone ppGpp

    PubMed Central

    Faron, Matthew; Fletcher, Joshua R.; Rasmussen, Jed A.; Long, Matthew E.; Allen, Lee-Ann H.

    2013-01-01

    The Francisella tularensis pathogenicity island (FPI) encodes many proteins that are required for virulence. Expression of these genes depends upon the FevR (PigR) regulator and its interactions with the MglA/SspA and RNA polymerase transcriptional complex. Experiments to identify how transcription of the FPI genes is activated have led to identification of mutations within the migR, trmE, and cphA genes that decrease FPI expression. Recent data demonstrated that the small alarmone ppGpp, produced by RelA and SpoT, is important for stabilizing MglA/SspA and FevR (PigR) interactions in Francisella. Production of ppGpp is commonly known to be activated by cellular and nutritional stress in bacteria, which indicates that cellular and nutritional stresses act as important signals for FPI activation. In this work, we demonstrate that mutations in migR, trmE, or cphA significantly reduce ppGpp accumulation. The reduction in ppGpp levels was similar for each of the mutants and correlated with a corresponding reduction in iglA reporter expression. In addition, we observed that there were differences in the ability of each of these mutants to replicate within various mammalian cells, indicating that the migR, trmE, and cphA genes are likely parts of different cellular stress response pathways in Francisella. These results also indicate that different nutritional and cellular stresses exist in different mammalian cells. This work provides new information to help understand how Francisella regulates its virulence genes in response to host cell environments, and it contributes to our growing knowledge of this highly successful bacterial pathogen. PMID:23716606

  17. The Francisella tularensis migR, trmE, and cphA genes contribute to F. tularensis pathogenicity island gene regulation and intracellular growth by modulation of the stress alarmone ppGpp.

    PubMed

    Faron, Matthew; Fletcher, Joshua R; Rasmussen, Jed A; Long, Matthew E; Allen, Lee-Ann H; Jones, Bradley D

    2013-08-01

    The Francisella tularensis pathogenicity island (FPI) encodes many proteins that are required for virulence. Expression of these genes depends upon the FevR (PigR) regulator and its interactions with the MglA/SspA and RNA polymerase transcriptional complex. Experiments to identify how transcription of the FPI genes is activated have led to identification of mutations within the migR, trmE, and cphA genes that decrease FPI expression. Recent data demonstrated that the small alarmone ppGpp, produced by RelA and SpoT, is important for stabilizing MglA/SspA and FevR (PigR) interactions in Francisella. Production of ppGpp is commonly known to be activated by cellular and nutritional stress in bacteria, which indicates that cellular and nutritional stresses act as important signals for FPI activation. In this work, we demonstrate that mutations in migR, trmE, or cphA significantly reduce ppGpp accumulation. The reduction in ppGpp levels was similar for each of the mutants and correlated with a corresponding reduction in iglA reporter expression. In addition, we observed that there were differences in the ability of each of these mutants to replicate within various mammalian cells, indicating that the migR, trmE, and cphA genes are likely parts of different cellular stress response pathways in Francisella. These results also indicate that different nutritional and cellular stresses exist in different mammalian cells. This work provides new information to help understand how Francisella regulates its virulence genes in response to host cell environments, and it contributes to our growing knowledge of this highly successful bacterial pathogen.

  18. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy.

    PubMed

    Okabe, Kohki; Inada, Noriko; Gota, Chie; Harada, Yoshie; Funatsu, Takashi; Uchiyama, Seiichi

    2012-02-28

    Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18-0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function.

  19. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy

    PubMed Central

    Okabe, Kohki; Inada, Noriko; Gota, Chie; Harada, Yoshie; Funatsu, Takashi; Uchiyama, Seiichi

    2012-01-01

    Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function. PMID:22426226

  20. Crosstalk between uterine serpin (SERPINA14) and pregnancy-associated glycoproteins at the fetal-maternal interface in pregnant dairy heifers experimentally infected with Neospora caninum.

    PubMed

    Serrano-Pérez, B; Hansen, P J; Mur-Novales, R; García-Ispierto, I; de Sousa, N M; Beckers, J F; Almería, S; López-Gatius, F

    2016-08-01

    Infection with Neospora caninum is the leading cause of abortion in cattle. In cows naturally infected with N caninum, plasma concentrations of pregnancy-associated glycoproteins (PAG) 1 and 2 indicate fetal-placental well-being, whereas an excess of progesterone in the second trimester of gestation has been related to high abortion rate. The immunosuppressive action of progesterone on the uterus during gestation has been attributed in part to the uterine serpins (SERPINA14). This study examines expression patterns of the genes SERPINA14, PAG, and PAG2 at the fetal-maternal interface in dairy heifers experimentally infected with N caninum during the second trimester of pregnancy, when most abortions takes place in natural conditions. Irrespective of infection, expression of SERPINA14 was higher, and expression of PAG1 and PAG2 lower, for intercaruncular endometrium than for caruncles or cotyledons. Cotyledonary tissues showed the highest expression of both PAG genes but lowest expression of SERPINA14. The expression of SERPINA14 was significantly higher in intercaruncular endometrium of control dams than for infected animals, pointing to potential disruption of modulation of maternal immune function during infection. Dramatically reduced SERPINA14 was particularly apparent in infected dams with aborted fetuses. There was also a negative association between N caninum antibody titers with SERPINA14 and PAG expression in infected animals, further suggesting that N caninum infection downregulates the uterine immunosuppressive function of SERPINA14. PMID:27045629

  1. Repression of liver colorectal metastasis by the serpin Spn4A a naturally occurring inhibitor of the constitutive secretory proprotein convertases

    PubMed Central

    Sfaxi, Fatma; Scamuffa, Nathalie; Lalou, Claude; Ma, Jia; Metrakos, Peter; Siegfried, Géraldine; Ragg, Hermann; Bikfalvi, Andreas; Calvo, Fabien; Khatib, Abdel-Majid

    2014-01-01

    Liver is the most common site of metastasis from colorectal cancers, and liver of patients with liver colorectal metastasis have abnormal levels of the proprotein convertases (PCs). These proteases are involved in the activation and/or expression of various colon cancer-related mediators, making them promising targets in colorectal liver metastasis therapy. Here, we revealed that the serpin Spn4 from Drosophila melanogaster inhibits the activity of all the PCs found in the constitutive secretory pathway and represses the metastatic potential of the colon cancer cells HT-29 and CT-26. In these cells, Spn4A inhibited the processing of the PCs substrates IGF-1R and PDGF-A that associated their reduced anchorage-independent growth, invasiveness and survival in response to apoptotic agents. In vivo, Spn4A-expressing tumor cells showed repressed subcutaneous tumor development and liver metastases formation in response to their intrasplenic inoculation. In these cells Spn4A induced the expression of molecules with anti-metastatic functions and inhibited expression of pro-tumorigenic molecules. Taken together, our findings identify Spn4A as the only endogenous inhibitor of all the constitutive secretory pathway PCs, which is able to repress the metastatic potential of colon cancer cells. These results suggest the potential use of Spn4A and/or derivates as a useful adduct colorectal liver metastasis prevention. PMID:24961901

  2. A suppressive effect of prostaglandin E2 on the expression of SERPINE1/plasminogen activator inhibitor-1 in human articular chondrocytes: An in vitro pilot study

    PubMed Central

    Masuko, Kayo; Murata, Minako; Suematsu, Naoya; Okamoto, Kazuki; Yudoh, Kazuo; Shimizu, Hiroyuki; Beppu, Moroe; Nakamura, Hiroshi; Kato, Tomohiro

    2009-01-01

    Prostaglandin E2 (PGE2) is expressed in articular joints with inflammatory arthropathy and may exert catabolic effects leading to cartilage degradation. As we observed in a preliminary experiment that PGE2 suppressed the expression of SERPINE1/plasminogen activator inhibitor (PAI)-1 mRNA in chondrocytes, we focused on the effect of PGE2 on PAI-1 in a panel of cultured chondrocytes obtained from osteoarthritic patients. Specifically, articular cartilage specimens were obtained from patients with osteoarthritis who underwent joint surgery. Isolated chondrocytes were cultured in vitro as a monolayer and stimulated with PGE2. Stimulated cells and culture supernatants were analyzed using Western blotting and enzyme-linked immunosorbent assay. The results confirmed that the in vitro PGE2 stimulation suppressed the expression of PAI-1 in the tested chondrocyte samples. The inhibitory effect was partly abrogated by an antagonist of EP4 receptor of PGE2, but not by an EP2 antagonist. Although PGE2 induced activations of mitogen-activated protein kinases (MAPK), blocking of the MAPK did not abrogate the suppressive effect of PGE2, implying a distinct signaling pathway. In summary, prostaglandin is suggested to modulate the plasminogen system in chondrocytes. Further elucidation of the interaction might open a new avenue to understand the degradative process of cartilage.

  3. Physical and genetic mapping of the serpin gene cluster at 14q32. 1: Allelic association and a unique haplotype associated with [alpha][sub 1]-antitrypsin deficiency

    SciTech Connect

    Byth, B.C.; Billingsley, G.D.; Cox, D.W. )

    1994-07-01

    The [alpha][sub 1]-antitrypsin (PI) gene is part of a cluster of structurally related serine protease inhibitor genes localized at chromosome 14q32, a cluster that includes the [alpha][sub 1]-anticymotrypsin (AACT), protein C inhibitor (PCI), and corticosteroid-binding globulin (CBG) genes and the [alpha][sub 1]-antitrypsin-like pseudogene (PIL). The order of the genes is refined here by genetic mapping using simple tandem repeat polymorphisms (STRPs) and by physical mapping in YACs. The order of the genes is (cetromere)-CBG-PIL-PI-PCI-AACT-(telomere). Analysis of DNA haplotypes comprising STRP and RFLP markers in the serpin genes reveals considerable allelic association throughout the cluster. Furthermore, the common [alpha][sub 1]-antitrypsin deficiency allele, PI[sup *]Z, has a unique DNA haplotype at the CBG, PIL, and PI loci, which extends over 60 kb in 97% of cases and in 44% of cases includes the PCI and AACT loci. This unique haplotype will be of use in examining a number of other diseases, particularly those with an inflammatory component, thought to be associated with [alpha][sub 1]-antitrypsin deficiency or partial deficiency. 23 refs., 6 figs., 4 tabs.

  4. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  5. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. PMID:26613410

  6. Intracellular Organisms as Placental Invaders

    PubMed Central

    Vigliani, Marguerite B.; Bakardjiev, Anna I.

    2015-01-01

    In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications.

  7. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  8. Dynamics of intracellular information decoding

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  9. Fatty Acid Signaling: The New Function of Intracellular Lipases

    PubMed Central

    Papackova, Zuzana; Cahova, Monika

    2015-01-01

    Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed. PMID:25674855

  10. The role of autophagy in the intracellular survival of Campylobacter concisus

    PubMed Central

    Burgos-Portugal, Jose A.; Mitchell, Hazel M.; Castaño-Rodríguez, Natalia; Kaakoush, Nadeem O.

    2014-01-01

    Campylobacter concisus is an emerging pathogen that has been associated with gastrointestinal diseases. Given the importance of autophagy for the elimination of intracellular bacteria and the subversion of this process by pathogenic bacteria, we investigated the role of autophagy in C. concisus intracellular survival. Gentamicin protection assays were employed to assess intracellular levels of C. concisus within Caco-2 cells, following autophagy induction and inhibition. To assess the interaction between C. concisus and autophagosomes, confocal microscopy, scanning electron microscopy, and transmission electron microscopy were employed. Expression levels of 84 genes involved in the autophagy process were measured using qPCR. Autophagy inhibition resulted in two- to four-fold increases in intracellular levels of C. concisus within Caco-2 cells, while autophagy induction resulted in a significant reduction in intracellular levels or bacterial clearance. C. concisus strains with low intracellular survival levels showed a dramatic increase in these levels upon autophagy inhibition. Confocal microscopy showed co-localization of the bacterium with autophagosomes, while transmission electron microscopy identified intracellular bacteria persisting within autophagic vesicles. Further, qPCR showed that following infection, 13 genes involved in the autophagy process were significantly regulated, and a further five showed borderline results, with an overall indication towards a dampening effect exerted by the bacterium on this process. Our data collectively indicates that while autophagy is important for the clearance of C. concisus, some strains may manipulate this process to benefit their intracellular survival. PMID:24918042

  11. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    PubMed

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-01

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  12. Intracellular antioxidants: from chemical to biochemical mechanisms.

    PubMed

    Chaudière, J; Ferrari-Iliou, R

    1999-01-01

    Intracellular antioxidants include low molecular weight scavengers of oxidizing species, and enzymes which degrade superoxide and hydroperoxides. Such antioxidants systems prevent the uncontrolled formation of free radicals and activated oxygen species, or inhibit their reactions with biological structures. Hydrophilic scavengers are found in cytosolic, mitochondrial and nuclear compartments. Ascorbate and glutathione scavenge oxidizing free radicals in water by means of one-electron or hydrogen atom transfer. Similarly, ergothioneine scavenges hydroxyl radicals at very high rates, but it acts more specifically as a chemical scavenger of hypervalent ferryl complexes, halogenated oxidants and peroxynitrite-derived nitrating species, and as a physical quencher of singlet oxygen. Hydrophobic scavengers are found in cell membranes where they inhibit or interrupt chain reactions of lipid peroxidation. In animal cells, they include alpha-tocopherol (vitamin E) which is a primary scavenger of lipid peroxyl radicals, and carotenoids which are secondary scavengers of free radicals as well as physical quenchers of singlet oxygen. The main antioxidant enzymes include dismutases such as superoxide dismutases (SOD) and catalases, which do not consume cofactors, and peroxidases such as selenium-dependent glutathione peroxidases (GPx) in animals or ascorbate peroxidases (APx) in plants. The reducing coenzymes of peroxidases, and as a rule all reducing components of the antioxidant network, are regenerated at the expense of NAD(P)H produced in specific metabolic pathways. Synergistic and co-operative interactions of antioxidants rely on the sequential degradation of peroxides and free radicals as well as on mutual protections of enzymes. This antioxidant network can induce metabolic deviations and plays an important role in the regulation of protein expression and/or activity at the transcriptional or post-translational levels. Its biological significance is discussed in terms of

  13. Trypanosoma cruzi infection results in an increase in intracellular cholesterol

    PubMed Central

    Johndrow, Christopher; Nelson, Randin; Tanowitz, Herbert; Weiss, Louis; Nagajyothi, Fnu

    2014-01-01

    Chagasic cardiomyopathy caused by Trypanosoma cruzi is a major health concern in Latin America and among immigrant populations in non-endemic areas. T. cruzi has a high affinity for host lipoproteins and uses the low density lipoprotein receptor (LDLr) for invasion. Herein, we report that T. cruzi infection is associated with an accumulation of LDL and cholesterol in tissues in both acute and chronic murine Chagas disease. Similar findings were observed in tissue samples from a human case of Chagasic cardiomyopathy. T. cruzi infection of cultured cells displayed increased invasion with increasing cholesterol levels in the medium. Studies of infected host cells demonstrated alterations in their cholesterol regulation. T. cruzi invasion/infection via LDLr appears to be involved in changes in intracellular cholesterol homeostasis. The observed changes in intracellular lipids and associated oxidative stress due to these elevated lipids may contribute to the development of Chagasic cardiomyopathy. PMID:24486184

  14. Intracellular calcium puffs in osteoclasts.

    PubMed

    Radding, W; Jordan, S E; Hester, R B; Blair, H C

    1999-12-15

    We studied intracellular calcium ([Ca(2+)](i)) in acid-secreting bone-attached osteoclasts, which produce a high-calcium acidic extracellular compartment. Acid secretion and [Ca(2+)](i) were followed using H(+)-restricted dyes and fura-2 or fluo-3. Whole cell calcium of acid-secreting osteoclasts was approximately 100 nM, similar to cells on inert substrate that do not secrete acid. However, measurements in restricted areas of the cell showed [Ca(2+)](i) transients to 500-1000 nM consistent with calcium puffs, transient (millisecond) localized calcium elevations reported in other cells. Spot measurements at 50-ms intervals indicated that puffs were typically less than 400 ms. Transients did not propagate in waves across the cell in scanning confocal measurements. Calcium puffs occurred mainly over regions of acid secretion as determined using lysotracker red DND99 and occurred at irregular periods averaging 5-15 s in acid secreting cells, but were rare in lysotracker-negative nonsecretory cells. The calmodulin antagonist trifluoperazine, cell-surface calcium transport inhibitors lanthanum or barium, and the endoplasmic reticulum ATPase inhibitor thapsigargin had variable acute effects on the mean [Ca(2+)](i) and puff frequency. However, none of these agents prevented calcium puff activity, suggesting that the mechanism producing the puffs is independent of these processes. We conclude that [Ca(2+)](i) transients in osteoclasts are increased in acid-secreting osteoclasts, and that the puffs occur mainly near the acid-transporting membrane. Cell membrane acid transport requires calcium, suggesting that calcium puffs function to maintain acid secretion. However, membrane H(+)-ATPase activity was insensitive to calcium in the 100 nM-1 microM range. Thus, any effects of calcium puffs on osteoclastic acid transport must be indirect.

  15. Intracellular structure and nucleocytoplasmic transport.

    PubMed

    Agutter, P S

    1995-01-01

    Intracellular movement of any solute or particle accords with one of two general schemes: either it takes place predominantly in the solution phase or it occurs by dynamic interactions with solid-state structures. If nucleocytoplasmic exchanges of macromolecules and complexes are predominantly solution-phase processes, i.e., if the former ("diffusionist") perspective applies, then the only significant structures in nucleocytoplasmic transport are the pore complexes. However, if such exchanges accord with the latter ("solid-state") perspective, then the roles of the nucleoskeleton and cytoskeleton in nucleocytoplasmic transport are potentially, at least, as important as that of the pore complexes. The role of the nucleoskeleton in mRNA transport is more difficult to evaluate than that of the cytoskeleton because it is less well characterized, and current evidence does not exclude either perspective. However, the balance of evidence favors a solid-state scheme. It is argued that ribosomal subunits are also more likely to migrate by a solid-state rather than a diffusionist mechanism, though the opposite is true of proteins and tRNAs. Moreover, recent data on the effects of viral proteins on intranuclear RNA processing and migration accord with the solid-state perspective. In view of this balance of evidence, three possible solid-state mechanisms for nucleocytoplasmic mRNA transport are described and evaluated. The explanatory advantage of solid-state models is contrasted with the heuristic advantage of diffusion theory, but it is argued that diffusion theory itself, even aided by modern computational techniques and numerical and graphical approaches, cannot account for data describing the movements of materials within the cell. Therefore, the mechanisms envisaged in a diffusionist perspective cannot be confined to diffusion alone, but must include other processes such as bulk fluid flow.

  16. Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z.

    PubMed

    Gosai, Sager J; Kwak, Joon Hyeok; Luke, Cliff J; Long, Olivia S; King, Dale E; Kovatch, Kevin J; Johnston, Paul A; Shun, Tong Ying; Lazo, John S; Perlmutter, David H; Silverman, Gary A; Pak, Stephen C

    2010-01-01

    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms. PMID:21103396

  17. Intracellular Streptococcus pyogenes in Human Macrophages Display an Altered Gene Expression Profile

    PubMed Central

    Hertzén, Erika; Johansson, Linda; Kansal, Rita; Hecht, Alexander; Dahesh, Samira; Janos, Marton; Nizet, Victor; Kotb, Malak; Norrby-Teglund, Anna

    2012-01-01

    Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection. Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression of specific two-component systems. PMID:22511985

  18. Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile.

    PubMed

    Hertzén, Erika; Johansson, Linda; Kansal, Rita; Hecht, Alexander; Dahesh, Samira; Janos, Marton; Nizet, Victor; Kotb, Malak; Norrby-Teglund, Anna

    2012-01-01

    Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection. Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression of specific two-component systems.

  19. Visualization of Intracellular Tyrosinase Activity in vitro

    PubMed Central

    Setty, Subba Rao Gangi

    2016-01-01

    Melanocytes produce the melanin pigments in melanosomes and these organelles protect the skin against harmful ultraviolet rays. Tyrosinase is the key cuproenzyme which initiates the pigment synthesis using its substrate amino acid tyrosine or L-DOPA (L-3, 4-dihydroxyphenylalanine). Moreover, the activity of tyrosinase directly correlates to the cellular pigmentation. Defects in tyrosinase transport to melanosomes or mutations in the enzyme or reduced intracellular copper levels results in loss of tyrosinase activity in melanosomes, commonly observed in albinism. Here, we described a method to detect the intracellular activity of tyrosinase in mouse melanocytes. This protocol will visualize the active tyrosinase present in the intracellular vesicles or organelles including melanosomes. PMID:27231711

  20. Spatial aspects of intracellular information processing.

    PubMed

    Kinkhabwala, Ali; Bastiaens, Philippe I H

    2010-02-01

    The computational properties of intracellular biochemical networks, for which the cell is assumed to be a 'well-mixed' reactor, have already been widely characterized. What has so far not received systematic treatment is the important role of space in many intracellular computations. Spatial network computations can be divided into two broad categories: those required for essential spatial processes (e.g. polarization, chemotaxis, division, and development) and those for which space is simply used as an extra dimension to expand the computational power of the network. Several pertinent recent examples of each category are discussed that illustrate the often conceptually subtle role of space in the processing of intracellular information. PMID:20096560

  1. Intracellular and extracellular regulation of ureteric bud morphogenesis

    PubMed Central

    DAVIES, JAMIE

    2001-01-01

    The urinary collecting duct system of the permanent kidney develops by growth and branching of an initially unbranched epithelial tubule, the ureteric bud. Formation of the ureteric bud as an outgrowth of the wolffian duct is induced by signalling molecules (such as GDNF) that emanate from the adjacent metanephrogenic mesenchyme. Once it has invaded the mesenchyme, growth and branching of the bud is controlled by a variety of molecules, such as the growth factors GDNF, HGF, TGFβ, activin, BMP-2, BMP-7, and matrix molecules such as heparan sulphate proteoglycans and laminins. These various influences are integrated by signal transduction systems inside ureteric bud cells, with the MAP kinase, protein kinase A and protein kinase C pathways appearing to play major roles. The mechanisms of morphogenetic change that produce branching remain largely obscure, but matrix metalloproteinases are known to be necessary for the process, and there is preliminary evidence for the involvement of the actin/myosin contractile cytoskeleton in creating branch points. PMID:11322719

  2. [Role of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease].

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Xu, Man; Yu, Xiao-Jiang; Liu, Long-Zhu; Zang, Wei-Jin

    2016-08-25

    Calcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis. Endoplasmic reticulum, which is widely distributed in cytoplasm, has a large number of membrane junction sites. Recent studies have reported that these junction sites are distributed on plasma membrane and organelle membranes (mitochondria, lysosomes, Golgi apparatus, etc.), separately. They could form complexes to regulate calcium transport. In this review, we briefly outlined the recent research progresses of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease, which may offer a new strategy for prevention and treatment of cardiovascular disease. PMID:27546511

  3. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  4. Basis for the Specificity and Activation of the Serpin Protein Z-dependent Proteinase Inhibitor (ZPI) as an Inhibitor of Membrane-associated Factor Xa

    SciTech Connect

    Huang, Xin; Dementiev, Alexey; Olson, Steven T.; Gettins, Peter G.W.

    2012-12-13

    The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction {approx}2000-fold in the presence of phospholipid and Ca{sup 2+}. To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZ{sub {Delta}GD}) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing {approx}5-10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only {approx}2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional {approx}1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.

  5. Calpeptin Attenuated Apoptosis and Intracellular Inflammatory Changes in Muscle Cells

    PubMed Central

    Nozaki, Kenkichi; Das, Arabinda; Ray, Swapan K.; Banik, Naren L.

    2011-01-01

    In idiopathic inflammatory myopathies (IIMs), extracellular inflammatory stimulation is considered to induce secondary intracellular inflammatory changes including expression of major histocompatibility complex class-I (MHC-I) and to produce self-sustaining loop of inflammation. We hypothesize that activation of calpain, a Ca2+-sensitive protease, bridges between these extracellular inflammatory stress and intracellular secondary inflammatory changes in muscle cells. In this study, we demonstrated that treatment of rat L6 myoblast cells with interferon-gamma (IFN-γ) caused expression of MHC-I and inflammation related transcription factors (phosphorylated-extracellular signal-regulated kinase 1/2 and nuclear factor-kappa B). We also demonstrated that treatment with tumor necrosis factor-alpha (TNF-α) induced apoptotic changes and activation of calpain and cyclooxygenase-2. Further, we found that post-treatment with calpeptin attenuated the intracellular changes induced by IFN-γ or TNF-α. Our results indicate that calpain inhibition attenuates apoptosis and secondary inflammatory changes induced by extracellular inflammatory stimulation in the muscle cells. These results suggest calpain as a potential therapeutic target for treatment of IIMs. PMID:21290412

  6. Intracellular Macrophage Infections with E. coli under Nitrosative Stress

    PubMed Central

    Bateman, Stacey L.; Seed, Patrick

    2016-01-01

    Escherichia coli (E. coli) produces disseminated infections of the urinary tract, blood, and central nervous system where it encounters professional phagocytes such as macrophages, which utilize reactive nitrogen intermediates (RNI) to arrest bacteria. In vitro, extraintestinal pathogenic E. coli (ExPEC) can survive within bone marrow-derived macrophages for greater than 24 h post-infection within a LAMP1+ vesicular compartment, and ExPEC strains, in particular, are better adapted to intracellular macrophage survival than commensal strains (Bokil et al., 2011). This protocol details an intracellular murine macrophage-like cell infection, including modulation of the host nitrosative stress response, to model this host-pathogen interaction in vitro. To accomplish this, RAW 264.7 murine macrophage-like cells are pre-incubated with either L-arginine, an NO precursor, or IFNγ to yield a high nitric oxide (NO) physiological state, or L-NAME, an inducible NO synthase (iNOS)-specific inhibitor, to yield a low NO physiological state. This protocol has been successfully utilized to assess the contribution of a novel ExPEC regulator to intracellular survival and the nitrosative stress response during macrophage infections (Bateman and Seed, 2012), but can be adapted for use with a variety of E. coli strains or isogenic deletions.

  7. ApoHRP-based assay to measure intracellular regulatory heme.

    PubMed

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A; Dhahbi, Joseph M

    2015-02-01

    The majority of the heme-binding proteins possess a "heme-pocket" that stably binds to heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the "Heme-Regulatory Motifs" (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independent of the total heme (TH). The current study describes and validates a new method to measure intracellular RH. This method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent of TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β (Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ∼6% of total heme in IMR90 cells. PMID:25525887

  8. ApoHRP-based Assay to Measure Intracellular Regulatory Heme

    PubMed Central

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A.; Dhahbi, Joseph M.

    2015-01-01

    The majority of the heme-binding proteins possess a “heme-pocket” that stably binds with heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the “Heme-Regulatory Motifs” (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independently from the total heme (TH). The current study describes and validates a new method to measure intracellular RH. The method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent from TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β(Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ~6% of total heme in IMR90 cells. PMID:25525887

  9. Intracellular Ca 2+ nonlinear wave behaviours in a three dimensional ventricular cell model

    NASA Astrophysics Data System (ADS)

    Li, Pan; Holden, Arun V.

    2009-06-01

    Intracellular Ca 2+ activity regulates a wide range of cellular biochemical processes; in muscle cells, it links membrane excitation to contraction. Ca 2+ dynamics includes both synchronous oscillations, and nonlinear wave phenomena, both arising from the superposition of spatially localised stochastic events, such as Ca 2+ sparks. We incorporated individualised cell geometry reconstructed from confocal microscopy with realistic spatial distribution of RyR clusters into the three dimensional ventricular cell model, and reproduced complex spatio-temporal intracellular wave patterns from Ca 2+ sparks. We also introduced a detailed nuclear Ca 2+ handing model to simulate prolonged nuclear Ca 2+ transient, and study the effects of cytosolic-nuclear coupling on intracellular Ca 2+ dynamics. The model provides a computational platform to study intracellular Ca 2+ with the ability to interact with experimental measurements of subcellular structures, and can be modified for other cell types.

  10. Intracellular transport and cell surface delivery of the neural cell adhesion molecule (NCAM).

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2015-01-01

    The neural cell adhesion molecule (NCAM) regulates differentiation and functioning of neurons by accumulating at the cell surface where it mediates the interactions of neurons with the extracellular environment. NCAM also induces a number of intracellular signaling cascades, which coordinate interactions at the cell surface with intracellular processes including changes in gene expression, transport and cytoskeleton remodeling. Since NCAM functions at the cell surface, its transport and delivery to the cell surface play a critical role. Here, we review recent advances in our understanding of the molecular mechanisms of the intracellular transport and cell surface delivery of NCAM. We also discuss the data suggesting a possibility of cross talk between activation of NCAM at the cell surface and the intracellular transport and cell surface delivery of NCAM.

  11. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Remita, Hynd; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2015-11-01

    The pH regulation has a fundamental role in several intracellular processes and its variation via exogenous compounds is a potential tool for intervening in the intracellular processes. Proton caged compounds (PPCs) release protons upon UV irradiation and may efficiently provoke intracellular on-command acidification. Here, we explore the intracellular pH variation, when purposely synthesized PCCs are coupled to gold nanoparticles (AuNPs) and dosed to HEK-293 cells. We detected the acidification process caused by the UV irradiation by monitoring the intensity of the asymmetric stretching mode of the CO(2) molecule at 2343 cm(-1). The comparison between free and AuNPs functionalized proton caged compound demonstrates a highly enhanced CO(2) yield, hence pH variation, in the latter case. Finally, PCC functionalized AuNPs were marked with a purposely synthesized fluorescent marker and dosed to HEK-293 cells. The corresponding fluorescence optical images show green grains throughout the whole cytoplasm.

  12. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  13. Physical mapping of four serpin genes: [alpha][sub 1]-antitrypsin, [alpha][sub 1]-antichymotrypsin, corticosteroid-binding globulin, and protein C inhibitor, within a 280-kb region on chromosome 14q32. 1

    SciTech Connect

    Billingsley, G.D.; Cox, D.W. Univ. of Toronto, Ontario ); Walter, M.A. ); Hammond, G.L. )

    1993-02-01

    Alpha[sub 1]-antitrypsin ([alpha]1AT; protease inhibitor [PI] locus), [alpha][sub 1]-antichymotrypsin ([alpha]1ACT; AACT locus), corticosteroid-binding globulin (CBG; CBG locus), and protein C inhibitor (PCI; PCI locus) are members of the serine protease inhibitor (serpin) superfamily. A noncoding PI-like (PIL) gene has been located 12 kb 3[prime] of the PI gene. The PI, PIL, and AACT loci have been localized to 14q32.1, the CBG locus has been localized to 14q31-14q32.1, and PCI has been mapped to chromosome 14. Genetic linkage analysis suggests tight linkage between PI and AACT. The authors have used pulsed-field gel electrophoresis to generate a physical map linking these five serpin genes. The order of the genetic loci is AACT/PCI-PI-PIL-CBG, with a maximum distance of about 220 kb between the AACT/PCI and PI genes. These genes form a PI cluster at 14q32.1, similar to that of the homologous genes on murine chromosome 12. The close proximity of these genes has implications for disease-association studies. 44 refs., 6 figs., 2 tabs.

  14. Synthetic nanocarriers for intracellular protein delivery.

    PubMed

    Du, Juanjuan; Jin, Jing; Yan, Ming; Lu, Yunfeng

    2012-01-01

    Introducing exogenous proteins intracellularly presents tremendous chances in scientific research and clinical applications. The effectiveness of this method, however, has been limited by lack of efficient ways to achieve intracellular protein delivery and poor stability of the delivered proteins. Over the years, a variety of nanomaterials have been explored as intracellular protein delivery vectors, including liposomes, polymers, gold nanoparticles, mesoporous silica particles, and carbon nanotubes. Nanomaterials stand out in various protein delivery systems due to various advantages, such as efficient intracellular delivery, long circulation time, and passive tumor targeting. Additionally, chemistry behind these nanomaterials provides readily engineered materials, enabling versatile designs of delivery agents. Intracellular delivery mediated by such nanocarriers achieved varying degrees of success. Different problems associated with these nanocarriers, however, still hamper their real-world applications. Developing new delivery methods or vectors remains essential but challenging. This review surveys the current developments in protein delivery based on synthetic nanocarriers, including liposomes, polymers and inorganic nanocarriers; Prospects for future development of protein delivery nanocarriers are also provided.

  15. Novel variants of SERPIN1A gene: Interplay between alpha1-antitrypsin deficiency and chronic obstructive pulmonary disease.

    PubMed

    Bashir, Arif; Shah, Naveed Nazir; Hazari, Younis Mohammad; Habib, Mudasir; Bashir, Samirul; Hilal, Nazia; Banday, Mariam; Asrafuzzaman, Syed; Fazili, Khalid Majid

    2016-08-01

    Alpha1-antitrypsin (AAT) is one of the major circulating anti-protease whose levels in circulation are raised during excessive amount of proteases, especially neutrophil elastase (NE) released during the course of inflammation. Proteolytic attack of NE on peripheral organs, more exclusively on lung parenchyma has severe consequence that may precipitate pulmonary emphysema. Normally, human body has its own molecular and physiological mechanisms to synthesize and regulate the production of anti-protease like AAT to mitigate the extent of inflammatory damage. AAT coded by serine-protease inhibitor (SERPINA1) is predominantly expressed in hepatocytes and to some extent by macrophages, monocytes, lung tissue etc. The observation that persons with AAT deficiency developed chronic obstructive pulmonary disease (COPD) and early-onset of emphysema proposed a role for pathways connecting AAT in pathogenesis. Extensive studies have been done till now to bridge a connection between numerous genetic polymorphisms of SERPINA1 gene and the early onset of COPD. Here in this review, we have comprehensively discussed some of the variants of SERPINA1 gene discovered till date and their association with the exacerbation of obstructive pulmonary disease. PMID:27492524

  16. Charcot-Marie-Tooth disease and intracellular traffic.

    PubMed

    Bucci, Cecilia; Bakke, Oddmund; Progida, Cinzia

    2012-12-01

    Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.

  17. Inhibitor of apoptosis proteins as intracellular signaling intermediates.

    PubMed

    Kocab, Andrew J; Duckett, Colin S

    2016-01-01

    Inhibitor of apoptosis (IAP) proteins have often been considered inhibitors of cell death due to early reports that described their ability to directly bind and inhibit caspases, the primary factors that implement apoptosis. However, a greater understanding is evolving regarding the vital roles played by IAPs as transduction intermediates in a diverse set of signaling cascades associated with functions ranging from the innate immune response to cell migration to cell-cycle regulation. In this review, we discuss the functions of IAPs in signaling, focusing primarily on the cellular IAP (c-IAP) proteins. The c-IAPs are important components in tumor necrosis factor receptor superfamily signaling cascades, which include activation of the NF-κB transcription factor family. As these receptors modulate cell proliferation and cell death, the involvement of the c-IAPs in these pathways provides an additional means of controlling cellular fate beyond simply inhibiting caspase activity. Additionally, IAP-binding proteins, such as Smac and caspases, which have been described as having cell death-independent roles, may affect c-IAP activity in intracellular signaling. Collectively, the multi-faceted functions and complex regulation of the c-IAPs illustrate their importance as intracellular signaling intermediates.

  18. Charcot–Marie–Tooth disease and intracellular traffic

    PubMed Central

    Bucci, Cecilia; Bakke, Oddmund; Progida, Cinzia

    2012-01-01

    <